WO2020100400A1 - 真空処理装置 - Google Patents

真空処理装置 Download PDF

Info

Publication number
WO2020100400A1
WO2020100400A1 PCT/JP2019/035869 JP2019035869W WO2020100400A1 WO 2020100400 A1 WO2020100400 A1 WO 2020100400A1 JP 2019035869 W JP2019035869 W JP 2019035869W WO 2020100400 A1 WO2020100400 A1 WO 2020100400A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
deposition
plate
vacuum
block body
Prior art date
Application number
PCT/JP2019/035869
Other languages
English (en)
French (fr)
Inventor
鈴木 康司
英人 長嶋
藤井 佳詞
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201980075427.9A priority Critical patent/CN113056572B/zh
Priority to US17/272,861 priority patent/US11923178B2/en
Priority to KR1020217017048A priority patent/KR102533330B1/ko
Priority to JP2020556638A priority patent/JP7057442B2/ja
Publication of WO2020100400A1 publication Critical patent/WO2020100400A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32504Means for preventing sputtering of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a vacuum processing apparatus having a vacuum chamber and performing a predetermined vacuum processing on a substrate to be processed set in the vacuum chamber.
  • a substrate to be processed such as a silicon wafer to a predetermined vacuum treatment in a vacuum chamber capable of forming a vacuum atmosphere.
  • a vacuum treatment includes a vacuum deposition method.
  • a film forming apparatus by the ion plating method, the sputtering method or the plasma CVD method, a dry etching apparatus, a vacuum heat treatment apparatus or the like is used.
  • a vacuum processing apparatus (sputtering apparatus) for forming a film by a sputtering method is known from Patent Document 1, for example. This has a vacuum chamber in which a vacuum atmosphere can be formed, and a sputtering target is arranged above it. A stage on which the substrate to be processed is placed facing the target is provided in the lower part of the vacuum chamber.
  • a rare gas and a reaction gas
  • a vacuum chamber in a vacuum atmosphere while a single substrate to be processed is placed on the stage, and the target is used as a target.
  • DC power having a negative potential or AC power having a predetermined frequency is input.
  • a plasma atmosphere is formed in the vacuum chamber, the ions of the rare gas ionized in the plasma collide with the target, the target is sputtered, and the sputtered particles scattered from the target adhere to and deposit on the surface of the substrate to be processed.
  • a predetermined thin film is formed according to the target species.
  • the vacuum chamber is usually provided with a metal deposition preventive plate at a distance from the inner wall surface of the vacuum chamber in order to prevent the sputtered particles from adhering to the inner wall surface of the vacuum chamber.
  • the deposition-inhibiting plate is composed of a fixed deposition-inhibiting plate fixedly arranged in the vacuum chamber and a movable deposition-inhibiting plate movable in one direction. Then, at the time of film formation, the fixed deposition-preventing plate and the movable deposition-preventing plate are partially overlapped, so that the sputtered particles can be prevented from adhering to the inner wall surface of the vacuum chamber.
  • the movable deposition preventive plate is moved relative to the fixed deposition preventive plate to form a space between the fixed deposition preventive plate and the movable deposition preventive plate.
  • the transfer robot is allowed to pass, and the substrate to be processed can be carried in and out of the stage.
  • a so-called baking process is performed to heat the deposition-prevention plate to a predetermined temperature in a vacuum atmosphere prior to film formation on the substrate to be processed. It is common to carry out degassing such as.
  • the deposition preventive plate is heated by the radiant heat of plasma, etc., and as the number of substrates to be processed increases, the temperature gradually increases.
  • various gases oxygen, oxygen, Water vapor etc.
  • a released gas is taken into the thin film during film formation, for example, the quality of the film is deteriorated, and it is necessary to suppress this as much as possible. It is conceivable that such a released gas exerts an adverse effect such as changing the etching shape even when the substrate to be processed is dry-etched by, for example, a dry etching apparatus.
  • a cooling pipe is meandered and attached to the back side of the deposition prevention plate, or a refrigerant circulation path is formed in the deposition prevention plate having a predetermined thickness, and the refrigerant is circulated in the cooling pipe or the circulation path.
  • It is generally known to cool an adhesion-preventing plate see, for example, Patent Document 2).
  • an adhesion-preventing plate has a complicated structure and is expensive.
  • the pipe from the chiller unit arranged outside the vacuum chamber is connected to the cooling pipe or the circulation path through a joint or the like, and Since it is necessary to also move the pipes themselves in the vacuum chamber with the movement, there is a problem that the vacuum treatment device is damaged and the risk of water leakage in the vacuum chamber increases.
  • the present invention has been made in view of the above points, and an object thereof is to provide a vacuum processing apparatus capable of cooling a movable deposition-inhibitory plate provided in a vacuum chamber with a simple configuration. ..
  • a vacuum processing apparatus of the present invention which has a vacuum chamber and performs a predetermined vacuum processing on a substrate to be processed set in the vacuum chamber is A metal block body provided on the inner wall surface of the vacuum chamber, which is composed of a fixed deposition plate which is fixedly arranged in the vacuum chamber and a movable deposition plate which is movable in one direction. Further, a cooling means for cooling the block body is further provided, and the top surface of the block body is close to or in contact with the movable deposition-inhibitory plate at a processing position of the movable deposition-inhibitory plate that performs a predetermined vacuum treatment on the film formation substrate. The feature is that they are in contact with each other.
  • the movable deposition-inhibitory plate at the processing position can be radiatively cooled from the block body and contacted with the deposition-inhibitory plate. It can be cooled by the heat transfer through, and as a result, it is possible to prevent the movable deposition-inhibitory plate from being heated to a predetermined temperature or higher during the vacuum processing.
  • the block body since the block body is fixedly arranged on the inner wall surface of the vacuum chamber, the risk of causing water leakage in the vacuum chamber, which may damage the vacuum treatment apparatus, can be minimized.
  • the wall surface of the vacuum chamber is provided with a jacket for circulating a heating medium for baking which is performed prior to a predetermined vacuum processing in the vacuum chamber. Therefore, in the present invention, the cooling means is composed of a jacket provided on the wall surface of the vacuum chamber, and the block body is cooled by heat transfer from the wall surface of the vacuum chamber when the refrigerant is circulated through the jacket. It is preferable to adopt a configuration. According to this, the block body can be cooled by the heat transfer from the wall surface of the vacuum chamber by using the existing jacket and circulating the refrigerant through the jacket. Therefore, parts such as pipes for cooling the block body can be omitted, and the risk of water leakage in the vacuum chamber can be eliminated. In this case, it is possible to adopt a configuration further including a heat conductive sheet interposed between the inner wall surface of the vacuum chamber and the block body.
  • FIG. 1 The schematic cross section which shows the sputtering device of embodiment of this invention. Sectional drawing which expands and shows a part of FIG. (A) And (b) is a fragmentary sectional view of the sputtering device which concerns on a modification and was made to correspond to FIG. 1.
  • a vacuum processing apparatus is a magnetron-type sputtering apparatus
  • a substrate to be processed is a silicon wafer (hereinafter referred to as “substrate Sw”), and a predetermined thin film is formed on the surface of the substrate Sw is taken as an example.
  • substrate Sw silicon wafer
  • An embodiment of the vacuum processing apparatus of the present invention will be described. In the following, the terms indicating directions are based on the installation posture of the sputtering apparatus SM as the vacuum processing apparatus shown in FIG.
  • SM is the sputtering device of this embodiment.
  • the sputtering device SM includes a vacuum chamber 1.
  • the side wall and the lower wall of the vacuum chamber 1 are provided with a jacket 11 which is connected to a circulation unit for a heat medium or a refrigerant (not shown) through a pipe.
  • the side wall and the lower wall of No. 1 can be heated or cooled.
  • a cathode unit 2 is detachably attached to the upper surface opening of the vacuum chamber 1.
  • the cathode unit 2 is composed of a target 21 and a magnet unit 22 arranged above the target 21.
  • a target 21 a known target such as aluminum, copper, titanium or alumina is used depending on the thin film to be formed on the surface of the substrate Sw.
  • the target 21 is mounted on the backing plate 21a, with its sputter surface 21b facing downward, through the insulator 31 also serving as a vacuum seal provided on the upper wall of the vacuum chamber 1 and above the vacuum chamber 1. Attached to.
  • the target 21 is connected to an output 21d from a sputtering power source 21c including a DC power source and an AC power source according to the target type.
  • a predetermined power having a negative potential or a high frequency with a predetermined frequency is used. Power can be turned on.
  • the magnet unit 22 generates a magnetic field in the space below the sputtering surface 21b of the target 21, captures the electrons and the like that are ionized below the sputtering surface 21b during sputtering, and efficiently ionizes the sputtered particles scattered from the target 21. Since it has a closed magnetic field or cusp magnetic field structure, detailed description thereof is omitted here.
  • a stage 4 is arranged below the vacuum chamber 1 so as to face the target 21.
  • the stage 4 is composed of a metal base 41 having a cylindrical contour, which is installed via an insulator 32 provided in the lower part of the vacuum chamber 1, and a chuck plate 42 adhered to the upper surface of the base 41.
  • the chuck plate 42 is made of, for example, aluminum nitride and has an outer diameter slightly smaller than the upper surface of the base 41, and although not particularly illustrated and described, an electrode for an electrostatic chuck is embedded therein. Then, when a voltage is applied to the electrodes from a chuck power supply (not shown), the substrate Sw is electrostatically attracted to the upper surface of the chuck plate 42.
  • the base 41 also has a coolant circulation path 41a for circulating a coolant from a chiller unit (not shown).
  • a hot plate 43 made of, for example, aluminum nitride is interposed between the base 41 and the chuck plate 42, and can be heated to a predetermined temperature (for example, 300 ° C. to 500 ° C.) by energization.
  • a heater may be built in the chuck plate 42 and the chuck plate 42 and the hot plate 43 may be integrally formed.
  • the substrate Sw can be controlled within a predetermined temperature range of room temperature or higher by heating with the hot plate 43 and cooling the base 41 by circulating the coolant to the coolant circulation path 41a.
  • a gas pipe 5 for introducing a sputtering gas is connected to the side wall of the vacuum chamber 1, and the gas pipe 5 communicates with a gas source (not shown) via a mass flow controller 51.
  • the sputtering gas includes not only a rare gas such as argon gas introduced when plasma is formed in the vacuum chamber 1, but also a reactive gas such as oxygen gas or nitrogen gas.
  • the lower wall of the vacuum chamber 1 is also connected to an exhaust pipe 62 that communicates with a vacuum pump 61 composed of a turbo-molecular pump, a rotary pump, or the like.
  • the vacuum chamber 1 can be maintained at a predetermined pressure in the introduced state.
  • a platen ring 7 functioning as an adhesion-preventing plate is provided so as to cover the base 41 exposed to the outside in the radial direction, and by extension, the upper surface portion 43a of the hot plate 43.
  • the platen ring 7 is made of a known material such as alumina or stainless steel, and is provided via an insulator 33 provided on the upper surface of the base 41.
  • the upper surface of the platen ring 7 is made substantially flush with the upper surface of the chuck plate 42.
  • a metal deposition prevention plate 8 for preventing the sputtered particles as a substance generated by the sputtering of the target 21 from adhering to the inner wall surface of the vacuum chamber 1.
  • the deposition-inhibitory plate 8 is composed of an upper deposition-inhibition plate 81 and a lower deposition-inhibition plate 82, each of which is made of a known material such as alumina or stainless steel.
  • the upper deposition-inhibition plate 81 is a fixed deposition-inhibitory plate.
  • the lower deposition prevention plate 82 constitutes a movable deposition prevention plate.
  • the upper deposition preventing plate 81 has a tubular contour and is suspended via a locking portion 12 provided on the upper portion of the vacuum chamber 1.
  • the lower deposition-inhibiting plate 82 also has a tubular contour, and an upstanding wall portion 82a that is erected upward is formed at the free end on the radially outer side thereof.
  • a drive shaft 83a which extends from the lower wall of the vacuum chamber 1 and extends from a drive unit 83 such as a motor or an air cylinder, is connected to the lower deposition-inhibitory plate 82.
  • the vacuum chamber 1 is movable in the vertical direction.
  • the lower end portion of the upper attachment plate 81 and the upper end portion of the standing wall portion 82a vertically overlap each other.
  • a so-called labyrinth seal is formed by the lower end portion of the upper deposition-inhibiting plate 81 and the upper end portion of the standing wall portion 82a so that the sputtered particles are deposited on the inner wall surface of the vacuum chamber 1 during film formation by sputtering. To prevent the adhesion of.
  • a predetermined space is formed below the lower deposition prevention plate 82 at a position (conveyance position) where the drive unit 83 moves (moves up) the lower deposition protection plate 82 from the processing position to a predetermined height position.
  • a delivery opening facing the above space which is provided with a gate valve, is formed on the sidewall of the vacuum chamber 1, and the delivery opening opens the stage 4 by a vacuum transfer robot (not shown). The substrate Sw can be delivered and received.
  • the flat portion 82b of the lower deposition-inhibitory plate 82 extending orthogonally to the vertical direction is sized so that the inner portion in the radial direction (the horizontal direction in FIG. 1) faces the platen ring 7.
  • An annular protrusion 82c is formed at a predetermined position on the lower surface of the flat portion 82b.
  • An annular groove 71 is formed on the upper surface of the platen ring 7 so as to correspond to the protrusion 82c. Then, the lower deposition-inhibiting plate 82 is moved to the processing position by the driving means 83 (in this case, the flat portion 82b of the lower deposition-inhibiting plate 82 is against the inner wall surface of the vacuum chamber, specifically, the inner surface of the lower wall).
  • a so-called labyrinth seal is formed by the protrusions 82c of the flat portion 82b and the concave groove 71 of the platen ring 7, and the so-called labyrinth seal is formed around the substrate Sw below the lower deposition preventive plate 82. It is possible to prevent the sputtered particles from wrapping around into the space inside the vacuum chamber 1.
  • the film forming method will be described below by taking the case where the target is aluminum and the aluminum film is formed on the surface of the substrate Sw by the sputtering apparatus SM as an example.
  • the vacuum pump 61 is operated to evacuate the airtightly held vacuum chamber 1.
  • a so-called baking process is performed in which a heating medium having a predetermined temperature is circulated in the jacket 11 to heat components such as the wall surface of the vacuum chamber 1 and the platen ring 7 including the platen ring 7 to a predetermined temperature in a vacuum atmosphere. ..
  • the substrate Sw is loaded onto the stage 4 by a vacuum transport robot (not shown) at the transport position of the lower deposition prevention plate 82, and the substrate W is placed on the upper surface of the chuck plate 42 of the stage 4.
  • the lower deposition prevention plate 82 is moved to the processing position to prevent the sputtered particles from adhering to the inner wall of the vacuum chamber 1. Then, a predetermined voltage is applied from the chuck power supply to the electrodes for the electrostatic chuck to electrostatically adsorb the substrate Sw to the chuck plate 42. At the same time, the substrate Sw is controlled to a predetermined temperature (for example, 350 ° C.) equal to or higher than room temperature by heating by the hot plate 43 and cooling the base 41 by circulating the refrigerant to the refrigerant circulation path 41a.
  • a predetermined temperature for example, 350 ° C.
  • the inside of the vacuum chamber 1 is evacuated to a predetermined pressure (for example, 10 ⁇ 5 Pa), and when the substrate Sw reaches a predetermined temperature, an argon gas as a sputtering gas is supplied through the gas pipe 5 at a constant flow rate (for example, argon gas). It is introduced at a partial pressure of 0.1 Pa), and at the same time, a predetermined power (for example, 3 to 50 kW) having a negative potential is applied to the target 21 from the sputtering power source 21c.
  • a predetermined pressure for example, 10 ⁇ 5 Pa
  • an argon gas as a sputtering gas is supplied through the gas pipe 5 at a constant flow rate (for example, argon gas). It is introduced at a partial pressure of 0.1 Pa), and at the same time, a predetermined power (for example, 3 to 50 kW) having a negative potential is applied to the target 21 from the sputtering power source 21c.
  • the upper deposition protection plate 81 and the lower deposition protection plate 82 are heated by radiant heat of plasma and the like, and gradually become higher in temperature as the number of substrates Sw to be deposited increases. .
  • the lower deposition-inhibiting plate 82 is particularly easily heated. Then, when the upper deposition plate 81 and the lower deposition plate 82 (particularly, the lower deposition plate 82 located near the substrate Sw) are heated above the temperature during the baking process, sputtered particles do not adhere or accumulate.
  • a cylindrical block body 9 is erected on the inner surface 13 of the lower wall of the vacuum chamber 1 so as to face the flat portion 82b of the lower deposition-inhibitory plate 82.
  • the block body 9 is made of a metal having a good heat transfer characteristic such as aluminum or copper, and the height of the block body 9 up to the top surface 91 is the top surface of the block body 9 at the processing position of the lower attachment protection plate 82.
  • 91 and the lower surface of the lower deposition preventing plate 82 (that is, the flat portion 82b) are sized so as to face each other with a gap.
  • the vertical gap is set to 1 mm or less, preferably 0.5 mm or less.
  • a heat conduction sheet 92 such as a silicon sheet or an indium sheet for improving heat transfer is interposed between the inner surface 13 of the lower wall of the vacuum chamber 1 and the block body 9. Then, during the film formation, a coolant having a predetermined temperature is circulated in the jacket 11, and the block body 9 is cooled to a predetermined temperature by heat transfer from the wall surface of the vacuum chamber 1 through the heat conductive sheet 92.
  • the jacket 11 constitutes cooling means for cooling the block body 9.
  • the volume of the block body 9, the area of the top surface 91 (area of the surface facing the deposition preventive plate), the relative position of the block body 9 to the deposition preventive plate 82, and the like are the temperature of the lower deposition preventive plate 82 to be cooled, and the like. It is set appropriately in consideration of.
  • the lower deposition preventing plate 82 at the processing position is cooled by radiation cooling from the block body 9.
  • the lower deposition-inhibitory plate 82 it is possible to prevent the lower deposition-inhibitory plate 82 from being heated to a predetermined temperature or higher during vacuum processing, and as a result, gas release due to the temperature rise of the lower deposition-inhibition plate 82 is suppressed as much as possible.
  • the released gas it is possible to prevent the released gas from being taken into the thin film and causing a problem such as deterioration of the film quality.
  • the block body 9 is fixedly arranged on the inner wall surface of the vacuum chamber 1, and it is possible to omit connecting a pipe for supplying a coolant, so that the sputtering device SM is damaged. The risk of water leakage in the can be reduced as much as possible.
  • the existing jacket 11 provided in the vacuum chamber 1 is used, and the block body 9 can be cooled by heat transfer from the wall surface of the vacuum chamber 1 simply by circulating the refrigerant through the jacket 11.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the temperature is particularly likely to be high, and the flat portion of the lower deposition-inhibitory plate 82 as a movable deposition-inhibitory plate that moves in the approaching and separating direction with respect to the inner surface of the lower wall of the vacuum chamber 1.
  • the block body 9 is erected on the inner surface 13 of the lower wall of the vacuum chamber 1 in order to cool the flat portion 82b by using 82b as a cooling target portion
  • the present invention is not limited to this, for example,
  • the block body 9 can be erected on the inner surface of the side wall of the vacuum chamber 1 so that the upright wall portion 82a of the lower deposition-inhibiting plate 82 that moves along the up-down direction can be cooled.
  • the cooling structure using is also effective for the fixed deposition preventing plate 81.
  • the lower surface of the flat portion 82b of the lower deposition-inhibiting plate 82 faces the top surface 91 of the block body 9 with a gap at the processing position of the lower deposition-inhibiting plate 82.
  • the present invention is not limited to this, and the lower surface of the flat portion 82b is brought into contact with the top surface 91 of the block body 9 at the processing position of the lower deposition-inhibitory plate 82, and heat transfer by surface contact is performed. It is also possible to cool the lower deposition preventing plate 82 with.
  • sputtered particles may go around and adhere to the lower surface of the flat portion 82b.
  • the lower surface of the flat portion 82b and the block body 9 may be adhered. If the top surface 91 is brought into contact with the top surface 91, there is a possibility that particles that hinder the good vacuum processing may be generated. Therefore, even if the lower protection plate 82 is repeatedly moved up and down, a gap of 1 mm or less is always formed between the lower protection plate 82 and the block body 9 at the processing position of the lower protection plate 82. It may be preferable to have a positioning mechanism.
  • FIG. 3A The modification shown in FIG. 3A is provided with the positioning mechanism as described above, and specifically, a single ring-shaped guide ring 83b is provided at the upper end of each drive shaft 83a. At the same time, concave holes 83c are formed at predetermined positions on the lower surface of the guide ring 83b facing the top surface 91 of the block body 9 at intervals (for example, 120 degree intervals) in the circumferential direction.
  • the top surface 91 of the block body 9 is formed stepwise so as to allow the lower deposition preventing plate 82 to move to the processing position (that is, the guide ring 83b does not interfere), and one step of the top surface 91 Positioning pins 94 are erected on the lowered upper surface portion 93 in phase with the concave holes 83c. Then, at the processing position of the lower deposition-inhibitory plate 82, the positioning pins 94 are fitted into the recessed holes 83c, so that the position between the lower deposition-inhibition plate 82 and the block body 9 is adjusted at the processing position of the lower deposition-inhibitory plate 82. A gap of 1 mm or less is always formed in the space.
  • the concave hole 83c is formed at a predetermined position on the lower surface of the guide ring 83b, and the positioning pin 94 is formed on the top surface 91 of the block body 9 as an example.
  • the present invention is not limited to this. ..
  • positioning pins 95 are erected at predetermined positions on the top surface 91 of the block body 9 at intervals (for example, 120 ° intervals) in the circumferential direction to perform positioning.
  • a recessed hole 83d may be formed at a predetermined position on the lower surface of the flat portion 82b of the lower deposition-inhibiting plate 82 in phase with the pin 95.
  • the protrusion 83e is formed at a predetermined position on the lower surface of the flat portion 82b by being positioned inward of the recessed hole 83d, and the protrusion 83e is aligned with the protrusion 83e so that the protrusion 91 is formed on the top surface 91 of the block body 9.
  • An annular receiving concave groove 96 for receiving 83e may be formed, and a labyrinth structure may be formed by the protrusions 83e and the receiving concave groove 96 at the processing position of the lower attachment prevention plate 82.
  • the cooling means is configured by the jacket 11 provided on the wall surface of the vacuum chamber 1 and in which the refrigerant is circulated
  • the present invention is not limited to this, and for example, the block body 9 may be used. It is possible to directly cool the block body 9 by forming a refrigerant circulation path inside and circulating the refrigerant through the refrigerant circulation path.
  • the cryopanel that adsorbs the gas in the vacuum chamber may be arranged to face the block body 9 in the vacuum chamber 1 to cool the block body 9. Further, as shown in FIG.
  • a gas passage 97 communicating with the top surface 91 of the block body 9 is formed in the block body 9, and the lower body protection plate 82 and the block body 9 are disposed at the processing position of the lower body protection plate 82. It is also possible to introduce a predetermined cooling gas, such as argon or helium, into the space between them and cool the lower deposition prevention plate 82 by heat transfer of the cooling gas. In this case, in order to surround the gas outlet of the gas passage 97 in the top surface 91 from the inside and outside in the radial direction, the projection 98 or the receiving groove 83f is formed on the top surface 91 and the lower surface of the flat portion 82b of the lower deposition-inhibiting plate 82.
  • a predetermined cooling gas such as argon or helium
  • Each of them may be formed individually to form a labyrinth structure with the projections 98 and the receiving concave grooves 83f to reduce the conductance of the cooling gas. Further, a sealing member (not shown) may be provided so that the lower adhesion plate 82 and The pressure in the space between the block body 9 and the block body 9 can be increased.
  • the vacuum processing apparatus is the sputtering apparatus SM
  • the movable deposition preventing plate is provided in the vacuum chamber.
  • the present invention can also be applied.
  • SM Sputtering apparatus
  • 1 Vacuum chamber
  • 11 Vacuum chamber
  • 11 Jacket
  • 4 Stage
  • 41 ... Base
  • 43 Hot plate
  • 8 Anti-adhesion plate
  • 82 Lower adhesion plate
  • 9 Block body
  • 92 Thermal conductive sheet
  • Sw Substrate (processed substrate).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

真空チャンバ内に設けられる可動防着板を簡単な構成で冷却できるようにした真空処理装置を提供する。 真空チャンバ1を有してこの真空チャンバ内にセットされた被処理基板Swに対して所定の真空処理を施す本発明の真空処理装置SMは、真空チャンバ内に防着板8が設けられ、防着板が真空チャンバに固定配置される固定防着板81と一方向に移動自在な可動防着板82とで構成され、真空チャンバの内壁面13に立設された金属製のブロック体9と、ブロック体を冷却する冷却手段11とを更に備え、被成膜基板に対して所定の真空処理を施す可動防着板の処理位置にて、ブロック体の頂面91が可動防着板に近接または当接するようにする。

Description

真空処理装置
 本発明は、真空チャンバを有してこの真空チャンバ内にセットされた被処理基板に対して所定の真空処理を施す真空処理装置に関する。
 例えば半導体デバイスの製造工程においては、真空雰囲気の形成が可能な真空チャンバ内にてシリコンウエハなどの被処理基板に所定の真空処理を施す工程があり、このような真空処理には、真空蒸着法、イオンプレーティング法、スパッタリング法またはプラズマCVD法による成膜装置、ドライエッチング装置や真空熱処理装置等が利用される。例えば、スパッタリング法による成膜を施す真空処理装置(スパッタリング装置)は例えば特許文献1で知られている。このものは、真空雰囲気の形成が可能な真空チャンバを有し、その上部にはスパッタリング用ターゲットが配置されている。真空チャンバ内の下部には、ターゲットに対向させて被処理基板が設置されるステージが設けられている。
 上記スパッタリング装置を用いて所定の薄膜を成膜するのに際しては、ステージに一枚の被処理基板を設置した状態で真空雰囲気の真空チャンバ内に希ガス(及び反応ガス)を導入し、ターゲットに例えば負の電位を持った直流電力や所定周波数の交流電力を投入する。これにより、真空チャンバ内にプラズマ雰囲気が形成され、プラズマ中で電離した希ガスのイオンがターゲットに衝突してターゲットがスパッタリングされ、ターゲットから飛散したスパッタ粒子が被処理基板表面に付着、堆積して、ターゲット種に応じた所定の薄膜が成膜される。ターゲットをスパッタリングすると、ターゲット表面から所定の余弦則に従ってスパッタ粒子が飛散するが、スパッタ粒子の一部は被成膜物以外にも向けて飛散する。真空チャンバには、通常、その内壁面に対するスパッタ粒子の付着を防止するために、金属製の防着板が真空チャンバの内壁面から間隔を存して設けられる。
 ここで、複数枚の被処理基板に対して順次成膜するような場合(所謂枚葉式の真空処理装置)、処理前の被処理基板をステージに搬送し、または、処理済みの被処理基板をステージから搬出する必要がある。上記従来例のスパッタリング装置では、防着板が、真空チャンバに固定配置される固定防着板と一方向に移動自在な可動防着板とで構成されている。そして、成膜時には、固定防着板と可動防着板とを部分的にオーバーラップさせることで、真空チャンバの内壁面に対するスパッタ粒子の付着を防止できる。一方、基板搬送時には、固定防着板に対して可動防着板を相対移動させて、例えば固定防着板と可動防着板との間に空間を形成することで、この空間を介して真空搬送ロボットの通過が許容され、ステージに対する被処理基板の搬出入が可能になる。なお、未使用の防着板を真空チャンバ内にセットした場合、被処理基板に対する成膜に先立って、真空雰囲気中で防着板を所定温度に加熱する所謂ベーキング処理が行われ、防着板等の脱ガスを実施することが一般的である。
 ところで、スパッタリングによる成膜時、防着板は、プラズマの輻射熱等で加熱され、成膜される被処理基板の枚数が増加するのに従い、次第に高温になっていく。そして、ベーキング処理時の温度を超えて防着板が昇温すると、特に、スパッタ粒子が付着、堆積しない防着板の裏面から真空排気されずにその表面に残留する種々のガス(酸素や、水蒸気等)が放出されることになる。このような放出ガスが成膜時に薄膜中に取り込まれると、例えば膜質の劣化を招来するので、これを可及的に抑制する必要がある。このような放出ガスは、例えばドライエッチング装置により被処理基板をドライエッチングする際にも、エッチング形状を変化させる等の悪影響を与えることが考えられる。
 従来では、防着板の裏面側に冷却管を蛇行して付設し、または、所定の厚みを持つ防着板内に冷媒の循環路を形成し、冷却管や循環路に冷媒を循環させて防着板の冷却を行うことが一般に知られている(例えば、特許文献2参照)。然し、このような防着板は、それ自体の構造が複雑でコスト高である。また、このような構成を可動防着板に適用する場合、真空チャンバ外に配置されるチラーユニットからの配管を、継手などを介して冷却管や循環路に接続すると共に、可動防着板の移動に伴って真空チャンバ内で配管自体も移動できるようにする必要があるので、真空処置装置の破損につながる、真空チャンバ内での水漏れを発生させる危険性が増大するといった問題が生じる。
特開2014-91861号公報 特開2000-73162号公報
 本発明は、以上の点に鑑みなされたものであり、真空チャンバ内に設けられる可動防着板を簡単な構成で冷却できるようにした真空処理装置を提供することをその課題とするものである。
 上記課題を解決するために、真空チャンバを有してこの真空チャンバ内にセットされた被処理基板に対して所定の真空処理を施す本発明の真空処理装置は、真空チャンバ内に防着板が設けられ、防着板が真空チャンバに固定配置される固定防着板と一方向に移動自在な可動防着板とで構成され、真空チャンバの内壁面に立設された金属製のブロック体と、ブロック体を冷却する冷却手段とを更に備え、被成膜基板に対して所定の真空処理を施す可動防着板の処理位置にて、ブロック体の頂面が可動防着板に近接または当接するようにしたことを特徴とする。
 本発明によれば、ブロック体を真空チャンバの内壁面に立設するだけという簡単な構成で、処理位置にある可動防着板をブロック体からの放射冷却や、防着板との接触面を介した伝熱により冷却することができ、結果として、真空処理中に可動防着板が所定温度以上に加熱されることを防止できる。この場合、ブロック体は、真空チャンバの内壁面に固定配置されたものであるため、真空処置装置の破損につながる、真空チャンバ内での水漏れを発生させる危険性を可及的に少なくできる。
 ところで、例えば、真空チャンバの壁面には、真空チャンバ内での所定の真空処理に先立って実施されるベーキング用に、温媒を循環させるためのジャケットが設けられているものが多い。そこで、本発明においては、前記冷却手段が真空チャンバの壁面に設けたジャケットで構成され、ジャケットに冷媒を循環させたときの真空チャンバの壁面からの伝熱で前記ブロック体が冷却されるように構成を採用することが好ましい。これによれば、既存のジャケットを利用し、このジャケットに冷媒を循環させるだけで、真空チャンバの壁面からの伝熱でブロック体を冷却できる。このため、ブロック体を冷却するための配管などの部品を省略することができ、真空チャンバ内での水漏れを発生させる危険性を排除できる。この場合、真空チャンバの内壁面とブロック体との間に介在された熱伝導シートを更に備える構成を採用してもよい。
本発明の実施形態のスパッタリング装置を示す模式断面図。 図1の一部を拡大して示す断面図。 (a)及び(b)は、図1に対応させた、変形例に係るスパッタリング装置の部分断面図。 図1に対応させた、更に別の変形例に係るスパッタリング装置の部分断面図。
 以下、図面を参照して、真空処理装置をマグネトロン方式のスパッタリング装置、被処理基板をシリコンウエハ(以下、「基板Sw」という)とし、基板Sw表面に所定の薄膜を成膜する場合を例に本発明の真空処理装置の実施形態を説明する。以下においては、方向を示す用語は、図1に示す真空処理装置としてのスパッタリング装置SMの設置姿勢を基準とする。
 図1を参照して、SMは、本実施形態のスパッタリング装置である。スパッタリング装置SMは、真空チャンバ1を備える。真空チャンバ1の側壁及び下壁には、図外の温媒または冷媒用の循環ユニットに配管を介して接続されるジャケット11が設けられており、適宜、温媒や冷媒を循環させて真空チャンバ1の側壁及び下壁を加熱または冷却できるようにしている。真空チャンバ1の上面開口にはカソードユニット2が着脱自在に取付けられている。
 カソードユニット2は、ターゲット21と、このターゲット21の上方に配置される磁石ユニット22とで構成されている。ターゲット21としては、基板Sw表面に成膜しようとする薄膜に応じて、アルミニウム、銅、チタンやアルミナなど公知のものが利用される。そして、ターゲット21は、バッキングプレート21aに装着した状態で、そのスパッタ面21bを下方にした姿勢で、真空チャンバ1の上壁に設けた真空シール兼用の絶縁体31を介して真空チャンバ1の上部に取り付けられる。ターゲット21には、ターゲット種に応じて直流電源や交流電源などから構成されるスパッタ電源21cからの出力21dが接続され、ターゲット種に応じて、例えば負の電位を持つ所定電力や所定周波数の高周波電力が投入できるようになっている。磁石ユニット22は、ターゲット21のスパッタ面21bの下方空間に磁場を発生させ、スパッタ時にスパッタ面21bの下方で電離した電子等を捕捉してターゲット21から飛散したスパッタ粒子を効率よくイオン化する公知の閉鎖磁場若しくはカスプ磁場構造を有するものであり、ここでは詳細な説明を省略する。
 真空チャンバ1の下部には、ターゲット21に対向させてステージ4が配置されている。ステージ4は、真空チャンバ1下部に設けた絶縁体32を介して設置される、筒状の輪郭を持つ金属製の基台41と、この基台41の上面に接着したチャックプレート42とで構成されている。チャックプレート42は、例えば窒化アルミニウム製で基台41の上面より一回り小さい外径を有し、特に図示して説明しないが、静電チャック用の電極が埋設されている。そして、図外のチャック電源から電極に電圧を印加すると、チャックプレート42上面に基板Swが静電吸着されるようになっている。基台41にはまた、図外のチラーユニットからの冷媒を循環させる冷媒循環路41aが形成されている。基台41とチャックプレート42と間には、例えば窒化アルミニウム製のホットプレート43が介在され、通電により所定温度(例えば、300℃~500℃)に加熱できるようになっている。この場合、チャックプレート42にヒータを内蔵してチャックプレート42とホットプレート43とが一体に形成することもできる。そして、ホットプレート43による加熱と、冷媒循環路41aへの冷媒の循環による基台41の冷却とによって基板Swを室温以上の所定温度範囲に制御できるようにしている。
 真空チャンバ1の側壁には、スパッタガスを導入するガス管5が接続され、ガス管5がマスフローコントローラ51を介して図示省略のガス源に連通している。スパッタガスには、真空チャンバ1にプラズマを形成する際に導入されるアルゴンガス等の希ガスだけでなく、酸素ガスや窒素ガスなどの反応ガスが含まれる。真空チャンバ1の下壁にはまた、ターボ分子ポンプやロータリポンプなどで構成される真空ポンプ61に通じる排気管62が接続され、真空チャンバ1内を一定速度で真空引きし、スパッタリング時にはスパッタガスを導入した状態で真空チャンバ1を所定圧力に保持できるようにしている。
 真空チャンバ1内でステージ4の周囲には、径方向外方に露出する基台41、ひいてはホットプレート43の上面部分43aを覆うように、防着板として機能するプラテンリング7が間隔を存して設けられている。プラテンリング7は、アルミナ、ステンレス等の公知の材料製であり、基台41の上面に設けた絶縁体33を介して設けられている。プラテンリング7の上面は、チャックプレート42の上面と略面一になるようにしている。また、真空チャンバ1内には、ターゲット21のスパッタリングにより発生する物質としてのスパッタ粒子の真空チャンバ1の内壁面への付着を防止する金属製の防着板8が設けられている。
 防着板8は、夫々がアルミナ、ステンレス等の公知の材料製である上防着板81と下防着板82とで構成され、本実施形態では、上防着板81が固定防着板を、下防着板82が可動防着板を夫々構成する。上防着板81は、筒状の輪郭を持ち、真空チャンバ1の上部に設けた係止部12を介して吊設されている。下防着板82もまた、筒状の輪郭を持ち、その径方向外側の自由端には、上方に向けて起立した起立壁部82aが形成されている。下防着板82には、真空チャンバ1の下壁を貫通してのびる、モータやエアシリンダなどの駆動手段83からの駆動軸83aが連結され、駆動手段83によって下防着板82は、一方向としての真空チャンバ1の上下方向に移動自在となっている。
 駆動手段83によって下防着板82が最下側まで移動(下動)した位置(処理位置)では、上防着板81の下端部と起立壁部82aの上端部とが上下方向で互いにオーバーラップするようなっており、上防着板81の下端部と起立壁部82aの上端部とで所謂ラビリングシールを形成して、スパッタリングによる成膜時、スパッタ粒子の真空チャンバ1の内壁面への付着を防止する。一方、駆動手段83によって処理位置から下防着板82を所定の高さ位置まで移動(上動)した位置(搬送位置)では、下防着板82の下方に所定の空間が形成される。この場合、特に図示して説明しないが、真空チャンバ1の側壁には、ゲートバルブを備える、上記空間を臨む受渡開口が形成され、受渡開口を介して図外の真空搬送ロボットによるステージ4への基板Swの受渡を行うことができるようになっている。
 上下方向と直交してのびる下防着板82の平坦部82bは、その径方向(図1中、左右方向)の内方部がプラテンリング7と対向するように定寸されている。平坦部82b下面の所定位置には、環状の突条82cが形成されている。突条82cに対応させてプラテンリング7の上面には、環状の凹溝71が形成されている。そして、駆動手段83によって下防着板82が処理位置に移動された状態(この場合、下防着板82の平坦部82bは、真空チャンバの内壁面、具体的にはその下壁内面に対して近接離間方向に移動することになる)では、平坦部82bの突条82cとプラテンリング7の凹溝71とにより所謂ラビリンスシールが形成され、基板Swの周囲で下防着板82の下方に位置する真空チャンバ1内の空間へのスパッタ粒子の回り込みを防止できるようにしている。 以下に、ターゲットをアルミニウムとし、上記スパッタリング装置SMによって基板Sw表面にアルミニウム膜を成膜する場合を例に成膜方法を説明する。
 真空チャンバ1内に、ターゲット21、プラテンリング7や防着板8などの各種の部品をセットした後、真空ポンプ61を作動させて気密保持された真空チャンバ1を真空排気する。これに併せて、ジャケット11に所定温度の温媒を流通させ、真空雰囲気中で真空チャンバ1の壁面、プラテンリング7を含む防着板などの部品を所定温度に加熱する所謂ベーキング処理が行われる。そして、下防着板82の搬送位置にて、図外の真空搬送ロボットによりステージ4上へと基板Swを搬入し、ステージ4のチャックプレート42上面に基板Wを載置する。真空搬送ロボットが退避すると、下防着板82が処理位置に移動され、真空チャンバ1内壁へのスパッタ粒子の付着を防止する。そして、静電チャック用の電極に対してチャック電源から所定電圧を印加し、チャックプレート42に基板Swを静電吸着する。これに併せて、ホットプレート43による加熱と、冷媒循環路41aへの冷媒の循環による基台41の冷却とによって基板Swが室温以上の所定温度(例えば、350℃)に制御される。
 真空チャンバ1内が所定圧力(例えば、10-5Pa)まで真空引きされると共に、基板Swが所定温度になると、ガス管5を介してスパッタガスとしてのアルゴンガスを一定の流量(例えば、アルゴン分圧が0.1Pa)で導入し、これに併せてターゲット21にスパッタ電源21cから負の電位を持つ所定電力(例えば、3~50kW)を投入する。これにより、真空チャンバ1内にプラズマが形成され、プラズマ中のアルゴンガスのイオンでターゲットのスパッタ面21bがスパッタリングされ、ターゲット21からのスパッタ粒子が基板Swに付着、堆積してアルミニウム膜が成膜される。成膜が終了すると、ガス導入及びターゲットへの電力投入が一旦停止され、下防着板82が搬送位置に移動させ、図外の真空搬送ロボットによりステージ4から処理済みの基板Swが搬出される。以上の操作を繰り返して、複数枚の基板Swに対して成膜(真空処理)が行われる。
 ここで、スパッタリングによる成膜時、上防着板81や下防着板82は、プラズマの輻射熱等で加熱され、成膜される基板Swの枚数が増加するのに従い、次第に高温になっていく。本実施形態のような構成では、ホットプレート43からの放射で加熱されるプラテンリング7に下防着板82の平坦部82bが対向しているため、下防着板82が特に加熱され易い。そして、ベーキング処理時の温度を超えて上防着板81や下防着板82(特に、基板Swの近傍に位置する下防着板82)が昇温すると、スパッタ粒子が付着、堆積しない上防着板81や下防着板82の裏面から真空排気されずにその表面に残留する種々のガス(酸素や、水蒸気等)が放出されることになる。このような放出ガスが成膜時に薄膜中に取り込まれると、例えば膜質の劣化を招来するので、これを可及的に抑制する必要がある。
 本実施形態では、図2に示すように、真空チャンバ1の下壁内面13に、下防着板82の平坦部82bに対向させて、筒状に成形されたブロック体9を立設した。ブロック体9は、アルミニウムや銅などの伝熱特性のよい金属で構成され、ブロック体9の頂面91までの高さは、下防着板82の処理位置にて、ブロック体9の頂面91と下防着板82(即ち、平坦部82b)の下面とが、隙間を存して対向するように定寸されている。上下方向における隙間は、1mm以下、好ましくは、0.5mm以下に設定される。また、真空チャンバ1の下壁内面13とブロック体9との間には、シリコンシートやインジウムシートのような熱伝達を向上させる熱伝導シート92が介在されている。そして、成膜中、ジャケット11に所定温度の冷媒を流通させ、真空チャンバ1の壁面から熱伝導シート92を介した伝熱でブロック体9が所定温度に冷却されるようになっている。本実施形態では、ジャケット11がブロック体9を冷却する冷却手段を構成する。ブロック体9の体積、頂面91の面積(防着板との対向面の面積)や、防着板82に対するブロック体9の相対位置等は、冷却しようとする下防着板82の温度等を考慮して適宜設定される。
 以上の実施形態によれば、ブロック体9を真空チャンバ1の下壁内面13に立設するという簡単な構成で、処理位置にある下防着板82をブロック体9からの放射冷却により冷却することができ、結果として、真空処理中に下防着板82が所定温度以上に加熱されることを防止でき、ひいては、下防着板82の昇温に伴うガス放出が可及的に抑制されて、放出ガスが薄膜中に取り込まれて例えば膜質の劣化を招来するといった不具合が発生することを防止できる。この場合、ブロック体9は、真空チャンバ1の内壁面に固定配置されたものであり、冷媒供給用の配管を接続するといったことを省略できるため、スパッタリング装置SMの破損につながる、真空チャンバ1内での水漏れを発生させる危険性を可及的に少なくできる。その上、真空チャンバ1に設けられている既存のジャケット11を利用し、このジャケット11に冷媒を循環させるだけで、真空チャンバ1の壁面からの伝熱でブロック体9を冷却できる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態のものに限定されるものではなく、本発明の趣旨を逸脱しない限り、種々の変形が可能である。本実施形態では、スパッタリング装置SMの構造上、特に高温になり易く、かつ、真空チャンバ1の下壁内面に対して近接離間方向に移動する可動防着板としての下防着板82の平坦部82bを冷却対象部分とし、平坦部82bを冷却するために、ブロック体9を真空チャンバ1の下壁内面13に立設したものを例に説明したが、これに限定されるものではなく、例えば、上下方向に沿って移動する下防着板82の起立壁部82aが冷却できるように、ブロック体9を真空チャンバ1の側壁内面に立設することもでき、また、本発明のブロック体9を用いる冷却構造は、固定防着板81に対しても有効である。なお、ブロック体9を真空チャンバ1の壁面に立設するとき、熱伝導シート92は省略することができる。
 また、上記実施形態では、下防着板82の処理位置にて、下防着板82の平坦部82bの下面が、隙間を存してブロック体9の頂面91に対向するようにしたものを例に説明したが、これに限定されるものではなく、下防着板82の処理位置にて平坦部82bの下面がブロック体9の頂面91に当接するようにし、面接触による伝熱で下防着板82を冷却するように構成することもできる。但し、真空チャンバ1内で実施される真空処理によっては、例えば、スパッタ粒子が平坦部82bの下面まで回り込んで付着する場合があり、このような場合、平坦部82bの下面とブロック体9の頂面91とを当接させると、良好な真空処理を阻害するパーティクルを発生させる虞がある。このため、下防着板82を繰り返し上下動させても、下防着板82の処理位置にて下防着板82とブロック体9との間に1mm以下の隙間が常時形成されるように位置決め機構を持つことが好ましい場合がある。
 図3(a)に示す変形例のものは、上記のような位置決め機構を備えるものであり、具体的には、各駆動軸83aの上端に、単一のリング状のガイドリング83bが設けられると共に、ブロック体9の頂面91に対向するガイドリング83bの下面の所定位置には周方向に間隔(例えば、120度間隔)をおいて凹孔83cが形成されている。一方、ブロック体9の頂面91は、下防着板82の処理位置への移動を許容するように(つまり、ガイドリング83bが干渉しないように)段付きに形成され、頂面91の一段低くなった上面部分93に、凹孔83cに位相を合わせて位置決めピン94が立設されている。そして、下防着板82の処理位置では、各凹孔83cに各位置決めピン94が嵌合することで、下防着板82の処理位置にて下防着板82とブロック体9との間に1mm以下の隙間が常時形成されるようになっている。
 上記変形例では、ガイドリング83bの下面の所定位置に凹孔83cが、ブロック体9の頂面91に位置決めピン94が形成されるものを例に説明したが、これに限定されるものではない。図3(b)に示す他の変形例のものでは、ブロック体9の頂面91の所定位置に、位置決めピン95を周方向に間隔(例えば、120度間隔)をおいて立設し、位置決めピン95に位相を合わせて下防着板82の平坦部82bの下面所定位置に、凹孔83dを形成するようにしてもよい。この場合、各凹孔83dに各位置決めピン95を繰り返し嵌合させると、パーティクルが発生し、これが基板Swに悪影響を与えることも考えられる。このため、凹孔83dより内方に位置させて、平坦部82bの下面所定位置に突条83eを形成すると共に、突条83eに位相を合わせて、ブロック体9の頂面91に、突条83eを受け入れる環状の受入凹溝96を形成し、下防着板82の処理位置にて、突条83eと受入凹溝96とでラビリンス構造を形成するようにしてもよい。
 また、上記実施形態では、真空チャンバ1の壁面に設けられ、冷媒が循環されるジャケット11により冷却手段を構成するもの例に説明したが、これに限定されるものではなく、例えば、ブロック体9内に冷媒循環路を形成し、冷媒循環路に冷媒を循環させてブロック体9を直接冷却することができる。他方で、真空チャンバ内のガスを吸着するクライオパネルを真空チャンバ1内でブロック体9に対向配置してブロック体9を冷却するようにしてもよい。更に、図4に示すように、ブロック体9内に、その頂面91に通じるガス通路97を形成し、下防着板82の処理位置にて、下防着板82とブロック体9との間の空間に、アルゴンやヘリウム等からなる所定の冷却ガスを導入し、冷却ガスの伝熱によって下防着板82を冷却することもできる。この場合、頂面91におけるガス通路97のガス出口を径方向内外から囲繞するように、頂面91と下防着板82の平坦部82bの下面とに、突条98または受入凹溝83fを夫々形成し、突条98と受入凹溝83fとでラビリンス構造を形成して冷却ガスのコンダクタンスを小さくしてもよく、また、封止部材(図示せず)を設けて下防着板82とブロック体9との間の空間の圧力を大きくすることもできる。
 また、上記実施形態では、真空処理装置をスパッタリング装置SMとした場合を例に説明したが、真空チャンバ内に可動防着板を備えるものであれば、特に制限はなく、例えば、ドライエッチング装置にも本発明は適用できる。
 SM…スパッタリング装置(真空処理装置)、1…真空チャンバ、11…ジャケット(冷却手段)、4…ステージ、41…基台、43…ホットプレート、8…防着板、82…下防着板、9…ブロック体、92…熱伝導シート、Sw…基板(被処理基板)。

Claims (3)

  1.  真空チャンバを有してこの真空チャンバ内にセットされた被処理基板に対して所定の真空処理を施す真空処理装置であって、真空チャンバ内に防着板が設けられ、防着板が真空チャンバに固定配置される固定防着板と一方向に移動自在な可動防着板とで構成されるものにおいて、
     真空チャンバの内壁面に立設された金属製のブロック体と、ブロック体を冷却する冷却手段とを更に備え、被成膜基板に対して所定の真空処理を施す可動防着板の処理位置にて、ブロック体の頂面が可動防着板に近接または当接するようにしたことを特徴とする真空処理装置。
  2.  前記冷却手段が真空チャンバの壁面に設けたジャケットで構成され、ジャケットに冷媒を循環させたときの真空チャンバの壁面からの伝熱で前記ブロック体が冷却されるように構成したことを特徴とする請求項1または請求項2記載の真空処理装置。
  3.  真空チャンバの内壁面とブロック体との間に介在された熱伝導シートを更に備えることを特徴とする請求項2記載の真空処理装置。
PCT/JP2019/035869 2018-11-16 2019-09-12 真空処理装置 WO2020100400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980075427.9A CN113056572B (zh) 2018-11-16 2019-09-12 真空处理装置
US17/272,861 US11923178B2 (en) 2018-11-16 2019-09-12 Vacuum processing apparatus
KR1020217017048A KR102533330B1 (ko) 2018-11-16 2019-09-12 진공 처리 장치
JP2020556638A JP7057442B2 (ja) 2018-11-16 2019-09-12 真空処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-215816 2018-11-16
JP2018215816 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020100400A1 true WO2020100400A1 (ja) 2020-05-22

Family

ID=70731861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035869 WO2020100400A1 (ja) 2018-11-16 2019-09-12 真空処理装置

Country Status (6)

Country Link
US (1) US11923178B2 (ja)
JP (1) JP7057442B2 (ja)
KR (1) KR102533330B1 (ja)
CN (1) CN113056572B (ja)
TW (1) TWI742431B (ja)
WO (1) WO2020100400A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765213B (zh) * 2019-01-23 2022-05-21 大陸商北京北方華創微電子裝備有限公司 內襯冷卻組件、反應腔室及半導體加工設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336572A (ja) * 2004-05-28 2005-12-08 Tsukishima Kikai Co Ltd 蒸着装置
JP2011127136A (ja) * 2009-12-15 2011-06-30 Canon Anelva Corp スパッタリング装置および、該スパッタリング装置を用いた半導体デバイスの製造方法
WO2014103168A1 (ja) * 2012-12-26 2014-07-03 キヤノンアネルバ株式会社 基板処理装置
JP2019019377A (ja) * 2017-07-18 2019-02-07 株式会社アルバック 基板搬送方法及び基板搬送装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967784B2 (ja) * 1989-12-11 1999-10-25 キヤノン株式会社 堆積膜形成方法及びその装置
JPH0586475A (ja) * 1990-10-23 1993-04-06 Nec Home Electron Ltd 真空成膜装置
JPH07150353A (ja) * 1994-07-18 1995-06-13 Hitachi Ltd 真空処理装置及びそれを用いた成膜装置と成膜方法
JP2000073162A (ja) 1998-08-26 2000-03-07 Victor Co Of Japan Ltd 蒸着装置
US6477980B1 (en) * 2000-01-20 2002-11-12 Applied Materials, Inc. Flexibly suspended gas distribution manifold for plasma chamber
JP4342868B2 (ja) * 2003-08-11 2009-10-14 株式会社アルバック 成膜装置
JP2005330509A (ja) * 2004-05-18 2005-12-02 Seiko Epson Corp 薄膜形成装置、薄膜形成方法、電気光学装置の製造方法、電気光学装置、及び電子機器
KR101136871B1 (ko) * 2009-03-02 2012-04-20 캐논 아네르바 가부시키가이샤 기판 처리 장치, 자기 디바이스의 제조 장치 및 제조 방법
JP5563347B2 (ja) * 2010-03-30 2014-07-30 東京エレクトロン株式会社 プラズマ処理装置及び半導体装置の製造方法
KR20130079555A (ko) * 2010-10-06 2013-07-10 가부시키가이샤 알박 진공 처리 장치
EP2626442B1 (en) * 2010-10-06 2020-04-15 Ulvac, Inc. Dielectric film formation method
JP2013105949A (ja) * 2011-11-15 2013-05-30 Ulvac Japan Ltd 表面波プラズマ処理装置
JP6007070B2 (ja) 2012-11-06 2016-10-12 株式会社アルバック スパッタリング方法及びスパッタリング装置
JP5956611B2 (ja) * 2012-12-20 2016-07-27 キヤノンアネルバ株式会社 スパッタリング方法および機能素子の製造方法
US20140356985A1 (en) * 2013-06-03 2014-12-04 Lam Research Corporation Temperature controlled substrate support assembly
JP6140539B2 (ja) * 2013-06-13 2017-05-31 株式会社アルバック 真空処理装置
WO2016116384A1 (de) * 2015-01-19 2016-07-28 Oerlikon Surface Solutions Ag, Pfäffikon Vakuumkammer mit besonderer gestaltung zur erhöhung der wärmeabführung
CN107408504B (zh) * 2015-02-25 2021-01-01 株式会社爱发科 成膜装置及成膜方法
JP6559233B2 (ja) * 2015-05-22 2019-08-14 株式会社アルバック マグネトロンスパッタリング装置
JP6616192B2 (ja) * 2016-01-06 2019-12-04 株式会社アルバック 成膜方法
JP7223738B2 (ja) * 2020-11-12 2023-02-16 株式会社アルバック スパッタリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336572A (ja) * 2004-05-28 2005-12-08 Tsukishima Kikai Co Ltd 蒸着装置
JP2011127136A (ja) * 2009-12-15 2011-06-30 Canon Anelva Corp スパッタリング装置および、該スパッタリング装置を用いた半導体デバイスの製造方法
WO2014103168A1 (ja) * 2012-12-26 2014-07-03 キヤノンアネルバ株式会社 基板処理装置
JP2019019377A (ja) * 2017-07-18 2019-02-07 株式会社アルバック 基板搬送方法及び基板搬送装置

Also Published As

Publication number Publication date
KR102533330B1 (ko) 2023-05-17
KR20210087076A (ko) 2021-07-09
JPWO2020100400A1 (ja) 2021-09-24
US20210319985A1 (en) 2021-10-14
TWI742431B (zh) 2021-10-11
CN113056572A (zh) 2021-06-29
TW202020221A (zh) 2020-06-01
JP7057442B2 (ja) 2022-04-19
US11923178B2 (en) 2024-03-05
CN113056572B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
JPWO2002065532A1 (ja) 被処理体の処理方法及びその処理装置
US20200161095A1 (en) Method and apparatus for processing a substrate
TWI739138B (zh) 真空處理裝置
WO2020100400A1 (ja) 真空処理装置
US8197704B2 (en) Plasma processing apparatus and method for operating the same
US11319627B2 (en) Vacuum processing apparatus
TWI781338B (zh) 真空處理裝置
JP2022014978A (ja) スパッタリング装置及び金属化合物膜の成膜方法
CN115398603A (zh) 等离子处理装置以及等离子处理方法
JP7290413B2 (ja) 真空処理装置
JPH098011A (ja) プラズマ処理方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217017048

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19884879

Country of ref document: EP

Kind code of ref document: A1