KR101973879B1 - 기판 처리 장치 - Google Patents

기판 처리 장치 Download PDF

Info

Publication number
KR101973879B1
KR101973879B1 KR1020177018315A KR20177018315A KR101973879B1 KR 101973879 B1 KR101973879 B1 KR 101973879B1 KR 1020177018315 A KR1020177018315 A KR 1020177018315A KR 20177018315 A KR20177018315 A KR 20177018315A KR 101973879 B1 KR101973879 B1 KR 101973879B1
Authority
KR
South Korea
Prior art keywords
shield
substrate
substrate holder
processing
space
Prior art date
Application number
KR1020177018315A
Other languages
English (en)
Other versions
KR20170082647A (ko
Inventor
요시미츠 시마네
사토시 우치노
스스무 아키야마
가즈아키 마츠오
노부오 야마구치
Original Assignee
캐논 아네르바 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 아네르바 가부시키가이샤 filed Critical 캐논 아네르바 가부시키가이샤
Publication of KR20170082647A publication Critical patent/KR20170082647A/ko
Application granted granted Critical
Publication of KR101973879B1 publication Critical patent/KR101973879B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3441Dark space shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

기판 처리 장치는, 처리 용기와, 상기 처리 용기 내에서 기판을 보유 지지하기 위한 기판 홀더와, 상기 기판 홀더의 외주부에 설치된 제1 실드와, 상기 처리 용기의 내측에 설치된 제2 실드를 구비한다. 상기 처리 용기의 내부 공간은, 적어도 상기 제1 실드와 상기 제2 실드와 상기 기판 홀더에 의하여, 상기 기판을 처리하기 위한 처리 공간과 외부 공간으로 구획된다. 상기 기판 홀더는, 상기 기판을 보유 지지하는 기판 보유 지지면에 대하여 수직인 구동 방향을 따라 구동 가능하다. 상기 제1 실드와 상기 제2 실드에 의하여 형성되는 간극 중, 상기 구동 방향에 수직인 방향에 있어서의 치수가 최소인 최소 간극 부분의, 상기 구동 방향에 평행한 방향의 길이가, 상기 기판 홀더가 상기 구동 방향으로 구동되더라도 변화되지 않는다.

Description

기판 처리 장치{SUBSTRATE PROCESSING APPARATUS}
본 발명은 기판 처리 장치에 관한 것이다.
스퍼터링 장치에 있어서는, 처리 용기의 내벽에 박막이 형성되면 장치의 유지 관리가 곤란해지므로, 교환 가능한 부착 방지 실드를 처리 용기 내에 설치하여 내벽이 보호된다. 타깃과 기판의 거리(이하, TS 거리라고 함)는, 형성되는 막의 막 두께나 막질의 균일성에 영향을 미치는 것이 알려져 있다. 또한 타깃이 점차 스퍼터링되어 침식이 진행되면 막 두께나 막 두께 분포가 점차 악화되는 경향이 있는 것도 알려져 있다. 이러한 현상에 대하여 TS 거리를 가변으로 하는 것은 막질의 개선이나 안정화에 매우 유효하다.
스퍼터링 장치 내에 설치된 실드도, TS 거리의 변경을 가능하게 하기 위하여 분할된 복수의 실드로 구성되며, 실드 부품 사이에 간극이 형성된다. 또한 이 간극을 통과하여 막이 처리 용기의 내벽에 도달하지 않도록 간극은 애로(래버린스) 구조를 갖는다(예를 들어 특허문헌 1).
일본 특허 공개 제2011-132580호 공보
프로세스 가스가 타깃의 근방에 도입되는 구조의 경우, 프로세스 가스는 실드의 간극을 통과하여 진공 펌프에 도달한다. TS 조정에 의하여 간극의 구조가 변화되는데, 이때 프로세스 가스의 통과 용이성도 동시에 변화되므로, 타깃 근방의 프로세스 가스의 압력이 변화되어 버린다.
또한 프로세스 가스가 진공 펌프의 근방에 도입되는 구성이고, 또한 원료 가스가 타깃이나 타깃 근방에서 반응에 의하여 소비되는 반응성 스퍼터인 경우에는, 프로세스 가스가 실드의 간극을 통과하여 타깃 근방에 유입되므로, 타깃과 기판의 위치 관계의 조정에 의하여 마찬가지로 프로세스 가스 압력도 변화되어 버린다. 특허문헌 1에 있어서는, TS 거리의 변동에 수반하는 컨덕턴스의 변화보다도 충분히 큰 컨덕턴스를 갖는 배기로를 형성함으로써, 프로세스 가스의 압력 변화를 저감시키고 있다.
그러나 디바이스의 고기능화나 미세 구조의 진보에 수반하여, 막질의 재현성에 대한 요구가 보다 엄격해지고 있다. 이 때문에 한층 더 정밀한 압력 제어가 요구되고 있다. 즉, 타깃과 기판 사이의 위치를 조절하더라도 처리 공간 내의 압력의 변화가 보다 적은 스퍼터링 장치가 요구되고 있다.
CVD 장치나 에칭 장치 등의 다른 기판 처리 장치에 있어서도, 기판 홀더를 이동시켰을 때의 처리 공간 내의 압력의 변화가 보다 적을 것이 요구되고 있다.
본 발명은, 기판 홀더를 이동시켰을 때의 처리 공간 내의 압력 변화를 억제하는 것이 가능하여, 고품질의 박막을 성막하기 위하여 유리한 기술을 제공하는 것을 목적으로 한다.
본 발명의 일 측면은 기판 처리 장치에 관한 것이며, 상기 기판 처리 장치는, 처리 용기와, 상기 처리 용기 내를 배기하기 위한 배기부와, 상기 처리 용기 내에 가스를 도입하기 위한 가스 도입부와, 상기 처리 용기 내에서 기판을 보유 지지하기 위한 기판 홀더와, 상기 기판 홀더의 외주부에 설치된 제1 실드와, 상기 처리 용기의 내측에 설치된 제2 실드를 구비하고, 상기 처리 용기의 내부 공간은, 적어도 상기 제1 실드와 상기 제2 실드와 상기 기판 홀더에 의하여, 상기 기판을 처리하기 위한 처리 공간과 외부 공간으로 구획되며, 상기 기판 홀더는, 상기 기판을 보유 지지하는 기판 보유 지지면에 대하여 수직인 구동 방향을 따라 구동 가능하고, 상기 제1 실드 및 상기 제2 실드는, 상기 처리 공간의 중심으로부터 상기 외부 공간에 이르는 직선 경로가 존재하지 않도록 설치되며, 상기 제1 실드와 상기 제2 실드에 의하여 형성되는 간극 중, 상기 구동 방향에 수직인 방향에 있어서의 치수가 최소인 최소 간극 부분의, 상기 구동 방향에 평행한 방향의 길이가, 상기 기판 홀더가 상기 구동 방향으로 구동되더라도 변화되지 않는다.
본 발명에 의하면, 기판 홀더를 이동시켰을 때의 처리 공간 내의 압력 변화를 억제하는 것이 가능하여, 고품질의 박막을 성막하기 위하여 유리한 기술을 제공하는 것이 가능해진다.
도 1은 본 발명에 따른 기판 처리 장치의 일례로서의 스퍼터링 처리 장치를 설명하기 위한 도면이다.
도 2는 본 발명의 제1 실시 형태를 설명하기 위한 도면이다.
도 3은 본 발명의 제2 실시 형태를 설명하기 위한 도면이다.
도 4a는 본 발명의 제1 실시 형태를 설명하기 위한 도면이다.
도 4b는 본 발명의 제2 실시 형태를 설명하기 위한 도면이다.
도 5는 본 발명의 제3 실시 형태를 설명하기 위한 도면이다.
도 6a는 본 발명의 제1 실시 형태를 설명하기 위한 도면이다.
도 6b는 본 발명의 제3 실시 형태를 설명하기 위한 도면이다.
도 7은 본 발명의 제4 실시 형태를 설명하기 위한 도면이다.
도 8은 본 발명의 제1 실시 형태에 따른 실시예를 설명하기 위한 도면이다.
이하, 도면을 참조하여 본 발명의 적합한 실시 형태를 예시적으로 상세히 설명한다. 단, 이 실시 형태에 기재되어 있는 구성 요소는 어디까지나 예시이며, 본 발명의 기술적 범위는 특허 청구 범위에 의하여 확정되는 것이지, 이하의 개별 실시 형태에 의하여 한정되는 것은 아니다.
도 1을 참조하여 스퍼터링 장치(1)의 전체 구성에 대하여 설명한다. 도 1은 본 실시 형태의 스퍼터링 장치(1)의 개략도이다.
스퍼터링 장치(1)는, 진공 배기가 가능한 처리 용기(2)와, 처리 용기(2)에 대하여 배기구를 개재하여 접속된 배기 챔버(8)와, 배기 챔버(8)를 통하여 처리 용기(2) 내를 배기하는 배기 장치를 구비하고 있다. 여기서, 배기 장치는 터보 분자펌프(48)를 갖는다. 또한 배기 장치의 터보 분자펌프(48)에는 드라이 펌프(49)가 접속되어도 된다. 배기 챔버(8)의 하방에 배기 장치가 설치되어 있는 것은, 장치 전체의 풋프린트(점유 면적)을 가능한 한 작게 하기 위해서이다.
처리 용기(2) 내에는, 타깃(4)을 백 플레이트(5)를 개재하여 보유 지지하는 타깃 홀더(6)가 설치되어 있다. 타깃 홀더(6)의 중심은, 기판 보유 지지면에서 기판(10)을 보유 지지하는 기판 홀더(7)의 중심 위치(기판 홀더(7)에 의하여 보유 지지되는 기판(10)의 중심 위치)에 대하여 오프셋된 위치에 배치되어 있다. 타깃 홀더(6)의 근방에는 타깃 셔터(14)가 설치되어 있다. 타깃 셔터(14)는 회전 셔터의 구조를 갖고 있다. 타깃 셔터(14)는, 기판 홀더(7)와 타깃 홀더(6) 사이의 경로가 차단되는 폐쇄 상태(차단 상태), 또는 기판 홀더(7)와 타깃 홀더(6) 사이에 경로가 형성되는 개방 상태(비차단 상태)로 하기 위한 차단 부재로서 기능한다. 타깃 셔터(14)에는, 타깃 셔터(14)의 개폐 동작을 행하기 위한 타깃 셔터 구동 기구(33)가 설치되어 있다.
또한 처리 용기(2)는, 처리 용기(2) 내에 불활성 가스(아르곤 등)를 도입하기 위한 불활성 가스 도입계(15)와, 반응성 가스(산소, 질소 등)를 도입하기 위한 반응성 가스 도입계(17)와, 처리 용기(2)의 압력을 측정하기 위한 압력계(400)를 구비하고 있다.
불활성 가스 도입계(15)에는, 불활성 가스를 공급하기 위한 불활성 가스 공급 장치(가스 봄베)(16)가 접속되어 있다. 불활성 가스 도입계(15)는, 불활성 가스를 도입하기 위한 배관과, 불활성 가스의 유량을 제어하기 위한 매스 플로우 컨트롤러, 및 가스의 흐름을 차단하거나 개시하거나 하기 위한 밸브를 포함할 수 있다. 불활성 가스 도입계(15)는 필요에 따라 감압 밸브나 필터 등을 더 포함할 수 있다. 불활성 가스 도입계(15)는, 도시하지 않은 제어 장치에 의하여 지정되는 가스 유량을 안정적으로 흘릴 수 있는 구성을 갖는다. 불활성 가스는, 불활성 가스 공급 장치(16)로부터 공급되어 불활성 가스 도입계(15)에서 유량 제어된 후, 타깃(4)의 근방에 도입되도록 되어 있다.
반응성 가스 도입계(17)에는, 반응성 가스를 공급하기 위한 반응성 가스 공급 장치(가스 봄베)(18)가 접속되어 있다. 반응성 가스 도입계(17)는, 반응성 가스를 도입하기 위한 배관과, 불활성 가스의 유량을 제어하기 위한 매스 플로우 컨트롤러, 및 가스의 흐름을 차단하거나 개시하거나 하기 위한 밸브를 포함할 수 있다. 반응성 가스 도입계(17)는 필요에 따라 감압 밸브나 필터 등을 더 포함할 수 있다. 반응성 가스 도입계(17)는, 도시하지 않은 제어 장치에 의하여 지정되는 가스 유량을 안정적으로 흘릴 수 있는 구성을 갖는다. 반응성 가스는, 반응성 가스 공급 장치(18)로부터 공급되어 반응성 가스 도입계(17)에서 유량 제어된 후, 실드(402)에 설치된 반응성 가스 도입부로부터 처리 공간 PS에 도입되도록 되어 있다.
반응성 가스 도입계(17)는, 실드(401, 402, 403), 기판 홀더(7), 타깃 홀더(6)(백 플레이트(5)) 및 셔터 수납부(23)에 의하여 구획되는 처리 공간 PS의 외부에 배치된 외부 공간 OS에 반응성 가스를 도입하도록 구성되어도 된다. 이 경우, 실드(403)와 기판 홀더(7)의 간극을 통과하여 반응성 가스가 외부 공간 OS로부터 처리 공간 PS에 도입될 수 있다. 또한 처리 공간 PS와 외부 공간 OS의 양쪽에 반응성 가스를 도입해도 된다.
불활성 가스와 반응성 가스는 처리 용기(2)에 도입된 후, 막을 형성하기 위하여 사용된 후 배기 챔버(8)를 통과하고, 처리 용기(2)에 설치된 배기부를 통하여 터보 분자펌프(48) 및 드라이 펌프(49)에 의하여 배기된다.
처리 용기(2)의 내면은 전기적으로 접지되어 있다. 처리 용기(2)의 내면의 내측에는, 처리 용기(2)의 천장부의 내면 중, 타깃 홀더(6)가 배치된 영역 이외의 영역을 덮도록, 전기적으로 접지된 천장 실드(401)가 설치되어 있다. 또한 처리 용기(2)의 내면의 내측에는, 전기적으로 접지된 통형 실드(402, 403)가 설치되어 있다. 이하에서는, 천장 실드(401) 및 통형 실드(402, 403)를 실드라고도 한다. 실드란, 스퍼터 입자가 처리 용기(2)의 내면에 직접 부착되는 것을 방지하여 처리 용기의 내면을 보호하기 위하여, 처리 용기(2)와는 별체로 형성되고 정기적으로 교환 가능한 부재를 말한다. 실드는, 예를 들어 스테인레스 또는 알루미늄 합금에 의하여 구성될 수 있다. 또한 내열성이 요구되는 경우에는, 실드는 티타늄 또는 티타늄 합금으로 구성될 수 있다. 내열성이 요구되지 않는 경우, 알루미늄은 티타늄보다도 저렴하고 또한 스테인레스보다도 비중이 작기 때문에, 실드의 재료로서 알루미늄이 경제성이나 작업성 면에서 선택되는 경우도 있다. 또한 실드는 전기적으로 어스(접지)되어 있으므로, 처리 공간 PS 내에 발생하는 플라즈마를 안정시킬 수 있다. 실드의 표면은, 적어도 처리 공간 PS를 향한 면에는, 샌드 블라스트 등에 의하여 블라스트 가공되어 표면에 미소한 요철이 형성되어 있다. 이와 같이 함으로써 실드에 부착된 막이 박리되기 어렵게 되어 있어, 박리에 의하여 발생하는 파티클을 저감시킬 수 있다. 블라스트 가공 외에, 금속 용사 처리 등으로 금속 박막을 실드의 표면에 형성해도 된다. 이 경우, 용사 처리는 블라스트 가공만 하는 것보다 고가이지만, 실드를 제거하고 부착된 막을 박리하는 유지 보수 시, 용사막마다 부착막을 박리하면 된다는 이점이 있다. 또한 스퍼터링된 막의 응력이 용사 박막에 의하여 완화되어, 막의 박리를 방지하는 효과도 있다.
배기 챔버(8)는 처리 용기(2)와 터보 분자펌프(48) 사이를 연결하고 있다. 배기 챔버(8)와 터보 분자펌프(48) 사이에는, 유지 보수를 행할 때 스퍼터링 장치(1)와 터보 분자펌프(48) 사이의 경로를 차단하기 위한 메인 밸브(47)가 설치되어 있다.
타깃(4)의 배후에는, 마그네트론 스퍼터링을 실현하기 위한 마그네트(13)가 배치되어 있다. 마그네트(13)는 마그네트 홀더(3)에 보유 지지되며, 도시하지 않은 마그네트 홀더 회전 기구에 의하여 회전 가능하게 되어 있다. 타깃의 침식을 균일하게 하기 위하여, 방전 중에는 이 마그네트(13)는 회전하고 있다. 타깃 홀더(6)에는, 스퍼터 방전용 전력을 인가하는 전원(12)이 접속되어 있다. 전원(12)에 의하여 타깃 홀더(6)에 전압이 인가되면 방전이 개시되어, 스퍼터 입자가 기판에 퇴적된다.
본 실시 형태에 있어서는, 도 1에 도시하는 스퍼터링 장치(1)는 DC 전원을 구비하고 있지만 이에 한정되는 것은 아니며, 예를 들어 RF 전원을 구비하고 있어도 된다. RF 전원을 사용했을 경우에는 전원(12)과 타깃 홀더(6) 사이에 정합기를 설치할 필요가 있다.
타깃 홀더(6)는 절연체(34)에 의하여 접지 전위의 처리 용기(2)로부터 절연되어 있으며, 또한 Cu 등의 금속제이므로 DC 또는 RF의 전력이 인가되었을 경우에는 전극이 된다. 타깃 홀더(6)는, 도시하지 않은 냉매 유로를 내부에 가지며, 도시하지 않은 관로로부터 공급되는 냉각수 등의 냉매에 의하여 냉각될 수 있다. 타깃(4)은 기판(10)에 성막하고자 하는 재료로 구성된다. 막의 순도에 관계되기 때문에 고순도의 것이 바람직하다.
타깃(4)과 타깃 홀더(6) 사이에 설치되어 있는 백 플레이트(5)는 Cu 등의 금속으로 구성되며, 타깃(4)을 보유 지지하고 있다.
타깃 홀더(6)의 근방에는, 타깃 셔터(14)가 타깃 홀더(6)를 덮도록 설치되어 있다. 타깃 셔터(14)는, 기판 홀더(7)와 타깃 홀더(6) 사이의 경로가 차단되는 폐쇄 상태, 또는 기판 홀더(7)와 타깃 홀더(6) 사이에 경로가 형성되는 개방 상태로 하기 위한 차단 부재로서 기능한다.
기판 홀더(7)의 면 상이고 또한 기판(10)의 보유 지지 부분의 외측 테두리측(외주부)에는, 링 형상을 갖는 차단 부재(이하, 커버 링이라고도 함)(21)가 설치되어 있다. 커버 링(21)은, 기판 홀더(7)에 의하여 기판 홀더(7) 상에 보유 지지된 기판(10)의 성막면 이외의 영역에 스퍼터 입자가 부착되는 것을 방지한다. 여기서 성막면 이외의 영역이란, 커버 링(21)에 의하여 덮이는 기판 홀더(7)의 표면 외에, 기판(10)의 측면이나 이면이 포함된다. 한편, 반도체 장치의 제조 공정의 제약에 의하여, 기판 외주부에도 성막이 필요해지는 경우도 있다. 이 경우에는, 커버 링(21)의 개구를 기판의 치수와 같거나 상기 치수보다도 크게 구성한다. 이것에 의하여, 기판의 전체면에 성막하면서 기판 홀더(7)에의 막 퇴적도 방지할 수 있다. 커버 링(21)은 다른 실드와 마찬가지로 교환 가능하게 구성되므로, 적절히 교환되거나 세정하여 재이용되거나 한다.
기판 홀더(7)에는, 기판 홀더(7)를 상하 이동시키거나 소정의 속도로 회전시키거나 하기 위한 기판 홀더 구동 기구(31)가 설치되어 있다. 기판 홀더(7)는, 처리 용기(2)의 내부 공간이 진공으로 유지된 채, 기판 홀더 구동 기구(31)에 의하여 기판 보유 지지면에 대하여 수직인 구동 방향으로 구동 가능하게 구성된다. 이 구조에 의하여 TS 거리를 변경하는 것이 가능해진다. 기판 홀더 구동 기구(31)는, 처리 용기(2)의 내부 공간을 진공으로 유지하면서 상기 구동 방향으로 기판 홀더(7)를 구동하기 위한 벨로즈, 진공을 유지하면서 기판 홀더(7)를 회전시키기 위한 자성 유체 시일, 기판 홀더(7)를 회전 및 상하 이동시키기 위한 각각의 모터, 기판 홀더(7)의 위치를 측정하기 위한 센서 등으로 구성되어 있으며, 도시하지 않은 제어 장치에 의하여 기판 홀더(7)의 위치 및 회전을 제어할 수 있는 구성으로 되어 있다.
기판(10)의 근방이고 기판 홀더(7)와 타깃 홀더(6) 사이에는, 기판 셔터(19)가 배치되어 있다. 기판 셔터(19)는, 기판 셔터 지지 부재(20)에 의하여 기판(10)의 표면을 덮도록 지지되어 있다. 기판 셔터 구동 기구(32)는 기판 셔터 지지 부재(20)를 회전 및 병진시킴으로써, 기판(10)의 표면 부근의 위치에 있어서 타깃(4)과 기판(10) 사이에 기판 셔터(19)를 삽입한다(폐쇄 상태). 기판 셔터(19)가 타깃(4)과 기판(10) 사이에 삽입됨으로써 타깃(4)과 기판(10) 사이의 경로는 차단된다. 또한 기판 셔터 구동 기구(32)의 동작에 의하여 타깃 홀더(6)(타깃(4))와 기판 홀더(7)(기판(10)) 사이에서 기판 셔터(19)가 퇴피되면, 타깃 홀더(6)(타깃(4))와 기판 홀더(7)(기판(10)) 사이에 경로가 형성된다(개방 상태). 기판 셔터 구동 기구(32)는, 기판 홀더(7)와 타깃 홀더(6) 사이의 경로를 차단하는 폐쇄 상태, 또는 기판 홀더(7)와 타깃 홀더(6) 사이에 경로를 형성하는 개방 상태로 하기 위하여 기판 셔터(19)를 개폐 구동한다. 개방 상태에 있어서, 기판 셔터(19)는 셔터 수납부(23)에 수납된다. 도 1에 도시한 바와 같이 기판 셔터(19)의 퇴피 장소인 셔터 수납부(23)가 고진공 배기용 터보 분자펌프(48)까지의 배기 경로의 도관에 수납되도록 하면, 장치 면적을 작게 할 수 있어 적합하다.
기판 셔터(19)는 스테인레스 또는 알루미늄 합금에 의하여 구성될 수 있다. 또한 내열성이 요구되는 경우에는, 기판 셔터(19)는 티타늄 또는 티타늄 합금으로 구성될 수 있다. 기판 셔터(19)의 표면은, 적어도 타깃(4)을 향한 면에는, 샌드 블라스트 등에 의하여 블라스트 가공되어 표면에 미소한 요철이 형성되어 있다. 이와 같이 함으로써 기판 셔터(19)에 부착된 막이 박리되기 어렵게 되어 있어, 박리에 의하여 발생하는 파티클을 저감시킬 수 있다. 또한 블라스트 가공 외에, 금속 용사 처리 등으로 금속 박막을 기판 셔터(19)의 표면에 형성해도 된다. 이 경우, 용사 처리는 블라스트 가공만 하는 것보다 고가이지만, 기판 셔터(19)를 제거하고 부착된 막을 박리하는 유지 보수 시에, 용사막마다 부착막을 박리하면 된다는 이점이 있다. 또한 스퍼터링된 막의 응력이 용사 박막에 의하여 완화되어, 막의 박리를 방지하는 효과도 있다.
타깃 표면의 클리닝을 위하여, 또는 실드 내면에 박막을 부착시켜 진공실 내의 상태를 안정시키기 위하여, 기판 셔터를 폐쇄한 상태 그대로 스퍼터링을 행하는 경우가 있다. 이때, 기판 홀더(7)의 표면에 약간이지만 박막이 퇴적되면, 기판이 기판 홀더(7)로 반송되었을 때 기판 이면이 오염되어, 상기 기판을 처리함으로써 형성되는 반도체 장치의 성능을 악화시키거나 다음 공정의 장치를 오염시키거나 할 우려가 있다. 이 때문에, 기판 셔터(19)가 폐쇄 상태일 때는 커버 링(21)과 기판 셔터는 비접촉으로 끼워 맞춰지는, 소위 애로(래버린스)를 형성하여 기판 홀더에의 막 퇴적을 방지하는 구성으로 되어 있다.
(제1 실시 형태)
도 2를 참조하여 기판 홀더(7)의 주변에 있어서의 실드에 대하여 설명한다. 기판 홀더(7)에는 기판(10)이 배치되어 있다. 또한 기판 홀더의 외주부에는 커버 링(21)이 설치되어 있다. 커버 링(21)과 소정의 간극을 두고 실드(403)가 처리 용기(2)에 설치되어 있다. 기판 홀더(7)는 TS 거리를 조정하기 위하여 기판 보유 지지면에 대하여 수직 방향으로 구동할 수 있다. 이 움직임에 수반하여 커버 링(21)도 기판 홀더(7)와 함께 이동한다. 한편, 실드(403)는 처리 용기(2)에 고정되어 있기 때문에, 기판 홀더(7)의 이동에 수반하는 실드(403)의 위치 변화는 없다.
진공 챔버(2) 내에 도입된 프로세스 가스는, 실드(403)와 커버 링(21)의 간극을 통과하여 처리 공간 PS로부터 배기 또는 처리 공간 PS에 도입되는데, 이 배기 또는 도입의 용이성을 정량적으로 나타내는 지표로서 컨덕턴스가 있다. 프로세스 가스가 처리 공간 PS로부터 배기되는 경우, 프로세스 가스는 화살표로 나타내는 경로(100)을 거쳐 배기되는데, 커버 링(21)과 실드(403)에 의하여 형성된 간극의 형태에 따라, 처리 공간 PS로부터 기판 홀더(7)의 외주를 통과하여 외부 공간 OS로 가스가 배기될 때의 배기 컨덕턴스가 변화된다. 커버 링(21)은 그 외주부에, 기판 홀더(7)의 하강 방향에 평행한 방향으로 연장된 통형 부분(210)을 갖는다. 커버 링(21)과 실드(403)의 간극 중, 커버 링(21)의 통형 부분(210)에 있어서의 외측면(21a)과, 실드(403) 중 외측면(21a)에 대향하는 부분(통형 부분)의 내측면(403a)에 의하여 형성되는 간극(기판 홀더 구동 기구(31)에 의한 기판 홀더(4)의 구동 방향에 수직인 방향에 있어서의 치수)이 가장 거리가 작다. 제1 실시 형태에 있어서, 커버 링(21)의 통형 부분(210)의 외측면(21a)과, 실드(403)의 내측면(403a)에 의하여 형성되는 간극은 최소 간극 부분이다. 최소 간극 부분의 크기를 최소 간극 D라고 칭하기로 한다. 경로(100)에 있어서의 컨덕턴스는, 최소 간극 D와, 기판 홀더(7)의 구동 방향(기판 보유 지지면에 수직인 방향)에 있어서의 최소 간극 부분의 길이 L에 크게 의존한다.
경로(100)의 컨덕턴스는, 최소 간극 D 및 길이 L로 구성되는 컨덕턴스 C1과, 그 외의 실드(403), 커버 링(21) 및 기판 홀더(7)로 구성되는 컨덕턴스 C2의 직렬 연결로 간주할 수 있다. 배기 경로 상에 직렬로 연결된 컨덕턴스의 합성은, 이하의 식 1로 표현된다.
C=1/((1/C1)+(1/C2))(식 1)
여기서, C는 합성 컨덕턴스이다. 식 1로부터 밝혀진 바와 같이, C2가 충분히 클 때 합성 컨덕턴스 C는 C1과 거의 같아진다.
최소 간극 D를 구성하는 최소 간극 부분 이외에 있어서는, 실드(403), 커버 링(21) 및 기판 홀더(7)와의 간극이 크기 때문에 C2는 충분히 커진다. 또한 기판 홀더(7)가 상하로 구동되더라도, 커버 링(21)과 실드(403)에 의하여 형성된 간극 중, 커버 링(21)의 외측면(21a)과 실드(403)의 내측면(403a)에 의하여 형성된 최소 간극 D를 구성하는 최소 간극 부분의 길이 L이 변화되지 않도록 구성된다. 이로 인하여, 기판 홀더(7)가 상하 이동하더라도 C1이 거의 변화되지 않기 때문에, 기판 홀더(7)가 상하 이동했을 때의, C1과 C2를 포함하는 합성 컨덕턴스의 변화를 작게 억제하는 것이 가능해진다.
기판 홀더(7)가 상하 이동하더라도, 최소 간극 D를 구성하는 최소 간극 부분의 길이 L이 변화되지 않는 구성으로 하기 위하여 도 2의 예에서는, 커버 링(21)의 통형부(210)의 단부면(하면)(21b)과, 실드(403)의 오목 형상부(410)의 저면(403b) 및 내측면(403c)의 거리가 최소 간극 D보다도 작아지지 않는 범위에서 기판 홀더(7)를 상하 이동시킨다. 또한 기판 홀더(7)가 하강했을 때, 커버 링(21)의 통형부(210)의 내측면(21c)과, 실드(403)의 오목 형상부(410)의 내측면(403c)의 거리가 최소 간극 D보다도 작아지지 않도록 실드(403)와 커버 링(21)의 형상 및 위치가 설계된다. 또는 내측면(21c)과 내측면(403c)이 대향하는 위치까지 기판 홀더(7)를 하강시키지 않을 필요가 있다. 단, 기판 상에의 성막 처리가 행해지지 않아 컨덕턴스의 변화가 기판의 처리 특성에 영향을 미치지 않는, 예를 들어 기판 반출입 시 등은 이에 해당되지 않는다.
제1 실시 형태에서는, 기판 홀더(7)의 중심축을 통과하는 평면으로 절단된 단면에 있어서, 실드(403)의 선단부는, 기판 홀더(7)의 외주로부터 내주를 향하는 방향을 향하여 굴곡되고, 또한 커버 링(21)의 방향을 향하여 굴곡되며, 이것에 의하여 오목 형상부(410)가 형성되어 있다. 기판 홀더(7)의 중심축을 통과하는 평면으로 절단된 단면에 있어서, 커버 링(21)의 선단부는, 통형부(210)가 구성되도록 기판 홀더(7)의 하강 방향으로 굴곡되어 있다. 이와 같이 제1 실시 형태에서는, 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않으며, 외측면(21a)과 그에 대향하는 내측면(403a)의 간극에 진입한 스퍼터 입자의 대부분은, 오목 형상부(410)의 저면(403b)에 입사된다. 그 결과, 스퍼터 입자가 처리 공간 PS로부터 외부 공간 OS로 비산되는 것을 억제할 수 있다.
또한 커버 링(21)의 통형부(210)의 외측면(21a)은 실드(403)의 내측면(403a)과 평행하다. 이로 인하여, 최소 간극 D를 구성하는 최소 간극 부분의, 기판 홀더(7)의 구동 방향의 길이 L을 길게 할 수 있다. 길이 L이 길면, 최소 간극 D를 구성하는 최소 간극 부분의 컨덕턴스가 보다 작아지고, 상술한 식 1에 있어서의 C2가 보다 C1에 비하여 커지기 때문에, 기판 홀더(7)의 상하 이동에 의한 컨덕턴스의 변화를 저감시키기 쉽다.
이러한 컨덕턴스의 변화를 억제하는 구성은, 특히 반응성 가스를 외부 공간 OS를 경유하여 처리 공간 PS에 도입하여, 반응성 스퍼터에 의하여 기판 상에 막을 형성하는 구성에 있어서 유효하다. 반응성 가스를 외부 공간 OS에 도입했을 경우, 반응성 가스는 실드(403)와 커버 링(21)의 간극을 통과하여 처리 공간 PS에 도입된다. 반응성 가스가 통과하는 간극의 컨덕턴스가 변화되면, 스퍼터링된 입자와의 반응에 기여하는 가스의 양이 변화되어, 원하는 막을 얻는 것이 곤란해지기 때문이다.
제1 실시 형태에서는, 처리 공간 PS는, 적어도 기판 홀더(7), 기판 홀더(7)에 설치된 커버 링(21)과, 천장 실드(403)로 구획된다. 처리 공간 PS는 이들 부재 외에, 타깃(4), 백 플레이트(5), 셔터 수납부(23) 등 중 적어도 1개로 구획되어도 된다. 기판 홀더(7)의 외주에 설치된 커버 링(21)은, 기판 홀더(7)의 구동에 맞춰 이동했을 때, 처리 용기(2)의 내측에 설치된 실드(403)와 커버 링(21)의 간극의 컨덕턴스의 변화를 억제하도록 구성된다. 처리 공간 PS는, 적어도 실드(403) 및 커버 링(21)에 의하여 구획될 수 있다.
(제2 실시 형태)
도 3에 본 발명의 제2 실시 형태를 도시한다. 제2 실시 형태에서는, 커버 링(21)의 외측에 실드(404)가 설치되어 있고, 실드(404)와 실드(403)에 의하여 배기로가 형성된다. 커버 링(21)과 실드(404)가 별개의 부재인 경우, 커버 링(21)을 설계할 때의 제약을 적게 할 수 있다. 예를 들어 실드(404)와 커버 링(21)을 상이한 재질로 제조하는 것이 가능해진다. 물론 커버 링(21)과 실드(404)를 일체로 형성해도 된다.
제2 실시 형태에서는, 실드(404)에 있어서의, 실드(403)측으로 돌출된 돌출부의 면(404d)과, 실드(403)의 외측면(403d)의 거리가, 실드(403와 404)에 의하여 형성되는 간극에 있어서의 최소 간극 D이다. 그 최소 간극 D를 구성하는 최소 간극 부분의 길이 L이 컨덕턴스에 가장 영향을 주지만, 기판 홀더(7)가 상하 이동하더라도, 최소 간극 D를 구성하는 최소 간극 부분의 길이 L이 변화되지 않기 때문에, 실드(404와 403)에 의하여 형성되는 배기로의 컨덕턴스를 변화를 억제할 수 있다.
제2 실시 형태에서는, 최소 간극 D를 규정하기 위하여 실드(404)는, 실드(403)를 향하여 돌출된 돌출부(425)를 갖고 있으며, 한편, 기판 홀더(7)의 하강 방향에 평행한 방향으로 연장된 통형부(430)를 갖는다. 통형부(430)는 실드(403)의 선단부 하부보다도 낮은 위치까지 연장되고, 그 후, 기판 홀더(7)의 내주로부터 외주를 향하는 방향을 향하여 굴곡되고, 또한 선단부가 기판 홀더(7)의 상승 방향을 향하여 굴곡되어 있다. 이와 같이 실드(404)의 선단부가 실드(403)의 선단부를 둘러싸도록 굴곡되어 있기 때문에, 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않는다.
제2 실시 형태에 있어서의 다른 효과에 대하여 도 4a, 4b를 사용하여 설명한다. 도 4a, 4b는, 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않는 범위에서 기판 홀더(7)를 가능한 한 하강시켰을 때의 모습을 도시하고 있다. 도 4a, 4b에서는, 주된 배기 경로를 형성하는 부재 이외를 생략하여 도시하고 있다.
스퍼터링에 의하여 기판 상에 막을 형성하기에 앞서, 처리 용기(2)의 내부에 배치되는 부재의 표면으로부터의 가스 방출을 억제하기 위하여, 주로 처리 공간 PS에 면하는 부재의 표면 및 처리 공간 PS 근방의 부재의 표면에 스퍼터막을 형성하는 방법이 채용될 수 있다. 배기로를 형성하는 커버 링(21)이나 실드(403, 404)로부터도 가스 방출이 발생하기 때문에, 이들 부재에 대해서도 처리 공간 PS에 근접하는 면에 미리 스퍼터막이 형성되어 있는 것이 바람직하다.
도 4a는 제1 실시 형태에 있어서, 기판 홀더(7)를 가능한 한 하강시켜 커버 링(21)과 실드(403)를 근접시킨 상태를 도시한 도면이다. 이 상태에 있어서 타깃(4)을 스퍼터링함으로써, 실드(403)의 면(403a) 상에 있어서, 주로 타깃(4)에 면하는 영역에 피막 F가 형성된다.
도 4b는 제2 실시 형태에 있어서, 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않는 상태를 유지한 채, 기판 홀더(7)를 가능한 한 하강시킨 상태를 도시한 도면이다. 제2 실시 형태에서는, 실드(404)를 실드(403)의 선단부 위치 부근까지 하강시킬 수 있기 때문에, 실드(403)의 면(403d)의 거의 전체면에 피막 F를 형성할 수 있다. 이로 인하여, 기판(10)에의 성막 처리 시에 실드(403)로부터 방출되는 가스가 저감되어, 양질의 막의 성막이 가능해진다.
또한 실드(404)의 면(404d)은, 커버 링(21)의 외측에 배치된 판형 부분의 외측면이다. 최소 간극 D를 한쪽 실드의 면과, 다른 쪽 실드의 판형 부분의 측면에 의하여 구성하는 경우, 길이 L에 걸쳐 최소 간극 D를 형성하는 것을 용이하게 할 수 있다. 이로 인하여 장치마다의 컨덕턴스의 기기 차를 저감시킬 수 있다.
제2 실시 형태에 있어서도, 실제로 기판 상에 성막 처리를 행할 때 최소 간극 D가 변화되지 않도록 장치가 구성된다. 즉, 면(403f)과 면(404f)의 거리는 최소 간극 D보다 크고, 또한 기판 홀더(7)가 하강했을 때 면(403e)과 면(404e)의 거리가 최소 간극 D보다 작아지지 않도록 구성된다.
(제3 실시 형태)
도 5에 본 발명의 제3 실시 형태를 도시한다. 제3 실시 형태에서는, 실드(404)가 실드(403)의 선단부를 둘러싸도록 굴곡되어 있고, 또한 실드(404)의 선단부가 실드(403)를 향하여 굴곡되어 있다. 이 굴곡부의 실드(403)에 대향하는 면(404h)과, 실드(403)의 굴곡부에 대향하는 면(403h)의 간극이 최소 간극 D가 되도록 구성된다.
제3 실시 형태에 있어서의 효과에 대하여 도 6a, 6b를 사용하여 설명한다. 도 6a, 6b는, 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않는 범위에서 기판 홀더(7)를 가능한 한 하강시켰을 때의 모습을 도시하고 있다. 도 6a, 6b에서는, 주된 배기 경로를 형성하는 부재 이외를 생략하여 도시하고 있다.
스퍼터링에 의하여 기판 상에 막을 형성하기에 앞서, 처리 용기(2)의 내부에 배치되는 부재의 표면으로부터의 가스 방출을 억제하기 위하여, 주로 처리 공간 PS에 면하는 부재의 표면 및 처리 공간 PS 근방의 부재의 표면에 스퍼터막을 형성하는 방법이 채용될 수 있다. 배기로를 형성하는 커버 링(21)이나 실드(403, 404)로부터도 가스 방출이 발생하기 때문에, 이들 부재에 대해서도 처리 공간 PS에 근접하는 면에 미리 스퍼터막이 형성되어 있는 것이 바람직하다.
도 6a는 제1 실시 형태에 있어서, 기판 홀더(7)를 가능한 한 하강시켜 커버 링(21)과 실드(403)를 근접시킨 상태를 도시한 도면이다. 이 상태에 있어서 타깃(4)을 스퍼터함으로써, 실드(403)의 면(403a) 상에 있어서, 주로 타깃(4)에 면하는 영역에 피막 F가 형성된다.
도 6b는 제3 실시 형태에 있어서, 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않는 상태를 유지한 채, 기판 홀더(7)를 가능한 한 하강시킨 상태를 도시한 도면이다. 제3 실시 형태에서는, 면(403h)과 면(404h)이 최소 간극 D를 형성하고 있기 때문에, 면(403i)과 면(404i)의 간극을 최소 간극 D보다 크게 할 수 있다. 이로 인하여, 제2 실시 형태에 비하여 스퍼터 입자가 면(404i)의 하단부나 면(404j), 면(404g)에 부착되기 쉬워, 실드 표면으로부터의 가스 방출을 한층 더 저감시킬 수 있다.
제3 실시 형태에 있어서도, 실제로 기판 상에 성막 처리를 행할 때 최소 간극 D가 변화되지 않도록 장치가 구성된다. 즉, 면(403i)과 면(404i)의 거리는 최소 간극 D보다 크고, 또한 기판 홀더(7)가 하강했을 때 면(403g)과 면(404g)의 거리가 최소 간극 D보다 작아지지 않도록 구성된다.
(제4 실시 형태)
도 7에 본 발명의 제4 실시 형태를 도시한다. 제4 실시 형태에서는, 실드(405)가 기판 홀더(7)의 단부에 설치되어, 기판 홀더(7)의 하강 방향을 향하여 연장되어 있다. 한편, 실드(403)는, 선단부가 기판 홀더(7)(실드(405))를 향하여 연장되어 있으며, 실드(403)의 선단부의 굴곡부와 실드(405)의 간극이 최소 간극 D가 되어 있다. 실드(403)의 선단부는 커버 링(21)의 선단부보다도 기판 홀더(7)측으로 연장되어 있으며, 실드(403)에 의하여 처리 공간 PS의 중심(또는 기판 홀더(7)의 중심축)으로부터 외부 공간 OS에 이르는 직선 경로가 존재하지 않도록 구성되어 있다.
제4 실시 형태에서는, 면(21m)과 면(403m)의 거리가, 최소 간극 D인 면(403l)과 면(405l)의 간극보다도 크다. 이로 인하여, 기판에의 성막 처리에 앞서 행해지는 실드 표면에의 성막 처리에 있어서, 실드(403)의 표면에 넓게 막을 퇴적시킬 수 있다. 또한 커버 링(21)과 실드(405)가 별개의 부재로 구성되고, 실드(403)와 커버 링(21)에는 막이 많이 퇴적되지만, 실드(405)에는 막이 부착되기 어렵기 때문에, 실드(405)의 교환 주기를 길게 하여 유지 보수를 쉽게 할 수 있다.
제4 실시 형태에서는 실드(405)를 기판 홀더(7)에 설치했지만, 기판 홀더(7)의 외측 테두리에 있어서 기판 홀더(7)의 하강 방향으로 연장되는 부분을 형성하여, 커버 링(21)과 실드(405)를 일체로 해도 된다.
실시예 1
본 발명의 제1 실시 형태에 따른 실시예에 대하여 도 8을 참조하면서 설명한다. 도 8에 있어서, 최소 간극 D를 6㎜, 길이 L을 20㎜로 했을 때의, TS 거리와 실드 내 압력에 대하여, TS 거리와의 관계를 측정하였다. 비교예로서, 기판 홀더 주변의 실드 구조가 TS 거리의 변화에 수반하여 변화되어 버리는, 특허문헌 1에 기재된 스퍼터링 장치에 대해서도 마찬가지로 측정하였다. 이 결과를 그래프 1에 나타낸다. 실험은, TS 거리에 대하여 230㎜, 280㎜, 330㎜의 3개의 위치에 대하여, 각각 Ar을 실드 내에 100SCCM 도입하여 실드 내부의 압력을 격막식 진공계로 측정하였다. 종래예에서는 TS 거리의 변화에 수반하여 압력이 1.103㎩에서 1.077㎩까지 변화되는 것에 비하여, 본 발명에서는 1.116㎩에서 1.104㎩ 사이의 변화로 억제되어 있음을 알 수 있다.
또한 본 실시예에서는, 실드 내압의 변화를 억제하는 효과 외에, 커버 링과 컨덕턴스를 제한하는 부품을 공통화하고 있기 때문에, 스퍼터 장치를 구성하는 부품 개수를 삭감할 수 있다는 다른 효과도 있다.
또한 상술한 실시 형태에서는, 기판 홀더는 전부 기판 보유 지지면에 대하여 수직 방향으로 구동되는 경우에 대하여 설명했지만 이에 한정하지 않으며, 기판 보유 지지면에 대하여 수직 방향의 성분 외에, 기판 보유 지지면의 면내 방향의 성분을 포함한 방향으로 구동되어도 된다. 어느 경우에 있어서도, 기판 홀더가 기판 보유 지지면에 대하여 수직 성분을 포함하는 방향으로 구동되었을 때, 상기 구동 방향에 대하여 수직 방향에 있어서의 실드 간의 최소 간극 D인 부분의 상기 구동 방향의 길이 L이, 기판 홀더의 구동에 수반하여 변화되지 않는다.
또한 상술한 실시 형태에서는, 기판 처리 장치가 스퍼터 장치인 경우에 대하여 설명했지만, 본 발명은 그 외의 기판 홀더를 승강시킬 필요가 있는 장치에도 사용할 수 있다. 예를 들어 CVD 장치나 에칭 장치에도 적용 가능하다.
본 출원은, 2012년 12월 26일에 출원된 일본 특허 출원 제2012-282467호를 기초로 하여 우선권을 주장하는 것이며, 그 기재 내용의 전부를 본 명세서에 원용한다.
1: 스퍼터링 장치
2: 처리 용기
3: 마그네트 홀더
4: 타깃
5: 백 플레이트
6: 타깃 홀더
7: 기판 홀더
8: 배기 챔버
10: 기판
12: 전원
13: 마그네트
14: 타깃 셔터
15: 불활성 가스 공급계
16: 불활성 가스 공급 장치
17: 반응성 가스 공급계
18: 반응성 가스 공급 장치
19: 기판 셔터
20: 기판 셔터 지지 기구
21: 커버 링
23: 셔터 수납부
31: 기판 홀더 구동 기구
32: 기판 셔터 구동 기구
33: 타깃 셔터 구동 기구
34: 절연체
42: 게이트 밸브
47: 메인 밸브
48: 터보 분자펌프
49: 드라이 펌프

Claims (9)

  1. 처리 용기와,
    상기 처리 용기 내를 배기하기 위한 배기부와,
    상기 처리 용기 내에 가스를 도입하기 위한 가스 도입부와,
    상기 처리 용기 내에서 기판을 보유 지지하기 위한 기판 홀더와,
    상기 기판 홀더의 외주부에 설치된 제1 실드와,
    상기 처리 용기의 내측에 설치된 제2 실드를 구비하고,
    상기 처리 용기의 내부 공간은, 적어도 상기 제1 실드와 상기 제2 실드와 상기 기판 홀더에 의하여, 상기 기판을 처리하기 위한 처리 공간과 외부 공간으로 구획되고,
    상기 기판 홀더는, 상기 기판을 보유 지지하는 기판 보유 지지면에 대하여 수직인 구동 방향을 따라 구동 가능하고,
    상기 기판 홀더가 상기 구동 방향으로 구동되는 것에 의해 상기 제1 실드와 상기 제2 실드의 상대 위치가 변화되고,
    상기 제1 실드 및 상기 제2 실드는, 상기 처리 공간의 중심으로부터 상기 외부 공간에 이르는 직선 경로가 존재하지 않도록 설치되고,
    상기 제1 실드와 상기 제2 실드에 의하여 형성되는 간극 중, 상기 구동 방향에 수직인 방향에 있어서의 치수가 최소인 최소 간극 부분의, 상기 구동 방향에 평행한 방향의 길이는, 상기 기판 홀더가 상기 구동 방향으로 구동되는 것에 의해 상기 제1 실드와 상기 제2 실드의 상기 상대 위치가 변화되더라도 변화되지 않는 것을 특징으로 하는, 기판 처리 장치.
  2. 제1항에 있어서,
    상기 제1 실드는 외측면을 갖는 부분을 포함하고, 상기 제2 실드는, 상기 외측면에 대향하는 내측면을 갖는 부분을 포함하며, 상기 최소 간극 부분은 상기 외측면과 상기 내측면에 의하여 형성되는 것을 특징으로 하는, 기판 처리 장치.
  3. 제1항에 있어서,
    상기 제1 실드는 내측면을 갖는 부분을 포함하고, 상기 제2 실드는, 상기 내측면에 대향하는 외측면을 갖는 부분을 포함하며, 상기 최소 간극 부분은 상기 내측면과 상기 외측면에 의하여 형성되는 것을 특징으로 하는, 기판 처리 장치.
  4. 제1항에 있어서,
    상기 제1 실드 및 상기 제2 실드 중 적어도 한쪽이 통형 부분을 갖고, 상기 통형 부분에 의하여 상기 최소 간극 부분이 형성되는 것을 특징으로 하는, 기판 처리 장치.
  5. 제1항에 있어서,
    상기 제1 실드 및 상기 제2 실드의 한쪽은, 상기 기판 홀더의 중심축을 통과하는 평면으로 절단된 단면에 있어서 오목 형상부를 갖고, 상기 제1 실드 및 상기 제2 실드는, 상기 제1 실드 및 상기 제2 실드의 다른 쪽의 단부면이 상기 오목 형상부의 저면에 대향하도록 배치되어 있는 것을 특징으로 하는, 기판 처리 장치.
  6. 제4항에 있어서,
    상기 제1 실드는 링 형상부를 포함하는 것을 특징으로 하는, 기판 처리 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 기판 처리 장치는, 상기 기판에 스퍼터링 처리를 실시하는 스퍼터링 처리 장치인 것을 특징으로 하는, 기판 처리 장치.
  8. 제7항에 있어서,
    상기 가스 도입부는 상기 외부 공간에 반응성 가스를 도입하는 반응성 가스 도입부이고, 상기 반응성 가스는 상기 제1 실드와 상기 제2 실드의 간극을 통과하여 상기 처리 공간에 도입되는 것을 특징으로 하는, 기판 처리 장치.
  9. 처리 용기와,
    상기 처리 용기 내에서 기판을 보유 지지하기 위한 기판 홀더와,
    상기 기판 홀더의 외주부에 설치된 제1 실드와,
    상기 처리 용기의 내측에 설치된 제2 실드를 구비하고,
    상기 처리 용기의 내부 공간은, 적어도 상기 제1 실드와 상기 제2 실드와 상기 기판 홀더에 의하여, 상기 기판을 처리하기 위한 처리 공간과 외부 공간으로 구획되고,
    상기 기판 홀더는, 상기 기판을 보유 지지하는 기판 보유 지지면에 대하여 수직인 구동 방향을 따라 구동 가능하고,
    상기 기판 홀더가 상기 구동 방향으로 구동되는 것에 의해 상기 제1 실드와 상기 제2 실드의 상대 위치가 변화되고,
    상기 제1 실드와 상기 제2 실드에 의하여 형성되는 간극 중, 상기 구동 방향에 수직인 방향에 있어서의 치수가 최소인 최소 간극 부분의, 상기 구동 방향에 평행한 방향의 길이는, 상기 기판 홀더가 상기 구동 방향으로 구동되는 것에 의해 상기 제1 실드와 상기 제2 실드의 상기 상대 위치가 변화되더라도 변화되지 않는 것을 특징으로 하는, 기판 처리 장치.
KR1020177018315A 2012-12-26 2013-11-28 기판 처리 장치 KR101973879B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012282467 2012-12-26
JPJP-P-2012-282467 2012-12-26
PCT/JP2013/006997 WO2014103168A1 (ja) 2012-12-26 2013-11-28 基板処理装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157019966A Division KR101953432B1 (ko) 2012-12-26 2013-11-28 기판 처리 장치

Publications (2)

Publication Number Publication Date
KR20170082647A KR20170082647A (ko) 2017-07-14
KR101973879B1 true KR101973879B1 (ko) 2019-04-29

Family

ID=51020296

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157019966A KR101953432B1 (ko) 2012-12-26 2013-11-28 기판 처리 장치
KR1020177018315A KR101973879B1 (ko) 2012-12-26 2013-11-28 기판 처리 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157019966A KR101953432B1 (ko) 2012-12-26 2013-11-28 기판 처리 장치

Country Status (8)

Country Link
US (1) US9779921B2 (ko)
JP (1) JP5941161B2 (ko)
KR (2) KR101953432B1 (ko)
CN (1) CN104884667B (ko)
DE (1) DE112013006223B4 (ko)
SG (1) SG11201505064YA (ko)
TW (1) TW201437400A (ko)
WO (1) WO2014103168A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233536B2 (en) * 2015-08-20 2019-03-19 Ulvac, Inc. Sputtering apparatus and method of discriminating state thereof
JP6035002B1 (ja) * 2015-08-20 2016-11-30 株式会社アルバック スパッタリング装置及びその状態判別方法
US10640865B2 (en) * 2016-09-09 2020-05-05 Samsung Electronics Co., Ltd. Substrate processing apparatus and method for manufacturing semiconductor device using the same
JP6832130B2 (ja) 2016-11-04 2021-02-24 東京エレクトロン株式会社 成膜装置
JP6741564B2 (ja) * 2016-12-06 2020-08-19 東京エレクトロン株式会社 成膜装置
JP7246148B2 (ja) * 2018-06-26 2023-03-27 東京エレクトロン株式会社 スパッタ装置
JP7225599B2 (ja) * 2018-08-10 2023-02-21 東京エレクトロン株式会社 成膜装置
WO2020100400A1 (ja) * 2018-11-16 2020-05-22 株式会社アルバック 真空処理装置
KR20210102437A (ko) * 2018-12-19 2021-08-19 에바텍 아크티엔게젤샤프트 화합물 층을 증착하기 위한 진공 시스템 및 방법
US20210140035A1 (en) * 2019-11-08 2021-05-13 Kurt J. Lesker Company Compound Motion Vacuum Environment Deposition Source Shutter Mechanism
TW202129045A (zh) 2019-12-05 2021-08-01 美商應用材料股份有限公司 多陰極沉積系統與方法
CN111508803B (zh) * 2020-04-23 2023-01-17 北京北方华创微电子装备有限公司 半导体工艺腔室、晶片边缘保护方法及半导体设备
CN113838793A (zh) * 2020-06-24 2021-12-24 拓荆科技股份有限公司 用于晶圆自动旋转的装置及设备
WO2022180784A1 (ja) 2021-02-26 2022-09-01 株式会社日立インダストリアルプロダクツ 回転電機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018885A (ja) 2002-06-12 2004-01-22 Anelva Corp 成膜装置
JP2010084169A (ja) 2008-09-30 2010-04-15 Canon Anelva Corp 真空排気方法、真空排気プログラム、および真空処理装置
JP2011132580A (ja) * 2009-12-25 2011-07-07 Canon Anelva Corp 成膜装置および成膜方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108569A (en) * 1989-11-30 1992-04-28 Applied Materials, Inc. Process and apparatus for forming stoichiometric layer of a metal compound by closed loop voltage controlled reactive sputtering
US5518593A (en) * 1994-04-29 1996-05-21 Applied Komatsu Technology, Inc. Shield configuration for vacuum chamber
JP3723712B2 (ja) 2000-02-10 2005-12-07 株式会社日立国際電気 基板処理装置及び基板処理方法
US8221602B2 (en) * 2006-12-19 2012-07-17 Applied Materials, Inc. Non-contact process kit
US7981262B2 (en) * 2007-01-29 2011-07-19 Applied Materials, Inc. Process kit for substrate processing chamber
WO2010061603A1 (ja) * 2008-11-28 2010-06-03 キヤノンアネルバ株式会社 成膜装置、電子デバイスの製造方法
JP5611803B2 (ja) 2010-12-21 2014-10-22 キヤノンアネルバ株式会社 反応性スパッタリング装置
JP5860063B2 (ja) 2011-12-22 2016-02-16 キヤノンアネルバ株式会社 基板処理装置
JP5914035B2 (ja) * 2012-02-23 2016-05-11 Hoya株式会社 マスクブランクの製造方法及び転写用マスクの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018885A (ja) 2002-06-12 2004-01-22 Anelva Corp 成膜装置
JP2010084169A (ja) 2008-09-30 2010-04-15 Canon Anelva Corp 真空排気方法、真空排気プログラム、および真空処理装置
JP2011132580A (ja) * 2009-12-25 2011-07-07 Canon Anelva Corp 成膜装置および成膜方法

Also Published As

Publication number Publication date
US20150294845A1 (en) 2015-10-15
CN104884667A (zh) 2015-09-02
KR20170082647A (ko) 2017-07-14
SG11201505064YA (en) 2015-08-28
TW201437400A (zh) 2014-10-01
DE112013006223T5 (de) 2015-09-24
JPWO2014103168A1 (ja) 2017-01-12
DE112013006223B4 (de) 2022-07-14
WO2014103168A1 (ja) 2014-07-03
US9779921B2 (en) 2017-10-03
KR101953432B1 (ko) 2019-02-28
JP5941161B2 (ja) 2016-06-29
CN104884667B (zh) 2017-03-22
KR20150099841A (ko) 2015-09-01
TWI561658B (ko) 2016-12-11

Similar Documents

Publication Publication Date Title
KR101973879B1 (ko) 기판 처리 장치
JP4537479B2 (ja) スパッタリング装置
JP5513529B2 (ja) 成膜方法、成膜装置、および該成膜装置の制御装置
JP4562764B2 (ja) スパッタ装置
JP5395255B2 (ja) 電子デバイスの製造方法およびスパッタリング方法
KR101387178B1 (ko) 스퍼터링 장치 및 전자 디바이스의 제조 방법
JP5611803B2 (ja) 反応性スパッタリング装置
KR101046958B1 (ko) 아크-스프레이 코팅 적용 및 기능을 용이하게 하는 하드웨어 피처의 설계
TWI500793B (zh) Substrate processing device
US20100206715A1 (en) Sputtering apparatus, double rotary shutter unit, and sputtering method
US10519549B2 (en) Apparatus for plasma atomic layer deposition
US20120118733A1 (en) Magnetron sputtering apparatus
US10597785B2 (en) Single oxide metal deposition chamber
JP2009144252A (ja) 反応性スパッタリング装置及び反応性スパッタリング方法
KR20210031764A (ko) 아킹이 감소된 물리 기상 증착(pvd) 챔버
JP5632946B2 (ja) 遮蔽部材
JP6354576B2 (ja) 成膜装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant