WO2011118823A1 - Method of producing propylene oxide - Google Patents

Method of producing propylene oxide Download PDF

Info

Publication number
WO2011118823A1
WO2011118823A1 PCT/JP2011/057498 JP2011057498W WO2011118823A1 WO 2011118823 A1 WO2011118823 A1 WO 2011118823A1 JP 2011057498 W JP2011057498 W JP 2011057498W WO 2011118823 A1 WO2011118823 A1 WO 2011118823A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
propane
section
hydrogen
dehydrogenation
Prior art date
Application number
PCT/JP2011/057498
Other languages
English (en)
French (fr)
Inventor
Shigeru Goto
Shigenori Shiraishi
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2011118823A1 publication Critical patent/WO2011118823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides

Definitions

  • the present invention relates to a method of producing propylene oxide. More particularly, the present invention relates to a method of producing propylene oxide, wherein the supply of propylene, which is a raw material, can be advantageously carried out.
  • Patent Document 1 describes a method of deriving propylene oxide and cumyl alcohol from cumene hydroperoxide and propylene.
  • Patent Document 2 describes a method of producing styrene and propylene oxide wherein a fluidized-bed catalytic cracking unit (FCC) is established in parallel to produce ethylene and propylene to be used in a plant.
  • FCC fluidized-bed catalytic cracking unit
  • Patent Document 2 when the ratio of ethylene/propylene economically derived through the FCC does not correspond to the ratio of ethylene/propylene demanded in the plant, the technology of Patent Document 2 is unsatisfactory in that one side of lacking ethylene or propylene has to be supplied from other sources in spite of the parallel establishment of the FCC.
  • a problem to be solved by the present invention is to provide a method of producing propylene oxide wherein the supply of propylene, which is a raw material, can be advantageously carried out.
  • a first invention of the present invention relates to a method of producing propylene oxide, comprising the following steps:
  • a propane-dehydrogenation step (1) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (1) wherein propylene and an organic hydroperoxide are reacted with each other in the presence of a catalyst (1) to derive propylene oxide and an alcohol wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step
  • a propylene recovery step (1) wherein unreacted propylene in the epoxidation step (1) is recovered wherein the propylene is recycled to the epoxidation step (1) as at least a part of raw materials in the epoxidation step (1);
  • a propylene-oxide purification step (1) wherein propylene oxide derived in the epoxidation step (1) is subjected to distillation to derive purified propylene oxide.
  • a second invention of the present invention relates to a method of producing propylene oxide, comprising the following steps:
  • a propane-dehydrogenation step (2) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (2) wherein cumene hydroperoxide in the oxidation reaction liquid and propylene are reacted with each other in the presence of a catalyst (3) to derive an epoxy reaction liquid including propylene oxide and cumyl alcohol wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (2);
  • a propylene recovery step (2) wherein unreacted propylene in the epoxidation step (2) is recovered wherein the propylene is recycled to the epoxidation step (2) as at least a part of raw materials in the epoxidation step (2);
  • a propylene-oxide purification step (2) wherein propylene oxide derived in the epoxidation step (2) is subjected to distillation to derive purified propylene oxide;
  • a hydrogenation step wherein cumyl alcohol derived in the epoxidation step (2) in the presence of a catalyst (4) is hydrogenated to derive cumene wherein the cumene is recycled to the oxidation step as at least a part of raw materials in the oxidation step.
  • a third invention of the present invention relates to a method of producing propylene oxide, comprising the following steps:
  • a propane-dehydrogenation step (3) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (3) wherein propylene and hydrogen peroxide are reacted with each other in the presence of a catalyst (5) to derive propylene oxide and water wherein at least a part of the propylene is that derived in the propane-dehydrogenation step (3);
  • a propylene recovery step (3) wherein unreacted propylene in the epoxidation step (3) is recovered wherein the propylene is recycled to the epoxidation step (3) as at least a part of raw materials in the epoxidation step (3);
  • a propylene-oxide purification step (3) wherein propylene oxide derived in the epoxidation step (3) is subjected to distillation to derive purified propylene oxide.
  • a fourth invention of the present invention relates to a method of producing propylene oxide, comprising the following steps:
  • a propane-dehydrogenation step (4) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (4) wherein propylene and hydrogen peroxide are reacted with each other in the presence of a catalyst (6) to derive propylene oxide and water wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (4);
  • a propylene recovery step (4) wherein unreacted propylene in the epoxidation step (4) is recovered wherein the propylene is recycled to the epoxidation step (4) as at least a part of raw materials in the epoxidation step (4);
  • a propylene-oxide purification step (3) wherein propylene oxide derived in the epoxidation step (4) is subjected to distillation to derive purified propylene oxide.
  • the present invention can provide a method of producing propylene oxide which can advantageously carry out the supply of propylene, which is a raw material,
  • Fig.1 is a drawing giving an outline of the flow chart of Example 1;
  • Fig.2 is a drawing giving an outline of the flow chart of Example 2;
  • FIG.3 is a drawing giving an outline of the flow chart of Example 3; and [Fig.4] Fig.4 is a drawing giving an outline of the flow chart of Example 4;
  • a method of producing propylene oxide relating to the first invention of the present invention is the one comprising the following steps:
  • a propane-dehydrogenation step (1) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (1) wherein propylene and an organic hydroperoxide are reacted with each other in the presence of a catalyst (1) to derive propylene oxide and an alcohol wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step
  • a propylene recovery step (1) wherein unreacted propylene in the epoxidation step (1) is recovered wherein the propylene is recycled to the epoxidation step (1) as at least a part of raw materials in the epoxidation step (1); and a propylene-oxide purification step (1), wherein propylene oxide derived in the epoxidation step (1) is subjected to distillation to derive purified propylene oxide.
  • the propane-dehydrogenation step (1) in the first invention of the present invention is the one wherein propane is dehydrogenated to derive a section including propylene.
  • the reaction for dehydrogenating propane can carry out an oxidative dehydrogenation in the presence of molecular oxygen, or can carry out an oxidative
  • dehydrogenation in the absence of molecular oxygen in the absence of molecular oxygen.
  • this kind of dehydrogenation reaction for example, reactions described in National Publication No.2008-540492 can be enumerated.
  • Propane used for the reaction can be crude propane. However, commonly purified propane is often used.
  • propane is often used.
  • a homogeneous dehydrogenation reaction, a heterogeneous catalytic dehydrogenation reaction, a homogeneous oxidative dehydrogenation reaction, a heterogeneous catalytic oxidative dehydrogenation reaction, or the like can be enumerated. At least one of them can be selected to derive a mixture (which is a section including propylene) including propylene, which is a reaction product, a by-product, and unreacted propane.
  • a "partition step" wherein a publicly known unit operation such as rectification, adsorption, absorption, condensation, or membrane separation is separately used or combined with other unit operation(s) is provided to purify the section including propylene to a desired degree of propylene purity, and to recycle unreacted propylene to the propane-dehydrogenation step (1).
  • partition (separation) step a method of partitioning out the above section including propylene into propane propylene and other impurities, wherein first of all, under a temperature and pressure condition under which components having a boiling point higher than that of propylene or propane, such as water, are selectively condensed, such components are removed, and then publicly known adsorption operations such as pressure swing adsorption (PSA) are combined to carry out the partition step can be enumerated.
  • PSA pressure swing adsorption
  • the following method can be enumerated.
  • reaction conditions of the propane-dehydrogenation step (1) the ones timely optimized depending on the reaction mode or catalyst of homogeneous dehydrogenation reaction, heterogeneous catalytic dehydrogenation reaction, homogeneous oxidative
  • the dehydrogenation reaction or heterogeneous catalytic oxidative dehydrogenation reaction to be adopted should be adopted.
  • the propane-dehydrogenation step (1) is often carried out at 400°C or more. Additionally, in order to suppress this undesirable side reaction, steam can be added.
  • Reactors also are not particularly limited. However, for example, when a homogeneous reaction mode is adopted, a mixing vessel can be enumerated, while when a heterogeneous reaction mode is adopted, a fixed bed flow reactor can be enumerated.
  • a partition step (1) wherein the section including propylene, derived in the propane-dehydrogenation step (1) is subjected to a partition operation to partition out the section into a section mainly including propylene and a section mainly including propane to recycle the section mainly including propane to the propane-dehydrogenation step (1).
  • hydrogen can be produced as a by- product.
  • the hydrogen in the partition step (1), can be partitioned out such that it is included in any one section of the section mainly including propylene and the section mainly including propane, or it can be partitioned out as a section mainly including hydrogen, except both the section mainly including propylene and the section mainly including propane.
  • the hydrogen when hydrogen is produced as a byproduct, the hydrogen can be used as a combustion fuel.
  • the hydrogen is utilized as a combustion fuel source for heating service which is necessary for preheating propane, which is a raw material in the propane-dehydrogenation step (1) or necessary for controlling the reaction temperature of the dehydrogenation reaction.
  • a method of utilizing it as the combustion fuel source for heating service for example, a method of pre-heating a reaction raw-material in the propane-dehydrogenation step (1) using a combustion furnace having a burner for hydrogen burning, and a method wherein a reaction area filled with a catalyst (1) is provided within a combustion furnace to heat the reaction area can be enumerated.
  • a method wherein hydrogen produced in the propane- dehydrogenation step (1) and oxygen in a specified amount are mixed, followed by the combustion under a catalyst can be enumerated.
  • National Publication No.2008- 0519792, National Publication No.2009-531368, or the like exemplifies a method wherein an oxygen gas is added to hydrogen produced in the reaction, followed by the combustion under a catalyst to directly provide the reaction gas with heat.
  • the propane- dehydrogenation step (1) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen, and it is further preferred that it comprises the following partition step (2).
  • a partition step (2) wherein the section including propylene and hydrogen, derived in the propane-dehydrogenation step (1) is subjected to a partition operation to partition out the section into a section mainly including propylene, a section mainly including propane, and a section mainly including hydrogen to recycle the section mainly including propane to the propane-dehydrogenation step (1).
  • the propane- dehydrogenation step (1) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen
  • the first invention is the one wherein at least a part of a combustion fuel source for heating service, which is necessary in the step (1), uses a section including hydrogen derived in the propane-dehydrogenation step (1).
  • hydrocarbon partitioned as an impurity also can be used as combustion fuel.
  • the epoxidation step (1) in the first invention of the present invention is the one wherein propylene and an organic hydroperoxide are reacted in the presence of a catalyst (1) to derive propylene oxide and an alcohol wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (1).
  • the catalyst (1) used in the epoxidation step (1) in the first invention of the present invention is preferably a catalyst comprising a titanium-containing silicon oxide, and more preferably a so-called Ti-silica catalyst containing Ti which is chemically bonded to a silicon oxide.
  • a catalyst wherein a Ti-compound is carried out on a silica carrier a catalyst wherein a Ti-compound is complexed with a silicon oxide by a coprecipitation method or a sol- gel method, a Ti-containing zeolite compound, and the like can be enumerated.
  • the organic hydroperoxide used in the epoxidation step (1) can be a dilute or concentrated refined or unrefined product.
  • the organic hydroperoxide for example, ethylbenzene hydroperoxide, cumene hydroperoxide, diisopropylene hydroperoxide, and the like can be enumerated.
  • the epoxidation reaction can be carried out by contacting propylene and an organic hydroperoxide with the catalyst (1).
  • the reaction is carried out in a liquid phase using a solvent.
  • the solvent has to be liquid at a reaction temperature and pressure, and substantially inactive to a reactant and a reaction product.
  • the solvent can be the one which comprises a substance existing in a hydroperoxide solution to be used.
  • ethylbenzene hydroperoxide or cumene hydroperoxide is a mixture comprising ethylbenzene or cumene, which is a raw material of ethylbenzene hydroperoxide or cumene hydroperoxide
  • the hydroperoxide can be substituted for the solvent without especially adding a solvent.
  • an aromatic monocyclic compound for example, alkane, and the like can be enumerated.
  • aromatic monocyclic compound for example, benzene, toluene, chlorobenzene, orthodichlorobenzene, and the like can be enumerated.
  • alkane for example, octane, decane, dodecane, and the like can be enumerated.
  • the temperature of the epoxidation reaction is commonly in the range of 0 to 200°C, and preferably in the range of 25 to 200°C.
  • the pressure of the epoxidation reaction can be a sufficient pressure to keep the reaction mixture in a liquid state, and commonly in the range of 100 to 10000 kPa.
  • the catalyst (1) is preferably used in the form of slurry or a fixed bed. In case of a large-scale industrial operation, it is preferred to use a fixed bed. Furthermore, it can be carried out according to a batch type, a semi-continuous method, a continuous method, or the like. When a liquid including a raw material for reaction is passed through a fixed bed, a liquid mixture contains no catalyst, or does not substantially contain a catalyst.
  • epoxidation step (1) is preferably in the range of 2/1 to 50/1.
  • the ratio is too low, the reaction rate is decreased, so the efficiency is deteriorated, while when the ratio is too large, the amount of propylene to be recycled becomes too large, so a large amount of energy is needed in the recovery step.
  • the ratio is too large, the amount of propylene to be recycled becomes too large, so a large amount of energy is needed in the recovery step.
  • superior efficiency can be provided.
  • the propylene recovery step (1) in the first invention of the present invention is the one wherein unreacted propylene in the epoxidation step (1) is recovered to recycle the propylene to the epoxidation step (1) as at least a part of raw materials in the epoxidation step
  • a reaction liquid issued from the epoxidation step (1) includes unreacted propylene.
  • a method of partitioning the propylene from the reaction liquid to recover the same a method of distilling the reaction liquid can be enumerated.
  • For distillation conditions wherein propylene is easily evaporated from the reaction liquid are commonly used.
  • the conditions of distillation are varied depending on the temperature or composition of the reaction liquid supplied to the distillation step.
  • the pressure is commonly in the range of 0 to 5 MPa by gauge pressure, and preferably in the range of 0 to 3 MPa, while the temperature at overhead is commonly -50 to 150°C. Additionally, a method of using multiple distillation columns to distill the propylene in stages can be used.
  • the propylene-oxide purification step (1) in the first invention of the present invention is the one wherein propylene oxide derived in the epoxidation step (1) is subjected to distillation to derive purified propylene oxide.
  • the following method can be enumerated.
  • Propylene oxide subjected to the purification is the one after the recovery of unreacted propylene as mentioned above from the reaction liquid in the epoxidation step.
  • This crude propylene oxide commonly includes water, hydrocarbon, and an oxygen-containing compound as impurities, wherein as the hydrocarbon, the one having a carbon atom number of 3 to 7 can be exemplified.
  • the oxygen-containing compound the one such as methanol, acetaldehyde, acetone, propionaldehyde, methyl formate, and the like can be exemplified.
  • hydrocarbon having a carbon atom number of 7 to 10 which is an oil solution
  • a saturated straight-chain hydrocarbon having a carbon atom number of 7 to 10 a saturated branched-chain hydrocarbon having a carbon atom number of 7 to 10
  • an unsaturated straight-chain hydrocarbon having a carbon atom number of 7 to 10 an unsaturated branched- chain hydrocarbon having a carbon atom number of 7 to 10 can be enumerated
  • the saturated straight-chain hydrocarbon having a carbon atom number of 7 to 10 for example, n- heptane, n-octane, n-nonane, n-decane and the like
  • the saturated branched- chain hydrocarbon having a carbon atom number of 7 to 10 for example, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,2-dimethylhexane, 2,3-dimethylhexane and the like can be enumerated,
  • the type and operating condition of an extractive distillation column and other distillation column, the amount of the oil solutions to be used and the like can be properly decided depending on the quality of a required product.
  • a purified propylene oxide derived like this satisfies a desired product quality.
  • a method of producing propylene oxide relating to the second invention of the present invention is the one comprising the following steps:
  • a propane-dehydrogenation step (2) wherein propane is dehydrogenated to derive a section including propylene;
  • an oxidation step (2) wherein cumene is oxidized to derive an oxidation reaction liquid including cumene hydroperoxide;
  • an epoxidation step (2) wherein cumene hydroperoxide in the oxidation reaction liquid and propylene are reacted with each other in the presence of a catalyst (3) to derive an epoxy-reaction liquid including propylene oxide and cumyl alcohol wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (2);
  • a propylene recovery step (2) wherein unreacted propylene in the epoxidation step (2) is recovered wherein the propylene is recycled to the epoxidation step (2) as at least a part of raw materials in the epoxidation step (2);
  • a propylene-oxide purification step (2) wherein propylene oxide derived in the epoxidation step (2) is subjected to distillation to derive purified propylene oxide;
  • a hydrogenation step wherein cumyl alcohol derived in the epoxidation step (2) is subjected to hydrogenation in the presence of a catalyst (4) to derive cumene, and the cumene is recycled to the oxidation step as at least a part of raw materials in the oxidation step.
  • the propane-dehydrogenation step (1) in the second invention of the present invention is the one wherein propane is dehydrogenated to derive a section including propylene, which is the same as the propane-dehydrogenation step (1) described in the first invention.
  • a partition step (3) wherein the section including propylene, derived in the propane-dehydrogenation step (2) is subjected to a partition operation to partition out the section into a section mainly including propylene and a section mainly including propane to recycle the section mainly including propane to the propane-dehydrogenation step (2).
  • hydrogen can be produced as a byproduct.
  • the hydrogen in the partition step (3), can be partitioned out such that it is included in any one section of the section mainly including propylene and the section mainly including propane, or it can be partitioned out as a section mainly including hydrogen, except both the section mainly including propylene and the section mainly including propane.
  • the hydrogen when hydrogen is produced as a byproduct, the hydrogen can be used as a combustion fuel.
  • said hydrogen is utilized as a combustion fuel source for heating service which is necessary for preheating propane, which is a raw material in the propane-dehydrogenation step (2) or necessary for controlling the reaction temperature of the dehydrogenation reaction.
  • a method of utilizing it as the combustion fuel source for heating service for example, a method of heating a raw material for reaction in the propane-dehydrogenation step (2) using a combustion furnace having a burner for hydrogen burning, and a method wherein a reaction layer filled with a catalyst (3) is provided within a combustion furnace to heat the reaction layer can be enumerated.
  • a method wherein hydrogen produced in the propane-dehydrogenation step (2) and oxygen in a specified amount are mixed, followed by the combustion under a catalyst can be enumerated.
  • the second invention is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen, and it is further preferred that it comprises the following partition step (4).
  • a partition step (4) wherein the section including propylene and hydrogen, derived in the propane-dehydrogenation step (2) is subjected to a partition operation to partition out the section into a section mainly including propylene, a section mainly including propane, and a section mainly including hydrogen to recycle the section mainly including propane to the propane-dehydrogenation step (2).
  • the propane-dehydrogenation step (2) is the one wherein for at least a part of a combustion fuel source for heating service which is necessary in the step (2), a section including hydrogen derived in the propane-dehydrogenation step (2) is used.
  • hydrocarbon partitioned as an impurity also can be used as combustion fuel.
  • the alkylation step (2) in the second invention of the present invention is the one wherein benzene and propylene are reacted with each other in the presence of a catalyst (2) to derive cumene wherein at least a part of the propylene is the one derived in the propane- dehydrogenation step (2).
  • the catalyst (2) for example, an aluminum chloride catalyst, a zeolite catalyst, a phosphate catalyst, and the like can be enumerated.
  • the following method can be enumerated.
  • the one properly optimized depending on a catalyst to be adopted can be adopted.
  • a pressure or temperature for reaction is varied depending on a catalyst system to be adopted, and depending on a gas phase process or liquid phase process.
  • a reactor used in the alkylation step for example, when a homogeneous aluminum chloride catalyst is adopted, a mixing vessel can be used, while when a zeolite catalyst is used, a fixed bed flow reactor can be used.
  • the oxidation step in the second invention of the present invention is the one wherein cumene is oxidized to derive an oxidation reaction liquid including cumene
  • the following method can be enumerated.
  • the oxidation of cumene is commonly carried out by auto-oxidation with an oxygen-containing gas such as air or oxygen-concentrated air.
  • This oxidation reaction can be carried out using no additive agent, or using an additive agent such as an alkali.
  • the common temperature of reaction is in the range of 50 to 200°C, while the pressure of reaction is between atmospheric pressure and 5 MPa.
  • an alkali metal compound such as NaOH, KOH, an alkaline earth metal, an alkali metal carbonate such as Na 2 C0 3 , NaHC0 3 , or ammonia or (NH 4 ) 2 C0 3 , an alkali metal ammonium carbonate, or the like is used.
  • the epoxidation step (2) in the second invention of the present invention is the one wherein cumene hydroperoxide in the oxidization reaction liquid and propylene are reacted with each other in the presence of a catalyst (3) to derive an epoxy-reaction liquid including propylene oxide and cumyl alcohol, wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (2), reaction conditions and equipment are the same as the ones in the epoxidation step (1) described in the first invention, and as the catalyst (3), the same one exemplified as the catalyst (1) can be enumerated.
  • the propylene recovery step (2) in the second invention of the present invention is the one wherein unreacted propylene in the epoxidation step (2) is recovered to recycle the propylene to the epoxidation step (2) as at least a part of raw materials in the epoxidation step (2), wherein the condition and equipment of reaction are the same as the ones in the propylene recovery step (1) described in the first invention.
  • the propylene-oxide purification step (2) in the second invention of the present invention is the one wherein propylene oxide derived in the epoxidation step (2) is subjected to distillation to derive purified propylene oxide, and reaction conditions and equipment of are the same as the ones in the propylene-oxide purification step (1) described in the first invention.
  • the hydrogenation step in the second invention of the present invention is the one wherein cumyl alcohol derived in the oxidation step (2) is subjected to hydrogenation in the presence of the catalyst (4) to derive cumene, and the cumene is recycled to the oxidation step as at least a part of raw materials in the oxidation step, which is preferably a
  • dehydration/hydrogenation method which is carried out in the order of a dehydration step and a hydrogenation step, in light of effectively recycling cumene.
  • the catalyst (4) is used in combination of two kinds of a dehydration catalyst and a hydrogenation catalyst.
  • the dehydration step is the one wherein cumyl alcohol derived in the epoxidation step (2) is dehydrated in the presence of a dehydration catalyst to derive -methylstyrene and water.
  • a dehydration catalyst for example, an acid, a metallic oxide, or the like is enumerated.
  • the acid sulfuric acid, phosphoric acid, p-toluenesulfonic acid, or the like is enumerated.
  • metallic oxide for example, activated alumina, titania, zirconia, silica alumina, zeolite, or the like is enumerated. In light of the separation of the catalyst from the reaction liquid, the catalyst life, the selectivity, and the like, activated alumina is preferred.
  • the amount of the dehydration catalyst can be satisfied with such an amount as to sufficiently invert cumyl alcohol.
  • the inversion rate of cumyl alcohol is preferably 90 % or more, and more preferably 98 % or more.
  • a specific fill of the dehydration catalyst can be decided by an effector in light of the permissible temperature of reaction, the dehydration activity of a catalyst to be used, a catalyst life, and the like.
  • a dehydration reaction is carried out by contacting a solution including cumyl alcohol with a dehydration catalyst. However, since in the dehydration/hydrogenation method, immediately after the dehydration reaction, a hydrogenation reaction is carried out, hydrogen can be also fed back to the catalyst.
  • the reaction temperature in the dehydration step is commonly in the range of 50 to 450°C, and preferably in the range of 150 to 300°C.
  • the reaction pressure in the dehydration step is commonly in the range of 10 to 10000 kPa.
  • the hydrogenation step is the one wherein a-methylstyrene derived in the dehydration step is hydrogenated in the presence of a hydrogenation catalyst to derive cumene, followed by the recycle of the cumene to the oxidation step as at least a part of raw materials in the oxidation step.
  • the hydrogenation catalyst for example, the one including a metal of the tenth or eleventh group of the periodic table can be enumerated, which is preferably the one including nickel, palladium, platinum or copper, and more preferably the one including palladium or copper in light of the suppression of the hydrogenation reaction of a nucleus in an aromatic ring, and the high yield.
  • a catalyst including copper for example, copper, Raney copper, copper- chromium, copper-zinc, copper-chromium-zinc, copper-silica, copper-alumina, and the like can be enumerated.
  • a catalyst including palladium, palladium-alumina, palladium- silica, palladium-carbon, and the like can be enumerated.
  • These catalysts can be used by one kind alone or by mixing two or more kinds. Furthermore, when the hydrogenation catalyst has dehydration performance at the same time, the dehydration catalyst to be used in the dehydration step can be the same as the hydrogenation catalyst to be used in the hydrogenation.
  • the amount of the hydrogenation catalyst can be satisfied with an amount such that a-methylstyrene is sufficiently inverted.
  • the inversion rate of a-methylstyrene is preferably 98 % or more.
  • a specific fill of the hydrogenation catalyst can be decided by an effector in light of the permissible reaction temperature, the hydrogenation activity of a catalyst to be used, a catalyst life, and the like.
  • the hydrogenation reaction is carried out by contacting hydrogen and a solution including a-methylstyrene with a hydrogenation catalyst.
  • the hydrogenation reaction can be carried out after water generated in the dehydration reaction has been partitioned by oil- water partition, or it can be carried out after water has been fed to the hydrogenation catalyst together with a-methylstyrene.
  • the amount of hydrogen needed for the reaction can be satisfied with the one equimolar to that of a-methylstyrene.
  • raw materials commonly include other ingredients which consume hydrogen, and thus excessive hydrogen is needed.
  • Surplus hydrogen remaining after the reaction can be recycled after the partition from the reaction liquid to be used.
  • the reaction temperature in the hydrogenation reaction is commonly in the range of 0 to 500°C, and preferably in the range of 30 to 300°C.
  • the reaction pressure in the hydrogenation reaction is commonly in the range of 100 to 10000 kPa.
  • a dehydration/hydrogenation method can be advantageously carried out by means of a fixed bed.
  • the dehydration reaction and the hydrogenation reaction can use separate reactors, or can use a single reactor. However, in light of cost, it is preferred to fill a single fixed bed with the dehydration catalyst and the hydrogenation catalyst without using a multistage reactor.
  • any one case of up-fiow, down-flow and trickle- flow can be used.
  • the propane-dehydrogenation step (2) when hydrogen is produced as a byproduct, in light of the fact that hydrogen produced as a by-product can be more effectively utilized, it is preferred that at least a part of hydrogen used for the hydrogenation of cumyl alcohol in the hydrogenation step is hydrogen derived in the partition step (4).
  • a method of producing propylene oxide relating to the third invention of the present invention is the one comprising the following steps:
  • a propane-dehydrogenation step (3) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (3) wherein propylene and hydrogen peroxide are reacted with each other in the presence of a catalyst (5) to derive propylene oxide and water wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (3);
  • a propylene recovery step (3) wherein unreacted propylene in the epoxidation step (3) is recovered wherein the propylene is recycled to the epoxidation step (3) as at least a part of raw materials in the epoxidation step (3);
  • a propylene-oxide purification step (3) wherein propylene oxide derived in the epoxidation step (3) is subjected to distillation to derive purified propylene oxide.
  • the propane-dehydrogenation step (3) in the third invention of the present invention is the one wherein propane is dehydrogenated to derive a section including propylene, which is the same as the propane-dehydrogenation step (1) described in the first invention.
  • a partition step (5) wherein the section including propylene, derived in the propane-dehydrogenation step (3) is subjected to a partition operation to partition out the section into a section mainly including propylene and a section mainly including propane to recycle the section mainly including propane to the propane-dehydrogenation step (3).
  • hydrogen can be produced as a byproduct.
  • the hydrogen in the partition step (5), can be partitioned out such that it is included in any one section of the section mainly including propylene and the section mainly including propane, or it can be partitioned out as a section mainly including hydrogen, except both the section mainly including propylene and the section mainly including propane.
  • the hydrogen when hydrogen is produced as a by- product, the hydrogen can be used as a combustion fuel.
  • said hydrogen is utilized as a combustion fuel source for heating service which is necessary for preheating propane, which is a raw material in the propane-dehydrogenation step (3) or necessary for controlling the reaction temperature of the dehydrogenation reaction.
  • a method of utilizing it as the combustion fuel source for heating service for example, a method of heating a raw material for reaction in the propane-dehydrogenation step (3) using a combustion furnace having a burner for hydrogen burning, and a method wherein a reaction layer filled with a catalyst (5) is provided within a combustion furnace to heat the reaction layer can be enumerated.
  • a method wherein hydrogen produced in the propane-dehydrogenation step (3) and oxygen in a specified amount are mixed, followed by the combustion under a catalyst can be enumerated.
  • the propane-dehydrogenation step (3) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen, and it is further preferred that it comprises the following partition step (6).
  • a partition step (6) wherein the section including propylene and hydrogen, derived in the propane-dehydrogenation step (3) is subjected to a partition operation to partition out the section into a section mainly including propylene, a section mainly including propane, and a section mainly including hydrogen to recycle the section mainly including propane to the propane-dehydrogenation step (3).
  • the propane- dehydrogenation step (3) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen
  • the propane-dehydrogenation step (3) is the one wherein for at least a part of a combustion fuel source for heating service which is necessary in the step (3), a section including hydrogen derived in the propane-dehydrogenation step (3) is used.
  • hydrocarbon partitioned as an impurity also can be used as combustion fuel.
  • the epoxidation step (3) in the third invention of the present invention is the one wherein propylene and hydrogen peroxide are reacted with each other in the presence of a catalyst (5) to derive propylene oxide and water, wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (3), and reaction conditions and equipment are the same as the ones in the epoxidation step (1) described in the first invention, and as the catalyst (5), the same one as the one exemplified as the catalyst (1) can be
  • the one wherein oxygen and hydrogen are reacted with each other to produce hydrogen peroxide can be enumerated.
  • Hydrogen peroxide is generally known as an unstable substance. Therefore, in the present invention, in light of the stability and stable supply of hydrogen peroxide, it is preferred that the production process of hydrogen peroxide as described hereinafter is established in processes to produce it. Furthermore, in the propane- dehydrogenation step, when hydrogen is produced as a by-product, in light of the effective utilization of hydrogen, it is preferred that at least a part of hydrogen to be used in the production process of hydrogen peroxide as described hereinafter is hydrogen derived in the partition step (6).
  • the propylene recovery step (3) in the third invention of the present invention is the one wherein unreacted propylene in the epoxidation step (3) is recovered to recycle the propylene to the epoxidation step (3) as at least a part of raw materials in the epoxidation step (3), wherein reaction conditions and equipment are the same as the ones in the propylene recovery step (1) described in the first invention.
  • the propylene-oxide purification step (3) in the third invention of the present invention is the one wherein propylene oxide derived in the epoxidation step (3) is subjected to distillation to derive purified propylene oxide, and reaction conditions and equipment of are the same as the ones in the propylene-oxide purification step (1) described in the first invention.
  • a method of producing propylene oxide relating to the fourth invention of the present invention is the one comprising the following steps:
  • a propane-dehydrogenation step (4) wherein propane is dehydrogenated to derive a section including propylene;
  • an epoxidation step (4) wherein propylene and hydrogen peroxide are reacted with each other in the presence of a catalyst (6) to derive propylene oxide and water wherein at least a part of the propylene is propylene derived in the propane-dehydrogenation step (4);
  • a propylene recovery step (4) wherein unreacted propylene in the epoxidation step (4) is recovered wherein the propylene is recycled to the epoxidation step (4) as at least a part of raw materials in the epoxidation step (4);
  • a propylene-oxide purification step (3) wherein propylene oxide derived in the epoxidation step (4) is subjected to distillation to derive purified propylene oxide.
  • the hydrogen-peroxide production step in the fourth invention of the present invention is the one wherein oxygen and hydrogen are reacted with each other to derive hydrogen peroxide.
  • oxygen and hydrogen are reacted with each other to derive hydrogen peroxide.
  • a method wherein oxygen and hydrogen are reacted with each other to derive hydrogen peroxide for example, the one described in JPA-1988-156005, JPA-1997- 235108, JPA- 1998-7408, or the like can be enumerated.
  • the propane-dehydrogenation step (4) in the fourth invention of the present invention is the one wherein propane is dehydrogenated to derive a section including propylene, which is the same as the propane-dehydrogenation step (1) described in the first invention.
  • a partition step (7) wherein the section including propylene, derived in the propane-dehydrogenation step (4) is subjected to a partition operation to partition out the section into a section mainly including propylene and a section mainly including propane to recycle the section mainly including propane to the propane-dehydrogenation step (4).
  • hydrogen can be produced as a byproduct.
  • the hydrogen in the partition step (7), can be partitioned out such that it is included in any one section of the section mainly including propylene and the section mainly including propane, or it can be partitioned out as a section mainly including hydrogen, except both the section mainly including propylene and the section mainly including propane.
  • the hydrogen when hydrogen is produced as a byproduct, the hydrogen can be used as a combustion fuel.
  • the hydrogen is utilized as a combustion fuel source for heating service which is necessary for preheating propane, which is a raw material in the propane-dehydrogenation step (4) or necessary for controlling the reaction temperature of the dehydrogenation reaction.
  • a method of utilizing it as the combustion fuel source for heating service for example, a method of heating a raw material for reaction in the propane-dehydrogenation step (4) using a combustion furnace having a burner for hydrogen burning, and a method wherein a reaction layer filled with the catalyst (6) is provided within a combustion furnace to heat the reaction layer can be enumerated.
  • a method wherein hydrogen produced in the propane-dehydrogenation step (4) and oxygen in a specified amount are mixed, followed by the combustion under a catalyst can be enumerated.
  • the propane-dehydrogenation step (4) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen, and it is further preferred that it comprises the following partition step (8).
  • a partition step (8) wherein the section including propylene and hydrogen, derived in the propane-dehydrogenation step (4) is subjected to a partition operation to partition out the section into a section mainly including propylene, a section mainly including propane, and a section mainly including hydrogen to recycle the section mainly including propane to the propane-dehydrogenation step (4).
  • the propane- dehydrogenation step (4) when the propane- dehydrogenation step (4) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen, it is preferred that the propane-dehydrogenation step (4) is the one wherein for at least a part of a combustion fuel source for heating service which is necessary in the step (4), a section including hydrogen derived in the propane-dehydrogenation step (4) is used. Furthermore, hydrocarbon to be partitioned as an impurity also can be used as combustion fuel.
  • the propane- dehydrogenation step (4) is the one wherein propane is dehydrogenated to derive a section including propylene and hydrogen
  • propane is dehydrogenated to derive a section including propylene and hydrogen
  • at least a part of hydrogen to be used in the reaction with oxygen in the hydrogen-peroxide production step is hydrogen derived in the partition step (8).
  • the propylene recovery step (4) in the fourth invention of the present invention is the one wherein unreacted propylene in the epoxidation step (4) is recovered to recycle the propylene to the epoxidation step (4) as at least a part of raw materials in the epoxidation step (4), wherein reaction conditions and equipment are the same as the ones in the propylene recovery step (1) described in the first invention.
  • the propylene-oxide purification step (4) in the fourth invention of the present invention is the one wherein propylene oxide derived in the epoxidation step (4) is subjected to distillation to derive purified propylene oxide, and reaction conditions and equipment of are the same as the ones in the propylene-oxide purification step (1) described in the first invention.
  • a raw material including propane is supplied to a propane-dehydrogenation step (1) to derive a section (101) including propylene.
  • the section (101) including propylene is subjected to a partition operation in a partition step ( 1 ) to partition out the section (101) into a section ( 102) mainly including propylene and a section (103) mainly including propane, followed by recycling the section (103) mainly including unreacted propane to the propane-dehydrogenation step.
  • a liquid (104) including an organic hydroperoxide and a section (102) mainly including propylene are fed to an epoxidation step (1), followed by the reaction at a molar ratio of excessive quantities of propylene relative to the organic hydroperoxide in the presence of a catalyst (1) to derive an epoxy-reaction liquid (105) including propylene oxide and an alcohol.
  • the epoxy-reaction liquid (105) is fed to a propylene oxide purification step (1) as a reaction liquid (107) after the propylene recovery.
  • Unreacted propylene (106) recovered in the propylene recovery step is merged with a part of the section (102) mainly including propylene derived in the partition step (1) and again fed to the epoxidation step.
  • a raw material including propane is supplied to a propane-dehydrogenation step (2) to derive a section (201) including propylene.
  • the section (201) including propylene is subjected to a partition operation in a partition step (4) to partition out the section (201) into a section (202) mainly including propylene, a section (203) mainly including unreacted propane, and a section (208) mainly including hydrogen, followed by recycling the section (203) mainly including unreacted propane to the propane-dehydrogenation step (2).
  • a section (208) mainly including hydrogen, oxygen is added to use the derived mixture as a combustion fuel for heating service in the propane dehydrogenation step (2).
  • a part of the resultant section (202) mainly including propylene is fed to an alkylation step (2), followed by the reaction of one mole of propylene and one mole of benzene with each other in the presence of a catalyst (2) to synthesize one mole of cumene.
  • the resultant cumene (209) is emerged with recycled cumene to feed to an oxidation step, so that an oxidation-reaction liquid (204) including cumene hydroperoxide is derived by air oxidation.
  • the resultant oxidation-reaction liquid (204) including cumene hydroperoxide and the remainder of the above-mentioned section (202) mainly including propylene are fed to the epoxidation step (2), followed by the reaction at a molar ratio of excessive quantities of propylene relative to cumene hydroperoxide in the presence of a catalyst (3), so that the reaction with one mole of propylene produces one mole of propylene oxide and one mole of cumyl alcohol.
  • an epoxy-reaction liquid (205) including propylene oxide and cumyl alcohol is fed to a propylene-oxide purification step (2) as a reaction liquid (207) after the recovery of propylene.
  • the unreacted propylene (206) recovered in the propylene recovery step (2) is merged with a part of the section (202) mainly including propylene derived in the partition step (4), and again supplied to the epoxidation step (2).
  • a propylene-oxide purification step (2) not only cumyl alcohol and propylene oxide which have been theoretically produced in an equimolar amount by an epoxy reaction are partitioned out, but also cumene and a by-product existing in the solution are partitioned out, so that propylene oxide to satisfy product quality is derived.
  • a liquid (211) mainly including cumyl alcohol and cumene which have been partitioned out is fed to a hydrogenation step.
  • one mole of cumyl alcohol and one mole of hydrogen are used at a molar ratio of excessive amounts of hydrogen relative to cumyl alcohol in the presence of a catalyst (4) to produce one mole of cumene.
  • a part of a section (208) including hydrogen derived in a partition step (4) as hydrogen is purified for use.
  • the resultant cumene becomes recycled cumene (210) without distinguishing from cumene included in a liquid (211) to be fed to the hydrogenation step.
  • an amount corresponding to cumene lost by a secondary reaction in each of the steps is compensated with cumene produced in the alkylation step.
  • a raw material including propane is supplied to a propane-dehydrogenation step
  • the section (301) including propylene is subjected to a partition operation in a partition step (6) to partition out the section (301) into a section (302) mainly including propylene, a section (303) mainly including unreacted propane, and a section (308) including hydrogen, followed by recycling the section (303) mainly including unreacted propane to the propane-dehydrogenation step (3).
  • oxygen is added to use the resultant mixture as a combustion fuel for heating service in the propane dehydrogenation step (3).
  • the liquid (304) including hydrogen peroxide is fed to an epoxidation step (3) together with the section (303) mainly including propane, followed by a reaction at a molar ratio of an excessive amount of propylene relative to hydrogen peroxide in the presence of a catalyst (5), so that the reaction with one mole of propylene produces one mole propylene oxide and water.
  • an epoxy-reaction liquid (305) including propylene oxide and water is fed to a propylene-oxide purification step (3) as an epoxy-reaction liquid (307) after the recovery of propylene.
  • the unreacted propylene (306) recovered in the propylene recovery step (3) is merged with a part of the section (302) mainly including propylene derived in the partition step (6), and again supplied to the epoxidation step (3).
  • a propylene-oxide purification step (3) not only water and propylene oxide which have been theoretically produced in an equimolar amount by an epoxy reaction are partitioned out, but also a solvent and by-product existing in the solution are partitioned out, so that propylene oxide to satisfy product quality is derived.
  • a raw material including propane is supplied to a propane-dehydrogenation step (4) to derive a section (401) including propylene.
  • the section (401) including propylene is subjected to a partition operation in a partition step (8) to partition out the section (401) into a section (402) mainly including propylene, a section (403) mainly including unreacted propane, and a section (408) including hydrogen, followed by recycling the section (403) mainly including unreacted propane to the propane-dehydrogenation step (4).
  • oxygen is added to use the resultant mixture as a combustion fuel for heating service in the propane dehydrogenation step (4).
  • hydrogen and oxygen are reacted with each other in the presence of a catalyst to derive a liquid (404) including hydrogen peroxide.
  • a part of the section (408) including hydrogen derived as hydrogen in the partition step (8) is purified for use.
  • the liquid (404) including hydrogen peroxide is purified if necessary, and fed to an epoxidation step (4) together with the section
  • an epoxy-reaction liquid (405) including propylene oxide and water is fed to a propylene-oxide purification step (4) as an epoxy-reaction liquid (407) after the recovery of propylene.
  • the unreacted propylene (406) recovered in the propylene recovery step (4) is merged with a part of the section (402) mainly including propylene derived in the partition step (8), and again supplied to the epoxidation step (4).
  • a propylene-oxide purification step (4) not only water and propylene oxide which have been theoretically produced in an equimolar amount by an epoxy reaction are partitioned out, but also a solvent and by-product existing in the solution are partitioned out, so that propylene oxide to satisfy product quality is derived.
  • propylene oxide can be reasonably produced by using propane, which has been conventionally used as a fuel, as a raw material, without the exterior supply of propylene without being influenced by circumstances such that lack propylene.
  • epoxy-reaction liquid including propylene oxide and an alcohol
  • oxidation-reaction liquid including a cumene hydroperoxide
  • epoxy-reaction liquid including propylene oxide and cumylalcohol
  • epoxy-reaction liquid including propylene oxide and water
  • epoxy-reaction liquid including propylene oxide and water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
PCT/JP2011/057498 2010-03-26 2011-03-18 Method of producing propylene oxide WO2011118823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010071817 2010-03-26
JP2010-071817 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118823A1 true WO2011118823A1 (en) 2011-09-29

Family

ID=44673363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057498 WO2011118823A1 (en) 2010-03-26 2011-03-18 Method of producing propylene oxide

Country Status (2)

Country Link
JP (1) JP2011219471A (ja)
WO (1) WO2011118823A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1023301B1 (nl) * 2014-07-24 2017-01-26 China Petroleum & Chemical Corporation Werkwijze en apparaat voor de terugwinning en zuivering van propyleen
WO2017080962A1 (en) 2015-11-09 2017-05-18 Shell Internationale Research Maatschappij B.V. Catalyst preparation
US10065459B2 (en) 2015-02-27 2018-09-04 Continental Automotive France Method of driving a processor of an electronic box mounted on a wheel of a vehicle
WO2019209953A1 (en) * 2018-04-25 2019-10-31 Lyondell Chemical Technology, L.P. Methods and apparatuses for purifying crude propane
TWI730093B (zh) * 2016-05-17 2021-06-11 德商贏創運營有限公司 自丙烷製備丙烯和1,2-環氧丙烷之整合方法
CN113372299A (zh) * 2021-06-30 2021-09-10 中国石油化工股份有限公司 一种丙烷二步法连续生产环氧丙烷的方法
CN113461474A (zh) * 2021-06-30 2021-10-01 中国石油化工股份有限公司 一种丙烷工业化连续制备环氧丙烷的系统及方法
CN114728921A (zh) * 2019-11-07 2022-07-08 伊士曼化工公司 回收成分环氧乙烷或烷基二醇

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220234024A1 (en) * 2019-08-23 2022-07-28 Showa Denko K.K. Method for recovering olefin

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393734A (ja) * 1989-09-06 1991-04-18 Mitsui Petrochem Ind Ltd クメン類の製造方法
JPH08104682A (ja) * 1994-03-24 1996-04-23 Sumitomo Chem Co Ltd プロピレンオキシドの回収方法
JPH09169751A (ja) * 1995-12-20 1997-06-30 Sumitomo Chem Co Ltd プロピレンオキシドの回収方法
JPH1045737A (ja) * 1996-08-08 1998-02-17 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JPH10306086A (ja) * 1997-05-08 1998-11-17 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2000107605A (ja) * 1998-08-04 2000-04-18 Sumitomo Chem Co Ltd チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP2001031662A (ja) * 1999-07-14 2001-02-06 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2001270876A (ja) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2001270875A (ja) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
WO2002085875A1 (en) * 2001-04-24 2002-10-31 Polimeri Europa S.P.A. Integrated process for the production of olefin oxides
JP2002322164A (ja) * 2001-04-27 2002-11-08 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
WO2003027087A1 (fr) * 2001-09-21 2003-04-03 Sumitomo Chemical Company, Limited Procede de preparation d'oxyde de propylene
JP2003238546A (ja) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd プロピレンオキサイドの回収方法
JP2004285056A (ja) * 2003-03-06 2004-10-14 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2005097184A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097183A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097175A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097185A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
US20050245751A1 (en) * 2002-08-30 2005-11-03 Basf Aktiengesellschaft Integrated method for synthesis propylene oxide

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393734A (ja) * 1989-09-06 1991-04-18 Mitsui Petrochem Ind Ltd クメン類の製造方法
JPH08104682A (ja) * 1994-03-24 1996-04-23 Sumitomo Chem Co Ltd プロピレンオキシドの回収方法
JPH09169751A (ja) * 1995-12-20 1997-06-30 Sumitomo Chem Co Ltd プロピレンオキシドの回収方法
JPH1045737A (ja) * 1996-08-08 1998-02-17 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JPH10306086A (ja) * 1997-05-08 1998-11-17 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2000107605A (ja) * 1998-08-04 2000-04-18 Sumitomo Chem Co Ltd チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP2001031662A (ja) * 1999-07-14 2001-02-06 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2001270875A (ja) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2001270876A (ja) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
WO2002085875A1 (en) * 2001-04-24 2002-10-31 Polimeri Europa S.P.A. Integrated process for the production of olefin oxides
JP2002322164A (ja) * 2001-04-27 2002-11-08 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
WO2003027087A1 (fr) * 2001-09-21 2003-04-03 Sumitomo Chemical Company, Limited Procede de preparation d'oxyde de propylene
JP2003238546A (ja) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd プロピレンオキサイドの回収方法
US20050245751A1 (en) * 2002-08-30 2005-11-03 Basf Aktiengesellschaft Integrated method for synthesis propylene oxide
JP2004285056A (ja) * 2003-03-06 2004-10-14 Sumitomo Chem Co Ltd プロピレンオキサイドの製造方法
JP2005097184A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097183A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097175A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2005097185A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUJI, J. ET AL.: "Development of New Propylene Oxide Process", SUMITOMOKAGAKU GIJUTSUSHI, vol. 2006-I, 31 May 2006 (2006-05-31), pages 4 - 10 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1023301B1 (nl) * 2014-07-24 2017-01-26 China Petroleum & Chemical Corporation Werkwijze en apparaat voor de terugwinning en zuivering van propyleen
US10065459B2 (en) 2015-02-27 2018-09-04 Continental Automotive France Method of driving a processor of an electronic box mounted on a wheel of a vehicle
WO2017080962A1 (en) 2015-11-09 2017-05-18 Shell Internationale Research Maatschappij B.V. Catalyst preparation
TWI730093B (zh) * 2016-05-17 2021-06-11 德商贏創運營有限公司 自丙烷製備丙烯和1,2-環氧丙烷之整合方法
WO2019209953A1 (en) * 2018-04-25 2019-10-31 Lyondell Chemical Technology, L.P. Methods and apparatuses for purifying crude propane
US10640437B2 (en) 2018-04-25 2020-05-05 Lyondell Chemical Technology, L.P. Methods and apparatuses for purifying crude propane
US10829425B2 (en) 2018-04-25 2020-11-10 Lyondell Chemical Technology, L.P. Methods and apparatuses for purifying crude propane
CN114728921A (zh) * 2019-11-07 2022-07-08 伊士曼化工公司 回收成分环氧乙烷或烷基二醇
CN113372299A (zh) * 2021-06-30 2021-09-10 中国石油化工股份有限公司 一种丙烷二步法连续生产环氧丙烷的方法
CN113461474A (zh) * 2021-06-30 2021-10-01 中国石油化工股份有限公司 一种丙烷工业化连续制备环氧丙烷的系统及方法

Also Published As

Publication number Publication date
JP2011219471A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
WO2011118823A1 (en) Method of producing propylene oxide
RU2214385C2 (ru) Способ получения стирола и окиси пропилена
US20040133018A1 (en) Process for producing propylene oxide
US7705166B2 (en) Process for producing propylene oxide
CN109476621B (zh) 环氧丙烷的制造方法
EP4317132A1 (en) Production equipment and production method for cumene hydroperoxide
KR20040050057A (ko) 프로필렌 옥사이드의 제조방법
KR101187166B1 (ko) α-메틸스티렌의 제조 방법
JP2009007294A (ja) プロピレンオキサイドの製造方法
WO2024009987A1 (ja) クメンの製造方法、クメンの製造装置、および、プロピレンオキサイドの製造方法
US7381829B2 (en) Method for producing propylene oxide
JP2003081953A (ja) プロピレンオキサイドの製造方法
TW202411181A (zh) 異丙苯之製造方法、異丙苯之製造裝置、及環氧丙烷之製造方法
WO2005030742A1 (ja) プロピレンオキサイドの製造方法
JP2011201821A (ja) プロピレンオキサイドの製造方法
JP2009167130A (ja) プロピレンオキサイドの製造方法
JP2005097184A (ja) プロピレンオキサイドの製造方法
KR101447255B1 (ko) 페놀, 아세톤 및 알파 메틸 스티렌의 제조방법
JP2005097175A (ja) プロピレンオキサイドの製造方法
KR101520054B1 (ko) 페놀, 아세톤 및 알파 메틸 스티렌의 제조방법
JP2005097186A (ja) プロピレンオキサイドの製造方法
WO2005030743A1 (ja) プロピレンオキサイドの製造方法
JP2005097174A (ja) プロピレンオキサイドの製造方法
JP2009013089A (ja) フェノールの製造方法
JP2005097209A (ja) プロピレンオキサイドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759627

Country of ref document: EP

Kind code of ref document: A1