WO2011118259A1 - 放電制御装置 - Google Patents

放電制御装置 Download PDF

Info

Publication number
WO2011118259A1
WO2011118259A1 PCT/JP2011/052027 JP2011052027W WO2011118259A1 WO 2011118259 A1 WO2011118259 A1 WO 2011118259A1 JP 2011052027 W JP2011052027 W JP 2011052027W WO 2011118259 A1 WO2011118259 A1 WO 2011118259A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge control
voltage
control signal
current
switching element
Prior art date
Application number
PCT/JP2011/052027
Other languages
English (en)
French (fr)
Inventor
中村恭士
青木一雄
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2011118259A1 publication Critical patent/WO2011118259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • the present invention relates to a discharge that accumulates in a smoothing capacitor interposed between an inverter and a DC main power supply, and discharges a residual charge remaining in the smoothing capacitor when the connection between the inverter and the main power supply is disconnected.
  • the present invention relates to a control device.
  • direct current power supplied from a battery is converted into alternating current power by an inverter, and the rotating electrical machine that functions as a motor is driven.
  • the rotating electrical machine functions as a generator, AC power generated by the rotating electrical machine is converted into DC power by an inverter and regenerated to the battery.
  • a capacitor for smoothing the DC power is provided between the battery and the inverter, and fluctuations in the DC power such as pulsation are suppressed.
  • the battery and the inverter are electrically connected when a main switch such as an ignition switch is turned on, and the smoothing capacitor is charged.
  • an electromotive force based on the electric charge charged in the smoothing capacitor is supplied to the battery via the inverter, and the battery is charged.
  • the main switch is turned off, the electrical connection between the battery and the smoothing capacitor is cut, but the charged charge remains in the smoothing capacitor. Although the residual charge is reduced by the natural discharge, the natural discharge takes time. In some cases, the main switch is turned off and inspection and maintenance are subsequently performed. It is preferable to discharge the remaining charge of the smoothing capacitor earlier than the natural discharge.
  • Patent Document 1 when a main switch is off, a switching element constituting an inverter is operated in an active region, and a current controlled to a predetermined value is supplied to discharge residual charges.
  • a power supply circuit is disclosed.
  • a control device that adjusts the gate voltage of the switching element to operate the switching element in the active region is provided.
  • the control device adjusts the gate voltage by switching a resistor connected in series to a control line connected to the gate terminal of the switching element and changing the resistance value of the control line.
  • control device of Patent Document 1 Since the control device of Patent Document 1 needs to operate when the main switch is off, it is understood that power is always supplied from the vehicle battery regardless of the state of the main switch. Since this is so-called standby power, the standby power of the entire vehicle is increased, and the burden on the battery is increased.
  • the control device of Patent Document 1 provides a gate control signal to the switching element during discharge using the same driver circuit as during normal operation. Therefore, there is a possibility that the remaining charge of the smoothing capacitor cannot be discharged quickly when a failure occurs in the control device and the control of the inverter is hindered and the main switch is turned off.
  • the characteristic configuration of the discharge control device is as follows: Accumulated in a smoothing capacitor interposed between an inverter that performs power conversion between DC power and AC power and a DC main power supply, and when the connection between the inverter and the main power supply is disconnected, the smoothing capacitor A discharge control device for discharging the remaining charge remaining in Regardless of whether or not power is supplied from the main power supply, a backup power supply that supplies power that allows the discharge control device to operate over at least a discharge time during which the remaining charge is discharged; It is provided independently of a driver circuit that applies a switching control signal for operating the switching element in the saturation region to the switching element constituting the inverter, and generates a discharge control signal for operating the switching element in the active region. And a discharge control unit for applying the power.
  • This configuration does not increase standby power because it has a backup power supply. Further, when the main switch is turned off, the remaining charge of the smoothing capacitor can be discharged quickly.
  • a discharge control unit that generates and applies a discharge control signal for operating the switching elements constituting the inverter in the active region is provided independently of a driver circuit that applies the switching control signal when the inverter normally operates. . Therefore, even if a failure occurs in the control device and the control of the inverter becomes difficult and the main switch is turned off, the remaining charge of the smoothing capacitor of the inverter is quickly obtained via the switching element of the inverter. It can be discharged.
  • the discharge control device includes an interference prevention unit that prevents interference between the switching control signal and the discharge control signal.
  • Both the switching control signal and the discharge control signal are input to the control terminals (gate and base) of the switching element.
  • the driver circuit that causes the switching control signal to act on the switching element and the discharge control unit that causes the discharge control signal to act on the switching element are configured independently. Therefore, the reliability is improved if an interference prevention unit that prevents interference between the switching control signal and the discharge control signal and that does not interfere with the application of the switching control signal by the driver circuit in normal operation is provided.
  • the discharge control device further includes a voltage drop detection unit that detects a voltage drop of the driver power supply that supplies operating power to the driver circuit, and the discharge control unit is configured to discharge the voltage of the driver power supply to a predetermined level. When the voltage drops below the start voltage, it is preferable to generate the discharge control signal and apply it to the switching element.
  • the discharge controller preferably discharges the remaining charges quickly when the inverter stops operating normally, that is, when the switching element is not controlled via the driver circuit. If the determination is simply made based on the presence or absence of the switching control signal, the discharge control unit may be activated even when the control is simply suspended.
  • the driver circuit operates by receiving supply of driver power.
  • the discharge control device includes the voltage drop detection unit, and the discharge control unit can quickly start the discharge control based on the detection result of the voltage drop detection unit.
  • the discharge control device further includes a current detection unit that detects a magnitude of a current flowing through the switching element as the residual charge is discharged, and the switching element is based on a current flowing through the switching element.
  • a current sense terminal that outputs a minute current proportional to the current
  • the current detection unit detects the magnitude of the current flowing through the switching element based on the minute current
  • the discharge control unit It is preferable to feedback-control the discharge control signal based on the detection result of the current detection unit.
  • the output reacts sensitively to the signal level of the control signal.
  • the output in this case is a current that flows to discharge the remaining charge. If the value of the current is too large, the life of the switching element is also affected. Therefore, it is preferable that the current detection unit is provided to detect the current flowing through the switching element, and the discharge control unit feedback-controls the discharge control signal based on the detection result. Furthermore, since some switching elements have a current sense terminal, if the current detection unit is configured using a signal output from the terminal, the current detection unit can be configured with a small configuration. .
  • Power system diagram Waveform diagram schematically showing the waveform of the switching control signal
  • FIG. 1 shows a motor drive circuit to which the discharge control circuit of the present invention is applied. Prioritizing visibility, the discharge control circuit of the present invention is not shown in FIG. Of course, the motor (rotating electrical machine) MG also functions as a generator. As shown in FIG. 1, the motor drive device includes an inverter 18 that performs power conversion between DC power and AC power, a DC main battery (main power source) 14, and an inverter 18 and the main battery 14. It is provided with a smoothing capacitor 15 that is interposed to smooth DC power.
  • the main battery 14 is a rechargeable secondary battery, and supplies DC power to the inverter 18 during the power running operation of the motor MG, and receives DC power from the inverter 18 and stores it during the regeneration operation of the motor MG.
  • the inverter 18 converts DC power into AC power in order to supply three-phase AC power to the motor MG that is a three-phase AC motor.
  • the inverter 18 has a plurality of switching elements.
  • An IGBT (insulated gate bipolar transistor) or a MOSFET (metal oxide field semiconductor effect transistor) is preferably applied to the switching element.
  • IGBT3 is used as a switching element.
  • the inverter 18 includes a U-phase leg 17U, a V-phase leg 17V, and a W-phase leg 17W corresponding to each phase of the motor MG (three phases of U phase, V phase, and W phase).
  • Each leg 17 (17U, 17V, 17W) includes a set of two switching elements each composed of an upper arm IGBT 3A and a lower arm IGBT 3B connected in series.
  • a flywheel diode 19 is connected in parallel to each IGBT 3A, 3B.
  • the U-phase leg 17U, the V-phase leg 17V, and the W-phase leg 17W are connected to the U-phase coil, V-phase coil, and W-phase coil of the motor MG.
  • the connection between the emitter of IGBT 3A in the upper arm of each phase leg 17U, 17V, 17W and the collector of IGBT 3B in the lower arm is electrically connected to each phase coil of motor MG.
  • the collector of the IGBT 3A of the upper arm of each leg 17 is connected to a high voltage power supply line P connected to the positive terminal of the main battery 14, and the emitter of the IGBT 3B of the lower arm of each leg 17 is the negative terminal of the main battery 14. Is connected to a high-voltage ground line N.
  • the inverter 18 is connected to the control unit 11 via the photocoupler 4 and the driver circuit 12, and each IGBT 3A, 3B of the inverter 18 performs a switching operation according to a control signal generated by the control unit 11.
  • the roles of the photocoupler 4 and the driver circuit 12 will be described later.
  • the control unit 11 is configured as an ECU (electronic control unit) having a logic circuit such as a microcomputer (not shown) as a core.
  • the ECU includes a microcomputer, an interface circuit (not shown), and other peripheral circuits.
  • the motor MG is driven at a predetermined output torque and rotation speed under the control of the control unit 11. At this time, the value of the current flowing through the stator coil of the motor MG is fed back to the control unit 11. For this reason, the value of current flowing through a conductor (such as a bus bar) provided between each phase leg 17U, 17V, 17W of the inverter 18 and each phase coil of the motor MG is changed by the current detection device 16 using a Hall IC or the like. Detected. Further, the rotation angle of the rotor of the motor MG is detected by a rotation sensor 13 such as a resolver and transmitted to the control unit 11.
  • a rotation sensor 13 such as a resolver
  • control unit 11 performs PI control (proportional integral control) or PID control (proportional calculus control) according to the deviation from the target current based on the detection results of the current detection device 16 and the rotation sensor 13. MG is driven and controlled.
  • FIG. 1 shows an example in which the current detection device 16 is arranged for all three phases, the current of each phase of the three phases is balanced and the instantaneous value is zero. It may be configured to detect the current value.
  • the main battery 14 has a high voltage of 200 to 300 V, and the IGBTs 3A and 3B of the inverter 18 switch the high voltage.
  • the control unit 11 having a logic circuit such as a microcomputer as a core is generally an electronic circuit that operates at a low voltage of about 12 V or less, and in many cases about 3.3 to 5 V.
  • the potential of the pulsed gate drive signal (switching control signal) input to the gate of the IGBT that switches a high voltage is higher than the operating voltage of a general electronic circuit such as a microcomputer if compared at a common ground level. A much higher voltage. Therefore, the gate drive signal is voltage-converted and insulated via the photocoupler 4 and the driver circuit 12, and then input to the IGBTs 3A and 3B of the inverter 18.
  • the photocoupler 4 functions as an isolator and transmits a gate drive signal from the control unit 11 to the driver circuit 12 by optical transmission.
  • the control unit 11 and the driver circuit 12 are electrically insulated while passing the gate drive signal.
  • the driver circuit 12 converts the gate drive signal received by optical transmission into a signal having a predetermined voltage width, and supplies the signal to each IGBT 3 as a switching control signal.
  • Each IGBT 3 is turned on by applying a predetermined voltage between the gate and the emitter, that is, a voltage of about 15 V in this embodiment.
  • a predetermined voltage between the gate and the emitter that is, a voltage of about 15 V in this embodiment.
  • the gate-emitter is simply set to a predetermined value.
  • Each of the IGBTs 3 is turned on.
  • the driver circuit 12 does not use the negative electrode N of the main battery 14 as a common reference (ground level), and drives the gate drive signal from the control unit 11 to the inverter independently of the power source of the inverter 18. For this reason, a plurality of driver circuits 12 are provided corresponding to each IGBT 3 of the inverter 18, six in this embodiment.
  • the driver circuit 12 is an independent circuit whose ground level is not necessarily in common with the inverter 18 (particularly, the upper arm). Accordingly, the power source (driver power source) for operating the driver circuit 12 is also independent of the inverter 18. Specifically, the driver power supply is generated by a transformer 9 that is a floating power supply. Since the plurality of driver circuits 12 are configured to be electrically independent from each other, each driver circuit 12 is supplied with power from at least six transformers 9 whose outputs are independent from each other. That is, each driver circuit 12 is driven by a floating power source using the transformer 9. The driver power supplied from the transformer 9 is T + for the positive electrode and T- for the negative electrode.
  • the main battery (main power source) 14 is a power source for driving the motor MG (inverter 18), and here is a DC power source rated at 300V.
  • the inverter 18 is connected to the main battery 14 via a main switch IG that is a switch interlocked with an ignition switch of the vehicle.
  • a DC-DC converter 26 is connected to the main battery 14 via a main switch IG.
  • the DC voltage stepped down by the DC-DC converter 26 is stored in a sub battery 27 having a rating of 12V, for example.
  • the sub-battery 27 supplies power to the control unit 11 and other in-vehicle devices (such as an air conditioner and an oil pump called an auxiliary machine).
  • the transformer 9 receives the primary side voltage from the sub-battery 27 or the main battery 14, and outputs a predetermined voltage between the positive electrode T + and the negative electrode T- as a secondary side voltage via the rectifier circuit.
  • the discharge control device operates the IGBT 3 (switching element) that constitutes the inverter 18 in the active region to flow a current controlled to a predetermined value, and the remaining charge of the smoothing capacitor 15 is made to flow. Discharge.
  • a schematic block diagram showing one leg 17 of the inverter 18 including the discharge control device 10 and a schematic circuit diagram (FIG. 5) showing an example of the discharge control circuit 10A constituting the discharge control device 10 are also shown. The details of the discharge control device 10 will be described.
  • a double line indicates a power system line.
  • the discharge control device 10 may be provided in only one of the three legs 17, but when provided in the plurality of legs 17, it is preferable because the smoothing capacitor 15 can be discharged in parallel. is there. At this time, since the configuration of each leg 17 is the same, one leg 17 will be described as a representative.
  • the discharge control device 10 includes a first discharge control circuit 10A provided in the IGBT 3A of the upper stage side arm and a second discharge control circuit 10B provided in the IGBT 3B of the lower stage side arm. That is, the smoothing capacitor 15 is discharged using the one-phase leg 17 when both the IGBT 3A of the upper arm and the IGBT 3B of the lower arm are brought into conduction.
  • the first discharge control circuit 10 ⁇ / b> A and the second discharge control circuit 10 ⁇ / b> B may have exactly the same configuration, but in this embodiment, have a slightly different configuration.
  • description will be given on the first discharge control circuit 10A, and differences between the two will be described as appropriate.
  • the first discharge control circuit 10 ⁇ / b> A (discharge control device 10) includes a backup power supply 1, a discharge control unit 2, an interference prevention unit 5, a voltage drop detection unit 6, and a current detection unit 7. It is comprised.
  • the discharge control unit 2 controls the current flowing through the IGBT 3 to a predetermined value in order to operate the IGBT 3 (switching element) in the active region and discharge the smoothing capacitor 15.
  • the backup power supply 1 has the first discharge control circuit 10A (discharge control device 10) at least for the discharge time during which the remaining charge of the smoothing capacitor 15 is discharged, regardless of whether or not power is supplied from the main battery 14 as the main power supply. Supply operable power.
  • the capacitance of the capacitor decreases with C 0 e -t / ⁇ (C 0 : initial value of capacitance, e: number of Napiers, ⁇ : time constant, t: time). Therefore, strictly speaking, the discharge time when the residual charge of the smoothing capacitor 15 is zero is infinite. Therefore, the time during which the remaining charge can be ignored in practice (several times the time constant ⁇ , for example, about 2 to 5 times) corresponds to the discharge time.
  • the backup power source 1 is constituted by a capacitor C1 that is charged by the driver power source 9 during normal operation.
  • a diode D1 connected with the direction from the positive electrode (T +) of the driver power supply 9 toward the capacitor C1 as a forward direction is a backflow prevention diode. That is, the diode D1 allows the capacitor C1 to be charged by the driver power supply 9 during normal operation, and the current from the capacitor C1 to the driver power supply 9 when the main switch IG is cut and the voltage of the driver power supply 9 decreases. Block the route. Therefore, the diode D1 also constitutes the backup power source 1.
  • the backup power source 1 need not be limited to the above-described form using the capacitor C1.
  • a secondary battery or a battery that generates power by a chemical reaction may be provided as the backup power source 1.
  • the discharge controller 2 generates and applies a discharge control signal S2 for operating the IGBT 3 in the active region to the IGBT (switching element) 3 constituting the inverter 18.
  • the discharge control unit 2 includes a main control unit 2a and a current limiting unit 2b.
  • the switching control signal S1 for operating the IGBT 3 in the saturation region is applied via the driver circuit 12.
  • the discharge controller 2 is provided completely independently of the driver circuit 12.
  • the interference prevention unit 5 for preventing the interference between the switching control signal S1 and the discharge control signal S2 is provided, the discharge control signal S2 does not affect the IGBT 3 during the normal operation of the inverter 18. That is, the gate control signal S which is either the switching control signal S1 or the discharge control signal S2 is applied to the IGBT 3.
  • the voltage drop detection unit 6 detects a voltage drop of the driver power supply 9 that supplies operating power to the driver circuit 12. When the voltage of the driver power supply 9 decreases, such as when the main switch IG is disconnected, the voltage decrease detection unit 6 detects this voltage decrease and operates the discharge control unit 2. That is, the discharge control unit 2 generates the discharge control signal S2 and applies it to the IGBT 3 when the voltage of the driver power supply 9 is lower than a predetermined discharge start voltage.
  • the current detector 7 detects the magnitude of the current (collector-emitter current) flowing through the IGBT 3 as the remaining charge of the smoothing capacitor 15 is discharged.
  • the discharge control unit 2 performs feedback control of the discharge control signal S2 based on the detection result of the current detection unit 7.
  • the IGBT 3 has a current sense terminal IS that outputs a minute current proportional to the current smaller than the collector-emitter current is illustrated. From the current sense terminal IS, a minute current of about 1/2000 to 1/10000, preferably about 1/5000 of the collector-emitter current is output.
  • the current detection unit 7 converts the minute current into a voltage by the shunt resistor R7 and detects the magnitude of the current flowing through the IGBT 3.
  • the configuration of the second discharge control circuit 10B is substantially the same as that of the first discharge control circuit 10A.
  • the case where the second discharge control circuit 10B is configured without having the current detection unit 7 is illustrated. If the IGBT 3 constituting one arm in one leg 17 is controlled in the active region and the collector-emitter current is controlled, the maximum value of the current flowing through the other IGBT 3 connected in series is the collector-emitter Restrained by current. Therefore, if the IGBT 3 constituting one arm is controlled in the active region, there is no problem even if the other arm is controlled in the saturation region.
  • the discharge control is executed in a state in which the IGBT 3B of the lower side arm flows a collector-emitter current larger than the IGBT 3A of the upper side arm.
  • the example which is not provided with the electric current detection part 7 is shown in the 2nd discharge control circuit 10B with which IGBT3B of a lower stage side arm is provided.
  • the IGBT 3B also has a current sense terminal IS. In FIG. 4, the current sense terminal IS of the IGBT 3B of the lower arm is omitted.
  • the present invention is not limited to this, and the first discharge control circuit 10A may be installed in both arms. Even if there is a malfunction in the current control by the first discharge control circuit 10A of any arm, the current is limited on the other side, so that it is possible to suppress the overcurrent from flowing through the IGBT 3. That is, the first discharge control circuit 10A may be employed for both arms as a fail-safe mechanism.
  • the second discharge control circuit 10B is provided in the upper arm and the first discharge control circuit 10A is provided in the lower arm is also permitted.
  • the operation of the first discharge control circuit 10A will be described using the schematic circuit diagram of FIG.
  • the operation of the second discharge control circuit 10B is basically the same.
  • the voltage between the positive electrode T + and the negative electrode T ⁇ of the driver power supply 9 is higher than the discharge start voltage.
  • the discharge start voltage for example, 15V.
  • specific numerical values are exemplified as appropriate for easy understanding, but they do not limit the present invention.
  • the voltage between the positive electrode T + and the negative electrode T ⁇ of the driver power supply 9 is a voltage that defines the low level and the high level of the pulse of the switching control signal S1 when the IGBT 3 is operated in the saturation region.
  • the gate-emitter voltage included in the IGBT 3 sufficiently saturated region and included in the recommended operation range of the IGBT 3 is set as the voltage between the positive and negative electrodes of the driver power supply 9. It is preferable that the discharge start voltage is set to a gate-emitter voltage that is close to the lower limit at which the IGBT 3 operates in the saturation region. This value is about 12V as an example. Since the discharge control circuit 10A is driven by the backup power supply 1, it is a matter of course that the discharge start voltage does not prevent the discharge start voltage from being a lower voltage, for example, a voltage close to 0V.
  • the transistor Q6 constituting the voltage drop detection unit 6 is turned on when the base-emitter voltage is 0.6V or more and is turned off when the voltage is less than 0.6V. If the voltage dividing ratio by the resistors R4 and R5 is 57: 3, when the voltage between the positive and negative electrodes of the driver power supply 9 is 12V, the base-emitter voltage of the transistor Q6 is 0.6V. When the voltage between the positive and negative electrodes of the driver power supply 9 is 12V or more, the base-emitter voltage is 0.6V or more. Therefore, the transistor Q6 is turned on, and the discharge control signal S2 is almost equal to the voltage of the negative electrode T ⁇ of the driver power supply 9. Value.
  • the diode D5 forwardly connected from the discharge control unit 2 toward the junction of the switching control signal S1 and the discharge control signal S2 functions as the interference prevention unit 5.
  • the forward voltage of the diode D5 is about 0.6 to 0.7V. Therefore, the diode D5 does not conduct unless the voltage of the discharge control signal S2 on the anode terminal side of the diode D5 is 0.7V or more higher than the voltage value of the negative electrode T ⁇ .
  • the switching control signal S1 can be output between the positive and negative voltages of the driver power supply 9 as shown in FIG. 3 without the interference of the discharge control signal S2.
  • the resistor R1 functions as a resistor for charging by the driver power supply 9 without discharging the charge of the capacitor C1 functioning as the backup power supply 1 when the transistor Q6 is in the ON state. In other words, if the resistor R1 is not provided, the voltage across the capacitor C1 becomes zero via the transistor Q6, so that charging is not performed. Accordingly, the resistor R1 constitutes a part of the discharge control unit 2 and also functions as a part of the backup power source 1.
  • the discharge control signal S2 is, as a rule, based on the voltage value of the negative electrode T ⁇ of the driver power supply 9, or the positive voltage T + of the capacitor C1 as the backup power supply 1 (diode). It becomes a voltage value corresponding to the voltage value on the (D1 side).
  • the reason is that the maximum voltage value of the discharge control signal S2 is limited by the Zener diode D2.
  • the reverse breakdown voltage of the Zener diode D2 is 9V.
  • the voltage value of the discharge control signal S2 is limited to 9V by the Zener diode D2 functioning as a voltage regulator.
  • the discharge control signal S2 has a voltage value corresponding to the voltage across the capacitor C1.
  • the voltage between the positive and negative electrodes of the driver power supply 9 is set higher than the gate-emitter voltage at which the IGBT 3 changes from the active region to the saturated region. For this reason, even if the voltage (for example, 10 to 12 V) is lower than the voltage between the positive and negative electrodes of the driver power supply 9 (for example, 15 V), the IGBT 3 may operate in the saturation region. Therefore, it is preferable to select an element having a reverse breakdown voltage corresponding to the voltage-current characteristics of the gate-emitter voltage and the collector-emitter current of the IGBT 3 as the Zener diode D2.
  • the discharge control signal S2 is generated as a signal for operating in the active region without causing the IGBT 3 to transition to the saturation region.
  • the Zener diode D2 functions as the main control unit 2a that generates the discharge control signal S2 in the discharge control unit 2, and also functions as the current limiting unit 2b that limits the collector-emitter current of the IGBT 3.
  • the collector-emitter current of the IGBT 3 is limited by operating the IGBT 3 in the active region without transitioning to the saturation region.
  • the Zener diode D2 that functions as the current limiting unit 2b is provided in the first discharge control circuit 10A, the similar Zener diode D2 may not be provided in the second discharge control circuit 10B. This is because if the collector-emitter current of one IGBT 3 connected in series is limited, the collector-emitter current is within the limited current value range even if the other IGBT operates in the saturation region.
  • the Zener diode D2 provided in the second discharge control circuit 10B may be an element having a higher reverse breakdown voltage than the Zener diode D2 provided in the first discharge control circuit 10A.
  • the first discharge control circuit 10A includes not only the Zener diode D2 but also a current limiting unit 2b configured using an OP amplifier Q7.
  • the OP amplifier Q7 may be an element that performs general current drawing and discharging operations. Further, since the power supply voltage of the OP amplifier Q7 is supplied from the backup power supply 1, it is preferable that the OP amplifier Q7 has low power consumption, low voltage drive, and low saturation.
  • the OP amplifier Q7 compares the voltage value indicating the current value detected by the current detector 7 with the reference value Vref, controls the discharge control signal S2, and controls the collector-emitter current of the IGBT 3.
  • the collector-emitter current is large, the voltage across the shunt resistor R7 constituting the current detection unit 7 increases. For example, when this voltage exceeds the reference value Vref, the output of the OP amplifier Q7 becomes a low level (T-side). Then, since a current is drawn into the OP amplifier Q7 through the diode D7, the voltage level of the discharge control signal S2 decreases.
  • the collector-emitter current of the IGBT 3 decreases, so that feedback control based on the detection result of the current detection unit 7 is achieved.
  • the voltage level of the discharge control signal S2 is adjusted in a range of about 7V to 9V.
  • the output of the OP amplifier Q7 becomes high level (T + side). Therefore, the diode D7 does not conduct, and the discharge control signal S2 is output at a voltage level depending on the backup power source 1 and the Zener diode D2, as described above.
  • the resistor R2 is set when the “Zener diode D2”, the “OP amplifier Q7 and the diode D7”, and the “transistor Q6” are not active, that is, they all set the voltage value of the discharge control signal S2. This is a resistor (resistance for determining potential) that guarantees the voltage value of the discharge control signal S2 when it does not contribute to.
  • the resistor R2 is not essential, but constitutes a part of the discharge control unit 2.
  • the discharge control circuit 10A can be realized by a small-scale circuit composed of very inexpensive parts.
  • a person skilled in the art would be able to construct an equivalent function with a different circuit configuration, but other configurations without departing from the scope of the present invention are naturally within the technical scope of the present invention. It belongs to. Since the discharge control device 10 is configured in the power supply system of the drive circuit 12 that drives each IGBT 3, the discharge control device 10 has good affinity with the drive circuit 12. Therefore, the control signal (switching control signal S1) when the IGBT 3 is in a normal operation has good affinity, and discharge control can be achieved satisfactorily. Moreover, even if the affinity is high, the discharge control device 10 is configured by a circuit that is completely independent of the drive circuit 12. Therefore, the smoothing capacitor 15 can be discharged quickly even when the control unit 11 or the drive circuit 12 has a failure or the like and the main switch IG is turned off.
  • the remaining charge of the smoothing capacitor of the inverter is quickly changed via the switching element of the inverter. It can be discharged.
  • the present invention relates to a discharge that accumulates in a smoothing capacitor interposed between an inverter and a DC main power supply, and discharges a residual charge remaining in the smoothing capacitor when the connection between the inverter and the main power supply is disconnected. It can be applied to a control device.
  • the present invention is preferably applied to a discharge control device in an electric vehicle or a hybrid vehicle equipped with a rotating electrical machine as a drive source and a regeneration source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Power Conversion In General (AREA)

Abstract

 待機電力を増加させることなく、メインスイッチがオフ状態となった場合に、迅速に、インバータのスイッチング素子を介して平滑コンデンサ15の残存電荷を放電させる放電制御装置10を提供する。このような放電制御装置10は、主電源からの電力供給の有無に拘わらず、少なくとも残存電荷が放電する放電時間に亘り、放電制御装置10が動作可能な電力を供給するバックアップ電源1と、インバータを構成するスイッチング素子3に対し、スイッチング素子3を飽和領域で動作させるスイッチング制御信号S1を印加するドライバ回路12とは独立して備えられ、スイッチング素子3を活性領域で動作させる放電制御信号S2を生成して印加する放電制御部2とを備える。

Description

放電制御装置
 本発明は、インバータと直流の主電源との間に介在された平滑コンデンサに蓄積され、当該インバータと当該主電源との接続が切断された際に当該平滑コンデンサに残存する残存電荷を放電させる放電制御装置に関する。
 回転電機により駆動される電気自動車や、内燃機関及び回転電機により駆動されるハイブリッド自動車では、バッテリから供給される直流電力がインバータにより交流電力に変換されてモータとして機能する回転電機が駆動される。回転電機がジェネレータとして機能する際には、回転電機により発電された交流電力がインバータにより直流電力に変換されてバッテリへ回生される。バッテリとインバータとの間には、直流電力を平滑するコンデンサが備えられ、脈動などの直流電力の変動が抑制される。バッテリとインバータとは、イグニッションスイッチなどのメインスイッチが投入されることによって電気的に接続され、平滑コンデンサが充電される。回生の際には、インバータを介して平滑コンデンサに充電された電荷に基づく起電力がバッテリに供給され、バッテリが充電される。メインスイッチが切れると、バッテリと平滑コンデンサとの電気的接続も切れるが、平滑コンデンサには充電されていた電荷が残存する。残存電荷は自然放電により減少もするが、自然放電には時間を要する。メインスイッチを切り、引き続いて点検整備などを行う場合もあり、自然放電よりも早く、平滑コンデンサの残存電荷を放電させることが好ましい。
 特開平9-201065号公報(特許文献1)には、メインスイッチがオフの時に、インバータを構成するスイッチング素子を活性領域で動作させて、所定値に制御された電流を流し、残存電荷を放電させる電源回路が開示されている。具体的には、スイッチング素子を活性領域で動作させるためにスイッチング素子のゲート電圧を調整する制御装置が備えられている。この制御装置は、スイッチング素子のゲート端子へつながる制御線に直列接続される抵抗器を切り換えて、当該制御線の抵抗値を変更することによってゲート電圧を調整する。
特開平9-201065号公報(第8-20段落、図1,2等)
 特許文献1の制御装置は、メインスイッチがオフの時に動作する必要があるため、メインスイッチの状態に拘わらず車両のバッテリから常時電力の供給を受けていると解される。これは、いわゆる待機電力となるため、車両全体の待機電力を増加させることになり、バッテリの負担が大きくなる。また、特許文献1の制御装置は、放電時にも通常動作時と同じドライバ回路を用いてスイッチング素子にゲート制御信号を与える。従って、制御装置に故障が生じてインバータの制御に支障があり、メインスイッチをオフ状態としたような場合では、平滑コンデンサの残存電荷を迅速に放電できない可能性がある。
 従って、待機電力を増加させることなく、メインスイッチがオフ状態となった場合に、迅速に、インバータのスイッチング素子を介して当該インバータの直流電源の平滑コンデンサの残存電荷を放電させることが望まれる。
 上記課題に鑑みた本発明に係る放電制御装置の特徴構成は、
 直流電力と交流電力との間で電力変換を行うインバータと直流の主電源との間に介在された平滑コンデンサに蓄積され、前記インバータと前記主電源との接続が切断された際に当該平滑コンデンサに残存する残存電荷を放電させる放電制御装置であって、
 前記主電源からの電力供給の有無に拘わらず、少なくとも前記残存電荷が放電する放電時間に亘り、当該放電制御装置が動作可能な電力を供給するバックアップ電源と、
 前記インバータを構成するスイッチング素子に対し、当該スイッチング素子を飽和領域で動作させるスイッチング制御信号を印加するドライバ回路とは独立して備えられ、当該スイッチング素子を活性領域で動作させる放電制御信号を生成して印加する放電制御部と、を備える点にある。
 この構成によれば、バックアップ電源を有するので、待機電力を増加させることがない。また、メインスイッチがオフ状態となった場合に、迅速に、平滑コンデンサの残存電荷を放電させることができる。また、インバータを構成するスイッチング素子を活性領域で動作させる放電制御信号を生成して印加する放電制御部は、インバータが通常動作する際のスイッチング制御信号を印加するドライバ回路とは独立して備えられる。従って、例え制御装置に故障が生じ、インバータの制御が困難となってメインスイッチをオフ状態とした場合であっても、迅速に、インバータのスイッチング素子を介して当該インバータの平滑コンデンサの残存電荷を放電させることができる。
 ここで、本発明に係る放電制御装置は、前記スイッチング制御信号と前記放電制御信号との干渉を防止する干渉防止部を備えると好適である。スイッチング制御信号と放電制御信号とは、共にスイッチング素子の制御端子(ゲートやベース)に入力される。また、スイッチング制御信号をスイッチング素子に作用させるドライバ回路と、放電制御信号をスイッチング素子に作用させる放電制御部とは、独立して構成される。従って、スイッチング制御信号と放電制御信号との干渉を防止し、特に通常動作時においてドライバ回路によるスイッチング制御信号の印加を妨げない干渉防止部が備えられると信頼性が向上する。
 また、本発明に係る放電制御装置は、前記ドライバ回路に動作電力を供給するドライバ電源の電圧低下を検出する電圧低下検出部を備え、前記放電制御部は、前記ドライバ電源の電圧が所定の放電開始電圧よりも低下した場合に、前記放電制御信号を生成して前記スイッチング素子に印加すると好適である。放電制御部は、インバータが通常動作しなくなった場合、つまり、ドライバ回路を介してスイッチング素子が制御されなくなった場合に、迅速に残存電荷を放電させることが好ましい。単純にスイッチング制御信号の有無により判定すると、単なる制御休止中の場合にも放電制御部を働かせてしまう可能性がある。ドライバ回路は、ドライバ電源の供給を受けて動作している。従って、ドライバ電源の電圧が低下すれば、単なる制御休止中ではなくメインスイッチが切断されたことなどにより、インバータが通常動作しなくなり、ドライバ回路を介してスイッチング素子が制御されなくなったと判定することができる。つまり、ドライバ電源の電圧を監視することによってインバータが通常動作しなくなり、平滑コンデンサの放電が必要であることを良好且つ迅速に判定することができる。本構成によれば、放電制御装置が電圧低下検出部を備え、放電制御部が電圧低下検出部の検出結果に基づいて放電制御を迅速に開始することができる。
 また、本発明に係る放電制御装置は、前記残存電荷の放電に伴って前記スイッチング素子を流れる電流の大きさを検出する電流検出部をさらに備え、前記スイッチング素子は、当該スイッチング素子を流れる電流よりも小さく、当該電流に比例した微小電流を出力する電流センス端子を有し、前記電流検出部は、前記微小電流に基づいて前記スイッチング素子を流れる電流の大きさを検出し、前記放電制御部は、前記電流検出部の検出結果に基づいて前記放電制御信号をフィードバック制御すると好適である。スイッチング素子には製造に起因するものや、実装状態に起因するものなど、その特性に個体差が存在する。スイッチング素子を飽和領域で使用する際には、信号レベルにマージンを持ったスイッチング制御信号を印加することによって当該個体差はほぼ吸収可能である。一方、活性領域では、制御信号の信号レベルに対して出力が敏感に反応する。この場合の出力とは、残存電荷を放電させるために流す電流であり、電流の値が大きすぎるとスイッチング素子の寿命にも影響を与える。従って、電流検出部を備えてスイッチング素子を流れる電流を検出し、放電制御部がその検出結果に基づいて放電制御信号をフィードバック制御すると好適である。さらに、スイッチング素子には、電流センス端子を有したものもあるので、当該端子から出力される信号を利用して電流検出部を構成すると、小規模な構成で電流検出部を構成することができる。
モータ駆動回路の一例を模式的に示すブロック図 電力系統図 スイッチング制御信号の波形を模式的に示す波形図 放電制御装置を含むインバータの1つのレッグの模式的ブロック図 放電制御装置の構成例を示す模式的回路図
 以下、本発明を電気自動車やハイブリッド自動車のモータ駆動回路に適用した場合の実施形態を図面に基づいて説明する。図1は、本発明の放電制御回路が適用されるモータ駆動回路を示している。視認性を優先し、図1には本発明の放電制御回路は不図示である。尚、モータ(回転電機)MGは、当然ながらジェネレータとしても機能するものである。図1に示すように、モータ駆動装置は、直流電力と交流電力との間で電力変換を行うインバータ18と、直流のメインバッテリ(主電源)14と、インバータ18とメインバッテリ14との間に介在されて直流電力を平滑する平滑コンデンサ15を備えて構成される。メインバッテリ14は、充電可能な2次電池であり、モータMGの力行動作時にインバータ18に直流電力を供給すると共に、モータMGの回生動作時にインバータ18から直流電力を受け取って蓄電する。インバータ18は、3相交流モータであるモータMGに3相交流電力を供給するために、直流電力を交流電力に変換する。
 インバータ18は、複数のスイッチング素子を有して構成される。スイッチング素子には、IGBT(insulated gate bipolar transistor)やMOSFET(metal oxide semiconductor field effect transistor)を適用すると好適である。図1に示すように、本実施形態では、スイッチング素子としてIGBT3が用いられる。インバータ18は、モータMGの各相(U相、V相、W相の三相)のそれぞれに対応するU相レッグ17U、V相レッグ17V、及びW相レッグ17Wを備えている。各レッグ17(17U、17V、17W)は、それぞれ直列に接続された上段側アームのIGBT3Aと下段側アームのIGBT3Bとにより構成される1組2個のスイッチング素子を備えている。各IGBT3A、3Bには、それぞれフライホイールダイオード19が並列接続されている。
 U相レッグ17U、V相レッグ17V、W相レッグ17Wは、モータMGのU相コイル、V相コイル、W相コイルに接続される。この際、各相レッグ17U,17V,17Wの上段側アームのIGBT3Aのエミッタと下段側アームのIGBT3Bのコレクタとの間とモータMGの各相コイルとの間が電気的に接続される。また、各レッグ17の上段側アームのIGBT3Aのコレクタは、メインバッテリ14の正極端子につながる高圧電源ラインPに接続され、各レッグ17の下段側アームのIGBT3Bのエミッタは、メインバッテリ14の負極端子につながる高圧グラウンドラインNに接続されている。
 インバータ18は、フォトカプラ4及びドライバ回路12を介して制御ユニット11に接続されており、当該インバータ18の各IGBT3A,3Bは、制御ユニット11が生成する制御信号に応じてスイッチング動作する。フォトカプラ4及びドライバ回路12の役割については、後述する。制御ユニット11は、不図示のマイクロコンピュータなどの論理回路を中核とするECU(electronic control unit)として構成される。ECUは、マイクロコンピュータの他、不図示のインターフェース回路やその他の周辺回路などを有して構成される。
 モータMGは、制御ユニット11の制御により、所定の出力トルク及び回転速度で駆動される。この際、モータMGのステータコイルに流れる電流の値が制御ユニット11にフィードバックされる。このため、インバータ18の各相レッグ17U、17V、17WとモータMGの各相コイルとの間に設けられた導体(バスバーなど)を流れる電流値が、ホールICなどを用いた電流検出装置16により検出される。また、モータMGのロータの回転角度は、例えばレゾルバなどの回転センサ13に検出され、制御ユニット11に伝達される。そして、制御ユニット11は、電流検出装置16及び回転センサ13の検出結果に基づいて、目標電流との偏差に応じてPI制御(比例積分制御)やPID制御(比例微積分制御)を実行してモータMGを駆動制御する。尚、図1では、3相全てに対して電流検出装置16が配置される例を示しているが、3相各相の電流は平衡しており瞬時値はゼロであるから、2相のみの電流値を検出する構成であっても構わない。
 ところで、本実施形態のようにモータMGが車両の駆動装置である場合などでは、メインバッテリ14は200~300Vの高電圧であり、インバータ18の各IGBT3A,3Bは、高電圧をスイッチングする。一方、マイクロコンピュータなどの論理回路を中核とする制御ユニット11は、一般的には定格12V以下程度、多くの場合3.3~5V程度の低電圧で動作する電子回路である。高電圧をスイッチングするIGBTのゲートに入力されるパルス状のゲート駆動信号(スイッチング制御信号)の電位は、共通のグラウンドレベルで比較すれば、マイクロコンピュータなどの一般的な電子回路の動作電圧よりも遥かに高い電圧である。従って、ゲート駆動信号は、フォトカプラ4及びドライバ回路12を介して電圧変換や絶縁された後、インバータ18の各IGBT3A,3Bに入力される。
 フォトカプラ4は、アイソレータとして機能し、制御ユニット11からドライバ回路12へ光伝送によりゲート駆動信号を伝達する。フォトカプラ4を介してゲート駆動信号が伝達されることにより、制御ユニット11とドライバ回路12とは、ゲート駆動信号を受け渡ししながらも電気的に絶縁される。ドライバ回路12は、光伝送により受け取ったゲート駆動信号を、所定の電圧幅の信号に電圧変換してスイッチング制御信号として各IGBT3へ供給する。
 各IGBT3は、ゲートとエミッタとの間に所定の電圧、本実施形態では15V程度の電圧が印加されることによってオン状態となる。インバータ回路2の電源電圧P-Nとは無関係に、即ち、メインバッテリ14の負極Nを基準(グラウンドレベル)とするIGBT3のエミッタやコレクタの電位とは関係なく、単純にゲート-エミッタ間が所定の電位となれば各IGBT3はオン状態となる。ドライバ回路12は、メインバッテリ14の負極Nを共通の基準(グラウンドレベル)とせず、インバータ18の電源とは電気的に独立してゲート駆動信号を制御ユニット11からインバータへとドライブする。このため、ドライバ回路12は、インバータ18の各IGBT3に対応して複数個、本実施形態では6つ備えられる。
 ドライバ回路12は、インバータ18とグラウンドレベルが必ずしも共通ではない独立回路である(特に上段側アーム)。従って、ドライバ回路12を動作させるための電源(ドライバ電源)も、インバータ18とは独立している。具体的には、ドライバ電源は、フローティング電源であるトランス9によって生成される。複数のドライバ回路12は、互いに電気的に独立して構成されるため、各ドライバ回路12には、少なくとも出力が互いに独立した6個のトランス9からそれぞれ電源が供給される。即ち、各ドライバ回路12は、それぞれトランス9を用いたフローティング電源により駆動される。トランス9から供給されるドライバ電源は、正極がT+、負極がT-である。6個のトランス9の電源を個別に表す場合には、U,V,W相の各レッグのハイサイドをU,V,W、ローサイドをX,Y,Zとして、以下のように区別して表す(図1及び図3参照)。
   T+:U+,V+,W+,X+,Y+,Z+
   T-:U-,V-,W-,X-,Y-,Z-
 ここで、図2の電力系統図を利用して、電源系を整理しておく。メインバッテリ(主電源)14は、モータMG(インバータ18)の駆動用電源であり、ここでは定格300Vの直流電源である。図1及び図2に示すように、インバータ18は、車両のイグニッションスイッチに連動するスイッチであるメインスイッチIGを介してメインバッテリ14に接続されている。また、メインバッテリ14には、メインスイッチIGを介してDC-DCコンバータ26が接続されている。このDC-DCコンバータ26によって、降圧された直流電圧は、例えば定格12Vのサブバッテリ27に蓄電される。サブバッテリ27は、制御ユニット11や、その他の車載機器(補機と称される空調機やオイルポンプなど)に電力を供給する。
 トランス9は、サブバッテリ27や、あるいはメインバッテリ14から一次側電圧を受け取り、整流回路を介して二次側電圧として正極T+と負極T-との間に所定の電圧を出力する。尚、車両には電動ドアや電動シート、パワーウィンドウなどの現在位置を記憶するメモリや、時計など、常時微量の電力を供給する必要がある装置もある。従って、メインスイッチIGは、図2に実線で示したようにメインバッテリ14の直下において1つだけ設定される必要はない。破線で示す複数のスイッチIG2,IG3などのようにイグニッションスイッチに連動するスイッチとして、複数箇所に設定されていてもよい。尚、メインバッテリ14とインバータ18との接続が切断される際には、ドライバ回路12が動作する必要はないので、トランス9への電力供給も切断される。
 メインスイッチIGが切断されると、メインバッテリ14と平滑コンデンサ15との電気的接続も切れるが、平滑コンデンサ15には電荷が残存する。そこで、放電制御装置は、メインスイッチIGがオフの時に、インバータ18を構成するIGBT3(スイッチング素子)を活性領域で動作させて、所定値に制御された電流を流し、平滑コンデンサ15の残存電荷を放電させる。以下、放電制御装置10を含むインバータ18の1つのレッグ17を示す模式的ブロック図(図4)、放電制御装置10を構成する放電制御回路10Aの一例を示す模式的回路図(図5)も利用して、放電制御装置10の詳細について説明する。尚、図4において二重線は電力系統線を示す。
 放電制御装置10は、3つのレッグ17の内、1つのみに備えられてもよいが、複数のレッグ17に備えられていると、並行して平滑コンデンサ15を放電させることができて好適である。この際、各レッグ17における構成は同一であるので、1つのレッグ17を代表して説明する。また、放電制御装置10は、上段側アームのIGBT3Aに備えられる第1放電制御回路10Aと、下段側アームのIGBT3Bに備えられる第2放電制御回路10Bとを有して構成されている。つまり、上段側アームのIGBT3Aと下段側アームのIGBT3Bとの双方が導通することによって、1相のレッグ17を利用して平滑コンデンサ15を放電させる。第1放電制御回路10Aと第2放電制御回路10Bとは全く同じ構成でもよいが、本実施形態では、若干異なる構成のものとしている。以下、第1放電制御回路10Aについて説明を進め、両者の差異については適宜説明する。
 図4に示すように、第1放電制御回路10A(放電制御装置10)は、バックアップ電源1と、放電制御部2と、干渉防止部5と、電圧低下検出部6と、電流検出部7とを有して構成される。放電制御部2は、IGBT3(スイッチング素子)を活性領域で動作させて平滑コンデンサ15を放電させるために当該IGBT3に流す電流を所定値に制御する。
 バックアップ電源1は、主電源としてのメインバッテリ14からの電力供給の有無に拘わらず、少なくとも平滑コンデンサ15の残存電荷が放電する放電時間に亘り、第1放電制御回路10A(放電制御装置10)が動作可能な電力を供給する。ここで、コンデンサの静電容量はC-t/τ(C:静電容量の初期値、e:ネイピア数、τ:時定数、t:時間)で減少する。このため、厳密に考えれば、平滑コンデンサ15の残存電荷をゼロにする場合の放電時間は無限大である。従って、実用上、残存電荷が無視できると考えられる時間(時定数τの数倍、例えば、2~5倍程度の時間)が上記放電時間に相当する。
 本実施形態では、図5に示すように、バックアップ電源1は、通常動作時にドライバ電源9により充電されるコンデンサC1により構成される。ドライバ電源9の正極(T+)からコンデンサC1へ向かう方向を順方向として接続されたダイオードD1は逆流防止用ダイオードである。即ち、ダイオードD1は、通常動作時にドライバ電源9によるコンデンサC1の充電を許容すると共に、メインスイッチIGが切断されてドライバ電源9の電圧が低下した際には、コンデンサC1からドライバ電源9への電流経路を遮断する。従って、ダイオードD1もバックアップ電源1を構成する。尚、バックアップ電源1は、コンデンサC1を利用した上記のような形態に限定される必要はない。二次電池や化学反応により電力を発生する電池がバックアップ電源1として設けられていてもよい。
 放電制御部2は、インバータ18を構成するIGBT(スイッチング素子)3に対し、当該IGBT3を活性領域で動作させる放電制御信号S2を生成して印加する。第1放電制御回路10Aでは、放電制御部2は、主制御部2aと電流制限部2bとを有して構成される。上述したように、インバータ18の通常動作時には、ドライバ回路12を介して当該IGBT3を飽和領域で動作させるスイッチング制御信号S1が印加される。図4に示すように、放電制御部2は、ドライバ回路12とは完全に独立して備えられる。さらに、スイッチング制御信号S1と放電制御信号S2との干渉を防止する干渉防止部5が設けられているから、インバータ18の通常動作時において放電制御信号S2がIGBT3に影響を与えることもない。即ち、IGBT3には、スイッチング制御信号S1及び放電制御信号S2の何れかであるゲート制御信号Sが印加される。
 電圧低下検出部6は、ドライバ回路12に動作電力を供給するドライバ電源9の電圧低下を検出する。メインスイッチIGが切断されるなど、ドライバ電源9の電圧が低下すると、電圧低下検出部6は、この電圧低下を検出し、放電制御部2を動作させる。つまり、放電制御部2は、ドライバ電源9の電圧が所定の放電開始電圧よりも低下した場合に、放電制御信号S2を生成してIGBT3に印加する。
 電流検出部7は、平滑コンデンサ15の残存電荷の放電に伴ってIGBT3を流れる電流(コレクタ-エミッタ間電流)の大きさを検出する。放電制御部2は、電流検出部7の検出結果に基づいて放電制御信号S2をフィードバック制御する。本実施形態では、IGBT3が、コレクタ-エミッタ間電流よりも小さく、当該電流に比例した微小電流を出力する電流センス端子ISを有している場合を例示している。電流センス端子ISからは、コレクタ-エミッタ間電流の1/2000~1/10000、好適には1/5000程度の微小電流が出力される。電流検出部7は、この微少電流をシャント抵抗R7により電圧変換してIGBT3を流れる電流の大きさを検出する。当然ながら、電流センサ等を利用して、コレクタ-エミッタ間電流を直接検出する構成とすることも可能である。
 図4に示すように、第2放電制御回路10Bの構成も、第1放電制御回路10Aとほぼ同様である。しかし、本実施形態では、第2放電制御回路10Bは、電流検出部7を有することなく構成される場合を例示している。1つのレッグ17において一方のアームを構成するIGBT3が活性領域で制御され、コレクタ-エミッタ間電流が制御されれば、直列接続された他方のIGBT3を流れる電流の最大値は、そのコレクタ-エミッタ間電流に拘束される。従って、一方のアームを構成するIGBT3が活性領域で制御されれば、他方のアームは、飽和領域で制御されても問題はない。本実施形態では、下段側アームのIGBT3Bは、上段側アームのIGBT3Aよりも大きいコレクタ-エミッタ間電流を流す状態で、放電制御が実行される。このため、下段側アームのIGBT3Bに備えられる第2放電制御回路10Bには、電流検出部7を備えていない例を示している。また、IGBT3Aと3Bとは、基本的に同一のIGBTであるから、IGBT3Bも電流センス端子ISを有する。図4においては、下段側アームのIGBT3Bの電流センス端子ISを省略している。
 しかし、これに限定されることなく、両アームにおいて第1放電制御回路10Aを設置してもよい。何れかのアームの第1放電制御回路10Aによる電流制御に不具合があっても、他方において電流が制限されるから、IGBT3に過電流が流れることを抑制することができる。即ち、フェールセーフ機構として両アームに第1放電制御回路10Aを採用してもよい。尚、当然ながら、上段側アームに第2放電制御回路10Bを設け、下段側アームに第1放電制御回路10Aを設ける構成も許される。
 以下、図5の模式的回路図を利用して、第1放電制御回路10Aの動作について説明する。上述したように、第2放電制御回路10Bの動作についても基本的に同様である。メインスイッチIGがオン状態であり、インバータ18が通常動作を行っているとき、ドライバ電源9の正極T+と負極T-との間の電圧は、放電開始電圧よりも高い電圧である。ここでは、例えば15Vとする。以下、理解を容易にするために適宜具体的な数値を例示するがそれらは本発明を何ら限定するものではない。ドライバ電源9の正極T+と負極T-との間の電圧は、図3に示すように、IGBT3を飽和領域で動作させる際のスイッチング制御信号S1のパルスのローレベルとハイレベルとを規定する電圧となる。即ち、IGBT3が充分飽和領域に達し、且つ、IGBT3の推奨動作範囲に含まれるゲート-エミッタ間電圧が、ドライバ電源9の正負両極間電圧として設定されている。放電開始電圧は、IGBT3が飽和領域で動作するほぼ下限に近いゲート-エミッタ間電圧に設定されると好適である。この値は、一例として12V程度である。放電制御回路10Aは、バックアップ電源1により駆動されるので、当然ながら放電開始電圧はさらに低い電圧、例えば、0Vに近い電圧であることを妨げるものではない。
 電圧低下検出部6を構成するトランジスタQ6は、ここでは、ベース-エミッタ間電圧が0.6V以上でオンし、0.6V未満でオフするものとする。抵抗R4及びR5による分圧比を57:3とすれば、ドライバ電源9の正負両極間電圧が12Vのとき、トランジスタQ6のベース-エミッタ間電圧が0.6Vとなる。ドライバ電源9の正負両極間電圧が12V以上のとき、ベース-エミッタ間電圧は0.6V以上であるので、トランジスタQ6はオンし、放電制御信号S2は、ほぼドライバ電源9の負極T-の電圧値となる。
 このとき、放電制御部2から、スイッチング制御信号S1と放電制御信号S2との合流点に向かって順方向接続されたダイオードD5が干渉防止部5として機能する。ダイオードD5の順方向電圧は、約0.6~0.7Vである。従って、ダイオードD5のアノード端子側における放電制御信号S2の電圧が、負極T-の電圧値に対して0.7V以上高くなければ、ダイオードD5は導通しない。ここで、トランジスタQ6がオンしている場合には、ダイオードD5のアノード端子側における放電制御信号S2の電圧は、ほぼドライバ電源9の負極T-の電圧値に固定されているから、スイッチング制御信号S1がローレベルであってもダイオードD5は導通しない。従って、放電制御信号S2が干渉することなく、スイッチング制御信号S1は、図3に示すようにドライバ電源9の正負両極間電圧の間で出力可能である。
 尚、抵抗R1は、トランジスタQ6がオン状態のときにバックアップ電源1として機能するコンデンサC1の電荷を放電させることなく、ドライバ電源9によって充電させるための抵抗として機能する。つまり、抵抗R1が無ければ、トランジスタQ6を介してコンデンサC1の両端電圧がゼロとなるので充電されない。従って、抵抗R1は、放電制御部2の一部を構成すると共に、バックアップ電源1の一部としても機能する。
 一方、ドライバ電源9の正負両極間電圧が12Vを下回ると、トランジスタQ6のベース-エミッタ間電圧が0.6Vを下回り、トランジスタQ6はターンオフする。厳密には、トランジスタQ6のベース-エミッタ間電圧が0.6Vを下回っても、完全にオフ状態とはならない場合があるが、説明を容易するためにここでは、オフするものとする。トランジスタQ6がターンオフすると、放電制御信号S2は、原則としてドライバ電源9の負極T-の電圧値を基準として、ドライバ電源9の正極T+の電圧値、又はバックアップ電源1としてのコンデンサC1の正極(ダイオードD1側)の電圧値に応じた電圧値となる。ここで、原則としてというのは、ツェナーダイオードD2により、放電制御信号S2の最高電圧値が制限されているからである。
 本実施形態において、ツェナーダイオードD2の逆降伏電圧は9Vとする。ドライバ電源9の正負両極間電圧やコンデンサC1の両端電圧が9Vを超えているときは、電圧レギュレータとして機能するツェナーダイオードD2によって、放電制御信号S2の電圧値が9Vに制限される。一方、ドライバ電源9が出力を停止し、バックアップ電源1としてのコンデンサC1の両端電圧も低下して9Vを下回ると、放電制御信号S2は、コンデンサC1の両端電圧に応じた電圧値となる。
 上述したように、ドライバ電源9の正負両極間電圧は、IGBT3が活性領域から飽和領域となるゲート-エミッタ間電圧よりも高い電圧に設定されている。このため、ドライバ電源9の正負両極間電圧(例えば15V)よりも低い電圧(例えば10~12V)であっても、IGBT3が飽和領域で動作する可能性がある。従って、IGBT3のゲート-エミッタ間電圧とコレクタ-エミッタ間電流との電圧-電流特性に応じた逆降伏電圧を有する素子を、ツェナーダイオードD2として選択しておくと好適である。これによって、放電制御信号S2は、IGBT3を飽和領域に遷移させることなく、活性領域で動作させる信号として生成される。
 このように、ツェナーダイオードD2は、放電制御部2において、放電制御信号S2を生成する主制御部2aとして機能すると共に、IGBT3のコレクタ-エミッタ間電流を制限する電流制限部2bとして機能する。つまり、IGBT3を飽和領域に遷移させることなく活性領域で動作させることによってIGBT3のコレクタ-エミッタ間電流を制限する。
 尚、第1放電制御回路10Aに電流制限部2bとして機能するツェナーダイオードD2が設けられる場合、第2放電制御回路10Bには同様のツェナーダイオードD2が設けられなくてもよい。直列接続された一方のIGBT3のコレクタ-エミッタ間電流が制限されれば、他方のIGBTが飽和領域で動作してもコレクタ-エミッタ間電流は制限された電流値の範囲に収まるからである。あるいは、第2放電制御回路10Bに設けられるツェナーダイオードD2が、第1放電制御回路10Aに設けられるツェナーダイオードD2よりも高い逆降伏電圧を有する素子であってもよい。
 第1放電制御回路10Aには、ツェナーダイオードD2のみでなく、さらにOPアンプQ7を用いて構成される電流制限部2bも備えられる。このOPアンプQ7は、一般的な電流引き込み、吐き出し動作を行う素子を用いればよい。また、OPアンプQ7の電源電圧は、バックアップ電源1より供給されるので、OPアンプQ7は、低消費電力、低電圧駆動、低飽和であると好適である。
 OPアンプQ7は、電流検出部7により検出された電流値を示す電圧値と基準値Vrefとを比較して、放電制御信号S2を制御してIGBT3のコレクタ-エミッタ間電流を制御する。コレクタ-エミッタ間電流が大きいと、電流検出部7を構成するシャント抵抗R7の両端電圧が大きくなる。例えば、この電圧が基準値Vrefを超えるとOPアンプQ7の出力が低レベル(T-側)になる。すると、ダイオードD7を介して電流がOPアンプQ7に引き込まれるため、放電制御信号S2の電圧レベルが低下する。その結果、IGBT3のコレクタ-エミッタ間電流が低下するので、電流検出部7の検出結果に基づいたフィードバック制御が達成される。一例として、放電制御信号S2の電圧レベルは、約7V~9Vの範囲で調整されることになる。一方、シャント抵抗R7の両端電圧が基準値Vrefよりも小さいときにはOPアンプQ7の出力が高レベル(T+側)になる。従って、ダイオードD7は導通せず、放電制御信号S2は上述したように、バックアップ電源1やツェナーダイオードD2に依存した電圧レベルで出力される。
 尚、抵抗R2は、「ツェナーダイオードD2」、「OPアンプQ7及びダイオードD7」、「トランジスタQ6」の何れもがアクティブではないとき、即ち、これらの何れもが放電制御信号S2の電圧値の設定に寄与しないときに、放電制御信号S2の電圧値を保証する抵抗(電位確定用の抵抗)である。抵抗R2は必須ではないが、放電制御部2の一部を構成する。
 このように、放電制御回路10Aは非常に安価な部品により構成される小規模な回路により実現可能である。当業者であれば、同等の機能を異なる回路構成で構築することも可能であろうが、本発明の要旨を逸脱しない範囲での別構成の回路は、当然ながら、本発明の技術的範囲に属するものである。放電制御装置10は、それぞれのIGBT3をドライブするドライブ回路12の電源系において構成されるから、ドライブ回路12とも親和性がよい。従って、IGBT3が通常動作時する際の制御信号(スイッチング制御信号S1)とも親和性がよく、良好に放電制御が達成される。また、親和性は高くても、放電制御装置10は、ドライブ回路12とは全く独立した回路により構成されている。従って、制御ユニット11やドライブ回路12に故障等が生じてメインスイッチIGがオフ状態となった場合であっても迅速に平滑コンデンサ15を放電させることができる。
 以上説明したように、本発明によれば、待機電力を増加させることなく、メインスイッチがオフ状態となった場合に、迅速に、インバータのスイッチング素子を介して当該インバータの平滑コンデンサの残存電荷を放電させることができる。
 本発明は、インバータと直流の主電源との間に介在された平滑コンデンサに蓄積され、当該インバータと当該主電源との接続が切断された際に当該平滑コンデンサに残存する残存電荷を放電させる放電制御装置に適用することができる。特に、駆動源及び回生源となる回転電機を搭載した電気自動車やハイブリッド自動車における放電制御装置に適用すると好適である。
 1:バックアップ電源
 2:放電制御部
 3:IGBT(スイッチング素子)
 5:干渉防止部
 6:電圧低下検出部
 7:電流検出部
 9:トランス(ドライバ電源)
 10,10A,10B:放電制御装置
 12:ドライバ回路
 14:メインバッテリ(主電源)
 15:平滑コンデンサ
 18:インバータ
 IS:電流センス端子
 S1:スイッチング制御信号
 S2:放電制御信号

Claims (4)

  1.  直流電力と交流電力との間で電力変換を行うインバータと直流の主電源との間に介在された平滑コンデンサに蓄積され、前記インバータと前記主電源との接続が切断された際に当該平滑コンデンサに残存する残存電荷を放電させる放電制御装置であって、
     前記主電源からの電力供給の有無に拘わらず、少なくとも前記残存電荷が放電する放電時間に亘り、当該放電制御装置が動作可能な電力を供給するバックアップ電源と、
     前記インバータを構成するスイッチング素子に対し、当該スイッチング素子を飽和領域で動作させるスイッチング制御信号を印加するドライバ回路とは独立して備えられ、当該スイッチング素子を活性領域で動作させる放電制御信号を生成して印加する放電制御部と、
    を備える放電制御装置。
  2.  前記スイッチング制御信号と前記放電制御信号との干渉を防止する干渉防止部を備える請求項1に記載の放電制御装置。
  3.  前記ドライバ回路に動作電力を供給するドライバ電源の電圧低下を検出する電圧低下検出部を備え、
     前記放電制御部は、前記ドライバ電源の電圧が所定の放電開始電圧よりも低下した場合に、前記放電制御信号を生成して前記スイッチング素子に印加する請求項1又は2に記載の放電制御装置。
  4.  前記残存電荷の放電に伴って前記スイッチング素子を流れる電流の大きさを検出する電流検出部をさらに備え、
     前記スイッチング素子は、当該スイッチング素子を流れる電流よりも小さく、当該電流に比例した微小電流を出力する電流センス端子を有し、
     前記電流検出部は、前記微小電流に基づいて前記スイッチング素子を流れる電流の大きさを検出し、
     前記放電制御部は、前記電流検出部の検出結果に基づいて前記放電制御信号をフィードバック制御する請求項1から3の何れか一項に記載の放電制御装置。
PCT/JP2011/052027 2010-03-24 2011-02-01 放電制御装置 WO2011118259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010068757A JP2011205746A (ja) 2010-03-24 2010-03-24 放電制御装置
JP2010-068757 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118259A1 true WO2011118259A1 (ja) 2011-09-29

Family

ID=44655632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052027 WO2011118259A1 (ja) 2010-03-24 2011-02-01 放電制御装置

Country Status (3)

Country Link
US (1) US20110234176A1 (ja)
JP (1) JP2011205746A (ja)
WO (1) WO2011118259A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423536B2 (ja) * 2010-03-31 2014-02-19 株式会社デンソー 電力変換装置
JP2012186893A (ja) * 2011-03-04 2012-09-27 Honda Motor Co Ltd 電動車両
JP5834462B2 (ja) * 2011-04-21 2015-12-24 株式会社デンソー 負荷駆動装置
DE102011083945A1 (de) * 2011-10-04 2013-04-04 Robert Bosch Gmbh Steuervorrichtung für Halbleiterschalter eines Wechselrichters und Verfahren zum Ansteuern eines Wechselrichters
DE102011089316A1 (de) * 2011-12-20 2013-06-20 Robert Bosch Gmbh Steuervorrichtung für Halbleiterschalter eines Wechselrichters und Verfahren zum Ansteuern eines Wechselrichters
CN103219878B (zh) * 2012-01-20 2016-06-01 台达电子企业管理(上海)有限公司 一种电容放电电路及功率变换器
JP5923325B2 (ja) * 2012-02-02 2016-05-24 山洋電気株式会社 モータ制御装置及びその制御方法
DE102012203071A1 (de) * 2012-02-29 2013-08-29 Zf Friedrichshafen Ag Schaltung für einen Hochvoltzwischenkreis, Hochvoltsystem und Verfahren zum Entladen eines Hochvoltzwischenkreises für ein Hochvoltsystem für ein Fahrzeug
US8816631B2 (en) * 2012-03-13 2014-08-26 Rockwell Automation Technologies, Inc. Apparatus and method for energy efficient motor drive standby operation
US9571003B2 (en) * 2012-08-08 2017-02-14 Ixys Corporation Non-isolated AC-to-DC converter with fast dep-FET turn on and turn off
JP6107157B2 (ja) * 2013-01-18 2017-04-05 富士電機株式会社 電力変換装置
ES2706232T3 (es) * 2013-06-14 2019-03-27 Pr Electronics As Fuente de potencia
DE102013224800A1 (de) * 2013-12-04 2015-06-11 Robert Bosch Gmbh Schaltungsanordnung, Verfahren zum Betreiben
WO2015114780A1 (ja) * 2014-01-30 2015-08-06 株式会社へいわ キャパシタインプット形平滑回路
JP6375845B2 (ja) * 2014-10-06 2018-08-22 トヨタ自動車株式会社 モータ制御装置、及びモータ制御方法
JP6337731B2 (ja) * 2014-10-06 2018-06-06 トヨタ自動車株式会社 モータ制御装置、及びモータ制御方法
US9630520B2 (en) * 2015-01-13 2017-04-25 Ford Global Technologies, Llc Circuit and method for battery leakage detection
JP2016201929A (ja) * 2015-04-10 2016-12-01 オムロンオートモーティブエレクトロニクス株式会社 電源装置および電源装置の制御方法
DE102015110285B4 (de) * 2015-06-26 2019-06-27 Halla Visteon Climate Control Corporation Anordnung und Verfahren zur Entladung eines Hochvoltkreises eines Wechselrichters
JP6709182B2 (ja) * 2017-03-22 2020-06-10 株式会社ケーヒン 放電装置
JP2018088819A (ja) * 2018-02-28 2018-06-07 株式会社ダイヘン 高周波電源
EP3780365A4 (en) * 2018-03-30 2021-12-01 Omron Corporation POWER CONVERTER DEVICE AND INVERTER CIRCUIT
KR20200043697A (ko) * 2018-10-18 2020-04-28 엘지이노텍 주식회사 배터리 관리 시스템 및 방법
CN110261765A (zh) * 2019-06-12 2019-09-20 沈阳工业大学 一种残余电荷电压的多信号检测试验装置及方法
DE102019216568B3 (de) * 2019-10-28 2020-10-15 Magna powertrain gmbh & co kg Entladungsvorrichtung für eine elektrische Antriebsanordnung von einem Fahrzeug sowie elektrische Antriebsanordnung mit der Entladungsvorrichtung
KR102488140B1 (ko) * 2021-02-09 2023-01-13 주식회사 현대케피코 친환경 자동차의 인버터 직류 링크 전압 방전 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201065A (ja) * 1996-01-19 1997-07-31 Toyota Motor Corp 電源回路
JP2003348856A (ja) * 2002-05-28 2003-12-05 Mitsubishi Electric Corp 電源装置
JP2006166495A (ja) * 2004-12-02 2006-06-22 Nissan Motor Co Ltd インバータ制御装置
JP2007244070A (ja) * 2006-03-07 2007-09-20 Toyota Motor Corp 電動機制御装置および電動機制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201065A (ja) * 1996-01-19 1997-07-31 Toyota Motor Corp 電源回路
JP2003348856A (ja) * 2002-05-28 2003-12-05 Mitsubishi Electric Corp 電源装置
JP2006166495A (ja) * 2004-12-02 2006-06-22 Nissan Motor Co Ltd インバータ制御装置
JP2007244070A (ja) * 2006-03-07 2007-09-20 Toyota Motor Corp 電動機制御装置および電動機制御方法

Also Published As

Publication number Publication date
US20110234176A1 (en) 2011-09-29
JP2011205746A (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2011118259A1 (ja) 放電制御装置
US8970155B2 (en) Power inverter
US10110154B2 (en) Controller and a method to drive an inverter circuit for a permanent-magnet synchronous motor
US20140092653A1 (en) Electronic circuit operating based on isolated switching power source
WO2011142373A1 (ja) 電力変換システムの放電装置
US10840800B2 (en) Power conversion device
US20140001988A1 (en) Electric motor vehicle
JPWO2019155776A1 (ja) 電力変換装置
JP5611300B2 (ja) 電力変換装置およびその制御方法
US10516332B2 (en) Induced voltage suppression device, motor system, and power conversion system
JP5748610B2 (ja) 充電装置
JP2010093996A (ja) 電力変換装置
JP2010004728A (ja) 電力変換装置
WO2022131121A1 (ja) 電力変換装置
JPH08149868A (ja) インバータ
JP7322653B2 (ja) スイッチの駆動装置
US10374509B2 (en) Control circuit for power converter
US10615682B2 (en) Electrically driven vehicle inverter device
JP5724913B2 (ja) 電力変換装置
JP5499850B2 (ja) インバータの放電制御装置
JP2009219225A (ja) 車両駆動システム
JP2018057225A (ja) インバータ装置
JP2007244102A (ja) 電源装置
WO2017168835A1 (ja) 地絡検知回路診断装置
JP6090012B2 (ja) 電力変換装置の保護装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759067

Country of ref document: EP

Kind code of ref document: A1