WO2011093334A1 - 成膜方法、成膜装置、および該成膜装置の制御装置 - Google Patents

成膜方法、成膜装置、および該成膜装置の制御装置 Download PDF

Info

Publication number
WO2011093334A1
WO2011093334A1 PCT/JP2011/051487 JP2011051487W WO2011093334A1 WO 2011093334 A1 WO2011093334 A1 WO 2011093334A1 JP 2011051487 W JP2011051487 W JP 2011051487W WO 2011093334 A1 WO2011093334 A1 WO 2011093334A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
power
holder
substrate
shielding member
Prior art date
Application number
PCT/JP2011/051487
Other languages
English (en)
French (fr)
Inventor
絢介 山本
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2011551876A priority Critical patent/JP5513529B2/ja
Priority to EP11737047.8A priority patent/EP2530182B1/en
Publication of WO2011093334A1 publication Critical patent/WO2011093334A1/ja
Priority to US13/213,533 priority patent/US20120006675A1/en
Priority to US14/527,948 priority patent/US9428828B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures

Definitions

  • the present invention relates to a film forming method, a film forming apparatus (for example, a sputtering apparatus) used for depositing a material on a substrate in a manufacturing process of a semiconductor device or a magnetic storage medium, and a control device for the film forming apparatus.
  • a film forming apparatus for example, a sputtering apparatus
  • a control device for the film forming apparatus for example, a sputtering apparatus
  • the sputtering phenomenon is a phenomenon in which sputtered particles (neutral particles) are generated from the target by causing high energy ions to enter the target, and the sputtered particles are deposited on the substrate.
  • an openable / closable shielding plate called a shutter is usually provided between a target and a substrate.
  • the film formation start timing is controlled so that the film formation process is not started until the plasma state in the vacuum vessel is stabilized. That is, the shutter is closed so that film formation is not performed on the substrate until a high voltage is applied to the target and plasma is generated until it is stabilized. Then, after the plasma is stabilized, the shutter is opened to start film formation.
  • a stable plasma can be used to form a film on the substrate with high controllability, so that a high-quality film can be formed.
  • Patent Document 1 the self-bias voltage induced in the target is detected, and when the self-bias is stabilized, the shutter disposed between the substrate and the target is opened to improve the film quality and film thickness reproducibility.
  • a high-frequency sputtering apparatus and method capable of forming an excellent thin film are disclosed.
  • Patent Document 2 discloses a sputtering apparatus in which a sputtering cathode is provided with a cylindrical cathode cover that surrounds the side of the sputtering surface, and the shutter that can be opened and closed is provided at the open end of the cathode cover. .
  • the sputtering apparatus of the cited document 2 it is possible to reduce the amount of sputtered particles during discharge in a state where the shutter is closed before starting film formation, such as target cleaning.
  • Patent Document 1 when a self-bias is stabilized, a thin film having excellent film quality and film thickness reproducibility is opened by opening a shutter disposed between the substrate and the target. Although a film is possible, there is no mention of particle reduction on the substrate.
  • the film forming apparatus disclosed in Patent Document 2 is also improved in spattering of sputtered particles with the shutter closed, but the problem of particles on the substrate when the film is formed with the shutter opened. Is not mentioned. In the production of semiconductor devices and magnetic storage media that have been miniaturized and thinned in recent years, the influence of particles has been increasing, and for this reason, reduction of particles is required.
  • a first aspect of the present invention is a film forming method for forming a film on a substrate by sputtering a target, which is applied to a target holder holding the target at the time of film formation from a power source connected to the target holder. Applying a first power smaller than the film forming power to cause a discharge in the first discharge space, and continuing the discharge caused in the first step, A second step of changing the first discharge space to a second discharge space larger than the first discharge space, and the second discharge space from the power source to the target holder than the first power. A third step of applying a large second power; and a fourth step of opening the substrate shielded against the second space into the second discharge space. And wherein the door.
  • the second aspect of the present invention is a film forming apparatus, comprising: a target holder for holding a target; a power applying means for applying power to the target holder; and a substrate holder for holding the substrate.
  • a shield having a hollow portion configured to surround the target holder and grounded, the shield having an opening for communicating the hollow portion with the outside of the shield, and the opening Is configured to be movable between a first position that shields between the target holder and the substrate holder and a second position that does not shield between the target holder and the substrate holder.
  • a gap between the target holder and the substrate holder is provided by covering at least a first holding member and a substrate holding surface of the substrate holder.
  • a second shielding member configured to be movable between a third position to be shielded and a fourth position not shielding between the target holder and the substrate holder; the power application unit; And control means for controlling the movement of the second shielding member, wherein the control means is such that the first shielding member is located at the first position and the second shielding member is the third shielding member.
  • the power applying means is controlled so as to apply a first power smaller than a film forming power applied at the time of film formation to the target holder in a state where the second shielding member is
  • the movement of the first shielding member is controlled so as to move the first shielding member from the first position to the second position in a state of being located at the third position, and then the target holder
  • the first power Wherein the is also configured to control the power applying means to apply a large second power.
  • the third aspect of the present invention surrounds the target holder, a target holder for holding the target, power applying means for applying power to the target holder, a substrate holder for holding the substrate, and the target holder.
  • a shield having a hollow portion configured to be grounded, the shield having an opening for communicating the hollow portion with the outside of the shield, and the target holder by covering the opening
  • a first shielding member configured to be movable between a first position that shields between the substrate holder and the substrate holder, and a second position that does not shield between the target holder and the substrate holder;
  • a second shielding member configured to be movable between a fourth position that does not shield between the target holder and the substrate holder.
  • the deposition power applied to the target holder during deposition A means for controlling the power application means so as to apply a small first power, and applying the first power to the target holder, so that the space between the hollow portion and the first shielding member The first shielding member is moved from the first position to the second position in a state where the second shielding member is located at the third position while continuing the discharge caused in the first discharge space.
  • the first shielding member is located at the second position, and the second shielding member is located at the third position, And a means for controlling the power application means so as to apply a second power larger than the first power to the target holder.
  • FIG. 1 is a schematic view of a sputtering apparatus 1 according to an embodiment of the present invention.
  • the sputter deposition apparatus 1 includes a vacuum chamber 2 having a gate valve 42 that can be evacuated, an exhaust chamber 8 provided adjacent to the vacuum chamber 2 through an exhaust port, and a vacuum chamber through the exhaust chamber 8. 2 is provided.
  • the exhaust device has a turbo molecular pump 48 connected to the exhaust chamber 8 via a main valve 47. Further, a dry pump 49 is further connected to the turbo molecular pump 48 of the exhaust device. The reason why the exhaust device is provided below the exhaust chamber 8 is to make the footprint (occupied area) of the entire device as small as possible.
  • a target holder 6 for holding the target 4 via the back plate 5 is provided in the vacuum chamber 2, a target holder 6 for holding the target 4 via the back plate 5 is provided.
  • a target shutter 14 having an opening is installed so as to cover the target holder 6.
  • the target shutter 14 is made of a conductive metal such as Al or SUS, and is grounded.
  • the target shutter 14 has a rotating shutter structure.
  • the target shutter 14 is shielded for a closed state (shielded state) that shields between the substrate holder 7 and the target holder 6 or an open state (retracted state) that opens between the substrate holder 7 and the target holder 6. Functions as a member. That is, the target shutter 14 is closed when the target shutter 14 is located at the first position where the target shutter 6 and the substrate holder 7 are shielded.
  • the target shutter 14 When the target shutter 14 is positioned at the first position, the opening of the chimney 9 (the opening for connecting the hollow portion of the chimney 9 and the outside of the chimney 9) is covered with the target shutter 14, and the target shutter 14 is covered.
  • the holder 6 is shielded from the substrate holder 7.
  • the target shutter 14 is in the open state when it is located at the second position that does not shield the target holder 6 and the substrate holder 7.
  • the target shutter 14 can be opened by aligning the opening of the target shutter 14 between the target 4 placed on the target holder 6 and the substrate 10 placed on the substrate holder 7.
  • the target shutter 14 is provided with a target shutter drive mechanism 33 for opening and closing the target shutter 14.
  • a chimney 9 that is a cylindrical shield is attached around the target holder 6 in the space between the target holder 6 and the target shutter 14 so as to surround the target holder 6.
  • the magnetron discharge space in front of the sputtering surface of the target 4 attached to the target holder 6 is surrounded by the chimney 9 and opens to the opening of the target shutter 14 when the shutter is open.
  • the target shutter 14 is configured to be rotatable. However, the target shutter 14 is set at the first position and the second position so as to establish the closed state and the open state of the target shutter 14. Any configuration may be adopted as long as it can move between the two.
  • the target shutter 14 may be configured to be slidable, and the target shutter 14 may be moved by sliding between the first position and the second position.
  • the target shutter 14 is closed. If the gas is introduced, the pressure on the front surface of the target can be quickly increased, so that it is easy to start discharge quickly during discharge under low pressure. Therefore, there is an effect of improving the throughput.
  • a plurality of targets can be attached and switched for use.
  • the target shutter 14 and the chimney 9 are also used for the purpose of preventing or reducing cross-contamination among a plurality of targets. That is, in this case, the target shutter 14 has a function of blocking other target holders from a discharge space (a space in which plasma discharge occurs) between the target holder 6 and the substrate holder 7 that are opened.
  • the chimney 9 is formed using a conductive material such as Al and is grounded.
  • the chimney 9 is desirable from the viewpoint of holding the sputtered particles adhering to the surface of the target facing the target by blasting or spraying. It is further desirable that the surface of the chimney 9 facing the target is coated with at least an insulating material such as alumina or yttria by thermal spraying, for example. Since the surface facing the target of the chimney 9 as a member surrounding the target 4 is coated with at least alumina spraying, the surface potential of the chimney 9 becomes closer to the plasma potential than when not coated with alumina spraying.
  • a magnetron discharge space can be formed in the hollow portion of the chimney 9 by covering at least the surface facing the target of the chimney 9 with an insulating film (for example, an insulating film formed by alumina spraying)
  • an insulating film for example, an insulating film formed by alumina spraying
  • the surface potential of the chimney 9 can be brought close to the potential of the plasma generated in the magnetron discharge space. Therefore, since the impact by the charged particles in the plasma is suppressed, the particles can be further reduced.
  • the surface which faces the target of the chimney 9 is coated with at least alumina spraying, abnormal discharge generated between the chimney 9 and the target 4 can be suppressed, so that particles can be further reduced. .
  • a first power smaller than a film formation power applied at the time of film formation is applied to a target holder holding a target from a power source connected to the target holder, and the first discharge is performed.
  • the effect of reducing the particles is not limited to this method.
  • the surface of the chimney 9 facing the target 4 is coated by at least the thermal spraying of the insulating film. In this case, an effect of reducing particles can be obtained, and a remarkable effect can be obtained by combining the power application method of the present embodiment.
  • a magnet 13 for realizing magnetron sputtering is disposed behind the target 4 as viewed from the sputtering surface.
  • the magnet 13 is held by the magnet holder 3 and can be rotated by a magnet holder rotating mechanism (not shown). In order to make the erosion of the target uniform, the magnet 13 rotates during discharge.
  • the target 4 is installed at a position (offset position) disposed obliquely above the substrate 10. That is, the center point of the sputtering surface of the target 4 is at a position that is shifted by a predetermined dimension with respect to the normal line of the center point of the substrate 10.
  • the target holder 6 is connected to a power supply 12 for applying sputtering discharge power.
  • the target holder 6 When a voltage is applied to the target holder 6 by the power source 12, discharge is started and sputtered particles are deposited on the substrate.
  • the distance between the intersection point where the normal line of the plane including the upper surface of the substrate holder 7 passing through the center of the target 4 intersects the plane and the center point of the target 4 is defined as the T / S distance (see FIG. 1), this example Then, it is 240 mm. Since an RF power source is used as a power source, a matching unit (not shown) is installed between the power source 12 and the target holder 6.
  • the target holder 6 is insulated from the vacuum chamber 2 at the ground potential by the insulator 34, and is made of a metal such as Cu, so that it becomes an electrode when electric power is applied.
  • the target holder 6 has a water channel (not shown) inside, and is configured to be cooled by cooling water supplied from a water pipe (not shown).
  • the target 4 includes material components that are desired to be deposited on the substrate 10.
  • the back plate 5 installed between the target 4 and the target holder 6 is made of a metal such as Cu and holds the target 4.
  • a substrate holder 7 for placing the substrate 10 and a substrate shutter 19 provided between the substrate holder 7 and the target holder 6 are provided.
  • the substrate shutter 19 is supported by a substrate shutter support mechanism 20, and the substrate shutter support mechanism 20 is connected to a substrate shutter drive mechanism 32 that opens and closes the substrate shutter 19.
  • the substrate shutter 19 is disposed in the vicinity of the substrate holder 7 and is in a closed state in which the space between the substrate holder 7 and the target holder 6 is shielded or in an open state in which the space between the substrate holder 7 and the target holder 6 is opened. Functions as a shielding member.
  • the substrate shutter 19 is closed when the substrate shutter 19 is positioned at the third position where the space between the target holder 6 and the substrate holder 7 is shielded. Since the substrate shutter 19 is positioned at the third position, the substrate shutter 19 covers at least the substrate holding surface on which the substrate of the substrate holder 9 is held, and the substrate 10 is on the target shutter 14 side (for example, described later). The second discharge space is shielded. On the other hand, the substrate shutter 19 is opened when it is positioned at the fourth position where the gap between the target holder 6 and the substrate holder 7 is not shielded.
  • the substrate shutter 19 is configured to be rotatable, but the substrate shutter 19 is moved to the third position and the fourth position so as to establish the closed state and the open state of the substrate shutter 19. Any configuration may be adopted as long as it can move between the two.
  • the substrate shutter 19 may be configured to be slidable, and the substrate shutter 19 may be moved by sliding between the third position and the fourth position.
  • the inner surface of the vacuum chamber 2 is grounded.
  • a grounded chamber shield 40 is provided on the inner surface of the vacuum chamber 2 between the target shutter 14 and the substrate holder 7.
  • the chamber shield here is formed separately from the vacuum chamber 2 to prevent the sputtered particles emitted from the target 4 from directly adhering to the inner surface of the vacuum chamber 2 and to protect the inner surface of the vacuum chamber 2.
  • the chamber shield 40 is positioned so as to at least surround the space between the opening of the target shutter 14 and the position where the substrate shutter 19 can shield.
  • the grounded chamber shield 40 can act as a ground electrode for the target 4 and the target holder 6 to which high-frequency power is applied. Further, it is more desirable from the viewpoint of plasma stability that the chamber shield 40 is positioned so as to surround the space between the opening of the target shutter 14 and the substrate holder 7.
  • a shielding member having a ring shape (hereinafter also referred to as “substrate peripheral cover ring 21”) is provided on the surface of the substrate holder 7 and on the outer edge side (outer peripheral portion) of the mounting portion of the substrate 10.
  • the substrate peripheral cover ring 21 prevents or reduces the adhesion of sputtered particles to a place other than the film formation surface of the substrate 10 placed on the substrate holder 7.
  • the place other than the film formation surface includes the side surface and the back surface of the substrate 10 in addition to the surface of the substrate holder 7 covered by the substrate peripheral cover ring 21.
  • the substrate holder 7 is provided with a substrate holder drive mechanism 31 for moving the substrate holder 7 up and down or rotating at a predetermined speed.
  • the substrate holder drive mechanism 31 can move the substrate holder 7 up and down.
  • the vacuum chamber 2 measures the first gas inlet 15 for introducing an inert gas into the vacuum chamber 2, the second gas inlet 17 for introducing a reactive gas, and the pressure of the vacuum chamber 2.
  • the first gas introduction port 15 is a pipe for introducing an inert gas (for example, argon, krypton, xenon, neon, etc.), a mass flow controller for controlling the flow rate of the inert gas, and the flow of the inert gas. It is connected to valves for starting and starting, and is configured so that a gas having a flow rate specified by a control device (not shown) can be stably introduced into the vacuum chamber 2.
  • the 1st gas inlet 15 may be connected to a pressure-reduction valve, a filter, etc. as needed.
  • the first gas inlet 15 is located in the vicinity of the target 4.
  • the first gas inlet 15 is configured to be able to introduce an inert gas toward the magnetron discharge space in front of the target 4.
  • the second gas introduction port 17 is a pipe for introducing a reactive gas (for example, nitrogen, oxygen, etc.), a mass flow controller for controlling the flow rate of the reactive gas, and blocking or starting the flow of the reactive gas. And is configured so that a gas having a flow rate specified by a control device (not shown) can be stably introduced into the vacuum chamber 2. Further, the second gas introduction port 17 may be connected to a pressure reducing valve, a filter or the like as necessary. The second gas introduction port 17 is located in the vicinity of the substrate 10.
  • a reactive gas for example, nitrogen, oxygen, etc.
  • the sputter deposition apparatus 1 includes a controller con as a control means, controls the drive mechanisms 32 and 33 of the shutters 14 and 19 and the power supply 12 to open and close the shutters 14 and 19 and increase or decrease the power at a predetermined timing.
  • the controller con of the sputter deposition apparatus 1 includes, for example, a storage unit 81 that stores a program of the method according to the present embodiment illustrated in FIG. 2 and an arithmetic processing unit 82 that performs arithmetic processing of process control. The method of the present embodiment can be executed according to the program shown in FIG.
  • the arithmetic processing unit 81 can be configured by, for example, a personal computer (PC), a PLC, a microcomputer, or the like.
  • FIG. 2 is a flowchart of the film forming method of the present embodiment
  • FIG. 3 is a state diagram (timing chart) of each apparatus when the method is applied.
  • a film forming method according to this embodiment when the apparatus of FIG. 1 is used will be described with reference to FIGS.
  • the target shutter 14 also referred to as “first shutter”
  • the controller con controls the target shutter drive mechanism 33 so that the target shutter 14 is shielded between the target holder 6 and the substrate holder 7 by the target shutter 14.
  • the target shutter 14 is closed by rotating.
  • the target holder 6 is surrounded by the chimney 9, the space surrounded by the target shutter 14, the chimney 9, and the target 4 becomes the first discharge space by the closed state.
  • the first discharge space smaller than the discharge space (second discharge space described later) at the time of subsequent film formation, it is possible to facilitate discharge at the time of ignition.
  • the substrate shutter 19 (also referred to as “second shutter”) is also closed. That is, the substrate shutter 19 is located at the third position. Therefore, when the substrate shutter 19 is in the open state, the controller con controls the substrate shutter drive mechanism 32 so that the substrate shutter 19 is shielded between the target holder 6 and the substrate holder 7 by the substrate shutter 19. Rotate to close the substrate shutter 19.
  • the controller con controls the power supply 12 and applies the first power (electric power) to the target holder 6 holding the target 4.
  • the first power application causes discharge in the first discharge space.
  • the applied power (first power) of the first step S31 may be any power that is smaller than the film forming power, and may be any level that can start discharge stably.
  • the controller con controls the target shutter drive mechanism 33 to open and close between the target 4 and the substrate 10. Open the shutter (target shutter 14). That is, the target shutter drive mechanism 33 rotates the first shutter to move the first shutter from the first position to the second position, and the target holder 6 (that is, the target 4) is moved to the substrate.
  • the target shutter 14 Open to the holder 7 side (the target shutter 14 is opened).
  • the target shutter 14 for example, discharge can be performed even in the region between the target holder 6 and the substrate holder 7 in the vacuum chamber 2. Therefore, by the second step S2, the discharge space is changed from the first discharge space to a second discharge space larger than the first discharge space.
  • the controller com controls the power source 12 to increase the power applied to the target holder 6 from the first power to a second power larger than the first power. It is desirable to increase the applied power (second power) in the third step S3 to the film forming power for the stability of film formation on the next substrate.
  • the controller com controls the substrate shutter drive mechanism 32 to open and close a second shutter (substrate that can be opened and closed) located closer to the substrate 10 than the first shutter (target shutter 14). The shutter 19) is opened and film formation on the substrate 10 is started.
  • the substrate shutter drive mechanism 32 rotates the second shutter to move the second shutter from the third position to the fourth position, and moves the substrate holder 7 (ie, the substrate 10) to the target. Open to the holder 6 side (the substrate shutter 19 is opened). Thus, by opening the substrate holder 7, the substrate holder 7 (that is, the substrate 10) is opened to the second discharge space. Accordingly, the sputtered particles can reach the substrate 10 and film formation is performed on the substrate 10. By starting the film formation in such a flow, remarkable particle reduction can be performed.
  • the film formation start flow performed in the present embodiment and the circumstances in which remarkable particle reduction obtained as a result can be described will be described.
  • the discharge space in front of the target 4 is surrounded by the chimney 9 and gas is introduced into the discharge space (first discharge space) with the first shutter (target shutter 14) closed, and the target holder 6
  • the plasma is confined in the target 4, chimney 9 and target shutter 14.
  • the chimney 9 and the target shutter 14 function as a ground electrode. Since the target shutter 14 has a structure that is rotated by a driving mechanism, the chimney 9 may be considered to be grounded, although it is not always completely grounded in terms of high frequency.
  • the area of the surface of the target 4 facing the plasma through the sheath is defined as the high-frequency applying electrode area.
  • the ground electrode area is the total area of the inner wall surface of the chimney 9 and the surface of the target shutter 14 facing the target 4 even if it is considered to be the largest.
  • the ground electrode area is relatively small with respect to the high-frequency applied electrode area, not only the target 4 but also the chimney 9 and the target shutter 14 may be applied with a voltage that cannot be ignored. The voltage in this case is due to the difference between the plasma potential and the electrode.
  • the larger the area of the ground electrode with respect to the high-frequency applied electrode area the smaller the potential difference between the plasma potential and the ground electrode.
  • the area of the ground electrode approaches the area of the high-frequency applied electrode, sometimes the same voltage as that applied to the high-frequency applied electrode (here, the target 4) is applied to the ground electrode. There is.
  • the target shutter 14 is opened (when the target shutter 14 is opened), the plasma spreads between the target shutter 14 and the chamber shield 40.
  • the area of the high-frequency application electrode is constant, the area of the ground electrode as viewed from the plasma varies greatly depending on whether the target shutter 14 is closed (closed state) or opened (open state).
  • “high-frequency applied electrode area / ground electrode area” has a relationship of “when the target shutter 14 is closed (closed state)”> “when the target shutter 14 is opened (open state)”. become.
  • An increase in the ground electrode area with respect to the high-frequency applied electrode area has the effect of reducing the voltage applied to the ground electrode.
  • the discharge is started with the lowest possible applied power (power) as the first power at this time, the potential difference between the chimney 9 as the ground electrode and the plasma generated in the first discharge space can be reduced. Particle generation due to ion bombardment on the chimney 9 surface and the target facing surface of the target shutter 14 can be reduced.
  • the ground electrode includes the chimney 9, the target shutter 14, and the chamber shield 40. Therefore, when the target shutter 14 is opened, the high-frequency applying electrode area does not change, but the discharge space becomes a second discharge space larger than the first discharge space, and the ground electrode area increases. Therefore, the potential difference between the plasma potential and the potential of the ground electrode can be reduced, and ions can be prevented from being incident on the inner surface of the chimney 9 or the surface of the chamber shield 40 with a problem energy.
  • the substrate shutter 19 is released from the closed state, there is no significant change in the ratio of the ground electrode area to the high-frequency applied electrode area as when the target shutter 14 is released from the closed state, so that the problem of particle increase is almost caused. Absent.
  • the offset-arranged sputtering apparatus is described, but this is not necessarily a necessary condition in order to obtain the effect of the present invention.
  • the effect of the present invention is a configuration in which at least two shielding members (for example, shutters) are required, and at least one shielding member is provided in the vicinity of the target, and at least one other shielding member is provided in the vicinity of the substrate. Is applicable. Especially in long throw sputtering where the distance between the target and the substrate is long, the distance between the shielding member near the target and the shielding member near the substrate, or the distance between the shielding member near the target and the substrate placed on the substrate holder. Becomes larger. Therefore, since the change in the contact area when the shielding member in the vicinity of the target is opened is large, the effect is great.
  • Shielding member for example, chimney
  • the shielding member for example, shutter
  • the shape is not limited to this embodiment as long as it has the function. That is, the shield such as the chimney is a member having a hollow portion configured to surround the target holder, and an opening for communicating the hollow portion with the outside. There may be. The opening is selectively shielded by a shielding member such as a target shutter.
  • the applied power when changing the target shutter 14 from the closed state to the open state is important. This is because the increase in particles can be suppressed as the applied power is smaller. Perhaps the cause is that the larger the applied power when the target shutter 14 is released from the closed state, the more the plasma state changes.
  • the horizontal axis represents time
  • the vertical axis represents the open / close state of the first shutter, the open / close state of the second shutter, and the state of applied power from the power supply 12 to the target holder 6.
  • a first power for example, 100 W
  • second power the film formation power
  • the first shutter is opened at time T2 (second step S2).
  • the first power applied at time T2 is smaller than the second power, which is the film formation power, and is a power that can start discharge stably for particle reduction.
  • the applied power is increased to the second power (third step S3).
  • the second power is desirably a deposition power (for example, 800 W) used in the deposition process.
  • the second shutter is opened, and the film forming process is started (fourth step S4).
  • the increase in applied power in the third step S3 is a slow-up stepwise or continuously. This is because, by slowing up stepwise or continuously, the burden on the power source 12 can be reduced, and the matching by the matching machine can be performed stably. Since the plasma impedance differs between low power and high power, the matching machine must take different parameters.
  • the parameter adjustment is generally performed by automatically changing the variable capacitor capacity and the like in hardware. If the power is significantly changed, the change of the variable capacitor capacity and the like is also increased. Therefore, a time lag occurs until the optimum value is reached, and the plasma may become unstable during that time.
  • the increase in applied power is slowed up stepwise or continuously.
  • the amount of time required for the slow-up may be within the range allowed by the product throughput and within the range where the performance of the matching machine or the like can follow.
  • the first power may be a low power that can start discharging stably and does not increase the potential difference. If the requirement is satisfied, the first power may be increased or decreased stepwise or continuously from time T1 to time T2 in FIG.
  • Example 10 RF sputtering was performed using Al 2 O 3 on the target and chimney (cylindrical shield) 9 whose surface facing the target was coated with alumina spray. Argon was used as an inert gas introduced from the first gas inlet 15.
  • the RF power (second power) during film formation on the substrate 10 was 800 W.
  • the setting at the start of power application was set to 100 W (first power).
  • the first shutter was opened (second step S2).
  • the applied power was increased to 800 W (second power) during substrate deposition (third step S3).
  • the second shutter was opened and film formation on the substrate was started (fourth step S4).
  • the number of particles on the deposited substrate was 19, and as can be seen from a comparison with a comparative example described later, the reduction in the number of particles was realized by the present invention.
  • RF sputtering was performed using Al 2 O 3 on the target and a chimney (cylindrical shield) whose surface facing the target was coated with alumina spraying.
  • Argon was used as an inert gas as in the above example.
  • the RF power during film formation on the substrate was 800 W. After setting the RF power to 800 W and applying the power, the first shutter was opened, and then the second shutter was opened to form a film. At that time, the number of particles on the deposited substrate was 496.
  • the controller con as a control device of the sputter deposition apparatus 1 may be built in the sputter deposition apparatus 1 or may be provided separately from the sputter deposition apparatus 1.
  • the controller con and the sputter deposition apparatus 1 are connected to each other by a wired connection or a wireless connection such as a local connection via a LAN or a WAN connection such as the Internet, and the controller con is connected to the sputter deposition apparatus 1. It can be configured to be able to communicate with.
  • a processing method in which a program for operating the configuration of the above-described embodiment so as to realize the function of the above-described embodiment is stored in a storage medium, the program stored in the storage medium is read as a code, and executed on a computer. It is included in the category of the above-mentioned embodiment. That is, a computer-readable storage medium is also included in the scope of the embodiments. In addition to the storage medium storing the computer program, the computer program itself is included in the above-described embodiment.
  • a storage medium for example, a floppy (registered trademark) disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, and a ROM can be used.
  • processing is not limited to the single program stored in the above-described storage medium, but operates on the OS in cooperation with other software and expansion board functions to execute the operations of the above-described embodiments. This is also included in the category of the embodiment described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本発明は、パーティクルの発生を低減する。本発明の一実施形態は、ターゲット(4)を保持するためのターゲットホルダー(6)と、ターゲットホルダー(6)にパワーを印加する電源(12)と、基板ホルダー(7)と、ターゲット(4)と基板ホルダー(7)の間を開閉可能な第1のシャッター(14)と、ターゲットホルダ(6)と基板ホルダー(7)の間を開閉可能で第1のシャッター(14)よりも基板ホルダー(7)に近い位置にある第2のシャッター(19)と、電源(12)、第1及び第2のシャッター14,19を制御するコントローラ(con)と、を備える。コントローラ(con)は、第1のシャッター(14)を閉じた状態で、ターゲットホルダー(6)に第1のパワーを印加し、次いで第1のシャッター(14)を開き、第2のシャッター(19)を閉じた状態で、第1のパワーよりも大きい第2のパワーをターゲットホルダー(6)に印加する。

Description

成膜方法、成膜装置、および該成膜装置の制御装置
 本発明は、半導体装置や磁性記憶媒体などの製造工程において、基板に材料を堆積するために用いられる成膜方法、成膜装置(例えば、スパッタリング装置)、および該成膜装置の制御装置に関する。
 近年、スパッタリング現象を利用して薄膜を作製し、その薄膜を加工してデバイス等に応用することが産業上広く行なわれている。スパッタリング現象は、タ-ゲットに高エネルギーイオンを入射させることにより、タ-ゲットからスパッタ粒子(中性粒子)を発生させ、基板上にスパッタ粒子を堆積させる現象である。
 スパッタリング成膜装置では、通常、ターゲットと基板の間に、シャッターと呼ばれる開閉自在な遮蔽板が設けられている。このシャッターを用いて真空容器内のプラズマの状態が安定化するまで、成膜処理が開始されないように成膜開始のタイミングを制御することが行なわれている。すなわち、高電圧がターゲットに印加されプラズマが発生してから安定するまでの間、基板へ成膜が行なわれないようにシャッターを閉じておく。そして、プラズマが安定してからシャッターを開き成膜を開始することが行なわれている。このようにシャッターを用いて成膜の開始を制御すると、安定したプラズマを用いて制御性良く基板上へ成膜出来るので、高品質な膜を成膜することができる。
 特許文献1には、タ-ゲットに誘起されるセルフバイアス電圧を検出し、セルフバイアスが安定した時点で基板とタ-ゲット間に配置されたシャッターを開くことで膜質や膜厚の再現性に優れた薄膜の成膜が可能な高周波スパッタリング装置と方法が開示されている。特許文献2には、スパッタカソードにそのスパッタ面の側方を取囲む筒形のカソードカバーを設け、さらにこのカソードカバーの開口端部に開閉可能な前記シャッターを設けたスパッタリング装置が開示されている。引用文献2のスパッタリング装置では、ターゲットクリーニングなど成膜開始前のシャッターを閉じた状態での放電時における、スパッタ粒子の廻りこみを少なくすることができる。
特開平4-218671号公報 特開平8-269705号公報
 しかし特許文献1に示されるスパッタリング成膜装置および方法では、セルフバイアスが安定した時点で基板とタ-ゲット間に配置されたシャッターを開くことで膜質や膜厚の再現性に優れた薄膜の成膜が可能だが、基板上へのパーティクル低減については言及されていない。また特許文献2に示される成膜装置も、シャッターを閉じた状態でのスパッタ粒子の廻りこみについては改善されているが、シャッターを開いて成膜をおこなった場合の基板上へのパーティクルの問題については言及されていない。 
 近年の微細化、薄層化の進んだ半導体デバイスや磁性記憶媒体の生産において、パーティクルの影響は大きくなってきており、このためパーティクルの低減が求められている。
 本発明の第1の態様は、ターゲットをスパッタして基板上に成膜を行なう成膜方法であって、ターゲットを保持したターゲットホルダーに、該ターゲットホルダーに接続された電源より成膜時に印加される成膜パワーよりも小さな第1のパワーを印加して、第1の放電空間にて放電を引き起こす第1のステップと、前記第1のステップで引き起こされた放電を続けながら、放電空間を前記第1の放電空間から該第1の放電空間よりも大きな第2の放電空間にする第2のステップと、前記第2の放電空間について、前記電源より前記ターゲットホルダーに前記第1のパワーよりも大きな第2のパワーを印加する第3のステップと、前記第2の空間に対して遮蔽されている前記基板を、前記第2の放電空間に開放する第4のステップとを有することを特徴とする。
 また、本発明の第2の態様は、成膜装置であって、ターゲットを保持するためのターゲットホルダーと、前記ターゲットホルダーにパワーを印加するパワー印加手段と、基板を保持させるための基板ホルダーと、前記ターゲットホルダーを取り囲むように構成された中空部を有し、接地されたシールドであって、該中空部を該シールドの外部と連通するための開口部が形成されたシールドと、前記開口部を覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第1の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第2の位置との間を移動可能に構成された第1の遮蔽部材と、前記基板ホルダーの基板保持面を少なくとも覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第3の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第4の位置との間を移動可能に構成された第2の遮蔽部材と、前記パワー印加手段、前記第1及び第2の遮蔽部材の移動を制御する制御手段と、を備え、前記制御手段は、前記第1の遮蔽部材が前記第1の位置に位置し、かつ前記第2の遮蔽部材が前記第3の位置に位置する状態で、前記ターゲットホルダーに成膜時に印加される成膜パワーよりも小さな第1のパワーを印加するように前記パワー印加手段を制御し、次いで、前記第2の遮蔽部材が前記第3の位置に位置する状態で前記第1の遮蔽部材を前記第1の位置から前記第2の位置に移動させるように前記第1の遮蔽部材の移動を制御し、次いで、前記ターゲットホルダーに前記第1のパワーよりも大きな第2のパワーを印加するように前記パワー印加手段を制御するように構成されていることを特徴とする。
 さらに、本発明の第3の態様は、ターゲットを保持するためのターゲットホルダーと、前記ターゲットホルダーにパワーを印加するパワー印加手段と、基板を保持させるための基板ホルダーと、前記ターゲットホルダーを取り囲むように構成された中空部を有し、接地されたシールドであって、該中空部を該シールドの外部と連通するための開口部が形成されたシールドと、前記開口部を覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第1の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第2の位置との間を移動可能に構成された第1の遮蔽部材と、前記基板ホルダーの基板保持面を少なくとも覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第3の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第4の位置との間を移動可能に構成された第2の遮蔽部材とを備える成膜装置を制御するための制御装置であって、前記第1の遮蔽部材が前記第1の位置に位置し、かつ前記第2の遮蔽部材が前記第3の位置に位置する状態で、前記ターゲットホルダーに成膜時に印加される成膜パワーよりも小さな第1のパワーを印加するように前記パワー印加手段を制御する手段と、前記ターゲットホルダーに前記第1のパワーを印加することによって、前記中空部と前記第1の遮蔽部材との間の第1の放電空間にて引き起こされた放電を続けながら、前記第2の遮蔽部材が前記第3の位置に位置する状態で前記第1の遮蔽部材を前記第1の位置から前記第2の位置に移動させるように前記第1の遮蔽部材の移動を制御する手段と、前記第1の遮蔽部材が前記第2の位置に位置し、かつ前記第2の遮蔽部材が前記第3の位置に位置する状態で、前記ターゲットホルダーに前記第1のパワーよりも大きな第2のパワーを印加するように前記パワー印加手段を制御する手段とを備えることを特徴とする。
 本発明によれば、成膜時の基板へのパーティクルの低減を実現することができる。
本発明の一実施形態に係るスパッタリング装置の概略図である。 本発明の一実施形態に係る成膜方法のフロー図である。 本発明の一実施形態に係る成膜方法を適用した場合の各装置の状態図である。
 図1を参照して、本発明の一実施形態に係るスパッタ成膜装置1の全体構成について説明する。図1は、本発明の一実施形態に係るスパッタリング装置1の概略図である。
 スパッタ成膜装置1は、ゲートバルブ42を有し真空排気可能な真空チャンバー2と、真空チャンバー2と排気口を介して隣接して設けられた排気チャンバー8と、排気チャンバー8を介して真空チャンバー2内を排気する排気装置と、を備えている。ここで、排気装置は、メインバルブ47を介して排気チャンバー8に接続されたターボ分子ポンプ48を有する。また、排気装置のターボ分子ポンプ48には、更に、ドライポンプ49が接続されている。なお、排気チャンバー8の下方に排気装置が設けられているのは、装置全体のフットプリント(占有面積)を出来るだけ小さくするためである。
 真空チャンバー2内には、ターゲット4をバックプレート5を介して保持するターゲットホルダー6が設けられている。ターゲットホルダー6の近傍には、開口部を持つターゲットシャッター14がターゲットホルダー6を覆うように設置されている。ターゲットシャッター14は、例えばAlやSUS等の導電性金属で形成されており、接地されている。ターゲットシャッター14は、回転シャッターの構造を有している。ターゲットシャッター14は、基板ホルダー7とターゲットホルダー6との間を遮蔽する閉状態(遮蔽状態)、または基板ホルダー7とターゲットホルダー6との間を開放する開状態(退避状態)にするための遮蔽部材として機能する。すなわち、ターゲットシャッター14がターゲットホルダー6と基板ホルダー7との間を遮蔽する第1の位置に位置する時がターゲットシャッター14の閉状態となる。ターゲットシャッター14が第1の位置に位置することにより、チムニー9の開口部(チムニー9の中空部とチムニー9の外部とを連結するための開口部)をターゲットシャッター14により覆うことになり、ターゲットホルダー6は基板ホルダー7に対して遮蔽される。一方、ターゲットホルダー6と基板ホルダー7との間を遮蔽しない第2の位置に位置する時がターゲットシャッター14の開状態となる。
 ターゲットホルダー6に設置されたターゲット4と基板ホルダー7に載置された基板10の間に、ターゲットシャッター14の開口部を位置合わせすることによって、ターゲットシャッター14を開状態とすることができる。ターゲットシャッター14には、ターゲットシャッター14の開閉動作を行うためのターゲットシャッター駆動機構33が設けられている。ターゲットホルダー6とターゲットシャッター14の間の空間の、ターゲットホルダー6の周囲には、ターゲットホルダー6の周囲を取囲むように筒状シールドであるチムニー9が取り付けられている。ターゲットホルダー6に取り付けられたターゲット4のスパッタ面の前面のマグネトロン放電空間はチムニー9で取囲まれ、シャッターの開状態においてはターゲットシャッター14の開口部に開口している。
 なお、本実施形態では、ターゲットシャッター14を回転可能に構成させているが、上記ターゲットシャッター14の閉状態および開状態を確立するようにターゲットシャッター14を上記第1の位置および第2の位置の間で移動可能であれば、いずれの構成を採用しても良い。例えば、ターゲットシャッター14をスライド可能に構成し、ターゲットシャッター14を第1の位置および第2の位置との間でスライドにより移動させても良い。
 ターゲットホルダー6に取り付けられたターゲット4のスパッタ面の前面のマグネトロン放電空間がチムニー9で取囲まれ、さらにこのマグネトロン放電空間に向けてガス導入機構を設けておく場合、ターゲットシャッター14を閉状態にしてガス導入すればターゲット前面の圧力を速やかに高くすることができるので、低圧力下の放電に際しては速やかに放電開始がしやすくなる。従ってスループットを向上させる効果がある。
 本実施形態のような極薄膜でも良好な分布を得ることを目的としたオフセット配置のスパッタ装置においては、ターゲットは複数取り付けて切替えて使用することもできる。このような場合、ターゲットシャッター14とチムニー9は複数のターゲット相互のクロスコンタミネーションを防止ないしは低減する目的でも用いられる。つまり、この場合ターゲットシャッター14は、開状態とされたターゲットホルダー6と基板ホルダー7との間の放電空間(プラズマ放電が起こる空間)から、他のターゲットホルダーを遮断する機能を持つ。
 チムニー9は、例えばAl等の導電性材料を用いて形成されており、接地されている。チムニー9は、ブラスト処理や溶射によりターゲットを臨むその表面に凸凹を形成することが付着するスパッタ粒子を保持する点から望ましい。またチムニー9のターゲットを臨む表面が、少なくともアルミナ、イットリア等の絶縁材料を例えば溶射で被覆されていることがさらに望ましい。ターゲット4を囲む部材としてのチムニー9のターゲットを臨む表面が少なくともアルミナ溶射で被覆されていることにより、アルミナ溶射で被覆されない場合よりも、チムニー9の表面電位がプラズマの電位に近くなる。すなわち、チムニー9のターゲットを臨む表面が少なくとも絶縁膜(例えば、アルミナ溶射により形成された絶縁膜)により被覆されていることにより、チムニー9の中空部分にマグネトロン放電空間を形成可能な構成において、該チムニー9の表面電位を該マグネトロン放電空間に生成されるプラズマの電位に近づけることができる。よって、プラズマ中の荷電粒子による衝撃を抑制するので、パーティクルをより一層低減することができる。また、チムニー9のターゲットを臨む表面が少なくともアルミナ溶射で被覆されることにより、チムニー9とターゲット4との間に発生する異常放電を抑制することができるので、パーティクルをより一層低減することができる。なお、本実施の形態の方法にかかわらず、チムニー9のターゲットを臨む表面が少なくとも絶縁膜の溶射により被覆されている場合には、チムニー表面が単に金属の溶射である場合よりもパーティクルが顕著に低減される結果が得られた。すなわち、本実施の形態では、ターゲットを保持したターゲットホルダーに、該ターゲットホルダーに接続された電源より成膜時に印加される成膜パワーよりも小さな第1のパワーを印加して、第1の放電空間にて放電を引き起こす第1のステップと、上記第1のステップで引き起こされた放電を続けながら、放電空間を上記第1の放電空間から該第1の放電空間よりも大きな第2の放電空間にする第2のステップと、上記第2の放電空間について、上記電源より上記ターゲットホルダーに上記第1のパワーよりも大きな第2のパワーを印加する第3のステップと、上記第2の空間に対して遮蔽されている上記基板を、上記第2の放電空間に開放する第4のステップとを有するもので説明されている。しかしながら、パーティクルを低減する効果はこの方法をとる場合に限定されず、チムニー9の中空部分にマグネトロン放電空間を形成可能な構成において、チムニー9のターゲット4を臨む表面が少なくとも絶縁膜の溶射により被覆されている場合にパーティクル低減の効果を得ることができ、さらに本実施の形態の電力印加方法を組合せることで顕著な効果を得ることができる。
 スパッタ面から見たターゲット4の背後には、マグネトロンスパッタリングを実現するためのマグネット13が配設されている。マグネット13は、マグネットホルダ3に保持され、図示しないマグネットホルダ回転機構により回転可能となっている。ターゲットのエロージョンを均一にするため、放電中には、このマグネット13は回転している。ターゲット4は、基板10に対して斜め上方に配置された位置(オフセット位置)に設置されている。すなわち、ターゲット4のスパッタ面の中心点は、基板10の中心点の法線に対して所定の寸法ずれた位置にある。ターゲットホルダー6には、スパッタ放電用電力を印加する電源12が接続されている。電源12によりターゲットホルダー6に電圧が印加されると、放電が開始され、スパッタ粒子が基板に堆積される。ターゲット4の中心を通る基板ホルダー7の上面を含む平面の法線が該平面と交差する交点とターゲット4の中心点との距離をT/S距離と定義する(図1参照)と、本例では240mmである。電源には、RF電源を用いるため、電源12とターゲットホルダー6との間に図示しない整合器が設置されている。
 ターゲットホルダー6は、絶縁体34により接地電位の真空チャンバー2から絶縁されており、またCu等の金属製であるので電力が印加された場合には電極となる。なお、ターゲットホルダー6は、図示しない水路を内部に持ち、図示しない水配管から供給される冷却水により冷却可能に構成されている。ターゲット4は、基板10へ成膜したい材料成分を含んでいる。
 ターゲット4とターゲットホルダー6との間に設置されているバックプレート5は、Cu等の金属から出来ており、ターゲット4を保持している。 
 また、真空チャンバー2内には、基板10を載置するための基板ホルダー7と、基板ホルダー7とターゲットホルダー6の間に設けられた基板シャッター19とが設けられている。該基板シャッター19は基板シャッター支持機構20により支持されており、該基板シャッター支持機構20は、基板シャッター19を開閉駆動する基板シャッター駆動機構32に接続されている。ここで、基板シャッター19は、基板ホルダー7の近傍に配置され、基板ホルダー7とターゲットホルダー6との間を遮蔽する閉状態、または基板ホルダー7とターゲットホルダー6との間を開放する開状態にするための遮蔽部材として機能する。すなわち、基板シャッター19がターゲットホルダー6と基板ホルダー7との間を遮蔽する第3の位置に位置する時が基板シャッター19の閉状態となる。基板シャッター19が第3の位置に位置することにより、該基板シャッター19は基板ホルダー9の基板が保持される基板保持面を少なくとも覆うことになり、基板10はターゲットシャッター14側(例えば、後述の第2の放電空間)に対して遮蔽される。一方、ターゲットホルダー6と基板ホルダー7との間を遮蔽しない第4の位置に位置する時が基板シャッター19の開状態となる。
 なお、本実施形態では、基板シャッター19を回転可能に構成させているが、上記基板シャッター19の閉状態および開状態を確立するように基板シャッター19を上記第3の位置および第4の位置の間で移動可能であれば、いずれの構成を採用しても良い。例えば、基板シャッター19をスライド可能に構成し、基板シャッター19を第3の位置および第4の位置との間でスライドにより移動させても良い。
 真空チャンバー2の内面は接地されている。ターゲットシャッター14と基板ホルダー7の間の真空チャンバー2の内面には接地されたチャンバーシールド40が設けられている。ここでいうチャンバーシールドとは、ターゲット4から放出されたスパッタ粒子が真空チャンバー2の内面に直接付着するのを防止し、真空チャンバーの内面を保護するために真空チャンバー2とは別体で形成され、定期的に交換したり、洗浄後再利用したりすることができる部材をいう。チャンバーシールド40は、ターゲットシャッター14の開口部と基板シャッター19が遮蔽することができる位置との間の空間を少なくとも取囲むように位置している。接地されたチャンバーシールド40は、高周波電力が印加されたターゲット4およびターゲットホルダー6に対して接地電極として作用することができる。またチャンバーシールド40は、ターゲットシャッター14の開口部と基板ホルダー7との間の空間を取囲むように位置していることが、プラズマの安定性の点からさらに望ましい。
 基板ホルダー7の面上で、かつ基板10の載置部分の外縁側(外周部)には、リング形状を有する遮蔽部材(以下、「基板周辺カバーリング21」ともいう)が設けられている。基板周辺カバーリング21は、基板ホルダー7上に載置された基板10の成膜面以外の場所へスパッタ粒子が付着することを防止ないしは低減する。ここで、成膜面以外の場所とは、基板周辺カバーリング21によって覆われる基板ホルダー7の表面のほかに、基板10の側面や裏面が含まれる。基板ホルダー7には、基板ホルダー7を上下動したり、所定の速度で回転したりするための基板ホルダー駆動機構31が設けられている。基板ホルダー駆動機構31は、基板ホルダー7を上下動させることが可能である。
 真空チャンバー2は、真空チャンバー2内へ不活性ガスを導入するための第1ガス導入口15と、反応性ガスを導入するための第2ガス導入口17と、真空チャンバー2の圧力を測定するための圧力計41とを備えている。第1ガス導入口15は、不活性ガス(例えばアルゴン、クリプトン、キセノン、ネオンなど)を導入するための配管と、不活性ガスの流量を制御するためのマスフローコントローラー、不活性ガスの流れを遮断したり開始したりするためのバルブ類と接続されており、図示しない制御装置により指定される流量のガスを安定して真空チャンバー2内へ導入することができるように構成されている。また、第1ガス導入口15は、必要に応じて減圧弁やフィルター等に接続されても良い。第1ガス導入口15はターゲット4の近傍に位置している。第1ガス導入口15は、ターゲット4の前面のマグネトロン放電の空間に向けて不活性ガスを導入できるように構成されている。
 第2ガス導入口17は、反応性ガス(例えば窒素、酸素など)を導入するための配管と、反応性ガスの流量を制御するためのマスフローコントローラー、反応性ガスの流れを遮断したり開始したりするためのバルブ類と接続されており、図示しない制御装置により指定される流量のガスを安定して真空チャンバー2内へ導入することができるように構成されている。また、第2ガス導入口17は、必要に応じて減圧弁やフィルター等に接続されても良い。第2ガス導入口17は基板10の近傍に位置している。
 なお、スパッタ成膜装置1は制御手段としてのコントローラconを備え、シャッター14,19の駆動機構32,33及び電源12を制御し、所定のタイミングでシャッター14,19を開閉、パワーを増減させる。また、スパッタ成膜装置1のコントローラconは、例えば図2に示す本実施形態に係る方法のプログラムを記憶した記憶部81、およびプロセス制御の演算処理を行う演算処理部82を含み、コントローラconは、図2に示すプログラムに従って本実施形態の方法を実行することができる。演算処理部81は、例えば、パーソナルコンピュータ(PC)やPLC、マイクロコンピュータ等で構成できる。
 図2は、本実施形態の成膜方法のフロー図であり、図3は同方法を適用した場合の各装置の状態図(タイミングチャート)である。図2及び図3を用い、図1の装置を用いた場合の本実施形態に係る成膜方法について説明する。 
 まず、ターゲットシャッター14(“第1のシャッター”とも呼ぶ)は閉状態である。すなわち、ターゲットシャッター14は上記第1の位置に位置する。従って、ターゲットシャッター14が開状態である場合は、コントローラconは、ターゲットシャッター駆動機構33を制御して、ターゲットシャッター14によりターゲットホルダー6と基板ホルダー7との間を遮蔽するようにターゲットシャッター14を回転させ、ターゲットシャッター14を閉状態とする。本実施形態では、ターゲットホルダー6はチムニー9により囲まれているので、該閉状態により、ターゲットシャッター14、チムニー9、およびターゲット4に囲まれた空間が第1の放電空間となる。この第1の放電空間を、後の成膜時の放電空間(後述の第2の放電空間)よりも小さくすることによって、着火時において放電しやすくすることができる。
 また、基板シャッター19(“第2のシャッター”とも呼ぶ)も閉状態である。すなわち、基板シャッター19は上記第3の位置に位置する。従って、基板シャッター19が開状態である場合は、コントローラconは、基板シャッター駆動機構32を制御して、基板シャッター19によりターゲットホルダー6と基板ホルダー7との間を遮蔽するように基板シャッター19を回転させ、基板シャッター19を閉状態とする。
 第1ステップS1として、コントローラconは、電源12を制御して、ターゲット4を保持したターゲットホルダー6に第1のパワー(電力)を印加する。この第1のパワー印加により、第1の放電空間にて放電が引き起こされる。この第1ステップS31の印加パワー(第1のパワー)は成膜パワーより小さいパワーであればよく、また安定に放電開始できる程度であれば良い。次に第1ステップS1の印加パワーによる放電を続けながら、第2ステップS2として、コントローラconは、ターゲットシャッター駆動機構33を制御して、ターゲット4と基板10との間を開閉可能な第1のシャッター(ターゲットシャッター14)を開く。すなわち、ターゲットシャッター駆動機構33は、第1のシャッターを回転して、該第1のシャッターを上記第1の位置から上記第2の位置に移動させ、ターゲットホルダー6(すなわち、ターゲット4)を基板ホルダー7側に開放する(ターゲットシャッター14を開状態とする)。このようにターゲットシャッター14を開状態とすることにより、例えば真空チャンバー2内のターゲットホルダー6と基板ホルダー7との間の領域でも放電可能となる。よって、第2ステップS2により、放電空間は、第1の放電空間から、該第1の放電空間よりも大きい第2の放電空間となる。
 次に第3ステップS3として、コントローラcomは、電源12を制御して、上記ターゲットホルダー6に印加されたパワーを第1のパワーから該第1のパワーよりも大きい第2のパワーに増大させる。第3のステップS3での印加パワー(第2のパワー)は成膜パワーまで増大させることが次の基板への成膜の安定性のために望ましい。次に第4のステップS4として、コントローラcomは、基板シャッター駆動機構32を制御して、第1のシャッター(ターゲットシャッター14)よりも基板10に近い位置にある開閉可能な第2のシャッター(基板シャッター19)を開き、基板10への成膜開始となる。すなわち、基板シャッター駆動機構32は、第2のシャッターを回転して、該第2のシャッターを上記第3の位置から上記第4の位置に移動させ、基板ホルダー7(すなわち、基板10)をターゲットホルダー6側に開放する(基板シャッター19を開状態とする)。このように基板ホルダー7を開状態とすることにより、基板ホルダー7(すなわち、基板10)は上記第2の放電空間に開放される。よって、スパッタ粒子が基板10に到達することができ、基板10上で成膜が行われる。 
 このようなフローで成膜開始することにより、顕著なパーティクル低減を行なうことが
できる。
 ここで、本実施形態で行う成膜開始フローとその結果として得られる顕著なパーティクル低減ができた事情について説明する。 
 放電開始に有利なようにターゲット4前面の放電空間をチムニー9で取り囲み第1のシャッター(ターゲットシャッター14)を閉じた状態で該放電空間(第1の放電空間)にガス導入してターゲットホルダー6に高周波電力を印加して放電開始した状態では、プラズマはターゲット4、チムニー9、ターゲットシャッター14に閉じ込められた状態にある。周知のように、ターゲットが絶縁性材料であっても高周波は伝播しプラズマを発生させセルフバイアス電圧を生じる。本実施形態では、チムニー9およびターゲットシャッター14を接地しているので、チムニー9やターゲットシャッター14は接地電極として働く。ターゲットシャッター14は駆動機構により回転する構造であるため、必ずしも高周波的に完全に接地しているとは限らないが、チムニー9は接地されていると考えて良い。
 便宜上、本明細書では、シースを介してプラズマに面したターゲット4の表面の面積を高周波印加電極面積とする。前述のようなターゲットシャッター14を閉じて放電開始した状態では、接地電極面積は最も大きく考えてもチムニー9の内壁面とターゲットシャッター14のターゲット4と対向した面との合計面積である。このように高周波印加電極面積に対して接地電極面積が比較的小さい場合、ターゲット4だけでなくチムニー9やターゲットシャッター14に対しても無視できない電圧がかかることがある。この場合の電圧とは、プラズマ電位と電極との電位差に起因するものである。
 さて、高周波印加電極面積に対して接地電極の面積が大きくなるほど、プラズマ電位と接地電極との電位差は小さくなる。一方で、高周波印加電極面積に対して接地電極面積が接近した場合、時には高周波印加電極(ここでは、ターゲット4)に対して印加される電圧と同じ程度の電圧が接地電極に対してもかかることがある。ターゲットシャッター14を開放した場合(ターゲットシャッター14を開状態とする場合)、ターゲットシャッター14とチャンバーシールド40との間にもプラズマは広がる。高周波印加電極面積は一定なのに対して、プラズマから見た接地電極の面積はターゲットシャッター14が閉じた状態(閉状態)と開放された状態(開状態)とでは大きく変化する。すなわち、本実施形態では、「高周波印加電極面積/接地電極面積」は、「ターゲットシャッター14が閉じた場合(閉状態)」>「ターゲットシャッター14が開放された場合(開状態)」、という関係になる。高周波印加電極面積に対して接地電極面積が増大するということは、接地電極に対する電圧を下げる効果がある。
 チムニー9とプラズマとの電位差が大きい場合、プラズマ中のイオンはチムニー9とプラズマとの電位差に応じてチムニー9の内表面に入射する。該電位差が大きければ、チムニー9の内表面に入射するイオンはチムニー9表面やターゲットシャッター14のターゲット対向面をスパッタし、パーティクルが生じる。 
 ターゲットシャッター14を閉じた状態で放電開始するとき(第2ステップS2)、相対的に小さい第1の放電空間が形成されることになり、接地電極は、該第1の放電空間を区画するためのチムニー9およびターゲットシャッター14となる。よって、高周波印加電極面積に対して接地電極面積は比較的小さくなる。しかしながら、このとき第1のパワーとしてなるべく低い印加電力(パワー)で放電開始すれば、接地電極としてのチムニー9と第1の放電空間に生成されたプラズマとの電位差を小さくすることができるで、チムニー9表面やターゲットシャッター14のターゲット対向面に対するイオン衝撃によるパーティクル発生を低減することができる。
 一方、ターゲットシャッター14を開放したあとに印加電力を上昇させても(第3ステップS3)、パーティクルは増大しない。すなわち、ターゲットシャッター14の開状態では、接地電極はチムニー9、ターゲットシャッター14、およびチャンバーシールド40を含む。よって、ターゲットシャッター14を開状態にすることにより、高周波印加電極面積は変わらないが、放電空間は第1の放電空間よりも大きい第2の放電空間となり、接地電極面積が大きくなる。従って、プラズマ電位と接地電極の電位との電位差を小さくすることができ、チムニー9内表面やチャンバーシールド40の表面に問題となるほどのエネルギーでイオンが入射しないようにすることができる。基板シャッター19を閉じた状態から開放するときには、ターゲットシャッター14を閉じた状態から開放するときのような高周波印加電極面積に対する接地電極面積比の大幅な変化はないため、パーティクル増加の問題はほとんど生じない。
 なお、本実施形態ではオフセット配置のスパッタ装置について説明しているが、本発明の効果を得るためこれは必ずしも必要な条件ではない。本発明の効果は、少なくとも2枚の遮蔽部材(例えば、シャッター)を必要とし、しかも少なくとも1枚の遮蔽部材がターゲット近傍に設けられ、他の少なくとも1枚の遮蔽部材が基板近傍に設けられる構成に適用できるものである。特にターゲットと基板との距離が離れているロングスロースパッタでは、ターゲット近傍の遮蔽部材と基板近傍の遮蔽部材の距離、あるいは、ターゲット近傍の遮蔽部材と基板ホルダー上に載置された基板との距離が大きくなる。よって、ターゲット近傍の遮蔽部材を開放したときの接地面積の変化が大きいため、その効果は大きい。
 ターゲット近傍に設けられる遮蔽部材(例えば、シャッター)のターゲット側に設けられたシールド(例えば、チムニー)については、放電開始改善やクロスコンタミネーションの低減に役に立つ。その形状はその機能を持つ限り本実施形態に束縛されない。すなわち、上記チムニーといったシールドは、ターゲットホルダーを取り囲むように構成された中空部、および該中空部を外部と連通するための開口部を有する部材であり、接地可能な部材であればいずれの部材であっても良い。該開口部は、ターゲットシャッターといった遮蔽部材により選択的に遮蔽される。
 なお、ターゲットシャッター14を閉じた状態から開放する状態へと変化させるときの印加電力は重要である。このときの印加電力が小さいほどパーティクル増加は抑制できるからである。おそらくはターゲットシャッター14が閉じた状態から開放されるときに印加電力がより大きいほど、より大きくプラズマの状態が変化することが原因である可能性がある。
 図3のタイミングチャートにおいて、横軸は時間であり、縦軸はそれぞれ第1のシャッターの開閉状態、第2のシャッターの開閉状態、そして電源12からターゲットホルダー6への印加電力の状態を示す。 
 時間T1において、成膜パワー(第2のパワー)より小さくかつ安定に放電開始できるような第1のパワー(例えば100W)が印加される(第1ステップS1)。次に時間T2において第1のシャッターを開く(第2ステップS2)。時間T2で印加される第1のパワーは成膜パワーである第2のパワーより小さくかつ安定に放電開始できるようなパワーであることがパーティクル低減のために必要である。次に時間T3から時間T4にかけて、印加電力を、第2のパワーまで増大させる(第3ステップS3)。該第2のパワーは、望ましくは成膜工程で使用する成膜パワー(例えば800W)である。そして時間T5において第2のシャッターを開き、成膜工程を開始する(第4ステップS4)。
 なお、第3ステップS3(時間T3から時間T4まで)の印加パワーの増大は、段階的又は連続的にスローアップさせるものであることがさらに望ましい。段階的又は連続的にスローアップさせることにより、電源12の負担を低減できることのほかに、整合機による整合を安定して行なうことができるからである。低パワーと高パワーではプラズマのインピーダンスが異なるため、整合機は異なるパラメータをとる必要がある。パラメータの調整は、一般的には可変コンデンサ容量等をハード的に自動変更することで実行される。パワーが大幅に変更されると可変コンデンサ容量等の変更も大きくなるため、最適値になるまでにタイムラグが発生するので、その間にプラズマが不安定になることがある。そのような場合には特に、印加パワーの増大は、段階的又は連続的にスローアップさせることが望ましい。スローアップにどの程度に時間をかけるかについては、製品のスループットが許容する範囲内であり、整合機等の性能が追随できる範囲内であればよい。
 また、第1ステップS1において重要なことは、第1の放電空間において、パーティクルの発生を低減して放電を起こさせることにあり、接地電極の電位とプラズマ電位との電位差を大きくしないことを本質としている。よって、第1のパワーとしては、安定に放電開始ができ、かつ該電位差があまり大きくならないような低パワーであれば良い。該要件を満たせば、図3の時間T1から時間T2において、第1のパワーを段階的または連続的に増減させても良い。
 (実施例) 
図1に示す装置を用い、ターゲットにAl、ターゲットを臨む表面がアルミナ溶射で被覆されているチムニー(筒状シールド)9を用いて、RFスパッタリングをした。第1ガス導入口15から導入する不活性ガスとしてアルゴンを用いた。基板10への成膜時のRFパワー(第2のパワー)は800Wとした。ここで、パワー印加開始時の設定を100W(第1のパワー)とした。100W(第1のパワー)でパワーを印加した後(第1ステップS1)、第1のシャッターを開いた(第2ステップS2)。第1のシャッターを開いた後、印加パワーを基板成膜時の800W(第2のパワー)に増大させた(第3ステップS3)。パワー増大した後、第2のシャッターを開き、基板への成膜を開始した(第4ステップS4)。本実施例では、成膜された基板上のパーティクル数は19個となり、後述する比較例との比較からも分かるように、本発明によりパーティクル数の低減が実現された。
 (比較例) 
 上記実施例と同様に、ターゲットにAl、ターゲットを臨む表面がアルミナ溶射で被覆されているチムニー(筒状シールド)を用いて、RFスパッタリングをした。上記実施例と同様に不活性ガスとしてアルゴンを用いた。基板への成膜時のRFパワーは800Wとした。RFパワーを800Wに設定し、パワーを印加した後、前記第1のシャッターを開き、続いて第2のシャッターを開いて成膜を行った。そのとき、成膜された基板上のパーティクル数は496個であった。
 (その他の実施形態) 
 本発明では、スパッタ成膜装置1の制御装置としてのコントローラconは、スパッタ成膜装置1に内蔵されても良いし、該スパッタ成膜装置1と別個に設けても良い。別個に設ける場合は、コントローラconとスパッタ成膜装置1とを、LAN等によるローカルな接続またはインターネットといったWAN接続等による、有線接続または無線接続等により接続して、コントローラconがスパッタ成膜装置1と通信可能に構成すれば良い。
 また、前述した実施形態の機能を実現するように前述した実施形態の構成を動作させるプログラムを記憶媒体に記憶させ、該記憶媒体に記憶されたプログラムをコードとして読み出し、コンピュータにおいて実行する処理方法も上述の実施形態の範疇に含まれる。即ちコンピュータ読み取り可能な記憶媒体も実施例の範囲に含まれる。また、前述のコンピュータプログラムが記憶された記憶媒体はもちろんそのコンピュータプログラム自体も上述の実施形態に含まれる。
 かかる記憶媒体としてはたとえばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性メモリカード、ROMを用いることができる。
 また前述の記憶媒体に記憶されたプログラム単体で処理を実行しているものに限らず、他のソフトウエア、拡張ボードの機能と共同して、OS上で動作し前述の実施形態の動作を実行するものも前述した実施形態の範疇に含まれる。

Claims (12)

  1.  ターゲットをスパッタして基板上に成膜を行なう成膜方法であって、
     ターゲットを保持したターゲットホルダーに、該ターゲットホルダーに接続された電源より成膜時に印加される成膜パワーよりも小さな第1のパワーを印加して、第1の放電空間にて放電を引き起こす第1のステップと、
     前記第1のステップで引き起こされた放電を続けながら、放電空間を前記第1の放電空間から該第1の放電空間よりも大きな第2の放電空間にする第2のステップと、
     前記第2の放電空間について、前記電源より前記ターゲットホルダーに前記第1のパワーよりも大きな第2のパワーを印加する第3のステップと、
     前記第2の空間に対して遮蔽されている前記基板を、前記第2の放電空間に開放する第4のステップと
     を有することを特徴とする成膜方法。
  2.  前記ターゲットホルダーと前記基板を保持した基板ホルダーとの間を遮蔽する第1の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第2の位置との間で移動可能な第1の遮蔽部材が、前記第1の位置に位置することにより前記第1の放電空間が形成されており、
     前記第2のステップは、前記第1の遮蔽部材を、前記第1の位置から前記第2の位置に移動させることを特徴とする請求項1に記載の成膜方法。
  3.  前記第4のステップの前においては、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第3の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第4の位置との間で移動可能な第2の遮蔽部材により、前記基板は前記第2の放電空間に対して遮蔽されており、
     前記第4のステップは、前記第2の遮蔽部材を、前記第3の位置から前記第4の位置に移動させることを特徴とする請求項1に記載の成膜方法。
  4.  前記第3のステップは、前記ターゲットホルダーに印加されるパワーを、前記第1のパワーから前記第2のパワーまで増大させることを特徴とする請求項1に記載の成膜方法。
  5.  前記第3のステップは、前記ターゲットホルダーに印加されるパワーを段階的又は連続的に増大させることを特徴とする請求項4に記載の成膜方法。
  6.  前記第4のステップの後に、続けて前記基板上への成膜を行なうことを特徴とする請求項1に記載の成膜方法。
  7.  ターゲットを保持するためのターゲットホルダーと、
     前記ターゲットホルダーにパワーを印加するパワー印加手段と、
     基板を保持させるための基板ホルダーと、
     前記ターゲットホルダーを取り囲むように構成された中空部を有し、接地されたシールドであって、該中空部を該シールドの外部と連通するための開口部が形成されたシールドと、
     前記開口部を覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第1の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第2の位置との間を移動可能に構成された第1の遮蔽部材と、
     前記基板ホルダーの基板保持面を少なくとも覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第3の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第4の位置との間を移動可能に構成された第2の遮蔽部材と、
     前記パワー印加手段、前記第1及び第2の遮蔽部材の移動を制御する制御手段と、を備え、
     前記制御手段は、前記第1の遮蔽部材が前記第1の位置に位置し、かつ前記第2の遮蔽部材が前記第3の位置に位置する状態で、前記ターゲットホルダーに成膜時に印加される成膜パワーよりも小さな第1のパワーを印加するように前記パワー印加手段を制御し、次いで、前記第2の遮蔽部材が前記第3の位置に位置する状態で前記第1の遮蔽部材を前記第1の位置から前記第2の位置に移動させるように前記第1の遮蔽部材の移動を制御し、次いで、前記ターゲットホルダーに前記第1のパワーよりも大きな第2のパワーを印加するように前記パワー印加手段を制御するように構成されていることを特徴とする成膜装置。
  8.  前記シールドは導電性を有し、
     前記シールドの中空部の前記ターゲットホルダーを臨む表面が溶射により形成された絶縁膜で被覆されていることを特徴とする請求項7に記載の成膜装置。
  9.  前記制御手段は、前記第2のパワーを印加する際に、前記ターゲットホルダーに印加されるパワーを、前記第1のパワーから前記第2のパワーまで増大させるように前記パワー印加手段を制御することを特徴とする請求項7に記載の成膜装置。
  10.  ターゲットを保持するためのターゲットホルダーと、
     前記ターゲットホルダーにパワーを印加するパワー印加手段と、
     基板を保持させるための基板ホルダーと、
     前記ターゲットホルダーを取り囲むように構成された中空部を有し、接地されたシールドであって、該中空部を該シールドの外部と連通するための開口部が形成されたシールドと、
     前記開口部を覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第1の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第2の位置との間を移動可能に構成された第1の遮蔽部材と、
     前記基板ホルダーの基板保持面を少なくとも覆うことにより前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽する第3の位置と、前記ターゲットホルダーと前記基板ホルダーとの間を遮蔽しない第4の位置との間を移動可能に構成された第2の遮蔽部材とを備える成膜装置を制御するための制御装置であって、
     前記第1の遮蔽部材が前記第1の位置に位置し、かつ前記第2の遮蔽部材が前記第3の位置に位置する状態で、前記ターゲットホルダーに成膜時に印加される成膜パワーよりも小さな第1のパワーを印加するように前記パワー印加手段を制御する手段と、
     前記ターゲットホルダーに前記第1のパワーを印加することによって、前記中空部と前記第1の遮蔽部材との間の第1の放電空間にて引き起こされた放電を続けながら、前記第2の遮蔽部材が前記第3の位置に位置する状態で前記第1の遮蔽部材を前記第1の位置から前記第2の位置に移動させるように前記第1の遮蔽部材の移動を制御する手段と、
     前記第1の遮蔽部材が前記第2の位置に位置し、かつ前記第2の遮蔽部材が前記第3の位置に位置する状態で、前記ターゲットホルダーに前記第1のパワーよりも大きな第2のパワーを印加するように前記パワー印加手段を制御する手段と
     を備えることを特徴とする制御装置。
  11.  コンピュータを請求項10に記載の制御装置として機能させることを特徴とするコンピュータプログラム。
  12.  コンピュータにより読み出し可能なプログラムを格納した記憶媒体であって、請求項11に記載のコンピュータプログラムを格納したことを特徴とする記憶媒体。
PCT/JP2011/051487 2010-01-26 2011-01-26 成膜方法、成膜装置、および該成膜装置の制御装置 WO2011093334A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011551876A JP5513529B2 (ja) 2010-01-26 2011-01-26 成膜方法、成膜装置、および該成膜装置の制御装置
EP11737047.8A EP2530182B1 (en) 2010-01-26 2011-01-26 Film-forming method, film-forming apparatus, and apparatus for controlling the film-forming apparatus
US13/213,533 US20120006675A1 (en) 2010-01-26 2011-08-19 Film forming method, film forming apparatus and control unit for the film forming apparatus
US14/527,948 US9428828B2 (en) 2010-01-26 2014-10-30 Film forming method, film forming apparatus and control unit for the film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010014236 2010-01-26
JP2010-014236 2010-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/213,533 Continuation US20120006675A1 (en) 2010-01-26 2011-08-19 Film forming method, film forming apparatus and control unit for the film forming apparatus

Publications (1)

Publication Number Publication Date
WO2011093334A1 true WO2011093334A1 (ja) 2011-08-04

Family

ID=44319319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051487 WO2011093334A1 (ja) 2010-01-26 2011-01-26 成膜方法、成膜装置、および該成膜装置の制御装置

Country Status (5)

Country Link
US (2) US20120006675A1 (ja)
EP (1) EP2530182B1 (ja)
JP (1) JP5513529B2 (ja)
KR (1) KR20120102105A (ja)
WO (1) WO2011093334A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140001031A1 (en) * 2011-03-01 2014-01-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for producing nanoparticles at high efficiency, use of said device and method of depositing nanoparticles
JP2015059238A (ja) * 2013-09-18 2015-03-30 東京エレクトロン株式会社 成膜装置及び成膜方法
JP2016108610A (ja) * 2014-12-05 2016-06-20 信越化学工業株式会社 スパッタリング装置、スパッタリング方法及びフォトマスクブランク
KR20170041777A (ko) * 2014-08-08 2017-04-17 캐논 아네르바 가부시키가이샤 스퍼터 장치 및 처리 장치
JP2018508649A (ja) * 2014-12-31 2018-03-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated チタン−タングステンターゲットにおける小結節制御のための方法および装置
CN110344013A (zh) * 2019-08-19 2019-10-18 北京北方华创微电子装备有限公司 溅射方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460982B2 (ja) * 2008-07-30 2014-04-02 東京エレクトロン株式会社 弁体、粒子進入阻止機構、排気制御装置及び基板処理装置
JP5662575B2 (ja) * 2011-06-30 2015-02-04 キヤノンアネルバ株式会社 成膜装置
CN105518179B (zh) * 2013-08-29 2018-06-22 株式会社爱发科 反应性溅射装置
JP6395138B2 (ja) * 2015-09-11 2018-09-26 東芝メモリ株式会社 粒子計測装置および粒子計測方法
CN110408905B (zh) * 2018-04-28 2021-01-08 北京北方华创微电子装备有限公司 溅射方法
WO2019216003A1 (ja) * 2018-05-11 2019-11-14 株式会社アルバック スパッタリング方法
US20200135464A1 (en) * 2018-10-30 2020-04-30 Applied Materials, Inc. Methods and apparatus for patterning substrates using asymmetric physical vapor deposition
JP7199279B2 (ja) * 2019-03-26 2023-01-05 東京エレクトロン株式会社 基板処理装置及び載置台の除電方法
US11842890B2 (en) * 2019-08-16 2023-12-12 Applied Materials, Inc. Methods and apparatus for physical vapor deposition (PVD) dielectric deposition

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115966A (ja) * 1984-06-30 1986-01-24 Shimadzu Corp スパツタリング装置
JPS63230863A (ja) * 1987-03-20 1988-09-27 Hitachi Ltd スパツタ装置のシヤツタ機構
JPS63290271A (ja) * 1987-05-20 1988-11-28 Seiko Epson Corp スパッタ装置のタ−ゲット部シャッタ
JPH01139763A (ja) * 1987-08-06 1989-06-01 Plessey Overseas Plc 薄膜デポジション工程
JPH02173258A (ja) * 1988-12-24 1990-07-04 Nippon Telegr & Teleph Corp <Ntt> 薄膜の作製方法および作製装置
JPH0499271A (ja) * 1990-08-10 1992-03-31 Olympus Optical Co Ltd 多層薄膜の作製方法およびその装置
JPH04218671A (ja) 1990-11-07 1992-08-10 Anelva Corp 高周波スパッタリング装置および膜作製方法
JPH0748668A (ja) * 1993-08-05 1995-02-21 Hitachi Ltd スパッタリング装置
JPH08104975A (ja) * 1994-10-04 1996-04-23 Sony Corp スパッタ装置およびそのクリーニング方法
JPH08269705A (ja) 1995-03-30 1996-10-15 Ulvac Japan Ltd スパッタリング装置
JP2009065181A (ja) * 2006-03-03 2009-03-26 Canon Anelva Corp 磁気抵抗効果素子の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892650A (en) * 1972-12-29 1975-07-01 Ibm Chemical sputtering purification process
JPS52113379A (en) * 1976-03-19 1977-09-22 Hitachi Ltd Vacuum evaporation
US4410407A (en) * 1981-12-22 1983-10-18 Raytheon Company Sputtering apparatus and methods
US4842703A (en) * 1988-02-23 1989-06-27 Eaton Corporation Magnetron cathode and method for sputter coating
US5174875A (en) * 1990-08-29 1992-12-29 Materials Research Corporation Method of enhancing the performance of a magnetron sputtering target
US5879523A (en) * 1997-09-29 1999-03-09 Applied Materials, Inc. Ceramic coated metallic insulator particularly useful in a plasma sputter reactor
ATE445028T1 (de) * 2001-02-07 2009-10-15 Asahi Glass Co Ltd Verfahren zur herstellung eines sputterfilms
TWI242602B (en) * 2001-11-02 2005-11-01 Ulvac Inc Thin film forming apparatus and method
JP2003183824A (ja) * 2001-12-12 2003-07-03 Matsushita Electric Ind Co Ltd スパッタ方法
US7247345B2 (en) * 2002-03-25 2007-07-24 Ulvac, Inc. Optical film thickness controlling method and apparatus, dielectric multilayer film and manufacturing apparatus thereof
US7820020B2 (en) * 2005-02-03 2010-10-26 Applied Materials, Inc. Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece with a lighter-than-copper carrier gas
US20060249372A1 (en) * 2005-04-11 2006-11-09 Intematix Corporation Biased target ion bean deposition (BTIBD) for the production of combinatorial materials libraries
JP4782037B2 (ja) 2006-03-03 2011-09-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び製造装置
US7517437B2 (en) * 2006-03-29 2009-04-14 Applied Materials, Inc. RF powered target for increasing deposition uniformity in sputtering systems
JP4855360B2 (ja) * 2007-09-13 2012-01-18 株式会社アルバック 成膜装置及び成膜方法
JP5584409B2 (ja) * 2008-02-21 2014-09-03 キヤノンアネルバ株式会社 スパッタリング装置およびその制御方法
JP4537479B2 (ja) * 2008-11-28 2010-09-01 キヤノンアネルバ株式会社 スパッタリング装置
CN101978093B (zh) * 2008-11-28 2012-02-01 佳能安内华股份有限公司 沉积设备和电子装置制造方法
WO2010116560A1 (ja) * 2009-03-30 2010-10-14 キヤノンアネルバ株式会社 半導体装置の製造方法及びスパッタ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115966A (ja) * 1984-06-30 1986-01-24 Shimadzu Corp スパツタリング装置
JPS63230863A (ja) * 1987-03-20 1988-09-27 Hitachi Ltd スパツタ装置のシヤツタ機構
JPS63290271A (ja) * 1987-05-20 1988-11-28 Seiko Epson Corp スパッタ装置のタ−ゲット部シャッタ
JPH01139763A (ja) * 1987-08-06 1989-06-01 Plessey Overseas Plc 薄膜デポジション工程
JPH02173258A (ja) * 1988-12-24 1990-07-04 Nippon Telegr & Teleph Corp <Ntt> 薄膜の作製方法および作製装置
JPH0499271A (ja) * 1990-08-10 1992-03-31 Olympus Optical Co Ltd 多層薄膜の作製方法およびその装置
JPH04218671A (ja) 1990-11-07 1992-08-10 Anelva Corp 高周波スパッタリング装置および膜作製方法
JPH0748668A (ja) * 1993-08-05 1995-02-21 Hitachi Ltd スパッタリング装置
JPH08104975A (ja) * 1994-10-04 1996-04-23 Sony Corp スパッタ装置およびそのクリーニング方法
JPH08269705A (ja) 1995-03-30 1996-10-15 Ulvac Japan Ltd スパッタリング装置
JP2009065181A (ja) * 2006-03-03 2009-03-26 Canon Anelva Corp 磁気抵抗効果素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530182A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140001031A1 (en) * 2011-03-01 2014-01-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for producing nanoparticles at high efficiency, use of said device and method of depositing nanoparticles
JP2015059238A (ja) * 2013-09-18 2015-03-30 東京エレクトロン株式会社 成膜装置及び成膜方法
KR20170041777A (ko) * 2014-08-08 2017-04-17 캐논 아네르바 가부시키가이샤 스퍼터 장치 및 처리 장치
KR101939505B1 (ko) 2014-08-08 2019-01-16 캐논 아네르바 가부시키가이샤 스퍼터 장치 및 처리 장치
JP2016108610A (ja) * 2014-12-05 2016-06-20 信越化学工業株式会社 スパッタリング装置、スパッタリング方法及びフォトマスクブランク
JP2018508649A (ja) * 2014-12-31 2018-03-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated チタン−タングステンターゲットにおける小結節制御のための方法および装置
JP7208711B2 (ja) 2014-12-31 2023-01-19 アプライド マテリアルズ インコーポレイテッド チタン-タングステンターゲットにおける小結節制御のための方法および装置
CN110344013A (zh) * 2019-08-19 2019-10-18 北京北方华创微电子装备有限公司 溅射方法

Also Published As

Publication number Publication date
KR20120102105A (ko) 2012-09-17
EP2530182B1 (en) 2015-03-25
US20120006675A1 (en) 2012-01-12
US9428828B2 (en) 2016-08-30
US20150053547A1 (en) 2015-02-26
EP2530182A4 (en) 2013-08-07
EP2530182A1 (en) 2012-12-05
JP5513529B2 (ja) 2014-06-04
JPWO2011093334A1 (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5513529B2 (ja) 成膜方法、成膜装置、および該成膜装置の制御装置
US20200357616A1 (en) High pressure rf-dc sputtering and methods to improve film uniformity and step-coverage of this process
JP4892227B2 (ja) 大面積基板のため改良型マグネトロンスパッタリングシステム
JP4537479B2 (ja) スパッタリング装置
KR101973879B1 (ko) 기판 처리 장치
JP2000073168A (ja) 基板の多層pvd成膜装置および方法
US20190259586A1 (en) Methods and apparatus for maintaining low non-uniformity over target life
US9695502B2 (en) Process kit with plasma-limiting gap
JP2005048260A (ja) 反応性スパッタリング方法
US9611539B2 (en) Crystalline orientation and overhang control in collision based RF plasmas
US20160222503A1 (en) Counter based time compensation to reduce process shifting in reactive magnetron sputtering reactor
US20140216922A1 (en) Rf delivery system with dual matching networks with capacitive tuning and power switching
JP2001355068A (ja) スパッタリング装置および堆積膜形成方法
WO2014062338A1 (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JP2009144252A (ja) 反応性スパッタリング装置及び反応性スパッタリング方法
US20240290593A1 (en) Magnetron Design for Improved Bottom Coverage and Uniformity
JP4393856B2 (ja) 成膜装置
KR20210118157A (ko) 성막 장치 및 성막 방법
JP5616806B2 (ja) スパッタ成膜方法
JPH01309955A (ja) プラズマ装置
JPH02240261A (ja) スパッタリング装置
JPH11172429A (ja) 超平滑膜の製造方法
JPH01309959A (ja) スパッタリング法による機能性堆積膜形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011737047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017552

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE