WO2022169194A2 - 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법 - Google Patents

나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법 Download PDF

Info

Publication number
WO2022169194A2
WO2022169194A2 PCT/KR2022/001441 KR2022001441W WO2022169194A2 WO 2022169194 A2 WO2022169194 A2 WO 2022169194A2 KR 2022001441 W KR2022001441 W KR 2022001441W WO 2022169194 A2 WO2022169194 A2 WO 2022169194A2
Authority
WO
WIPO (PCT)
Prior art keywords
dust
filter
dedusting
chambers
chamber
Prior art date
Application number
PCT/KR2022/001441
Other languages
English (en)
French (fr)
Other versions
WO2022169194A3 (ko
Inventor
송근용
Original Assignee
송근용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송근용 filed Critical 송근용
Publication of WO2022169194A2 publication Critical patent/WO2022169194A2/ko
Publication of WO2022169194A3 publication Critical patent/WO2022169194A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/04Cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/48Removing dust other than cleaning filters, e.g. by using collecting trays

Definitions

  • the present invention relates to a concentrated dust filter capable of removing nanoparticle-grade fine dust and a filter dust collection method using the same, and more particularly, to select one chamber from among a plurality of chambers according to a predetermined period of time or pressure applied thereto.
  • Concentrated dedusting process is performed on the filter while blocking the inflow of polluted air into the selected chamber, and in the unselected chambers, the general dedusting process of exhausting the filter during the filtration process is configured to be mixed. It does not pause the exhaustion of other chambers even when performing the process.
  • It relates to a concentrated exhaust filter dust filter capable of removing nanoparticle-grade fine dust and a filter dust collection method using the same, which improves productivity and lowers the defect rate by continuously performing the filter and dust collection process even during filter replacement or equipment inspection.
  • fine dust (dust) generated during the hole processing process using lasers, etc. has a nano-scale size and contains a large amount of heavy metals such as copper metal and glass fiber components that are harmful to the human body. This is occurring while processing a hole in the PCB board with a laser.
  • Such fine dust has a bulk density of around 0.18 g/ml and a tap density of around 0.15 g/cm3, so it is very light. Acting as a condensation nucleus, it can bring direct harm to us.
  • the conventional filter dust filter can exhibit filter dust collection performance for general fine dust, etc., but it is difficult to apply nano-grade fine dust (dust) generated during hole processing using a laser when processing PCB products. If you try to remove it with a general filter and dust collection facility, the dust is light and gets caught in the filter. Also, because the filtration speed of the existing method is fast, the filter is quickly clogged due to nano-scale fine dust (dust), and there is a problem that it does not function properly.
  • the multi-chamber filter and dust collection facility is intended to completely remove such fine dust (dust).
  • the large-capacity filter and dust extraction device and method of Korean Patent No. 10-1196355 are shown in FIG.
  • the large-capacity filter and dust extraction device and method of Korean Patent No. 10-1196355 are shown in FIG.
  • the large-capacity filter dust collector 10 composed of a plurality of dust collection chambers 12, according to a predetermined time period T0 specified by the user, or when the pressure loss value of the filter dust collector 10 is reached, the plurality of collection
  • T1 predetermined time
  • the exhaustion target The step of exhausting the dust collected in the dust collecting filter 11 of the dust collecting chamber 12, the step of exhausting the dust collected in the dust collecting filter, and preventing the exhausted dust from re-introducing into the dust collecting filter, and
  • the above-described conventional large-capacity filter dust collector uses time or pressure to exhaust the dust collection chamber in sequence when it reaches a certain level, stops after exhaustion is completed, and then repeats the exhaustion in order when it reaches a certain level, In this case, as the filtration process is not performed during the dedusting process, there is a problem in that the filter and dust collection efficiency for fine dust is lowered.
  • the conventional large-capacity filter dust filter has a problem in that the filtration speed is a general matter, and when trying to treat nano-scale fine dust (dust), the clogging of the filter becomes faster and the filtration performance of the dust collector is deteriorated.
  • an object of the present invention is to select one chamber according to a predetermined time period or pressure applied among a plurality of chambers and apply the filter to the selected chamber while blocking the inflow of polluted air.
  • the intensive dedusting process is performed, and the general dedusting process of dedusting the filter during the filtration process is configured to be mixed, so that the filter dust collection is not temporarily stopped when performing the dedusting process as in the prior art.
  • An object of the present invention is to provide a concentrated dust filter and dust filter capable of removing nano-particle-grade fine dust that continuously performs a continuous filtration process even during filter replacement or equipment inspection, thereby improving productivity and lowering the defect rate, and a filter dust collection method using the same.
  • a plurality of chambers are configured, and a filter dust collecting unit configured to have a plurality of filters in each of the plurality of chambers; a polluted air inlet line configured to provide polluted air to each of the plurality of chambers of the filter and dust collection unit, and an opening/closing valve configured to control whether or not polluted air is supplied to each of the chambers; a compressed air supply line for dust removal configured to provide compressed air to each of the plurality of chambers of the filter and dust collection unit; a dust water rejection unit configured in each of the plurality of chambers to collect and remove dust exhausted fine dust from the filter; a filtered air discharge line configured in each of the plurality of chambers and having an on/off valve configured to control the discharge of the filtered air filtered through the filter; and a blower configured at one end of the filtered air discharge line to provide suction power to the filtered air discharge line; Among the plurality of chambers, one of the chambers is selected according to a certain
  • the filter configured in the chamber in which the intensive dedusting process is performed when it is desired to replace the filter configured in the chamber in which the intensive dedusting process is performed, it is preferable to maintain the on/off valves of the filtered air inlet line and the filtered air outlet line configured in the chamber in a closed state.
  • the filter dust collecting unit when the pressure acting on the inside is above a certain level, automatically exhaust the pressure to prevent a safety accident from occurring due to the abnormal pressure; it is preferable to include.
  • the present invention comprises: a first process in which fine dust (dust) enters a plurality of chambers of a filter and dust collection unit through a polluted air inlet line; a second process of performing a filtration process for polluted air through a plurality of filters configured in each of the plurality of chambers when fine dust (dust) enters the plurality of chambers through the first process; a third process of selecting one chamber according to a predetermined period of time or an operating pressure during the filtration process for polluted air through the second process; a fourth process of closing the opening/closing valve of the polluted air inlet line configured in the selected chamber among the plurality of chambers through the third process to block the entry of the polluted air into the selected chamber; a fifth process of performing a concentrated dedusting process of intensively exhausting the filter configured in the chamber as compressed air is supplied through the compressed air supply line for dedusting of the chamber in which the ingress of contaminated air is blocked through the fourth process; a sixth step of removing the exhausted
  • the sixth process includes: a 6-1 process for collecting the exhausted fine dust (dust) collected by the collection hopper through the open upper valve into the dust collection box; a 6-2 step of closing the open upper valve when the exhausted fine dust is collected by the dust collection box through the 6-1 step; a 6-3 step of removing the negative pressure acting on the dust container by opening a negative pressure removing valve configured on one side of the dust container when the upper valve is closed through the step 6-2; a step 6-4 of opening a lower valve configured below the dust container when the negative pressure is removed in the dust container through the step 6-3, so that the exhausted fine dust collected in the dust container is removed to the outside; and Step 6-5 to maintain the dust collection unit in an initial state in a reverse order when the exhausted fine dust collected in the dust collection box is removed through the step 6-4.
  • one chamber is selected from among a plurality of chambers according to a certain period of time or pressure applied, and a concentrated dedusting process is performed on the filter in a state in which the selected chamber is blocked with polluted air, and in the unselected chambers.
  • the negative pressure removal valve acts on the dust collection box It has the effect of removing the negative pressure to facilitate the collection of the exhausted fine dust.
  • a safety valve on one side of the filter dust collecting part, it automatically opens when a certain pressure or more is applied due to a valve failure or an operation error during dust extraction. It works.
  • FIG. 1 is a block diagram of a large-capacity filter dust collector showing an example of the prior art.
  • FIG. 2 is a schematic configuration diagram of a concentrated dust filter capable of removing nano-particle-grade fine dust according to the present invention.
  • FIG. 3 is a block diagram of a filter dust collecting unit according to the present invention.
  • FIG. 4 is a block diagram of a dust water rejection unit according to the present invention.
  • FIG. 5 is a process diagram of a filter dust collection method using a concentrated dust filter dust filter capable of removing nano-particle-grade fine dust according to the present invention.
  • the concentrated dust filter dust filter capable of removing nanoparticle-grade fine dust of the present invention includes a filter dust collection unit 10, a polluted air inlet line 20, and a compressed air line 30 for dedusting. , a dust water rejection unit 40 , a filtered air discharge line 50 , a safety valve 60 , and a blower 70 .
  • the filter dust collecting unit 10 includes a chamber 12 , a filter 14 , and a collection hopper 16 .
  • the chamber 12 is composed of a plurality of, for example, three, and even if the concentrated dedusting process is performed in any one, by controlling the dedusting and filtration processes to be continuously performed in the remaining chamber 12, the operation state of the filter dust collector is maintained. It prevents nano-scale fine dust (dust) from being exposed to the outside.
  • the chamber 12 is formed in a closed structure, is connected to the contaminated air inlet line 20 at the lower end, is connected to the compressed air supply line 30 for dedusting on one side of the upper end, and the filtered air outlet line ( 50) is configured to be connected.
  • At least one filter 14 is installed inside the chamber 12 to filter the polluted air entering through the polluted air inlet line 20, so that the filtered air from which fine dust has been filtered is transferred to the filtered air outlet line ( 50) to allow the discharge to occur.
  • the filter 14 is detachably configured in the chamber 12 so that it can be replaced, and is composed of a straight bag or a cartridge bag.
  • a straight bag In the case of the straight bag, 0.3 It is preferable that it is ⁇ 0.8 m/min, and in the case of a cartridge bag, it is preferable that it is 0.15 ⁇ 0.45 m/min.
  • the reason for maintaining the proper filtration speed of the straight bag at 0.3 to 0.8 m/min is that when the filtration speed is set to 0.3 m/min or less, the filtration speed is slowed and the life of the filter can be extended, but the size of the dust collector is relatively As the size of the filter increases, economic efficiency decreases, and when it exceeds 0.8 m/min, the filtration speed increases, causing nano-grade fine dust (dust) to become trapped in the filter, and clogging of the filter becomes severe, shortening the life of the filter and collecting the filter dust. efficiency is lowered.
  • the reason for setting the appropriate filtration speed of the cartridge filter to 0.15 to 0.45 m/min is the same as the above.
  • the collection hopper 16 is configured at the lower end of the chamber 12, and fine dust coarsened by the electrostatic attraction of fine dust (dust) or nano-scale fine dust (dust) exhausted from the filter 14 .
  • Contaminants such as (dust) (hereinafter collectively referred to as 'de-dusting fine dust') are configured to be collected below.
  • the collection hopper 16 is formed in a funnel shape of the upper and lower halves.
  • the limitation is that the collection hopper 16 may use any structure or shape that allows contaminants to be easily collected.
  • the polluted air inlet line 20 is configured with a pipe that sucks fine dust (dust) generated through laser hole processing for PCB products and enters the chamber 12 of the filter dust collecting unit 10 .
  • the contaminated air inlet line 20 allows the contaminated air to enter the lower end of the chamber 12 . It is filtered by the filter 14 while being transferred from the lower side to the upper side by the intake pressure of the blower 70 .
  • the polluted air inlet line 20 is configured with an opening/closing valve 22 to control whether or not the polluted air enters into each of the plurality of chambers 12 . That is, the opening/closing valve 22 is configured between each of the plurality of chambers 12 and the contaminated air inlet line 20 to control whether or not the contaminated air enters.
  • the ingress of contaminated air into the filter and dust collecting unit 10 where the concentrated dedusting process is performed is blocked so as not to interfere with the concentrated dedusting process.
  • the compressed air supply line 30 for dedusting is configured on one side of the upper end of the chamber 12 of the filter and dust collecting unit 10, and provides compressed air to the plurality of filters 14 configured in the chamber 12 to exhaust dust by air pulsing. Let the process be carried out.
  • a pipe 32 is formed to supply compressed air to each of the plurality of chambers 12 , and the pipe 32 ), a plurality of nozzles 34 are configured to spray compressed air to each of a plurality of filters 14 configured in the chamber 12 to perform a dedusting process for the filters 14 .
  • the filter ( 14) when performing the intensive dedusting process in the chamber 12 of any one of the filter dust collectors 10 among the plurality of filter dust collectors 10, the filter ( 14) is performed, and in the process of performing the filtration process in the chamber 12 of the remaining filter dust collector 10, the nozzle 34 located in any one of the filters 14 among the plurality of filters 14 ) through which compressed air is provided so that the filter is exhausted during the filtration process.
  • the pressure of the compressed air provided from the compressed air supply line 30 for dedusting is 4 to 6 (kg/cm 2 ).
  • the dust collection unit 40 includes a dust container 42 , an upper valve 44 configured at an upper end of the dust container 42 , and a lower end of the dust container 42 . It includes a lower valve 46 and a negative pressure removal valve 48 configured on one side of the dust container 42 , and an inspection unit 49 .
  • the dust collection unit 40 opens and closes the upper valve 44 in the filtration process or the concentrated dust exhaustion process, and when the upper valve 44 that opens and closes at a predetermined time period is opened, the fine dust particles collected in the collection hopper 16 are opened. Let the dust be collected in the dust collection box (42).
  • the lower valve 46 configured below the dust container 42 is opened to remove the fine dust collected in the dust container 42 to the outside.
  • the opened lower valve 46 is closed and the upper valve 42 is opened, as described above.
  • the dust collection box 42 is used to collect the exhausted fine dust.
  • the filtered air discharge line 50 is configured at the upper end of the chamber 12 of the filter dust collecting unit 10 , and constitutes a pipe so that the filtered air passing through the filter 14 can be discharged to the outside through the blower 70 .
  • the filter air discharge line 50 is configured in each of the plurality of filter and dust collecting units 10, and an on/off valve 52 for controlling whether the filtered air discharged through each of the filter and dust collecting units 10 is discharged.
  • the safety valve 60 is configured between the filter dust collecting unit 10 and the filtered air discharge line 50, and automatically at a pressure higher than a certain pressure, for example, 1 kg/cm 2 or higher due to a valve failure or operation error during general exhaustion or concentrated exhaustion. Make sure it is open to prevent safety accidents such as explosions.
  • the blower 70 is configured at one end of the filtered air discharge line 50 so that a suction force acts on the filtered air discharge line 50 so that the filtered air is easily discharged.
  • the above-mentioned filter dust collector 10 has been described on the basis that it is composed of three, and if necessary, when the filter dust collector 10 is reduced or made larger, it is reduced to two or increased to four or more to perform the general dedusting process and By mixing the intensive dedusting process, stable operation and 24/7 operation of the filter dust collector are possible, and this 24/7 operation can increase productivity and reduce the defect rate.
  • the filtration method of nano-scale ultra-fine dust through the filter dust collection method using the concentrated exhaust filter dust filter capable of removing the nano-particle-grade fine dust configured as described above is as follows.
  • a first process (S1) in which fine dust (dust) enters the plurality of chambers of the filter and dust collection unit through the contaminated air inlet line is performed.
  • a chamber in which a pressure applied to a time period or a filter or a chamber acts within a predetermined range or more is selected.
  • a fourth process (S4) of closing the opening/closing valve of the polluted air inlet line configured in the selected chamber among the plurality of chambers through the third process (S3) to block the entry of the polluted air into the selected chamber is performed.
  • a fifth process of intensively exhausting the filter configured in the chamber as compressed air is provided through the compressed air supply line for exhaustion of the chamber in which the entry of polluted air is blocked through the fourth process (S4). (S5) is made.
  • the fifth process (S5) is a concentrated dedusting process, by closing the on-off valve 22 configured in the contaminated air inlet line 20 to block the ingress of the contaminated air into the selected chamber, and is provided from the compressed air supply line for exhaustion
  • the filter is exhausted by air pulsing by the compressed air.
  • the opening/closing valve 52 configured in the filtered air discharge line 50 configured in the selected chamber maintains an open state.
  • the reason for performing the intensive dedusting process is that dust with a bulk density of around 0.18 g/ml and a tap density of around 0.15 g/ml is too light, and nano-grade fine dust is trapped in the pores of the filter to prevent exhaustion, and intensive This is to improve the exhaustion efficiency and to increase the filtration efficiency.
  • the compressed air is sprayed through the nozzle 34 to any one of the filters 14 during the filtration process of filtering the polluted air through the plurality of filters 14 in the chambers 12 that are not selected, the A general dedusting process in which dedusting is performed by air pulsing is performed.
  • the intensive dedusting process is performed in the selected chamber, the dedusting efficiency for small and light nano-scale fine dust (dust) is improved, and also in the non-selected chamber as described above, general By allowing the exhaustion process to be performed, the exhaustion effect can be further enhanced as the concentrated exhaustion and general exhaustion processes are mixed.
  • the intensive dedusting process is performed for about 30 minutes or more.
  • the filter when replacement of the filter is required, the filter is replaced when the concentrated dedusting process for the chamber including the filter requiring replacement is performed, and in this case, the on-off valve ( 52) to close the filter to be replaced.
  • the filtration speed of the filter in the chamber is determined by the characteristics of the nano-grade fine dust (dust), so the re-rise of the exhausted fine dust (dust) exhausted after air pulsing, preventing clogging of the filter, increasing the dusting effect and removal efficiency.
  • a filter it is preferably in the range of 0.3 to 0.8 m/min, and in the case of a cartridge bag filter, it is preferably maintained in the range of 0.15 to 0.45 m/min.
  • a 6-1 step (S61) of collecting the exhausted fine dust collected by the collection hopper through the opened upper valve into the dust collection box is performed.
  • a 6-3 process (S63) of removing the negative pressure acting on the dust container by opening the negative pressure removing valve configured on one side of the dust container is performed .
  • Step S63 When the negative pressure in the dust container is removed through the step 6-3 (S63), the lower valve configured below the dust container is opened to remove the fine dust collected in the dust container to the outside. Step S64 is performed.
  • a step 6-5 (S65) of maintaining the dust container in the initial state is performed in a reverse order.
  • the 6-5 process closes the open lower valve, then closes the negative pressure removal valve configured on one side of the dust container, and opens the closed upper valve, thereby collecting hopper located below the chamber. This allows the exhausted fine dust to be collected in the dust collection box of the dust collection unit.
  • the dust removal fine dust collection process of the sixth step (S6) is not only performed in the concentrated dust removal process, but also in the general dust removal process, the removal of the exhaust fine dust is performed.
  • a seventh process (S7) of selecting any one of the plurality of chambers except for the chamber in which the concentrated dust removal process is performed is performed.
  • the filtration process of fine dust is performed through the filter and dust collecting unit 24/7 while mixing the intensive dedusting process and the general dedusting process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법에 관한 것으로서, 다수의 챔버 중 일정시간주기 또는 작용하는 압력에 따라 하나의 챔버를 선택하고 선택된 챔버에 오염공기를 차단시킨 상태에서 필터에 대한 집중탈진공정이 수행되고, 선택되지 않은 챔버들에서 여과과정 중 필터를 탈진시키는 일반탈진공정이 혼용되도록 구성함으로써, 종래의 기술과 다르게 탈진공정을 수행하고자 할때도 다른 챔버의 탈진을 일시 정지시키지 않는다. 필터 교환시나 기기 점검 중에도 계속적인 연속 탈진 및 여과공정이 수행되게 함으로써 생산성 향상과 함께 불량률을 저하시키도록 하는 데 그 목적이 있다. 이를 위해 본 발명은, 복수의 챔버가 구성되고, 상기 복수의 챔버 각각에 복수의 필터가 구성되는 여과집진부와; 상기 여과집진부의 복수 챔버 각각에 오염공기를 제공할 수 있도록 구성되고, 상기 각각의 챔버에 오염공기의 제공여부를 단속하는 개폐밸브가 구성되는 오염공기진입라인과; 상기 여과집진부의 복수의 챔버 각각에 압축공기를 제공할 수 있도록 구성되는 탈진용압축공기공급라인과; 상기 복수의 챔버 각각에 구성되어 필터에서 탈진되는 탈진미세먼지를 수거 및 제거하도록 하는 분진수거부와; 상기 복수의 챔버 각각에 구성되어, 필터를 통해 여과된 여과공기를 배출할 수 있도록 단속하는 개폐밸브가 구성되는 여과공기배출라인; 및 상기 여과공기배출라인의 일단에 구성되어, 상기 여과공기배출라인에 흡입력을 제공하는 송풍기를 포함하여 구성되되; 상기 다수의 챔버 중 일정시간주기 또는 내부에 작용하는 작용압력에 따라 하나의 챔버를 선택하여 오염공기진입라인의 개퍠밸브를 차단시켜 오염공기의 제공을 차단시킨 상태에서 탈진용압축공기공급라인을 통해 압축공기를 제공하여 상기 선택된 챔버에서 집중탈진공정이 수행되도록 하는 것을 특징으로 한다.

Description

나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법
본 발명은 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법에 관한 것으로서, 더욱 상세하게는, 다수의 챔버 중 일정시간주기 또는 작용하는 압력에 따라 하나의 챔버를 선택하고 선택된 챔버에 오염공기의 유입을 차단시킨 상태에서 필터에 대한 집중탈진공정이 수행되고, 선택되지 않은 챔버들에서는 여과과정 중 필터를 탈진시키는 일반탈진공정이 혼용되도록 구성함으로써, 종래의 기술과 다르게 탈진공정을 수행하고자 할때도 다른 챔버의 탈진을 일시정지 시키지 않는다. 필터 교환시나 기기점검 중에도 계속적인 여과 집진 공정이 수행되게 함으로써 생산성 향상과 함께 불량률을 저하시키도록 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법에 관한 것이다.
요즘 세계는 하루 하루가 다르게 변화하고, 그에 따라 첨단기술들이 개발되면서 대기오염 물질인 미세먼지(분진)들도 그 크기가 나노급 초미세먼지(분진) 상태로 배출되는 배출원들이 많이 생겨나고 있다.
특히, PCB제품 산업에서 레이져 등을 이용한 홀 가공 공정 중에서 발생하는 미세먼지(분진)는 나노 급의 크기를 띠며 인체에 해로운 구리 금속 등의 중금속 물질과 유리섬유 성분 등을 다량 함유하고 있다. 이는 PCB 기판에 홀을 레이져로 가공하면서 발생하고 있다.
이러한 미세먼지(분진)는 벌크 밀도가 0.18g/㎖ 전후, 탭 밀도가 0.15g/㎤ 전후로 아주 가벼워서 대기 중에 배출될 경우 바람의 영향으로 광범위하게 퍼지게 되면서 피해 면적을 넓히게 되어 호흡기뿐만 아니라 비나 눈의 응결 핵으로 작용하면서 우리에게 직접적인 위해를 가져오게 될 수 있다.
또한, 종래의 여과집진기는 일반 미세먼지 등에 대한 여과집진성능을 발휘할 수 있으나, PCB 제품 등에 대한 가공시 레이져를 이용한 홀 가공 중 발생하는 나노급의 미세먼지(분진)는 적용하기에 어려움이 있다. 일반적인 여과집진시설로 제거하려고 하면 분진이 가벼워 필터에 끼임 현상이 심하고, 또한 기존 방식은 여과속도가 빠르기 때문에 나노급의 미세먼지(분진) 때문에 필터가 금방 막혀서 제 기능을 하지 못하는 문제점이 있다.
실제적으로, 대부분의 레이져 드릴 홀 가공업체들이 잘못 제작, 설계된 집진기를 설치해서 필터 막힘 현상으로 제대로 사용 못하고 결국엔 필터를 손상시킨 후 구리 등 중금속이 함유된 미세먼지(분진)들을 대기 중에 무방비 상태로 배출시키고 있는 실정이다.
이에 따라, 다챔버 여과집진시설로 이러한 미세먼지(분진)를 완벽하게 제거하고자 하는 것으로서, 종래의 일례를 살펴보면, 대한민국 특허 제10-1196355호의 대용량여과집진기 탈진 장치 및 방법은, 도 1에 도시된 바와 같이, 다수의 집진실(12)로 이루어진 대용량의 여과집진기(10)에서 사용자가 지정한 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실값에 도달하여 상기 다수의 집진실(12)이 순차적으로 모두 탈진되는 대용량 여과집진기 탈진방법에 있어서, 첫번째 탈진대상 집진실(12)의 유량을 완전히 차단하고 탈진 개시 직전까지 소정시간(T1)을 대기하는 단계와, 상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 탈진시키는 단계와, 탈진된 분진이 상기 집진필터에 포집된 분진을 탈진시키는 단계와, 탈진된 분진이 상기 집진필터에 재유입 되는 것을 방지하고 침강에 의해 상기 집진실 하단부의 호퍼와 분진 배출장치를 거쳐 외부로 배출될 수 있도록 상기 집진실의 유량을 완전히 차단한 상태로 소정시간(T2) 경과시키는 단계와, 상기 탈진대상 집진실(12)을 100% 개방한 정상유량의 50%로 유량이 통과하도록 개방하여 소정시간(T3) 운전시키는 단계와, 상기 탈진대상 집진실(12)을 100% 개방한 정상유량 상태에서 소정시간(T4) 운전시키는 단계와, 상기 여과집진기(10)의 두 번째 탈진대상 집진실(12)을 상기 각 단계와 동일한 순서와 방법으로 탈진하는 단계와, 상기 여과집진기(10)의 나머지 집진실(12)도 순차적으로 상기 단계와 동일하게 반복 수행시켜 탈진하는 단계와, 상기 여과집진기(10)의 마지막 탈진순서에 해당되는 집진실(12)의 탈진이 완료되어 상기 여과집진기(10)의 탈진 싸이클이 종료된 후, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실이 소정값에 도달하여 상기 여과집진기(10)의 탈진 싸이클이 다시 반복 수행되는 단계로 이루어진다.
그러나, 상술한 종래의 대용량 여과집진기는 시간 또는 압력을 이용하여 일정 수준이 되었을 때 집진실을 순서에 의해서 돌아가며 탈진시키며, 탈진 완료 후 정지했다가 다시 일정수준이 되면 순서대로 탈진을 반복하는 것으로서, 이 경우, 탈진공정 중 여과공정이 수행되지 못함에 따라 미세먼지에 대한 여과집진 효율이 떨어진다는 문제점이 있다.
또한, 종래의 대용량 여과집진기는 여과속도가 일반적인 사항으로 나노급의 미세먼지(분진)를 처리하려하면 필터의 눈막힘이 빨라져서 집진장치의 여과성능이 저하되는 문제점이 있다.
상기와 같은 문제점을 해결하기 위해 제안하는 것으로서, 본 발명의 목적은, 다수의 챔버 중 일정시간주기 또는 작용하는 압력에 따라 하나의 챔버를 선택하고 선택된 챔버에 오염공기유입을 차단시킨 상태에서 필터에 대한 집중탈진공정이 수행되고, 선택되지 않은 챔버들에서는 여과과정 중 필터를 탈진시키는 일반탈진공정이 혼용되도록 구성함으로써, 종래와 같이 탈진공정을 수행하고자 할 때 여과집진을 일시정지시키지 않는다. 필터교환이나 기기 점검중에도 계속적인 연속 여과공정이 수행되어 생산성 향상과 함께 불량률을 저하시키도록 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명은, 복수의 챔버가 구성되고, 상기 복수의 챔버 각각에 복수의 필터가 구성되는 여과집진부와; 상기 여과집진부의 복수 챔버 각각에 오염공기를 제공할 수 있도록 구성되고, 상기 각각의 챔버에 오염공기의 제공여부를 단속하는 개폐밸브가 구성되는 오염공기진입라인과; 상기 여과집진부의 복수의 챔버 각각에 압축공기를 제공할 수 있도록 구성되는 탈진용압축공기공급라인과; 상기 복수의 챔버 각각에 구성되어 필터에서 탈진되는 탈진미세먼지를 수거 및 제거하도록 하는 분진수거부와; 상기 복수의 챔버 각각에 구성되어, 필터를 통해 여과된 여과공기를 배출할 수 있도록 단속하는 개폐밸브가 구성되는 여과공기배출라인; 및 상기 여과공기배출라인의 일단에 구성되어, 상기 여과공기배출라인에 흡입력을 제공하는 송풍기를 포함하여 구성되되; 상기 다수의 챔버 중 일정시간주기 또는 내부에 작용하는 작용압력에 따라 하나의 챔버를 선택하여 오염공기진입라인의 개폐밸브를 차단시켜 오염공기의 제공을 차단시킨 상태에서 탈진용압축공기공급라인을 통해 압축공기를 제공하여 상기 선택된 챔버에서 집중탈진공정이 수행되도록 하는 것을 특징으로 한다.
본 발명에 있어서, 선택된 챔버에서 집중탈진공정이 수행되는 과정과 함께, 선택되지 않은 다른 챔버에 구성된 다수의 필터에서 오염공기를 여과시키는 여과공정과 함께 다수의 필터 중 어느 하나의 필터에 탈진용 압축공기 공급라인을 통해 압축공기가 제공되어 필터에 탈진이 이루어지도록 하는 일반탈진공정이 혼용되도록 하여 필터에 대한 탈진효율을 향상시키도록 하는 것이 바람직하다.
본 발명에 있어서, 집중탈진공정이 수행되는 챔버에 구성된 필터를 교체하고자 할 경우에, 상기 챔버에 구성된 여과 공기 진입라인과 여과공기 배출라인의 개폐밸브를 닫힘상태로 유지시키도록 하는 것이 바람직하다.
본 발명에 있어서, 여과 집진부에는, 내부에 작용하는 압력이 일정이상일 경우 자동으로 압력을 배기시켜 이상압력에 의해 안전사고가 발생됨을 방지하도록 하는 안전밸브;를 포함하는 것이 바람직하다.
본 발명은, 오염공기진입라인을 통해 미세먼지(분진)가 여과집진부의 다수의 챔버로 진입되는 제1공정과; 상기 제1공정을 통해 다수의 챔버로 미세먼지(분진)가 진입되면 다수의 챔버 각각에 구성된 다수의 필터를 통해 오염공기에 대한 여과공정이 수행되는 제2공정과; 상기 제2공정을 통해 오염공기에 대한 여과공정 중 일정시간 주기 또는 작용압력에 따라 어느 하나의 챔버를 선택하는 제3공정과; 상기 제3공정을 통해 다수의 챔버 중 선택된 챔버에 구성된 오염공기진입라인의 개폐밸브를 닫힘시켜 상기 선택된 챔버로 오염공기의 진입을 차단시키도록 하는 제4공정과; 상기 제4공정을 통해 오염공기의 진입이 차단된 챔버의 탈진용압축공기공급라인을 통해 압축공기가 제공됨에 따라 챔버에 구성된 필터를 집중탈진하는 집중탈진공정이 수행되도록 하는 제5공정과; 상기 제5공정을 통해 선택된 챔버에 대한 집중탈진공정이 완료되면, 수집호퍼에 수집된 탈진미세먼지를 제거하는 제6공정; 및 상기 제6공정을 통해 탈진미세먼지의 제거가 완료되면, 집중탈진공정이 수행된 챔버를 제외한 다수의 챔버중 어느 하나의 챔버를 선택하여, 상술된 제4공정을 수행하도록 하여 연속, 순환적인 공정이 이루어지도록 하는 제7공정;으로 이루어지는 것이 바람직하다.
본 발명에 있어서, 제6공정은, 개방된 상부밸브를 통해 수집호퍼로 수집된 탈진된 미세먼지(분진)가 분진수거함으로 수거되도록 하는 제6-1공정과; 상기 제6-1공정을 통해 탈진미세먼지가 분진수거함으로 수거되면, 개방된 상부밸브를 닫힘하는 제6-2공정과; 상기 제6-2공정을 통해 상부밸브가 닫힘되면, 분진수거함의 일측에 구성된 음압제거용 밸브를 개방시켜 상기 분진수거함에 작용하는 음압을 제거하는 제6-3공정과; 상기 제6-3공정을 통해 분진수거함에 음압이 제거되면, 분진수거함의 하방에 구성된 하부밸브를 개방시켜, 상기 분진수거함에 수거된 탈진미세먼지가 외부로 제거되도록 하는 제6-4공정; 및 상기 제6-4공정을 통해 분진수거함에 수거된 탈진미세먼지의 제거가 이루어지면, 역순에 의해 분진수거부를 초기상태로 유지시키도록 하는 제6-5공정;으로 이루어지는 것이 바람직하다.
본 발명에 의하면, 다수의 챔버 중 일정시간주기 또는 작용하는 압력에 따라 하나의 챔버를 선택하고 선택된 챔버에 오염공기를 차단시킨 상태에서 필터에 대한 집중탈진공정이 수행되고, 선택되지 않은 챔버들에서 여과과정 중 필터를 탈진시키는 일반탈진공정이 혼용되도록 구성함으로써, 종래와 같이 탈진공정을 수행하고자 일시정지시키지 않고 계속적인 연속 여과공정을 수행하게 된다. 필터 교체시나 기기 점검 중에서도 연속 가동이 가능함으로써 생산성 향상과 함께 불량률을 저하시키도록 하는 효과가 있다.
또한, 집중탈진공정 또는 일반탈진공정 중 발생되는 탈진미세먼지(분진)를 수거하는 분진수거부의 분진수거함 일측에 음압제거용 밸브를 구성함으로써, 상기 음압제거용 밸브에 의해 상기 분진수거함에 작용하는 음압을 제거시켜 탈진미세먼지의 수거가 용이하게 이루어지도록 하는 효과가 있다.
또한, 여과집진부의 일측에 안전밸브를 구성함으로써, 탈진 시 밸브고장 또는 작동실수로 인해 일정압력 이상이 작용할 경우 자동으로 열림됨에 따라 일정이상의 압력으로 인해 폭발 등의 안전사고가 발생됨을 미연에 방지하는 효과가 있다.
도 1은 종래의 일례를 보인 대용량 여과집진기의 구성도.
도 2는 본 발명에 따른 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기의 개략적인 구성도.
도 3은 본 발명에 따른 여과집진부의 구성도.
도 4는 본 발명에 따른 분진수거부의 구성도.
도 5는 본 발명에 따른 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기를 이용한 여과집진방법 공정도.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.
본 발명의 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기는 도 2에 도시된 바와 같이, 여과집진부(10)와, 오염공기진입라인(20)과, 탈진용압축공기라인(30)과, 분진수거부(40)와, 여과공기배출라인(50)과, 안전밸브(60), 및 송풍기(70)를 포함한다.
상기 여과집진부(10)는 도 3에 도시된 바와 같이, 챔버(12)와, 필터(14), 및 수집호퍼(16)를 포함한다.
상기 챔버(12)는 복수 예컨대, 3개로 구성되어, 어느 하나에서 집중탈진공정이 수행되더라도, 나머지 챔버(12)에서도 탈진 및 여과공정이 계속적으로 이루어지도록 제어함으로써, 여과집진기의 가동상태를 유지하여 나노급의 미세먼지(분진)가 외부로 노출됨을 방지하게 된다.
또한, 상기 챔버(12)는 밀폐구조로 형성되고, 하단부에 오염공기진입라인(20)과 연결되며, 상단 일측에 탈진용 압축공기공급라인(30)과 연결되고, 상단부에 여과공기배출라인(50)이 연결되도록 구성된다.
상기 필터(14)는 상기 챔버(12) 내부에 적어도 하나 이상 설치되어, 오염공기진입라인(20)을 통해 진입된 오염공기를 여과시킴에 따라 미세먼지를 여과시킨 여과공기가 여과공기배출라인(50)을 통해 배출이 이루어지도록 한다.
또한, 상기 필터(14)는 교체가 가능하도록 챔버(12)에 착탈식으로 구성되고, 스트레이트 백 또는 카트리지 백으로 구성되며, 상기 스트레이트 백의 경우 여과속도 제거 효율을 높이고 필터의 공극 막힘을 최대한 늦추기 위해 0.3 ~ 0.8m/min임이 바람직하고, 카트리지 백의 경우 0.15 ~ 0.45m/min임이 바람직하다. 즉, 스트레이트 백의 여과 적정 속도를 0.3 ~ 0.8m/min으로 유지시키는 이유는 여과속도를 0.3m/min이하로 하는 경우에는 여과속도가 느려져 필터의 수명이 늘어날 수 있는 장점이 있으나 집진기의 규격이 상대적으로 커지게 됨으로써 경제성이 떨어지고, 0.8m/min이상이 되면 여과속도가 빨라져 나노급 미세먼지(분진)가 필터에 끼임 현상이 심하게 발생하고 필터의 눈막힘이 심해져 여과필터의 수명이 짧아지고 여과 집진 효율이 낮아진다. 카트리지 필터의 여과 적정속도를 0.15 ~ 0.45m/min으로 하는 이유도 상기와 같은 이유인 것이다.
상기 수집호퍼(16)는 상기 챔버(12)의 하단에 구성되어, 상기 필터(14)에서 탈진된 미세먼지(분진) 또는 나노급 미세먼지(분진)의 정전기적 인력에 의해 조대화된 미세먼지(분진) 등의 오염물(이하 '탈진미세먼지'라 통칭함)이 하방에 수집되도록 구성된다.
이 경우, 상기 수집호퍼(16)는 상광하협의 깔때기 형상으로 형성됨이 바람직하다. 물론, 이에 한정하는 것은 상기 수집호퍼(16)는 오염물을 용이하게 수집할 수 있도록 하는 구조 또는 형상이면 어느 것이든 사용 가능하다.
오염공기진입라인(20)은 PCB제품에 대한 레이져 홀 가공을 통해 발생되는 미세먼지(분진)를 흡입하여 여과집진부(10)의 챔버(12)로 진입시키는 배관이 구성된다. 이 경우, 상기 오염공기진입라인(20)은 챔버(12)의 하단으로 오염공기가 진입되도록 한다. 송풍기(70)의 흡기압력에 의해 하방에서 상방으로 이송되면서 필터(14)로 여과되도록 한다.
또한, 상기 오염공기진입라인(20)에는 복수로 구성된 각각의 챔버(12)에 오염공기의 진입 여부를 단속시키도록 하는 개폐밸브(22)가 구성된다. 즉, 상기 개폐밸브(22)는 복수의 챔버(12) 각각과 오염공기진입라인(20) 사이에 구성되어, 오염공기의 진입여부를 단속하도록 함으로써, 복수의 여과집진부(10) 중 어느 하나의 여과집진부(10)에서 집중탈진공정이 수행될 경우 집중탈진공정이 수행되는 여과집진부(10)로 오염공기의 진입을 차단시켜 집중탈진공정이 간섭되지 않도록 한다.
탈진용압축공기공급라인(30)은 여과집진부(10)의 챔버(12) 상단 일측에 구성되어, 상기 챔버(12)에 구성된 복수의 필터(14)에 압축공기를 제공하여 에어펄싱에 의한 탈진공정이 수행되도록 한다.
또한, 상기 탈진용압축공기공급라인(30)은 도 3에 도시된 바와 같이, 압축공기를 다수의 챔버(12) 각각에 공급시킬 수 있도록 배관(32)이 형성되고, 또한, 상기 배관(32)에는 챔버(12)에 구성된 다수의 필터(14) 각각에 압축공기를 분사시켜 상기 필터(14)에 대한 탈진공정이 수행될 수 있도록 다수의 노즐(34)이 구성된다.
이를 통해, 다수의 여과집진기(10) 중 어느 하나의 여과집진기(10)의 챔버(12)에서 집중탈진공정을 수행할 때 탈진용압축공기공급라인(30)에서 제공되는 압축공기에 의해 필터(14)의 탈진공정을 수행하게 되고, 또한, 나머지 여과집진기(10)의 챔버(12)에서 여과공정이 수행되는 과정에서 다수의 필터(14) 중 어느 하나의 필터(14)에 위치한 노즐(34)을 통해 압축공기가 제공됨에 따라 여과공정 중 필터의 탈진이 이루어지도록 한다.
또한, 탈진용압축공기공급라인(30)에서 제공되는 압축공기의 압력은 4 ~ 6(㎏/㎠)이다.
분진수거부(40)는 도 4에 도시된 바와 같이, 분진수거함(42)과, 상기 분진수거함(42)의 상단에 구성되는 상부밸브(44)와, 상기 분진수거함(42)의 하단에 구성되는 하부밸브(46)와, 상기 분진수거함(42)의 일측에 구성되는 음압제거용 밸브(48), 및 점검부(49)를 포함한다.
상기 분진수거부(40)는 여과공정 또는 집중탈진공정에서 상부밸브(44)가 개폐작동하게 되고, 일정시간주기로 개폐되는 상기 상부밸브(44)가 개방되면 수집호퍼(16)에 수집된 탈진미세먼지가 분진수거함(42)으로 수거되도록 한다.
또한, 상기 상부밸브(44)가 닫힘되면 상기 분진수거함(42)의 하방에 구성된 하부밸브(46)를 개방시켜 상기 분진수거함(42)에 수거된 탈진미세먼지가 외부로 제거되도록 한다.
이때, 상기 하부밸브(46)를 단순히 개방하면 분진수거함(42)에 작용하는 음압에 의해 주변의 공기가 순식간에 빨려들어가 포집이 용이하지 않게됨에 따라 상기 하부밸브(46)를 개방시키기 전에 상기 분진수거함(42)의 일측에 구성된 음압제거용 밸브(48)를 먼저 개방시켜 상기 분진수거함(42)의 음압을 제거시켜줌으로써, 하부밸브(46)를 개방시켰을 때 주변 공기가 빨려들어감을 방지할 뿐만 아니라 밸브의 작동을 자연스럽게 하여 파손을 방지하는 부수적인 효과를 얻을 수 있다.
또한, 상기 하부밸브(46)의 개방으로 분진수거함(42)에 수거된 탈진미세먼지의 제거가 완료되면 개방된 하부밸브(46)를 닫힘하고, 상부밸브(42)를 개방함으로써, 상술한 바와 같이 분진수거함(42)으로 탈진미세먼지의 수거가 이루어지도록 한다.
여과공기배출라인(50)은 여과집진부(10)의 챔버(12) 상단에 구성되어, 필터(14)를 통과한 여과공기가 송풍기(70)를 통해 외부로 배출될 수 있도록 배관을 구성한다.
또한, 상기 여과공기배출라인(50)은 복수의 여과집진부(10) 각각에 구성되고, 각각의 여과집진부(10)를 통해 배출되는 여과공기의 배출여부를 단속시키도록 하는 개폐밸브(52)를 포함한다.
안전밸브(60)는 여과집진부(10)와 여과공기배출라인(50) 사이에 구성되어, 일반탈진 또는 집중탈진시 밸브고장이나 작동실수로 인해 일정압력 이상 예컨대, 1kg/㎠이상의 압력에서 자동으로 개방되도록 하여 폭발 등의 안전사고가 발생되지 않도록 한다.
송풍기(70)는 여과공기배출라인(50)의 일단에 구성되어, 상기 여과공기배출라인(50)에 흡입력이 작용하도록 함으로써, 여과공기의 용이한 배출이 이루어지도록 구성된다.
한편, 상기한 여과집진기(10)는 3개로 구성된 것을 기준으로 설명되었으며, 필요에 따라 여과집진기(10)를 적거나 또는 더 크게 하는 경우에는 2개로 줄이거나 또는 4개 이상으로 늘려서 일반탈진공정과 집중탈진공정을 혼용함에 따라 여과집진기의 안정적인 운전과 연중무휴 운전이 가능하도록 하고, 이러한 연중무휴 운전에 따라 생산성을 높이고 불량률을 줄일 수 있다는 효과를 얻을 수 있다.
상기와 같이 구성된 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기를 이용한 여과집진방법을 통한 나노급 초미세분진의 여과방법을 도 5에 도시된 바와 같이, 살펴보면 다음과 같다.
먼저, 오염공기진입라인을 통해 미세먼지(분진)가 여과집진부의 다수의 챔버로 진입되는 제1공정(S1)이 이루어진다.
상기 제1공정(S1)을 통해 다수의 챔버로 미세먼지가 진입되면 다수의 챔버 각각에 구성된 다수의 필터를 통해 오염공기에 대한 여과공정이 수행되는 제2공정(S2)이 이루어진다.
상기 제2공정(S2)을 통해 오염공기에 대한 여과공정 중 어느 하나의 챔버를 선택하는 제3공정(S3)이 이루어진다.
이 경우, 상기 제3공정(S3)은 시간주기 또는 필터나 챔버 등에 작용하는 압력이 일정범위 이상으로 작용하는 챔버를 선택하게 된다.
상기 제3공정(S3)을 통해 다수의 챔버 중 선택된 챔버에 구성된 오염공기진입라인의 개폐밸브를 닫힘시켜 상기 선택된 챔버로 오염공기의 진입을 차단시키도록 하는 제4공정(S4)이 이루어진다.
상기 제4공정(S4)을 통해 오염공기의 진입이 차단된 챔버의 탈진용압축공기공급라인을 통해 압축공기가 제공됨에 따라 챔버에 구성된 필터를 집중탈진하는 집중탈진공정이 수행되도록 하는 제5공정(S5)이 이루어진다.
상기 제5공정(S5)은 집중탈진공정으로서, 오염공기진입라인(20)에 구성된 개폐밸브(22)를 닫힘하여, 선택된 챔버로 오염공기의 진입을 차단하고, 탈진용압축공기공급라인에서 제공되는 압축공기에 의한 에어펄싱으로 필터를 탈진시킨다. 이 경우, 선택된 챔버에 구성된 여과공기배출라인(50)에 구성된 개폐밸브(52)는 개방상태를 유지한다.
상기 집중탈진공정을 수행하는 이유는 벌크밀도가 0.18g/㎖전후, 탭밀도가 0.15g/㎖전후인 분진이 너무 가볍고, 나노급 미세먼지가 필터의 공극에 끼여 탈진이 안되는 현상을 막고, 집중적으로 탈진해서 탈진효율을 향상시키고 여과효율을 높이기 위함이다.
또한, 선택되지 않은 챔버(12)들에서도 다수의 필터(14)를 통해 오염공기를 여과시키는 여과과정 중 어느 하나의 필터(14)에 압축공기가 노즐(34)을 통해 분사됨에 따라 압축공기의 에어펄싱으로 탈진이 이루어지는 일반탈진공정이 수행된다.
이는, 여과집진부로 계속 오염공기가 공급되고 탈진이 계속 이루어짐으로 챔버 안의 분진은 상승과 하강을 반복하며 나노급 미세먼지(분진)의 정전기적인 인력과 충돌 등에 의해 미세먼지(분진)에서 조대화가 이루어지고, 일부는 탈진되기도 하며, 조대화가 이루어지는 챔버는 집중탈진공정이 수행됨에 따라 나노급 미세먼지(분진)를 더 효율적으로 포집, 제거할 수 있게 되는 것이다. 즉, 종래의 여과집진기는 나노급 미세먼지(분진)가 조대화되어도 미세먼지보다는 가볍기 때문에 미세먼지 입자들이 하강과 상승을 반복하며 포집이 잘되지 않아 필터의 공극이 쉽게 막혀 사용할 수 없게되는 문제점이 있다.
이에 대비하여, 상술한 바와 같이, 선택된 챔버에서 집중탈진공정을 수행하면, 작고 가벼운 나노급의 미세먼지(분진)에 대한 탈진효율을 향상시키게 되고, 또한, 상술한 바와 같이 선택되지 않은 챔버에서도 일반탈진공정이 수행되도록 함으로써, 집중탈진 및 일반탈진공정이 혼용됨에 따라 탈진효과를 더욱 더 높일 수 있다. 상기 집중탈진공정은 대략 30분 이상 수행된다.
한편, 필터의 교체가 필요한 경우에는 교체가 필요한 필터가 구성된 챔버에 대한 집중탈진공정이 수행될 때, 상기 필터를 교체하고, 이 경우, 챔버에 구성된 여과공기배출라인(50)에 구성된 개폐밸브(52)를 닫힘하여 필터의 교체가 이루어지도록 한다.
또한, 챔버의 필터에 대한 여과속도는 나노급 미세먼지(분진)의 특성상 에어펄싱 후 탈진된 탈진미세먼지(분진)의 재상승, 필터의 막힘방지, 탈진효과를 높이고 제거효율을 높이기 위해, 스트레이트 백 필터의 경우 0.3 ~ 0.8m/min 범위이고, 카트리지 백 필터의 경우 0.15 ~ 0.45m/min 범위로 유지되도록 함이 바람직하다.
상기 제5공정(S5)을 통해 선택된 챔버에 대한 집중탈진공정이 완료되면, 수집호퍼에 수집된 탈진미세먼지를 제거하는 제6공정(S6)이 이루어진다.
상기 제6공정(S6)은 열림된 상부밸브를 통해 수집호퍼로 수집된 탈진미세먼지가 분진수거함으로 수거되도록 하는 제6-1공정(S61)이 이루어진다.
상기 제6-1공정(S61)을 통해 탈진미세먼지가 분진수거함으로 수거되면, 개방된 상부밸브를 닫힘하는 제6-2공정(S62)이 이루어진다.
상기 제6-2공정(S62)을 통해 상부밸브가 닫힘되면, 분진수거함의 일측에 구성된 음압제거용 밸브를 개방시켜 상기 분진수거함에 작용하는 음압을 제거하는 제6-3공정(S63)이 이루어진다.
상기 제6-3공정(S63)을 통해 분진수거함에 음압이 제거되면, 분진수거함의 하방에 구성된 하부밸브를 개방시켜, 상기 분진수거함에 수거된 탈진미세먼지가 외부로 제거되도록 하는 제6-4공정(S64)이 이루어진다.
상기 제6-4공정(S64)을 통해 분진수거함에 수거된 탈진미세먼지의 제거가 이루어지면, 역순에 의해 분진수거부를 초기상태로 유지시키도록 하는 제6-5공정(S65)이 이루어진다.
즉, 상기 제6-5공정(S65)은 개방된 하부밸브를 닫힘시키고, 이어서 분진수거함의 일측에 구성된 음압제거용 밸브를 닫힘하며, 닫힘된 상부밸브를 개방시킴으로서, 챔버의 하방에 위치한 수집호퍼를 통해 탈진미세먼지가 분진수거부의 분진수거함으로 수거될 수 있도록 한다.
또한, 제6공정(S6)의 탈진미세먼지 수거공정은 집중탈진공정에서만 수행되는 것이 아니라 일반탈진공정에서도 탈진미세먼지의 제거가 이루어진다.
상기 제6공정(S6)을 통해 탈진미세먼지의 제거가 완료되면, 집중탈진공정이 수행된 챔버를 제외한 다수의 챔버중 어느 하나의 챔버를 선택하는 제7공정(S7)을 수행한다.
그리고, 상기 제7공정(S7)을 통해 집중탈진공정을 수행하고자 하는 챔버의 선택이 완료되면, 상술한 제4공정(S4)이 수행된다.
이와 같이, 집중탈진공정과 일반탈진공정을 혼용함과 함께 연중무휴로 여과집진부를 통해 미세먼지(분진)의 여과공정이 수행되도록 한다.
이상에서 설명한 것은 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법을 실시하기 위한 하나의 실시 예에 불과한 것으로서, 본 발명은 상기한 실시 예에 한정되지 아니한다. 본 발명에 속하는 분야에서 통상의 지식을 가진 자라면, 본 발명의 요지를 벗어남이 없이 다양한 변경실시가 가능하다는 것을 이해할 수 있을 것이다.

Claims (6)

  1. 복수의 챔버가 구성되고, 상기 복수의 챔버 각각에 복수의 필터가 구성되는 여과집진부와;
    상기 여과집진부의 복수 챔버 각각에 오염공기를 제공할 수 있도록 구성되고, 상기 각각의 챔버에 오염공기의 제공여부를 단속하는 개폐밸브가 구성되는 오염공기진입라인과;
    상기 여과집진부의 복수의 챔버 각각에 압축공기를 제공할 수 있도록 구성되는 탈진용압축공기공급라인과;
    상기 복수의 챔버 각각에 구성되어 필터에서 탈진되는 탈진미세먼지를 수거 및 제거하도록 하는 분진수거부와;
    상기 복수의 챔버 각각에 구성되어, 필터를 통해 여과된 여과공기를 배출할수 있도록 단속하는 개폐밸브가 구성되는 여과공기배출라인; 및
    상기 여과공기배출라인의 일단에 구성되어, 상기 여과공기배출라인에 흡입력을 제공하는 송풍기를 포함하여 구성되되;
    상기 다수의 챔버 중 일정시간주기 또는 내부에 작용하는 작용압력에 따라 하나의 챔버를 선택하여 오염공기진입라인의 개폐밸브를 차단시켜 오염공기의 제공을 차단시킨 상태에서 탈진용압축공기공급라인을 통해 압축공기를 제공하여 상기선택된 챔버에서 집중탈진공정이 수행되도록 하는 것을 특징으로 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기.
  2. 제1항에 있어서,
    상기 선택된 챔버에서 집중탈진공정이 수행되는 과정과 함께, 선택되지 않은 다른 챔버에 구성된 다수의 필터에서 오염공기를 여과시키는 여과공정과 함께 다수의 필터 중 어느 하나의 필터에 탈진용압축공기공급라인을 통해 압축공기가 제공되어 필터에 탈진이 이루어지도록 하는 일반탈진공정이 혼용되도록 하여 필터에 대한 탈진효율을 향상시키도록 하는 것을 특징으로 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기.
  3. 제1항에 있어서,
    상기 집중탈진공정이 수행되는 챔버에서는 기기점검 및 교체가 필요한 필터 교체시에도, 상기 챔버에 구성된 오염공기진입라인과 여과공기배출라인의 개폐밸브를 닫힘상태로 유지시키도록 하는 것을 특징으로 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기.
  4. 제1항에 있어서,
    상기 여과집진부에는,
    내부에 작용하는 압력이 일정이상일 경우 자동으로 압력을 배기시켜 이상압력에 의해 안전사고가 발생됨을 방지하도록 하는 안전밸브;
    를 포함하는 것을 특징으로 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기.
  5. 오염공기진입라인을 통해 미세먼지가 여과집진부의 다수의 챔버로 진입되는 제1공정과;
    상기 제1공정을 통해 다수의 챔버로 미세먼지가 진입되면 다수의 챔버 각각에 구성된 다수의 필터를 통해 오염공기에 대한 여과공정이 수행되는 제2공정과;
    상기 제2공정을 통해 오염공기에 대한 여과공정 중 일정시간 주기 또는 작용 압력에 따라 어느 하나의 챔버를 선택하는 제3공정과;
    상기 제3공정을 통해 다수의 챔버 중 선택된 챔버에 구성된 오염공기진입라인의 개폐밸브를 닫힘시켜 상기 선택된 챔버로 오염공기의 진입을 차단시키도록 하는 제4공정과;
    상기 제4공정을 통해 오염공기의 진입이 차단된 챔버의 탈진용압축공기공급라인을 통해 압축공기가 제공됨에 따라 챔버에 구성된 필터를 집중탈진하는 집중탈진공정이 수행되도록 하는 제5공정과;
    상기 제5공정을 통해 선택된 챔버에 대한 집중탈진공정이 완료되면, 수집호퍼에 수집된 탈진미세먼지를 제거하는 제6공정; 및
    상기 제6공정을 통해 탈진미세먼지의 제거가 완료되면, 집중탈진공정이 수행된 챔버를 제외한 다수의 챔버 중 어느 하나의 챔버를 선택하여, 상술된 제4공정을 수행하도록 하여 연속, 순환적인 공정이 이루어지도록 하는 제7공정;
    으로 이루어지는 것을 특징으로 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기를 이용한 여과 집진방법.
  6. 제5항에 있어서,
    상기 제6공정은,
    개방된 상부밸브를 통해 수집호퍼로 수집된 탈진미세먼지가 분진수거함으로 수거되도록 하는 제6-1공정과;
    상기 제6-1공정을 통해 탈진미세먼지가 분진수거함으로 수거되면, 개방된 상부밸트를 닫힘하는 제6-2공정과;
    상기 제6-2공정을 통해 상부밸브가 닫힘되면, 분진수거함의 일측에 구성된 음압제거용 밸브를 개방시켜 상기 분진수거함에 작용하는 음압을 제거하는 제6-3공정과;
    상기 제6-3공정을 통해 분진수거함에 음압이 제거되면, 분진수거함의 하방에 구성된 하부밸브를 개방시켜, 상기 분진수거함에 수거된 탈진미세먼지가 외부로 제거되도록 하는 제6-4공정; 및
    상기 제6-4공정을 통해 분진수거함에 수거된 탈진미세먼지의 제거가 이루어지면, 역순에 의해 분진수거부를 초기상태를 유지시키도록 하는 제6-5공정;
    으로 이루어지는 것을 특징으로 하는 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기를 이용한 여과 집진방법.
PCT/KR2022/001441 2021-02-03 2022-01-27 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법 WO2022169194A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0015470 2021-02-03
KR1020210015470A KR102304128B1 (ko) 2021-02-03 2021-02-03 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법

Publications (2)

Publication Number Publication Date
WO2022169194A2 true WO2022169194A2 (ko) 2022-08-11
WO2022169194A3 WO2022169194A3 (ko) 2022-10-06

Family

ID=77926288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001441 WO2022169194A2 (ko) 2021-02-03 2022-01-27 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법

Country Status (3)

Country Link
KR (1) KR102304128B1 (ko)
TW (1) TWI813149B (ko)
WO (1) WO2022169194A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304128B1 (ko) * 2021-02-03 2021-09-23 송근용 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법
KR102661840B1 (ko) * 2021-12-10 2024-05-07 한국에너지기술연구원 호퍼 내 우회유로 차단이 가능한 전기집진기, 및 그 작동방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279353B1 (ko) * 1997-12-24 2001-01-15 이구택 여과집진기의펄싱기간중유해물질제거장치
US7082640B2 (en) * 2003-07-18 2006-08-01 Christy, Inc. Ambient air backflushed filter vacuum
KR200361493Y1 (ko) 2004-06-17 2004-09-13 김성우 여과 집진기의 탈진주기 조절장치
CN1647846A (zh) * 2004-12-01 2005-08-03 广西壮族自治区柳州市自动化科学研究所 用于控制清灰除尘器的矩阵式控制方式
JP4808130B2 (ja) * 2006-10-26 2011-11-02 アマノ株式会社 集塵機用ダスト回収装置
JP2009189965A (ja) * 2008-02-15 2009-08-27 Sumitomo Metal Mining Co Ltd サイクロン集塵機の粉塵排出装置
KR100973467B1 (ko) * 2008-03-27 2010-08-02 한국에너지기술연구원 여과집진기 가스 흐름 차단방식 탈진장치 및 방법
KR101196355B1 (ko) * 2010-03-24 2012-11-02 한국에너지기술연구원 대용량 여과집진기 탈진 장치 및 방법
KR101458439B1 (ko) * 2013-03-08 2014-11-13 주식회사 한엔코 밀폐형 분사구조의 백필터용 분사 장치를 구비한 집진기
KR101612256B1 (ko) * 2014-01-02 2016-04-27 (주)아모레퍼시픽 여과 집진장치에 적용된 에어 공급라인의 제어장치
KR101743179B1 (ko) * 2015-01-29 2017-06-15 한국에너지기술연구원 보충가스를 이용한 백필터 집진장치 및 이의 작동방법
CN107869793A (zh) * 2016-09-23 2018-04-03 江苏科技大学 一种空气净化器及其实现方法
KR102304128B1 (ko) * 2021-02-03 2021-09-23 송근용 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법

Also Published As

Publication number Publication date
TW202231333A (zh) 2022-08-16
TWI813149B (zh) 2023-08-21
KR102304128B1 (ko) 2021-09-23
WO2022169194A3 (ko) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2022169194A2 (ko) 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법
WO2020013575A1 (ko) 집진설비 분진 배출 저감 시스템
WO2017150856A1 (ko) 공기청정기
WO2011118861A1 (ko) 대용량 여과집진기 탈진 장치 및 방법
WO2009145468A2 (ko) 레일궤도용 공기정화장치
CN212188171U (zh) 一种高效气固分离及除尘装置
WO2018151506A1 (ko) 열분해기용 정제기
CN112206624A (zh) 一种快速高效除尘工艺
WO2018012742A1 (ko) 수동 비상운전이 가능한 집진기용 다이아후렘 밸브
KR100241139B1 (ko) 에어 나이프를 이용한 이동식 분진비산억제장치 및 방법
WO2019103225A1 (ko) 흄후드
CN108057288A (zh) 一种建筑施工用除尘装置
JP2001041521A (ja) エアーシヤワー装置
WO2020067671A1 (ko) 이물질 포집장치 및 이를 포함하는 전기강판 제조설비
JPH1047649A (ja) 排煙の浄化装置
WO2020059936A1 (ko) 청소가 용이한 전기 집진기
US20130192467A1 (en) Two stage dust collection trailer with hepa filtration
KR100944025B1 (ko) 세라믹 필터를 이용한 에어펄스 타입 집진기
WO2022092722A1 (ko) 흡착 방식의 유해가스 처리시스템
CN213556339U (zh) 一种危废仓库
WO2017200185A1 (ko) 배기가스 재순환 시스템용 수처리 필터 시스템
WO2018236067A1 (ko) 선택집진이 가능한 여과시스템
JP2000300924A (ja) バグフィルタ
JP2002361020A (ja) ろ過式集塵装置
KR20030050816A (ko) 스트립 그라인더 미스트오일집진기의 오일흄 포집 제거장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749945

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749945

Country of ref document: EP

Kind code of ref document: A2