WO2011096282A1 - プロピレン系樹脂組成物及び成形体 - Google Patents

プロピレン系樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2011096282A1
WO2011096282A1 PCT/JP2011/051024 JP2011051024W WO2011096282A1 WO 2011096282 A1 WO2011096282 A1 WO 2011096282A1 JP 2011051024 W JP2011051024 W JP 2011051024W WO 2011096282 A1 WO2011096282 A1 WO 2011096282A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
mass
parts
resin composition
ethylene
Prior art date
Application number
PCT/JP2011/051024
Other languages
English (en)
French (fr)
Inventor
英裕 興梠
知里 中薗
Original Assignee
旭有機材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材工業株式会社 filed Critical 旭有機材工業株式会社
Priority to JP2011552727A priority Critical patent/JPWO2011096282A1/ja
Priority to US13/577,846 priority patent/US8778471B2/en
Priority to EP11739631.7A priority patent/EP2535374A4/en
Priority to CN201180008659.6A priority patent/CN102753616A/zh
Publication of WO2011096282A1 publication Critical patent/WO2011096282A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/127Rigid pipes of plastics with or without reinforcement the walls consisting of a single layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]

Definitions

  • the present invention relates to a propylene-based resin composition suitably used for the production of various molded articles, and a molded article molded using the same, and more specifically, transparency, heat resistance, impact resistance, high temperature creep characteristics, etc.
  • the present invention relates to a propylene-based resin composition having excellent properties and a molded article molded using the same.
  • propylene-based resin compositions have excellent properties such as rigidity, heat resistance, and chemical resistance
  • propylene-based resin piping members molded using them have various factory, medical field, construction field, etc.
  • Widely used in Propylene-based resin pipes in particular, have chemical resistance to acids and alkalis in a high temperature range (60 ° C. to 95 ° C.) and are inexpensive, so high temperature chemical solutions are allowed to flow in the industrial field.
  • Suitable for high temperature piping members Such high temperature piping members tend to be converted from conventional metal pipes to resin pipes, and since propylene-based resins are also candidates for them, their widespread use in the future is highly expected.
  • the transparency of a propylene-based resin is pursued, the strength of physical properties necessary as a piping member such as impact strength and tensile modulus decreases, and therefore, the propylene-based resin whose transparency is determined within a range having physical properties strength as a piping member
  • the transparency has only transparency (a haze value (haze) of about 78%) enough to determine whether or not the fluid is flowing in the piping and is transparent enough to confirm the state of the fluid
  • a method of improving transparency when a piping member is molded from a propylene-based resin composition for example, a method of adding a transparentizing core material to a polypropylene resin is known (see Patent Document 1).
  • the pipe joint for eating and drinking is used for piping of food and drink and is provided with a female body capable of inserting a male body into the inner surface, and has a transparent portion in which at least the tip side of the inserted male body can be visually confirmed. It consists of the material which added the clearing core material to resin.
  • the transparency of the pipe joint formed of this material can be improved by adding the transparentizing core material to the polypropylene resin which is inherently white or milky white.
  • a polypropylene-based sheet for press-through pack packaging used for packaging of pharmaceuticals such as tablets and capsules.
  • PTP packaging press-through pack packaging
  • This polypropylene sheet contains 57 to 84% by weight of a polypropylene homopolymer having a crystal nucleating agent content of 0.002 to 0.3% by weight, and an ethylene-propylene random copolymer having an ethylene content of 0.1 to 5.0% by weight.
  • a hydrogenated styrene-butadiene copolymer comprising 10 to 25% by weight of a combination, 1 to 8% by weight of a petroleum resin and 5 to 10% by weight of a thermoplastic elastomer, and having a styrene content of 11 to 35% by weight as a thermoplastic elastomer
  • a hydrogenated styrene-isoprene copolymer having a styrene content of 11 to 35% by weight is added.
  • This polypropylene-based sheet can provide a sheet excellent in rigidity, moisture resistance, transparency, moldability, and impact resistance.
  • the conventional resin composition as described above contains a thermoplastic elastomer in order to improve impact resistance, the reduction in impact resistance due to the compounding of the crystal nucleating agent still occurs, so In particular, the impact resistance is insufficient for use as a piping member.
  • the blending amount of the thermoplastic elastomer is increased to suppress a decrease in impact resistance, there is a problem that the transparency is impaired.
  • melt flow rate of polypropylene homopolymer and ethylene-propylene random copolymerization before kneading is usually in the range of 1 to 10 g / 10 min, especially for pipes In extrusion molding, it is conceivable that the melt flow rate is too large. Therefore, the drawdown may not be large during pipe forming, or even if the pipe can be formed, the life of the pipe may be short due to insufficient creep characteristics, and sufficient impact strength as a piping member may not be obtained and breakage may easily occur. Problems may occur.
  • An object of the present invention is to use propylene suitably used for producing a molded body, for example, a pipe produced by an extrusion method, and a pipe member such as a joint, a flange, a valve, and a casing of an actuator produced by an injection molding method. It is providing the type
  • the present inventors have found that a resin composition of a compounding system essentially comprising a specific propylene-based resin, a specific elastomer and a transparent nucleating agent.
  • the present invention has been accomplished by finding that the above object is achieved.
  • Melt flow rate after kneading, containing 1 to 10 parts by mass of an elastomer (B) having an average particle diameter of 10 to 800 nm and a crystal nucleating agent (C) as essential components , MFR) is from 0.01 to 1.00 g / 10 min as a first feature
  • a second characteristic is that the ethylene-propylene random copolymer (A) is composed of 25 to 75 parts by mass of a propylene homopolymer and 75 to 25 parts by mass of an ethylene-propylene random copolymer.
  • the third feature is that the crystal nucleating agent (C) is a saccharide-based nucleating agent and / or an organic phosphoric acid-based nucleating agent,
  • a fourth characteristic is that, in the creep characteristics under a tensile load of 3.5 MPa in an atmosphere of 95 ° C., the time to rupture is 1000 hours or more,
  • the fifth feature is that it is used as a molding material for piping members.
  • the present invention is sixthly characterized in that a molded article is molded using the propylene-based resin composition of the present invention
  • a seventh feature is that the molded body is a pipe, a multilayer pipe, a plate, a tank, a duct, a joint, a flange, a valve, a casing of a valve or an actuator. Furthermore, this invention makes it 8th characteristics that the piping member was shape
  • the whole of the piping member may be a molded body of the propylene-based resin composition of the present invention, and a part of the pipe member may be a molded body of the propylene-based resin composition of the present invention.
  • a molded article having the following excellent properties for example, a piping member can be produced.
  • a transparent pipe which is excellent in transparency and can visually check the contamination of the fluid in the pipe.
  • a crystal nucleating agent and an elastomer having an average particle diameter of 10 nm to 800 nm in combination it has transparency and heat resistance and impact resistance equivalent to conventional propylene-based piping members The transparent piping which it has can be obtained.
  • a piping member which is excellent in high temperature creep characteristics and which can be used for a long time by flowing a high temperature fluid of 95 ° C.
  • the propylene-based resin composition of the present invention contains an ethylene-propylene random copolymer (A) as an essential component.
  • the ethylene-propylene random copolymer needs to have an ethylene content of 0.5 to 3.0 parts by mass. Since ethylene can be contained to obtain good impact resistance and transparency, the ethylene content is preferably 0.5 parts by mass or more, and the heat resistance and rigidity of the piping member are maintained to maintain high temperature fluid.
  • the ethylene-propylene random copolymer have a melt flow rate (MFR) within a predetermined range in a propylene-based resin composition containing it.
  • MFR of the propylene-based resin composition is preferably in the range of 0.01 to 0.9 g / 10 min, and is in the range of 0.01 to 0.80 g / 10 min before kneading the composition. Is more desirable.
  • MFR is preferably 0.01 g / 10 min or more in order to obtain good productivity of a propylene-based resin composition, and 1.00 g / m in order to obtain good high temperature creep characteristics by suppressing drawdown in pipe molding. 10 minutes or less is good. Further, since the MFR of the propylene-based resin composition becomes larger than that before kneading by kneading, the MFR of the propylene-based resin composition after kneading is to be within the range of 0.01 to 1.00 g / 10 min. Is desirable.
  • the MFR is less than 0.01 g / 10 min, the productivity of the propylene-based resin composition is reduced, and if it exceeds 1.00 g / 10 min, the drawdown in pipe molding can not be suppressed. is there. Furthermore, this MFR is preferably 0.80 g / 10 min or less, since particularly good moldability can be achieved.
  • the MFR of a propylene-based resin composition can be measured using techniques and equipment well known in the art. Ethylene-propylene random copolymers can be made using any of the techniques and equipment known in the art.
  • the ethylene-propylene random copolymer may be polymerized and produced by any of batch, semi-continuous and continuous methods by a known polymerization method using a polymerization apparatus. Of course, it may be produced by multistage polymerization in which one or more polymerization apparatuses having different polymerization conditions are connected in series.
  • ethylene content is 0.5 to 3.0 parts by mass when the ethylene-propylene random copolymer is 100 parts by mass. It does not.
  • the ethylene-propylene random copolymer may be used without mixing other resins after its production, otherwise propylene homopolymer and ethylene-propylene random copolymer separately produced may be used You may use what mixed and manufactured using various mixing apparatuses.
  • a propylene homopolymer and an ethylene-propylene random copolymer are mixed and formed, when forming a piping member, each forming method is adjusted by adjusting the compounding ratio according to the forming method of extrusion molding of a pipe or injection molding.
  • the ethylene-propylene random copolymer may be produced by blending 25 to 75 parts by mass of a propylene homopolymer and 75 to 25 parts by mass of an ethylene-propylene random copolymer.
  • 25 parts by mass or more of propylene homopolymer and 75 parts by mass or less of ethylene-propylene random copolymer are preferable for maintaining the heat resistance and rigidity of the piping member and using them as a high temperature fluid, and good impact resistance and
  • 75 parts by mass or less of a propylene homopolymer and 25 parts by mass or more of an ethylene-propylene random copolymer are preferable.
  • the ethylene content of the ethylene-propylene random copolymer to be mixed is preferably 2.5 to 4.0%, and more preferably 2.8 to 3.5%.
  • the ethylene content may be 0.5 to 3.0 parts by mass when the ethylene-propylene random copolymer is 100 parts by mass.
  • An ethylene content in this range is suitable because it is highly versatile as an ethylene-propylene random copolymer, relatively easy to produce a resin, and easily obtained as a commercial product.
  • the elastomer (B) which is another essential component, is blended particularly for the purpose of improving impact resistance.
  • the average particle size of the elastomer needs to be 10 nm to 800 nm. This is because the elastomer tends to deteriorate the transparency of the resin while improving the impact resistance, so the average particle diameter of the elastomer is made finer to suppress the decrease in the transparency. Furthermore, the average particle size of the elastomer is fine, thereby exhibiting a synergetic effect with the other essential component, the transparent nucleating agent (C), to improve the impact resistance while maintaining excellent transparency.
  • the average particle diameter is preferably 800 nm or less with respect to impact resistance, and is preferably 600 nm or less because the dispersibility is improved to stabilize the physical properties.
  • the average particle diameter is preferably 10 nm or more from the viewpoint of good productivity of the elastomer, and is preferably 100 nm or more from the viewpoint of easily maintaining the stability of the produced particle diameter.
  • the blending amount of these elastomers is usually 1 to 10 parts by mass. 1 part by mass or more is good to improve the impact resistance of the polypropylene resin, and 10 parts by mass or less is good to use the high temperature fluid while maintaining the heat resistance and rigidity of the piping member without reducing the transparency .
  • various elastomers can be blended into the propylene-based resin composition.
  • Suitable elastomers may include rubbery polymers, olefinic elastomers, styrene elastomers and the like. Specifically, butadiene rubber, isoprene rubber, butyl rubber, styrene-butadiene copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene-styrene block Diene rubbers such as copolymer (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), butadiene-isoprene copolymer, ethylene-propylene rubber, ethylene-propylene copolymer (EPM), ethylene-propylene diene co Copolymer of ethylene and ⁇ -olefin such as
  • crystal nucleating agent As yet another essential component.
  • crystal nucleating agents include organic nucleating agents and inorganic nucleating agents, inorganic nucleating agents can not be used in the practice of the present invention because they inhibit transparency. That is, the crystal nucleating agent used in the present invention is an organic nucleating agent.
  • the nucleating agent is formulated particularly for the purpose of improving impact resistance, rigidity and transparency.
  • the compounding amount of the crystal nucleating agent is not particularly limited, it may be an amount effective for improving impact resistance, imparting of rigidity and improvement of transparency, and in general, if a small amount is compounded with respect to the ethylene-propylene random copolymer good. More specifically, the blending amount of the crystal nucleating agent is preferably 0.005 to 0.5 parts by mass in order to obtain a good balance of transparency and physical properties. In order to obtain good transparency of the propylene-based resin composition by the effect of the crystal nucleating agent, 0.005 parts by mass or more is preferable, and when the compounding amount exceeds 0.5 parts by mass, the effect of improving transparency becomes flat.
  • the organic nucleating agent examples include saccharides, aliphatic alcohols, carboxylic acid metal salts, carboxylic acid esters, metal salts of aromatic carboxylic acids, organic phosphoric acids, rosin acids and the like.
  • saccharide-based nucleating agents and / or organic phosphoric acid-based nucleating agents are generally available among nucleating agents, and particularly, saccharide-based nucleating agents are transparent to propylene-based resin compositions. It is highly effective in improving the properties, and organic phosphoric acids are more desirable because they are highly effective in improving the impact resistance.
  • nucleating agents may be used independently and it is also possible to use 2 or more types together.
  • saccharide-based nucleating agents include sorbitol-based, nonitol-based, xylitol-based, etc.
  • Organic phosphoric acid type nucleating agents include phosphoric acid ester type compounds, and specifically, bis (4-t-butylphenyl) phosphoric acid sodium salt, bis (4-t-butylphenyl) phosphoric acid lithium salt Bis (4-t-butylphenyl) aluminum phosphate, 2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphoric acid sodium salt, 2,2′-methylene-bis (4 Lithium, 6-di-t-butylphenyl) phosphate lithium salt, 2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate aluminum salt, 2,2′-methylidene-bis (4 Calcium, 6-di-t-butylphenyl) phosphate, 2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphate sodium salt, 2,2'-ethylidene-bis (4,6 -Di-
  • the propylene-based resin composition of the present invention can optionally contain one or more additives, as needed.
  • an antioxidant may be blended as an additive.
  • a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant are mentioned as a thing suitable as use of a piping member.
  • Phenolic antioxidants are suitable because they exert their effect in a high temperature range and, for example, suppress oxidation due to molding temperature during injection molding.
  • the phosphorus-based antioxidant is suitable because it acts as an auxiliary agent for suppressing the radicalization of the phenol-based antioxidant.
  • Sulfur-based antioxidants are effective in long-term heat resistance, and are suitable, for example, because they suppress oxidative deterioration in piping where a fluid of about 95 ° C.
  • the phenolic antioxidant, sulfur-based antioxidant and phosphorus-based antioxidant may be used alone, but a synergistic effect is exhibited by combining them, and while improving the antioxidant effect and the long-term heat resistance effect, it is eluted. Sufficient effects can be obtained even with the compounding amount suppressed for prevention.
  • it is preferable to blend 0.05 to 1.00 parts by mass of the phenolic antioxidant with respect to 100 parts by mass of the ethylene-propylene random copolymer, and tetrakis [methylene-3- (3 ', 5'-] Di-t-butyl-4'-hydroxyphenyl) propionate] methane etc. are mentioned as a suitable thing.
  • the phosphorus-based antioxidant is preferably blended in an amount of 0.05 to 1.00 parts by mass with respect to 100 parts by mass of the ethylene-propylene random copolymer, for example, tris (2,4-di-t-butylphenyl) phos A fight etc. are mentioned as a suitable thing.
  • the sulfur-based antioxidant is preferably added in an amount of 0.05 to 1.00 parts by mass with respect to 100 parts by mass of the ethylene-propylene random copolymer, and 3,3'-thiodipropionic acid distearyl and the like are preferable. It is mentioned as a thing.
  • UV absorbers In addition, if necessary, UV absorbers, light stabilizers (hindered amines, benzoates, benzophenones, etc.), lubricants (hydrocarbons such as liquid paraffin, fatty acids such as stearic acid, higher alcohols such as stearyl alcohol) Transparency, such as amides such as stearic acid amide, metal soaps such as calcium stearate, antibacterial agents (inorganics such as zeolite, organics such as 2- (4-thiazolyl) benzimidazole), etc. You may mix
  • the propylene-based resin composition of the present invention can be prepared according to any procedure from the essential components as described above and other optional components.
  • the propylene-based resin composition can be generally prepared by melt-kneading after blending various components in an arbitrary order.
  • the method of melt-kneading is not particularly limited, and a propylene-based resin composition in which each component is uniformly dispersed can be obtained by using a single-screw extruder, a twin-screw extruder, a kneader or the like.
  • the MFR of the propylene-based resin composition after kneading is preferably in the range of 0.01 to 1.00 g / 10 min, and more preferably in the range of 0.01 to 0.80 g / 10 min. In particular, 0.80 g / 10 min or less is preferable because formability is stable and good.
  • the propylene-based resin composition prepared as described above, particularly suitable for producing a piping member, can be defined by its creep characteristics.
  • the creep properties of the propylene-based resin composition of the present invention are desirably such that the time to failure is 1000 hours or more under a condition of applying a tensile load of 3.5 MPa in an atmosphere of 95 ° C.
  • a high temperature fluid can be used for a long period of time in a state in which an internal pressure is applied to a propylene-based resin piping member such as a valve or a pipe.
  • a propylene-based resin piping member such as a valve or a pipe.
  • the time to failure is 1000 hours or more under the condition of applying a tensile load of 3.5 MPa in an atmosphere of 95 ° C.” is the test condition for the test piece, which is a piping member.
  • the test can be performed by applying a pipe internal pressure such that a tensile load equivalent to a tensile load of 3.5 MPa is applied.
  • the internal pressure of the pipe at this time can be converted from the outer diameter and thickness of the pipe and the tensile load of 3.5 MPa according to Naday's equation expressed by the following equation (1).
  • Pipe internal pressure (2 x pipe thickness x test stress) / (pipe outer diameter-pipe thickness) ... (1)
  • the internal pressure of the pipe 0.7 MPa is obtained from the equation (1).
  • the propylene-based resin composition of the present invention can be advantageously used for the production of various molded articles, that is, molded articles, but such a resin composition has transparency, heat resistance, impact resistance, as described above.
  • piping members Since it is excellent in high temperature creep characteristics etc., it can be advantageously used especially in the production of piping members.
  • Preferred examples of the piping member include, but are not limited to, pipes manufactured by extrusion molding (single-layer or multilayer pipes), joints manufactured by injection molding, flanges, valves, casings of actuators, and the like.
  • the molded body can be produced from the propylene-based resin composition of the present invention using any known molding method such as an extrusion molding method or an injection molding method and any known molding apparatus.
  • a propylene-based resin composition is pelletized and then filled into a single-screw extruder and extruded into a mold at an elevated cylinder temperature to have a predetermined shape and size.
  • Pipes can be manufactured.
  • Pipe internal pressure (2 x pipe thickness x test stress) / (pipe outer diameter-pipe thickness) ... (1) [Test procedure and evaluation criteria] Various propylene-based resin compositions having different composition are prepared, and MFR is measured. Subsequently, a pipe is manufactured by extrusion molding from the prepared resin composition. The mechanical properties of the obtained pipe are evaluated.
  • the tensile modulus of elasticity is 1100 MPa or more, in order to obtain a good sealability particularly when using a valve in a high temperature range, in order to be suitably used as a piping member
  • Izod impact strength is 16kJ / m to obtain good impact resistance as a member 2 More preferably 20 kJ / m for long-term use 2
  • the above is the hot internal pressure creep test for 1000 hours or more in order to use the high temperature fluid for a long period of time, and the haze value as the transparency to confirm the state of the fluid in the piping member visually It shall meet that it is 70% or less.
  • Example 1 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), 70 parts by mass of propylene homopolymer (MFR 0.5 g / 10 min), nonitol based crystal nucleating agent (Millad) 0.2 parts by mass of NX 8000, manufactured by MILLIKEN, and 5.0 parts by mass of an ⁇ -olefin copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average particle diameter of 20 nm) are blended, and a twin-screw extruder The mixture was kneaded and pelletized, and a propylene-based resin composition in which the MFR after kneading was 0.56 g / 10 min was produced.
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • MFR 0.5 g / 10 min propylene homopolymer
  • a propylene resin pipe having a thickness of 3.0 mm and an outer diameter of 32 mm was molded at a cylinder temperature of 210 ° C. using a single-screw extruder, and samples for various tests were produced from the pipe Tensile test, notched Izod impact test, transparency test, differential scanning calorimetry test, and high temperature creep test were conducted. The results are shown in Table 1.
  • Example 2 The procedure described in Example 1 was repeated, but in this example, 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 70 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average) 2.0 parts by mass of a particle diameter of 20 nm was blended, and it was kneaded and pelletized by a twin screw extruder.
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • propylene homopolymer MFR 0
  • ⁇ -olefin based copolymer NaTIO PN-2060, manufactured by
  • Example 3 The procedure described in Example 1 was repeated, but in this example, 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 70 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average) 8.0 parts by mass of particle diameter 20 nm was blended, and it was kneaded and pelletized by a twin screw extruder.
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • Example 4 The procedure described in Example 1 was repeated, but in this example, 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 70 parts by mass, phosphoric acid ester metal salt type crystal nucleating agent (PPM ST-0451, manufactured by Tokyo Ink Co., Ltd.) 0.2 parts by mass, and ⁇ -olefin copolymer (NOTIO PN-) 2060, Mitsui Chemicals Co., Ltd.
  • Example 5 The procedure described in Example 1 was repeated, but in this example, 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 70 parts by mass, nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN) 0.2 parts by mass, phosphoric acid ester metal salt based crystal nucleating agent (PPM ST-0451, manufactured by Tokyo Ink Co., Ltd.) 0.2 parts by mass and 5.0 parts by mass of an ⁇ -olefin copolymer (NOTIO PN-2060, manufactured by Mitsui Chemical Co., Ltd .: average particle size 20 nm) are blended and kneaded by a twin screw extruder Pelletized.
  • nonitol based crystal nucleating agent Millad NX 8000, manufactured by MILLIKEN
  • Example 6 The procedure described in Example 1 was repeated, but in this example, 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 70 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and hydrogenated styrene-butadiene based elastomer (Tuftec H1062, manufactured by Asahi Kasei Chemicals Corporation: average particle diameter 5.0 parts by mass of 100 nm) was blended, and the mixture was kneaded and pelletized by a twin-screw extruder.
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • propylene homopolymer MFR 0) .5 g / 10 min
  • 70 parts by mass
  • Example 7 The procedure described in Example 1 was repeated, but in this example, 50 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 50 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average) 5.0 parts by mass of a particle diameter of 20 nm were blended, and the mixture was kneaded and pelletized by a twin-screw extruder.
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • propylene homopolymer MFR 0) .5 g / 10 min
  • NX 8000 nonitol
  • Example 8 The procedure described in Example 1 was repeated, but in this example, 70 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 30 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average) 5.0 parts by mass of a particle diameter of 20 nm were blended, and the mixture was kneaded and pelletized by a twin-screw extruder.
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • propylene homopolymer MFR 0) .5 g / 10 min
  • NOTIO PN-2060 manufactured
  • Example 9 The procedure described in Example 1 was repeated, but in this example, 90 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 10 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average) 5.0 parts by mass of a particle diameter of 20 nm were blended, and the mixture was kneaded and pelletized by a twin-screw extruder.
  • Example 10 The procedure described in Example 1 was repeated, but in this example, 100 parts by mass of ethylene-propylene random copolymer (ethylene content 1.0%, MFR 0.5 g / 10 min), nonitol-based crystal nucleating agent ( 0.2 parts by mass of Millad NX 8000, manufactured by MILLIKEN, and 5.0 parts by mass of an ⁇ -olefin copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average particle diameter of 20 nm) are blended, and biaxial extrusion is performed It knead
  • ethylene-propylene random copolymer ethylene content 1.0%, MFR 0.5 g / 10 min
  • nonitol-based crystal nucleating agent 0.2 parts by mass of Millad NX 8000, manufactured by MILLIKEN, and 5.0 parts by mass of an ⁇ -olefin copolymer (NOTIO PN-2060, manufactured by
  • Example 11 The procedure described in Example 1 was repeated, but in this example, 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), propylene homopolymer (MFR 0) .5 g / 10 min) 70 parts by mass, 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and 5.0 parts by mass of hydrogenated styrene-butadiene based elastomer (average particle diameter 600 nm) It knead
  • ethylene-propylene random copolymer ethylene content 3.2%, MFR 0.5 g / 10 min
  • a propylene-based resin composition was obtained in which the MFR after kneading was 0.76 g / 10 min.
  • a pipe was molded from the obtained resin composition, and various evaluation tests were conducted. The results are shown in Table 2.
  • Comparative example 2 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), 70 parts by mass of propylene homopolymer (MFR 0.5 g / 10 min), and nonitol-based crystal nucleating agent ( 0.2 parts by mass of Millad NX 8000 (made by MILLIKEN) was blended, and it was kneaded and pelletized by a twin-screw extruder.
  • Millad NX 8000 made by MILLIKEN
  • a propylene-based resin composition was obtained in which the MFR after kneading was 1.68 g / 10 min.
  • a pipe was molded from the obtained resin composition, and various evaluation tests were conducted. The results are shown in Table 2.
  • Comparative example 4 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), 70 parts by mass of propylene homopolymer (MFR 0.5 g / 10 min), and ⁇ -olefin-based copolymer 5.0 parts by mass of a united body (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average particle diameter 20 nm) was blended, and the mixture was kneaded by a twin-screw extruder to form pellets.
  • NOTIO PN-2060 manufactured by Mitsui Chemicals, Inc .: average particle diameter 20 nm
  • mixing becomes 0.56 g / 10min was obtained.
  • Comparative example 6 100 parts by mass of propylene homopolymer (MFR 0.5 g / 10 min), 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based copolymer (NOTIO PN-2060, Mitsui Chemical Co., Ltd.) Co., Ltd.
  • Comparative example 7 100 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), 0.2 parts by mass of nonitol based crystal nucleating agent (Millad NX 8000, manufactured by MILLIKEN), and ⁇ -olefin based 5.0 parts by mass of a copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average particle diameter 20 nm) was blended, and the mixture was kneaded by a twin-screw extruder and pelletized. The propylene resin composition which MFR after kneading
  • Comparative Example 8 10 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min), 90 parts by mass of propylene homopolymer (MFR 0.5 g / 10 min), nonitol based crystal nucleating agent (Millad) 0.2 parts by mass of NX 8000, manufactured by MILLIKEN, and 5.0 parts by mass of an ⁇ -olefin copolymer (NOTIO PN-2060, manufactured by Mitsui Chemicals, Inc .: average particle diameter of 20 nm) are blended, and a twin-screw extruder And pelletized.
  • mixing becomes 0.56 g / 10min was obtained.
  • a pipe was molded from the obtained resin composition, and various evaluation tests were conducted.
  • the ethylene content of the ethylene-propylene random copolymer is less than 0.5 parts by mass.
  • the results are shown in Table 2.
  • Comparative Example 9 30 parts by mass of ethylene-propylene random copolymer (ethylene content 3.2%, MFR 0.5 g / 10 min) and 70 parts by mass of propylene homopolymer (MFR 0.5 g / 10 min) are compounded and biaxially extruded It knead
  • Comparative Example 7 100: 0 (ethylene content: about 3.3 parts by mass), Example 9: 90: 10 (ethylene content: about 3.0 parts by mass), Example 8: 70:30 (ethylene content: about 2 .3 parts by mass, Example 7 50: 50 (ethylene content about 1.6 parts by mass), Example 1 30: 70 (ethylene content about 1.0 parts by mass), Comparative Example 8 10:90 (the ethylene content is about 0.3 parts by mass) and Comparative Example 6 becomes 0: 100 (the ethylene content is 0 parts by mass).
  • the proportion of the ethylene-propylene random copolymer having an ethylene content of 3.2% is large, that is, the ethylene content of the ethylene-propylene random copolymer increases, the Izod impact strength is improved, but the tensile strength is increased. Strength and tensile modulus decrease.
  • the proportion of the propylene homopolymer is larger, that is, the ethylene content of the ethylene-propylene random copolymer decreases, the tensile strength and the tensile modulus increase but the tensile modulus becomes too high, and the Izod impact is increased. The strength is reduced.
  • Comparative Example 7 is high in Izod impact strength but low in tensile strength and tensile elastic modulus, and lower than the desirable tensile elastic modulus of 1100 MPa as a piping member. Further, Comparative Examples 6 and 8 have high tensile strength and tensile elastic modulus but low Izod impact strength, which is a desirable numerical value of 16 kJ / m as a piping member 2 It is lower than. On the other hand, the results described in Examples 1, 7, 8 and 9 are within the tolerance of the desired numerical value for the piping member. Moreover, in Examples 1 and 10, the ethylene content of the ethylene-propylene random copolymer is equivalent at about 1.0 part by mass, and the physical property values are also equivalent.
  • the ethylene-propylene random copolymer having an ethylene content of 0.5 to 3.0 parts by mass has good tensile strength and tension because the ethylene content is 0.5 to 3.0 parts by mass. It can be seen that it can have elastic modulus and Izod impact strength.
  • the blending ratio is ethylene-propylene random with respect to 25 to 75 parts by mass of propylene homopolymer. It is desirable that 75 to 25 parts by mass of the copolymer be blended.
  • Example 2 in which the crystal nucleating agent is added to Comparative Example 9, the tensile strength and the tensile elastic modulus are improved, and the transparency is improved by the decrease of the haze value, while the Izod impact strength is lowered. It can be seen that the impact strength is insufficient for use.
  • Example 1 in which both the elastomer and the crystal nucleating agent were added, the Izod was not improved by only adding the elastomer and the crystal nucleating agent alone without deteriorating the tensile strength and the tensile elastic modulus and the transparency. Impact strength is improved.
  • the Izod impact strength can be improved while maintaining high tensile strength, tensile elastic modulus and transparency, by the synergistic effect of the elastomer having an average particle diameter of 10 nm to 800 nm and the crystal nucleating agent.
  • the crystal nucleating agent is preferably added in a small amount with respect to 100 parts by mass of the ethylene-propylene random copolymer, and the effect is not changed even if it is added too much. Therefore, 0.005 to 0.5 parts by mass is preferable .
  • Example 1 when the average particle size of the elastomer is 20 nm, 100 nm, 600 nm and 1 ⁇ m (1000 nm), the tensile strength and the tensile elasticity are obtained in Examples 1, 6 and 11. Although both the rate and the Izod impact strength are good, it can be seen that the Izod impact strength decreases to less than 1/2 as the average particle diameter of the elastomer increases as in Comparative Example 5.
  • an ⁇ -olefin copolymer having an average particle diameter of 20 nm in Example 1 a hydrogenated styrene-butadiene elastomer in Example 6 having an average particle diameter of 100 nm, and a hydrogenated styrene in Example 11 having an average particle diameter of 600 nm.
  • the synergistic effect with the crystal nucleating agent is influenced by the average particle diameter of the elastomer, and the same effect can be obtained even if the material of the elastomer is different.
  • the physical properties change depending on the characteristics of the blended elastomer.
  • the average particle size of the elastomer is as small as 10 nm or more, and in order to have good impact resistance while maintaining good transparency, the average particle size of the elastomer is 10 nm to 800 nm It must be within the range of Among them, ⁇ -olefin copolymers are preferred as they are easy to form an elastomer having a small average particle diameter.
  • the Izod impact strength is improved when the blending amount of the elastomer is increased, but the tensile strength and the tensile elastic modulus are decreased. I understand.
  • Comparative Example 1 is high in Izod impact strength but low in tensile strength and tensile elastic modulus, lower than desirable tensile elastic modulus of 1100 MPa as a piping member, and insufficient in strength of internal pressure creep due to improvement in MFR by increasing the amount of elastomer. .
  • the comparative example 2 which does not have an elastomer has high tensile strength and a high tensile elastic modulus, Izod impact strength is low, and the numerical value 16 kJ / m desirable as a piping member 2 It is lower than.
  • the results described in Examples 1, 2 and 3 are within the tolerances of the numerical values desired for piping members. From this, the amount of the elastomer to be blended with 100 parts by mass of the ethylene-propylene random copolymer needs to be 1 to 10 parts by mass.
  • Comparative Example 2 does not contain an elastomer, in this case, there is no improvement in tensile strength and tensile elastic modulus due to the synergistic effect of the elastomer and the crystal nucleating agent, and the Izod impact strength has a low value.
  • Example 4 uses a phosphate ester metal salt-based crystal nucleating agent while Example 1 uses a nonitol-based crystal nucleating agent.
  • the tensile modulus and the transparency are slightly low.
  • any kind of organic nucleating agent may be used as the crystal nucleating agent because it is an acceptable range for use as a piping member.
  • organic nucleating agents saccharide-based nucleating agents and phosphoric acid-based nucleating agents are preferably used, and among saccharide-based nucleating agents, nonitol-based crystal nucleating agents are more suitable for improving transparency and impact resistance. .
  • two kinds of crystal nucleating agents of nonitol-based crystal nucleating agent and phosphoric acid ester metal salt-based crystal nucleating agent are used in combination and blended, but even when compared with Example 1, almost no adverse effect is observed. From the fact that it is not possible, it is understood that it is also possible to mix and use a crystal nucleating agent.
  • the compounding of a plurality of crystal nucleating agents is suitable when it is desired to add further improvements to the tensile strength and tensile modulus and other physical properties without changing the Izod impact strength.
  • the MFR after kneading exceeds 1.00 g / 10 min, drawdown occurs as the MFR rises when extruding the pipe, and the molding becomes difficult, so the high-temperature creep characteristics and the extrusion become excellent.
  • the MFR after kneading needs to be 0.01 to 1.00 g / 10 min.
  • the piping member made of a propylene-based resin of the present invention which contains an ethylene-propylene random copolymer and an elastomer having an average particle diameter of 10 nm to 800 nm as essential components, has tensile strength, tensile modulus, Izod impact strength, etc.
  • the propylene-based resin composition of the present invention can be advantageously used for the production of various molded articles.
  • the molded body may be entirely or partially produced from the propylene-based resin composition of the present invention.
  • any molding method such as an extrusion molding method and an injection molding method can be advantageously carried out using a commonly used molding apparatus, but other molding methods may be used if necessary.
  • suitable molded bodies include, but are not limited to, pipes manufactured by extrusion molding such as single-layer or multilayer pipes, joints manufactured by injection molding, flanges, valves, casings of actuators, and the like.
  • Other examples include plates, tanks, ducts.
  • piping members such as single-layer or multi-layer pipes, joints, flanges, valves, casings of actuators, etc. can use the propylene-based resin composition of the present invention particularly advantageously.

Abstract

エチレン含有量が0.5~3.0質量部のエチレン-プロピレンランダム共重合体(A)と、該エチレン-プロピレンランダム共重合体100質量部に対して1~10質量部の、平均粒子径10nm~800nmのエラストマー(B)と、結晶核剤(C)とを必須成分とし含有し、且つ混練後のメルトフローレートが0.01~1.00g/10分であるプロピレン系樹脂組成物。このプロピレン系樹脂組成物は、各種の成形体の製造に好適である。

Description

プロピレン系樹脂組成物及び成形体
 本発明は、各種の成形体の製造に好適に使用されるプロピレン系樹脂組成物及びそれを用いて成形した成形体に関し、さらに詳しくは、透明性、耐熱性、耐衝撃性、高温クリープ特性等に優れるプロピレン系樹脂組成物及びそれを用いて成形した成形体に関する。
 従来プロピレン系樹脂組成物は、剛性、耐熱性、耐薬品性等の優れた特性を有しており、それを用いて成形したプロピレン系樹脂製配管部材は、各種工場、医療分野、建築分野等において幅広く使用されている。特にプロピレン系樹脂製パイプは、高温域(60℃~95℃)での酸・アルカリに対する耐薬品性を有しており、価格も安価であることから、工業分野において高温の薬液を流すための高温用配管部材に適している。このような高温用配管部材は従来の金属管から樹脂管へ転換する傾向にあり、プロピレン系樹脂もその候補にあることから今後の普及が大きく期待されている。さらに近年では、安全性の問題等から配管内の流体への異物混入を目視確認できる透明配管のニーズが高まりつつあり、あらゆる条件下で使用可能なプロピレン系樹脂製配管部材の透明化が期待されている。実際に一部では、半透明と称されるプロピレン系樹脂製配管部材も存在している。しかしながら、プロピレン系樹脂の透明性を追及すると衝撃強度や引張弾性率など配管部材として必要な物性強度が低下してしまうため、配管部材としての物性強度を有する範囲で透明性を求めたプロピレン系樹脂製配管部材を用いた場合、その透明性は配管内を流体が流れているかどうか判断できる程度の透明性(曇価(ヘイズ)が78%程度)しかなく、流体の状態を確認できる程の透明性は確保できていないという問題があった。
 配管部材をプロピレン系樹脂組成物から成形したときの透明性の改良方法としては、例えばポリプロピレン樹脂に透明化核材を添加する方法が知られている(特許文献1参照)。この飲食配管用管継手は飲食品の配管に使用され、雄体を内面に挿入可能な雌体を備え、挿入された雄体の少なくとも先端側が目視確認できる透明部を有し、透明部はポリプロピレン樹脂に透明化核材を添加した材料からなる。本来白色又は乳白色であるポリプロピレン樹脂に透明化核材を添加することで、この材料で成形された管継手の透明度を向上させることができる。そのため、ポリプロピレン樹脂に透明化核材を添加して雌体が透明部を有するようにすることで、管継手に挿入された雄体の少なくとも先端側が目視確認できるようにしている。
 しかしながら、単にプロピレン系樹脂組成物に透明化核材を添加するだけでは透明性は改良されるが、透明化核材の添加により配管部材として必要な耐衝撃性が低下するという致命的な問題があった。これにより、管継手は比較的割れ易くなり用途は内圧が低い条件下など著しく限定されるという問題があった。
 そこで、プロピレン系樹脂組成物の透明性と耐衝撃性の両方を改良する方法として、例えば錠剤、カプセル剤等の医薬品の包装に用いられるプレス・スルー・パック包装(PTP包装)用ポリプロピレン系シートがある(特許文献2参照)。このポリプロピレン系シートは、結晶核剤含有率0.002~0.3重量%のポリプロピレン単独重合体57~84重量%、エチレン含有率0.1~5.0重量%のエチレン−プロピレンランダム共重合体10~25重量%、石油樹脂1~8重量%及び熱可塑性エラストマー5~10重量%からなるものであり、熱可塑性エラストマーとしてスチレン含有率11~35重量%の水素添加スチレン−ブタジエン共重合体またはスチレン含有率11~35重量%の水素添加スチレン−イソプレン共重合体を添加するものである。このポリプロピレン系シートは、剛性、防湿性、透明性、成形性、耐衝撃性に優れたシートを提供することができる。
 しかしながら、上記したような従来の樹脂組成物は、耐衝撃性を向上させるために熱可塑性エラストマーを配合しているが、結晶核剤の配合に起因する耐衝撃性の低下は依然として発生するので、特に配管部材として使用するには耐衝撃性は不十分である。また、耐衝撃性の低下を抑えるために熱可塑性エラストマーの配合量を多くすると透明性が損なわれる問題があった。さらに、ポリプロピレン系シート用として確立されたものであるため、通常は混錬前のポリプロピレン単独重合体及びエチレン−プロピレンランダム共重合のメルトフローレートが1~10g/10分の範囲となり、特にパイプの押出成形においてはメルトフローレートが大きすぎることが考えられる。そのためパイプ成形においてドローダウンが大きく成形できなかったり、仮にパイプ成形できたとしてもクリープ特性が不十分なためにパイプの寿命が短かったり、配管部材として十分な衝撃強度が得られずに破損し易い等の問題が発生する恐れがある。
特開2005−163983号公報 特許第3315015号明細書
 本発明の目的は、成形体、例えば押出成形法で製造されるパイプや、射出成形法で製造される継手、フランジ、バルブ、及びアクチュエータのケーシング等の配管部材の製造に好適に使用されるプロピレン系樹脂組成物及びそれを用いて成形した成形体を提供することにある。さらに詳しくは、本発明の目的は、透明性、耐熱性、耐衝撃性、高温クリープ特性に優れるプロピレン系樹脂組成物及びそれを用いて成形した成形体を提供することにある。
 本発明者らは上記の好ましい性質を有するプロピレン系樹脂組成物を開発すべく鋭意研究を重ねた結果、特定のプロピレン系樹脂と特定のエラストマーおよび透明核剤を必須とした配合系の樹脂組成物で上記目的が達成されることを見出し、本発明を完成するに至った。
 すなわち本発明は、プロピレン系樹脂組成物において、エチレン含有量が0.5~3.0質量部のエチレン−プロピレンランダム共重合体(A)と、該エチレン−プロピレンランダム共重合体(A)100質量部に対して1~10質量部の、平均粒子径10nm~800nmのエラストマー(B)と、結晶核剤(C)とを必須成分として含有しており、且つ混練後のメルトフローレート(以下、MFRと記す)が0.01~1.00g/10分であることを第一の特徴とし、
 エチレン−プロピレンランダム共重合体(A)が、プロピレン単独重合体25~75質量部と、エチレン−プロピレンランダム共重合体75~25質量部とからなることを第二の特徴とし、
 結晶核剤(C)が、糖類系核剤及び/または有機リン酸系核剤であることを第三の特徴とし、
 95℃の雰囲気下で3.5MPaの引張荷重をかけたクリープ特性において、破断に至るまでの時間が1000時間以上であることを第四の特徴とし、
 配管部材の成形材料として使用されることを第五の特徴とする。
 また、本発明は、本発明のプロピレン系樹脂組成物を用いて成形体を成形したことを第六の特徴とし、
 成形体が、パイプ、多層パイプ、プレート、タンク、ダクト、継手、フランジ、バルブ又はアクチュエータのケーシングであることを第七の特徴とする。
 さらに、本発明は、本発明のプロピレン系樹脂組成物を用いて配管部材を成形したことを第八の特徴とする。配管部材は、その全体が本発明のプロピレン系樹脂組成物の成形体であってもよく、一部の部分が本発明のプロピレン系樹脂組成物の成形体であってもよい。
 以下の詳細な説明から理解されるように、本発明のプロピレン系樹脂組成物を用いると、例えば次のような優れた特性を有する成形体、例えば配管部材を製造することができる。
(1)透明性に優れ、配管内の流体への異物混入を目視確認できる透明配管を得ることができる。
(2)結晶核剤と平均粒子径10nm~800nmのエラストマーを併用してプロピレン系樹脂に添加することで、透明性を有し且つ従来のプロピレン系配管部材と同等の耐熱性、耐衝撃性を有する透明配管を得ることができる。
(3)高温クリープ特性に優れ、95℃の高温流体を流して長期間使用できる配管部材を得ることができる。
 本発明は、いろいろな形態で有利に実施することができる。本発明の好ましい形態は、限定されるもではないが、次のような形態である。
 本発明のプロピレン系樹脂組成物は、エチレン−プロピレンランダム共重合体(A)を必須成分として含有する。本発明の実施において、このエチレン−プロピレンランダム共重合体は、そのエチレン含有量が0.5~3.0質量部である必要がある。エチレンが含有されることにより良好な耐衝撃性及び透明性を得ることができるため、エチレン含有量は0.5質量部以上が良く、また、配管部材の耐熱性と剛性を維持して高温流体で好適に使用するためには3.0質量部以下が良い。さらに、耐衝撃性、配管部材の耐熱性と剛性をバランスよく満たすためには、エチレン含有量を0.5~2.0質量部の範囲にするのがより望ましい。
 また、エチレン−プロピレンランダム共重合体は、それを含むプロピレン系樹脂組成物において所定範囲のメルトフローレート(MFR)を有することが望ましい。プロピレン系樹脂組成物のMFRは、その組成物を混練する前、0.01~0.9g/10分の範囲であることが望ましく、0.01~0.80g/10分の範囲であることがより望ましい。また、MFRは、プロピレン系樹脂組成物の良好な生産性を得るために0.01g/10分以上が良く、パイプ成形におけるドローダウンを抑えて良好な高温クリープ特性を得るために1.00g/10分以下が良い。また、プロピレン系樹脂組成物のMFRは、混練によって混錬前のそれより大きくなるため、混練後のプロピレン系樹脂組成物のMFRを0.01~1.00g/10分の範囲内に収めることが望ましい。上記したように、MFRが0.01g/10分を下回るとプロピレン系樹脂組成物の生産性が低下し、反対に1.00g/10分を上回るとパイプ成形におけるドローダウンを抑えきれなくなるからである。さらに、このMFRは、特に良好な成形性を達成できることから、0.80g/10分以下であることが良い。なお、プロピレン系樹脂組成物のMFRは、この技術分野で周知の技法及び装置を使用して測定することができる。
 エチレン−プロピレンランダム共重合体は、この技術分野で周知の任意の技法及び装置を使用して製造することができる。例えば、エチレン−プロピレンランダム共重合体は、重合装置を用いて公知の重合法により回分式、半連続式、連続式のいかなる方法で重合し、製造しても良い。もちろん、重合条件の異なる1つまたは2つ以上の重合装置をシリーズに連結した多段重合によって製造しても良い。但し、エチレン−プロピレンランダム共重合体を製造するに当たっては、エチレン−プロピレンランダム共重合体が100質量部のときにエチレン含有量が0.5~3.0質量部となるように配慮しなければならない。
 また、エチレン−プロピレンランダム共重合体は、その製造後、他の樹脂を混合することなく使用しても良く、さもなければ、別々に製造されたプロピレン単独重合体とエチレン−プロピレンランダム共重合体とを各種混合装置を用いて混合して製造したものを使用しても良い。プロピレン単独重合体とエチレン−プロピレンランダム共重合体とを混合して形成すると、配管部材を成形する際にパイプの押出成形や射出成形の成形方法に合わせて配合比を調節することで各成形方法に適したプロピレン樹脂組成物で形成することができるので好適である。例えば、パイプの押出成形ではエチレン含有量は少なくなる配合の方が良いが、同一の樹脂組成物で継手やバルブ部品などを射出成形するとボイドが発生し易いため射出成形の時にエチレン含有量が多くなるように配合してボイドの発生を抑えるようにすると良い。また、2種類の樹脂を有するだけで、プロピレン単独重合体とエチレン含有量の異なる複数のエチレン−プロピレンランダム共重合体を用途に合わせて用いることができる。
 このとき、エチレン−プロピレンランダム共重合体は、プロピレン単独重合体25~75質量部と、エチレン−プロピレンランダム共重合体75~25質量部を配合して製造すると良い。配管部材の耐熱性と剛性を維持して高温流体に使用するためにはプロピレン単独重合体は25質量部以上、エチレン−プロピレンランダム共重合体は75質量部以下が良く、良好な耐衝撃性及び透明性を得るためにはプロピレン単独重合体は75質量部以下、エチレン−プロピレンランダム共重合体は25質量部以上が良い。また、混合されるエチレン−プロピレンランダム共重合体のエチレン含有量は2.5~4.0%であることが望ましく、2.8~3.5%であることがより望ましい。プロピレン単独重合体と配合することで、エチレン−プロピレンランダム共重合体が100質量部のときにエチレン含有量が0.5~3.0質量部となるように形成できれば良い。この範囲のエチレン含有量であればエチレン−プロピレンランダム共重合体として汎用性が高く、樹脂製造も比較的容易で市販品で入手し易いため好適である。
 また、本発明のプロピレン系樹脂組成物において、もう一つの必須成分であるエラストマー(B)は、特に耐衝撃性の向上を目的として配合される。エラストマーの平均粒子径は10nm~800nmである必要がある。これは、エラストマーは耐衝撃性を向上させる反面、樹脂の透明性を損なう傾向にあるため、エラストマーの平均粒子径を微細にすることで透明性の低下を抑えるためのものである。さらに、エラストマーの平均粒子径が微細であることにより、もう一つの必須成分である透明核剤(C)との相乗効果を発揮し、優れた透明性を維持しながら耐衝撃性を向上させることができることから、耐衝撃性に対して平均粒子径は800nm以下が良く、さらには分散性を向上させて物性を安定させることから600nm以下が良い。またエラストマーの良好な生産性の点から、平均粒子径は10nm以上が良く、さらには生産された粒子径の安定性を維持し易くすることから100nm以上が良い。これらエラストマーの配合量は、通常1~10質量部である。ポリプロピレン樹脂の耐衝撃性を向上させるためには1質量部以上が良く、透明性を低下させず配管部材の耐熱性と剛性を維持して高温流体に使用するためには10質量部以下が良い。
 本発明の実施において、各種のエラストマーをプロピレン系樹脂組成物に配合することができる。適当なエラストマーとしては、ゴム状ポリマー、オレフィンエラストマー、スチレンエラストマー等を挙げることができる。具体的には、ブタジエンゴム、イソプレンゴム、ブチルゴム、スチレン−ブタジエン共重合体、スチレン−ブタジエン−スチレンブロックコポリマー(SBS)、スチレン−イソプレン−スチレンブロックコポリマー(SIS)、スチレン−エチレン−ブチレン−スチレンブロックコポリマー(SEBS)、スチレン−エチレン−プロピレン−スチレンブロックコポリマー(SEPS)、ブタジエン−イソプレン共重合体等のジエン系ゴム、エチレン−プロピレンゴム、エチレン−プロピレン共重合体(EPM)、エチレン−プロピレンジエン共重合体(EPDM)、エチレン−ブテン共重合体、エチレン−オクテン共重合体(EOR)等のエチレンとα−オレフィンとの共重合体、エチレン−プロピレン−エチリデンノルボルネン共重合体、エチレン−プロピレン−ヘキサジエン共重合体等のエチレン−プロピレン非共役ジエン3元共重合体、ブチレン−イソプレン共重合体等及びこれらのエラストマーに水素添加した重合体等が挙げられる。基本的に、平均粒子径10nm~800nmのエラストマーであれば公知のものを制限なく用いることができ、また、かかるエラストマー類は、単独で使用してもよく、2種類以上併用することもまた可能である。
 また、本発明のプロピレン系樹脂組成物において、さらにもう一つの必須成分として結晶核剤(C)が用いられる。結晶核剤には有機系核剤と無機系核剤とがあるが、無機系核剤は透明性を阻害するため本発明の実施には使用できない。すなわち、本発明において使用される結晶核剤は有機系核剤である。結晶核剤は、特に耐衝撃性、剛性付与及び透明性の向上を目的として配合される。結晶核剤の配合量は、特に限定されるものでないが、耐衝撃性、剛性付与及び透明性の向上に有効な量で良く、通常、エチレン−プロピレンランダム共重合体に対して微量配合すれば良い。さらに詳細には、結晶核剤の配合量は、良好な透明性と物性のバランスを得るために0.005~0.5質量部が好ましい。結晶核剤の効果によりプロピレン系樹脂組成物の良好な透明性を得るために0.005質量部以上が良く、配合量は0.5質量部を越えると透明性向上の効果が頭打ちになるため、余分な配合を控えると共に耐衝撃性の低下を抑えるために0.5質量部以下が良い。
 有機系核剤としては、糖類、脂肪族アルコール類、カルボン酸金属塩、カルボン酸エステル類、芳香族カルボン酸の金属塩、有機リン酸類、ロジン酸類等が挙げられる。このような有機系核剤のなかでも、糖類系核剤及び/または有機リン酸系核剤が、核剤の中でも一般的で入手し易く、特に糖類系核剤はプロピレン系樹脂組成物の透明性の向上に効果が高く、有機リン酸系は耐衝撃性の向上に効果が高いためにより望ましい。なお、有機系核剤であれば公知のものを制限なく用いることができ、かかる核剤類は単独で使用してもよく、2種類以上併用することも可能である。
 糖類系核剤には、ソルビトール系、ノニトール系、キシリトール系等があり、具体的には、ビス−1,3:2,4−(3′−メチル−4′−フルオロ−ベンジリデン)1−プロピルソルビトール、ビス−1,3:2,4−(3′,4′−ジメチルベンジリデン)1′−メチル−2′−プロペニルソルビトール、ビス−1,3,2,4−ジベンジリデン2’,3′−ジブロモプロピルソルビトール、ビス−1,3,2,4−ジベンジリデン2’−ブロモ−3’−ヒドロキシプロピルソルビトール、ビス−1,3:2,4−(3’−ブロモ−4’−エチルベンジリデン)−1−アリルソルビトール、モノ2,4−(3’−ブロモ−4’−エチルベンジリデン)−1−アリルソルビトール、ビス−1 ,3:2,4−(4’−エチルベンジリデン)1−アリルソルビトール、ビス−1,3:2,4−(3’,4’−ジメチルベンジリデン)1−メチルソルビトール、1,2,3−トリデオキシ−4,6:5,7−ビス−[(4−プロピルフェニル)メチレン]−ノニトール、ビス−1,3:2,4−(4’−エチルベンジリデン)1−アリルソルビトール、ビス−1,3:2,4−(5’,6’,7’,8’−テトラヒドロ−2−ナフトアルデヒドベンジリデン)1−アリルキシリトール、ビス−1,3:2,4−(3’,4’−ジメチルベンジリデン)1−プロピルキシリトール等が挙げられる。
 有機リン酸系核剤には、リン酸エステル系化合物等があり、具体的には、ビス(4−t−ブチルフェニル)リン酸ナトリウム塩、ビス(4−t−ブチルフェニル)リン酸リチウム塩、ビス(4−t−ブチルフェニル)リン酸アルミニウム塩、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸ナトリウム塩、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸リチウム塩、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸アルミニウム塩、2,2’−メチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸カルシウム塩、2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸ナトリウム塩、2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸塩リチウム、2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸アルミニウム塩、ビス−(4−t−ブチルフェニル)リン酸カルシウム塩等が挙げられる。
 本発明のプロピレン系樹脂組成物は、必要に応じて、1種類もしくはそれ以上の添加剤を任意に配合することができる。例えば、添加剤として酸化防止剤を配合しても良い。酸化防止剤としてはフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤が配管部材の使用として好適なものとして挙げられる。フェノール系酸化防止剤は高温領域で効果を発揮し、例えば射出成形時の成形温度による酸化を抑制するので好適である。リン系酸化防止剤はフェノール系酸化防止剤のラジカル化を抑制する助剤として作用するので好適である。イオウ系酸化防止剤は長期耐熱性において効果を発揮し、例えば95℃程度の流体が長期間流れる配管での使用において酸化劣化を抑制するので好適である。このフェノール系酸化防止剤とイオウ系酸化防止剤とリン系酸化防止剤は、単独で使用しても良いが組み合わせることで相乗効果が発揮され、酸化防止効果と長期耐熱効果を向上させるとともに、溶出防止のために抑えた配合量でも十分な効果を得ることができる。
 また、フェノール系酸化防止剤は、エチレン−プロピレンランダム共重合体100質量部に対して0.05~1.00質量部配合することが望ましく、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン等が好適なものとして挙げられる。リン系酸化防止剤は、エチレン−プロピレンランダム共重合体100質量部に対して0.05~1.00質量部配合することが望ましく、例えばトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等が好適なものとして挙げられる。イオウ系酸化防止剤は、エチレン−プロピレンランダム共重合体100質量部に対して0.05~1.00質量部配合することが望ましく、3,3’−チオジプロピオン酸ジステアリル等が好適なものとして挙げられる。
 また、その他必要に応じて、紫外線吸収剤や光安定剤(ヒンダードアミン系、ベンゾエート系、ベンゾフェノン系等)、滑剤(流動パラフィン等の炭化水素系、ステアリン酸等の脂肪酸、ステアリルアルコール等の高級アルコール系、ステアリン酸アミド等のアミド系、ステアリン酸カルシウム等の金属せっけん系等)、抗菌剤(ゼオライト等の無機系、2−(4−チアゾリル)ベンツイミダゾール等の有機系等)等を、透明性を損なわない範囲で配合しても良い。それらの配合量は添加剤の種類によって変化するため、組成物の物性を低下させずに添加剤の効果が発揮される量を配合することが好ましい。さらに、無機充填材(タルク等)、難燃剤、帯電防止剤、造核剤等を必要に応じて配合しても良い。
 本発明のプロピレン系樹脂組成物は、上記したような必須成分及びその他の任意成分から任意の手法に従って調製することができる。プロピレン系樹脂組成物は、通常、各種の成分を任意の順序で配合した後、溶融混練することによって調製することができる。ここで、溶融混練する方法には特に制限はなく、単軸押出機や二軸押出機、ニーダーなどを用いることで各成分が均一に分散したプロピレン系樹脂組成物を得ることができる。なお、混練後のプロピレン系樹脂組成物のMFRは、上記した通り、0.01~1.00g/10分の範囲が望ましく、0.01~0.80g/10分の範囲がより望ましく、また、特に成形性が安定して良好なことから0.80g/10分以下が良い。
 上記のようにして調製した、特に配管部材の製造に好適なプロピレン系樹脂組成物は、そのクリープ特性によって規定することができる。本発明のプロピレン系樹脂組成物のクリープ特性は、95℃の雰囲気下で3.5MPaの引張荷重をかけた条件下において、破壊に至るまでの時間が1000時間以上であることが望ましい。これはバルブやパイプといったプロピレン系樹脂製配管部材に対して、内圧がかかった状態で高温の流体を流したまま長期間にわたって使用することができるので好適である。なお、「95℃の雰囲気下で3.5MPaの引張荷重をかけた条件下において、破壊に至るまでの時間が1000時間以上」とは、テストピースに対しての試験条件であり、これが配管部材、特にパイプに対して試験を行う場合、引張荷重3.5MPaと同等の引張荷重がかかるようなパイプ内圧をかけることより試験を行なうことができる。このときのパイプ内圧は、パイプの外径と肉厚、および引張荷重3.5MPaから、次式(1)で表されるNadayの式により換算するができる。
 パイプ内圧=(2×パイプ肉厚×試験応力)/(パイプ外径−パイプ肉厚)
                        ・・・(1)
 例えばパイプの厚さが3.0mm、外径32mmのパイプであれば、式(1)よりパイプ内圧0.7MPaが求められる。
 本発明のプロピレン系樹脂組成物は、各種の成形体、すなわち、成形物品の製造に有利に使用することができるけれども、かかる樹脂組成物は上記したように透明性、耐熱性、耐衝撃性、高温クリープ特性等に優れるので、とりわけ配管部材の製造に有利に使用することができる。配管部材の好適な例としては、特に限定されないが、押出成形で製造されるパイプ(単層もしくは多層のパイプ)、射出成形で製造される継手、フランジ、バルブ、アクチュエータのケーシング等が挙げられる。
 成形体は、本発明のプロピレン系樹脂組成物から押出成形法、射出成形法等の任意の周知の成形方法及び任意の周知の成形装置を使用して製造することができる。例えば、押出成形でパイプを製造する場合、プロピレン系樹脂組成物をペレット化した後、単軸押出機に充填して高められたシリンダー温度で金型に押出成形し、所定の形状及び寸法をもったパイプを製造することができる。
 以下に実施例をあげて本発明をさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
〔試験方法〕
 本発明のプロピレン系樹脂組成物の性能及び該樹脂組成物から成形されたプロピレン系樹脂製配管部材(パイプ)の性能を以下に示す試験方法で評価する。
(1)メルトフローレート測定試験(MFR、単位:g/10分)
 JIS K7210に準拠して、混錬後のプロピレン系樹脂組成物のMFRを試験温度230℃、試験荷重2.16Kgで測定する。
(2)引張試験(単位:MPa)
 JIS K7113に準拠して、プロピレン系樹脂製パイプから引張試験片を切り出し、23±1℃の雰囲気中で引張試験を行い、試験片の引張強度及び引張弾性率を測定する。
(3)ノッチ付きアイゾット衝撃試験(単位:kJ/m
 JIS K7110に準拠して、プロピレン系樹脂製パイプからノッチ付きアイゾット衝撃試験片を切り出し、23±1℃及び0±1℃の雰囲気中で各々試験片のアイゾット衝撃強度を測定する。
(4)透明性試験(曇価(ヘイズ)、単位:%)
 JIS K7361に準拠して、ヘイズメータを用いて試験片のヘイズ値を測定する。ヘイズ値は透明性の指標であり、ヘイズ値が小さいほど、目視における試験片の透明感が良好であり、透明性が高いことを示す。
(5)示差走査熱量分析試験
 示差走査熱量計(Thermo plus DSC 8230、Rigaku社製)にて、シート状のサンプル片を5mgアルミパンに詰め、室温から10℃/分で230℃まで昇温して10分間の保持後、5℃/分で降温した際に検出するピークから結晶化エネルギー(ΔH)、そして結晶化度(単位:%)を算出する。また、その時の結晶化最大ピーク温度を結晶化温度(単位:℃)とする。
(6)高温クリープ試験
 DIN8078に準拠して、プロピレン系樹脂製パイプ1000mmに対し、95±1℃内圧0.7MPa(パイプ厚さ3.0mm、外径32mm、試験応力で3.5MPaに相当するパイプ内圧を次式(1)のNadayの式から算出)をかけ、破壊に至るまでの時間を測定する。
 パイプ内圧=(2×パイプ肉厚×試験応力)/(パイプ外径−パイプ肉厚)
                        ・・・(1)
〔試験手順及び評価基準〕
 配合組成を異にするいろいろなプロピレン系樹脂組成物を調製し、MFRの測定を行う。次いで、調製した樹脂組成物から押出成形によりパイプを製造する。得られたパイプについて各種機械的物性の評価を行う。ここで、本評価の合格条件とは、配管部材として好適に使用するために、特に高温域でバルブを使用した際の良好なシール性を得るためには引張弾性率が1100MPa以上であり、配管部材としての良好な耐衝撃性を得るためにはアイゾット衝撃強度が16kJ/m以上、長期使用でより望ましくは20kJ/m以上であり、高温流体で長期間使用するためには熱間内圧クリープ試験が1000時間以上であり、さらに配管部材内の流体の状態を目視確認するためには透明性として曇価(ヘイズ)が70%以下であることを満たすものとする。
実施例1
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化し、混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物を製造した。得られた樹脂組成物から、単軸押出機を用いてシリンダー温度210℃にて厚さ3.0mm、外径32mmのプロピレン系樹脂製パイプを成形し、パイプから各種試験用の試料を作製し、引張試験、ノッチ付きアイゾット衝撃試験、透明性試験、示差走査熱量分析試験、高温クリープ試験を実施した。結果を第1表に示す。
実施例2
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)2.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.54g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例3
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)8.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.59g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例4
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、リン酸エステル金属塩系結晶核剤(PPM ST−0451、東京インキ(株)製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例5
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、リン酸エステル金属塩系結晶核剤(PPM ST−0451、東京インキ(株)製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例6
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及び水素添加スチレン−ブタジエン系エラストマー(タフテックH1062、旭化成ケミカルズ(株)製:平均粒子径100nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例7
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)50質量部、プロピレン単独重合体(MFR0.5g/10分)50質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例8
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)70質量部、プロピレン単独重合体(MFR0.5g/10分)30質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からでパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例9
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)90質量部、プロピレン単独重合体(MFR0.5g/10分)10質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.57g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例10
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量1.0%、MFR0.5g/10分)100質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
実施例11
 前記実施例1に記載の手法を繰り返したが、本例では、エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及び水素添加スチレン−ブタジエン系エラストマー(平均粒子径600nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第1表に示す。
比較例1
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)15.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.76g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例2
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、及びノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.52g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例3
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR2.0g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが1.68g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例4
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例5
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、プロピレン単独重合体(MFR0.5g/10分)70質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及び水素添加スチレン−ブタジエン系エラストマー(タフテックN504、旭化成ケミカルズ(株)製:平均粒子径1μm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例6
 プロピレン単独重合体(MFR0.5g/10分)100質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例7
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)100質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
比較例8
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)10質量部、プロピレン単独重合体(MFR0.5g/10分)90質量部、ノニトール系結晶核剤(Millad NX8000、MILLIKEN製)0.2質量部、及びα−オレフィン系共重合体(NOTIO PN−2060、三井化学(株)製:平均粒子径20nm)5.0質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.56g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。なお、本例の場合、エチレン−プロピレンランダム共重合体のエチレン含有量は0.5質量部未満となる。結果を第2表に示す。
比較例9
 エチレン−プロピレンランダム共重合体(エチレン含有量3.2%、MFR0.5g/10分)30質量部、及びプロピレン単独重合体(MFR0.5g/10分)70質量部を配合し、二軸押出機にて混練してペレット化した。混練後のMFRが0.50g/10分となるプロピレン系樹脂組成物が得られた。得られた樹脂組成物からパイプを成形し、各種評価試験を実施した。結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記第1表及び第2表を参照すると、実施例1、7、8、及び9ならびに比較例6、7及び8において、エチレン含有量3.2%のエチレン−プロピレンランダム共重合体とプロピレン単独重合体の配合比を変えることでエチレン−プロピレンランダム共重合体のエチレン含有量を変化させている。各々の例において、エチレン含有量3.2%のエチレン−プロピレンランダム共重合体:プロピレン単独重合体の配合比と、エチレン−プロピレンランダム共重合体100質量部のエチレン含有量は、比較例7が100:0(エチレン含有量が約3.3質量部)、実施例9が90:10(エチレン含有量が約3.0質量部)、実施例8が70:30(エチレン含有量が約2.3質量部)、実施例7が50:50(エチレン含有量が約1.6質量部)、実施例1が30:70(エチレン含有量が約1.0質量部)、比較例8が10:90(エチレン含有量が約0.3質量部)、比較例6が0:100(エチレン含有量が0質量部)となる。このとき、エチレン含有量3.2%のエチレン−プロピレンランダム共重合体の方の割合が多い、すなわちエチレン−プロピレンランダム共重合体のエチレン含有量が多くなると、アイゾット衝撃強度は向上するが、引張強度及び引張弾性率が低下する。また、プロピレン単独重合体の方の割合が多い、すなわちエチレン−プロピレンランダム共重合体のエチレン含有量が少なくなると、引張強度及び引張弾性率は向上するが引張弾性率は高くなりすぎて、アイゾット衝撃強度が低下する。比較例7はアイゾット衝撃強度が高いものの引張強度及び引張弾性率が低く、配管部材として望ましい引張弾性率1100MPaよりも低くなっている。また、比較例6及び8は、引張強度及び引張弾性率が高いもののアイゾット衝撃強度が低く、配管部材として望ましい数値16kJ/mよりも低くなっている。これに対して、実施例1、7、8及び9に記載の結果は、配管部材として望ましい数値の許容範囲内である。また、実施例1及び10において、エチレン−プロピレンランダム共重合体のエチレン含有量が約1.0質量部で同等であり、物性値も同等のものが得られている。
 このことから、エチレン含有量が0.5~3.0質量部のエチレン−プロピレンランダム共重合体は、エチレン含有量が0.5~3.0質量部であるからこそ良好な引張強度及び引張弾性率と、アイゾット衝撃強度を有することができることがわかる。このとき、エチレン−プロピレンランダム共重合体をプロピレン単独重合体と、エチレン−プロピレンランダム共重合体の配合によって形成することが望ましく、押出成形や射出成形の成形方法に合わせて配合比を調節することで各成形方法に適したプロピレン樹脂組成物で形成することができるので好適である。その配合比は、混合されるエチレン−プロピレンランダム共重合体のエチレン含有量は2.5~4.0%であるときに、プロピレン単独重合体25~75質量部に対して、エチレン−プロピレンランダム共重合体75~25質量部を配合してなることが望ましい。
 また、上記第1表及び第2表に記載の結果より、実施例1ならびに比較例2、4及び9において、比較例9にエラストマーを添加した比較例4では引張強度及び引張弾性率が低下し、アイゾット衝撃強度は微増であり、ただエラストマーを添加しただけでは物性値は向上していないことがわかる。また、比較例9に結晶核剤を添加した比較例2では引張強度及び引張弾性率が向上し、曇価が低下することで透明性は向上する反面、アイゾット衝撃強度が低下するため配管部材として使用するには衝撃強度が不足することがわかる。エラストマーと結晶核剤の両方を添加した実施例1では、引張強度及び引張弾性率、透明性を悪化させることなく、さらにはエラストマーや結晶核剤を単体で添加させただけでは向上しなかったアイゾット衝撃強度を向上させている。このことから、平均粒子径10nm~800nmのエラストマーと結晶核剤との相乗効果により、高い引張強度及び引張弾性率、透明性を維持したままアイゾット衝撃強度を向上させ得ることがわかる。なお、結晶核剤は、エチレン−プロピレンランダム共重合体100質量部に対して微量添加すると良く、添加しすぎても効果は変わらないため、0.005~0.5質量部であることが好ましい。
 また、実施例1、6及び11ならびに比較例5において、エラストマーの平均粒子径が各々20nm、100nm、600nm、1μm(1000nm)としたときに、実施例1、6及び11では引張強度及び引張弾性率、アイゾット衝撃強度共に良好であるが、比較例5のようにエラストマーの平均粒子径が大きくなるとアイゾット衝撃強度が1/2未満までも低下することがわかる。ここで、実施例1では平均粒子径が20nmのα−オレフィン系共重合体、実施例6では平均粒子径100nmの水素添加スチレン−ブタジエン系エラストマー、実施例11では平均粒子径600nmの水素添加スチレン−ブタジエン系エラストマーであるが、結晶核剤との相乗効果は、エラストマーの平均粒子径が影響しており、エラストマーの材質が異なっていても同様の効果を得ることができる。なお、結晶核剤との相乗効果以外でも、配合したエラストマーの特性によって物性は変化する。良好な生産性を得るために、エラストマーの平均粒子径は10nm以上で小さいものが望ましく、良好な透明性を維持しながら良好な耐衝撃性を有するために、エラストマーの平均粒子径は10nm~800nmの範囲内である必要がある。このうち、α−オレフィン系共重合体は平均粒子径の小さいエラストマーを形成し易いため、好適なものとして挙げられる。
 また、実施例1、2及び3ならびに比較例1において、エラストマーの含有量を変化させた場合、エラストマーの配合量が増えるとアイゾット衝撃強度は向上するが、引張強度及び引張弾性率が低下することがわかる。また、エラストマーの配合量が減ると引張強度及び引張弾性率は向上するが、アイゾット衝撃強度が低下することがわかる。比較例1はアイゾット衝撃強度が高いものの引張強度及び引張弾性率が低く、配管部材として望ましい引張弾性率1100MPaよりも低くなり、エラストマー増量によるMFRの向上から熱間内圧クリープの強度も不足している。また、エラストマーを有しない比較例2は引張強度及び引張弾性率が高いもののアイゾット衝撃強度が低く、配管部材として望ましい数値16kJ/mよりも低くなっている。実施例1、2及び3に記載の結果は、配管部材として望ましい数値の許容範囲内である。これより、エチレン−プロピレンランダム共重合体100質量部に対して配合するエラストマーの量は1~10質量部である必要がある。なお、比較例2はエラストマーが配合されていないものだが、この場合、エラストマーと結晶核剤との相乗効果による引張強度、引張弾性率の向上がなくなり、アイゾット衝撃強度が低い値となっている。
 また、実施例1と実施例4を対比するに、実施例1がノニトール系結晶核剤を用いているのに対して実施例4ではリン酸エステル金属塩系の結晶核剤を用いていることから、実施例4では引張弾性率及び透明性が若干低くなっている。しかしながら、配管部材として使用するには十分許容範囲であるため、結晶核剤には有機系核剤であれば如何なる種類のものを用いても良いことがわかる。なお、有機系核剤の中でも糖類系核剤やリン酸系核剤を用いることが好ましく、糖類系核剤の中でもノニトール系結晶核剤は透明性や耐衝撃性を向上させるためにより好適である。また、実施例5ではノニトール系結晶核剤とリン酸エステル金属塩系の結晶核剤の2種類の結晶核剤を併用して配合しているが、実施例1と比べても殆ど悪影響は見られないことから、結晶核剤を併用して配合することも可能であることがわかる。複数の結晶核剤の配合は、引張強度及び引張弾性率と、アイゾット衝撃強度を変化させること無くその他の物性に更なる改良を加えたい時に好適である。また、結晶核剤は、良好な透明性を得ると共にエラストマーとの相乗効果による良好な耐衝撃性を有するために糖類系核剤や有機リン酸系核剤を用いることが望ましく、これらを併用しても良い。
 第1表及び第2表より、実施例1と比べて比較例3では、混練後のMFRが1.68g/10分となっているため、熱間内圧クリープ試験結果が500hrと実施例1の1/2未満となったことがわかる。また、混練後のMFRが1.00g/10分を越えるとパイプを押出成形する時にMFRが上昇するに応じてドローダウンが発生して成形が難しくなっていくため、良好な高温クリープ特性と押出成形性を有するために混練後のMFRは0.01~1.00g/10分である必要がある。
 以上のことから、エチレン−プロピレンランダム共重合体と平均粒子径10nm~800nmのエラストマーを必須成分として含有する本発明のプロピレン系樹脂製配管部材は、引張強度、引張弾性率、アイゾット衝撃強度などの機械的性能に優れ、高温クリープ特性にも優れることから、95℃の高温流体を長期間流すのに耐えうることができる。さらに、プロピレン系樹脂組成物に結晶核剤を配合することで、透明性が著しく向上し、配管内の流体への異物混入を目視確認できることから、異物混入を特に嫌う食品分野、医療分野、半導体製造分野などの様々な配管ラインに好適である。
 なお、本実施例では押出成形で作製したプロピレン系樹脂製パイプを用いているが、押出成形で作製した多層パイプや、射出成形で作製した継手、フランジ、バルブ、アクチュエータのケーシングなどの他の配管部材においても同様の効果が得られる。
 本発明のプロピレン系樹脂組成物は、各種の成形体の製造に有利に使用することができる。成形体は、その全体あるいは一部が本発明のプロピレン系樹脂組成物から製造されてよい。製造方法としては、押出成形法、射出成形法等の任意の成形法を、常用の成形装置を使用して有利に実施することができるが、必要に応じてその他の成形法を使用してもよい。適当な成形体の例には、特に限定されないが、押出成形で製造される単層もしくは多層のパイプ等、射出成形で製造される継手、フランジ、バルブ、アクチュエータのケーシング等が挙げられる。その他の例としては、プレート、タンク、ダクトが挙げられる。また、更に詳しくは、単層もしくは多層のパイプ、継手、フランジ、バルブ、アクチュエータのケーシング等の配管部材は、本発明のプロピレン系樹脂組成物を特に有利に使用することができる。

Claims (8)

  1.  エチレン含有量が0.5~3.0質量部のエチレン−プロピレンランダム共重合体(A)と、該エチレン−プロピレンランダム共重合体100質量部に対して1~10質量部の、平均粒子径10nm~800nmのエラストマー(B)と、結晶核剤(C)とを必須成分とし含有し、且つ混練後のメルトフローレートが0.01~1.00g/10分であることを特徴とするプロピレン系樹脂組成物。
  2.  前記エチレン−プロピレンランダム共重合体(A)が、プロピレン単独重合体25~75質量部と、エチレン−プロピレンランダム共重合体75~25質量部とを配合してなることを特徴とする請求項1に記載のプロピレン系樹脂組成物。
  3.  前記結晶核剤(C)が、糖類系核剤及び/または有機リン酸系核剤であることを特徴とする請求項1又は2に記載のプロピレン系樹脂組成物。
  4.  95℃の雰囲気下で3.5MPaの引張荷重をかけたクリープ特性において、破断に至るまでの時間が1000時間以上であることを特徴とする請求項1~3のいずれか1項に記載のプロピレン系樹脂組成物。
  5.  配管部材の成形材料であることを特徴とする請求項1~4のいずれか1項に記載のプロピレン系樹脂組成物。
  6.  請求項1~5のいずれか1項に記載のプロピレン系樹脂組成物を成形してなることを特徴とする成形体。
  7.  前記成形体が、パイプ、多層パイプ、プレート、タンク、ダクト、継手、フランジ、バルブ又はアクチュエータのケーシングであることを特徴とする請求項6に記載の成形体。
  8.  請求項1~4のいずれか1項に記載のプロピレン系樹脂組成物の成形体から少なくとも一部が構成されていることを特徴とする配管部材。
PCT/JP2011/051024 2010-02-08 2011-01-14 プロピレン系樹脂組成物及び成形体 WO2011096282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011552727A JPWO2011096282A1 (ja) 2010-02-08 2011-01-14 プロピレン系樹脂組成物及び成形体
US13/577,846 US8778471B2 (en) 2010-02-08 2011-01-14 Propylene resin composition and molded article
EP11739631.7A EP2535374A4 (en) 2010-02-08 2011-01-14 PROPYLENE RESIN COMPOSITION AND MOLDED PRODUCTS
CN201180008659.6A CN102753616A (zh) 2010-02-08 2011-01-14 丙烯系树脂组合物以及成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010025628 2010-02-08
JP2010-025628 2010-02-08

Publications (1)

Publication Number Publication Date
WO2011096282A1 true WO2011096282A1 (ja) 2011-08-11

Family

ID=44355284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051024 WO2011096282A1 (ja) 2010-02-08 2011-01-14 プロピレン系樹脂組成物及び成形体

Country Status (6)

Country Link
US (1) US8778471B2 (ja)
EP (1) EP2535374A4 (ja)
JP (1) JPWO2011096282A1 (ja)
CN (1) CN102753616A (ja)
TW (1) TWI513717B (ja)
WO (1) WO2011096282A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216814A (ja) * 2012-04-11 2013-10-24 Japan Polypropylene Corp プロピレン系樹脂組成物および成形品
CN103509255A (zh) * 2012-06-27 2014-01-15 合肥杰事杰新材料股份有限公司 一种阻燃抗静电ppr管材料及其制造方法
JP2016098338A (ja) * 2014-11-25 2016-05-30 大日精化工業株式会社 ポリオレフィン樹脂組成物及び該組成物によって成形された成形体
AU2013271955B2 (en) * 2012-06-06 2016-09-29 Saint-Gobain Performance Plastics Corporation Thermoplastic elastomer tubing and method to make and use same
US9670351B2 (en) 2009-12-29 2017-06-06 Saint-Gobain Performance Plastics Corporation Flexible tubing material and method of forming the material
WO2021193813A1 (ja) * 2020-03-27 2021-09-30 サンアロマー株式会社 ポリプロピレン組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535374A4 (en) * 2010-02-08 2014-04-02 Asahi Organic Chem Ind PROPYLENE RESIN COMPOSITION AND MOLDED PRODUCTS
CN104448538B (zh) * 2013-09-18 2017-02-15 中国石油化工股份有限公司 聚丙烯组合物及其制备方法和由其制得的制品
CN105849141B (zh) 2013-10-29 2020-10-16 格雷斯公司 适用于管道的丙烯乙烯无规共聚物
WO2018028921A1 (en) 2016-08-11 2018-02-15 Sabic Global Technologies B.V. Pipe produced with a polymer composition
KR20180103570A (ko) * 2017-03-10 2018-09-19 현대자동차주식회사 폴리프로필렌 수지 조성물 및 이의 성형품
KR102060900B1 (ko) * 2017-12-19 2020-02-11 (주)휴이노베이션 반균질상의 폴리프로필렌/프로필렌공중합체 폴리머 조성물
EP3890541A1 (en) 2018-12-04 2021-10-13 Mips Ab Helmet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179684A (ja) * 1993-12-21 1995-07-18 Tonen Chem Corp 低溶出性ポリプロピレン樹脂組成物
JPH0812827A (ja) * 1994-06-28 1996-01-16 Ube Ind Ltd ポリプロピレン組成物
JPH09124857A (ja) * 1995-10-30 1997-05-13 Nippon Poriorefuin Kk ポリプロピレン系樹脂組成物及びその製造方法
JP3315015B2 (ja) 1994-12-12 2002-08-19 住友ベークライト株式会社 ポリプロピレン系シート
JP2004196959A (ja) * 2002-12-18 2004-07-15 Asahi Organic Chem Ind Co Ltd 配管部材用プロピレン系樹脂組成物及びそれを成形してなる配管部材
JP2005163983A (ja) 2003-12-05 2005-06-23 Bridgestone Flowtech Corp 飲食配管用管継手及びその製造方法
JP2007186664A (ja) * 2005-03-18 2007-07-26 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2007321100A (ja) * 2006-01-20 2007-12-13 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、該ペレットからなる熱可塑性重合体用改質剤、熱可塑性樹脂組成物の製造方法
JP2007321102A (ja) * 2006-01-20 2007-12-13 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344421B2 (ja) * 1999-04-26 2009-10-14 住友化学株式会社 熱可塑性樹脂組成物及びその射出成形体
JP3873708B2 (ja) * 2001-10-26 2007-01-24 住友化学株式会社 熱可塑性樹脂組成物及びその射出成形体
US20050234172A1 (en) * 2004-04-19 2005-10-20 Fina Technology, Inc. Random copolymer-impact copolymer blend
DE102005038865B4 (de) * 2004-08-19 2021-05-12 Sumitomo Chemical Co., Ltd. Verfahren zur Herstellung einer Harzzusammensetzung auf Propylenbasis, Harzzusammensetzung auf Propylenbasis und spritzgegossener Gegenstand
CN101142272B (zh) * 2005-03-18 2012-09-05 三井化学株式会社 丙烯基聚合物组合物、其用途以及用于制造热塑性聚合物组合物的方法
TWI391410B (zh) 2005-05-18 2013-04-01 Mitsui Chemicals Inc 間規α-烯烴聚合體之製造方法及丙烯系共聚合體之製造方法
JP5201784B2 (ja) * 2005-07-01 2013-06-05 旭有機材工業株式会社 配管部材用プロピレン系樹脂組成物並びにそれを用いて成形した配管部材および多層配管部材
US7915345B2 (en) * 2006-06-08 2011-03-29 Exxonmobil Chemical Patents Inc. Solution blending process for preparing thermoplastic vulcanizates
US7935761B2 (en) * 2006-06-08 2011-05-03 Exxonmobil Chemical Patents Inc. Process for preparing articles
TW200828458A (en) * 2006-12-25 2008-07-01 Siliconware Precision Industries Co Ltd Semiconductor package and fabrication method thereof and stack structure
JP5241111B2 (ja) * 2007-02-16 2013-07-17 旭有機材工業株式会社 プロピレン系樹脂組成物及びそれを用いて成形した配管部材
WO2009054548A1 (ja) * 2007-10-26 2009-04-30 Sumitomo Chemical Company, Limited プロピレン系樹脂組成物およびその成形体
JP5053907B2 (ja) * 2008-03-31 2012-10-24 キョーラク株式会社 軽量空調ダクト
JP5620998B2 (ja) * 2009-11-25 2014-11-05 ダウ グローバル テクノロジーズ エルエルシー 低ヘイズおよび高透明性を有するポリマー成形品
EP2535374A4 (en) * 2010-02-08 2014-04-02 Asahi Organic Chem Ind PROPYLENE RESIN COMPOSITION AND MOLDED PRODUCTS
US8748539B2 (en) * 2011-05-24 2014-06-10 Braskem America, Inc. Propylene impact copolymers having good optical properties

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179684A (ja) * 1993-12-21 1995-07-18 Tonen Chem Corp 低溶出性ポリプロピレン樹脂組成物
JPH0812827A (ja) * 1994-06-28 1996-01-16 Ube Ind Ltd ポリプロピレン組成物
JP3315015B2 (ja) 1994-12-12 2002-08-19 住友ベークライト株式会社 ポリプロピレン系シート
JPH09124857A (ja) * 1995-10-30 1997-05-13 Nippon Poriorefuin Kk ポリプロピレン系樹脂組成物及びその製造方法
JP2004196959A (ja) * 2002-12-18 2004-07-15 Asahi Organic Chem Ind Co Ltd 配管部材用プロピレン系樹脂組成物及びそれを成形してなる配管部材
JP2005163983A (ja) 2003-12-05 2005-06-23 Bridgestone Flowtech Corp 飲食配管用管継手及びその製造方法
JP2007186664A (ja) * 2005-03-18 2007-07-26 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2007321100A (ja) * 2006-01-20 2007-12-13 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、該ペレットからなる熱可塑性重合体用改質剤、熱可塑性樹脂組成物の製造方法
JP2007321102A (ja) * 2006-01-20 2007-12-13 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUBBER ZAIRYO NO HAIGO GIJUTSU TO NANO COMPOSITE, 31 July 2003 (2003-07-31), pages 31, 32, XP008161834 *
See also references of EP2535374A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670351B2 (en) 2009-12-29 2017-06-06 Saint-Gobain Performance Plastics Corporation Flexible tubing material and method of forming the material
JP2013216814A (ja) * 2012-04-11 2013-10-24 Japan Polypropylene Corp プロピレン系樹脂組成物および成形品
AU2013271955B2 (en) * 2012-06-06 2016-09-29 Saint-Gobain Performance Plastics Corporation Thermoplastic elastomer tubing and method to make and use same
US9987784B2 (en) 2012-06-06 2018-06-05 Saint-Gobain Performance Plastics Corporation Thermoplastic elastomer tubing and method to make and use same
CN103509255A (zh) * 2012-06-27 2014-01-15 合肥杰事杰新材料股份有限公司 一种阻燃抗静电ppr管材料及其制造方法
JP2016098338A (ja) * 2014-11-25 2016-05-30 大日精化工業株式会社 ポリオレフィン樹脂組成物及び該組成物によって成形された成形体
WO2021193813A1 (ja) * 2020-03-27 2021-09-30 サンアロマー株式会社 ポリプロピレン組成物

Also Published As

Publication number Publication date
US20120305123A1 (en) 2012-12-06
EP2535374A4 (en) 2014-04-02
JPWO2011096282A1 (ja) 2013-06-10
TWI513717B (zh) 2015-12-21
CN102753616A (zh) 2012-10-24
EP2535374A1 (en) 2012-12-19
TW201136952A (en) 2011-11-01
US8778471B2 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
WO2011096282A1 (ja) プロピレン系樹脂組成物及び成形体
EA029175B1 (ru) Композиция зародышеобразователя и термопластичная полимерная композиция, содержащая такую композицию зародышеобразователя
JP2016089176A (ja) ポリプロピレン系樹脂組成物及び成形品
KR101066534B1 (ko) 프로필렌계 수지조성물을 이용하여 성형한 배관부재
KR100842162B1 (ko) 투명성 및 내충격성이 우수한 폴리프로필렌 수지 조성물 및이로부터 제조된 수지 성형품
JP2013036018A (ja) 透明性及び防湿性に優れた樹脂組成物、並びに、それを成形してなるシート
JP6512054B2 (ja) 樹脂組成物の製造方法
KR20100017186A (ko) 배관부재
JP2013023647A (ja) ポリエチレン系樹脂組成物および、それよりなるチューブ容器
JP2005146013A (ja) 自動車外装用樹脂組成物およびその用途
JP2005314474A (ja) プロピレン樹脂組成物およびその用途
JP3969166B2 (ja) 難白化組成物及びそのシート
WO2019188339A1 (ja) ゴム組成物およびそれを用いた混練機表面への粘着性の低減方法
JP6379739B2 (ja) 高剛性多層フィルム
JP2004194803A (ja) 医療用チューブ
KR20130000129A (ko) 폴리프로필렌 수지 조성물, 이의 제조 방법 및 이로 제조된 필름
JP6335583B2 (ja) プロピレン系樹脂組成物、及びそれから成形された配管部材及びタンクから選ばれた製品
JP5125067B2 (ja) ポリプロピレン系樹脂組成物ならびに、それからなるシートおよび容器
KR100553636B1 (ko) 1-부텐계 중합체 조성물로 이루어지는 수배관 설비
JP4302554B2 (ja) 1−ブテン系重合体組成物からなる水配管設備
KR20230067351A (ko) 성형성이 우수한 사출 연신 블로우 성형용 폴리프로필렌 수지 조성물
JP2022148266A (ja) 熱可塑性樹脂組成物および成形体
JP2010254882A (ja) プロピレン系樹脂組成物およびそれを用いた透明厚肉容器
KR20120113421A (ko) 낙구 내충격성이 우수한 폴리프로필렌 수지 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008659.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13577846

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011739631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011739631

Country of ref document: EP