WO2011105444A1 - リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2011105444A1
WO2011105444A1 PCT/JP2011/054020 JP2011054020W WO2011105444A1 WO 2011105444 A1 WO2011105444 A1 WO 2011105444A1 JP 2011054020 W JP2011054020 W JP 2011054020W WO 2011105444 A1 WO2011105444 A1 WO 2011105444A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
carbon
Prior art date
Application number
PCT/JP2011/054020
Other languages
English (en)
French (fr)
Inventor
圭児 岡部
石井 義人
百合子 井田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44506846&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011105444(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to US13/580,675 priority Critical patent/US20120328954A1/en
Priority to CN201180011014.8A priority patent/CN102770994B/zh
Priority to JP2012501829A priority patent/JP5811999B2/ja
Priority to CA2790582A priority patent/CA2790582C/en
Priority to KR1020127021629A priority patent/KR101809766B1/ko
Priority to EP11747404.9A priority patent/EP2541657A4/en
Priority to EP20202564.9A priority patent/EP3787077A1/en
Publication of WO2011105444A1 publication Critical patent/WO2011105444A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 従来のリチウムイオン二次電池と比較して、不可逆容量が小さく、入出力特性及び寿命特性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池用負極材、及び該負極材を用いてなるリチウムイオン二次電池用負極を提供する。 核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、(A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、(B)前記炭素材料に対する前記炭素層の比率(質量比)が0.005~0.1、(C)77Kでの窒素吸着測定より求めた比表面積が0.5~10.0m/g、(D)273Kでの二酸化炭素吸着より求めた比表面積Yと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(I)を満たすリチウムイオン二次電池用負極材である。 0<Y<AX+2.5 [ただし、A=100とする] 式(I)

Description

リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。
 更に詳しくは、高入出力特性を有する二次電池を必要とする電気自動車、パワーツール等の用途に好適なリチウムイオン二次電池とそれを得るためのリチウムイオン二次電池用負極材、及び該負極材を用いたリチウムイオン二次電池用負極に関する。
 リチウムイオン二次電池は、他の二次電池であるニッケルカドミウム電池やニッケル水素電池、鉛蓄電池に比べて軽量で高い入出力特性を有することから、近年、電気自動車や、ハイブリッド型電気自動車用の電源といった高入出力用電源として期待されている。ハイブリッド型電気自動車用の電源としては入出力特性のバランスに優れ、かつサイクル特性や保存特性などの寿命特性に優れたリチウムイオン二次電池が求められている。
 一般に、リチウムイオン二次電池に用いられる負極活物質は、黒鉛系と非晶質系とに大別される。
 黒鉛は炭素原子の六角網面が規則正しく積層した構造を有するもので、積層した網面の端部よりリチウムイオンの挿入脱離反応が進行し充放電を行う。
 しかしながら、挿入脱離反応が端部でのみ進行するため入出力性能が低い。また、結晶性が高く表面の欠陥が少ないが故に、電解液との反応性が高く、リチウムイオン二次電池の寿命特性が悪くなるといった問題点を有する。
 一方、非晶質炭素は、六角網面の積層が不規則であるか、網目構造を有しないため、リチウムの挿入脱離反応は粒子の全表面で進行することとなり、入出力特性に優れたリチウムイオン二次電池を得られやすい(例えば、特許文献1、2参照。)。
 一般に、非晶質炭素はハードカーボンとソフトカーボンの二種に大きく分類される。ハードカーボンは2500℃以上といった高温まで熱処理を行っても結晶が発達し難い炭素であり、ソフトカーボンは高温処理により高結晶性の黒鉛構造へと変化し易い炭素である。
 また、非晶質炭素は、黒鉛とは対照的に、粒子表面の結晶性が低く、電解液との反応を抑制出来るため、これを負極材料として用いたリチウムイオン二次電池は、黒鉛を用いた場合と比較して、寿命特性で勝るといった特徴を持つ。反面、構造が不規則であるがゆえに不可逆容量が大きく、かつ比重が小さいために電極密度を高くすることが困難であり、エネルギー密度が低いという問題がある。
 そこで、不可逆容量が小さく、かつエネルギー密度が大きく、入出力特性及び寿命特性に優れたリチウムイオン二次電池とそれを得るための負極材料が要求されている。
特開平4-370662号公報 特開平5-307956号公報
 本発明は、従来のリチウムイオン二次電池と比較して、不可逆容量が小さく、入出力特性及び寿命特性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池用負極材、及び該負極材を用いてなるリチウムイオン二次電池用負極を提供することを目的とするものである。
 発明者らは鋭意検討の結果、核となる炭素材料の表面に低結晶炭素層を有するリチウムイオン二次電池用負極材における、低結晶炭素層比率及び比表面積を特定の範囲に制御することによって本課題を解決できることを見いだした。具体的には下記の(1)~(7)に記載の事項を特徴とするものである。
(1)核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、
(A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、
(B)前記炭素材料に対する前記炭素層の比率(質量比)が0.005~0.1、
(C)77Kでの窒素吸着測定より求めた比表面積が0.5~10.0m/g、
(D)273Kでの二酸化炭素吸着より求めた比表面積Yと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(I)を満たすことを特徴とするリチウムイオン二次電池用負極材。
  0<Y<AX+2.5 [ただし、A=100とする]  式(I)
(2)核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、
(A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、
(B)乾燥空気流通過でのTG分析による100~600℃での質量減少率が3.5~90%、
(C)77Kでの窒素吸着測定より求めた比表面積が0.5~10.0m/g、
(D)乾燥空気流通過でのTG分析による100~600℃での質量減少率Zと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(II)を満たすことを特徴とするリチウムイオン二次電池用負極材。
 3.5≦Z<BX+10 [ただし、B=900とする] 式(II)
(3)励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm-1付近に現れるピークの強度をId、1580cm-1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が0.5~1.5であることを特徴とする前記(1)又は(2)記載のリチウムイオン二次電池用負極材。
(4)平均粒子径(50%D)が5~50μmであることを特徴とする前記(1)~(3)いずれかに記載のリチウムイオン二次電池用負極材。
(5)真密度が1.80~2.20g/cmであることを特徴とする前記(1)~(4)いずれかに記載のリチウムイオン二次電池用負極材。
(6)前記(1)~(5)いずれかに記載のリチウムイオン二次電池用負極材を用いてなることを特徴とするリチウムイオン二次電池用負極。
(7)前記(6)に記載のリチウムイオン二次電池用負極を用いてなることを特徴とするリチウムイオン二次電池。
 本願の開示は、2010年2月25日に日本国において出願された特願2010-40228及び2010年3月1日に日本国において出願された特願2010-44622に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
 本発明よれば、従来のリチウムイオン二次電池と比較して、不可逆容量が小さく、入出力特性及び寿命特性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池用負極材、及び該負極材を用いてなるリチウムイオン二次電池用負極を提供することが可能となる。
 以下、本発明を詳細に説明する。まず、リチウムイオン二次電池用負極材(以下、単に「負極材」と呼ぶ場合がある。)について説明する。
<リチウムイオン二次電池用負極材>
 本発明のリチウムイオン二次電池用負極材は、第1の態様によると、核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、
(A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、
(B)前記炭素材料に対する前記炭素層の比率(質量比)が0.005~0.1、
(C)77Kでの窒素吸着測定より求めた比表面積が0.5~10.0m/g、
(D)273Kでの二酸化炭素吸着より求めた比表面積Yと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(I)を満たすことを特徴とする。
  0<Y<AX+2.5 [ただし、A=100とする] 式(I)
 本発明の負極材は、(A)XRD測定より求められる炭素002面の面間隔d002が3.40Å~3.70Åであればよいが、3.40Å~3.60Åであることが好ましく、3.40Å~3.50Åであることがより好ましい。面間隔d002が3.40Å以上であれば、入出力特性,寿命特性に優れる。また、3.70Å以下であれば、不可逆容量が低くなる。なお、炭素002面の面間隔d002は、X線(CuKα線)を試料に照射し、回折線をゴニオメーターにより測定して得た回折プロファイルより回折角2θ=24~26°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用いて算出することができる。
 炭素002面の面間隔d002は、例えば、負極材への熱処理温度を高くすることで値が小さくなる傾向があり、この性質を利用して面間隔d002を上記範囲内に設定することができる。
 本発明の負極材は、核となる炭素材料の表面に低結晶炭素層を有することを1つの特徴とするが、(B)前記炭素材料に対する前記炭素層の比率(質量比)は0.005~0.1であり、0.005~0.09であることが好ましく、0.005~0.08であることがより好ましい。前記炭素材料に対する前記炭素層の比率(質量比)は0.005以上であれば、入出力特性,初期効率,寿命特性に優れる。また、0.1以下であれば、入出力特性に優れる。
 前記核となる炭素材料としては特に制限はないが、例えば、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロレン、コールタール、タールピッチ等を焼成して得られた炭素材料が挙げられる。また、前記炭素層は、例えば、これらの炭素材料の表面を改質することによって形成することができる。改質方法に特に制限はないが、例えば熱処理により炭素質を残す樹脂を表面に被覆し、熱処理を行うことで表面の改質を行うことが出来る。
 また、本発明の負極材において、(C)77Kでの窒素吸着測定より求められる比表面積は、0.5m/g~10m/gであるが、0.5m/g~9.0m/gがより好ましく、0.5m/g~8.0m/gがさらに好ましい。当該比表面積が0.5m/g以上の場合、入出力特性に優れ、10m/g以下であれば寿命特性に優れる。なお、窒素吸着での比表面積は、77Kでの窒素吸着測定より得られた吸着等温線により求めることができる。
 77Kでの窒素吸着測定より求められる比表面積は、例えば、負極材の平均粒子径を大きくすること、負極材への熱処理温度を高くすること、負極材の表面を改質すること等で値が小さくなる傾向があり、この性質を利用して77Kでの窒素吸着測定より求められる比表面積を上記範囲内に設定することができる。
 本発明の負極材は、(D)273Kでの二酸化炭素吸着より求めた比表面積Yと、前記炭素材料に対する前記炭素層の比率(質量比)Xとの関係において、前記式(I)を満たすが、式(I)中のAの値はA=100であり、90が好ましく、80であることがより好ましい。
 前記式(I)を満たす負極材は、寿命特性に優れ、高入出力で高効率な負極材となる。
上記特徴を有するリチウムイオン二次電池用負極材は、比較的高い炭素層の比率を有していても、低い比表面積を有することとなり、低い不可逆容量と、長寿命特性、高入出力特性を両立した材料となる。
 前記式(I)を満たす場合であれば、273Kでの二酸化炭素吸着より求めた比表面積に制限はないが、寿命特性、初期効率、入出力特性の観点から、0.3m/g~12.5m/gであることが好ましく、0.3m/g~11.5m/gであることがより好ましく、0.3m/g~10.5m/gであることがさらに好ましい。
 なお、273Kでの二酸化炭素吸着より求めた比表面積は、273Kでの二酸化炭素吸着測定より得た吸着等温線からBET法を用いて求めることができる。
 273Kでの二酸化炭素吸着より求めた比表面積は、例えば、負極材の平均粒子径を大きくすること、負極材への熱処理温度を高くすること、負極材の表面を改質すること等で値が小さくなる傾向があり、この性質を利用して273Kでの二酸化炭素吸着より求めた比表面積を上記範囲内に設定することができる。
 また、本発明のリチウムイオン二次電池用負極材は、第2の態様によると、核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、
(A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、
(B)乾燥空気流通過でのTG分析による600℃での質量減少率が3.5~90%、
(C)77Kでの窒素吸着測定より求めた比表面積が0.5m/g~10.0m/g以下、
(D)乾燥空気流通過でのTG分析による100~600℃での質量減少率Zと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(II)を満たすことを特徴とする。
 3.5≦Z<BX+10 [ただし、B=900とする] 式(II)
 第2の態様における要件(A)及び(C)は、それぞれ、第1の態様における要件(A)、(C)と同一であるため説明を省略し、相違点である要件(B)及び(D)について説明する。
 本発明の第2の態様において、(B)乾燥空気通過でのTG分析による質量減少率は、3.5~90%であり、3.5~80%であることが好ましく、3.5~75%であることがより好ましく、3.5~70%であることがさらに好ましい。当該質量減少率が3.5%以上であれば、寿命特性に優れる。また90%以下であれば、入出力特性に優れる。
 また、前記質量減少率は、TG分析装置(例えば、SII technology TG/DTA6200)で測定することができる。例えば、乾燥空気300ml/分の流通下で、アルミナをリファレンスとして、昇温速度を5℃/分として測定を行い、100℃~600℃での質量減少率を測定することにより得ることが出来る。
 本発明の第2の態様において、(D)乾燥空気流通過でのTG分析による100~600℃での質量減少率Zと、前記炭素材料に対する前記炭素層の比率(質量比)Xとの関係において、前記式(II)を満たすが、式(II)中のBの値は900であり、800が好ましく、750がより好ましく、700であることが更に好ましい。
 前記式(II)を満たす負極材は、寿命特性に優れ、高入出力で高効率な負極材となる。
 また、本発明の負極材において、いずれの態様においても、励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm-1付近に現れるピークの強度をId、1580cm-1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が0.5~1.5であることが好ましい。R値が0.5以上であると寿命特性、入出力特性に優れる傾向があり、R値が1.5以下であると寿命特性、初期効率に優れる傾向がある。この点から、R値は0.5~1.3であることがより好ましく、0.5~1.2であることがさらに好ましい。なお、レーザーラマン分光測定は、日本分光株式会社製NRS-1000を用い、励起波長532nm、レーザー出力3.9mW、入射スリット150μmの設定で測定することができる。
 R値は、例えば、核材の結晶性を向上させることにより値が高くなる傾向があり、この性質を利用してR値を上記範囲に設定することができる。
 また、本発明の負極材の平均粒子径(50%D)は、いずれの態様においても、5~50μmであることが好ましい。平均粒子径が5μm以上の場合、比表面積を適正な範囲とすることができ、リチウムイオン二次電池の初回充放電効率が優れると共に、粒子同士の接触が良く入出力特性に優れる傾向がある。一方、平均粒子径が30μm以下の場合、電極面に凸凹が発生しにくく電池の短絡を抑制できると共に、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン二次電池の入出力特性が向上する傾向がある。この観点から平均粒子径は、5~40μmであることがより好ましく、5~30μmであることがさらに好ましい。なお、例えば、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定することができ、平均粒子径は50%Dとして算出される。
 また、本発明の負極材の真密度は、いずれの態様においても、1.80~2.20g/cmであることが好ましい。真密度が1.80g/cm以上であると電極密度を高くすることが出来るために、リチウムイオン二次電池の体積当りの充放電容量が向上し、また、初回充放電効率が向上する傾向がある。一方、真密度が2.20g/cm以下であると、電解液との反応性が抑制されるために、リチウムイオン二次電池の寿命特性が向上する傾向がある。この観点から真密度は、1.90~2.20g/cmであることがより好ましく、1.80~2.20g/cmであることがさらに好ましい。なお、真密度はブタノールを用いたピクノメーター法により求めることができる。
 真密度は、例えば、負極材への熱処理温度を高くすることで値が大きくなる傾向があり、この性質を利用して真密度を上記範囲内に設定することができる。
 本発明のリチウムイオン二次電池用負極材の作製方法に特に制限はないが、一例としては、核となる炭素材料の表面を改質することにより炭素層を形成し、本発明の負極材とすることができる。上記核となる炭素材料を得るための方法をしては、特に制限はないが、例えば、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロレン、コールタール、タールピッチ等を800℃以上の不活性雰囲気中でカ焼し、ついで、これをジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法により粉砕し、5~30μmに粒度を調整することで作製することができる。また、上記のカ焼する前に予め熱処理を施してもよい。熱処理を施す場合は、例えば、オートクレーブ等の機器により予め熱処理を施し、既知の方法により粗粉砕した後、上記と同様に800℃以上の不活性雰囲気中でカ焼し、粉砕して粒度を調整することで得ることができる。
 また、本発明のリチウムイオン二次電池用負極材は、例えば、熱処理により炭素質を残す有機化合物(炭素前駆体)を核となる炭素材料の表面に付着させた後、750℃~1000℃の不活性雰囲気中で焼成・炭素化することで前記炭素材料の表面が改質され、前記炭素層を形成することができる。核となる炭素材料の表面に有機化合物を付着させる方法としては、特に制限はないが、例えば、有機化合物を溶媒に溶解、又は分散させた混合溶液に核となる炭素粒子(粉末)を分散・混合した後、溶媒を除去する湿式方式や、炭素粒子と有機化合物を固体同士で混合し、その混合物に力学的エネルギーを加えることで付着させる乾式方式、CVD法などの気相方式等が挙げられるが、比表面積の制御の観点から、上記乾式方式によって付着させることが好ましい。
 また、上記熱処理により炭素質を残す有機化合物(炭素前駆体)としては特に制限はないが、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチ等が使用できる。また、熱可塑性の高分子化合物として、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性合成樹脂を用いることもできる。また、デンプンやセルロース等の天然物を用いることもできる。
<リチウムイオン二次電池用負極>
 本発明のリチウムイオン二次電池用負極は、既述の本発明のリチウムイオン二次電池用負極材を用いてなることを特徴とする。
 例えば、本発明のリチウムイオン二次電池用負極材及び有機結着材を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練し、負極材スラリーを調製し、これを集電体に塗布して負極層を形成する、または、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。
 上記有機系結着剤としては、特に限定されないが、例えば、スチレン-ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。この有機系結着剤の含有量は、本発明のリチウムイオン二次電池用負極材と有機系結着剤の合計100質量部に対して1~20質量部含有することが好ましい。
 上記負極材スラリーには、粘度を調整するための増粘剤を添加してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを使用することができる。
 また、上記負極材スラリーには、導電補助材を混合してもよい。導電補助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電補助剤の使用量は、本発明の負極材の1~15質量%程度とすればよい。
 さらに、上記集電体の材質および形状については、特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。
 上記負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、既述の本発明のリチウムイオン二次電池用負極を用いてなることを特徴とし、例えば、上記本発明のリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。
 上記正極は、上記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。
 上記正極層に用いる正極材料としては、特に制限はなく、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよく、特に限定されないが、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複酸化物(LiCoNiMn、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。
 上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 上記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。
 本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。
 本発明のリチウムイオン二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。
 以上で説明した本発明のリチウムイオン二次電池は、従来の炭素材料を負極に用いたリチウムイオン二次電池と比較して、不可逆容量が小さく、入出力特性及び寿命特性に優れる。
 以下、実施例を用いて、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されることはない。
(実施例1~10)
 石炭系コールタールを、オートクレーブを用いて400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でカ焼を行い、コークス塊を得た。このコークス塊を分級機付きの衝撃粉砕機を用いて平均粒径15μmに粉砕後、300メッシュの篩にて粗粉を除去して炭素粒子として実施例に供した。
 上記で作製した炭素粒子とポリビニルアルコール(重合度1700、完全けん化型)を、炭素粒子3000gに対して、ポリビニルアルコール107g(実施例1)、428g(実施例2)、1070g(実施例3)、1712g(実施例4)、1926g(実施例5)の割合で混合した。また炭素粒子とコールタールピッチを、炭素粒子3000gに対して、コールタールピッチ36g(実施例6)、144g(実施例7)、360g(実施例8)、576g(実施例9)、648g(実施例10)の割合で混合した。
 上記混合物を、シリンダー状のケースを持ち、その内部に回転翼が取り付けられ、シリンダー内壁と回転翼の間で材料を擦り合わせることにより材料の複合化を行える装置中に密閉した。その装置を24kWの負荷で10分間装置を運転することにより樹脂炭素粉複合体を作製した。
 次いで、不活性雰囲気下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持して炭素層被覆炭素粒子とした。得られた炭素層被覆炭素粒子をカッターミルで解砕、300メッシュの標準篩を通し、負極材試料とした。使用したポリビニルアルコールを単独で200℃、5時間加熱処理し、次いで窒素流通下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持した場合の炭化率は14%であった。コールタールピッチを同様の方法で評価した結果、炭化率は60%であった。
 この値及び炭素被覆量より各実施例での被覆炭素割合(炭素材料に対する炭素層の比率(質量比))を計算したところ、それぞれ0.005(実施例1,6)、0.02(実施例2,7)、0.05(実施例3,8)、0.07(実施例4,9)、0.09(実施例5,10)であった。上記炭素粒子及び各実施例の負極材試料の物性値・電気的特性を下記の要領で測定した。測定結果を表1に示す。
(実施例11~14)
 石炭系コールタールを、オートクレーブを用いて400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でカ焼を行い、コークス塊を得た。このコークス塊を分級機付きの気流式粉砕機を用いて平均粒子径3μm(実施例11用)、6μm(実施例12用)に、衝撃式粉砕機を用いて40μm(実施例13用)、60μm(実施例14用)に粉砕後、300メッシュの篩にて粗粉を除去して炭素粒子として実施例に供した。
 上記で作製した炭素粒子とポリビニルアルコール(重合度1700、完全けん化型)を、ポリビニルアルコール1070gに対して、3μm(実施例11用)、6μm(実施例12用)、40μm(実施例13用)、60μm(実施例14用)の炭素粒子を3000gの割合で混合した。さらにその後、前記実施例1~10と同様に処理して負極材試料を得た。上記炭素粒子及び各実施例の負極材試料の物性値・電気的特性を下記の要領で測定した。測定結果を表1に示す。
 TG質量減少率:SII technology TG/DTA6200を用い、乾燥空気300ml/分流通下、アルミナリファレンス、昇温速度を5℃/分として測定を行い、100℃~600℃での質量減少率から求めた。
 ラマンスペクトルピーク強度比(R値):日本分光株式会社製NRS-1000を用い、レーザー出力10mW、分光器Fシングル、入射スリット幅800μm、積算回数2回、露光時間120秒にて測定を行った。
 平均粒子径:黒鉛粒子を界面活性剤と共に精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置((株)島津製作所製SALD-3000J)の試料水槽に入れ、超音波をかけながらポンプで循環させ、レーザー回折式で測定した。得られた粒度分布の累積50%粒径(50%D)を平均粒子径とした。
 真比重(真密度):比重瓶を用いたブタノール置換法(JIS R 7212)により測定した。
 窒素比表面積:得られた黒鉛粒子を200℃で3時間真空乾燥した後、Micromeritics社製ASAP2010を用い、液体窒素温度(77K)での窒素吸着を多点法で測定、BET法に従って算出した。
 CO比表面積:得られた黒鉛粒子を250℃で3時間真空乾燥した後、Quantachrome社製AUTOSORB-1を用い、273Kで二酸化炭素吸着を多点法で測定しBET法に従って算出した。
<初回充放電容量,効率の測定>
 各実施例の負極材試料92質量%に対し、N-メチル-2ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で8質量%となるよう加えて混練してペースト状の負極材スラリーを作製した。このスラリーを厚さ40μmの電解銅箔に厚さ200μmのマスクを用い直径9.5mmとなるよう塗布し、さらに、105℃で乾燥してN-メチル-2ピロリドンを除去し、試料電極(負極)を作製した。
 次いで、上記試料電極、セパレータ、対極(正極)の順に積層した後、LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で3:7)の混合溶媒にLiPFを1.0モル/リットルの濃度になるように溶解した電解液溶液を注入し、コイン電池を作製した。対極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。
 上記で作製したコイン電池を0.2mAの定電流で0V(Vvs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.02mAになるまで充電した。次に30分の休止時間後に0.2mAの定電流で1.5V(Vvs.Li/Li)まで放電する1サイクル試験を行い、放電容量と、初回充放電効率を測定した。初回充放電効率は、(放電容量)/(充電容量)×100として算出した。結果を表1に示す。
<寿命特性の評価>
 初回充放電容量,効率測定の項と同様の方法で負極材スラリーを作製した。このスラリーを塗工量が4.5mg/cmとなるようにクリアランスを調整したコンマコーターで、厚さ40μmの電解銅箔に塗工した。この電極を、直径14mmの円盤状に打ち抜き、測定電極を作製した。
 上記測定電極、セパレータ、対極(正極)の順に積層した後、LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で3:7)の混合溶媒にLiPFを1.0モル/リットルの濃度になるように溶解した電解液溶液を注入し、コイン電池を作製した。対極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。
 上記で作製したコイン電池を用い、下記(1)~(5)の手順で寿命特性の評価を行った。
(1)0.20mAの定電流で0V(Vvs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.020mAになるまで充電した。
(2)30分の休止時間後に0.24mAの定電流で1.5V(Vvs.Li/Li)まで放電する1サイクル試験を行い、放電容量を測定した。
(3)2.0mAの定電流で0V(Vvs.Li/Li)まで充電し、0Vの定電圧で電流が0.20mAになるまで充電した。
(4)30分の休止時間後に2.0mAの定電流で1.5V(Vvs.Li/Li)まで放電した。
(5)上記(3)及び(4)の充放電サイクル試験を50サイクル行った。
 このサイクルを50回繰り返したときの1サイクル目からの放電容量維持率(= 50サイクル目放電容量/1サイクル目放電容量×100)を測定し、寿命特性評価を行った。この放電容量維持率が高いほど寿命特性に優れた材料である事を示す。結果を表1に示す。
<入力特性の評価>
 寿命特性と同等の方法でコイン電池を作製し、下記手順で入力特性の評価を行った。
0.2mA/cmの定電流で0V(Vvs.Li/Li)まで充電し、30分の休止時間後に、0.2mA/cmの定電流で1.5V(Vvs.Li/Li)まで放電するサイクルを2回繰り返し、低電流での電極体積当りの充放電容量を測定した。
 30分の休止時間後に、8mA/cmの定電流で0V(Vvs.Li/Li)まで充電し、大電流での電極体積当りの充電容量を測定した。
 なお、電極体積当りの充放電容量(mAh/cm)は、負極材質量当りの充放電容量(mAh/g)の測定値に電極密度(g/cm)を乗じて算出した。入力特性は、上記大電流(8mA/cm)での電極体積当りの充放電容量を上記低電流(0.2mA/cm)での電極体積当りの充放電容量で除した値により評価した。この値が大きいほど入出力特性に優れると判断することができる。結果を表1に示す。
(比較例1、2)
 実施例1、12で用いた表面改質を行っていない(炭素層被覆していない)平均子粒径6μm(比較例1)、15μm(比較例2)の炭素粒子を用いて実施例と同様の方法でリチウムイオン二次電池を作製し、同様の評価を行った。結果を表1に示す。
(比較例3)
 実施例1~10で用いた炭素粒子とポリビニルアルコール(重合度1700、完全けん化型)を、炭素粒子3000gに対して、ポリビニルアルコール2359gの割合で混合した。上記混合物を、シリンダー状のケースを持ち、その内部に回転翼が取り付けられ、シリンダー内壁と回転翼の間で材料を擦り合わせることにより材料の複合化を行える装置中に密閉した。その装置を25kWの負荷で10分間装置を運転することにより樹脂炭素粉複合体を作製した。
 次いで不活性雰囲気下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持して炭素層被覆炭素粒子とした。得られた炭素層被覆炭素粒子をカッターミルで解砕、300メッシュの標準篩を通し、負極材試料とした。ポリビニルアルコールを単独で200℃、5時間加熱処理し、次いで窒素流通下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持した場合の炭化率は14%であった。この値及び炭素被覆量より被覆炭素割合を計算したところ、0.11であった。上記炭素粒子の負極材試料を用いて実施例と同様の方法でリチウムイオン二次電池を作製し、同様の評価を行った。測定結果を表1に示す。
(比較例4~6)
 界面活性剤としてドデシルベンゼンスルホン酸ナトリウム1gを溶解したイオン交換水に、ポリビニルアルコール(重合度1700、完全けん化型)を107g(比較例4)、1070g(比較例5)、1926g(比較例6)をそれぞれ溶解し、4種の濃度の混合溶液を調製した。得られた各混合溶液と実施例1~10で作製した炭素粒子3000gを加熱機構を有する双腕型混錬機に投入し、室温(25℃)で1時間混合し、次いで120℃に温度を上げ、水を蒸発、除去し、ポリビニルアルコール被覆炭素粒子を得た。得られたポリビニルアルコール被覆炭素粒子を空気中、200℃で5時間加熱処理を行い、ポリビニルアルコールを不融化し、次いで窒素流通下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持して炭素層被覆炭素粒子とした。得られた炭素被覆炭素粒子をカッターミルで解砕、300メッシュの標準篩を通し、負極材試料とした。
(比較例7)
 キノリンにコールタールピッチを360g溶解し、混合溶液を調製した。得られた混合溶液と実施例1~10で作製した平均子粒径15μm炭素粒子3000gを加熱機構を有する双腕型混錬機に投入し、室温(25℃)で1時間混合し、次いで270℃に温度を上げ、キノリンを蒸発、除去し、コールタールピッチ被覆炭素粒子を得た。得られたコールタールピッチ被覆炭素粒子を窒素流通下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持して炭素層被覆炭素粒子とした。得られた炭素被覆炭素粒子をカッターミルで解砕、300メッシュの標準篩を通し、負極材試料とした。上記炭素粒子及び各比較例の負極材試料を用いて実施例と同様の方法でリチウムイオン二次電池を作製し、同様の評価を行った。結果を表1に示す。
(比較例8)
 ストレートノボラック樹脂に、硬化剤としてヘキサミンを加え、180℃に加熱したホットプレート上で混合を行いながら硬化処理を行った。この硬化樹脂を200℃のオーブン中にて5時間加熱処理することにより、完全に硬化処理を終わらせた。続いて、この樹脂をハンマーで粗砕した後、分級機付きの衝撃粉砕機を用いて粉砕した。この粉砕樹脂を、窒素雰囲気下、昇温速度20℃/時で1000℃まで昇温、続いて1000℃で1時間保持することによって炭素粉末を得た。
 この炭素粉末に対し、実施例3における炭素粒子と同様の方法で炭素層被覆処理を行い、300メッシュの篩を用いて粗粉を除去して負極材試料を得た。さらに、この負極材試料を用いて、実施例と同様の方法でリチウムイオン二次電池を作製し、同様の評価を行った。結果を表1に示す。
(比較例9)
 平均粒径15μmの球状天然黒鉛を300M(メッシュ)で篩分けて炭素粉末を得た。
 この炭素粉末に対し、実施例3における炭素粒子と同様の方法で炭素層被覆処理を行い、300メッシュの篩を用いて粗粉を除去して負極材試料を得た。さらに、この負極材試料を用いて、実施例と同様の方法でリチウムイオン二次電池を作製し、同様の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~14のリチウムイオン二次電池は、高い充放電容量、寿命特性を維持したまま入力特性に優れる。
 以上より、本発明のリチウムイオン二次電池は、充放電容量、寿命特性および入出力特性、並びにこれらのバランスに優れたリチウムイオン二次電池を得るためのリチウムイオン二次電池用負極材、及び該負極材を用いてなるリチウムイオン二次電池用負極を提供することができる。

Claims (7)

  1.  核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、
    (A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、
    (B)前記炭素材料に対する前記炭素層の比率(質量比)が0.005~0.1、
    (C)77Kでの窒素吸着測定より求めた比表面積が0.5~10.0m/g、
    (D)273Kでの二酸化炭素吸着より求めた比表面積Yと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(I)を満たすことを特徴とするリチウムイオン二次電池用負極材。
     0<Y<AX+2.5 [ただし、A=100とする]  式(I)
  2.  核となる炭素材料の表面に炭素層を有するリチウムイオン二次電池用負極材であって、
    (A)XRD測定より求められる炭素002面の面間隔が3.40~3.70Å、
    (B)乾燥空気流通過でのTG分析による100~600℃での質量減少率が3.5~90%、
    (C)77Kでの窒素吸着測定より求めた比表面積が0.5~10.0m/g、
    (D)乾燥空気流通過でのTG分析による100~600℃での質量減少率Zと、前記炭素材料に対する前記炭素層の比率(質量比)Xが下記式(II)を満たすことを特徴とするリチウムイオン二次電池用負極材。
     3.5≦Z<BX+10 [ただし、B=900とする] 式(II)
  3.  励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm-1付近に現れるピークの強度をId、1580cm-1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が0.5~1.5であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極材。
  4.  平均粒子径(50%D)が5~50μmであることを特徴とする請求項1~3いずれか1項に記載のリチウムイオン二次電池用負極材。
  5.  真密度が1.80~2.20g/cmであることを特徴とする請求項1~4いずれか1項に記載のリチウムイオン二次電池用負極材。
  6.  請求項1~5いずれか1項に記載のリチウムイオン二次電池用負極材を用いてなることを特徴とするリチウムイオン二次電池用負極。
  7.  請求項6に記載のリチウムイオン二次電池用負極を用いてなることを特徴とするリチウムイオン二次電池。
PCT/JP2011/054020 2010-02-25 2011-02-23 リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 WO2011105444A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/580,675 US20120328954A1 (en) 2010-02-25 2011-02-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
CN201180011014.8A CN102770994B (zh) 2010-02-25 2011-02-23 锂离子二次电池用负极材料、使用该负极材料的锂离子二次电池用负极和锂离子二次电池
JP2012501829A JP5811999B2 (ja) 2010-02-25 2011-02-23 リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
CA2790582A CA2790582C (en) 2010-02-25 2011-02-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
KR1020127021629A KR101809766B1 (ko) 2010-02-25 2011-02-23 리튬 이온 2차 전지용 음극재, 그 음극재를 이용한 리튬 이온 2차 전지용 음극 및 리튬 이온 2차 전지
EP11747404.9A EP2541657A4 (en) 2010-02-25 2011-02-23 NEGATIVE ELECTRODE MATERIAL FOR A LITHIUMION SECONDARY BATTERY, NEGATIVE ELECTRODE WITH THE NEGATIVE ELECTRODE MATERIAL FOR A LITHIUMION SECONDARY BATTERY, AND A LITHIUMIONE SECONDARY BATTERY
EP20202564.9A EP3787077A1 (en) 2010-02-25 2011-02-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010040228 2010-02-25
JP2010-040228 2010-02-25
JP2010044622 2010-03-01
JP2010-044622 2010-03-01

Publications (1)

Publication Number Publication Date
WO2011105444A1 true WO2011105444A1 (ja) 2011-09-01

Family

ID=44506846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054020 WO2011105444A1 (ja) 2010-02-25 2011-02-23 リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (7)

Country Link
US (1) US20120328954A1 (ja)
EP (2) EP2541657A4 (ja)
JP (1) JP5811999B2 (ja)
KR (1) KR101809766B1 (ja)
CN (1) CN102770994B (ja)
CA (1) CA2790582C (ja)
WO (1) WO2011105444A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175919A (ja) * 2010-02-25 2011-09-08 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2016104024A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 リチウムイオン電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190695B2 (en) * 2010-08-05 2015-11-17 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
KR102008671B1 (ko) 2010-08-05 2019-08-08 후지필름 와코 준야꾸 가부시키가이샤 비수계 전해액 및 그를 사용한 비수계 전해액 전지
KR102250267B1 (ko) * 2013-06-12 2021-05-10 쇼와덴코머티리얼즈가부시끼가이샤 알루미늄 규산염 복합체, 도전 재료, 리튬 이온 2차 전지용 도전 재료, 리튬 이온 2차 전지 음극 형성용 조성물, 리튬 이온 2차 전지 양극 형성용 조성물, 리튬 이온 2차 전지용 음극, 리튬 이온 2차 전지용 양극 및 리튬 이온 2차 전지
TWI604655B (zh) 2014-08-08 2017-11-01 Kureha Corp Non-aqueous electrolyte secondary battery negative carbonaceous material
TWI599092B (zh) 2014-08-08 2017-09-11 Kureha Corp Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material
TWI565654B (zh) 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH05307956A (ja) 1992-04-28 1993-11-19 Sanyo Electric Co Ltd 非水系二次電池
JPH09213328A (ja) * 1996-02-02 1997-08-15 Mitsubishi Chem Corp 非水溶媒二次電池電極材料及びその製造方法
WO2008093724A1 (ja) * 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. 炭素材料およびその製造方法
JP2008300274A (ja) * 2007-06-01 2008-12-11 Panasonic Corp 複合負極活物質および非水電解質二次電池
JP2008305722A (ja) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
WO2009022664A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途
JP2009059676A (ja) * 2007-08-30 2009-03-19 Nippon Carbon Co Ltd リチウムイオン二次電池用負極活物質及び負極
JP2010009948A (ja) * 2008-06-27 2010-01-14 Gs Yuasa Corporation 非水電解質二次電池
JP2010040228A (ja) 2008-08-01 2010-02-18 Jsr Corp エネルギーデバイス電極用バインダー組成物、エネルギーデバイス電極用スラリー並びにエネルギーデバイス電極およびその製造方法
JP2010044622A (ja) 2008-08-13 2010-02-25 Hitachi Information & Communication Engineering Ltd 情報処理装置試験プログラム及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861804A4 (en) * 1995-11-14 2000-07-19 Osaka Gas Co Ltd CATHODE MATERIAL FOR LITHIUM ACCUMULATOR, MANUFACTURING METHOD THEREOF, AND ACCUMULATOR USING THE SAME
JP4187347B2 (ja) * 1998-04-02 2008-11-26 三星エスディアイ株式会社 リチウムイオン電池用負極活物質の製造方法
JP4527931B2 (ja) * 2002-08-16 2010-08-18 旭化成株式会社 非水系リチウム型蓄電素子
JP2005093778A (ja) * 2003-09-18 2005-04-07 Osaka Gas Co Ltd 電気二重層キャパシタ
JP5439701B2 (ja) * 2005-04-21 2014-03-12 日立化成株式会社 リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
EP2081243B1 (en) * 2006-11-10 2012-08-08 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and method for producing the same
JP5261989B2 (ja) * 2007-06-01 2013-08-14 住友大阪セメント株式会社 電磁波遮蔽膜付き透明基材及びその製造方法
JP2010067437A (ja) * 2008-09-10 2010-03-25 Sumitomo Chemical Co Ltd 電極活物質、電極および非水電解質二次電池
JP5654742B2 (ja) * 2009-11-09 2015-01-14 旭化成株式会社 非水系リチウム型蓄電素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH05307956A (ja) 1992-04-28 1993-11-19 Sanyo Electric Co Ltd 非水系二次電池
JPH09213328A (ja) * 1996-02-02 1997-08-15 Mitsubishi Chem Corp 非水溶媒二次電池電極材料及びその製造方法
WO2008093724A1 (ja) * 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. 炭素材料およびその製造方法
JP2008300274A (ja) * 2007-06-01 2008-12-11 Panasonic Corp 複合負極活物質および非水電解質二次電池
JP2008305722A (ja) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
WO2009022664A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途
JP2009059676A (ja) * 2007-08-30 2009-03-19 Nippon Carbon Co Ltd リチウムイオン二次電池用負極活物質及び負極
JP2010009948A (ja) * 2008-06-27 2010-01-14 Gs Yuasa Corporation 非水電解質二次電池
JP2010040228A (ja) 2008-08-01 2010-02-18 Jsr Corp エネルギーデバイス電極用バインダー組成物、エネルギーデバイス電極用スラリー並びにエネルギーデバイス電極およびその製造方法
JP2010044622A (ja) 2008-08-13 2010-02-25 Hitachi Information & Communication Engineering Ltd 情報処理装置試験プログラム及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175919A (ja) * 2010-02-25 2011-09-08 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2016104024A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 リチウムイオン電池
JPWO2016104024A1 (ja) * 2014-12-26 2017-09-14 日立化成株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
CN102770994A (zh) 2012-11-07
KR20130008532A (ko) 2013-01-22
KR101809766B1 (ko) 2017-12-15
CN102770994B (zh) 2016-08-17
EP2541657A1 (en) 2013-01-02
CA2790582C (en) 2018-10-23
US20120328954A1 (en) 2012-12-27
JPWO2011105444A1 (ja) 2013-06-20
CA2790582A1 (en) 2011-09-01
EP3787077A1 (en) 2021-03-03
JP5811999B2 (ja) 2015-11-11
EP2541657A4 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5439701B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5811999B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6938914B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US20210135220A1 (en) Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
EP2600449A1 (en) Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JP7156468B2 (ja) リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材
JP5590159B2 (ja) リチウムイオン二次電池用負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2020141573A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2017191820A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5707707B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5636689B2 (ja) 黒鉛粒子、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2008130890A (ja) ハイブリッドキャパシタ用炭素材料、該炭素材料を用いたハイブリッドキャパシタ用電極及びハイブリッドキャパシタ
JP2009187924A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池
TWI752112B (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池
JP2023073103A (ja) リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7047892B2 (ja) 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
US20220085370A1 (en) Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2023047223A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022215126A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019087460A (ja) リチウムイオン二次電池用負極材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011014.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501829

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127021629

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2790582

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13580675

Country of ref document: US

Ref document number: 2011747404

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE