WO2011096021A1 - ショートパッチアンテナ装置及びその製造方法 - Google Patents

ショートパッチアンテナ装置及びその製造方法 Download PDF

Info

Publication number
WO2011096021A1
WO2011096021A1 PCT/JP2010/002021 JP2010002021W WO2011096021A1 WO 2011096021 A1 WO2011096021 A1 WO 2011096021A1 JP 2010002021 W JP2010002021 W JP 2010002021W WO 2011096021 A1 WO2011096021 A1 WO 2011096021A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
conductor plate
patch antenna
slit
antenna device
Prior art date
Application number
PCT/JP2010/002021
Other languages
English (en)
French (fr)
Inventor
桶川弘勝
宮前貴宣
岩倉崇
西岡泰弘
▲柳▼崇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2011096021A1 publication Critical patent/WO2011096021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the present invention relates to a short patch antenna device capable of transmitting and receiving radio waves by resonating at a 1 ⁇ 4 wavelength of a use frequency by short-circuiting a radiating conductor and a ground conductor, and a method of manufacturing the same. .
  • Short patch antennas include those that are fed by a microstrip line as described in Patent Document 1, and those that are fed by a coaxial line as described in Patent Document 2.
  • the short patch antenna has a structure in which a conductor layer is formed on a dielectric substrate (for example, see FIGS. 1 and 3 of Patent Document 1), or a structure in which a single metal plate is bent (for example, a patent). (See FIGS. 1 to 7 and FIG. 10) of Document 2).
  • a patch antenna is used as a transmission / reception antenna used in a wireless communication device such as an antenna for UHF band or micro band RFID (Radio Frequency Identification) reader / writer.
  • a wireless communication device such as an antenna for UHF band or micro band RFID (Radio Frequency Identification) reader / writer.
  • UHF band or micro band RFID Radio Frequency Identification
  • the conventional short patch antenna has a complicated structure. “Small size of the radiating conductor obtained from a short circuit between the radiating conductor and the ground conductor may not be enough.” There are various problems such as “the wave component may not be increased”.
  • a short patch antenna using a dielectric substrate has a wavelength shortening effect according to the relative dielectric constant of the dielectric substrate, so that the radiation conductor can be reduced in size.
  • There is a limit to increasing the substrate thickness of the body substrate and as a result, there is a limit to increasing the current component in the short-circuit direction in the short-circuit conductor formed on the dielectric substrate.
  • FIG. 1 of Patent Document 1 there is a problem that the structure becomes complicated when a through hole is used for a short-circuit conductor. Furthermore, it is difficult to form a short-circuit conductor pattern on the side surface of the dielectric substrate in place of the through hole.
  • the antenna element is made of a metal plate, there are problems such as low impact resistance, difficulty in securing dimensional tolerances, and unstable antenna element thickness.
  • the present invention has been made to solve the above problems, and even with a simple structure, the selection of the conductor thickness of the antenna, the position of the feeding point, the antenna element shape, etc. can be easily adjusted.
  • Another object of the present invention is to provide a novel short patch antenna device that can be miniaturized and a method for manufacturing the same.
  • the short patch antenna device is constituted by a bent integrated conductor plate, and is formed on a radiation conductor surface formed on one opposing surface of the conductor plate, and on the other opposing surface of the conductor plate.
  • An antenna element having a formed ground conductor surface, a hole formed in the ground conductor surface, a slit portion in which a side of the radiation conductor surface is cut out, and the radiation conductor surface through the hole.
  • the extending inner conductor is electrically connected to the radiation conductor surface, and the outer conductor is filled between the radiation conductor surface of the antenna element and the ground conductor surface, and the outer conductor is grounded to the ground conductor surface. And a resin.
  • the manufacturing method of the short patch antenna device includes a U-shaped notch on the conductor plate, and a region opposite to the region of the conductor plate surrounded by the U-shaped notch. Area of the conductor plate in which the slit portion is formed with respect to the slit portion in which the side of the conductor plate is cut out and the area of the conductor plate in which the U-shaped cutout portion is formed.
  • a conductor plate processing step of forming a hole in a region on the opposite side, and a tip of a bifurcated portion in the U-shaped notch of the conductor plate so as to convert the U-shaped notch into an opening A first bending step in which a portion is bent so that the region of the conductive plate in which the U-shaped cutout portion is formed and the region of the conductive plate in which the hole portion is formed are in another plane; The U-shaped notch or the opening of the conductor plate and the slot The region between the conductive plate and the U-shaped notch or the opening is formed, and the region of the conductive plate where the slit is formed are separated.
  • the antenna element composed of the radiation conductor surface, the ground conductor surface, and the like is composed of a single conductor plate, and it is easy to downsize the entire apparatus by the resin and the slit portion.
  • the main configuration of the coaxial line in the space sandwiched between the radiating conductor surface and the grounding conductor surface can be used as the inner conductor, and there are many options for setting the feed point on the radiating conductor surface. Because the resin filled between the radiating conductor surface and the ground conductor surface of the antenna element fixes the radiating conductor surface and the ground conductor surface, and the slit portion can be adjusted, resulting in the dimensional tolerance of the conductor plate. It is easy to adjust the impedance mismatch between the feed point (antenna element) and the feed line (coaxial line), and a small short patch antenna device with stable performance can be obtained.
  • the shape of one conductor plate is processed and bent to form an antenna element, so that it is easy to downsize the entire apparatus with a resin or a slit portion, and the antenna element is
  • the main configuration of the coaxial line in the space sandwiched between the radiating conductor surface and the grounding conductor surface can be used as the inner conductor, and the options for setting the feed point on the radiating conductor surface can be increased. Since the slit can be adjusted, it is easy to adjust the impedance mismatch between the feed point (antenna element) and the feed line (coaxial line) due to the dimensional tolerance of the conductor plate, and the performance A stable manufacturing method of a short patch antenna device can be obtained.
  • FIG. 5 is a perspective view of the short patch antenna device according to Embodiments 1 to 4 of the present invention in a state where the housing is not seen through.
  • a cross-sectional image diagram is a cross-sectional view in which a coaxial line passes through a conductor plate that constitutes an antenna element, and the coaxial line is viewed from the side rather than the cross-section. 1 to 18, the end of the coaxial line connected to the antenna element on the opposite side to the antenna element is broken in the drawing.
  • a wireless communication device such as an RFID reader / writer. Since the connection target is omitted, the description is as shown in FIGS.
  • a resin bush or a heat shrinkable tube attached to the coaxial line may be omitted.
  • FIG. Embodiment 1 of the present invention will be described below with reference to FIGS.
  • FIG. 1A is an antenna configuration diagram in which the side surface of the housing of the short patch antenna device is seen through
  • FIGS. 1B and 1C are antenna configuration diagrams in which the housing of the short patch antenna device and a dielectric (resin) are seen through
  • 2 (a) is a top view of an integrated conductor plate
  • FIG. 2 (b) is a conceptual diagram showing a shape to be processed into an integrated conductor plate
  • FIGS. 2 (c) and 3 (a) are integrated conductor plates.
  • 2 (d) and 2 (e) are views after the conductor plate processing step (when two slit portions are formed) on the integrated conductor plate.
  • FIG. 1A is an antenna configuration diagram in which the side surface of the housing of the short patch antenna device is seen through
  • FIGS. 1B and 1C are antenna configuration diagrams in which the housing of the short patch antenna device and a dielectric (resin) are seen through.
  • FIG. 3B is a view of the conductor plate viewed from the opening side after the conductor plate facing process is performed on the integrated conductor plate, and FIG. The figure which looked at the conductor board from the radiation conductor surface side after giving a conductor board opposition process, Drawing 3 (d) from dashed-dotted line AB given in Drawing 3 (c)
  • FIG. 3E is a perspective view after the conductor plate facing process is performed on the integral conductor plate
  • FIG. 4A is a diagram in which a coaxial line is inserted into the antenna element
  • FIG. 4B is a diagram in which the inner conductor of the coaxial line is soldered to the radiation conductor surface of the antenna element
  • FIG. 4C is a diagram in which an insulation bush is attached to the coaxial line
  • FIG. 5 (a) shows the antenna element connected to the coaxial line on the housing
  • Fig. 5 (b) shows the heat-shrinkable tube attached to the coaxial line
  • FIG. 5C is a view in which the housing is filled with a dielectric resin and the antenna element is sealed.
  • reference numeral 1 denotes an integral (one) conductor plate (including a state before bending and a state after bending for convenience), and 2 includes a bent integral conductor plate 1.
  • Radiating conductor surface formed on one opposing surface (including the state before the conductor plate 1 is bent for convenience) 3 is composed of the bent integrated conductor plate 1
  • the ground conductor surface formed on the surface (the state before the conductor plate 1 is bent is also included for convenience)
  • 4 is composed of a bent integrated conductor plate 1
  • the conductor plate 1 is composed of the radiation conductor surface 2 and the ground conductor surface 3 Are short-circuited side surfaces (the state before bending of the conductor plate 1 is also included for convenience)
  • 5 is a hole formed in the ground conductor surface 3
  • 6 is a hole formed in the radiation conductor surface 2.
  • Reference numeral 7 denotes two slit portions formed opposite to each other on both sides of the radiating conductor surface 2, and the shape is not limited to the rectangular shape shown in the figure, and the radiation is radiated in such a shape that a wavelength shortening effect can be obtained. Any notch formed on the conductor surface 2 may be used. Further, the slit portion 7 does not need to be formed symmetrically on the two opposite sides of the radiation conductor surface 2 and may be only one side (the slit portion 7 in which the side of the radiation conductor surface 2 is cut out). A plurality may be formed along two opposing sides.
  • the outer conductor plate 11 is a cylindrical insulating film covering the inner conductor
  • 12 is a resin bush (bearing tube)
  • 13 is a heat shrinkable tube.
  • an insulating film 11 exists between the inner conductor 9 and the outer conductor plate 10, and the inner conductor 9 and the outer conductor plate 10 are insulated.
  • the outermost shell of the coaxial line 8, that is, the outer conductor plate 10 is also described using the one coated with a cylindrical insulating film.
  • the portion designated as the coaxial line 8 indicates the portion of the insulating film that is the outermost shell of the coaxial line 8.
  • the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
  • reference numeral 14 denotes an enclosure having an opening and a bottom, the opening and the bottom being surrounded by four sides, and holding an antenna element at the bottom, and a coaxial line 8 ( A recess or a hole for fixing or arranging the bush 12 is provided.
  • Reference numeral 15 denotes a rib portion for supporting the antenna element provided at the bottom of the housing 14 for holding the antenna element at the bottom of the housing 14.
  • the rib portion 15 may be integrated with the housing 14 or separate. But you can.
  • the protrusion may be shaped to fit with the slit portion 7. This fitting includes a state in which the fitting is not exactly engaged.
  • the housing 14 may not have the rib portion 15.
  • Reference numeral 16 denotes a dielectric resin (corresponding to a dielectric substrate) which is a thermosetting resin such as an epoxy resin.
  • the bush 12 and the heat shrinkable tube 13 are for preventing the resin 16 filled in the housing 14 from leaking from the housing 16, and the bush 12 and the heat shrinkable tube 13 may be integrated.
  • Reference numeral 17 denotes an opening which is an opening cut out at least to the side of the grounding conductor surface 3 on the short-circuit side surface 4, and 18 denotes an outer conductor mounting which extends from a portion in contact with the opening 17 on the grounding conductor surface 3 and is integral with the conductor plate 1.
  • the antenna element whose radiating conductor surface 2 (patch) is grounded to the ground conductor surface 3 by the short-circuit side surface 4 is fed by the coaxial line 8.
  • the antenna element and the coaxial line 8 are held by the housing 14.
  • the casing 14 is filled with a resin 16 filled around the antenna element. Therefore, by using the housing 14, a dielectric layer made of the resin 16 can be easily formed in a space surrounded by the radiation conductor surface 2, the ground conductor surface 3, and the short-circuit side surface 4 formed by the conductor plate 1. Since the wavelength shortening effect according to the relative dielectric constant of 16 is obtained, the antenna element (radiation conductor surface 2) of the short patch antenna device can be downsized.
  • the slit portion 7 cut out in the same direction as the bending direction of the conductor plate 1 is formed on the radiation conductor surface 2 which is the radiation surface of the antenna, the wavelength shortening effect by the slit portion 7 The radiation conductor surface 2 is shortened, and the short patch antenna device can be further downsized.
  • the feeding point of the short patch antenna device according to the first embodiment is illustrated in FIGS. 1 (a) to 1 (c) as being disposed between two opposing slit portions 7 on the radiation conductor surface 2.
  • the position of the feeding point is not limited to this position as long as it is on the radiation conductor surface 2 (in the other embodiments, the above can be said regarding the feeding point).
  • the hole of the ground conductor surface 3 is formed in the space filled with the resin 16 between the radiation conductor surface 2 and the ground conductor surface 3 constituting the antenna element.
  • the inner conductor 9 or the inner conductor 9 with the insulating film 11 is inserted, so that the outer conductor plate 10 of the coaxial line 8 is grounded to the outer conductor placing portion 18 and the coaxial line 8 is By fixing to the body 14, power supply using a coaxial connector is not required, so that the entire apparatus can be reduced in size. Moreover, even if it is necessary to move the feeding point closer to the short-circuit side surface 4 side by adjusting the dimensions of the antenna (conductor plate 1) performed for impedance matching between the feeding point and the feeding line (coaxial line 8), As shown in FIG. 1, particularly FIG. 1 (c), the feeding point can be easily moved because of a simple structure that does not require another member other than the conductor plate 1 or the coaxial connector as described above.
  • FIG. 2A shows the upper surface of the conductor plate 1 before bending, which is the base of the antenna element.
  • a conductor plate processing step a region opposite to the region of the conductor plate 1 surrounded by the U-shaped cutout portion 19 and the U-shaped cutout portion (finally, radiation) Of the conductor plate 1 in which two slit portions 7 formed opposite to each other on both sides of the opposing conductor plate 1 and a U-shaped cutout portion 19 are formed.
  • the hole 6 is formed in.
  • the conductor plate processing step may be performed by processing the dotted line portion of the conductor plate 1 shown in FIG. 2B using a general sheet metal processing method.
  • the order in which the U-shaped notch 19, slit 7, hole 5, and hole 6 are formed is not particularly limited. Further, the U-shaped cutout portion 19, the slit portion 7, the hole portion 5, and the hole portion 6 may be simultaneously formed by a technique such as die cutting.
  • the U-shaped notch 19 may have a linear outer shape as shown in FIGS.
  • the U shape includes shapes such as a V shape and a C shape. This is because the notch portion 19 is formed on the short-circuit side surface 4 of the antenna element, and the notch portion 19 formed on the short-circuit side surface 4 that is a short-circuit conductor has little influence on the operation of the short patch antenna device. is there.
  • the conductor plate 1 shown in FIG. 2 (c) is obtained.
  • Conductor plate facing step is performed to face the regions.
  • the conductor plate facing process is a process including a first folding process and a second folding process shown in FIG. 3, but the order of execution of the first folding process and the second folding process is not limited. .
  • the 1st bending process and the 2nd bending process may be performed simultaneously, and the above-mentioned conductor board processing process may be performed simultaneously.
  • the conductor plate 1 may perform a conductor board processing process after a conductor board opposing process.
  • the conductor plate 1 has a short-circuit side surface 4 having an opening 17 and a ground conductor surface, as shown in FIGS. 3 is obtained in a shape protruding from the short-circuit side surface 4 and the ground conductor surface 3 from the line segment in contact with the conductor plate 1. From such processing, the ground conductor surface 3 and the outer conductor placement portion 18 become substantially horizontal, but may be separately angled.
  • FIGS. 2D and 2E the two slit portions 7 are formed at two locations as an example.
  • FIG. 2D shows a case in which a hole 6 (feeding point) is arranged between two slits 7 on the short-circuit side surface 4 side, and FIG.
  • the conductor plate facing step is common to the conductor plate 1 shown in FIGS. 2 (c) to 2 (e).
  • the front end portion of the bifurcated portion of the U-shaped notch 19 of the conductor plate 1 is bent so as to convert the U-shaped notch 19 into the opening 17.
  • the region of the conductor plate 1 in which the cutout portion 19 is formed and the region of the conductor plate 1 in which the hole portion 5 is formed are set to different planes, and the ground conductor surface 3 and the short-circuit side surface 4 An angle difference of 180 ° or less is given to the two surfaces.
  • the bending line X shown in FIG. 3A is performed by bending it in the bending direction Xd of the first bending step.
  • the U-shaped notch 19 or opening 17 of the conductor plate 1 is bent by bending a region between the U-shaped notch 19 or opening 17 and the slit 7.
  • the region of the conductor plate 1 in which the holes 6 and the slits 7 are formed are formed in different planes, and the radiation conductor surface 2 and the short-circuit side surface 2 An angle difference of 180 ° or less is added to the surface. Specifically, it is performed by folding the folding line Y shown in FIG. 3A in the folding direction Yd in the second folding process.
  • the conductor plate 1 after the conductor plate facing step constitutes an antenna element.
  • the shape is as shown in FIGS. 3B to 3E. 3B, 3D, and 3E, it can be seen that the opening 7 is formed on the short-circuit side surface 4, and the outer conductor mounting portion 18 is provided on the opening 7 on the ground conductor surface 3 side. It can be seen from FIGS. 3C and 3E that the slit portion 7 is formed on the radiation conductor surface 2.
  • the antenna element is completed by attaching (fixing) the coaxial line 8 to the conductor plate 1 in the conductor plate processing step and the conductor plate facing step (in the present application, even when the coaxial line 8 is not yet attached, the antenna element is referred to as an antenna element). is there).
  • the coaxial line attachment process for that purpose will be described with reference to FIG. First, the inner conductor 9 at the tip portion of the coaxial line 8 is exposed, and the subsequent stage is such that the inner conductor 9 with the insulating coating 11 and the insulating coating 11 are covered with the outer conductor plate 10 in order, as shown in FIG.
  • the coaxial line 8 is inserted into the ground conductor surface 3 through the hole 5, the inner conductor 9 at the tip of the coaxial line 8 is extended, and the tip of the inner conductor 9 is inserted into the hole 6. Insert into.
  • the inner conductor 9 at the tip portion inserted into the hole 6 is electrically connected and fixed by the electric connecting means 9a. Thereby, the inner conductor 9 of the coaxial line 8 and the radiation conductor surface 2 are conducted.
  • the continuity between the inner conductor 9 of the coaxial line 8 and the radiating conductor surface 2 is achieved by directly connecting the inner conductor 9 of the coaxial line 8 to the radiating conductor surface 2 (at the feeding point) without providing the hole 6 in the radiating conductor surface 2.
  • the bush 12 is attached to the coaxial line 8 (FIG. 4C).
  • the outer conductor plate is placed on the outer conductor mounting portion 18 which is a region extending from a portion in contact with the opening 17 continuously with the region of the conductor plate 1 in which the hole 5 is formed. 10 are electrically connected by the electrical connecting means 10a.
  • the order of the steps shown in FIGS. 4B, 4C and 4D is not limited.
  • the antenna element with the coaxial line 8 attached is placed in the housing 14 and the resin 16 is filled around the conductor plate 1 to complete the short patch antenna device according to the first embodiment.
  • a lid may be attached to the housing 14, but as shown in FIG. 5C, one surface of the solidified resin 16 is used as an outer shell of the short patch antenna device according to the first embodiment.
  • the antenna element arranging step and the sealing step will be described in detail. First, as shown in FIGS. 5A and 5B, the radiation conductor surface 2 is placed on the rib portion 15 at the bottom of the housing 14, and the bush 12 is placed on the edge of the housing 14.
  • FIG. 5C shows the short patch antenna device after solidification.
  • a modification of the short patch antenna device according to Embodiment 1 will be described with reference to FIGS. 4 and 5 is different from the antenna element and the short patch antenna device described in FIGS. 4 and 5 in that the inner conductor 9 of the coaxial line 8 is different from at least the portion from the hole 5 to the radiation conductor surface 2 and the other portions. It is a point which is a member. In this case, it is possible to employ a conductor having a shape superior to the inner conductor 9 when encapsulating the resin in the portion from the hole 5 to the radiation conductor surface 2. Since the modification (manufacturing method) of the short patch antenna device according to the first embodiment is different from the method of manufacturing the short patch antenna device according to the first embodiment in the coaxial line attaching step, this different part will be described.
  • FIG. 6A is a diagram in which a conductor covered with an insulating film is inserted into the antenna element
  • FIG. 6B is a diagram in which the conductor covered with the insulating film is soldered to the radiation conductor surface of the antenna element.
  • 6 (c) is a diagram in which an inner conductor of a coaxial line and a conductor covered with an insulating film are brought into contact with each other
  • FIG. 6 (d) is a diagram in which an insulation bush is attached to the coaxial line
  • FIG. 6 (e) is an antenna element.
  • FIG. 6F is a diagram in which the outer conductor of the coaxial line is soldered to the outer conductor mounting portion of FIG. 6, FIG.
  • FIG. 6F is a diagram in which the inner conductor of the coaxial line and the conductor covered with the insulating film are soldered
  • FIG. Fig. 7 (b) is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • Fig. 7 (c) is a diagram in which the housing is filled with a dielectric resin. It is the figure which sealed the antenna element.
  • reference numeral 20 denotes a linear conductor
  • 20a denotes an electrical connection means such as soldering for electrically connecting the linear conductor 20 and the radiation conductor surface 2
  • 20b denotes the linear conductor 20 and the inner conductor 9.
  • Electrical connection means 21 such as soldering for electrical connection
  • 21 is an insulating coating that covers the wire conductor 20 with the tip and base ends exposed.
  • the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
  • the conduction between the linear conductor 20 and the radiating conductor surface 2 is achieved by soldering the linear conductor 20 directly to the radiating conductor surface 2 (feeding point portion) without providing the hole 6 in the radiating conductor surface 2. Also good.
  • the distal end portion of the inner conductor 9 of the coaxial line 8 is brought into contact with the proximal end portion (hole 5 side) of the linear conductor 20 (FIG. 6C).
  • the bush 12 is attached to the coaxial line 8 (FIG. 6D).
  • the outer conductor plate is placed on the outer conductor mounting portion 18 which is a region extending from a portion in contact with the opening 17 continuously with the region of the conductor plate 1 in which the hole 5 is formed.
  • FIGS. 6B to 6F The order of the steps shown in FIGS. 6B to 6F is not limited.
  • a short patch antenna device is obtained by placing an antenna element attached with a coaxial line 8 in a housing 14 and filling resin 16 around the conductor plate 1 with resin. 7 is completed, but the antenna element arranging step and the sealing step shown in FIG. 7 are basically the same as those described with reference to FIG. .
  • the short patch antenna device (modification) according to the first embodiment is such that the inner conductor 9 of the coaxial line 8 has at least a portion from the hole 5 to the radiation conductor surface 2 and other portions. Since it is another member (linear conductor 20), it is not necessary to bend the inner conductor 9.
  • the width at which the feeding point can be changed is determined by the minimum bending radius that can be folded without damaging the inner conductor 9 (particularly, on the short-circuit side surface 4 side).
  • the inner conductor 9 and the linear conductor 20 are arranged in a straight line without bending, so that the minimum bending radius that can be bent without breaking the inner conductor 9 is considered. It is not necessary.
  • the connection portion between the inner conductor 9 and the linear conductor 20 of the short patch antenna device after solidification is sealed with resin in the casing 14, so that the strength is increased.
  • the linear conductor 20 is not used (of course, even if the electrical connection means 20b is exposed from the resin 16, it is sufficient if the strength of the electrical connection means 20b is ensured). Further, even in the antenna element arranging step shown in FIGS. 7A and 7B, the antenna element including the coaxial line 8 and the linear conductor 20 is supported by the casing 14 by the rib portion 15 bush 12, so that the sealing step Even before and after the load, a load that causes a failure in the connection between the inner conductor 9 and the linear conductor 20 is not applied to the connection portion between the inner conductor 9 and the linear conductor 20.
  • FIG. A second embodiment of the present invention will be described with reference to FIGS.
  • the case where the coaxial line 8 (inner conductor 9) is inserted from the ground conductor surface 3 using the hole 5 has been described, but in the second embodiment, the opening 17 is used for grounding.
  • the coaxial line 8 (inner conductor 9) is inserted from the short-circuit side surface 4 on the conductor surface 3 side. In such a case, the hole 5 is not necessarily required.
  • 8A is an antenna configuration diagram in which the side surface of the housing of the short patch antenna device is seen through
  • FIGS. 8B and 8C are antenna configuration diagrams in which the housing of the short patch antenna device and the dielectric (resin) are seen through.
  • FIG. 9 (a) is a diagram in which a coaxial line is inserted into the antenna element
  • FIG. 9 (b) is a diagram in which the inner conductor of the coaxial line is soldered to the radiation conductor surface of the antenna element
  • FIG. 9 (c) is in the coaxial line
  • Fig. 9 (d) is a diagram showing the insulation bush mounted
  • Fig. 9 (d) is a diagram in which the outer conductor of the coaxial line is soldered to the outer conductor placement portion of the antenna element
  • Fig. 10 (a) is the antenna element with the coaxial line connected to the casing.
  • FIG. 10B is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • FIG. 10B is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • FIG. 10B is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • FIG. 10B is a diagram in which a heat-
  • FIG. 10C is a diagram in which the housing is filled with a dielectric resin, and the antenna element is sealed.
  • FIG. It is the figure which soldered the outer conductor of the coaxial line to the outer conductor placing part of the antenna element. .
  • the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
  • the antenna element whose radiating conductor surface 2 (patch) is grounded to the ground conductor surface 3 by the short-circuit side surface 4 is fed by the coaxial line 8. , which is held by the casing 14.
  • the casing 14 is filled with a resin 16 filled around the antenna element. Therefore, since the wavelength shortening effect according to the relative dielectric constant of the resin 16 is obtained, the antenna element (radiation conductor surface 2) of the short patch antenna device can be downsized. Further, since the radiation conductor surface 2 which is the radiation surface of the antenna is formed with a slit portion 7 cut out along the same direction as the bending direction of the conductor plate 1, the radiation conductor surface 2 is formed by the wavelength shortening effect. Matters such as shortening and the ability to further reduce the size of the short patch antenna device are the same as those of the structure of the short patch antenna device according to the first embodiment.
  • the feeding point of the short patch antenna device according to the second embodiment is the same as that performed in the first embodiment, the description thereof is omitted.
  • the outer conductor plate 10 of the coaxial line 8 is grounded to the outer conductor placing portion 18, and the coaxial line 8 is fixed to the housing 14. Therefore, the entire apparatus can be reduced in size.
  • the feeding point is simple because no other member other than the conductor plate 1 or the coaxial connector as described above is required. Can be easily moved.
  • the antenna element is completed by attaching (fixing) the coaxial line 8 to the conductor plate 1 in the conductor plate processing step and the conductor plate facing step.
  • the coaxial line attachment process for that will be described with reference to FIG.
  • the inner conductor 9 at the tip portion of the coaxial line 8 is exposed, and the subsequent stage is such that the inner conductor 9 with the insulating coating 11 and the insulating coating 11 are covered with the outer conductor plate 10 in order, as shown in FIG.
  • the coaxial line 8 is inserted in the short circuit side surface 4 through the opening part 17, the inner conductor 9 of the front-end
  • the inner conductor 9 at the tip of the coaxial line 8 inserted into the hole 6 is electrically connected and fixed by the electric connecting means 9a. Thereby, the inner conductor 9 of the coaxial line 8 and the radiation conductor surface 2 are conducted.
  • the continuity between the inner conductor 9 of the coaxial line 8 and the radiating conductor surface 2 is such that the inner conductor 9 of the coaxial line 8 is directly connected to the radiating conductor surface 2 (feeding point portion) without providing the hole 6 in the radiating conductor surface 2. ) May be soldered.
  • the bush 12 is attached to the coaxial line 8 (FIG. 9C). Then, as shown in FIG.
  • the outer conductor plate 10 is placed on the outer conductor mounting portion 18 which is a region extending from a portion in contact with the opening 17 continuously with the region of the conductor plate 1 (the ground conductor surface 3). Are electrically connected by the electrical connecting means 10a.
  • the order of the steps shown in FIGS. 9B, 9C and 9D is not limited.
  • a short patch antenna device is completed by placing the antenna element with the coaxial line 8 attached in the housing 14 and filling the resin 16 around the conductor plate 1 with resin. After the resin 16 is solidified, a lid may be attached to the housing 14, but as shown in FIG. 10C, one surface of the solidified resin 16 is used as an outer shell of the short patch antenna device according to the second embodiment. Good.
  • the antenna element arranging step and the sealing step will be described in detail. First, as shown in FIGS. 10A and 10B, the radiation conductor surface 2 is placed on the rib portion 15 at the bottom of the housing 14, and the bush 12 is disposed on the edge of the housing 14.
  • the heat shrink tube 13 is attached to the bush 12 and the coaxial line 8 to apply heat, and the bush 12 is fixed to the coaxial line 8 by the heat shrink tube 13.
  • resin 16 is injected into the housing 14.
  • the resin 16 flows from the slit portion 7 (except when the slit portion 7 is fitted to the rib portion 15) to the housing 14 side from between the radiation conductor surface 2 and the ground conductor surface 3 of the antenna element. Since it flows out, the resin 16 can be efficiently filled in the entire housing 14. That is, it is not necessary to prepare the casing 14 having an excessive dimension with respect to the dimensions of the antenna element, and when the casing 14 is used as the outer shell of the short patch antenna device according to the first embodiment, Can contribute to downsizing.
  • FIG. 10C shows the short patch antenna device after solidification.
  • the short patch antenna device according to the second embodiment uses the opening 17 to insert the coaxial line 8 (inner conductor 9) from the short-circuit side surface 4 on the ground conductor surface 3 side.
  • the length of the short patch antenna device in the thickness direction can be made thinner than that of the short patch antenna device according to the first embodiment without changing the typical performance.
  • the inner conductor 9 of the coaxial line 8 is at least from the ground conductor surface 3 to the radiating conductor surface 2.
  • the members extending in the extending direction and the other portions may be different members.
  • the other parts refer to the inner conductor 9 that is not bent (the part exposed from the insulating film 11) as shown in the first embodiment (modified example).
  • 22 is a linear conductor
  • 23 is a cylindrical insulating film which coat
  • the linear conductor 22 is inserted in the part shown with a dotted line.
  • Reference numeral 24 denotes a spacer for insulating the linear conductor 22 so as not to short-circuit the ground conductor surface 3; 22a, an electrical connection means such as soldering for electrically connecting the linear conductor 22 and the radiation conductor surface 2; This is an electrical connection means such as soldering for electrically connecting the conductor 22 and the inner conductor 9.
  • the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
  • FIG. 11A is an image diagram of a cross section of an antenna element used for a short patch antenna device (coaxial line 8 is formed)
  • FIG. 11B is an image diagram of a cross section of an antenna element used for a short patch antenna device (coaxial line 8). None). 11 corresponds to FIG. 6 (particularly, FIG. 11 (a) corresponds to FIG. 6 (f) and FIG. 11 (b) corresponds to FIG. 6 (a)). Only the differences from the modified example) and the second embodiment will be described. As shown in FIG. 11A, the tip of the linear conductor 22 inserted into the hole 6 is electrically connected by the electrical connecting means 22a.
  • the linear conductor 22 and the radiation conductor surface 2 are electrically connected. Further, the distal end portion of the inner conductor 9 of the coaxial line 8 and the proximal end portion of the linear conductor 22 (the side closer to the ground conductor surface 3) are electrically connected by the electrical connecting means 22b. Further, the base end portion of the linear conductor 22 to which the inner conductor 9 is electrically connected is insulated from the ground conductor surface 3 by the spacer 24, so that the linear conductor 22 and the inner conductor 9 are not short-circuited. ing.
  • the distal end portion of the linear conductor 22 covered with the insulating film 23 is exposed with the distal end portion and the proximal end portion exposed.
  • the spacer 24 is inserted between the base end portion of the linear conductor 22 and the ground conductor surface 3 by being inserted into the hole 6 of the radiation conductor surface 2.
  • the electrical connecting means 22a and 22b may be performed.
  • the electrical connection means 22a or the electrical connection means 22b may be performed, or the tip portion of the linear conductor 22 is inserted into the hole 6 of the radiation conductor surface 2 so that the linear conductor 22
  • the electrical connection means 22a may be performed.
  • a counterbore hole is made in advance in the spacer 24, and the base end portion of the linear conductor 22 is inserted into the counterbore hole, so that the linear conductor 22 (including the insulating film 23) and the spacer 24 are integrated. May be manufactured and used for the feeding portion of the short patch antenna device (modification) according to the second embodiment.
  • the hole 5 is not necessarily required”.
  • the use of the conductor plate 1 (antenna element) having the hole 5 in the ground conductor surface 3 makes it easier to fix the integrated spacer 24 and the linear conductor 22.
  • the diameter of the hole 5 and the diameter of the spacer 24 are set so that the hole 5 has the spacer 24.
  • the spacer 24 can be supported / fixed by the ground conductor surface 3 by selecting one that can be fitted.
  • the spacer 24 (including the linear conductor 22) is fixed by injecting the resin 16 into the housing 14, the hole 5 does not have to be fitted to the spacer 24, but is fitted. It is easier to execute the electrical connecting means 22a and 22b.
  • the spacer 24 integrated with the conductor plate 1 through the hole 5 and the linear conductor 22 are inserted, and the tip of the linear conductor 22 is inserted into the hole 5 (FIG. 11B).
  • the tip end portion of the linear conductor 22 inserted into is electrically connected and fixed by the electrical connecting means 22a.
  • the linear conductor 22 and the radiation conductor surface 2 are conducted.
  • the continuity between the linear conductor 22 and the radiation conductor surface 2 is achieved by soldering the linear conductor 22 directly to the radiation conductor surface 2 (feeding point portion) without providing the hole 6 in the radiation conductor surface 2. Also good.
  • the distal end portion of the inner conductor 9 of the coaxial line 8 is brought into contact with the proximal end portion (the side closer to the hole 5) of the linear conductor 22 through the opening 17. Subsequently, the bush 12 is attached to the coaxial line 8. Then, the outer conductor plate 10 is electrically connected to the outer conductor placing portion 18 which is a region extending from a portion in contact with the opening 17 continuously with the region of the conductor plate 1 in which the hole 6 is formed by the electric connecting means 10a. Then, the distal end portion of the inner conductor 9 of the coaxial line 8 and the proximal end portion (hole 5 side) of the linear conductor 20 are electrically connected by the electrical connecting means 22b.
  • the antenna element with the coaxial line 8 attached is disposed in the housing 14 and the resin 16 is filled around the conductor plate 1 with the resin.
  • the short patch antenna device according to mode 2 is completed. Further, since the coaxial line 8 (inner conductor 9) is inserted from the short-circuit side surface 4 on the ground conductor surface 3 side using the opening 17, the thickness of the short patch antenna device can be changed without changing the electrical performance of the antenna.
  • the length of the direction (direction in which the short-circuit side surface 4 extends) can be made thinner than that of the short patch antenna device according to the first embodiment.
  • Embodiment 3 A third embodiment of the present invention will be described with reference to FIGS.
  • the short patch antenna device is manufactured by placing the radiation conductor surface 2 on the rib portion 15 at the bottom of the housing 14 and arranging the bush 12 on the edge of the housing 14.
  • a short patch antenna device having a configuration in which the ground conductor surface 3 is mounted on the rib portion 15 at the bottom of the housing 14 and the bush 12 is disposed on the edge of the housing 14 will be described.
  • the conductor plate 1 on which the antenna element used in this case is formed may use any of those described in the first and second embodiments (including modifications), but in this third embodiment, the embodiment A description will be given by taking as an example a case where the coaxial line 8 is inserted into the opening 17 described in 2.
  • the structure of the short patch antenna device according to the third embodiment is the same as the structure of the short patch antenna device according to the first and second embodiments (including modifications) except for a portion where the orientation of the antenna element with respect to the housing 14 is different. The same applies to the operation.
  • FIG. 12A is a diagram in which a coaxial line is inserted into the antenna element
  • FIG. 12B is a diagram in which the inner conductor of the coaxial line is soldered to the radiation conductor surface of the antenna element
  • FIG. 12C is insulated from the coaxial line.
  • Fig. 12 (d) is a diagram with the bush mounted
  • Fig. 12 (d) is a diagram in which the outer conductor of the coaxial line is soldered to the outer conductor placement portion of the antenna element
  • Fig. 13 (a) is an antenna element with the coaxial line connected to the casing.
  • FIG. 13B is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • FIG. 13B is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • FIG. 13B is a diagram in which a heat-shrinkable tube is attached to the coaxial line
  • FIG. 13B is a diagram in which a heat-shrinkable
  • FIG. 13C is a diagram in which the housing is filled with a dielectric resin and the antenna element is sealed (exposed slit portion).
  • FIG. 13D is a diagram in which the housing is filled with a dielectric resin and the antenna element is sealed.
  • reference numeral 25 denotes a widened slit portion formed by cutting the conductor plate 1 by the slit portion 7
  • 26 denotes a conductor removal portion of the conductor plate 1
  • 27 denotes a conductor in which the slit portion 7 is added to the conductor plate 1.
  • the narrow slit portion 28 thus formed is an additional conductor added to the conductor plate 1.
  • the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
  • An antenna element is completed by attaching (fixing) the coaxial line 8 to the conductor plate 1 in the conductor plate processing step and the conductor plate facing step.
  • the coaxial line 8 is inserted in the short circuit side surface 4 through the opening part 17, the inner conductor 9 of the front-end
  • FIG. 12B the inner conductor 9 at the distal end portion inserted into the hole 6 is electrically connected and fixed by the electric connecting means 9a. Thereby, the inner conductor 9 of the coaxial line 8 and the radiation conductor surface 2 are conducted.
  • the continuity between the inner conductor 9 of the coaxial line 8 and the radiating conductor surface 2 is such that the inner conductor 9 of the coaxial line 8 is directly connected to the radiating conductor surface 2 (feeding point portion) without providing the hole 6 in the radiating conductor surface 2.
  • the bush 12 is attached to the coaxial line 8 (FIG. 12C).
  • the outer conductor plate 10 is placed on the outer conductor placement portion 18, which is a region extending from a portion in contact with the opening 17 continuously with the region of the conductor plate 1 (the ground conductor surface 3). Are electrically connected by the electrical connecting means 10a.
  • the order of the steps shown in FIGS. 12B, 12C and 12D is not limited.
  • a short patch antenna device is completed by placing an antenna element attached with the coaxial line 8 in the housing 14 and filling the resin 16 around the conductor plate 1 with resin.
  • a lid may be attached to the housing 14 after the resin 16 is solidified, but one surface of the solidified resin 16 may be an outer shell of the short patch antenna device according to the third embodiment.
  • the antenna element arrangement process and the sealing process different from those of the other embodiments will be described in detail.
  • the ground conductor surface 3 is placed on the rib portion 15 at the bottom of the housing 14, and the bush 12 is placed on the edge of the housing 14.
  • the heat shrink tube 13 is attached to the bush 12 and the coaxial line 8 to apply heat, and the bush 12 is fixed to the coaxial line 8 by the heat shrink tube 13.
  • resin 16 is injected into the housing 14. At this time, since the resin 16 flows into the housing 14 side from between the radiation conductor surface 2 and the ground conductor surface 3 of the antenna element from the slit portion 7, the resin 16 is efficiently filled in the entire housing 14. Can do.
  • FIG. 14A is a top view of the short patch antenna device focused on the conductor plate 1 portion of the short patch antenna device after the resin 16 is solidified.
  • the electrical (radio wave) of this short patch antenna device is actually used. Measure performance. As a result, the following slit adjustment process is performed. When it is necessary to widen the slit portion 7, as shown in FIG.
  • the slit portion 7 (the conductor removal portion 26) of the conductor plate 1 is scraped off using a general outline processing machine such as a router.
  • the slit portion 25 is obtained by widening.
  • an additional conductor 28 such as a conductor foil or solder is added to the slit portion 7 of the conductor plate 1 (the additional conductor 28 is replaced with the conductor plate). 1) and narrow to obtain the slit portion 27.
  • a part of the slit portion 27 narrowed by the additional conductor 28 may be scraped and finely adjusted.
  • the slit adjustment process is performed after the resin 16 is disposed between the radiating conductor surface 2 and the ground conductor surface 3.
  • the slit portion 7 can be adjusted in a state close to the relative dielectric constant of the antenna device, and when the antenna element having only the conductor plate is processed, there is no resin corresponding to the dielectric substrate.
  • the width of the slit portion 7 is widened by eliminating the possibility that the angle between the radiating conductor surface and the ground conductor surface of the conductor plate is distorted when the conductor 7 (the conductor removal portion 26) is scraped using a router or the like. Can do.
  • a step of sealing the two slit portions 25 (or slit portions 27) with the resin 16 is performed in the second sealing step shown in FIG.
  • the short patch antenna apparatus which concerns on can be obtained.
  • the above-mentioned slit adjustment process should just adjust based on the resin 16 added in this 2nd sealing process.
  • the slit adjusting step may be omitted.
  • the same resin 16 is ideal as the resin used in the sealing step and the second sealing step, but different resins may be used.
  • the slit portion 7 faces the opening side of the housing 14, and as in the first and second embodiments, the slit portion 7 is formed in the housing.
  • the inflow effect of the resin 16 is greater than when facing the bottom side of 14.
  • the smaller the diameter of the coaxial line 8 here, the inner conductor 9 with the insulating film 11
  • the resin 16 when the resin 16 is injected into the housing 14, the resin 16 extends from the opening of the opening 17 after the coaxial line 8 is inserted into the radiation conductor surface of the antenna element. 2 and the ground conductor surface 3, it flows into or out of the housing 14, so that the entire interior of the housing 14 can be efficiently filled with the resin 16.
  • FIG. Embodiment 4 of the present invention will be described with reference to FIGS.
  • a case where the rib portion 15 is not provided in the casing of the short patch antenna device according to the first to third embodiments and a case where the rib portion 15 is fitted to the slit portion 7 will be described (this fitting). Include those that are not exactly engaged with each other).
  • the structure of the short patch antenna device according to the fourth embodiment is the same as the structure of the short patch antenna device according to the first to third embodiments (including modifications) except for the portion related to the housing, and the operation is also the same. It is.
  • FIG. 15A is an antenna configuration diagram in which the side surface of the housing of the short patch antenna device is seen through (the ground conductor surface is placed on the bottom of the housing), and FIG. 15B is the side surface of the housing of the short patch antenna device.
  • FIG. 16 (a) is an antenna configuration diagram in which the side surface of the housing of the short patch antenna device is seen through (the rib portion is provided in the housing).
  • 16 (b) is a diagram showing the antenna configuration seen through the side surface of the housing of the short patch antenna device (the housing has a rib portion)
  • FIG. 17 (a) is an antenna configuration seen through the side surface of the housing having a groove.
  • FIG. 17 (b) is an antenna configuration diagram in which the side surface of the casing of the short patch antenna device is seen through (the housing has a groove), and Fig. 17 (c) is a perspective view of the side surface of the casing of the short patch antenna device.
  • Antenna configuration diagram housing A groove and a rib portion to.
  • 29 is an enclosure having an opening and a bottom, the opening and the bottom are surrounded by the sides and holding the antenna element at the bottom, and the coaxial line 8 (bush 12 And the rib portion 15 may be integral with or separate from the casing 29. Further, the casing 29 may not have the rib portion 15.
  • Reference numeral 30 denotes a recess formed in the bottom of the housing 29 and capable of accommodating a protrusion generated on the radiation conductor surface 2 by the electrical connecting means 9a. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
  • the antenna element is placed on the casing 14 with the ground conductor surface 3 facing the bottom side of the casing 14.
  • the ground conductor surface 3 since the ground conductor surface 3 has no protrusions and no protruding portions, the ground conductor surface 3 is placed on the bottom side of the housing 14 without forming the rib portion 15 on the housing 14. It is possible to reduce the thickness direction of the patch antenna device (the direction in which the short-circuit side surface 4 extends).
  • the short patch antenna device shown in FIG. 15A shows its structure. In this case, almost no resin 16 may exist between the ground conductor surface 3 and the housing 14, or a part thereof may exist.
  • the short patch antenna device can be constructed without forming the rib portion 15 in the casing 14.
  • the radiating conductor surface 2 is formed without inserting the inner conductor 9 of the coaxial line 8 into the hole 6 formed in the radiating conductor surface 2 of the conductor plate 1.
  • the radiating conductor surface 2 is placed on the bottom side of the housing 14 without forming the rib portion 15 on the housing 14, thereby making a short circuit. It is possible to reduce the thickness direction of the patch antenna device (the direction in which the short-circuit side surface 4 extends).
  • the short patch antenna device shown in FIG. 15B shows the structure. In this case, almost no resin 16 may exist between the radiation conductor surface 2 and the housing 14, or a part thereof may exist.
  • the antenna element is provided with the radiation conductor surface 2 facing the rib portion 15.
  • the projection may be a shape that fits into the slit portion 7.
  • the conductor body 1 having two slit portions 7 formed at two locations is used as an antenna element in the arrangement shown in FIG.
  • the conductor plate 1 of the short patch antenna device shown in FIG. 16A has a hole 6, and the conductor plate 1 of the short patch antenna device shown in FIG. It is something that does not.
  • the description regarding the feeding point in FIG. 16B is the same as that regarding FIG.
  • the antenna element can be easily fixed and positioned in the housing 14.
  • a housing 29 shown in FIG. 17A has a recess 30 at the bottom.
  • the recess 30 is disposed at a position facing the feeding point of the radiation conductor surface 2 placed on the bottom of the housing 29.
  • the shape of the hollow part 30 should just be what can accommodate the protrusion on the radiation conductor surface 2 by the inner conductor 9 and the electrical connection means 9a, or the electrical connection means 9a.
  • the recess 30 may be replaced with a through hole. Due to the hollow portion 30 including such a through hole, the radiation conductor surface is formed on the bottom side of the housing 29 without forming the rib portion 15 on the housing 29 as in the short patch antenna device shown in FIG. By placing 2, it is possible to reduce the thickness direction of the short patch antenna device (the direction in which the short-circuit side surface 4 extends).
  • the rib portion 15 is provided in the housing 29, and the slit portion 7 and the rib portion 15 are fitted in the same manner as in the short patch antenna device shown in FIG.
  • the antenna element may be easily fixed and positioned in the housing 29 by meshing.
  • FIG. 18 shows an overview of the short patch antenna device according to the first to fourth embodiments.
  • 18A is a perspective view of the short patch antenna device according to the first to fourth embodiments
  • FIG. 18B is a side view of the short patch antenna device according to the first to fourth embodiments.
  • the dielectric substrate is manufactured by pattern etching of the radiating conductor and ground conductor, so a metal that can be connected vertically is required on the side of the dielectric substrate.
  • connector power feeding power feeding through the dielectric substrate
  • problems such as an increase in the thickness of the antenna including the connector.
  • the short patch antenna device according to 4 to 4 solves such a problem.
  • the short patch antenna manufactured by sheet metal using a metal plate or conductor plate has a hollow structure and is difficult to miniaturize (the effect of shortening the wavelength of the dielectric cannot be obtained). Is thick. Weak impact resistance. Dimensional tolerance is difficult to secure (the thickness of the antenna element is not stable). Although the sheet metal antenna element is unstable, there is a problem that it is difficult to adjust the dimensions, but the short patch antenna device according to the first to fourth embodiments solves such a problem.
  • the short patch antenna device according to Embodiments 1 to 4 can be easily fed directly by a coaxial line such as a coaxial cable, no connector is required, and the thickness of the connector is reduced. Since the conductor thickness can be easily increased, communication can be performed even when the cross polarization component increases and the direction of the antenna to be communicated is in the cross polarization direction. Since it is molded with a housing and a resin (dielectric resin), it has high environmental resistance and can maintain stable performance. There are advantages such as little change in antenna dimensions due to aging and impact.
  • the short patch antenna device and the manufacturing method thereof according to the present invention are suitable for use in an antenna used in a wireless communication device.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

 この発明は、アンテナの導体厚の選択や給電点の位置、アンテナ素子形状などの調整が容易に可能で、さらに、小型化が可能である新規なショートパッチアンテナ装置及びその製造方法に関するものである。折り曲げられた一体の導体板で構成され、前記導体板の対向する一方の面に形成された放射導体面(2)、及び、前記導体板の対向する他方の面に形成された接地導体面(3)を有するアンテナ素子と、前記接地導体面(3)に形成された孔部(5)と、前記放射導体面(2)の辺が切り欠かれたスリット部(7)と、前記孔部(5)を介して前記放射導体面(2)へ延びた内導体(9)が前記放射導体面(2)に電気的に接続され、外導体(10)が前記接地導体面(3)に接地された同軸線路(8)と、前記アンテナ素子の前記放射導体面(2)と前記接地導体面(3)との間に充填された樹脂(16)とを備える。

Description

ショートパッチアンテナ装置及びその製造方法
 この発明は、放射導体と接地導体とを短絡させることにより、放射導体が使用周波数の1/4波長で共振して電波を送受信することが可能なショートパッチアンテナ装置及びその製造方法に関するものである。
 使用周波数の1/2波長で放射導体(パッチ)が共振するパッチアンテナ(マイクロストリップアンテナ)を小型化するために、放射導体と接地導体とを短絡させて使用周波数の1/4波長で放射導体(パッチ)を共振させる手法を用いたショートパッチアンテナがある(例えば、非特許文献1参照)。このショートパッチアンテナは、パッチアンテナと比較して、放射導体の一辺の寸法を1/2以下にすることも可能であることが、従来から知られている。
 ショートパッチアンテナには、特許文献1に記載のようにマイクロストリップ線路によって給電を行うもの、特許文献2に記載のように同軸線路によって給電を行うものなどがある。また、ショートパッチアンテナの構造は、誘電体基板に導体層を形成したものや(例えば、特許文献1の図1や図3参照)、一枚の金属板を折り曲げて形成するもの(例えば、特許文献2の図1~7、図10参照)などが代表的なものとして挙げられる。
特開平8-222940号公報 特表2002-530908号公報
小型・平面アンテナ 羽石操、平澤一紘、鈴木康夫共著 電子情報通信学会刊 1996年(133頁~139頁)
 UHF帯やマイクロ帯のRFID(Radio Frequency Identification)リーダライタ用のアンテナなどの無線通信装置に使用する送受信アンテナとしてパッチアンテナが使用される場合が多い。近年、入退場システムや工場の工程管理システムなどに、RFIDシステムが適用される場面が増えてきているが、アンテナを設置する場所が大きく制限されることが少なくない。このようなアンテナの設置場所の制限から、アンテナの小型化が必要となってきている。
 しかし、従来のショートパッチアンテナには、「構造が複雑になってしまう。」「放射導体と接地導体との短絡から得られる放射導体の小型化では対応しきれないことがある。」「交差偏波成分を大きくできないことがある。」などの種々の課題がある。
 特許文献1の図1のように、誘電体基板を用いたショートパッチアンテナでは、誘電体基板の比誘電率に応じた波長短縮効果があるので、放射導体を小型化することができるが、誘電体基板の基板厚を厚くすることに限界があり、その結果、誘電体基板に形成され短絡導体において短絡方向の電流成分を増やすことにも限界があるので、交差偏波に寄与する電流成分を大きくすることが難しいという課題がある。なお、特許文献1の図1のように、短絡導体にスルーホールを用いると構造が複雑になるという課題もある。さらに、スルーホールに代えて、誘電体基板の側面に短絡導体のパターンを形成することも困難であるという課題もある。また、特許文献1の図3のように、ショートパッチ(放射導体と短絡導体)のみを金属板(板金)で構成する場合は、金属板の厚みを厚いものを選択することにより、交差偏波に寄与する電流成分を大きくすることは可能であるが、アンテナ全体の厚みが厚くなるという課題やアンテナの構造が複雑になってしまうという課題がある。
 次に、特許文献2のように、ショートパッチアンテナのアンテナ素子を一枚の金属板を折り曲げて形成する場合は、金属板の厚みを厚いものを選択することにより、短絡方向の電流成分を増やして、交差偏波に寄与する電流成分を大きくすることができるが、特許文献2の図7及び図10のような場合であって、所望のアンテナ性能を得るために、アンテナの給電点を短絡側寄りに設定する必要ある場合に、「同軸線路の内導体(中心導体)を複雑に曲げる必要があり構造が複雑化する。」「同軸線路を接地させるために、金属板以外の別の部材(特許文献2では「延出脚部48」に相当する)を金属板に接続する必要があり構造が複雑化する。」「金属板の折り曲げ角の変化が給電点と給電線路とのインピーダンス整合に影響を及ぼす。」などの課題があった。また、アンテナ素子が金属板で構成されているので、耐衝撃性が弱いという課題や寸法公差確保が難しく、アンテナ素子の厚みが安定しないなどの課題もある。
 この発明は、上記のような課題を解消するためになされたもので、簡易な構造であっても、アンテナの導体厚の選択や給電点の位置、アンテナ素子形状などの調整が容易に可能で、さらに、小型化が可能である新規なショートパッチアンテナ装置及びその製造方法を提供することを目的とする。
 本発明に係るショートパッチアンテナ装置は、折り曲げられた一体の導体板で構成され、前記導体板の対向する一方の面に形成された放射導体面、及び、前記導体板の対向する他方の面に形成された接地導体面を有するアンテナ素子と、前記接地導体面に形成された孔部と、前記放射導体面の辺が切り欠かれたスリット部と、前記孔部を介して前記放射導体面へ延びた内導体が前記放射導体面に電気的に接続され、外導体が前記接地導体面に接地された同軸線路と、前記アンテナ素子の前記放射導体面と前記接地導体面との間に充填された樹脂とを備えたことを特徴とするものである。
 本発明に係るショートパッチアンテナ装置の製造方法は、導体板に、U字状の切り欠き部、このU字状の切り欠き部に囲まれた前記導体板の領域に対して反対の領域であって、前記導体板の辺が切り欠かれたスリット部、及び、前記U字状の切り欠き部が形成された前記導体板の領域に対して、前記スリット部が形成された前記導体板の領域の反対側における領域に孔部を形成する導体板加工工程と、前記U字状の切り欠き部を開口部に変換するように前記導体板の前記U字状の切り欠き部における二股部分の先端部分を折り曲げて、前記U字状の切り欠き部が形成された前記導体板の領域、及び、前記孔部が形成された前記導体板の領域を別の平面にする第1の折曲工程、前記導体板の前記U字状の切り欠き部又は前記開口部と前記スリット部との間の領域を折り曲げて、前記U字状の切り欠き部又は前記開口部が形成された前記導体板の領域、及び、前記スリット部が形成された前記導体板の領域を別の平面にする第2の折曲工程を行い、前記孔部が形成された前記導体板の領域、及び、前記スリット部が形成された前記導体板の領域を対向させる導体板対向工程と、前記孔部が形成された前記導体板の領域と連続して前記開口部と接する部分から延びた領域を外導体載置部とし、外導体を電気的に接続し、前記孔部を介して内導体を延ばして前記スリット部が形成された前記導体板の領域へ電気的に接続し、前記導体板に同軸線路を固定する同軸線路取付工程と、この同軸線路取付工程後に、少なくとも前記スリット部を露出させて、前記導体板の周囲に樹脂を充填する封止工程と、この封止工程後に、前記スリット部の寸法を変更するスリット調整工程とを備えたことを特徴とするものである。
 本発明によれば、放射導体面及び接地導体面などから構成されるアンテナ素子が一枚の導体板で構成され、樹脂やスリット部により装置全体を小型化することが容易な上に、アンテナ素子を構成する放射導体面と接地導体面との間に挟まれる空間内の同軸線路の主構成を内導体とすることが可能で、放射導体面における給電点の設定位置の選択肢を多くすることができ、アンテナ素子の放射導体面と接地導体面との間に充填された樹脂により、放射導体面と接地導体面とが固定され、スリット部の調整も可能なので、導体板の寸法公差に起因する給電点(アンテナ素子)と給電線路(同軸線路)とのインピーダンスの不整合を調整して整合をとることが容易で、性能が安定した小型のショートパッチアンテナ装置を得ることができる。
 また、本発明によれば、一枚の導体板の形状を加工して折り曲げてアンテナ素子を構成することにより、樹脂やスリット部により装置全体を小型化することが容易な上に、アンテナ素子を構成する放射導体面と接地導体面との間に挟まれる空間内の同軸線路の主構成を内導体とすることが可能で、放射導体面における給電点の設定位置の選択肢を多くすることができ、スリット部の調整を行えるので、導体板の寸法公差に起因する給電点(アンテナ素子)と給電線路(同軸線路)とのインピーダンスの不整合を調整して整合をとることが容易で、性能が安定した小型のショートパッチアンテナ装置の製造方法を得ることができる。
この発明の実施の形態1に係るショートパッチアンテナ装置の透視図である。 この発明の実施の形態1に係るショートパッチアンテナ装置に使用する導体板の製造工程図である。 この発明の実施の形態1に係るショートパッチアンテナ装置に使用する導体板の製造工程図である。 この発明の実施の形態1に係るショートパッチアンテナ装置に使用するアンテナ素子の製造工程図(断面のイメージ図)である。 この発明の実施の形態1に係るショートパッチアンテナ装置の製造工程図(断面のイメージ図)である。 この発明の実施の形態1に係るショートパッチアンテナ装置に使用するアンテナ素子の製造工程図(断面のイメージ図)である。 この発明の実施の形態1に係るショートパッチアンテナ装置の製造工程図(断面のイメージ図)である。 この発明の実施の形態2に係るショートパッチアンテナ装置の透視図である。 この発明の実施の形態2に係るショートパッチアンテナ装置に使用するアンテナ素子の製造工程図(断面のイメージ図)である。 この発明の実施の形態2に係るショートパッチアンテナ装置の製造工程図(断面のイメージ図)である。 この発明の実施の形態2に係るショートパッチアンテナ装置に使用するアンテナ素子の図(断面のイメージ図)である。 この発明の実施の形態3に係るショートパッチアンテナ装置に使用するアンテナ素子の製造工程図(断面のイメージ図)である。 この発明の実施の形態3に係るショートパッチアンテナ装置の製造工程図(断面のイメージ図)である。 この発明の実施の形態3に係るショートパッチアンテナ装置のスリット調整工程説明図である。 この発明の実施の形態4に係るショートパッチアンテナ装置の透視図である。 この発明の実施の形態4に係るショートパッチアンテナ装置の透視図である。 この発明の実施の形態4に係るショートパッチアンテナ装置の透視図である。 この発明の実施の形態1~4に係るショートパッチアンテナ装置の筐体を透視していない状態の斜視図である。
 1 導体板
 2 放射導体面
 3 接地導体面
 4 短絡側面
 5 孔部
 6 孔部
 7 スリット部
 8 同軸線路
 9 内導体
 9a 電気接続手段
10 外導体板
10a 電気接続手段、
11 絶縁性皮膜
12 ブッシュ(軸受け筒)
13 熱収縮チューブ
14 筐体
15 リブ部
16 樹脂
17 開口部
18 外導体載置部
19 切り欠き部
20 線状導体
20a 電気接続手段
20b 電気接続手段
21 絶縁性皮膜
22 線状導体
22a 電気接続手段
22b 電気接続手段
23 絶縁性皮膜
24 スペーサ
25 スリット部
26 導体除去箇所
27 スリット部
28 追加導体
29 筐体
30 窪み部
 本願において、断面のイメージ図とするものは、アンテナ素子を構成する導体板に同軸線路が貫通している断面図において、同軸線路に関しては断面ではなく側面から見た状態を示したものである。なお、図1~18において、アンテナ素子に接続された同軸線路のアンテナ素子と反対側の端部が図面上断線したようになっているが、実際は、RFIDリーダライタなどの無線通信装置に接続されるものであり、接続対象を省略したために図1~18のような記載となっている。さらに、同軸線路に装着された樹脂製のブッシュや熱収縮チューブも省略している場合がある。
実施の形態1.
 以下、この発明の実施の形態1について図1~7を用いて説明する。図1(a)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図、図1(b)(c)はショートパッチアンテナ装置の筐体と誘電体(樹脂)を透視したアンテナ構成図、図2(a)は一体の導体板の上面図、図2(b)は一体の導体板に加工する形状を示す概念図、図2(c)及び図3(a)は一体の導体板に対して導体板加工工程を施した後の上面図、図2(d)(e)は一体の導体板に対して導体板加工工程(二つのスリット部を複数形成した場合)を施した後の上面図、図3(b)は一体の導体板に対して導体板対向工程を施した後、開口部側から導体板を見た図、図3(c)は一体の導体板に対して導体板対向工程を施した後、放射導体面側から導体板を見た図、図3(d)は図3(c)に記載の一点鎖線ABから見た導体板の断面図、図3(e)は一体の導体板に対して導体板対向工程を施した後の斜視図、図4(a)はアンテナ素子に同軸線路を挿入した図、図4(b)はアンテナ素子の放射導体面に同軸線路の内導体を半田付けした図、図4(c)は同軸線路に絶縁ブッシュを装着した図、図4(d)はアンテナ素子の外導体載置部に同軸線路の外導体を半田付けした図、図5(a)は同軸線路を接続したアンテナ素子を筐体に載置した図、図5(b)は同軸線路に熱収縮チューブを装着した図、図5(c)は筐体に誘電体の樹脂を充填し、アンテナ素子を封止した図である。
 図1~5において、1は一体(一枚)の導体板(折曲前の状態や折曲後の状態も便宜上含める)、2は折り曲げられた一体の導体板1で構成され、導体板1の対向する一方の面に形成された放射導体面(導体板1の折曲前の状態も便宜上含める)、3は折り曲げられた一体の導体板1で構成され、導体板1の対向する他方の面に形成された接地導体面(導体板1の折曲前の状態も便宜上含める)、4は折り曲げられた一体の導体板1で構成され、導体板1で放射導体面2と接地導体面3とを短絡する短絡側面(導体板1の折曲前の状態も便宜上含める)、5は接地導体面3に形成された孔部、6は放射導体面2に形成された孔部であり、ショートパッチアンテナ装置の給電点に当る。7は放射導体面2の対向する二辺の両側から対向して形成された二つのスリット部であり、形状は、図示するような矩形に限らず、波長短縮効果が得られるような形状で放射導体面2に形成された切り欠きであればよい。また、スリット部7は放射導体面2の対向する二辺に対称に形成する必要はなく一辺だけでもよい(放射導体面2の辺が切り欠かれたスリット部7)し、放射導体面2の対向する二辺に沿って複数形成してもよい。8は同軸ケーブルなどの同軸線路、9は同軸線路8の内導体、9aは孔部6に挿入された内導体9を電気的に接続する半田付けなどの電気接続手段、10は同軸線路8の外導体板、11は内導体を被覆する円筒状の絶縁性皮膜、12は樹脂性のブッシュ(軸受け筒)、13は熱収縮チューブである。同軸線路8は内導体9と外導体板10との間に絶縁性皮膜11が存在し、内導体9と外導体板10とが絶縁されている。なお、本願において、同軸線路8の最外殻、つまり、外導体板10も円筒状の絶縁性皮膜により被覆されたものを用いて説明を行う。図内で同軸線路8としている部分が、同軸線路8の最外殻である絶縁性皮膜の部分を指している。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 図1~5において、14は開口部と底部とを有し、開口部と底部とが四方を側面部に囲まれ、底部にてアンテナ素子を保持する筐体であり、縁に同軸線路8(ブッシュ12を含む)を固定又は配置する窪みや孔を設けたものである。15は筐体14の底部に設けられたアンテナ素子を支持するリブ部であり、筐体14の底部にてアンテナ素子を保持するためのもので、リブ部15は筐体14と一体でも別体でもよい。また、リブ部15に放射導体面2を向けてアンテナ素子を筐体14に載置する場合は、スリット部7と嵌合する形状の突起でもよい。この嵌合は、きっちりと互いがかみ合っていない状態のものも含むとする。さらに、筐体14はリブ部15を有しないものでもよい。16はエポキシ樹脂などの熱硬化性樹脂である誘電体の樹脂(誘電体基板に相当する)である。ブッシュ12と熱収縮チューブ13とは筐体14に充填される樹脂16が、筐体16から漏れることを防ぐためのものであり、ブッシュ12と熱収縮チューブ13とは一体であってもよい。17は短絡側面4に少なくとも接地導体面3側まで切り欠かれた開口である開口部、18は接地導体面3における開口部17と接する部分から延び、導体板1と一体である外導体載置部(導体板1の折曲前や同軸線路8の接触前の状態も便宜上含める)であり、外導体載置部18に同軸線路8の外導体板10が接触して同軸線路8が接地導体面3に接地されている。10aは外導体板10と外導体載置部18とを電気的に接続する半田付けなどの電気接続手段、19は導体板1に形成されたU字状の切り欠き部であり、切り欠き部19が導体板1の折り曲げによって開口して開口部17と外導体載置部18となる。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 図1に図示された実施の形態1に係るショートパッチアンテナ装置の構造は、放射導体面2(パッチ)が短絡側面4によって接地導体面3に接地されているアンテナ素子が同軸線路8によって給電されているものであり、そのアンテナ素子及び同軸線路8が筐体14に保持されているものである。筐体14にはアンテナ素子の周囲に充填された樹脂16が封入されている。したがって、筐体14を利用することで、導体板1により形成された放射導体面2、接地導体面3、短絡側面4に囲われた空間に樹脂16による誘電体層を容易に形成でき、樹脂16の比誘電率に応じた波長短縮効果が得られるので、ショートパッチアンテナ装置のアンテナ素子(放射導体面2)の小型化を図ることができる。さらに、アンテナの放射面である放射導体面2には、導体板1の折り曲げ方向と同じ方向に沿って切り欠かれたスリット部7が形成されているので、このスリット部7による波長短縮効果により放射導体面2が短くなり、よりショートパッチアンテナ装置を小型化することができる。
 実施の形態1に係るショートパッチアンテナ装置の給電点は、図1(a)~(c)では放射導体面2上の対向する二つのスリット部7の間に配置されているものを図示しているが、放射導体面2上であれば、給電点の位置は、この位置に限らない(なお、他の実施の形態においても、給電点に関しては、上記のことがいえる)。ここで、実施の形態1に係るショートパッチアンテナ装置は、アンテナ素子を構成する放射導体面2と接地導体面3との間に樹脂16が充填されている空間に、接地導体面3の孔部5から内導体9又は絶縁性皮膜11付きの内導体9が挿入されている簡便な構造なので、同軸線路8の外導体板10を外導体載置部18に接地して、同軸線路8を筐体14に固定することで、同軸コネクタを用いた給電を必要としないので、装置全体の小型化が可能である。また、給電点と給電線路(同軸線路8)とのインピーダンス整合をとるために行うアンテナ(導体板1)の寸法調整によって、給電点が短絡側面4側寄りに移動する必要があったとしても、図1、特に図1(c)に示すように、導体板1以外の別の部材や前述のような同軸コネクタが不要である簡便な構造なので給電点の移動が容易に行える。
 次に、実施の形態1に係るショートパッチアンテナ装置の製造方法について、図2~5を中心に説明する。まず、図2及び3を用いて一枚の導体板1を折り曲げることにより、アンテナ素子を得る手順を説明する。図2(a)はアンテナ素子の元となる折り曲げ前の導体板1の上面を示している。まず、導体板加工工程として、導体板1に、U字状の切り欠き部19、U字状の切り欠き部に囲まれた導体板1の領域に対して反対の領域(最終的に、放射導体面2となる領域)であって、対向する導体板1の二辺の両側から対向して形成された二つのスリット部7、U字状の切り欠き部19が形成された導体板1の領域に対して、スリット部7が形成された導体板1の領域の反対側における領域(最終的に接地導体面3となる領域)に孔部5、及び、二つのスリット部7を形成した領域に孔部6を形成する。導体板加工工程は一般的な板金加工の手法を用いて図2(b)に示す導体板1の点線部分を加工すればよい。U字状の切り欠き部19,スリット部7,孔部5,孔部6の形成する順序は特に問わない。また、U字状の切り欠き部19,スリット部7,孔部5,孔部6を型抜きなどの手法にて同時に形成してもよい。なお、U字状の切り欠き部19は、図2(b)(c)に示すような直線状の外形でもよいし、丸みを持たせた外形でもよい。本願では、U字状とはV字状やC字状などの形状を包含したものとする。これは、切り欠き部19がアンテナ素子の短絡側面4に形成されるためで、短絡導体である短絡側面4に形成された切り欠き部19はショートパッチアンテナ装置の動作に与える影響が少ないからである。
 導体板加工工程後は、図2(c)に示す導体板1が得られる。この導体板1を折り曲げてアンテナ素子を構成する対向した導体を得るために、孔部5が形成された導体板1の領域、及び、孔部6とスリット部7とが形成された導体板1の領域を対向させる導体板対向工程を行う。導体板対向工程は、図3に示す第1の折曲工程と第2の折曲工程からなる工程であるが、第1の折曲工程、第2の折曲工程の実行の順序は問わない。また、第1の折曲工程及び第2の折曲工程を同時に行ってもよいし、前述の導体板加工工程も同時に行ってもよい。なお、導体板対向工程の後に、導体板加工工程を行ってもよい。導体板1に導体板加工工程及び導体板対向工程の施すことにより、導体板1は、図3(b)~(e)に示すように、開口部17を有する短絡側面4と、接地導体面3とが接する線分から導体板1と一体の外導体載置部18が、短絡側面4と接地導体面3から飛び出した形状で得られる。このような加工から、接地導体面3と外導体載置部18とは、ほぼ水平となるが、別途、互いに角度をつけてもよい。
 なお、図2(a)~(c)に記載の二つのスリット部7が放射導体面2に一箇所に形成されているもの(スリット部7単体は二つ)を用いて導体板加工工程を説明したが、二つのスリット部7を放射導体面2の対向する二辺に沿って複数形成してもよい。このような場合は、放射導体面2をさらに小型化することができる。図2(d)(e)に記載のように、二つのスリット部7を二箇所に形成することが例として挙げられる。図2(d)は、短絡側面4側にある二つのスリット部7の間に孔部6(給電点)が配置されたもので、図2(e)は、孔部6(給電点)が対向する二つのスリット部7の間から外れた位置に配置されたものである。図2(d)(e)に記載の折り曲げ線X及びYに関しては、導体板対向工程にて詳細な説明を行う。導体板対向工程に関しては、図2(c)~(e)に記載の導体板1に共通のものである。
 第1の折曲工程とは、U字状の切り欠き部19を開口部17に変換するように導体板1のU字状の切り欠き部19における二股部分の先端部分を折り曲げて、U字状の切り欠き部19が形成された導体板1の領域、及び、孔部5が形成された導体板1の領域を別の平面にするものであり、接地導体面3と短絡側面4との2面に180°以下の角度差を付けるものである。具体的には、図3(a)に記載の折り曲げ線Xを第1の折曲工程の折り曲げ方向Xdに折り曲げることにより行う。
 第2の折曲工程とは、導体板1のU字状の切り欠き部19又は開口部17とスリット部7との間の領域を折り曲げて、U字状の切り欠き部19又は開口部17が形成された導体板1の領域、及び、孔部6とスリット部7とが形成された導体板1の領域を別の平面にするものであり、放射導体面2と短絡側面4との2面に180°以下の角度差を付けるものである。具体的には、図3(a)に記載の折り曲げ線Yを第2の折曲工程の折り曲げ方向Ydに折り曲げることにより行う。
 導体板対向工程後の導体板1は、アンテナ素子を構成する。その形状は、図3(b)~図3(e)に示すようなものとなる。図3(b)(d)(e)から、開口部7が短絡側面4に形成され、開口部7の接地導体面3側には外導体載置部18が設けられていることが分かる。図3(c)(e)から放射導体面2にスリット部7が形成されていることが分かる。
 導体板加工工程及び導体板対向工程の導体板1に同軸線路8を取り付ける(固定する)ことでアンテナ素子が完成する(本願では、同軸線路8の取り付け前であってもアンテナ素子と呼ぶ場合はある)。そのための同軸線路取付工程に関して図4を用いて説明する。まず、同軸線路8の先端部分の内導体9を露出させ、その後段は順に、絶縁性被覆11付き内導体9、絶縁性被覆11の上を外導体板10で覆った状態としてから、図4(a)に示すように、同軸線路8が孔部5を介して接地導体面3に挿入し、同軸線路8の先端部分の内導体9を延ばして、内導体9の先端部分を孔部6に挿し込む。次に、図4(b)に示すように、孔部6に挿し込んだ先端部分の内導体9を電気接続手段9aにより電気的に接続及び固定する。これにより、同軸線路8の内導体9と放射導体面2とが導通する。なお、同軸線路8の内導体9と放射導体面2との導通は、放射導体面2に孔部6を設けずに、直接、同軸線路8の内導体9を放射導体面2(給電点に当る部分)に半田付けしてもよい。続いて、同軸線路8にブッシュ12を装着する(図4(c))。そして、図4(d)に示すように、孔部5が形成された導体板1の領域と連続して開口部17と接する部分から延びた領域である外導体載置部18に外導体板10を電気接続手段10aにより電気的に接続する。図4(b)(c)(d)に記載の工程に関して、順は問わない。
 アンテナ素子に同軸線路8を取り付けたものを筐体14内に配置して、樹脂16を導体板1の周囲に樹脂を充填させることにより、実施の形態1に係るショートパッチアンテナ装置が完成する。樹脂16の固化後に、筐体14に蓋を取り付けてもよいが、図5(c)のように、固化した樹脂16の一面を実施の形態1に係るショートパッチアンテナ装置の外殻にしてもよい。ここで、アンテナ素子配置工程と封止工程とを詳細に説明する。まず、図5(a)(b)に示すように、筐体14の底部のリブ部15に放射導体面2を載置、筐体14の縁にブッシュ12を配置する。次に、ブッシュ12及び同軸線路8に熱収縮チューブ13を装着して熱を加えて、熱収縮チューブ13によりブッシュ12を同軸線路8に固定する。最後に、筐体14に樹脂16を注入する。この際、開口部17やスリット部7(スリット部7をリブ部15と嵌合させる場合を除く)から、樹脂16がアンテナ素子の放射導体面2と接地導体面3との間から筐体14側に流入又は流出するので、筐体14内全体に効率よく樹脂16を充填することができる。つまり、アンテナ素子の寸法に対して、過大な寸法の筐体14を準備する必要がなく、筐体14を実施の形態1に係るショートパッチアンテナ装置の外殻とする場合には、直接的に、小型化に寄与することができる。図5(c)が固化後のショートパッチアンテナ装置である。
 続いて、実施の形態1に係るショートパッチアンテナ装置の変形例に関して図6及び7を用いて説明する。図4及び5に記載のアンテナ素子やショートパッチアンテナ装置との相違点は、同軸線路8の内導体9は、少なくとも孔部5から放射導体面2までの部分とそれ以外の部分とは別の部材である点である。この場合は、孔部5から放射導体面2までの部分に、内導体9よりも、樹脂を封入する際に優位な形状の導体を採用することが可能である。実施の形態1に係るショートパッチアンテナ装置の変形例(製造方法)は、同軸線路取付工程が、実施の形態1に係るショートパッチアンテナ装置の製造方法と異なるので、この異なる部分を説明する。
 図6(a)はアンテナ素子に絶縁性被膜に覆われた導体を挿入した図、図6(b)はアンテナ素子の放射導体面に絶縁性被膜に覆われた導体を半田付けした図、図6(c)は同軸線路の内導体と絶縁性被膜に覆われた導体とを接触させた図、図6(d)は同軸線路に絶縁ブッシュを装着した図、図6(e)はアンテナ素子の外導体載置部に同軸線路の外導体を半田付けした図、図6(f)は同軸線路の内導体と絶縁性被膜に覆われた導体とを半田付けした図、図7(a)は同軸線路を接続したアンテナ素子を筐体に載置した図、図7(b)は同軸線路に熱収縮チューブを装着した図、図7(c)は筐体に誘電体の樹脂を充填し、アンテナ素子を封止した図である。図6及び7において、20は線状導体、20aは線状導体20と放射導体面2とを電気的に接続する半田付けなどの電気接続手段、20bは線状導体20と内導体9とを電気的に接続する半田付けなどの電気接続手段、21は線状導体20の先端部と基端部を露出させた状態で被覆する絶縁性被覆である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 変形例の同軸線路取付工程に関して図6を用いて説明する。まず、同軸線路8の先端部分の内導体9を露出させ、その後段は絶縁性被覆11の上を外導体板10で覆った状態とする。一方、図6(a)に示すように、導体板1へ孔部5を介して絶縁性被覆21で被覆した線状導体20を挿入し、線状導体20の先端部分を孔部6に挿し込む。次に、図6(b)に示すように、孔部6に挿し込んだ線状導体20の先端部分を電気接続手段20aにより電気的に接続及び固定する。これにより、線状導体20と放射導体面2とが導通する。なお、線状導体20と放射導体面2との導通は、放射導体面2に孔部6を設けずに、直接、線状導体20を放射導体面2(給電点部分)に半田付けしてもよい。同軸線路8の内導体9の先端部分を線状導体20の基端部分(孔部5側)に接触させる(図6(c))。続いて、同軸線路8にブッシュ12を装着する(図6(d))。そして、図6(e)に示すように、孔部5が形成された導体板1の領域と連続して開口部17と接する部分から延びた領域である外導体載置部18に外導体板10を電気接続手段10aにより電気的に接続し、図6(f)に示すように、同軸線路8の内導体9の先端部分と線状導体20の基端部分(孔部5側)とを電気接続手段20bにより電気的に接続する。図6(b)~(f)に記載の工程に関して、順は問わない。
 アンテナ素子に同軸線路8を取り付けたものを筐体14内に配置して、樹脂16を導体板1の周囲に樹脂を充填させることにより、実施の形態1に係るショートパッチアンテナ装置(変形例)が完成するが図7に記載のアンテナ素子配置工程と封止工程とは、図5を用いて説明したものと同軸線路8の構成が異なっているだけで基本的には同様なので説明は省略する。但し、実施の形態1に係るショートパッチアンテナ装置(変形例)は、説明した通り、同軸線路8の内導体9が、少なくとも孔部5から放射導体面2までの部分とそれ以外の部分とは別の部材(線状導体20)であるので、内導体9を曲げる必要がない。つまり、実施の形態1に係るショートパッチアンテナ装置では、内導体9の破損せずに折り曲げられる最小の折り曲げ半径によって、給電点の変更できる幅が決まっていた(特に、短絡側面4側)。しかし、この変形例に係るショートパッチアンテナ装置は、内導体9と線状導体20を曲げずに直線的に配置することにより、内導体9の破損せずに折り曲げられる最小の折り曲げ半径を考慮しなくてもよいものである。また、図7(c)に示すように、固化後のショートパッチアンテナ装置の内導体9と線状導体20の接続箇所は、筐体14内で樹脂に封止されるために、強度しては、線状導体20を用いない場合との実用上の差異はない(もちろん、樹脂16から電気接続手段20bが露出していても、電気接続手段20bの強度が確保されておればよい)。さらに、図7(a)(b)に示すアンテナ素子配置工程でも、同軸線路8及び線状導体20を含むアンテナ素子は、リブ部15ブッシュ12により筐体14に支持されるので、封止工程の前後においても、内導体9と線状導体20の接続箇所に内導体9と線状導体20との接続に不良が生じるような負荷が掛かることはない。
実施の形態2.
 この発明の実施の形態2について図8~11を用いて説明する。実施の形態1では、孔部5を利用して接地導体面3から同軸線路8(内導体9)を挿入する場合について説明したが、この実施の形態2では、開口部17を利用して接地導体面3側の短絡側面4から同軸線路8(内導体9)を挿入する場合について説明する。なお、このような場合では孔部5は必ずしも必要ではない。図8(a)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図、図8(b)(c)はショートパッチアンテナ装置の筐体と誘電体(樹脂)を透視したアンテナ構成図、図9(a)はアンテナ素子に同軸線路を挿入した図、図9(b)はアンテナ素子の放射導体面に同軸線路の内導体を半田付けした図、図9(c)は同軸線路に絶縁ブッシュを装着した図、図9(d)はアンテナ素子の外導体載置部に同軸線路の外導体を半田付けした図、図10(a)は同軸線路を接続したアンテナ素子を筐体に載置した図、図10(b)は同軸線路に熱収縮チューブを装着した図、図10(c)は筐体に誘電体の樹脂を充填し、アンテナ素子を封止した図、図11はアンテナ素子の外導体載置部に同軸線路の外導体を半田付けした図である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 図8に図示された実施の形態2に係るショートパッチアンテナ装置の構造は、放射導体面2(パッチ)が短絡側面4によって接地導体面3に接地されているアンテナ素子が同軸線路8によって給電され、筐体14に保持されているものである。筐体14にはアンテナ素子の周囲に充填された樹脂16が封入されている。したがって、樹脂16の比誘電率に応じた波長短縮効果が得られるので、ショートパッチアンテナ装置のアンテナ素子(放射導体面2)の小型化を図ることができる。さらに、アンテナの放射面である放射導体面2には、導体板1の折り曲げ方向と同じ方向に沿って切り欠かれたスリット部7が形成されているので、波長短縮効果により放射導体面2が短くなり、よりショートパッチアンテナ装置を小型化することができるなどの事項は、実施の形態1に係るショートパッチアンテナ装置の構造と同様である。
 実施の形態2に係るショートパッチアンテナ装置の給電点に関しても、実施の形態1で行ったものと同様のものなので説明を省略する。もちろん、実施の形態2に係るショートパッチアンテナ装置にも、同軸線路8の外導体板10を外導体載置部18に接地して、同軸線路8を筐体14に固定することで、同軸コネクタを用いた給電を必要としないので、装置全体の小型化が可能である。また、アンテナの寸法調整によって、給電点が短絡側面4側に移動する必要があったとしても、導体板1以外の別の部材や前述のような同軸コネクタが不要である簡便な構造なので給電点の移動が容易に行える。次に、実施の形態2に係るショートパッチアンテナ装置の製造方法における導体板1の加工に関してだが、導体板1に必ずしも孔部5を設ける必要がないという点を除けば、図2及び3で説明した導体板加工工程及び導体板対向工程と同様であるので、説明を省略する。
 導体板加工工程及び導体板対向工程の導体板1に同軸線路8を取り付ける(固定する)ことでアンテナ素子が完成する。そのための同軸線路取付工程に関して図9を用いて説明する。まず、同軸線路8の先端部分の内導体9を露出させ、その後段は順に、絶縁性被覆11付き内導体9、絶縁性被覆11の上を外導体板10で覆った状態としてから、図9(a)に示すように、同軸線路8が開口部17を介して短絡側面4に挿入し、同軸線路8の先端部分の内導体9を折り曲げ、延ばして孔部6に挿し込む。次に、図9(b)に示すように、孔部6に挿し込んだ同軸線路8の先端部分の内導体9を電気接続手段9aにより電気的に接続及び固定する。これにより、同軸線路8の内導体9と放射導体面2とが導通する。なお、同軸線路8の内導体9と放射導体面2との導通は、放射導体面2に孔部6を設けずに、直接、同軸線路8の内導体9を放射導体面2(給電点部分)に半田付けしてもよい。続いて、同軸線路8にブッシュ12を装着する(図9(c))。そして、図9(d)に示すように、導体板1の領域(接地導体面3)と連続して開口部17と接する部分から延びた領域である外導体載置部18に外導体板10を電気接続手段10aにより電気的に接続する。図9(b)(c)(d)に記載の工程に関して、順は問わない。
 アンテナ素子に同軸線路8を取り付けたものを筐体14内に配置して、樹脂16を導体板1の周囲に樹脂を充填させることにより、実施の形態2に係るショートパッチアンテナ装置が完成する。樹脂16の固化後に、筐体14に蓋を取り付けてもよいが、図10(c)のように、固化した樹脂16の一面を実施の形態2に係るショートパッチアンテナ装置の外殻にしてもよい。ここで、アンテナ素子配置工程と封止工程とを詳細に説明する。まず、図10(a)(b)に示すように、筐体14の底部のリブ部15に放射導体面2を載置、筐体14の縁にブッシュ12を配置する。次に、ブッシュ12及び同軸線路8に熱収縮チューブ13を装着して熱を加えて、熱収縮チューブ13によりブッシュ12を同軸線路8に固定する。最後に、筐体14に樹脂16を注入する。この際、スリット部7(スリット部7をリブ部15と嵌合させる場合を除く)から、樹脂16がアンテナ素子の放射導体面2と接地導体面3との間から筐体14側に流入又は流出するので、筐体14内全体に効率よく樹脂16を充填することができる。つまり、アンテナ素子の寸法に対して、過大な寸法の筐体14を準備する必要がなく、筐体14を実施の形態1に係るショートパッチアンテナ装置の外殻とする場合には、直接的に、小型化に寄与することができる。また、開口部17に挿入された同軸線路8(ここでは、絶縁性皮膜11付きの内導体9)の径が開口部よりも小さければ小さいほど、同軸線路8が挿入された後の開口部17の開口面積が大きくなるので、スリット部7と同様に、筐体14に樹脂16を注入する際、同軸線路8が挿入された後の開口部17の開口から樹脂16がアンテナ素子の放射導体面2と接地導体面3との間から筐体14側に流入又は流出するので、筐体14内全体に効率よく樹脂16を充填することができる(例えば、図8(b)(c)に示す開口部17)。図10(c)が固化後のショートパッチアンテナ装置である。
 以上のように、実施の形態2に係るショートパッチアンテナ装置は、開口部17を利用して同軸線路8(内導体9)を接地導体面3側の短絡側面4から挿入するので、アンテナの電気的な性能を変化させることなく、ショートパッチアンテナ装置の厚み方向(短絡側面4が延びる方向)の長さを実施の形態1に係るショートパッチアンテナ装置よりも薄くすることができる。
 さらに、実施の形態2に係るショートパッチアンテナ装置は、実施の形態1に係るショートパッチアンテナ装置の変形例と同じく、同軸線路8の内導体9は、少なくとも接地導体面3から放射導体面2に亘る方向に延びた部分とそれ以外の部分とは別の部材でもよい。それ以外の部分とは、実施の形態1(変形例)で示すように、曲げていない内導体9(絶縁性皮膜11から露出した部分)を指す。ここで、図11において、22は線状導体、23は線状導体を被覆する円筒状の絶縁性皮膜であり、点線で示す部分に線状導体22が内挿されている。24は線状導体22が接地導体面3と短絡しないように絶縁するスペーサ、22aは線状導体22と放射導体面2とを電気的に接続する半田付けなどの電気接続手段、22bは線状導体22と内導体9とを電気的に接続する半田付けなどの電気接続手段である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 実施の形態2に係るショートパッチアンテナ装置の変形例に関して図11を用いて説明する。図11(a)はショートパッチアンテナ装置に使用するアンテナ素子の断面のイメージ図(同軸線路8形成済み)、図11(b)はショートパッチアンテナ装置に使用するアンテナ素子の断面のイメージ図(同軸線路8なし)である。なお、図11は図6に相当するので(特に、図11(a)は図6(f)に相当し、図11(b)は図6(a)に相当する)、実施の形態1(変形例)及び実施の形態2と異なる点だけを説明すると、図11(a)に示すように、孔部6に挿し込んだ線状導体22の先端部分は、電気接続手段22aにより電気的に接続及び固定されており、線状導体22と放射導体面2とが導通している。また、同軸線路8の内導体9の先端部分と線状導体22の基端部分(接地導体面3寄りの側)は、電気接続手段22bにより電気的に接続されている。また、この内導体9が電気的に接続された線状導体22の基端部分は、スペーサ24により接地導体面3と絶縁されており、線状導体22及び内導体9が短絡しない構造となっている。
 実施の形態2に係るショートパッチアンテナ装置(変形例)の給電部分の製造方法は、先端部分と基端部分を露出させた状態で絶縁性皮膜23に被覆された線状導体22の先端部分を放射導体面2の孔部6に挿し込み、線状導体22の基端部分と接地導体面3との間にスペーサ24を挟む。この状態で、電気接続手段22a、22bを行えばよい。なお、スペーサ24を挟む前に、電気接続手段22a又は電気接続手段22bを行ってもよいし、線状導体22の先端部分を放射導体面2の孔部6に挿し込み、線状導体22の基端部分と接地導体面3との間にスペーサ24を挟め、電気接続手段22bを行った後に、電気接続手段22aを行ってもよい。さらに、事前にスペーサ24にザグリ孔を空けて、そのザグリ孔に線状導体22の基端部分を挿し込んで、線状導体22(絶縁性皮膜23を含む)とスペーサ24とを一体化したものを製造して、この実施の形態2に係るショートパッチアンテナ装置(変形例)の給電部分に使用してもよい。
 この実施の形態2では、「孔部5は必ずしも必要ではない。」としてきたが、前述のような、一体化したスペーサ24と線状導体22を使用する場合は、図11(b)に示すように、接地導体面3に孔部5を有する導体板1(アンテナ素子)を用いた方が、一体化したスペーサ24と線状導体22を固定し易い。本願では、アンテナ素子には、交差偏波を考慮してある程度の厚みがある導体板1を使用しているために、孔部5の径とスペーサ24の径とを孔部5がスペーサ24を嵌合できる程度のものを選ぶことにより、スペーサ24を接地導体面3で支持・固定することができる。もちろん、筐体14に樹脂16を注入することにより、スペーサ24(線状導体22を含む)が固定されるので、孔部5がスペーサ24を嵌合していなくてもよいが、嵌合されていた方が、電気接続手段22a、22bを実行し易い。
 次に、一体化したスペーサ24と線状導体22を使用する場合の手順を説明する。導体板1へ孔部5を介して一体化したスペーサ24と線状導体22とを挿入し、線状導体22の先端部分を孔部5に挿し込み(図11(b))、孔部5に挿し込んだ線状導体22の先端部分を電気接続手段22aにより電気的に接続及び固定する。これにより、線状導体22と放射導体面2とが導通する。なお、線状導体22と放射導体面2との導通は、放射導体面2に孔部6を設けずに、直接、線状導体22を放射導体面2(給電点部分)に半田付けしてもよい。開口部17を介し、同軸線路8の内導体9の先端部分を線状導体22の基端部分(孔部5寄りの側)と接触させる。続いて、同軸線路8にブッシュ12を装着する。そして、孔部6が形成された導体板1の領域と連続して開口部17と接する部分から延びた領域である外導体載置部18に外導体板10を電気接続手段10aにより電気的に接続し、同軸線路8の内導体9の先端部分と線状導体20の基端部分(孔部5側)とを電気接続手段22bにより電気的に接続する。
 この実施の形態2(変形例)においても、アンテナ素子に同軸線路8を取り付けたものを筐体14内に配置して、樹脂16を導体板1の周囲に樹脂を充填させることにより、実施の形態2に係るショートパッチアンテナ装置が完成する。また、開口部17を利用して同軸線路8(内導体9)を接地導体面3側の短絡側面4から挿入するので、アンテナの電気的な性能を変化させることなく、ショートパッチアンテナ装置の厚み方向(短絡側面4が延びる方向)の長さを実施の形態1に係るショートパッチアンテナ装置よりも薄くすることができる。
実施の形態3.
 この発明の実施の形態3について図12~14を用いて説明する。実施の形態1及び2では、筐体14の底部のリブ部15に放射導体面2を載置、筐体14の縁にブッシュ12を配置して、ショートパッチアンテナ装置を製造していたが、この実施の形態3では、筐体14の底部のリブ部15に接地導体面3を載置、筐体14の縁にブッシュ12を配置した構成のショートパッチアンテナ装置を製造する場合について説明する。この場合に使用するアンテナ素子が形成された導体板1は、実施の形態1及び2(変形例を含む)で説明したもののいずれを用いてもよいが、この実施の形態3では、実施の形態2で説明した開口部17に同軸線路8を挿入したものを例に説明を行う。また、実施の形態3に係るショートパッチアンテナ装置の構造は、アンテナ素子の筐体14に対する向きが異なる部分以外は実施の形態1及び2(変形例を含み)に係るショートパッチアンテナ装置の構造と同様であり、動作に関しても同様である。
 図12(a)はアンテナ素子に同軸線路を挿入した図、図12(b)はアンテナ素子の放射導体面に同軸線路の内導体を半田付けした図、図12(c)は同軸線路に絶縁ブッシュを装着した図、図12(d)はアンテナ素子の外導体載置部に同軸線路の外導体を半田付けした図、図13(a)は同軸線路を接続したアンテナ素子を筐体に載置した図、図13(b)は同軸線路に熱収縮チューブを装着した図、図13(c)は筐体に誘電体の樹脂を充填し、アンテナ素子を封止した図(スリット部露出)、図13(d)は筐体に誘電体の樹脂を充填し、アンテナ素子を封止した図である。図14において、25はスリット部7が導体板1を削られることによりできた拡幅したスリット部、26は導体板1の導体除去箇所、27はスリット部7が導体板1に導体を追加されてできた狭幅したスリット部、28は導体板1に追加された追加導体である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 以下、実施の形態3に係るショートパッチアンテナ装置の製造方法を説明する。導体板加工工程及び導体板対向工程の導体板1に同軸線路8を取り付ける(固定する)ことでアンテナ素子が完成する。そのための同軸線路取付工程に関して図12を用いて説明する。まず、同軸線路8の先端部分の内導体9を露出させ、その後段は順に、絶縁性被覆11付き内導体9、絶縁性被覆11の上を外導体板10で覆った状態としてから、図12(a)に示すように、同軸線路8が開口部17を介して短絡側面4に挿入し、同軸線路8の先端部分の内導体9を折り曲げ、延ばして孔部6に挿し込む。次に、図12(b)に示すように、孔部6に挿し込んだ先端部分の内導体9を電気接続手段9aにより電気的に接続及び固定する。これにより、同軸線路8の内導体9と放射導体面2とが導通する。なお、同軸線路8の内導体9と放射導体面2との導通は、放射導体面2に孔部6を設けずに、直接、同軸線路8の内導体9を放射導体面2(給電点部分)に半田付けしてもよい。続いて、同軸線路8にブッシュ12を装着する(図12(c))。そして、図12(d)に示すように、導体板1の領域(接地導体面3)と連続して開口部17と接する部分から延びた領域である外導体載置部18に外導体板10を電気接続手段10aにより電気的に接続する。図12(b)(c)(d)に記載の工程に関して、順は問わない。
 アンテナ素子に同軸線路8を取り付けたものを筐体14内に配置して、樹脂16を導体板1の周囲に樹脂を充填させることにより、実施の形態3に係るショートパッチアンテナ装置が完成する。樹脂16の固化後に、筐体14に蓋を取り付けてもよいが、固化した樹脂16の一面を実施の形態3に係るショートパッチアンテナ装置の外殻にしてもよい。ここで、他の実施の形態と異なるアンテナ素子配置工程と封止工程とを詳細に説明する。まず、図13(a)(b)に示すように、筐体14の底部のリブ部15に接地導体面3を載置、筐体14の縁にブッシュ12を配置する。次に、ブッシュ12及び同軸線路8に熱収縮チューブ13を装着して熱を加えて、熱収縮チューブ13によりブッシュ12を同軸線路8に固定する。最後に、筐体14に樹脂16を注入する。この際、スリット部7から、樹脂16がアンテナ素子の放射導体面2と接地導体面3との間から筐体14側に流入するので、筐体14内全体に効率よく樹脂16を充填することができる。
 図13(c)に示すように、実施の形態3に係る封止工程では、少なくとも二つのスリット部7を露出させて、導体板1の周囲及び筐体14内に樹脂16を充填して終了する。図14(a)は、樹脂16の固化後において、ショートパッチアンテナ装置の導体板1部分に焦点を当てたショートパッチアンテナ装置の上面図である。実施の形態3に係る封止工程の終了後、アンテナ素子の小型に寄与するスリット部7の寸法が適切かどうかを検討するため、実際にこのショートパッチアンテナ装置の電気的な(電波的な)性能を測定する。その結果、以下のスリット調整工程を行う。スリット部7を拡幅する必要がある場合は、図14(b)に示すように、導体板1のスリット部7(の導体除去箇所26)をルーターなどの一般的な外形加工機を用いて削り取って、拡幅してスリット部25を得る。スリット部7を狭幅する必要がある場合は、図14(c)に示すように、導体板1のスリット部7に導体箔や半田などの追加導体28を追加し(追加導体28を導体板1に導通させ)、狭幅してスリット部27を得る。もちろん、追加導体28により狭幅化したスリット部27の一部を削り取って、微調整してもよい。
 このように、実施の形態3に係るショートパッチアンテナ装置の製造方法では、樹脂16を放射導体面2及び接地導体面3の間に配置した後に、スリット調整工程を行うので、最終的なショートパッチアンテナ装置の比誘電率に近い状態でスリット部7の調整を行うことができるだけなく、導体板のみのアンテナ素子を加工する場合では誘電体基板に相当する樹脂が無いため、導体板1のスリット部7(の導体除去箇所26)をルーターなど用いて削り取った場合に、導体板における放射導体面と接地導体面との対向する角度が狂ってしまうおそれを排除してスリット部7の拡幅を行うことができる。さらに、導体板のみのアンテナ素子を加工する場合では誘電体基板に相当する樹脂が無いため、非常に困難であるスリット部の狭幅化も容易に行うことができる。狭幅化は、導体板のみのアンテナ素子で行うことは困難で、小型化の妨げとなることはいうまでもない。
 次、スリット調整工程後に、図13(d)に示す第2の封止工程により、二つのスリット部25(又はスリット部27)を樹脂16にて封止する工程を行って、実施の形態3に係るショートパッチアンテナ装置を得ることができる。なお、前述のスリット調整工程は、この第2の封止工程にて追加する樹脂16をふまえて調整を行えばよいことはいうまでもない。さらに、第2の封止工程を行わずに、スリット調整工程後のスリット部25(又はスリット部27)を露出させたままでもよい。もちろん、スリット部7に調整の必要がない場合は、スリット調整工程を省いてもよい。封止工程及び第2の封止工程に使用する樹脂は、同じ樹脂16が理想的であるが、異なる樹脂であってもよい。
 また、この実施の形態3では、実施の形態1及び2と同じく、スリット部7が筐体14の開口部側を向いており、実施の形態1及び2のように、スリット部7が筐体14の底部側を向いている場合よりも、樹脂16の流入効果が大きい。そして、実施の形態1及び2と同様に、アンテナ素子の寸法に対して、過大な寸法の筐体14を準備する必要がなく、筐体14を実施の形態1に係るショートパッチアンテナ装置の外殻とする場合には、直接的に、小型化に寄与することができる。また、開口部17に挿入された同軸線路8(ここでは、絶縁性皮膜11付きの内導体9)の径が開口部よりも小さければ小さいほど、同軸線路8が挿入された後の開口部17の開口面積が大きくなるので、スリット部7と同様に、筐体14に樹脂16を注入する際、同軸線路8が挿入された後の開口部17の開口から樹脂16がアンテナ素子の放射導体面2と接地導体面3との間から筐体14側に流入又は流出するので、筐体14内全体に効率よく樹脂16を充填することができる。
実施の形態4.
 この発明の実施の形態4について図15~17を用いて説明する。この実施の形態4では、実施の形態1~3に係るショートパッチアンテナ装置の筐体にリブ部15を設けない場合とリブ部15をスリット部7に嵌合する場合について説明する(この嵌合は、きっちりと互いがかみ合っていない状態のものも含むとする)。実施の形態4に係るショートパッチアンテナ装置の構造作は、筐体に関する部分以外は実施の形態1~3(変形例を含み)に係るショートパッチアンテナ装置の構造と同様であり、動作に関しても同様である。図15(a)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図(接地導体面を筐体の底部に載置)、図15(b)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図(放射導体面を筐体の底部に載置)、図16(a)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図(筐体にリブ部を有する)、図16(b)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図(筐体にリブ部を有する)、図17(a)は溝部を有する筐体の側面を透視したアンテナ構成図、図17(b)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図(筐体に溝部を有する)、図17(c)はショートパッチアンテナ装置の筐体の側面を透視したアンテナ構成図(筐体に溝部及びリブ部を有する)である。
 図17において、29は開口部と底部とを有し、開口部と底部とが四方を側面部に囲まれ、底部にてアンテナ素子を保持する筐体であり、縁に同軸線路8(ブッシュ12を含む)を固定又は配置する窪みや孔を設けたものであり、リブ部15は筐体29と一体でも別体でもよい。さらに、筐体29はリブ部15を有しないものでもよい。30は筐体29の底部に形成され、電気接続手段9aによる放射導体面2上に生じた突起を収容可能な形状の窪み部である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
 実施の形態2及び3(変形例を含む)で説明したショートパッチアンテナ装置は、筐体14の底部側に接地導体面3を向けて、筐体14にアンテナ素子を載置しているが、この場合は、接地導体面3に突起部や出っ張り部分がないので、筐体14にリブ部15を形成せずに、筐体14の底部側に接地導体面3を載置することにより、ショートパッチアンテナ装置の厚み方向(短絡側面4が延びる方向)を薄くすることが可能である。図15(a)に記載のショートパッチアンテナ装置が、その構造を示すものである。この場合であれば、接地導体面3と筐体14との間にほとんど樹脂16が存在しなくてもよいし、一部存在してもよい。
 つぎに、実施の形態1(変形例を含む)で説明したショートパッチアンテナ装置において、筐体14にリブ部15を形成せずに、ショートパッチアンテナ装置を構築できることを説明する。実施の形態1(変形例を含む)に係るショートパッチアンテナ装置において、導体板1の放射導体面2に形成した孔部6に同軸線路8の内導体9を挿し込まずに、放射導体面2の接地導体面3と対向する側の面に電気接続手段9aにて、同軸線路8の内導体9を放射導体面2に電気的に接続することにより、放射導体面2の接地導体面3と対向する側の面の反対面に突起部や出っ張り部分ができないので、筐体14にリブ部15を形成せずに、筐体14の底部側に放射導体面2を載置することにより、ショートパッチアンテナ装置の厚み方向(短絡側面4が延びる方向)を薄くすることが可能である。図15(b)に記載のショートパッチアンテナ装置が、その構造を示すものである。この場合であれば、放射導体面2と筐体14との間にほとんど樹脂16が存在しなくてもよいし、一部存在してもよい。
 ここで、実施の形態1(変形例を含む)で説明したショートパッチアンテナ装置及び図15(b)に示すショートパッチアンテナ装置において、リブ部15に放射導体面2を向けてアンテナ素子を筐体14に載置する場合は、スリット部7と嵌合する形状の突起でもよいことを説明する。なお、図16に記載のショートパッチアンテナ装置は、図2(e)に記載の配置で、二つのスリット部7が二箇所に形成された導体体1をアンテナ素子に使ったものとする。図16(a)に記載のショートパッチアンテナ装置の導体板1は孔部6を有するものであり、図16(b)に記載のショートパッチアンテナ装置の導体板1は孔部6を必ずしも必要としないものである。図16(b)の給電点に関する説明は、図15(b)に関するものと同じである。このように、スリット部7とリブ部15とを嵌合、若しくは、かみ合わせることにより、アンテナ素子の筐体14内の固定や位置決めが容易にとなる。
 最後に、実施の形態2(変形例を含む)で説明したショートパッチアンテナ装置において、電気接続手段9aにより生じた放射導体面2上の突起がある場合でも、リブ部15を廃して、ショートパッチアンテナ装置の厚み方向(短絡側面4が延びる方向)を薄くする場合について説明する。図17(a)に記載の筐体29は底部に窪み部30を有するものである。この窪み部30は、筐体29の底部に載置される放射導体面2の給電点に対向する位置に配置される。また、窪み部30の形状は、内導体9及び電気接続手段9a、又は、電気接続手段9aによる放射導体面2上の突起が収納可能なものであればよい。もちろん、窪み部30は貫通孔に置換してもよい。このような貫通孔を含む窪み部30により、図17(b)に示すショートパッチアンテナ装置のように、筐体29にリブ部15を形成せずとも、筐体29の底部側に放射導体面2を載置することにより、ショートパッチアンテナ装置の厚み方向(短絡側面4が延びる方向)を薄くすることが可能である。もちろん、図17(c)に示すショートパッチアンテナ装置のように、筐体29にリブ部15を設け、図16に示すショートパッチアンテナ装置と同様に、スリット部7とリブ部15とを嵌合、若しくは、かみ合わせることにより、アンテナ素子の筐体29内の固定や位置決めが容易となるようにしてもよい。
 図18は、実施の形態1~4に係るショートパッチアンテナ装置の概観を示している。図18(a)は実施の形態1~4に係るショートパッチアンテナ装置の斜視図、図18(b)は実施の形態1~4に係るショートパッチアンテナ装置の側面図である。従来の誘電体基板を使ったショートパッチアンテナでは、誘電体基板に放射導体や接地導体に対して、パターンエッチングを行い製造していたので、誘電体基板の側面に上下と導通が取れる金属が必要であり、製造が困難であるとう課題や、コネクタ給電(誘電体基板を貫通させる給電)を必要とする場合が多く、コネクタを含めたアンテナ厚みが増すなどの課題があるが、実施の形態1~4に係るショートパッチアンテナ装置はそのような課題を解決している。次に、金属板や導体板用いた板金製造のショートパッチアンテナでは、中空構造であり、小型化が困難である(誘電体の波長短縮効果が得られない)という課題や、コネクタ給電必要で厚みが厚い。耐衝撃性が弱い。寸法公差確保が難しい(アンテナ素子の厚みが安定しない)。板金のアンテナ素子が不安定であるため寸法調整が難しいなどの課題があるが、実施の形態1~4に係るショートパッチアンテナ装置はそのような課題を解決している。
 実施の形態1~4に係るショートパッチアンテナ装置は、同軸ケーブルなど同軸線路で直接給電することが容易に可能なので、コネクタ不要となり、コネクタ分の厚みが減る。容易に導体厚を厚くすることが可能なので、交差偏波成分が増大し通信対象のアンテナの向きが交差偏波方向の場合でも通信できる。筐体および樹脂(誘電体樹脂)でモールドされるため、耐環境性が高く安定した性能を維持できる。経年劣化、衝撃などによるアンテナ寸法変化がほとんどないなどの利点がある。
 本発明に係るショートパッチアンテナ装置及びその製造方法は、無線通信装置に使用するアンテナに用いるのに適している。

Claims (17)

  1.  折り曲げられた一体の導体板で構成され、前記導体板の対向する一方の面に形成された放射導体面、及び、前記導体板の対向する他方の面に形成された接地導体面を有するアンテナ素子と、
     前記放射導体面の辺が切り欠かれたスリット部と、
     前記接地導体面側から前記放射導体面へ延びた内導体が前記放射導体面に電気的に接続され、外導体が前記接地導体面に接地された同軸線路と、
     前記アンテナ素子の前記放射導体面と前記接地導体面との間に充填された樹脂とを備えたショートパッチアンテナ装置。
  2.  前記接地導体面に形成された孔部を備え、
     前記孔部を介して前記放射導体面へ延びた内導体が前記放射導体面に電気的に接続される請求項1に記載のショートパッチアンテナ装置。
  3.  前記アンテナ素子を構成する導体板が前記放射導体面と前記接地導体面とを短絡する短絡側面を有し、
     この短絡側面に少なくとも前記接地導体面側まで切り欠かれた開口部が形成され、
     前記接地導体面における前記開口部と接する部分から延び、前記導体板と一体である外導体載置部を備え、
     この外導体載置部に前記外導体が接触して前記同軸線路が前記接地導体面に接地される請求項1に記載のショートパッチアンテナ装置。
  4.  前記同軸線路の内導体は、少なくとも前記孔部から前記放射導体面までの部分とそれ以外の部分とは別の部材である請求項2に記載のショートパッチアンテナ装置。
  5.  前記同軸線路の内導体の前記孔部から前記放射導体面までの部分は、円筒状の絶縁性皮膜に覆われ、この絶縁性皮膜により前記孔部と絶縁された請求項4に記載のショートパッチアンテナ装置。
  6.  前記開口部を介して前記放射導体面へ延びた内導体が前記放射導体面に電気的に接続される請求項3に記載のショートパッチアンテナ装置。
  7.  前記外導体載置部は、前記接地導体面と同じ平面に配置される請求項3に記載のショートパッチアンテナ装置。
  8.  前記樹脂は、少なくとも前記アンテナ素子の前記スリット部を露出させて充填された請求項1に記載のショートパッチアンテナ装置。
  9.  前記スリット部は、第2の樹脂により封止された請求項8に記載のショートパッチアンテナ装置。
  10.  前記スリット部は、前記放射導体面の対向する二辺の両側から対向して形成された二つのスリット部である請求項1に記載のショートパッチアンテナ装置。
  11.  前記二つのスリット部は、前記放射導体面の対向する二辺に沿って複数形成された請求項10に記載のショートパッチアンテナ装置。
  12.  導体板に、U字状の切り欠き部、及び、このU字状の切り欠き部に囲まれた前記導体板の領域に対して反対の領域であって、前記導体板の辺が切り欠かれたスリット部を形成する導体板加工工程と、
     前記U字状の切り欠き部を開口部に変換するように前記導体板の前記U字状の切り欠き部における二股部分の先端部分を折り曲げて、前記U字状の切り欠き部が形成された前記導体板の領域、及び、前記U字状の切り欠き部が形成された前記導体板の領域に対して前記スリット部が形成された前記導体板の領域と反対側の領域を別の平面にする第1の折曲工程、
     前記導体板の前記U字状の切り欠き部又は前記開口部と前記スリット部との間の領域を折り曲げて、前記U字状の切り欠き部又は前記開口部が形成された前記導体板の領域、及び、前記スリット部が形成された前記導体板の領域を別の平面にする第2の折曲工程を行い、
     前記スリット部が形成された前記導体板の領域、及び、前記U字状の切り欠き部が形成された前記導体板の領域に対して前記スリット部が形成された前記導体板の領域と反対側の領域を対向させる導体板対向工程と、
     前記U字状の切り欠き部が形成された前記導体板の領域に対して前記スリット部が形成された前記導体板の領域と反対側の領域に連続して、前記開口部と接する部分から延びた領域を外導体載置部とし、外導体を電気的に接続し、前記開口部を介して内導体を延ばして前記スリット部が形成された前記導体板の領域へ電気的に接続し、前記導体板に同軸線路を固定する同軸線路取付工程と、
     この同軸線路取付工程後に、少なくとも前記スリット部を露出させて、前記導体板の周囲に樹脂を充填する封止工程と、
     この封止工程後に、前記スリット部の寸法を変更するスリット調整工程とを備えたショートパッチアンテナ装置の製造方法。
  13.  前記導体板加工工程は、導体板に、前記U字状の切り欠き部が形成された前記導体板の領域に対して、前記スリット部が形成された前記導体板の領域の反対側における領域に孔部を形成する請求項12に記載のショートパッチアンテナ装置の製造方法。
  14.  前記スリット調整工程は、前記導体板の一部を削り取って前記スリット部を拡幅する、又は、前記導体板に導体箔や半田を追加して前記スリット部を狭幅する請求項12に記載のショートパッチアンテナ装置の製造方法。
  15.  前記スリット調整工程後に、前記スリット部を封止する第2の封止工程を備えた請求項12に記載のショートパッチアンテナ装置の製造方法。
  16.  前記導体板加工工程は、前記スリット部を対向する前記導体板の二辺の両側から対向して二つ形成する請求項12に記載のショートパッチアンテナ装置の製造方法。
  17.  前記導体板加工工程は、二つ形成された前記スリット部を前記放射導体面の対向する二辺に沿って複数形成する請求項16に記載のショートパッチアンテナ装置の製造方法。
PCT/JP2010/002021 2010-02-05 2010-03-23 ショートパッチアンテナ装置及びその製造方法 WO2011096021A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010024250 2010-02-05
JP2010-024250 2010-10-08

Publications (1)

Publication Number Publication Date
WO2011096021A1 true WO2011096021A1 (ja) 2011-08-11

Family

ID=44355050

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/002021 WO2011096021A1 (ja) 2010-02-05 2010-03-23 ショートパッチアンテナ装置及びその製造方法
PCT/JP2011/000345 WO2011096167A1 (ja) 2010-02-05 2011-01-24 ショートパッチアンテナ装置及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000345 WO2011096167A1 (ja) 2010-02-05 2011-01-24 ショートパッチアンテナ装置及びその製造方法

Country Status (7)

Country Link
US (1) US20120306721A1 (ja)
EP (1) EP2533361A4 (ja)
JP (1) JP5540022B2 (ja)
KR (1) KR101368640B1 (ja)
CN (1) CN102725910B (ja)
TW (1) TW201203702A (ja)
WO (2) WO2011096021A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703614B (zh) * 2011-09-26 2015-08-19 株式会社藤仓 天线装置以及天线的安装方法
JP2014049844A (ja) * 2012-08-30 2014-03-17 Mitsubishi Electric Corp アンテナ装置およびその製造方法
JP5670976B2 (ja) * 2012-09-18 2015-02-18 株式会社東芝 通信装置
JP2015204497A (ja) * 2014-04-11 2015-11-16 セイコーエプソン株式会社 直線偏波アンテナ、円偏波アンテナおよび電子機器
US20150349432A1 (en) * 2014-06-02 2015-12-03 Physical Devices, Llc Wavelength compressed antennas
US10431873B2 (en) * 2016-06-20 2019-10-01 Shure Acquisitions Holdings, Inc. Diversity antenna for bodypack transmitter
US10957970B2 (en) * 2016-09-02 2021-03-23 Pacesetter, Inc. Systems and methods for incorporating a patch antenna in an implantable medical device
CN106941208B (zh) * 2016-12-22 2019-09-20 华南理工大学 紧凑型准各向同性短路贴片天线及其制造方法
EP3555957A4 (en) * 2017-07-17 2020-08-12 Hewlett-Packard Development Company, L.P. SLOTTED PLANAR ANTENNAS
JP6422547B1 (ja) * 2017-09-28 2018-11-14 株式会社ヨコオ パッチアンテナ及びアンテナ装置
TWI662743B (zh) * 2018-01-15 2019-06-11 和碩聯合科技股份有限公司 天線裝置
JP7140145B2 (ja) 2018-02-02 2022-09-21 Agc株式会社 アンテナ装置、車両用窓ガラス及び窓ガラス構造
JP7238754B2 (ja) * 2019-03-12 2023-03-14 株式会社村田製作所 アンテナ装置、アンテナモジュール、及び通信装置
CN111697319B (zh) * 2019-03-12 2023-06-23 株式会社村田制作所 天线装置、天线模块以及通信装置
CN111697320B (zh) * 2019-03-12 2022-12-27 株式会社村田制作所 天线装置、天线模块以及通信装置
KR102639717B1 (ko) 2019-05-27 2024-02-23 삼성전자주식회사 안테나 모듈 및 이를 포함하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530908A (ja) * 1998-11-17 2002-09-17 ザーテックス・テクノロジーズ・インコーポレイテッド 一体的放射器/接地平面を有する広帯域アンテナ
JP2003158419A (ja) * 2001-09-07 2003-05-30 Tdk Corp 逆fアンテナ及びその給電方法並びにそのアンテナ調整方法
JP2005039754A (ja) * 2003-06-26 2005-02-10 Alps Electric Co Ltd アンテナ装置
JP2005223546A (ja) * 2004-02-04 2005-08-18 Mitsumi Electric Co Ltd アンテナ装置
JP2007014021A (ja) * 2002-12-06 2007-01-18 Fujikura Ltd アンテナ
JP2008193204A (ja) * 2007-02-01 2008-08-21 Mitsumi Electric Co Ltd アンテナ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835541A (en) * 1986-12-29 1989-05-30 Ball Corporation Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
JPH0659009B2 (ja) * 1988-03-10 1994-08-03 株式会社豊田中央研究所 移動体用アンテナ
JPH08222940A (ja) 1995-02-14 1996-08-30 Mitsubishi Electric Corp アンテナ装置
US6184833B1 (en) * 1998-02-23 2001-02-06 Qualcomm, Inc. Dual strip antenna
US6049314A (en) * 1998-11-17 2000-04-11 Xertex Technologies, Inc. Wide band antenna having unitary radiator/ground plane
JP2006287986A (ja) * 2000-11-22 2006-10-19 Matsushita Electric Ind Co Ltd アンテナ及びそれを用いた無線装置
DE60120089T2 (de) * 2000-11-22 2007-01-04 Matsushita Electric Industrial Co., Ltd., Kadoma Antenne und drahtloses Gerät mit einer solchen Antenne
JP2002198724A (ja) 2000-12-25 2002-07-12 Matsushita Electric Works Ltd マイクロストリップアンテナ
DE60208902D1 (de) * 2001-08-13 2006-04-13 Molex Inc Modulare antenne mit doppelpolarisation
US6741214B1 (en) * 2002-11-06 2004-05-25 Centurion Wireless Technologies, Inc. Planar Inverted-F-Antenna (PIFA) having a slotted radiating element providing global cellular and GPS-bluetooth frequency response
JP3655617B2 (ja) * 2003-03-26 2005-06-02 日本アンテナ株式会社 パッチアンテナ
JP4500214B2 (ja) * 2005-05-30 2010-07-14 株式会社日立製作所 無線icタグ、及び無線icタグの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530908A (ja) * 1998-11-17 2002-09-17 ザーテックス・テクノロジーズ・インコーポレイテッド 一体的放射器/接地平面を有する広帯域アンテナ
JP2003158419A (ja) * 2001-09-07 2003-05-30 Tdk Corp 逆fアンテナ及びその給電方法並びにそのアンテナ調整方法
JP2007014021A (ja) * 2002-12-06 2007-01-18 Fujikura Ltd アンテナ
JP2005039754A (ja) * 2003-06-26 2005-02-10 Alps Electric Co Ltd アンテナ装置
JP2005223546A (ja) * 2004-02-04 2005-08-18 Mitsumi Electric Co Ltd アンテナ装置
JP2008193204A (ja) * 2007-02-01 2008-08-21 Mitsumi Electric Co Ltd アンテナ装置

Also Published As

Publication number Publication date
CN102725910B (zh) 2014-08-27
KR101368640B1 (ko) 2014-03-04
JP5540022B2 (ja) 2014-07-02
EP2533361A1 (en) 2012-12-12
JPWO2011096167A1 (ja) 2013-06-10
CN102725910A (zh) 2012-10-10
KR20120102149A (ko) 2012-09-17
US20120306721A1 (en) 2012-12-06
EP2533361A4 (en) 2014-06-25
WO2011096167A1 (ja) 2011-08-11
TW201203702A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
WO2011096021A1 (ja) ショートパッチアンテナ装置及びその製造方法
KR100836213B1 (ko) 안테나, 무선장치, 안테나 설계 방법 및 안테나의 동작주파수 측정 방법
US8982003B2 (en) Slot antenna, electronic apparatus, and method for manufacturing slot antenna
US6329950B1 (en) Planar antenna comprising two joined conducting regions with coax
JP4290744B2 (ja) アンテナ装置
JP5081985B2 (ja) ケーブルコネクタおよびアンテナ部品
JP5302953B2 (ja) 無線通信装置
JP2006197072A (ja) フレキシブルアンテナ
JP2011077608A (ja) アンテナ装置
JP4347002B2 (ja) 偏波共用アンテナ
JP4611039B2 (ja) アンテナ
JP5122621B2 (ja) 多周波アンテナ
JP4514814B2 (ja) アンテナ装置
JP6152016B2 (ja) 多共振アンテナ
WO2016104586A1 (ja) 同軸ケーブル接続部材、通信回路及び通信装置
JP6062201B2 (ja) 路側アンテナ
JP2009124397A (ja) アンテナ装置及び無線装置
JP3788797B2 (ja) アンテナ
JP2005277897A (ja) 平板アンテナ及びその製造方法
JP2004208151A (ja) 2周波数共用アンテナ
JP2011217190A (ja) 指向性アンテナ
JP3237604B2 (ja) アンテナ装置
JP2012205245A (ja) ショートパッチアンテナ装置の製造方法
JP2000049525A (ja) 小型アンテナ
JP2022024240A (ja) アンテナの給電構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845159

Country of ref document: EP

Kind code of ref document: A1