WO2011093297A1 - 繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法 - Google Patents

繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2011093297A1
WO2011093297A1 PCT/JP2011/051398 JP2011051398W WO2011093297A1 WO 2011093297 A1 WO2011093297 A1 WO 2011093297A1 JP 2011051398 W JP2011051398 W JP 2011051398W WO 2011093297 A1 WO2011093297 A1 WO 2011093297A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
thermoplastic resin
fiber
reinforcing fiber
acrylic polymer
Prior art date
Application number
PCT/JP2011/051398
Other languages
English (en)
French (fr)
Inventor
土谷敦岐
佐々木英晃
本間雅登
影石一ニ
安藤有美
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201180007638.2A priority Critical patent/CN102741350B/zh
Priority to EP11737010.6A priority patent/EP2530124B1/en
Priority to CA2786714A priority patent/CA2786714C/en
Priority to KR1020127017986A priority patent/KR101578045B1/ko
Priority to US13/575,749 priority patent/US9475929B2/en
Publication of WO2011093297A1 publication Critical patent/WO2011093297A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to a fiber reinforced thermoplastic resin composition, particularly to a fiber reinforced thermoplastic resin composition using a polyolefin resin as a matrix resin, and a reinforced fiber bundle.
  • the present invention further relates to a method for producing a fiber-reinforced thermoplastic resin composition. In detail, it is related with the method of manufacturing a fiber reinforced thermoplastic resin composition by a take-up system.
  • the fiber reinforced resin composition in which the reinforced fiber is combined with the resin is excellent in mechanical properties and dimensional stability, and thus is used in a wide range of fields such as automobiles, aircraft, electric / electronic devices, toys, and home appliances.
  • reinforcing fibers carbon fibers have attracted attention in recent years because of their light weight, high strength, and high rigidity.
  • thermoplastic resins have recently attracted attention as matrix resins for fiber reinforced resin compositions.
  • polyolefin resins particularly polypropylene resins having low costs, small specific gravity, and excellent properties such as moldability and chemical resistance, are attracting attention.
  • the polyolefin-based resin has low polarity, it is inferior in interfacial adhesion with the reinforcing fiber. For this reason, attempts have been made to improve the interfacial adhesion between the reinforcing fiber and the matrix resin by surface treatment of the reinforcing fiber or application of a sizing agent.
  • Patent Document 1 describes a carbon fiber coated with polyacrylic acid.
  • Patent Document 2 discloses a reinforcing fiber coated with sodium polyacrylate and polyacrylamide.
  • Patent Document 3 includes a reinforced polymer (A) having a (meth) acrylate monomer (a) unit in which an acryloyloxy group or a methacryloyloxy group is bonded to a secondary carbon atom or a tertiary carbon atom. Fiber sizing agents are described.
  • Patent Document 4 describes a carbon fiber provided with a (meth) acrylic polymer having an aminoalkylene group in the side chain or an oxazoline group-containing polymer. Both patent documents aim to improve the interfacial adhesion between the carbon fiber and the matrix resin by imparting a polymer with affinity to the polyolefin resin to the carbon fiber. Is not obtained.
  • Patent Document 4 a reinforcing fiber obtained by applying a predetermined polymer to a reinforcing fiber and a molten thermoplastic resin are combined so that the reinforcing fiber, the polymer, and the thermoplastic resin have a predetermined blending ratio.
  • a method for producing a fiber reinforced thermoplastic resin is disclosed.
  • Patent Document 5 as a reinforcing fiber of a fiber-reinforced thermoplastic resin molded body, a single-fiber carbon fiber having a mass average fiber length of 0.5 to 10 mm and an orientation parameter of ⁇ 0.25 to
  • a step of heating and melting the thermoplastic resin contained in the molding material and a step of arranging the molding material in the mold
  • III a step of pressurizing the molding material with the mold
  • IV a step of solidifying the molding material in the mold
  • V a step of opening the mold and demolding the fiber reinforced thermoplastic resin molded body.
  • Patent Document 6 a slurry stock solution containing, as a main component, a binder mainly composed of a non-combustible fibrous material and a thermoplastic resin and containing other predetermined components is applied to a traveling or rotating network or porous substrate.
  • a method for producing a sheet-like material is disclosed in which the sheet is supplied at an angle of 5 to 60 degrees with the surface of the substrate, and then dehydrated and dried.
  • Patent Document 4 only applies the (meth) acrylic polymer component to the reinforcing fiber web, and does not consider productivity such as subsequent take-up property, but widely as a fiber-reinforced composite material. In order to utilize it, the improvement of the further manufacturing method was needed.
  • An object of the present invention is to provide a fiber-reinforced thermoplastic resin composition and a reinforcing fiber bundle that are excellent in adhesiveness with a matrix resin, in particular, adhesiveness between a polyolefin-based matrix resin and reinforcing fibers.
  • Another object of the present invention is to provide a method for efficiently producing a fiber-reinforced thermoplastic resin composition for obtaining a molded article having excellent mechanical properties.
  • the first invention of the present application is a fiber reinforced thermoplastic resin composition
  • a fiber reinforced thermoplastic resin composition comprising 0.1 to 10% by mass of a (meth) acrylic polymer, 1 to 70% by mass of reinforcing fibers, and 20 to 98.9% by mass of a thermoplastic resin.
  • the (meth) acrylic polymer has at least one functional group selected from a hydroxyl group, a carboxyl group, an amide group, and a urea group in the side chain, and the cohesive energy calculated by the following formula:
  • m types of (meth) acrylic monomer units contained in the (meth) acrylic polymer are used, and each (meth) acrylic monomer unit is a (meth) acrylic monomer unit.
  • CE (n) means the cohesive energy calculated from the chemical structure CS (n) of the (meth) acrylic monomer unit (n).
  • M (n) is the molecular weight of the (meth) acrylic monomer unit (n)
  • the first invention of the present application is a reinforcing fiber bundle in which a (meth) acrylic polymer is attached to a reinforcing fiber, and the (meth) acrylic polymer has a hydroxyl group, a carboxyl group, an amide group, and a side chain.
  • CED 1.15 ⁇ ⁇ ⁇ P (n) ⁇ CE (n) ⁇ / ⁇ ⁇ P (n) ⁇ M (n) ⁇
  • m types of (meth) acrylic monomer units contained in the (meth) acrylic polymer are used, and each (meth) acrylic monomer unit is a (meth) acrylic monomer unit.
  • CE (n) means the cohesive energy calculated from the chemical structure CS (n) of the (meth) acrylic monomer unit (n).
  • M (n) is the molecular weight of the (meth) acrylic monomer unit (n)
  • 1st form of this-application 2nd invention is a manufacturing method of the fiber reinforced thermoplastic resin composition including the following 1a process, 2a process, 3a process, and 4a process; 1a: a step of processing a discontinuous reinforcing fiber bundle into a sheet-like reinforcing fiber substrate (A1); 2a: A step of adding 0.1 to 10 parts by mass of a (meth) acrylic polymer having a hydroxyl group in a side chain to 1 to 70 parts by mass of the reinforcing fiber base (A1) obtained in the step 1a; 3a: Reinforcing fiber substrate (A2) 1.1 to 1.1 obtained by compounding a thermoplastic resin to the reinforcing fiber substrate (A2) provided with the (meth) acrylic polymer obtained in step 2a.
  • thermoplastic resin composition comprising 80% by mass and 20-98.9% by mass of a thermoplastic resin; 4a: A step of pulling the fiber-reinforced thermoplastic resin composition obtained in step 3a at a speed of 1 m / min or more.
  • 2nd form of this-application 2nd invention is a manufacturing method of the fiber reinforced thermoplastic resin composition including the following 1b process, 2b process, and 3b process;
  • 1b A discontinuous reinforcing fiber bundle in which 0.1 to 10 parts by mass of a (meth) acrylic polymer having a hydroxyl group in the side chain is attached to 1 to 70 parts by mass of the reinforcing fiber bundle is formed into a sheet-like reinforcement
  • 2b Reinforcing fiber substrate (A2) to which the (meth) acrylic polymer obtained in step 1b was applied, 1.1 to 80% by mass, and 20 to 98.9% by mass of thermoplastic resin were combined.
  • 3b A step of drawing the fiber-reinforced thermoplastic resin composition obtained in the 2b step at a speed of 1 m / min or more.
  • 3rd form of this-application 2nd invention is a manufacturing method of the fiber reinforced thermoplastic resin composition including the following 1c process, 2c process, and 3c process; 1c: A discontinuous reinforcing fiber bundle is processed into a sheet-like reinforcing fiber base (A1), and at the same time, a (meth) acrylic polymer having a hydroxyl group in a side chain is reinforced to the reinforcing fiber base (A1).
  • 3c A step of drawing the fiber-reinforced thermoplastic resin composition obtained in the 2c step at a speed of 1 m / min or more.
  • the fiber reinforced thermoplastic resin composition of the first invention of the present application can exhibit good interfacial adhesion between the reinforced fiber and the matrix resin, in particular, the polyolefin matrix resin, it is possible to obtain a molded product having extremely excellent mechanical properties.
  • the reinforcing fiber bundle of the present invention is a reinforcing fiber bundle excellent in adhesiveness with a matrix resin made of a thermoplastic resin, in particular, adhesiveness with a polyolefin matrix resin. Since the molded article using the fiber-reinforced thermoplastic resin composition and the reinforcing fiber bundle of the first invention of the present application is excellent in mechanical properties, it is extremely useful for various parts and members such as automobiles, electric / electronic devices, and home appliances.
  • thermoplastic resin composition of the second invention of the present application molding having excellent mechanical properties such as specific strength and specific rigidity, good dispersibility of reinforcing fibers, and good uniformity.
  • a fiber-reinforced thermoplastic resin composition capable of molding a product can be obtained efficiently.
  • the fiber-reinforced thermoplastic resin composition of the present invention includes a (meth) acrylic polymer, reinforcing fibers, and a thermoplastic resin.
  • the thermoplastic resin is a matrix resin.
  • a (meth) acrylic-type polymer functions as a binder of a reinforced fiber and a thermoplastic resin.
  • the reinforcing fiber for example, one or more of high-strength and high-modulus fibers such as carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and metal fiber can be used.
  • carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers are preferable from the viewpoint of improving the mechanical properties of the obtained molded product and reducing the weight of the molded product. From the viewpoint of the balance between the strength and elastic modulus of the obtained molded product, PAN-based carbon fibers are more preferable.
  • reinforcing fibers coated with a metal such as nickel, copper, or ytterbium can also be used.
  • the carbon fiber has a surface oxygen concentration [O / C], which is a ratio of the number of oxygen (O) and carbon (C) atoms on the surface of the carbon fiber measured by X-ray photoelectron spectroscopy. 5 is preferable, more preferably 0.08 to 0.4, and still more preferably 0.1 to 0.3.
  • the surface oxygen concentration is 0.05 or more, the functional group amount on the surface of the carbon fiber can be secured, and a stronger adhesion to the thermoplastic resin can be obtained.
  • the surface oxygen concentration of the carbon fiber can be determined by X-ray photoelectron spectroscopy according to the following procedure. First, a carbon fiber bundle from which a sizing agent or the like adhering to the carbon fiber surface is removed with a solvent is cut into 20 mm, and is spread and arranged on a copper sample support, and then the inside of the sample chamber is set to 1 ⁇ 10 8 Torr. keep. A1K ⁇ 1 and 2 are used as the X-ray source, and the kinetic energy value (KE) of the main peak of C1s is adjusted to 1202 eV as the correction value of the peak accompanying charging during measurement. K. E.
  • a C 1S peak area is obtained by drawing a straight base line in the range of 1191 to 1205 eV.
  • the O 1S peak area is obtained by drawing a straight base line in the range of 947 to 959 eV.
  • the surface oxygen concentration is calculated from the ratio of the O 1S peak area to the C 1S peak area as an atomic ratio using a sensitivity correction value unique to the apparatus.
  • the sensitivity correction value is set to 1.74.
  • the means for controlling the surface oxygen concentration [O / C] to 0.05 to 0.5 is not particularly limited.
  • techniques such as electrolytic oxidation treatment, chemical oxidation treatment and vapor phase oxidation treatment may be used.
  • electrolytic oxidation treatment is preferable.
  • aqueous solutions of the following compounds are preferably used.
  • Inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid
  • inorganic hydroxides such as sodium hydroxide, potassium hydroxide and barium hydroxide
  • inorganic metal salts such as ammonia, sodium carbonate and sodium hydrogen carbonate; sodium acetate, sodium benzoate and the like
  • Organic salts organic compounds such as hydrazine.
  • an inorganic acid is preferable as the electrolytic solution, and sulfuric acid and nitric acid are particularly preferably used.
  • the degree of the electrolytic treatment can control O / C on the surface of the carbon fiber by setting the amount of electricity flowing in the electrolytic treatment.
  • the average fiber diameter of the reinforcing fibers is not particularly limited, but is preferably in the range of 1 to 20 ⁇ m and preferably in the range of 3 to 15 ⁇ m from the viewpoint of the mechanical properties and surface appearance of the obtained molded product. More preferred.
  • the number average fiber length Ln of the reinforcing fibers is preferably 0.1 to 10 mm, more preferably 0.2 to 7 mm, and further preferably 0.5 to 5 mm from the viewpoint of enhancing the reinforcing effect of the reinforcing fibers.
  • 400 or more reinforced fibers are arbitrarily extracted from the fiber reinforced thermoplastic resin composition, and the length is reduced to 1 ⁇ m using an optical microscope or a scanning electron microscope (SEM). Measured and averaged to calculate.
  • SEM scanning electron microscope
  • a method for extracting the reinforced fiber from the fiber reinforced thermoplastic resin composition a method of heat-treating the fiber reinforced thermoplastic resin composition at 500 ° C. for 1 hour to burn off components other than the reinforced fiber, A method in which the reinforcing fiber is taken out by filtration after dissolving the components in a solvent can be applied.
  • the reinforcing fiber may be included as a reinforcing fiber bundle in which single yarns of a plurality of reinforcing fibers are combined.
  • the number of single yarns in the reinforcing fiber bundle is not particularly limited, but is preferably in the range of 100 to 350,000, and more preferably in the range of 1,000 to 250,000. Further, from the viewpoint of productivity of reinforcing fibers, those having a large number of single yarns are preferable, and the range of 20,000 to 100,000 is preferable.
  • a composition such as a urethane resin, a polyamide resin, an epoxy resin, or an acrylic resin is appropriately used in order to give the reinforcing fiber bundle a converging property and improve handling properties. It may be given. Furthermore, in order to make dispersion
  • the length of the reinforcing fiber bundle is preferably 1 to 60 mm, more preferably 2 to 30 mm, and further preferably 3 to 10 mm from the viewpoint of enhancing the reinforcing effect of the reinforcing fibers and improving the dispersion. .
  • the form of the reinforcing fiber is preferably in the form of a web or a mat-like sheet in which the reinforcing fibers are randomly oriented from the viewpoint of obtaining a mechanically isotropic fiber.
  • the thermoplastic resin composition of the present invention includes a (meth) acrylic polymer having at least one functional group selected from a hydroxyl group, a carboxyl group, an amide group, and a urea group in the side chain.
  • a (meth) acrylic polymer having at least one functional group selected from a hydroxyl group, a carboxyl group, an amide group, and a urea group in the side chain.
  • the interaction between the (meth) acrylic polymers and the interaction between the reinforcing fiber and the (meth) acrylic polymer are enhanced, and as a result, the interfacial adhesion between the reinforcing fiber and the matrix resin is increased.
  • the (meth) acrylic polymer is preferably unevenly distributed around the reinforcing fiber, and more preferably, a part of the (meth) acrylic polymer is in contact with the reinforcing fiber.
  • a method for confirming that the (meth) acrylic polymer is unevenly distributed around the reinforcing fiber for example, a cross section of a fiber reinforced thermoplastic resin composition or a molded product thereof is cut out, and the surface reacts with the functional group.
  • a halogen-based labeling reagent having a possible functional group by a chemical modification method, analyzing the halogen element with EPMA (Electron Probe X-ray Microanalyzer) and checking the concentration distribution, Examples include a method of confirming the presence or absence of absorption specific to the (meth) acrylic polymer and the absorption strength based on IR spectrum measurement around the fiber reinforced thermoplastic resin composition or the reinforcing fiber in the cross section of the molded product.
  • EPMA Electro Probe X-ray Microanalyzer
  • the (meth) acrylic polymer In order to make the (meth) acrylic polymer unevenly distributed around the reinforcing fiber, it is important to have a high affinity between the (meth) acrylic polymer and the reinforcing fiber together with the production method. Therefore, it is important that the (meth) acrylic polymer has the specific functional group.
  • the (meth) acrylic polymer preferably has a functional group selected from a hydroxyl group, an amide group and a urea group, more preferably a hydroxyl group, and a hydroxyl group and a carboxyl group. Most preferably it has both groups.
  • the hydroxyl value of the (meth) acrylic polymer is preferably 10 to 100 mgKOH / g in consideration of the balance between adhesiveness and cost. More preferably, it is 20 to 80 mgKOH / g, and further preferably 30 to 60 mgKOH / g.
  • the hydroxyl value is the amount of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when 1 g of a sample is acetylated, and is a value measured according to JIS K0070.
  • the acid value of the (meth) acrylic polymer is preferably 1 to 10 mgKOH / g in consideration of the balance between adhesiveness and cost. More preferably, it is 2 to 9 mgKOH / g, and further preferably 3 to 7 mgKOH / g.
  • the acid value is the amount of potassium hydroxide required to neutralize free acid groups contained in 1 g of the sample, and is a value measured according to JIS K0070.
  • the (meth) acrylic polymer means a polymer containing a (meth) acrylic monomer repeating unit.
  • the (meth) acrylic monomer means a monomer selected from an acrylic monomer and a methacrylic monomer. That is, the (meth) acrylic polymer is a polymer composed of a monomer selected from an acrylic monomer and a methacrylic monomer, and may be simply referred to as an acrylic polymer.
  • Examples of the (meth) acrylic monomers include hydroxyl group-containing monomers such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, and methacrylic acid 2 -Hydroxypropyl, 4-hydroxybutyl methacrylate, glycerin monomethacrylate, glyceryl-1-methacryloyloxyethyl urethane, 3,4-dihydroxybutyl-1-methacryloyloxyethyl urethane, ⁇ -hydroxymethyl acrylate, ⁇ -hydroxyethyl acrylate, Diethylene glycol monoacrylate, triethylene glycol monoacrylate, polyethylene glycol monoacrylate, dipropylene glycol monoacrylate, tripropylene glycol Noacrylate, Polypropylene glycol monoacrylate, Dibutanediol monoacrylate, Tributanediol monoacrylate, Polytetramethylene
  • Examples of the (meth) acrylic monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, and ⁇ -carboxyethyl acrylate.
  • (meth) acrylic monomers having amide groups acrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N-isopropylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-diethylaminopropyl
  • examples include acrylamide, N-methylol acrylamide, N- (2-hydroxyethyl) acrylamide, N- (3-hydroxypropylacrylamide), N- (4-hydroxybutyl) acrylamide and the like. Of these, N- (2-hydroxyethyl) acrylamide, which is easily available and tends to improve adhesion, is preferable.
  • Examples of the (meth) acrylic monomer having a urea group include N- (2-methacryloyloxyethyl) ethyleneurea and N- (2-methacrylamidoethyl) ethyleneurea. Of these, N- (2-methacryloyloxyethyl) ethylene urea, which is easily available and tends to improve adhesion, is preferred.
  • acrylic monomers include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, Stearyl acrylate, benzyl acrylate, isobornyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate , Stearyl methacrylate, benzyl methacrylate, isobornyl methacrylate; acrylic acid (fluoro) alkyl esters such as trifluoroethyl methacrylate; dicyclopentenyl acrylate
  • the (meth) acrylic polymer is one or more (meth) acrylates selected from 2-hydroxyethyl methacrylate units, N- (2-hydroxyethyl) acrylamide units and N- (2-methacryloyloxyethyl) ethylene urea units. ) It is preferable that an acrylic monomer unit is included from the viewpoint of easy availability and improved adhesiveness.
  • the (meth) acrylic polymer increases the affinity with the reinforcing fiber and the affinity with the thermoplastic resin to obtain a fiber-reinforced thermoplastic resin composition having excellent mechanical properties and the cost of the material used. More preferably, the carboxyl group-containing (meth) acrylic monomer unit is 0 to 5% by mass, the hydroxyl group-containing (meth) acrylic monomer unit is 3 to 25% by mass, and the alkyl group has 1 to 4 carbon atoms. (Meth) acrylic polymer containing 70 to 97% by mass of (meth) acrylic acid alkyl ester units.
  • the carboxyl group-containing (meth) acrylic monomer unit is 0 to 3% by mass
  • the hydroxyl group-containing (meth) acrylic monomer unit is 3 to 20% by mass
  • the alkyl group has 1 to 4 carbon atoms.
  • the (meth) acrylic acid alkyl ester means an acrylic acid alkyl ester or a methacrylic acid alkyl ester.
  • the (meth) acrylic polymer has a cohesive energy density CED calculated by the following formula of 385 to 550 MPa.
  • the (meth) acrylic polymer functions as a binder between the reinforcing fiber and the thermoplastic resin, so it is important that the affinity for both the reinforcing fiber and the matrix resin is excellent in a well-balanced manner.
  • the cohesive energy density CED is preferably 395 to 500 MPa, more preferably 400 to 450 MPa, and still more preferably 405 to 420 MPa. If the cohesive energy density is too high or too low, the affinity balance is lost and the interfacial adhesion is reduced.
  • CED cohesive energy density
  • M (n) is the molecular weight of the (meth) acrylic monomer unit (n)
  • P (n) is the (meth) acrylic monomer unit (n in the (meth) acrylic polymer.
  • Mole fraction is the chemical structure of the (meth) acrylic monomer unit (n), that is, the chemical structure in which the C ⁇ C double bond of the monomer is opened.
  • the coefficient 1.15 represents the specific gravity of the meth) acrylic monomer unit.
  • ⁇ Ecoh (n) constitutes the chemical structure CS (n).
  • the cohesive energy Ecoh (n) of atomic groups such as —CH 3 , —CH 2 —,> C ⁇ , —COOH, —OH, etc. Represents the sum.
  • the cohesive energy of each atomic group is as follows: (1) RFFedors: “A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids”, Polm. Eng. Sci., 14 (2) .147-154 (1974) and references: (2) “SP value basics / applications and calculation methods” (Information Technology Corporation), 6th edition, p69, 2008. The cohesive energy Ecoh (J / mol) was used.
  • Table 1-1 shows an example of calculating cohesive energy of a chemical structure obtained by radical polymerization of methacrylic acid, 2-hydroxyethyl methacrylate, methyl methacrylate and the like.
  • MAA represents a methacrylic acid unit
  • HEMA represents a 2-hydroxyethyl methacrylate unit
  • 4HBMA represents a 4-hydroxybutyl methacrylate unit
  • MMA represents a methyl methacrylate unit
  • BMA represents a methacrylic acid unit.
  • EHMA represents 2-ethylhexyl methacrylate unit.
  • the calculation method of the cohesive energy CE will be described taking a (meth) acrylic polymer using MAA, HEMA, MMA and BMA as the (meth) acrylic monomer unit as an example.
  • an acryloyloxy group or a methacryloyloxy group is bonded to hydrogen and / or a primary carbon atom. It is preferable that a monomer unit is 60 mass% or more. More preferably, it is 75 mass% or more, More preferably, it is 90 mass% or more.
  • the (meth) acrylic polymer becomes relatively flexible, and the interface between the reinforcing fiber and the (meth) acrylic polymer and between the (meth) acrylic polymer and the thermoplastic resin is reduced. Adhesion can be enhanced by keeping the part, that is, the adhesive part flexible.
  • the (meth) acrylic polymer has a tan ⁇ determined by a dynamic viscoelasticity test,
  • the temperature is preferably 50 to 100 ° C. More preferably, it is 55 to 90 ° C, still more preferably 60 to 80 ° C.
  • the Young's modulus E ′ determined by the dynamic viscoelasticity test of the (meth) acrylic polymer is 180 to 600 MPa. More preferably, it is 200 to 580 MPa, and further preferably 240 to 560 MPa.
  • the tan ⁇ and Young's modulus E ′ of the (meth) acrylic polymer can be measured using a dynamic viscoelasticity measuring device such as “Reogel® E4000” (manufactured by UBM).
  • the measurement conditions of tan ⁇ and Young's modulus E ′ are: measurement method: dynamic viscoelasticity measurement (sine wave), measurement mode: temperature dependence, chuck: tension, waveform: sine wave, type of vibration: stop vibration, Initial load: initial strain control (0.02 mm), conditions: frequency 1 Hz, measurement start temperature 10 ° C., step temperature 1 ° C., measurement end temperature 170 ° C., temperature increase rate 4 ° C./min.
  • the weight-average molecular weight Mw of the (meth) acrylic polymer ensures adhesiveness from the viewpoint that a film can be formed so that the reinforcing fiber can be uniformly coated, and the strength of the (meth) acrylic polymer itself is ensured.
  • the range of 5,000 to 500,000 is preferable. More preferably, it is 10,000 to 200,000, and still more preferably 20,000 to 80,000.
  • the weight average molecular weight is measured using gel permeation chromatography (GPC).
  • the (meth) acrylic polymer preferably contains a group selected from a carboxylate group, a sulfonate group, and a phosphate group. This is because it is effective to include these groups in enhancing the interaction with the reinforcing fiber. More preferred is a sulfonate group. In addition, these groups are couple
  • a salt selected from lithium salt, potassium salt, sodium salt and ammonium salt is industrially preferable.
  • the conversion rate to the salt is preferably 50 to 100%, more preferably 70 to 100%, and still more preferably 85 to 100%, from the viewpoint of adhesion to the fiber.
  • the method for measuring the conversion to salt will be described by taking the case of a sulfonic acid group as an example.
  • a (meth) acrylic polymer is dissolved in an organic solvent and titrated with a 0.1 N potassium hydroxide-ethanol standard solution, and the acid value of the (meth) acrylic polymer is obtained from the following formula. And a method of calculating by comparing with the total number of moles.
  • Acid value (5.611 ⁇ A ⁇ F) / B (mgKOH / g)
  • the acid value calculated above is converted into the number of moles of sulfonic acid groups that have not been converted into a salt using the following formula.
  • Number of moles of sulfonic acid group not converted to salt acid value ⁇ 1000/56 (mol / g).
  • the conversion rate of the sulfonic acid group into a salt is the total number of moles (mol / g) of the sulfonic acid group calculated by separately determining the sulfur of the sulfonyl group of the sulfonic acid group using IR, NMR, elemental analysis, etc. Use the following formula to calculate.
  • the total amount is preferably 0.01 to 1 mmol equivalent in terms of a group represented by O) —O—. More preferably, it is 0.03 to 0.8 mmol equivalent, and still more preferably 0.05 to 0.5 mmol equivalent.
  • Methods for analyzing the content of sulfonate groups include quantitative detection of metal species forming salts by ICP emission analysis, and sulfonyl sulfonates using IR, NMR and elemental analysis. A method for determining the amount of sulfur in the group is mentioned.
  • thermoplastic resin examples include “polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and liquid crystal polyester; polyethylene (PE), polypropylene (PP), polyolefins such as polybutylene; polyoxymethylene (POM); polyamide (PA); polyarylene sulfides such as polyphenylene sulfide (PPS); polyketone (PK), polyether ketone (PEK), polyether ether ketone ( PEEK), polyether ketone ketone (PEKK), polyether nitrile (PEN); fluororesin such as polytetrafluoroethylene; crystalline resin such as “liquid crystal polymer (LCP)”; Styrenic resin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC),
  • polyamide is preferred.
  • an amorphous resin such as polycarbonate or styrene resin is preferred.
  • polyarylene sulfide is preferred.
  • polyether ether ketone is preferred.
  • a fluororesin is preferred.
  • Polyolefin is preferable from the viewpoint of the lightweight property of the obtained molded product. Among these, polyolefin is preferable, and polypropylene is particularly preferable from the viewpoint of cost and versatility to general industries.
  • the thermoplastic resin composition containing multiple types of these thermoplastic resins may be used in the range which does not impair the objective of this invention.
  • a polyolefin resin When a polyolefin resin is used as the thermoplastic resin, it contains at least one functional group selected from a carboxyl group, an acid anhydride group, and an epoxy group from the viewpoint of affinity with a (meth) acrylic polymer.
  • a modified polyolefin resin is preferred.
  • modified polyolefin resins include (anhydrous) maleic acid modified polyethylene, (anhydrous) maleic acid modified ethylene-propylene copolymer, (anhydrous) maleic acid modified polypropylene, (anhydrous) maleic acid modified ethylene-vinyl acetate copolymer.
  • modified products such as (anhydrous) maleic acid modified polypropylene, (anhydrous) maleic acid modified ethylene-propylene copolymer, and glycidyl (meth) acrylate modified polypropylene are preferably used.
  • the (maleic anhydride) -modified polypropylene means maleic acid-modified polypropylene or maleic anhydride-modified polypropylene.
  • the content of the (meth) acrylic polymer in the fiber reinforced thermoplastic resin composition needs to be in the range of 0.1 to 10% by mass. When the content is less than 0.1% by mass, good adhesion may not be stably exhibited. On the other hand, when the content is more than 10% by mass, the mechanical properties of the obtained molded product may be extremely lowered.
  • the content of the (meth) acrylic polymer is preferably 0.1 to 8% by mass, more preferably 0.1 to 5% by mass.
  • the content of the reinforcing fiber in the fiber reinforced thermoplastic resin composition needs to be 1 to 70% by mass.
  • the content of the reinforcing fiber is less than 1% by mass, the reinforcing effect by the reinforcing fiber becomes insufficient, and the resulting molded article may have insufficient mechanical properties.
  • the content of the reinforcing fiber is more than 70% by mass, impregnation of the thermoplastic resin between the reinforcing fibers becomes insufficient, and the resulting molded article may have insufficient mechanical properties.
  • the content of the reinforcing fiber is preferably 5 to 60% by mass, and more preferably 10 to 45% by mass.
  • the content of the thermoplastic resin in the fiber-reinforced thermoplastic resin composition needs to be 20 to 98.9% by mass.
  • the content of the thermoplastic resin is less than 20%, the thermoplastic resin is not sufficiently impregnated between the reinforcing fibers, and the resulting molded article may have insufficient mechanical properties.
  • the content of the thermoplastic resin is preferably 30 to 98.9% by mass, more preferably 40 to 94.9% by mass, and still more preferably 50 to 89.9% by mass.
  • the adhesion amount of the (meth) acrylic polymer to the reinforcing fiber bundle is based on the total of the (meth) acrylic polymer and the reinforcing fiber. It is important that it is within the range of 0.1 to 30% by mass.
  • the adhesion amount of the (meth) acrylic polymer is less than 0.1% by mass, there are portions where the reinforcing fibers cannot be coated, and good adhesion may not be stably exhibited. Furthermore, the handleability of the reinforcing fiber bundle may be insufficient.
  • the handling property referred to here is, for example, the hardness of the fiber bundle when winding the reinforcing fiber bundle around the bobbin, the ease of spreading, or when the reinforcing fiber bundle is cut and used as a chopped yarn. Say the convergence.
  • the adhesion amount of the (meth) acrylic polymer is more than 30% by mass, the mechanical properties of the obtained molded product are extremely deteriorated, or the reinforcing fiber bundle becomes extremely hard and cannot be wound on the bobbin. May cause problems.
  • the adhesion amount of the (meth) acrylic polymer is preferably 1 to 20% by mass, more preferably 3 to 10% by mass, from the balance between the adhesiveness and the handleability of the reinforcing fiber bundle.
  • the reinforcing fiber used for the reinforcing fiber bundle can be selected based on the same idea as the reinforcing fiber in the above-described fiber-reinforced thermoplastic resin composition.
  • the (meth) acrylic polymer used for the reinforcing fiber bundle can be selected based on the same idea as the (meth) acrylic polymer in the above-described fiber-reinforced thermoplastic resin composition.
  • an acryloyloxy group or a methacryloyloxy group is bonded to hydrogen and / or a primary carbon atom (meth).
  • the acrylic monomer unit is preferably 60% by mass or more. More preferably, it is 75 mass% or more, More preferably, it is 90 mass% or more. By setting it as this range, a (meth) acrylic-type polymer becomes comparatively flexible, and the handleability of a reinforced fiber bundle can be improved simultaneously with ensuring adhesiveness.
  • the (meth) acrylic polymer in addition to the (meth) acrylic polymer, other components may be attached to the reinforcing fiber bundle as long as the effects of the present invention are not impaired.
  • a surfactant or the like that stabilizes the emulsion may be added separately.
  • a composition such as urethane resin, polyamide resin, epoxy resin, or acrylic resin may be appropriately added from the viewpoint of imparting bundling properties to the reinforcing fiber bundle and ensuring handleability.
  • the reinforcing fiber a chopped yarn obtained by cutting a reinforcing fiber bundle may be used.
  • the length of the chopped yarn is preferably 1 to 60 mm, more preferably 2 to 30 mm, and still more preferably 3 to 10 mm from the viewpoint of enhancing the reinforcing effect of the reinforcing fibers and improving the dispersion.
  • the method for adhering the (meth) acrylic polymer to the reinforcing fiber bundle is not particularly limited, but from the viewpoint of easily adhering uniformly between the single fibers, the emulsion of the (meth) acrylic polymer is reinforced fiber bundle.
  • the method of drying after giving to is preferable.
  • an existing method such as a roller dipping method, a roller transfer method, or a spray method can be used.
  • the interfacial shear strength with the matrix resin shown below is evaluated as an index of the adhesiveness between the reinforcing fiber bundle to which the (meth) acrylic polymer of the present invention is attached and the matrix resin.
  • This interfacial shear strength is preferably 12 MPa or more, more preferably 13 MPa or more.
  • the matrix resin used for evaluation is 50% by mass of unmodified polypropylene resin ("Prime Polypro (registered trademark)" J105G manufactured by Prime Polymer Co., Ltd.) and acid-modified polypropylene resin ("Admer” manufactured by Mitsui Chemicals, Inc.). (Registered trademark) “QB510) 50% by mass of a polypropylene resin composition.
  • test piece having a thickness of 0.2 mm, a width of 10 mm, and a length of 70 mm in which short fibers are buried in the center. Ten pieces of test pieces are produced in the same manner as described above.
  • the test piece is set to a test length of 25 mm using a normal tensile test jig, and a tensile test is performed at a strain rate of 0.5 mm / min.
  • a tensile test is performed at a strain rate of 0.5 mm / min.
  • the interfacial shear strength ( ⁇ ) is obtained from the following formula.
  • l ( ⁇ m) is the above-mentioned average breaking fiber length
  • ⁇ f (MPa) is the tensile strength of the single fiber
  • d ( ⁇ m) is the diameter of the single fiber.
  • ⁇ f is obtained by the following method assuming that the tensile strength distribution of the reinforcing fiber follows the Weibull distribution. That is, using a tensile test of only a single fiber without being embedded in a resin, a relational expression between the sample length and the average tensile strength is obtained by the least square method from the average tensile strength obtained when the sample length is 5 mm, 25 mm, and 50 mm, respectively. The average tensile strength when the sample length is lc is calculated.
  • the reinforcing fiber bundle in the present invention include chopped yarns obtained by cutting rovings, which are continuous fibers, to a predetermined length, and pulverized milled yarns. From the viewpoint of handleability, chopped yarn is preferably used.
  • the fiber length in this chopped yarn is not particularly limited, but it is in the range of 1 to 30 mm from the viewpoint of sufficiently exhibiting convergence, sufficiently maintaining the shape after being cut, and easy to handle. The range of 2 to 15 mm is more preferable. If the chopped yarn is not sufficiently converged, fuzzing may occur due to rubbing such as when the chopped yarn is conveyed, resulting in a fiber ball and poor handling. In particular, when used for compound applications, the supply of chopped yarn to the extruder is deteriorated due to the generation of fiber balls, which may reduce productivity.
  • the matrix resin to be combined with the reinforcing fiber bundle to which the (meth) acrylic polymer of the present invention is attached can be selected based on the same idea as the thermoplastic resin in the above-described fiber-reinforced thermoplastic resin composition.
  • the reinforcing fiber bundle to which the (meth) acrylic polymer of the present invention is attached is combined with a thermoplastic resin to form a resin composition, from the viewpoints of the reinforcing effect by the reinforcing fibers, moldability and lightness,
  • the reinforcing fiber bundle to which the (meth) acrylic polymer is adhered is preferably 1 to 70% by mass, and the thermoplastic resin is preferably 30 to 99% by mass. More preferably, the reinforcing fiber bundle to which the (meth) acrylic polymer is attached is 5 to 60% by mass, the thermoplastic resin is 40 to 95% by mass, and more preferably, the reinforcing fiber to which the (meth) acrylic polymer is attached.
  • the bundle is 10 to 50% by mass, and the thermoplastic resin is 50 to 90% by mass.
  • the molding method using the fiber-reinforced thermoplastic resin composition of the present invention is not particularly limited, and usual molding methods such as injection molding, hot press molding, stamping molding, and the like are used. Of these, injection molding and stamping molding that have a short molding cycle and excellent productivity are preferable.
  • the molding method using the reinforcing fiber bundle to which the (meth) acrylic polymer of the present invention is attached is not particularly limited, and (1) the reinforcing fiber bundle and matrix to which the (meth) acrylic polymer of the present invention is adhered.
  • 1st form of the manufacturing method of the fiber reinforced thermoplastic resin composition of this invention is a manufacturing method of the fiber reinforced thermoplastic resin composition containing the following 1a process, 2a process, 3a process, and 4a process. is there.
  • Step 1a a step of processing a discontinuous reinforcing fiber bundle into a sheet-like reinforcing fiber substrate (A1) 2a: a side chain on 1 to 70 parts by mass of the reinforcing fiber substrate (A1) obtained in the step 1a
  • Step 3a Applying 0.1 to 10 parts by mass of a (meth) acrylic polymer having a hydroxyl group to the reinforcing fiber base material provided with the (meth) acrylic polymer obtained in Step 2a
  • Step 4a Fiber reinforced thermoplastic obtained in step 3a, in which 1.1 to 80% by weight of thermoplastic resin 20 to 98.9% by weight is compounded to obtain a fiber reinforced thermoplastic resin composition
  • the reinforcing fiber bundle means a fiber bundle composed of reinforcing fibers.
  • the number of single fibers constituting the reinforcing fiber bundle is not particularly limited, but is preferably 24,000 or more, more preferably 48,000 or more from the viewpoint of productivity.
  • the upper limit of the number of single fibers is not particularly limited, but is preferably 300,000 or less in consideration of balance with dispersibility and handleability.
  • the length of the reinforcing fiber bundle is preferably 1 to 30 mm, and more preferably 3 to 30 mm. If it is less than 1 mm, it may be difficult to efficiently exert the reinforcing effect of the reinforcing fiber, and if it exceeds 30 mm, it may be difficult to maintain good dispersion.
  • the length of the reinforcing fiber bundle means the length of the single fiber constituting the reinforcing fiber bundle. The length of the reinforcing fiber bundle in the fiber axis direction is measured with a caliper, or the single fiber is taken out from the reinforcing fiber bundle and observed with a microscope. Can be measured.
  • the reinforcing fiber can be separated from the fiber-reinforced thermoplastic resin composition as follows. A part of the fiber reinforced thermoplastic resin composition is cut out, and the thermoplastic resin is sufficiently dissolved with a solvent that dissolves the bound thermoplastic resin. Thereafter, the reinforcing fibers are separated from the thermoplastic resin by a known operation such as filtration. Alternatively, a part of the fiber reinforced thermoplastic resin composition is cut out and heated at a temperature of 500 ° C. for 2 hours to burn off the thermoplastic resin and separate the reinforced fibers from the thermoplastic resin. 400 separated reinforcing fibers are randomly extracted, and the length is measured to the unit of 10 ⁇ m with an optical microscope or a scanning electron microscope, and the average value is defined as the fiber length.
  • the reinforcing fiber used in the method for producing the fiber-reinforced thermoplastic resin composition of the present invention can be selected based on the same idea as the reinforcing fiber in the above-described fiber-reinforced thermoplastic resin composition.
  • the discontinuous reinforcing fiber bundle is processed into the sheet-like reinforcing fiber substrate (A1)
  • a dry method or a wet method can be used.
  • the reinforcing fiber bundle is highly dispersed to obtain a base material in which the reinforcing fibers are uniformly dispersed.
  • the reinforcing fiber bundle can be dispersed in the gas phase, and the dispersed reinforcing fiber bundle can be deposited to obtain the sheet-like reinforcing fiber base (A1).
  • Dispersion of reinforcing fiber bundles in the gas phase is performed by opening the reinforcing fiber bundles in a non-contact manner and depositing the opened reinforcing fiber bundles (non-contact method), and contacting the reinforcing fiber bundles.
  • non-contact method There is a method (contact type method) in which the fiber is opened by a formula and the opened reinforcing fiber bundles are deposited.
  • the non-contact method is a method of opening a reinforcing fiber bundle without bringing a solid or a fiber opening device into contact therewith.
  • a method of spraying a gas such as air or an inert gas onto the reinforcing fiber bundle particularly a method of pressurizing and spraying air advantageous in terms of cost is preferable.
  • the conditions for applying the air flow to the reinforcing fiber bundle are not particularly limited.
  • pressurized air usually an air flow that applies a pressure of 0.1 MPa to 10 MPa, preferably 0.5 MPa to 5 MPa
  • an apparatus that can be used is not particularly limited, and examples thereof include a container that includes an air tube and that can suck air and can contain a reinforcing fiber bundle. By using such a container, it is possible to open and deposit the reinforcing fiber bundle in one container.
  • the contact method is a method in which a solid or a fiber opening device is physically contacted with a reinforcing fiber bundle to open the fiber.
  • Examples of the contact method include carding, needle punching and roller opening. Of these, carding or needle punch is preferable, and carding is more preferable.
  • the conditions for carrying out the contact method are not particularly limited, and conditions for opening the reinforcing fiber bundle can be determined as appropriate.
  • the reinforcing fiber bundle can be dispersed in water, and the resulting slurry can be made into a sheet-like reinforcing fiber substrate (A1).
  • water for dispersing the reinforcing fiber bundle
  • water such as distilled water and purified water can be used in addition to normal tap water.
  • a surfactant or a thickener can be mixed with water as necessary.
  • Surfactants are classified into a cation type, an anion type, a nonionic type and various amphoteric types. Among these, nonionic surfactants are preferably used, and polyoxyethylene lauryl ether is more preferably used. .
  • the thickener polyacrylamide, polyethylene oxide, starch or the like is preferably used.
  • the concentration when the surfactant or thickener is mixed with water is preferably 0.0001% by mass or more and 0.1% by mass or less, more preferably 0.0003% by mass or more and 0.05% by mass or less.
  • Solid component concentration in the slurry is preferably 0.001% by mass or more and 1% by mass or less, and more preferably 0.01% by mass or more and 0.5% by mass or less.
  • the solid component concentration in the slurry means the mass content of the reinforcing fiber in the slurry when the slurry does not contain any component other than the reinforcing fiber as the solid component, and other than the reinforcing fiber in the slurry.
  • a solid component such as fibers or particles of a thermoplastic resin is included, it means the mass content in the slurry of all the solid components.
  • the solid component concentration in the slurry is 0.01% by mass or more and 1% by mass or less, a uniformly dispersed slurry can be obtained in a short time, and papermaking can be performed efficiently.
  • the reinforcing fiber bundle is dispersed in water (dispersion), stirring is performed as necessary.
  • the slurry can be made by sucking water from the slurry.
  • Slurry papermaking can be performed according to a so-called papermaking method.
  • the slurry is poured into a tank having a papermaking surface at the bottom and capable of sucking water from the bottom, and sucks the water.
  • the Kumagaya Riki Kogyo Co., Ltd. make, No.
  • An example is a tank provided with a mesh conveyor having a papermaking surface of 2553-I (trade name) and a width of 200 mm at the bottom. In this way, the reinforcing fiber substrate (A1) is obtained.
  • the reinforcing fiber substrate (A1) is manufactured by the wet method, it is more preferable to manufacture it by the following method. That is, the step (i) of introducing a discontinuous reinforcing fiber bundle into the dispersion medium, the step (ii) of preparing a slurry in which the reinforcing fibers constituting the reinforcing fiber bundle are dispersed in the dispersion medium, and the slurry A step (iii) of obtaining a reinforcing fiber substrate (A1) by removing the dispersion medium, wherein the mass content of reinforcing fibers in the slurry prepared in the step (ii) is C1, and the step (iii)
  • the reinforcing fiber base material (A1) can be applied to a reinforcing fiber having a low affinity for a dispersion medium at the time of slurry adjustment, retains the fiber dispersibility of the reinforcing fiber at the time of making paper, Is preferable because a reinforcing fiber substrate (A1) having excellent mechanical properties of the molded product can be obtained in a short time.
  • the preferable range of C1 / C2 is 0.8 or more and 1.2 or less, but more preferably 0.9 or more and 1.1 or less.
  • the time required for step (ii) is preferably within 10 minutes, more preferably within 5 minutes, and even more preferably within 3 minutes. If it exceeds 10 minutes, depending on the type of reinforcing fiber, the reinforcing fiber dispersed in the slurry may reaggregate. Although the minimum of the time required for process (ii) is not specifically limited, Usually, it is 1 minute or more.
  • 0.001 m 3 / is preferably sec or higher 0.1m is 3 / sec or less, more that 0.005 m 3 / sec or more 0.05 m 3 / sec or less preferable. If the flow rate is less than 0.001 m 3 / sec, the supply amount is small and the process takes time, and therefore the productivity may be deteriorated. If the flow rate exceeds 0.1 m 3 / sec, the flow rate of the slurry is high. Tends to be applied and the dispersion state may be insufficient.
  • the fiber concentration parameter nL 3 is made in the range of (0 ⁇ ) nL 3 ⁇ L / D.
  • each parameter is as follows. n: Number of reinforcing fibers contained per unit volume of slurry L: Length of reinforcing fibers D: Diameter of reinforcing fibers.
  • FIG. 1 shows a schematic diagram of a slurry containing reinforcing fibers 1 in a dispersion medium 2.
  • the fiber concentration parameter nL 3 is dilute when nL 3 ⁇ 1 and quasi-lean when 1 ⁇ nL 3 ⁇ L / D. It is described.
  • the fiber concentration parameter nL 3 is less than L / D, the reinforcing fibers 1 dispersed in the slurry are difficult to mechanically interfere with each other. Therefore, reaggregation of the reinforcing fibers 1 is suppressed, and the reinforcing fibers 1 in the slurry. It is preferable for increasing the dispersibility of the resin.
  • the concentration of the reinforcing fiber 1 is high. Therefore, it is preferable to make paper with a reinforcing fiber concentration of 1 ⁇ nL 3 ⁇ L / D, which is a quasi-dilute state.
  • the water content of the obtained reinforcing fiber substrate (A1) is determined by dehydration or drying before applying the (meth) acrylic polymer in the application step of the (meth) acrylic polymer in step 2a. It is preferably adjusted to 10% by mass or less, more preferably 5% by mass or less. Thereby, the time which a 2a process requires can be shortened and a prepreg can be obtained in a short time.
  • the proportion of the reinforcing fibers in the reinforcing fiber substrate (A1) is preferably 80% by mass or more and 100% by mass or less, and more preferably 90% by mass or more and 100% by mass or less. In this case, a ratio of impregnating the reinforcing fiber base material with the thermoplastic resin in a later step increases.
  • the thermoplastic resin is in a fibrous or particulate form. It is preferable to mix in the reinforcing fiber base (A1). As a result, since the thermoplastic resin is arranged inside the reinforcing fiber base (A1), the reinforcing fiber base (A1) is easily impregnated with the thermoplastic resin in the step of heating and melting the composite. it can. In this case, the thermoplastic resin is preliminarily combined with the reinforcing fiber base (A1).
  • the reinforcing fiber bundle and the fibrous thermoplastic resin can be mixed and carded in the step 1a.
  • the wet method can be carried out, for example, by mixing the reinforcing fiber bundle and the fibrous or particulate thermoplastic resin in the step 1a.
  • the basis weight of the reinforcing fiber base (A1) is preferably 10 g / m 2 or more and 500 g / m 2 or less, and more preferably 50 g / m 2 or more and 300 g / m 2 or less. If the weight per unit area is less than 10 g / m 2 , there is a risk of problems in handling such as tearing of the substrate. If the basis weight exceeds 500 g / m 2 , it may take a long time to dry the substrate in the wet method, or the web may become thick in the dry method, and the handling property may be difficult in the subsequent process.
  • step 2a 0.1 to 10 parts by weight of a (meth) acrylic polymer having a hydroxyl group in the side chain is added to 1 to 70 parts by weight of the reinforcing fiber base (A1) obtained in step 1a.
  • the (meth) acrylic polymer is important for the viewpoint of enhancing the handleability of the reinforcing fiber substrate (A2) in the process and the interfacial adhesion between the reinforcing fiber and the thermoplastic resin.
  • the amount of the (meth) acrylic polymer is less than 0.1 parts by mass, it becomes difficult to take up the reinforcing fiber base (A2), and the production efficiency of the fiber-reinforced thermoplastic resin composition is deteriorated. Moreover, when it exceeds 10 mass parts, it will be inferior to the interface adhesiveness of a reinforced fiber and a thermoplastic resin.
  • the (meth) acrylic monomer unit having a hydroxyl group that forms a (meth) acrylic polymer having a hydroxyl group in the side chain includes 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxy acrylate Butyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, glycerol monomethacrylate, glyceryl-1-methacryloyloxyethyl urethane, 3,4-dihydroxybutyl-1-methacryloyloxyethyl urethane, ⁇ -hydroxymethyl acrylate, ⁇ -hydroxyethyl acrylate, diethylene glycol monoacrylate, triethylene glycol monoacrylate, polyethylene glycol monoacrylate, dipropylene glycol Monoacrylate, Tripropylene glycol monoacrylate, Polypropylene glycol monoacrylate, Dibutanediol monoacrylate, Tributanediol
  • (meth) acrylic monomer units that form a (meth) acrylic polymer having a hydroxyl group in the side chain include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, ⁇ -carboxyethyl Carboxyl group-containing (meth) acrylic monomers such as acrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic Lauryl acid, stearyl acrylate, benzyl acrylate, isobornyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl
  • Amide group-containing (meth) acrylic monomer units N- (2-methacryloyloxyethyl) ethyleneurea, N- (2-methacrylamidoethyl) ethyleneurea and other urea group-containing (meth) acrylic units
  • Method) acrylic monomer units having a methoxy group or an ethoxy group such as 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, etc .
  • Carbonyl group-containing (meth) acrylic monomer units such as N-vinyl-2-pyrrolidone and diacetone acrylamide
  • the cohesive energy density CED of the (meth) acrylic copolymer having a hydroxyl group in the side chain is preferably 385 to 500 MPa, more preferably 395 to 450 MPa, and still more preferably 405 to 420 MPa. If the cohesive energy density is 385 MPa or more, the permeability, wetting property and affinity to the reinforcing fiber substrate (A1) and the thermoplastic resin will be good, and a good interface adhesion will tend to be exhibited.
  • the cohesive energy density CED (unit MPa) of the (meth) acrylic copolymer the cohesive energy density CED of the (meth) acrylic polymer in the above-described fiber-reinforced thermoplastic resin composition. It can be calculated by a method similar to the method for calculating (unit MPa).
  • the acryloyloxy group or the methacryloyloxy group is bonded to hydrogen and / or a primary carbon atom
  • a body unit is 60 mass% or more. More preferably, it is 75 mass% or more, More preferably, it is 90 mass% or more.
  • the (meth) acrylic polymer becomes relatively flexible, the handleability of the reinforcing fiber base (A2) can be improved, and the (meth) acrylic polymer is relatively flexible.
  • the interface portion that is, the adhesive portion can be kept flexible in the adhesion between the reinforcing fiber and the (meth) acrylic polymer, and the (meth) acrylic polymer and the thermoplastic resin, thereby improving the adhesiveness. be able to.
  • the application of the (meth) acrylic polymer to the reinforcing fiber base (A1) is preferably performed using an aqueous solution, emulsion or suspension containing the (meth) acrylic polymer.
  • the aqueous solution means a solution in which the (meth) acrylic polymer is almost completely dissolved in water.
  • the emulsion means a state in which a liquid containing a (meth) acrylic polymer is dispersed by forming fine particles in a liquid as a dispersion medium.
  • Suspension means a state in which a solid (meth) acrylic polymer is suspended in water. The component particle sizes in the liquid are in the order of aqueous solution ⁇ emulsion ⁇ suspension.
  • the method for applying the (meth) acrylic polymer to the reinforcing fiber base (A1) is not particularly limited.
  • the reinforcing fiber base (A1) is applied to an aqueous solution, emulsion or suspension containing the (meth) acrylic polymer.
  • An aqueous solution containing a (meth) acrylic polymer, an emulsion or a suspension can be used for showering the reinforcing fiber substrate (A1).
  • it is preferable to remove the excess aqueous solution, emulsion, or suspension by, for example, a method of removing by suction or a method of absorbing into an absorbent material such as absorbent paper.
  • the reinforcing fiber base (A1) is preferably heated after application of the (meth) acrylic polymer. This removes moisture contained in the reinforcing fiber base (A1) after the (meth) acrylic polymer is applied, shortens the time required for the step 3a, and shortens the fiber-reinforced thermoplastic resin composition. Can get in time.
  • the heating temperature can be appropriately set and is preferably 100 ° C. or higher and 300 ° C. or lower, and more preferably 120 ° C. or higher and 250 ° C. or lower.
  • the reinforcing fiber substrate (A2) provided with the (meth) acrylic polymer obtained in the step 2a is preferably taken up in order to produce a large amount in a short time. At that time, it is preferable that the tensile strength is 1 N / cm or more so that the reinforcing fiber base (A2) does not wrinkle or sag.
  • the tensile strength is more preferably 3 N / cm or more, and further preferably 5 N / cm or more.
  • the tensile strength that can be applied to the reinforcing fiber substrate (A2) can be controlled by adjusting the type and amount of the (meth) acrylic polymer, and the tensile strength can be increased as the amount of the increased amount is increased.
  • the tensile strength is 1 N / cm. It is preferable that it is cm or more.
  • the upper limit of the tensile strength is not particularly limited, but if it is 100 N / cm, the handleability of the reinforcing fiber substrate (A2) is sufficiently satisfactory.
  • the reinforcing fiber base (A2) provided with the (meth) acrylic polymer obtained in the step 2a is impregnated with a thermoplastic resin, and the reinforcing fiber base (A2) and the thermoplastic resin are impregnated.
  • Composite to obtain a fiber reinforced thermoplastic resin composition the thermoplastic resin can be selected based on the same idea as the thermoplastic resin in the fiber-reinforced thermoplastic resin composition.
  • polyolefin is preferable from the viewpoint of the lightweight property of the obtained molded product.
  • polyamide is preferred.
  • an amorphous resin such as polycarbonate or styrene resin is preferred.
  • thermoplastic resin the thermoplastic resin composition which consists of multiple types of these thermoplastic resins may be used in the range which does not impair the objective of this invention.
  • the content of the reinforcing fiber, (meth) acrylic polymer and thermoplastic resin in the obtained fiber-reinforced thermoplastic resin composition is 1 to 70% by mass of the reinforcing fiber and 0 in the (meth) acrylic polymer (B). 0.1 to 10% by mass, and thermoplastic resin is 20 to 98.9% by mass. By setting it as this range, it is easy to obtain a molding material that can efficiently reinforce reinforcing fibers. More preferably, the reinforcing fiber is 10 to 60% by mass or less, the (meth) acrylic polymer is 0.5 to 10% by mass, and the thermoplastic resin is 30 to 89.5% by mass. More preferably, the reinforcing fiber is 20 to 60% by mass, the (meth) acrylic polymer is 1 to 8% by mass, and the thermoplastic resin is 32 to 79% by mass.
  • the composite of the thermoplastic resin and the reinforcing fiber base (A2) provided with the (meth) acrylic polymer can be performed by bringing the thermoplastic resin into contact with the reinforcing fiber base (A2).
  • the form of the thermoplastic resin in this case is not particularly limited, but is preferably at least one form selected from, for example, a fabric, a nonwoven fabric, and a film.
  • the method of contact is not particularly limited, but two types of thermoplastic resin fabric, non-woven fabric or film are prepared and arranged on the upper and lower surfaces of the reinforcing fiber base (A2) to which the (meth) acrylic polymer is applied. Illustrated.
  • the composite of the thermoplastic resin and the reinforcing fiber base (A2) provided with the (meth) acrylic polymer is preferably performed by pressing and / or heating, and both pressing and heating are performed simultaneously. More preferably.
  • the pressurization condition is preferably 0.01 MPa or more and 10 MPa or less, and more preferably 0.05 MPa or more and 5 MPa or less.
  • the heating condition is preferably a temperature at which the thermoplastic resin to be used can be melted or flowed, and is preferably 50 ° C. or higher and 400 ° C. or lower, more preferably 80 ° C. or higher and 350 ° C. or lower in the temperature range.
  • the pressurization and / or heating can be performed in a state where the thermoplastic resin is brought into contact with the reinforcing fiber base (A2) to which the (meth) acrylic polymer is applied.
  • the thermoplastic resin is brought into contact with the reinforcing fiber base (A2) to which the (meth) acrylic polymer is applied.
  • two fabrics, nonwoven fabrics or films of thermoplastic resin are prepared and placed on the upper and lower surfaces of the reinforcing fiber base (A2) to which the (meth) acrylic polymer is applied, and heating and / or heating is performed from both sides.
  • a method of performing such as a method of sandwiching with a double belt press device).
  • the present invention further includes a step 4a in addition to the steps 1a to 3a.
  • Step 4a is a step of drawing the fiber-reinforced thermoplastic resin composition obtained in Step 3a at a speed of 1 m / min or more.
  • the reinforcing fiber substrate (A2) is made stronger by the thermoplastic resin.
  • the fiber reinforced thermoplastic resin composition can be taken up at the above speed.
  • the fiber reinforced thermoplastic resin composition can be taken up on a roll.
  • the take-up speed is preferably 3 m / min, more preferably 5 m / min, still more preferably 10 m / min or more.
  • the upper limit of the take-up speed is preferably 100 m / min or less, more preferably 30 m / min or less.
  • the fiber-reinforced thermoplastic resin composition can be obtained in a short time, it is more preferable that all of the steps 1a to 4a are performed online.
  • On-line is a process in which each step is continuously performed as a series of flows, and is the opposite of off-line in which each step is performed independently.
  • step 1a it is preferable that the dispersion medium and the reinforcing fiber bundle are continuously added and the steps (i) to (iii) are continuously performed.
  • more reinforcing fiber base materials (A1) can be obtained in a shorter time.
  • a large amount of slurry is added at once, a part of the slurry may take a long time to be paper-made, resulting in a poor dispersion state.
  • step (i) to step (iii) By carrying out continuously, it is possible to feed the slurry little by little, and to make paper efficiently and while maintaining the dispersed state.
  • continuously performed means that the raw materials are intermittently or continuously added in the step (i) and the steps (ii) to (iii) are subsequently performed.
  • it means a state in which the supply of the raw material of the dispersed slurry and the slurry supply to the subsequent step are continued, and is a process considering mass production.
  • Examples of the method of continuously charging include a method of charging at a constant speed and a method of charging a substantially constant amount at a predetermined interval.
  • the conditions for charging at a constant speed are a speed of 1 ⁇ 10 3 g / min to 1 ⁇ 10 7 g / min for the dispersion medium, and a speed of 0.1 g / min to 1 ⁇ 10 5 g / min for the reinforcing fiber bundle.
  • the conditions to be input are exemplified.
  • the conditions for introducing a substantially constant amount at predetermined intervals are 1 ⁇ 10 3 g or more and 1 ⁇ 10 7 g or less for the dispersion medium every 1 to 5 minutes, and 0.1 g or more and 1 ⁇ 10 5 g for the reinforcing fiber bundle.
  • the following conditions are exemplified.
  • the 2nd form of the manufacturing method of the fiber reinforced thermoplastic resin composition of this invention is a manufacturing method of the fiber reinforced thermoplastic resin composition containing the following 1b process, 2b process, and 3b process.
  • 1b A discontinuous reinforcing fiber bundle in which 0.1 to 10 parts by mass of a (meth) acrylic polymer having a hydroxyl group in the side chain is attached to 1 to 70 parts by mass of the reinforcing fiber bundle is a sheet-like reinforcing fiber
  • 3b A step of drawing the fiber reinforced thermoplastic resin composition obtained in step 2b at a rate of 1 / min or more.
  • the part different from the first embodiment is a part using a reinforcing fiber bundle to which a (meth) acrylic polymer has already been applied in the step 1b.
  • the reinforcing fiber bundle to which the (meth) acrylic polymer has already been applied is specifically immersed in the aqueous solution, emulsion or suspension of the (meth) acrylic polymer, or the reinforcing fiber bundle is added to the reinforcing fiber bundle. They can be prepared by impregnating them with a shower type, a curtain coat type or the like and then drying them.
  • the 2b step and the 3b step are the same as the 3a step and the 4a step of the first embodiment, respectively.
  • the 3rd form of the manufacturing method of the fiber reinforced thermoplastic resin composition of this invention is a manufacturing method of the fiber reinforced thermoplastic resin composition containing the following 1c process, 2c process, and 3c process.
  • 1c A discontinuous reinforcing fiber bundle is processed into a sheet-like reinforcing fiber base (A1), and at the same time, a (meth) acrylic polymer having a hydroxyl group in a side chain is reinforced to the reinforcing fiber base (A1).
  • the step of obtaining the reinforcing fiber substrate (A2) to which the (meth) acrylic polymer is applied by adding 0.1 to 10 parts by mass with respect to 1 to 70 parts by mass of the fiber substrate (A1) 2c: 1c Reinforcing the fiber by combining 1.1 to 80% by mass of the reinforced fiber base material (A2) provided with the (meth) acrylic polymer obtained in the process with 20 to 98.9% by mass of the thermoplastic resin.
  • Step 3c for obtaining a thermoplastic resin composition a step of drawing the fiber-reinforced thermoplastic resin composition obtained in step 2c at a speed of 1 m / min or more.
  • the part different from the first embodiment is a part that, in the step 1c, processes a discontinuous reinforcing fiber bundle into a sheet-like reinforcing fiber base (A1) and simultaneously imparts a (meth) acrylic polymer.
  • a fiber such as air or an inert gas is blown to the reinforcing fiber bundle to open the fiber, an aqueous solution of a (meth) acrylic polymer, an emulsion or
  • a suspension is applied by spraying or spraying on a reinforcing fiber bundle, or when the reinforcing fiber bundle is opened by a contact method such as carding, needle punching, or roller opening, (meth) acrylic
  • a contact method such as carding, needle punching, or roller opening
  • the (meth) acrylic polymer is introduced into a dispersion tank for dispersing the reinforcing fiber bundle, and the reinforcing fiber bundle is dispersed to obtain the reinforcing fiber base (A1).
  • a method of applying the (meth) acrylic polymer to the reinforcing fiber base (A1) can be applied.
  • the 2c process and the 3c process are the same as the 3a process and the 4a process of the first embodiment, respectively.
  • the reinforcing fiber bundle is more than the second embodiment in which the (meth) acrylic polymer is preliminarily applied to the reinforcing fiber bundle. Can be easily dispersed.
  • the reinforcing fiber bundle is easier to process than the third embodiment in which the reinforcing fiber bundle is processed into a sheet-like reinforcing fiber base (A1) and at the same time the (meth) acrylic polymer is applied. It becomes easy to disperse.
  • the obtained fiber-reinforced thermoplastic resin composition is subjected to the length direction after any of the steps 4a, 3b, and 3c.
  • a step of cutting to 1 to 30 mm in the width direction may be provided.
  • the fiber-reinforced thermoplastic resin composition and reinforcing fiber bundle of the present invention can be developed for various uses.
  • Parts for automobiles and motorcycles such as various modules such as instrument panels, door beams, under covers, lamp housings, pedal housings, radiator supports, spare tire covers, front ends, etc .; notebook computers, mobile phones, digital still cameras, PDAs, plasmas
  • Electrical / electronic parts such as displays; telephones, facsimiles, VTRs, photocopiers, televisions, microwave ovens, audio equipment, toiletries, laser discs, refrigerators, air conditioners, etc .
  • civil engineering / architectural parts aircraft It can be used for various applications such as parts for construction. Among them, it is preferably used for electronic equipment parts and automobile parts.
  • Reinforcing fiber bundle A1 (PAN-based carbon fiber)
  • the reinforcing fiber bundle A1 was manufactured as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 24,000 was obtained by a dry and wet spinning method. The resulting acrylic fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert it into flame resistant fibers. Next, the heating rate was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C.
  • the reinforcing fiber bundle A2 was manufactured as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 24,000 was obtained by a dry and wet spinning method. The resulting acrylic fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert it into flame resistant fibers. Next, the rate of temperature increase was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C.
  • This carbon fiber bundle was subjected to an electrolytic surface treatment of 80 coulomb per gram of carbon fiber with an aqueous solution containing ammonium bicarbonate as an electrolyte, and then dried in heated air at a temperature of 120 ° C. to obtain a reinforcing fiber bundle A2 (PAN-based carbon Fiber).
  • the physical properties of the reinforcing fiber bundle A2 are shown below.
  • Reinforcing fiber A3 was produced as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 24,000 was obtained by a dry and wet spinning method. The resulting acrylic fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert it into flame resistant fibers. Next, the rate of temperature increase was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C.
  • This carbon fiber bundle is an aqueous solution containing sulfuric acid as an electrolyte, subjected to electrolytic surface treatment of 3 coulombs per gram of carbon fiber, further provided with a sizing agent by an immersion method, and dried in heated air at a temperature of 120 ° C.
  • a bundle A3 (PAN-based carbon fiber) was obtained. The physical properties of the reinforcing fiber bundle A3 are shown below.
  • Acrylic monomer mixture comprising 35.0 g of methyl methacrylate (MMA), 54.0 g of n-butyl methacrylate (BMA), 1.0 g of methacrylic acid (MA) and 10.0 g of 2-hydroxyethyl methacrylate (HEMA) 100 g, “Adeka Resorb (registered trademark) SR-1025” (Adeka Co., Ltd., reactive emulsifier, 25% aqueous solution) 8.0 g, and 39.7 g of ion-exchanged water for pre-emulsion production were mixed, and an emulsifier And pre-emulsion was produced by emulsification at 10,000 rpm for 10 minutes.
  • MMA methyl methacrylate
  • BMA n-butyl methacrylate
  • MA methacrylic acid
  • HEMA 2-hydroxyethyl methacrylate
  • “Adeka Resorb (registered trademark) SR-1025” Adeka Co., Ltd., reactive e
  • the remaining 90 wt% (132.9 g) of the pre-emulsion was dropped into the flask over 3 hours. After completion of the dropwise addition, polymerization was performed at 75 ° C. for another 30 minutes, and then the temperature was raised to 80 ° C. in 30 minutes to effect the aging reaction. went. After 30 minutes of temperature increase, 0.020 g of ammonium persulfate and 0.400 g of ion-exchanged water were added, and then 30 minutes later, 0.010 g of ammonium persulfate and 0.200 g of ion-exchanged water were further added. After carrying out the aging reaction, it was cooled.
  • the (meth) acrylic monomer may be abbreviated as follows, including the description in the table.
  • Thermoplastic resin (acid-modified polypropylene resin) “Admer” (registered trademark) QE510 manufactured by Mitsui Chemicals, Inc. was used.
  • the physical properties are as follows. Specific gravity: 0.91 Melting point: 160 ° C.
  • the reinforcing fiber bundle A4 was manufactured as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 12,000 was obtained by a dry and wet spinning method. The resulting acrylic fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert it into flame resistant fibers. Next, the rate of temperature increase was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C.
  • This carbon fiber bundle is an aqueous solution containing sulfuric acid as an electrolyte, subjected to electrolytic surface treatment of 3 coulombs per gram of carbon fiber, further provided with a sizing agent by an immersion method, and dried in heated air at a temperature of 120 ° C.
  • a bundle A4 (PAN-based carbon fiber) was obtained. The physical properties of the reinforcing fiber bundle A4 are shown below.
  • an acrylic fiber bundle having a single fiber denier 1d and a filament number of 24,000 was obtained by a dry and wet spinning method.
  • the resulting acrylic fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert it into flame resistant fibers.
  • the rate of temperature increase was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere, the temperature was increased to 1,300 ° C. and fired to obtain a carbon fiber bundle. .
  • aqueous solution containing ammonium bicarbonate as an electrolyte for this carbon fiber bundle is subjected to an electrolytic surface treatment of 80 coulomb per gram of carbon fiber, further provided with a sizing agent by a dipping method, and dried in heated air at a temperature of 120 ° C.
  • Reinforcing fiber bundle A5 (PAN-based carbon fiber) was obtained. The physical properties of the reinforcing fiber bundle A5 are shown below.
  • the reinforcing fiber bundle A7 was produced as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 24,000 was obtained by a dry and wet spinning method. The resulting acrylic fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert it into flame resistant fibers. Next, the rate of temperature increase was set to 200 ° C./min, and after 10% stretching in a temperature range of 300 to 900 ° C.
  • This carbon fiber bundle is an aqueous solution containing sulfuric acid as an electrolyte, subjected to electrolytic surface treatment of 3 coulombs per gram of carbon fiber, further provided with a sizing agent by an immersion method, and dried in heated air at a temperature of 120 ° C.
  • a bundle A7 (PAN-based carbon fiber) was obtained. The physical properties of the reinforcing fiber bundle A7 are shown below.
  • (Raw material 23) (Meth) acrylic polymer B1 Except for using 100 g of a (meth) acrylic monomer mixture consisting of 35.0 g of methyl methacrylate, 54.0 g of n-butyl methacrylate, 1.0 g of acrylic acid, and 10.0 g of 2-hydroxyethyl methacrylate, In the same manner as for the (meth) acrylic polymer P (1), an emulsion containing 15.0% by mass of the (meth) acrylic polymer B1 was produced.
  • (Raw material 24) (Meth) acrylic polymer B2 Except for using 100 g of a (meth) acrylic monomer mixture consisting of 60.0 g of n-butyl methacrylate, 36.0 g of isobornyl methacrylate, 1.0 g of acrylic acid, and 3.0 g of 2-ethylhexyl methacrylate, ) An emulsion containing 15.0% by mass of (meth) acrylic polymer B2 was produced in the same manner as acrylic polymer B1.
  • An emulsion containing 15.0% by mass of (meth) acrylic polymer B3 was produced in the same manner as acrylic polymer B1.
  • (Raw material 26) (Meth) acrylic polymer B4 100 g of a (meth) acrylic monomer mixture consisting of 30.0 g of methyl methacrylate, 50.0 g of cyclohexyl acrylate, 10.0 g of 2-hydroxyethyl methacrylate and 10.0 g of N- (2-methacryloyloxyethyl) ethylene urea
  • the emulsion containing 15.0 mass% of (meth) acrylic-type polymer B4 was manufactured like (meth) acrylic-type polymer B1 except having used.
  • (Raw material 28) (Meth) acrylic polymer B6 Except for using 100 g of a (meth) acrylic monomer mixture consisting of 35.0 g of methyl methacrylate, 54.0 g of n-butyl methacrylate, 1.0 g of acrylic acid, and 10.0 g of 2-ethylhexyl methacrylate, ) An emulsion containing 15.0% by mass of (meth) acrylic polymer B6 was produced in the same manner as acrylic polymer B1.
  • the tensile strength and tensile modulus of the reinforcing fiber bundle were determined by the method described in Japanese Industrial Standard (JIS) -R-7601 “Resin-impregnated strand test method”. However, the resin-impregnated strand of carbon fiber to be measured is impregnated with “BAKELITE” (registered trademark) ERL 4221 (100 parts by mass) / 3 boron fluoride monoethylamine (3 parts by mass) / acetone (4 parts by mass). And cured at 130 ° C. for 30 minutes. The number of strands measured was 6, and the average value of each measurement result was the tensile strength and tensile modulus of the carbon fiber.
  • the surface oxygen concentration (O / C) of the reinforcing fiber bundle was determined by X-ray photoelectron spectroscopy according to the following procedure. First, carbon fibers from which the carbon fiber surface deposits and the like were removed with a solvent were cut into 20 mm, and spread on a copper sample support. A1K ⁇ 1 and 2 were used as the X-ray source, and the inside of the sample chamber was kept at 1 ⁇ 10 8 Torr. The kinetic energy value (KE) of the main peak of C 1S was adjusted to 1202 cV as a peak correction value associated with charging during measurement. K. E.
  • O / C was calculated from the ratio of the O 1S peak area to the C 1S peak area as an atomic number ratio using a sensitivity correction value unique to the apparatus.
  • a model ES-200 manufactured by Kokusai Electric Inc. was used as the X-ray photoelectron spectroscopy apparatus, and the sensitivity correction value was set to 1.74.
  • the amount of the sizing agent attached to the carbon fiber was determined by the following equation.
  • Adhesion amount (mass%) 100 ⁇ ⁇ (W 1 ⁇ W 2 ) / W 2 ⁇
  • the measurement was performed 3 times and the average value was employ
  • adhesion amount of the (meth) acrylic polymer to the carbon fiber was determined by the following formula.
  • Adhesion amount (mass%) 100 ⁇ ⁇ (W 1 ⁇ W 2 ) / W 2 ⁇
  • the measurement was performed 3 times and the average value was employ
  • Measurement conditions are: Measurement method: Dynamic viscoelasticity measurement (sine wave), Measurement mode: Temperature dependence, Chuck: Tensile, Waveform: Sine wave, Type of vibration: Stop vibration, Initial load: Initial strain control ( 0.02 mm), conditions: frequency 1 Hz, measurement start temperature 10 ° C., step temperature 1 ° C., measurement end temperature 170 ° C., temperature increase rate 4 ° C./min.
  • thermoplastic resin is supplied from the main hopper, then the chopped yarn from the downstream side hopper And kneaded at a temperature of 220 ° C. (in the case of polypropylene resin) or 260 ° C. (in the case of polyamide 6 resin) at a screw speed of 150 rpm.
  • the supply of the chopped yarn was adjusted so that the mass content of the chopped yarn was 20% with respect to the total weight of the obtained fiber-reinforced thermoplastic resin composition.
  • the strand extruded from a die port having a diameter of 5 mm was cooled and then cut with a cutter to obtain a pellet-shaped molding material.
  • This pellet-shaped molding material was made into a cylinder temperature of 220 ° C., a mold temperature of 60 ° C. (in the case of polypropylene resin), a cylinder temperature of 260 ° C., a mold temperature using a J350EIII type injection molding machine manufactured by Japan Steel Works. Injection molding was performed at 80 ° C. (in the case of polyamide 6 resin) to obtain a molded product for characteristic evaluation.
  • the reinforcing fiber bundle was cut into 1 ⁇ 4 inch with a cartridge cutter to obtain a chopped yarn.
  • thermoplastic resin is disposed on both the upper and lower surfaces so that the mass content of the reinforcing fiber substrate to which the (meth) acrylic polymer is applied is 30% by mass, and 220 ° C. (in the case of a polypropylene resin), or Pressurization at 10 MPa was performed at 250 ° C. (in the case of polyamide 6 resin) for 3 minutes, and then cooled to 50 ° C. while maintaining the pressure to obtain a press-molded product.
  • the evaluation criteria obtained in each example are as follows. (Evaluation of interfacial shear strength of reinforcing fiber bundle) For evaluation details, Drzal, LT, Mater. Sci. Eng. A126, 289 (1990) was referred to. One single fiber having a length of 20 cm was taken out from the reinforcing fiber bundle to which the (meth) acrylic polymer was adhered.
  • test piece having a thickness of 0.2 mm, a width of 10 mm, and a length of 70 mm in which a single fiber was buried in the center.
  • Ten test pieces were produced in the same manner as described above.
  • test piece When the test piece was set to a test length of 25 mm using a normal tensile test jig and the tensile test was performed at a strain rate of 0.5 mm / min, the single fiber was not broken anymore. The length of the fragments was measured with a transmission microscope and averaged to obtain an average break fiber length l.
  • l ( ⁇ m) is the above-mentioned average breaking fiber length
  • ⁇ f (MPa) is the tensile strength of the single fiber
  • d ( ⁇ m) is the diameter of the single fiber.
  • ⁇ f was determined by the following method assuming that the tensile strength distribution of the reinforcing fiber follows the Weibull distribution.
  • a relational expression between the sample length and the average tensile strength was determined from the obtained average tensile strength by the least square method, and the average tensile strength at the sample length lc was calculated.
  • the interface shear strength was evaluated according to the following criteria. A: 14 MPa or more B: 13 MPa or more and less than 14 MPa C: 12 MPa or more and less than 13 MPa D: Less than 12 MPa.
  • the base material was cut into a square shape of 50 mm ⁇ 50 mm from an arbitrary part of the obtained reinforcing fiber base material (A2), and observed with a microscope. A state where 10 or more carbon fibers were bundled, that is, the number of carbon fiber bundles with insufficient dispersion was measured. Measurement was performed 20 times in this procedure, and the average number of the carbon fiber bundles with insufficient dispersion was evaluated. Judgment was made according to the following criteria.
  • thermoplastic resin composition (Evaluation of specific strength of fiber reinforced thermoplastic resin composition) The obtained fiber reinforced thermoplastic resin composition was cut into 200 mm ⁇ 200 mm and dried at 120 ° C. for 1 hour. Four fiber-reinforced thermoplastic resin compositions after drying are laminated.
  • the thermoplastic resin is an acid-modified polypropylene resin
  • the temperature is 230 ° C.
  • the polyamide 6 resin is 250 ° C.
  • the thermoplastic resin is PPS resin
  • the temperature is 300 ° C.
  • press molding was performed at a pressure of 30 MPa for 5 minutes, and the molded product having a thickness of 1.0 mm was obtained by cooling to 50 ° C. while maintaining the pressure.
  • thermoplastic resin composition (Evaluation of specific rigidity of fiber reinforced thermoplastic resin composition) The obtained fiber reinforced thermoplastic resin composition was cut into 200 mm ⁇ 200 mm and dried at 120 ° C. for 1 hour. Four fiber-reinforced thermoplastic resin compositions after drying are laminated.
  • the thermoplastic resin is an acid-modified polypropylene resin
  • the temperature is 230 ° C.
  • the polyamide 6 resin is 250 ° C.
  • the thermoplastic resin is PPS resin
  • the temperature is 300 ° C.
  • press molding at a pressure of 30 MPa for 5 minutes the pressure was maintained and the temperature was cooled to 50 ° C. to obtain a molded product having a thickness of 1.0 mm.
  • a test piece was cut out from the molded article, and the flexural modulus was measured according to ISO 178 method (1993).
  • the test piece was cut out in four directions of 0 °, + 45 °, ⁇ 45 °, and 90 ° when an arbitrary direction was set to 0 °.
  • “Instron (registered trademark)” 5565 type universal material testing machine manufactured by Instron Japan Co., Ltd.
  • Specific rigidity of the molded product Ec 1/3 / ⁇ ( ⁇ : specific gravity of the molded product). The determination was based on the following criteria based on the specific rigidity of the molded product.
  • Example 1-1 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (1), and the thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-2.
  • Example 1-2 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (2), and the thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-2.
  • Example 1-3 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (3), and a thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-2.
  • Example 1-4 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (4), and a thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-2.
  • Example 1-5 An injection-molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (5), and a thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-3.
  • Example 1-6 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (6), and a thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-3.
  • Example 1--7 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (7), and a thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-3.
  • Example 1-8 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (1), and the thermoplastic resin (polyamide 6 resin). The evaluation results are summarized in Table 1-3.
  • Example 1-9 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (1), and the thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-4.
  • Example 1-10 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A1, the (meth) acrylic polymer P (1), and the thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-4.
  • Example 1-11 An injection molded product was obtained in the manner described in Reference Example 1 using the reinforcing fiber A2, the (meth) acrylic polymer P (1), and a thermoplastic resin (acid-modified polypropylene resin). The evaluation results are summarized in Table 1-4.
  • Example 1-12 A press-molded product was obtained in the manner described in Reference Example 2 using the reinforcing fiber A3, the (meth) acrylic polymer P (1), and a thermoplastic resin (acid-modified polypropylene resin).
  • the evaluation results are summarized in Table 1-4.
  • the reinforcing fibers were randomly oriented, and the variation in the bending strength measurement direction was small, which was better than that of the injection-molded product.
  • Example 1-13 A press-molded product was obtained in the manner described in Reference Example 2 using the reinforcing fiber A3, the (meth) acrylic polymer P (1), and the thermoplastic resin (polyamide 6 resin).
  • the evaluation results are summarized in Table 1-4.
  • the reinforcing fibers were randomly oriented, and the variation in the bending strength measurement direction was small, which was better than that of the injection-molded product.
  • Comparative Example 1-1 since there was no (meth) acrylic polymer, the mechanical properties of the molded product were inferior. In Comparative Examples 1-2 and 1-3, the cohesive energy density of the (meth) acrylic polymer was too large, resulting in low mechanical properties of the molded product. In Comparative Examples 1-4 to 1-6, the cohesive energy density of the (meth) acrylic polymer was small, and the mechanical properties of the molded product were low. Further, when the content of the (meth) acrylic polymer was too low and too high as in Comparative Examples 1-7 and 1-8, the molded article had low mechanical properties. Thus, even if the cohesive energy density of the (meth) acrylic polymer is too large or too small, the mechanical properties of the obtained molded product are lowered.
  • Example 2-1 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process
  • the apparatus 3 includes a dispersion tank 4, a papermaking tank 6, and a supply tank 9.
  • the dispersion tank 4 is a cylindrical container having a diameter of 500 mm, and includes an opening cock 5 at the bottom of the container.
  • the papermaking tank 6 includes a mesh conveyor 8 having a papermaking surface 7 having a width of 300 mm at the bottom.
  • the supply tank 9 supplies the emulsion of the (meth) acrylic polymer to the reinforcing fiber base (A1) 11.
  • the supply tank 9 is provided with an opening cock 5.
  • the (meth) acrylic polymer emulsion applying unit 10 is a curtain coat type, and can uniformly disperse the (meth) acrylic polymer emulsion on the reinforcing fiber substrate (A1) 11.
  • a stirrer 12 is attached to the opening on the upper surface of the dispersion tank 4, and the reinforcing fiber bundle 13 and the dispersion medium 2 can be introduced from the opening.
  • the reinforcing fiber bundle A3 (carbon fiber) was cut into 6 mm with a cartridge cutter to obtain chopped carbon fiber.
  • a dispersion liquid having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) is placed in the dispersion tank 4, and the chopped carbon fiber is a fiber.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • the opening cock 5 at the bottom of the container is opened, the slurry is poured onto a mesh conveyor 8 having a papermaking surface 7 having a width of 300 mm, and the water is sucked and taken up.
  • a reinforcing fiber substrate (A1) 11 having a width of 300 mm was obtained.
  • the opening cock 5 of the supply tank 9 was opened, and a 1% by mass emulsion solution of the (meth) acrylic polymer B1 was sprayed on the upper surface of the reinforcing fiber base (A1). After the excess emulsion liquid was sucked, the reinforcing fiber base material was passed through a drying furnace 14 at 200 ° C. for 3 minutes, and was wound up by a winder 18 to give the (meth) acrylic polymer B1. A reinforcing fiber substrate (A2) 15 was obtained.
  • the obtained reinforcing fiber substrate (A2) 15 was taken out from the production apparatus 3 and set in the apparatus 20 of FIG. 3 provided with a double belt press apparatus 19 capable of pressurization, heating and cooling.
  • the apparatus 20 includes creels 16 for accommodating a nonwoven fabric of thermoplastic resin at two places above and below the introduction part of the double belt press apparatus 19, and fiber reinforced heat in which a reinforced fiber base (A2) 15 is impregnated with a thermoplastic resin.
  • a winder 18 for taking up the plastic resin composition 17 is provided.
  • thermoplastic resin (acid-modified polypropylene resin) supplied from the creel 16 to the reinforcing fiber substrate (A2) was sandwiched from above and below and introduced into the double belt press device 19.
  • the first half is heated and pressurized at 230 ° C. and 3.5 MPa
  • the second half is cooled and pressurized at 60 ° C. and 3.5 MPa
  • the reinforcing fiber substrate (A 2) and the thermoplastic resin A fiber-reinforced thermoplastic resin composition 17 in which an acid-modified polypropylene resin) was combined was obtained.
  • the blending amounts of the reinforcing fiber bundle, the (meth) acrylic polymer, and the thermoplastic resin are as shown in Table 2-1.
  • Table 2-1 shows the implementation conditions in each step and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-2 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process
  • a fiber reinforced thermoplastic resin composition was produced using the apparatus 21 shown in FIG.
  • the device 21 is a device in which the device 20 is integrated with the device 3.
  • a fiber reinforced thermoplastic resin composition was obtained in the same manner as in Example 2-1, except that the reinforcing fiber bundle and the dispersion medium were continuously added using the apparatus 21 and all steps were performed online.
  • Table 2-1 shows the blending amounts of the materials, the execution conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-3 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Similar to Example 2-2, except that the amount of (meth) acrylic polymer blended was 0.4% by mass. Processing was performed to obtain a fiber-reinforced thermoplastic resin composition.
  • Table 2-1 shows the blending amounts of the materials, the execution conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-4 Production of Fiber Reinforced Thermoplastic Resin Composition by Dry Process
  • the device 22 is a device in which the structure of the papermaking portion of the device 21 is replaced with a card machine 23.
  • the fiber reinforced thermoplasticity was the same as in Example 2-2, except that the device 22 was used to continuously feed the reinforcing fiber bundle A4 as a reinforcing fiber bundle into the card machine 23 and to carry out the entire process online.
  • a resin composition was obtained.
  • Table 2-1 shows the blending amounts of the materials, the execution conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-5 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Concentration of reinforcing fiber in slurry in dispersion tank 4 is 0.04 mass%, and dispersion medium 2 is continuously supplied in papermaking tank 6 Then, treatment was carried out in the same manner as in Example 2-2 except that the concentration of the reinforcing fiber in the slurry was reduced to 0.02% by mass to obtain a fiber-reinforced thermoplastic resin composition.
  • Table 2-2 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-6 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Same as Example 2-2, except that the concentration of the reinforcing fiber in the slurry in the dispersion tank 4 was 1.5% by mass
  • the fiber reinforced thermoplastic resin composition was obtained.
  • Table 2-2 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-7 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Same as Example 2-2, except that the concentration of the reinforcing fiber in the slurry in the dispersion tank 4 was 0.1% by mass
  • the fiber reinforced thermoplastic resin composition was obtained.
  • Table 2-2 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-8 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Cut fiber (single fiber fineness 3 dtex, cut of reinforced fiber and thermoplastic resin (acid-modified polypropylene resin) in slurry in dispersion tank 4 6 mm), the concentration of reinforcing fibers is 0.02 mass%, the concentration of cut fibers of thermoplastic resin is 0.03% by mass, the total concentration of solid components is 0.05 mass%, and creel 16 A fiber reinforced thermoplastic resin composition was processed in the same manner as in Example 2-2 except that it was introduced into the double belt press device 19 without using a non-woven fabric of thermoplastic resin (acid-modified polypropylene resin) supplied from Got. Table 2-2 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-9 Production of fiber-reinforced thermoplastic resin composition using wet process Same as Example 2-2, except that (meth) acrylic polymer B2 was used as the (meth) acrylic polymer
  • the fiber reinforced thermoplastic resin composition was obtained.
  • Table 2-3 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-10 Production of fiber-reinforced thermoplastic resin composition using wet process Same as Example 2-2, except that (meth) acrylic polymer B3 was used as the (meth) acrylic polymer
  • the fiber reinforced thermoplastic resin composition was obtained.
  • Table 2-3 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-11 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Except for using reinforcing fiber bundle A5 as the reinforcing fiber bundle, the same treatment as in Example 2-2 was carried out, and the fiber reinforced heat A plastic resin composition was obtained.
  • Table 2-3 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-12 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Except that reinforced fiber bundle A6 was used as the reinforced fiber bundle, the same treatment as in Example 2-2 was carried out, and the fiber reinforced heat A plastic resin composition was obtained.
  • Table 2-3 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-13 Production of fiber-reinforced thermoplastic resin composition using wet process Same as Example 2-2 except that (meth) acrylic polymer B4 was used as the (meth) acrylic polymer
  • the fiber reinforced thermoplastic resin composition was obtained.
  • Table 2-4 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-14 Production of fiber-reinforced thermoplastic resin composition using wet process Same as Example 2-2, except that (meth) acrylic polymer B5 was used as the (meth) acrylic polymer
  • the fiber reinforced thermoplastic resin composition was obtained.
  • Table 2-4 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-15 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Except that polyamide 6 resin was used as the thermoplastic resin and the temperature in the first half was 250 ° C. In the same manner as in Example 2-2, a fiber-reinforced thermoplastic resin composition was obtained. Table 2-4 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-16 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process Except that PPS resin was used as the thermoplastic resin and the temperature was 300 ° C. in the first half of the double belt press apparatus 19 The treatment was conducted in the same manner as in Example 2-2 to obtain a fiber reinforced thermoplastic resin composition.
  • Table 2-4 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-17 Production of Fiber Reinforced Thermoplastic Resin Composition Using Dry Process
  • the (meth) acrylic polymer was used in advance without using the (meth) acrylic polymer supply tank 9.
  • a fiber reinforced thermoplastic resin composition was obtained in the same manner as in Example 2-4 except that the reinforced fiber bundle A7 provided with the polymer was continuously added to the card machine 23 portion.
  • Table 2-5 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-18 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process
  • the (meth) acrylic heavy A fiber reinforced thermoplastic resin composition was obtained in the same manner as in Example 2-2 except that the reinforced fiber bundle A7 provided with coalescence was used.
  • Table 2-5 shows the blending amounts of the materials, the implementation conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-19 Production of Fiber Reinforced Thermoplastic Resin Composition Using Dry Process
  • a fiber reinforced molded substrate was produced using the apparatus 26 of FIG.
  • the (meth) acrylic polymer emulsion supply tank 9 of the apparatus 22 is installed in the card machine 23, and the (meth) acrylic polymer is strengthened simultaneously with the production of the reinforcing fiber base (A1). It is an apparatus that can be applied to the fiber substrate (A1).
  • a fiber-reinforced thermoplastic resin composition was obtained in the same manner as in Example 2-4, except that the reinforcing fiber bundle A3 was continuously added as a reinforcing fiber bundle to the card machine 23 using the apparatus 26.
  • Table 2-6 shows the blending amounts of the materials, the execution conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • Example 2-20 Production of Fiber Reinforced Thermoplastic Resin Composition Using Wet Process A fiber reinforced molded substrate was produced using the apparatus 27 of FIG.
  • the apparatus 27 is an apparatus in which the supply tank 9 for the emulsion of the (meth) acrylic polymer of the apparatus 21 is installed in the dispersion tank 4 portion. It is possible to continuously supply the (meth) acrylic polymer to the dispersion tank 4, and at the same time as the production of the reinforcing fiber base (A1), the (meth) acrylic polymer is used as the reinforcing fiber base (A1). Can be granted.
  • a fiber reinforced thermoplastic resin composition was obtained in the same manner as in Example 2-2 except that the (meth) acrylic polymer was continuously supplied to the dispersion tank 4 using the apparatus 26.
  • Table 2-6 shows the blending amounts of the materials, the execution conditions in each step, and the evaluation results of the obtained reinforcing fiber base and the fiber-reinforced thermoplastic resin composition.
  • the apparatus 6 includes a dispersion tank 4, a papermaking tank 6, and a supply tank 9.
  • the dispersion tank 4 is a cylindrical container having a diameter of 500 mm provided with an opening cock 5 at the lower part of the container.
  • the papermaking tank 6 is a tank provided with a mesh sheet 24 having a square papermaking surface 7 of 300 mm square at the bottom.
  • the supply tank 9 supplies the emulsion of the (meth) acrylic polymer to the reinforcing fiber base (A1) 11.
  • the supply tank 9 is provided with an opening cock 5.
  • the (meth) acrylic polymer emulsion applying unit 10 has a movable opening cock outlet, and can uniformly disperse the (meth) acrylic polymer emulsion on the reinforcing fiber base (A1) 11.
  • a stirrer 12 is attached to the opening on the upper surface of the dispersion tank 4, and the reinforcing fiber bundle 13 and the dispersion medium 2 can be introduced from the opening.
  • the apparatus 6 is a batch type manufacturing apparatus and cannot take up the reinforcing fiber base (A1). After the reinforcing fiber base (A1) 11 is formed on the papermaking surface 7 of the mesh sheet 24, a (meth) acrylic polymer is applied.
  • the reinforcing fiber substrate to which the (meth) acrylic polymer is applied is taken out from the device 25, put into a dryer and dried to obtain the reinforcing fiber substrate (A2).
  • Non-woven fabric of acid-modified polypropylene resin (resin weight 100 g / m 2 ) as a thermoplastic resin is placed one by one above and below the reinforcing fiber substrate (A2), heated and pressurized at 230 ° C. and 3.5 MPa for 5 minutes, Subsequently, it cooled and pressurized at 60 degreeC and 3.5 Mpa for 5 minutes, and the fiber reinforced thermoplastic resin composition with which the reinforced fiber base material (A2) and the thermoplastic resin were compounded was obtained.
  • Table 2-7 shows the blending amounts of the materials, the execution conditions in each step, and the evaluation results of the obtained reinforced fiber base material and fiber reinforced thermoplastic resin composition.
  • Examples 2-1 to 2-20 are excellent in the dispersion state of carbon fibers in a short time, and maintain high mechanical properties even when formed into a molded product.
  • the fiber reinforced thermoplastic resin composition which can be obtained was able to be obtained.
  • the fiber-reinforced thermoplastic resin composition and reinforcing fiber bundle of the present invention can be developed for various uses.
  • Parts for automobiles and motorcycles such as various modules such as instrument panels, door beams, under covers, lamp housings, pedal housings, radiator supports, spare tire covers, front ends, etc .; notebook computers, mobile phones, digital still cameras, PDAs, plasmas Electrical and electronic parts such as displays; Telephones, facsimiles, VTRs, photocopiers, televisions, microwave ovens, audio equipment, toiletries, laser discs, refrigerators, air conditioners, etc .; civil engineering and construction parts; It can be used for various applications such as aircraft parts. Among them, it is preferably used for electronic equipment parts and automobile parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、(メタ)アクリル系重合体0.1~10質量%、強化繊維1~70質量%、および熱可塑性樹脂20~98.9質量%を含む繊維強化熱可塑性樹脂組成物であって、該(メタ)アクリル系重合体が、側鎖に、水酸基、カルボキシル基、アミド基およびウレア基より選ばれる少なくとも1種の官能基を有し、かつ、凝集エネルギー密度CEDが385~550MPaである重合体である繊維強化熱可塑性樹脂組成物である。本発明により、特にマトリックス樹脂としてポリオレフィン系樹脂を用いた場合に、優れた接着性を発現し、力学特性に優れる繊維強化熱可塑性樹脂組成物および強化繊維束が提供される。

Description

繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法
 本発明は、繊維強化熱可塑性樹脂組成物、特にマトリックス樹脂としてポリオレフィン系樹脂を用いた繊維強化熱可塑性樹脂組成物、および強化繊維束に関する。本発明は、さらには、繊維強化熱可塑性樹脂組成物の製造方法に関するものである。詳しくは、繊維強化熱可塑性樹脂組成物を、引き取り方式で製造する方法に関するものである。
 強化繊維を樹脂と複合化させた繊維強化樹脂組成物は、力学特性や寸法安定性に優れることから、自動車、航空機、電気・電子機器、玩具、家電製品などの幅広い分野で使用されている。強化繊維の中でも炭素繊維は、軽量、高強度かつ高剛性であることから、近年注目を集めている。
 また、繊維強化樹脂組成物用のマトリックス樹脂として近年注目を集めているのが熱可塑性樹脂である。とりわけポリオレフィン系樹脂、中でもコストが安価であり、比重も小さく、成形性、耐薬品性などの優れた特性を有するポリプロピレン樹脂が注目されている。
 しかしながら、ポリオレフィン系樹脂は極性が低いため、強化繊維との界面接着性に劣る。このため、強化繊維の表面処理やサイジング剤の付与などで強化繊維とマトリックス樹脂との界面接着性を改善する試みが行われてきた。
 特許文献1には、ポリアクリル酸で被覆した炭素繊維が記載されている。特許文献2には、ポリアクリル酸ソーダおよびポリアクリルアミドを被覆した強化繊維が開示されている。また特許文献3には、アクリロイルオキシ基またはメタクリロイルオキシ基が2級炭素原子または3級炭素原子に結合した(メタ)アクリル酸エステル単量体(a)単位を有する重合体(A)を含む強化繊維用サイジング剤が記載されている。特許文献4には、アミノアルキレン基を側鎖に有する(メタ)アクリル系重合体あるいは、オキサゾリン基含有重合体が付与された炭素繊維について記載されている。いずれの特許文献も、炭素繊維にポリオレフィン樹脂と親和性のあるポリマーを付与することで、炭素繊維とマトリックス樹脂との界面接着性を改善することを目的としているが、いずれも十分な界面接着性は得られていない。
 また、繊維強化熱可塑性樹脂組成物の製造方法についてもこれまで様々な検討がなされてきた。
 特許文献4には、強化繊維に所定の重合体を付与して得られる強化繊維と溶融した熱可塑性樹脂とを、強化繊維、重合体および熱可塑性樹脂が所定の配合割合となるように複合化する、繊維強化熱可塑性樹脂の製造方法が開示されている。
 特許文献5には、繊維強化熱可塑性樹脂成形体の強化繊維として、単繊維状の炭素繊維であって質量平均繊維長が0.5~10mmであり、かつ、配向パラメータが-0.25~0.25である炭素繊維を用いる繊維強化熱可塑性樹脂成形体の製造方法において、(I)成形材料に含まれる熱可塑性樹脂を加熱溶融する工程、(II)金型に成形材料を配置する工程、(III)金型で成形材料を加圧する工程、(IV)金型内で成形材料を固化する工程、(V)金型を開き、繊維強化熱可塑性樹脂成形体を脱型する工程を含む製造方法が開示されている。
 特許文献6には、不燃性繊維状物質と熱可塑性樹脂を主成分とするバインダーを主成分とし、他の所定の成分を含むスラリー原液を、走行もしくは回転する網状または多孔質状の基材に、基材の面と5~60度の角度で供給した後、脱水および乾燥させるシート状物の製造方法が開示されている。
 特許文献4で開示された製造方法は、(メタ)アクリル系重合体成分を強化繊維ウェブに付与するのみであり、その後の引き取り性など生産性を考慮したものではなく、広く繊維強化複合材料として活用するためには、さらなる製造方法の改良が必要とされていた。
 特許文献5、6で開示された製造方法においては、いずれも、成形材料の引き取りに関して特別な手段が用いられている訳ではなく、そのため、製造に時間および手間を要し、繊維強化熱可塑性樹脂組成物の効率的な製造への適用には、さらなる製造方法の改善が必要とされていた。
特開昭59-137573号公報 特開昭61-209940号公報 特開2005-146431号公報 国際公開第2007/37260号パンフレット 国際公開第2007/97436号パンフレット 特開昭58-69047号公報
 本発明の課題は、マトリックス樹脂との接着性、特にポリオレフィン系マトリックス樹脂と強化繊維との接着性に優れる繊維強化熱可塑性樹脂組成物および強化繊維束を提供することである。
 また、本発明の他の課題は、力学特性に優れる成形品を得るための繊維強化熱可塑性樹脂組成物を効率良く製造する方法の提供することである。
 本願第1発明は、(メタ)アクリル系重合体0.1~10質量%、強化繊維1~70質量%、および熱可塑性樹脂20~98.9質量%を含む繊維強化熱可塑性樹脂組成物であって、該(メタ)アクリル系重合体が、側鎖に、水酸基、カルボキシル基、アミド基およびウレア基より選ばれる少なくとも1種の官能基を有し、かつ、下式で算出される凝集エネルギー密度CEDが385~550MPaである重合体である繊維強化熱可塑性樹脂組成物である;
CED=1.15×Σ{P(n)×CE(n)}/Σ{P(n)×M(n)}
ここで、(メタ)アクリル系重合体に含まれる(メタ)アクリル系単量体単位の種類をm種類として、各(メタ)アクリル系単量体単位をそれぞれ(メタ)アクリル系単量体単位(n)(nは1~mの整数)としたとき、CE(n)は、(メタ)アクリル系単量体単位(n)の化学構造CS(n)から計算された凝集エネルギーを意味する;また同様に、M(n)は(メタ)アクリル系単量体単位(n)の分子量を、P(n)は(メタ)アクリル系重合体中の(メタ)アクリル系単量体単位(n)のモル分率を意味する;ただしΣP(n)=1である。
 また、本願第1発明は、強化繊維に(メタ)アクリル系重合体が付着した強化繊維束であって、該(メタ)アクリル系重合体が、側鎖に、水酸基、カルボキシル基、アミド基およびウレア基より選ばれる少なくとも1種の官能基を有し、かつ、下式で算出される凝集エネルギー密度CEDが385~550MPaである重合体であり、かつ、該(メタ)アクリル系重合体の付着量が0.1~30質量%である(メタ)アクリル系重合体が付着した強化繊維束を含む;
CED=1.15×Σ{P(n)×CE(n)}/Σ{P(n)×M(n)}
ここで、(メタ)アクリル系重合体に含まれる(メタ)アクリル系単量体単位の種類をm種類として、各(メタ)アクリル系単量体単位をそれぞれ(メタ)アクリル系単量体単位(n)(nは1~mの整数)としたとき、CE(n)は、(メタ)アクリル系単量体単位(n)の化学構造CS(n)から計算された凝集エネルギーを意味する;また同様に、M(n)は(メタ)アクリル系単量体単位(n)の分子量を、P(n)は(メタ)アクリル系重合体中の(メタ)アクリル系単量体単位(n)のモル分率を意味する;ただしΣP(n)=1である。
 本願第2発明の第1形態は、次の第1a工程、第2a工程、第3a工程および第4a工程を含む繊維強化熱可塑性樹脂組成物の製造方法である;
 第1a:不連続な強化繊維束をシート状の強化繊維基材(A1)に加工する工程;
 第2a:第1a工程で得られた強化繊維基材(A1)1~70質量部に、側鎖に水酸基を有する(メタ)アクリル系重合体を0.1~10質量部を付与する工程;
 第3a:第2a工程で得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)に、熱可塑性樹脂を複合化して、強化繊維基材(A2)1.1~80質量%および熱可塑性樹脂20~98.9質量%を含む繊維強化熱可塑性樹脂組成物を得る工程;
 第4a:第3a工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
 本願第2発明の第2形態は、次の第1b工程、第2b工程および第3b工程を含む繊維強化熱可塑性樹脂組成物の製造方法である;
 第1b:強化繊維束1~70質量部に対して、側鎖に水酸基を有する(メタ)アクリル系重合体が0.1~10質量部付着した、不連続な強化繊維束をシート状の強化繊維基材(A2)に加工する工程;
 第2b:第1b工程で得られた(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%に、熱可塑性樹脂20~98.9質量%を複合化して、繊維強化熱可塑性樹脂組成物を得る工程;
 第3b:第2b工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
 本願第2発明の第3形態は、次の第1c工程、第2c工程および第3c工程を含む繊維強化熱可塑性樹脂組成物の製造方法である;
 第1c:不連続な強化繊維束をシート状の強化繊維基材(A1)に加工すると同時に、側鎖に水酸基を有する(メタ)アクリル系重合体を前記強化繊維基材(A1)に、強化繊維基材(A1)1~70質量部に対して0.1~10質量部付与し、(メタ)アクリル系重合体が付与された強化繊維基材(A2)を得る工程;
 第2c:第1c工程で得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%を、熱可塑性樹脂20~98.9質量%と複合化して、繊維強化熱可塑性樹脂組成物を得る工程;
 第3c:第2c工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
 本願第1発明の繊維強化熱可塑性樹脂組成物は、強化繊維とマトリックス樹脂、特にポリオレフィン系マトリックス樹脂との良好な界面接着性が発現できることから、力学特性に極めて優れた成形品を得ることができる。また、本発明の強化繊維束は、熱可塑性樹脂からなるマトリックス樹脂との接着性、特にポリオレフィン系マトリックス樹脂との接着性に優れる強化繊維束である。本願第1発明の繊維強化熱可塑性樹脂組成物および強化繊維束を用いた成形品は力学特性に優れることから、自動車、電気・電子機器、家電製品などの各種部品・部材に極めて有用である。
 また、本願第2発明の繊維強化熱可塑性樹脂組成物の製造方法によれば、比強度、比剛性等の力学特性に優れ、強化繊維の分散性が良好であり、かつ均一性の良好な成形品を成形することができる繊維強化熱可塑性樹脂組成物を効率良く得ることができる。
湿式法により強化繊維基材を抄造するために用いるスラリーの模式図である。 強化繊維基材(A1)、(A2)を製造するための装置のモデル図である。 繊維強化熱可塑性樹脂組成物を製造するための装置のモデル図である。 強化繊維基材(A1)、(A2)および繊維強化熱可塑性樹脂組成物を製造するための装置のモデル図である。 強化繊維基材(A1)、(A2)および繊維強化熱可塑性樹脂組成物を製造するための装置のモデル図である。 強化繊維基材(A1)を製造するための装置のモデル図である。 強化繊維基材(A1)、(A2)および繊維強化熱可塑性樹脂組成物を製造するための装置のモデル図である。 強化繊維基材(A1)、(A2)および繊維強化熱可塑性樹脂組成物を製造するための装置のモデル図である。
 以下に、本願第1発明の望ましい実施の形態について説明する。
[繊維強化熱可塑性樹脂組成物]
 まず、繊維強化熱可塑性樹脂組成物を構成する構成要素について説明する。本発明の繊維強化熱可塑性樹脂組成物は、(メタ)アクリル系重合体、強化繊維、および熱可塑性樹脂を含む。ここで、熱可塑性樹脂は、マトリックス樹脂である。また、(メタ)アクリル系重合体は、強化繊維と熱可塑性樹脂とのバインダーとして機能する。
 強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維などの高強度高弾性率繊維の1種または2種以上を使用できる。中でも、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などの炭素繊維が、得られる成形品の力学特性の向上および成形品の軽量化効果の観点から好ましい。得られる成形品の強度と弾性率とのバランスの観点から、PAN系炭素繊維がさらに好ましい。また、導電性を付与する目的では、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維を用いることもできる。
 さらに炭素繊維としては、X線光電子分光法により測定される炭素繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度[O/C]が0.05~0.5であるものが好ましく、より好ましくは0.08~0.4であり、さらに好ましくは0.1~0.3である。表面酸素濃度が0.05以上であることにより、炭素繊維表面の官能基量を確保でき、熱可塑性樹脂とより強固な接着を得ることができる。また、表面酸素濃度の上限には特に制限はないが、表面酸化による炭素繊維自身の強度の低下を少なくする観点や、炭素繊維の取扱い性および生産性のバランスから、0.5以下とすることが好ましい。
 炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順にしたがって求めることができる。まず、溶剤で炭素繊維表面に付着しているサイジング剤などを除去した炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、試料チャンバー中を1×10Torrに保つ。X線源としてA1Kα1、2を用い、測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせる。K.E.として1191~1205eVの範囲で直線のベースラインを引くことによりC1Sピーク面積を求める。K.E.として947~959eVの範囲で直線のベースラインを引くことによりO1Sピーク面積を求める。
 ここで、表面酸素濃度とは、前記O1Sピーク面積とC1Sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出する。X線光電子分光法装置として、国際電気社製モデルES-200を用いた場合は、感度補正値を1.74とする。
 表面酸素濃度[O/C]を0.05~0.5に制御する手段としては、特に限定されるものではないが、例えば、電解酸化処理、薬液酸化処理および気相酸化処理などの手法をとることができ、中でも電解酸化処理が好ましい。電解酸化処理に用いられる電解液としては、以下に挙げる化合物の水溶液が好ましく用いられる。硫酸、硝酸、塩酸等の無機酸;水酸化ナトリウム、水酸化カリウムおよび水酸化バリウム等の無機水酸化物;アンモニア、炭酸ナトリウム、炭酸水素ナトリウム等の無機金属塩類;酢酸ナトリウム、安息香酸ナトリウム等の有機塩類;ヒドラジンなどの有機化合物などである。これらの中でも電解液としては無機酸が好ましく、硫酸および硝酸が特に好ましく使用される。電解処理の程度は、電解処理で流れる電気量を設定することにより炭素繊維表面のO/Cを制御することができる。
 また、強化繊維の平均繊維径は特に限定されないが、得られる成形品の力学特性と表面外観の観点から、1~20μmの範囲内であることが好ましく、3~15μmの範囲内であることがより好ましい。
 また、強化繊維の数平均繊維長Lnは、強化繊維の補強効果を高める観点から、好ましくは0.1~10mm、より好ましくは0.2~7mm、さらに好ましくは0.5~5mmである。強化繊維の数平均繊維長Lnは、繊維強化熱可塑性樹脂組成物から強化繊維のみを任意に400本以上抽出し、それらの長さを1μm単位まで光学顕微鏡もしくは走査型電子顕微鏡(SEM)を用いて測定し、数平均して算出する。繊維強化熱可塑性樹脂組成物より、強化繊維を抽出する方法としては、繊維強化熱可塑性樹脂組成物を500℃で1時間加熱処理して強化繊維以外の成分を焼き飛ばす方法や、強化繊維以外の成分を溶媒に溶解させたのち、濾過などにより強化繊維を取り出す方法が適用できる。
 強化繊維は、複数の強化繊維の単糸が合わさった強化繊維束として含まれていても良い。この場合、強化繊維束の単糸数には、特に制限はないが、100~350,000本の範囲内が好ましく、とりわけ1,000~250,000本の範囲内が好ましい。また強化繊維の生産性の観点からは、単糸数が多いものが好ましく、20,000~100,000本の範囲内が好ましい。強化繊維が強化繊維束として含まれる場合には、強化繊維束に集束性をもたせ、取り扱い性を高めるために、ウレタン系樹脂、ポリアミド系樹脂、エポキシ系樹脂、アクリル系樹脂などの組成物を適宜付与したものであってもよい。さらに、繊維強化熱可塑性樹脂組成物中で強化繊維の分散を良好にするために、強化繊維束をカットしたものを用いても良い。この場合、強化繊維の補強効果を高める観点と、分散を良好にする観点から、強化繊維束の長さは、好ましくは1~60mm、より好ましくは2~30mm、さらに好ましくは3~10mmである。
 また、強化繊維の形態は、力学的に等方性を有するものを得る観点からは、強化繊維がランダムに配向したウェブまたはマット状のシート形態をとることも好ましい。
 本発明の熱可塑性樹脂組成物は、側鎖に、水酸基、カルボキシル基、アミド基およびウレア基より選ばれる少なくとも1種の官能基を有する(メタ)アクリル系重合体を含むことが重要である。これらの官能基を有することで、(メタ)アクリル系重合体同士の相互作用および強化繊維と(メタ)アクリル系重合体との相互作用を高め、その結果、強化繊維とマトリックス樹脂との界面接着性を高める効果を有する。この観点から、(メタ)アクリル系重合体は強化繊維の周囲に偏在していることが好ましく、(メタ)アクリル系重合体の一部が強化繊維に接触していることがより好ましい。強化繊維の周囲に(メタ)アクリル系重合体が偏在していることを確認する方法としては、例えば繊維強化熱可塑性樹脂組成物またはその成形品の断面を切り出し、その表面を前記官能基と反応可能な官能基を有するハロゲン系のラベル試薬を化学修飾法にて反応させた後に、EPMA(電子プローブエックス線マイクロアナライザ)にてハロゲン元素を分析し、その濃度分布をみることで確認する方法や、繊維強化熱可塑性樹脂組成物またはその成形品の断面の強化繊維の周囲のIRスペクトル測定より、(メタ)アクリル系重合体に特有の吸収の有無および吸収強度を確認する方法などが挙げられる。
 (メタ)アクリル系重合体を強化繊維の周囲に偏在させるためには、製造方法と共に、(メタ)アクリル系重合体と強化繊維の親和性が高いことが重要である。そのため、(メタ)アクリル系重合体が、前記特定の官能基を有することが重要である。
 なかでも、接着性を高める目的からは、(メタ)アクリル系重合体が、水酸基、アミド基およびウレア基より選ばれる官能基を有することがより好ましく、水酸基を有することがさらに好ましく、水酸基およびカルボキシル基の両方を有することが最も好ましい。この場合、前記(メタ)アクリル系重合体の水酸基価としては、接着性やコスト面のバランスを考慮して、10~100mgKOH/gであることが好ましい。より好ましくは20~80mgKOH/g、さらに好ましくは30~60mgKOH/gである。ここで水酸基価とは、試料1gをアセチル化したとき、水酸基と結合した酢酸を中和するのに必要な水酸化カリウムの量であり、JIS K0070に準拠して測定された値であるまた、前記(メタ)アクリル系重合体の酸価としては、接着性やコスト面のバランスを考慮して、1~10mgKOH/gが好ましい。より好ましくは2~9mgKOH/g、さらに好ましくは3~7mgKOH/gである。ここで酸価とは、試料1gに含まれる遊離酸基を中和するのに必要な水酸化カリウムの量であり、JIS K0070に準拠して測定された値である。
 本発明において、(メタ)アクリル系重合体とは、(メタ)アクリル系単量体繰り返し単位を含む重合体のことを示す。ここで、(メタ)アクリル系単量体とは、アクリル単量体およびメタクリル単量体から選ばれた単量体を意味する。すなわち、(メタ)アクリル系重合体とは、アクリル単量体およびメタクリル単量体から選ばれた単量体からなる重合体のことであり、単にアクリル系重合体と呼ぶこともある。
 (メタ)アクリル系単量体としては、水酸基を有する単量体として、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、グリセリンモノメタクリレート、グリセリル-1-メタクリロイルオキシエチルウレタン、3,4-ジヒドロキシブチル-1-メタクリロイルオキシエチルウレタン、α-ヒドロキシメチルアクリレート、α-ヒドロキシエチルアクリレート、ジエチレングリコールモノアクリレート、トリエチレングリコールモノアクリレート、ポリエチレングリコールモノアクリレート、ジプロピレングリコールモノアクリレート、トリプロピレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート、ジブタンジオールモノアクリレート、トリブタンジオールモノアクリレート、ポリテトラメチレングリコールモノアクリレート、ジエチレングリコールモノメタクリレート、トリエチレングリコールモノメタクリレート、ポリエチレングリコールモノメタクリレート、ジプロピレングリコールモノメタクリレート、トリプロピレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ジブタンジオールモノメタクリレート、トリブタンジオールモノメタクリレート、ポリテトラメチレングリコールモノメタクリレートなどが挙げられる。なかでも、入手が容易で接着向上の傾向がみられるアクリル酸2-ヒドロキシエチルおよびメタクリル酸2-ヒドロキシエチルが好ましい。
 カルボキシル基を有する(メタ)アクリル系単量体として、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、β-カルボキシエチルアクリレートなどが挙げられる。
 アミド基を有する(メタ)アクリル系単量体として、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミド、N-メチロールアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N-(3-ヒドロキシプロピルアクリルアミド)、N-(4-ヒドロキシブチル)アクリルアミドなどが挙げられる。なかでも、入手が容易で接着向上の傾向がみられるN-(2-ヒドロキシエチル)アクリルアミドが好ましい。
 ウレア基を有する(メタ)アクリル系単量体として、N-(2-メタクリロイルオキシエチル)エチレンウレア、N-(2-メタクリルアミドエチル)エチレンウレアなどが挙げられる。なかでも、入手が容易で接着向上の傾向がみられるN-(2-メタクリロイルオキシエチル)エチレンウレアが好ましい。
 その他の(メタ)アクリル系単量体として、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸ベンジル、イソボルニルアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸イソブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸ベンジル、イソボルニルメタクリレート;トリフルオロエチルメタクリレートなどのアクリル酸(フルオロ)アルキルエステル;ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレートなどのジシクロペンテニル基を有するアクリル系単量体;グリシジルアクリレート、メチルグリシジルアクリレート、グリシジルメタクリレート、メチルグリシジルメタクリレート、ビニルベンジルグリシジルエーテル、3,4-エポキシシクロヘキシルメチルメタクリレートなどの側鎖にエポキシ基を有する(メタ)アクリル系単量体;N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルメタクリレートなどのアミノ基含有アクリル系単量体、アクリル酸2-メトキシエチル、アクリル酸2-エトキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸2-エトキシエチルなどのメトキシ基またはエトキシ基を有するアクリル系単量体、N-ビニル-2-ピロリドン、ダイアセトンアクリルアミドなどのカルボニル基含有アクリル系単量体、アクリル酸亜鉛、メタクリル酸亜鉛、ハイブリッドポリエステルアクリレートオリゴマー「サートマー(登録商標)CN-2402」(サートマー(株)社のZn含有アクリルオリゴマー)、ハイブリッドポリウレタンオリゴマー「サートマー(登録商標)2405」(サートマー(株)社のZn含有アクリルオリゴマー)などの分子中に金属原子(Zn、Al、Ca、Mg、Zr、Cuなど)を含有するモノマー、オリゴマーなどが例示される。これらは単独で使用しても2種類以上を混合して使用してもよい。
 (メタ)アクリル系重合体は、メタクリル酸2-ヒドロキシエチル単位、N-(2-ヒドロキシエチル)アクリルアミド単位およびN-(2-メタクリロイルオキシエチル)エチレンウレア単位から選ばれた1種以上の(メタ)アクリル系単量体単位を含むことが、入手容易性および接着性向上の観点から好ましい。
 前記(メタ)アクリル系重合体は、強化繊維との親和性および熱可塑性樹脂との親和性を高めて、力学特性に優れる繊維強化熱可塑性樹脂組成物を得る観点および使用する材料のコストの観点より、好ましくはカルボキシル基含有(メタ)アクリル系単量体単位0~5質量%、水酸基含有(メタ)アクリル系単量体単位3~25質量%、およびアルキル基の炭素原子数が1~4個の(メタ)アクリル酸アルキルエステル単位70~97質量%を含む(メタ)アクリル系重合体である。より好ましくはカルボキシル基含有(メタ)アクリル系単量体単位0~3質量%、水酸基含有(メタ)アクリル系単量体単位3~20質量%、およびアルキル基の炭素原子数が1~4個の(メタ)アクリル酸アルキルエステル単位77~97質量%を含む(メタ)アクリル系重合体である。ここで、(メタ)アクリル酸アルキルエステルとは、アクリル酸アルキルエステルまたはメタクリル酸アルキルエステルを意味する。
 繊維強化熱可塑性樹脂組成物に含まれる(メタ)アクリル系重合体における(メタ)アクリル系単量体単位の同定には、IR、NMR、質量分析および元素分析等の通常の高分子化合物の分析手法を用いて行うことができる。必要に応じて、繊維強化熱可塑性樹脂組成物から(メタ)アクリル系重合体を分離するために、GPCなどの液体クロマトグラフィーを用いて分取する方法、または熱可塑性樹脂と(メタ)アクリル系重合体とを溶解できる溶媒へ溶かして、熱可塑性樹脂と(メタ)アクリル系重合体との溶解度差を利用して(メタ)アクリル系重合体のみを再沈殿させて分離する方法などを適用できる。
 前記(メタ)アクリル系重合体は、下式で算出される凝集エネルギー密度CEDが385~550MPaであることが重要である。本発明において、(メタ)アクリル系重合体は、強化繊維と熱可塑性樹脂とのバインダーとして機能するので、強化繊維およびマトリックス樹脂双方に対する親和性がバランス良く優れていることが重要である。凝集エネルギー密度を前記範囲とすることで、強化繊維およびマトリックス樹脂双方に対する浸透性、ヌレ性および親和性が良好となり、良好な界面接着性が発揮される。凝集エネルギー密度CEDは、好ましくは、395~500MPa、より好ましくは、400~450MPa、さらに好ましくは、405~420MPaである。凝集エネルギー密度が高すぎても、低すぎても、親和性のバランスが崩れて、界面接着性が低下する。
 ここで、(メタ)アクリル系共重合体の凝集エネルギー密度CED(単位MPa)の算出方法について説明する。(メタ)アクリル系重合体に含まれる(メタ)アクリル単量体単位の種類をm種類として、各(メタ)アクリル系単量体単位をそれぞれ(メタ)アクリル系単量体単位(n)(nは1~mの整数)としたとき、CEDは、以下の式で算出する。ただしΣP(n)=1である。
CED=1.15×Σ{P(n)×CE(n)}/Σ{P(n)×M(n)}
ここで、CE(n)は、(メタ)アクリル系単量体単位(n)の化学構造CS(n)から計算された凝集エネルギーを意味する。また同様に、M(n)は(メタ)アクリル系単量体単位(n)の分子量を、P(n)は(メタ)アクリル系重合体中の(メタ)アクリル系単量体単位(n)のモル分率を意味する。ここで、CS(n)は、(メタ)アクリル系単量体単位(n)の化学構造、すなわち単量体のC=C二重結合が開いた状態の化学構造である。また、係数1.15は、メタ)アクリル系単量体単位の比重を表す。
 CE(n)はCE(n)=ΣEcoh(n)で算出する。ここで、ΣEcoh(n)は化学構造CS(n)を構成する、例えば、-CH、-CH-、>C<、-COOH、-OHなどの原子団の凝集エネルギーEcoh(n)の総和を表す。ここで、各原子団の凝集エネルギーは、参考文献:(1)R.F.Fedors:「A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids」, Polm. Eng. Sci., 14(2).147-154(1974)、および、参考文献:(2)「SP値 基礎・応用と計算方法」((株)情報機構)、第6刷、p69、2008を参照し、R.F.Fedors が提案している原子団の凝集エネルギーEcoh(J/mol)を使用した。
 一例として、メタクリル酸、メタクリル酸2-ヒドロキシエチル、メタクリル酸メチルなどがラジカル重合した化学構造の凝集エネルギー算出例を表1-1に示した。
 表1-1中、MAAはメタクリル酸単位を表し、HEMAはメタクリル酸2-ヒドロキシエチル単位を表し、4HBMAはメタクリル酸4-ヒドロキシブチル単位を表し、MMAはメタクリル酸メチル単位を表し、BMAはメタクリル酸n-ブチル単位を表し、EHMAはメタクリル酸2-エチルへキシル単位を表す。これらの略号は、以下の説明でも使用する。
Figure JPOXMLDOC01-appb-T000001
 MAAを例に取り、(メタ)アクリル単量体単位(n)の凝集エネルギーCE(n)の算出方法を説明する。表1-1の原子団のEcoh(J/mol)の欄には-CH-などの各原子団の凝集エネルギー(J/mol)を示している。MAA欄左の枠には、MAA中に含まれるそれぞれの原子団の数を示し、右の枠にはそれぞれの原子団の凝集エネルギー(J/mol)と原子団の数の積を示した。MAA欄、右枠を縦に合計したものがMAAの凝集エネルギーCE(n)である。
 (メタ)アクリル系単量体単位としてMAA、HEMA、MMAおよびBMAを使用する(メタ)アクリル系重合体を例に取り、凝集エネルギーCEの算出方法を説明する。
 ここで、本例では、各単量体単位の比率が、MMA/BMA/MAA/HEMA=35/54/1/10(=100)(質量%)=0.427/0.464/0.014/0.095(=1.000)(モル分率)とする。
 MMAの単量体単位構造(C=C二重結合が開いた状態)の分子量は100、凝集エネルギーは33830J/mol、BMAの単量体単位構造の分子量は142、凝集エネルギーは48650J/mol、MAAの単量体単位構造の分子量は86、凝集エネルギーは38750J/mol、HEMAの単量体単位構造の分子量は130、凝集エネルギーは60850J/molであるから、(メタ)アクリル系重合体の凝集エネルギー密度CED=1.15×(0.427×33830+0.464×48650+0.014×38750+0.095×60850)/(0.427×100+0.464×142+0.014×86+0.095×130)=408MPaとなる。
 前記(メタ)アクリル系重合体を構成する全ての(メタ)アクリル系単量体単位のうち、アクリロイルオキシ基またはメタクリロイルオキシ基が、水素および/または1級炭素原子に結合した(メタ)アクリル系単量体単位が60質量%以上であることが好ましい。より好ましくは75質量%以上、さらに好ましくは90質量%以上である。この範囲とすることで、(メタ)アクリル系重合体が比較的柔軟になり、強化繊維と(メタ)アクリル系重合体および、(メタ)アクリル系重合体と熱可塑性樹脂との接着において、界面部分すなわち接着部分を柔軟に保つことで、接着性を高めることができる。
 前記(メタ)アクリル系重合体は、(メタ)アクリル系重合体自体の硬さと強靱性とのバランスを保ち、十分な接着強度を確保する観点から、動的粘弾性試験で求められるtanδが、好ましくは50~100℃である。より好ましくは55~90℃、さらに好ましくは60~80℃である。
 また、同様の観点から、前記(メタ)アクリル系重合体の動的粘弾性試験で求められるヤング率E’が180~600MPaであることが好ましい。より好ましくは200~580MPa、さらに好ましくは240~560MPaである。
 (メタ)アクリル系重合体のtanδおよびヤング率E’は動的粘弾性測定装置、例えば「Reogel E4000」((株)ユービーエム社製)を使用し、測定することができる。tanδおよびヤング率E’の測定条件は、測定法:動的粘弾性率測定(正弦波)、測定モード:温度依存性、チャック:引張、波形:正弦波、加振の種類:ストップ加振、初期荷重:初期歪み制御(0.02mm)、条件:周波数1Hz、測定開始温度10℃、ステップ温度1℃、測定終了温度170℃、昇温速度4℃/分とする。
 前記(メタ)アクリル系重合体の重量平均分子量Mwは、強化繊維を均一に被覆できるように被膜形成が可能である観点、および(メタ)アクリル系重合体自体の強度を確保して接着性を高める観点、さらには(メタ)アクリル系重合体とマトリックス樹脂との分子鎖同士の絡み合いを形成して相互作用を高める観点から、5,000~500,000の範囲であることが好ましい。より好ましくは10,000~200,000、さらに好ましくは20,000~80,000である。なお重量平均分子量の測定はゲルパーミエーションクロマトグラフィー(GPC)を用いて測定する。
 また、前記(メタ)アクリル系重合体は、カルボン酸塩基、スルホン酸塩基およびリン酸塩基から選ばれた基を含むことが好ましい。これは、強化繊維との相互作用を高めるうえでこれらの基を含むことが効果的であるためである。より好ましくはスルホン酸塩基である。なお、これらの基は、(メタ)アクリル系重合体に結合している。塩としては、リチウム塩、カリウム塩、ナトリウム塩およびアンモニウム塩から選ばれた塩が工業的に好ましい。塩への転化率は、繊維との接着性の観点より、好ましくは50~100%、より好ましくは70~100%、さらに好ましくは85~100%である。したがって、(メタ)アクリル系重合体におけるカルボン酸塩基、スルホン酸基およびリン酸塩基は、全て塩に転化されていることが望ましいが、一部遊離酸基が残存していてもよい。前記のような酸基の塩成分を分析する手法としては、ICP発光分析で塩を形成している金属種の検出を行う方法や、IR、NMR、質量分析および元素分析等を用いて酸基の塩の構造を同定する方法などが挙げられる。
 塩への転化率の測定方法について、スルホン酸基の場合を例にして説明する。有機溶媒中に(メタ)アクリル系重合体を溶解し、0.1規定の水酸化カリウム-エタノール標準液で滴定し、(メタ)アクリル系重合体の酸価を下式より求め、スルホン酸基の総モル数と比較して算出する方法などが挙げられる。
 酸価=(5.611×A×F)/B (mgKOH/g)
 A:0.1規定水酸化カリウム-エタノール標準液使用量(ml)
 F:0.1規定水酸化カリウム-エタノール標準液のファクター
 B:試料採取量(g)。
 前記で算出した酸価を下式を用いて塩に転化されていないスルホン酸基のモル数に換算する。
塩に転化されていないスルホン酸基のモル数=酸価×1000/56(モル/g)。
 スルホン酸基の塩への転化率は、別途IR、NMRおよび元素分析等を用いてスルホン酸基のスルホニル基の硫黄の定量をおこなって算出したスルホン酸基の総モル数(モル/g)を用いて下式にて算出する。
 転化率(%)=(1-r)×100(%)
 r:塩に転化されていないスルホン酸基のモル数/スルホン酸基の総モル数。
 また、強化繊維との相互作用を高める観点から、前記(メタ)アクリル系重合体に含まれるスルホン酸塩基の含有量は、(メタ)アクリル系重合体1g当たり、-(O=)S(=O)-O-で表される基換算で総量0.01~1ミリモル当量であることが好ましい。より好ましくは0.03~0.8ミリモル当量、さらに好ましくは0.05~0.5ミリモル当量である。スルホン酸塩基の含有量を分析する手法としては、ICP発光分析で塩を形成している金属種の検出を定量的に行う方法や、IR、NMRおよび元素分析等を用いてスルホン酸塩のスルホニル基の硫黄の定量をおこなう方法が挙げられる。
 次に、繊維強化熱可塑性樹脂に含まれる熱可塑性樹脂について、説明する。熱可塑性樹脂としては、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや;ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや;ポリオキシメチレン(POM);ポリアミド(PA);ポリフェニレンスルフィド(PPS)などのポリアリーレンスルフィド;ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN);ポリテトラフルオロエチレンなどのフッ素系樹脂;液晶ポリマー(LCP)」などの結晶性樹脂;「スチレン系樹脂、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」などの非晶性樹脂;;フェノール系樹脂、フェノキシ樹脂;さらにポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリブタジエン系エラストマー、ポリイソプレン系エラストマー、フッ素系樹脂およびアクリロニトリル系エラストマー等の各種熱可塑エラストマー等;これらの共重合体および変性体等から選ばれる少なくとも1種の熱可塑性樹脂が好ましく用いられる。強度の観点からは、ポリアミドが好ましい。表面外観の観点からは、ポリカーボネートやスチレン系樹脂のような非晶性樹脂が好ましい。耐熱性の観点からは、ポリアリーレンスルフィドが好ましい。連続使用温度の観点からは、ポリエーテルエーテルケトンが好ましい。耐薬品性の観点からは、フッ素系樹脂が好ましい。得られる成形品の軽量性の観点からは、ポリオレフィンが好ましい。中でも、ポリオレフィンが好ましく、とりわけ、コストおよび一般産業への汎用性の観点から、ポリプロピレンが好ましい。なお、熱可塑性樹脂としては、本発明の目的を損なわない範囲で、これらの熱可塑性樹脂を複数種含む熱可塑性樹脂組成物が用いられても良い。
 熱可塑性樹脂としてポリオレフィン樹脂が用いられる場合には、(メタ)アクリル系重合体との親和性の観点から、カルボキシル基、酸無水物基、およびエポキシ基より選ばれる少なくとも1種の官能基を含む変性ポリオレフィン樹脂であることが好ましい。変性ポリオレフィン樹脂の例としては、(無水)マレイン酸変性ポリエチレン、(無水)マレイン酸変性エチレン-プロピレン共重合体、(無水)マレイン酸変性ポリプロピレン、(無水)マレイン酸変性エチレン-酢酸ビニル共重合体、(無水)マレイン酸変性プロピレン-エチレン共重合体、グリシジル(メタ)アクリレート変性ポリエチレン、グリシジル(メタ)アクリレート変性エチレン-プロピレン共重合体、グリシジル(メタ)アクリレート変性エチレン-酢酸ビニル共重合体、グリシジル(メタ)アクリレート変性プロピレン-エチレン共重合体、2-ヒドロキシエチル(メタ)アクリレート変性エチレン、2-ヒドロキシエチル(メタ)アクリレート変性エチレン-プロピレン共重合体、2-ヒドロキシエチル(メタ)アクリレート変性エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-2-ヒドロキシエチル(メタ)アクリレート共重合体、エチレン-グリシジル(メタ)アクリレート共重合体、エチレン-ポリエチレングリコールモノ(メタ)アクリレート共重合体、エチレン-酢酸ビニル-(メタ)アクリル酸共重合体、エチレン-エチル(メタ)アクリレート-(無水)マレイン酸共重合体、エチレン-酢酸ビニル-(無水)マレイン酸共重合体、エチレン-酢酸ビニル-2-ヒドロキシエチル(メタ)アクリレート共重合体、エチレン-酢酸ビニル-グリシジル(メタ)アクリレート共重合体、エチレン-酢酸ビニル-ポリエチレングリコールモノ(メタ)アクリレート共重合体、およびエチレン-酢酸ビニル共重合体の部分ケン化物等が挙げられる。なかでも、(無水)マレイン酸変性ポリプロピレン、(無水)マレイン酸変性エチレン-プロピレン共重合体、およびグリシジル(メタ)アクリレート変性ポリプロピレン等の変性体が好ましく用いられる。なお、(無水)マレイン酸変性ポリプロピレンとは、マレイン酸変性ポリプロピレン、または、無水マレイン酸変性ポリプロピレンのことを意味する。
 繊維強化熱可塑性樹脂組成物における(メタ)アクリル系重合体の含有量は、0.1~10質量%の範囲内であることが必要である。含有量が0.1質量%未満の場合は、良好な接着性を安定して発現できない場合がある。一方、含有量が10質量%よりも多くなると、得られる成形品の力学特性が極端に低下したりする場合がある。(メタ)アクリル系重合体の含有量は、好ましくは0.1~8質量%、より好ましくは0.1~5質量%である。
 また、繊維強化熱可塑性樹脂組成物における強化繊維の含有量は、1~70質量%であることが必要である。強化繊維の含有量が1質量%未満の場合、強化繊維による補強効果が不十分となり、得られる成形品の力学特性が十分でない場合がある。強化繊維の含有量が70質量%よりも多くなる場合、強化繊維間への熱可塑性樹脂の含浸が不十分となり、結果として得られる成形品の力学特性が十分でない場合がある。強化繊維の含有量は、好ましくは5~60質量%であり、さらに好ましくは10~45質量%である。
 また、繊維強化熱可塑性樹脂組成物における熱可塑性樹脂の含有量は、20~98.9質量%であることが必要である。熱可塑性樹脂の含有量が20%未満の場合、強化繊維間に熱可塑性樹脂が十分に含浸せずに、結果として得られる成形品の力学特性が不十分となる場合がある。熱可塑性樹脂の含有量は、好ましくは30~98.9質量%、より好ましくは、40~94.9質量%、さらに好ましくは、50~89.9質量%である。
 [強化繊維束]
 本発明の(メタ)アクリル系重合体が付着した強化繊維束において、(メタ)アクリル系重合体の強化繊維束への付着量は、(メタ)アクリル系重合体および強化繊維の合計に対して、0.1~30質量%の範囲内であることが重要である。(メタ)アクリル系重合体の付着量が0.1質量%未満の場合は、強化繊維を被覆できない部分が存在し、良好な接着性を安定して発現できない場合がある。さらには強化繊維束の取り扱い性が不十分となる場合がある。ここで言う取り扱い性とは例えば、強化繊維束をボビンに巻き取る際の繊維束の硬さや、さばけ易さであったり、強化繊維束をカットしてチョップド糸として使用する場合には、チョップド糸の集束性のことを言う。一方、(メタ)アクリル系重合体の付着量が30質量%よりも多くなると、得られる成形品の力学特性が極端に低下する場合や、強化繊維束が極端に硬くなり、ボビンに巻けなくなるなどの不具合を生じる場合がある。(メタ)アクリル系重合体の付着量は、接着性と強化繊維束の取り扱い性とのバランスから、好ましくは1~20質量%であり、さらに好ましくは3~10質量%である。
 強化繊維束に用いられる強化繊維は、前記した繊維強化熱可塑性樹脂組成物における強化繊維と同様の思想で選定することができる。
 また、強化繊維束に用いられる(メタ)アクリル系重合体は、前記した繊維強化熱可塑性樹脂組成物における(メタ)アクリル系重合体と同様の思想で選定することができる。
 とりわけ、前記(メタ)アクリル系重合体を構成する全ての(メタ)アクリル系単量体単位のうち、アクリロイルオキシ基またはメタクリロイルオキシ基が、水素および/または1級炭素原子に結合した(メタ)アクリル系単量体単位が60質量%以上であることが好ましい。より好ましくは75質量%以上、さらに好ましくは90質量%以上である。この範囲とすることで、(メタ)アクリル系重合体が比較的柔軟になり、接着性を確保すると同時に、強化繊維束の取り扱い性を高めることができる。
 また、強化繊維束には、(メタ)アクリル系重合体の他に、本発明の効果を損なわない範囲で他の成分が付着していても構わない。例えば、(メタ)アクリル系重合体のエマルジョンを強化繊維束に付与する場合は、エマルジョンを安定化させる界面活性剤などを別途加えていても構わない。さらに、強化繊維束に集束性を与え、取り扱い性を確保する観点から、ウレタン系樹脂、ポリアミド系樹脂、エポキシ系樹脂、アクリル系樹脂などの組成物を適宜付与してもよい。
 また、強化繊維として、強化繊維束をカットして得られるチョップド糸を用いても良い。この場合、強化繊維の補強効果を高める観点と、分散を良好にする観点から、チョップド糸の長さは、好ましくは1~60mm、より好ましくは2~30mm、さらに好ましくは3~10mmである。
 (メタ)アクリル系重合体を強化繊維束に付着させる方法については、特に制限はないが、均一に単繊維間に付着させやすいという観点から、(メタ)アクリル系重合体のエマルジョンを強化繊維束に付与したのちに乾燥させる方法が好ましい。強化繊維束にエマルジョンを付与する方法としては、ローラー浸漬法、ローラー転写法、スプレー法などの既存の手法により付与する方法を用いることができる。
 本発明の(メタ)アクリル系重合体が付着した強化繊維束とマトリックス樹脂との接着性の指標として、以下に示すマトリックス樹脂との界面剪断強度を評価する。界面剪断強度が高いと、接着性も高い傾向となる。この界面剪断強度は12MPa以上であることが好ましく、より好ましくは13MPa以上である。
ここで、評価に用いるマトリックス樹脂は、未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ(登録商標)”J105G)50質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー(登録商標)”QB510)50質量%とからなるポリプロピレン樹脂組成物である。
 以下、界面剪断強度の評価詳細について説明する。評価にあたってはDrzal, L.T., Mater. Sci. Eng. A126, 289(1990)を参考にした。
 (メタ)アクリル系重合体が付着した強化繊維束より、長さ20cmの単繊維1本を取り出す。続いて未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ(登録商標)”J105G)50質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー(登録商標)”QB510)50質量%とからなる厚み150μmの樹脂フィルムを20×20cm角の大きさで2枚作製し、前記取り出した単繊維を1枚目の樹脂フィルム上に直線状に配置する。もう1枚の樹脂フィルムを、前記単繊維を挟むように重ねて配置し、200℃で3分間、0.5MPaの圧力で加圧プレスし、単繊維が樹脂に埋め込まれたサンプルを作製する。得られたサンプルを切り出し、短繊維が中央に埋没した厚さ0.2mm、幅10mm、長さ70mmの試験片を得る。前記と同様にして試験片を10ピース作製する。
 この試験片を通常の引張試験治具を用いて、試験長25mmに設定し、歪速度0.5mm/minで引張試験を行う。単繊維の破断がもはや起こらなくなった時の、単繊維の全ての断片の長さを透過型顕微鏡で測定し、それを平均することにより平均破断繊維長lを得る。
 界面剪断強度(τ)は下式より求める。
 τ=(σf ・d)/(2・lc )
 lc =(4/3)・l
 ここで、l(μm)は上記の平均破断繊維長、σf(MPa) は単繊維の引張強さ、d(μm)は単繊維の直径である。
 σf は、強化繊維の引張強度分布がワイブル分布に従うとして次の方法により求める。即ち、樹脂に埋め込まずに単繊維のみの引張試験を用い、試料長がそれぞれ5mm、25mm、50mmで得られた平均引張強度から最小2乗法により、試料長と平均引張強度との関係式を求め、試料長lc の時の平均引張強度を算出する。
 本発明における強化繊維束の好ましい形状の一つとして、連続繊維であるロービングを所定の長さにカットしたチョップド糸および粉砕したミルド糸が挙げられる。取扱い性の観点から、チョップド糸が好ましく用いられる。このチョップド糸における繊維長さは特に限定されるものでは無いが、集束性を十分に発揮し、カットされたあとの形状を十分に維持し、かつ、取扱いやすい観点から、1~30mmの範囲が好ましく、2~15mmの範囲がより好ましい。チョップド糸の集束性が不足すると、チョップド糸を搬送する際などの擦過で毛羽立ちが発生し、ファイバーボールとなって取扱い性が悪くなる場合がある。特にコンパウンド用途への使用時には、ファイバーボール発生により押出機へのチョップド糸の供給性が悪くなり、生産性を低下させる可能性がある。
 本発明の(メタ)アクリル系重合体が付着した強化繊維束と組み合わせるマトリックス樹脂については、前記した繊維強化熱可塑性樹脂組成物における熱可塑性樹脂と同様の思想で選定することができる。
 本発明の(メタ)アクリル系重合体が付着した強化繊維束を熱可塑性樹脂と組み合わせて、樹脂組成物とする場合には、強化繊維による補強効果と、成形性や軽量性の観点から、(メタ)アクリル系重合体が付着した強化繊維束が1~70質量%、熱可塑性樹脂が30~99質量%であることが好ましい。より好ましくは、(メタ)アクリル系重合体が付着した強化繊維束が5~60質量%、熱可塑性樹脂が40~95質量%、さらに好ましくは、(メタ)アクリル系重合体が付着した強化繊維束が10~50質量%、熱可塑性樹脂が50~90質量%である。
 本発明の繊維強化熱可塑性樹脂組成物を用いた成形方法については、特に制限はなく、射出成形、ホットプレス成形、スタンピング成形などの通常の成形方法が用いられる。中でも、成形サイクルが短く、生産性に優れる射出成形、およびスタンピング成形が好ましい。
 本発明の(メタ)アクリル系重合体が付着した強化繊維束を用いた成形方法については、特に制限はなく、(1)本発明の(メタ)アクリル系重合体が付着した強化繊維束とマトリックス樹脂を一度溶融混練したコンパウンドペレットを用いた成形方法、(2)(メタ)アクリル系重合体が付着した強化繊維束をマトリックス樹脂ペレットと混合してなる成形材料を直接成形機に供給し、または(メタ)アクリル系重合体が付着した強化繊維束とマトリックス樹脂ペレットとを個別に直接成形機に供給し、成形品型に注入、冷却固化させる直接成形法、(3)(メタ)アクリル系重合体が付着した強化繊維束をマトリックス樹脂で被覆した長繊維ペレットを用いた成形方法などがある。
 以下に、本願第2発明の望ましい実施の形態について説明する。
[繊維強化熱可塑性樹脂組成物の製造方法]
 本発明の繊維強化熱可塑性樹脂組成物の製造方法の第1の形態は、次の第1a工程、第2a工程、第3a工程および第4a工程を含む繊維強化熱可塑性樹脂組成物の製造方法である。
第1a:不連続な強化繊維束をシート状の強化繊維基材(A1)に加工する工程
第2a:第1a工程で得られた強化繊維基材(A1)1~70質量部に、側鎖に水酸基を有する(メタ)アクリル系重合体を0.1~10質量部を付与する工程
第3a:第2a工程で得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%に、熱可塑性樹脂20~98.9質量%を複合化して、繊維強化熱可塑性樹脂組成物を得る工程
第4a:第3a工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
 ここで強化繊維束とは、強化繊維から構成される繊維束を意味する。また、強化繊維束を構成する単繊維の本数には、特に制限はないが、生産性の観点からは24,000本以上が好ましく、48,000本以上がさらに好ましい。単繊維の本数の上限については、特に制限はないが、分散性や取り扱い性とのバランスも考慮して、300,000本以下が好ましい。
 強化繊維束の長さは、1~30mmであることが好ましく、3~30mmであることがより好ましい。1mm未満であると強化繊維による補強効果を効率良く発揮することが困難となるおそれがあり、30mmを超えると分散を良好に保つのが困難となるおそれがある。強化繊維束の長さとは、強化繊維束を構成する単繊維の長さをいい、強化繊維束の繊維軸方向の長さをノギスで測定する、あるいは強化繊維束から単繊維を取り出し顕微鏡で観察して測定され得る。また成形材料中の強化繊維の長さを測定するには、以下のようにして繊維強化熱可塑性樹脂組成物から強化繊維を分離して測定することができる。繊維強化熱可塑性樹脂組成物の一部を切り出し、結着している熱可塑性樹脂を溶解させる溶媒により、熱可塑性樹脂を充分溶解させる。その後濾過などの公知の操作により熱可塑性樹脂から強化繊維を分離する。あるいは、繊維強化熱可塑性樹脂組成物の一部を切り出し、500℃の温度で2時間加熱し、熱可塑性樹脂を焼き飛ばして熱可塑性樹脂から強化繊維を分離する。分離された強化繊維を無作為に400本抽出し、光学顕微鏡もしくは走査型電子顕微鏡にてその長さを10μm単位まで測定し、その平均値を繊維長とする。
 本発明の繊維強化熱可塑性樹脂組成物の製造方法に用いられる強化繊維は、前記した繊維強化熱可塑性樹脂組成物における強化繊維と同様の思想で選定することができる。
 第1a工程では、不連続な強化繊維束をシート状の強化繊維基材(A1)に加工するにあたり、乾式法、あるいは湿式法を用いることができる。等方的で力学特性の高い強化繊維基材(A1)を得るためには、強化繊維束を高度に分散させて均一に強化繊維が分散した基材とすることが好ましい。
 乾式法により第1a工程を行う場合、強化繊維束を気相中で分散させて、分散後の強化繊維束を堆積させて、シート状の強化繊維基材(A1)を得ることができる。
 強化繊維束の気相中での分散は、強化繊維束を非接触式で開繊し、開繊した強化繊維束を堆積させて行う方法(非接触式法)、および、強化繊維束を接触式で開繊し、開繊した強化繊維束を堆積させて行う方法(接触式法)がある。
 非接触式法は、強化繊維束に固体や開繊装置を接触させることなく開繊させる方法である。例えば、空気や不活性ガスなどの気体を強化繊維束に吹き付ける方法、なかでもコスト面で有利な空気を加圧して吹き付ける方法が好ましく挙げられる。
 空気流を用いる方法において、強化繊維束に対し空気流を当てる条件は特に限定されない。一例を挙げると、加圧空気(通常0.1MPa以上10MPa以下、好ましくは0.5MPa以上5MPa以下の圧力がかかるような空気流)を強化繊維束が開繊するまで当てる。空気流を用いる方法において、使用し得る装置は特に限定されないが、空気管を備え、空気吸引が可能であり、強化繊維束を収容し得る容器が例示できる。かかる容器を用いることにより、強化繊維束の開繊と堆積を一つの容器内で行うことができる。
 接触式法とは、強化繊維束に固体や開繊装置を物理的に接触させて開繊させる方法である。接触式法としては、カーディング、ニードルパンチおよびローラー開繊が例示される。このうちカーディングまたはニードルパンチが好ましく、カーディングによることがより好ましい。接触式法の実施条件は特に限定されず、強化繊維束が開繊する条件を適宜定めることができる。
 湿式法により第1a工程を行う場合、強化繊維束の分散を水中で行い、得られるスラリーを抄造して、シート状の強化繊維基材(A1)を得ることができる。
 強化繊維束を分散させる水(分散液)は、通常の水道水のほか、蒸留水、精製水等の水を使用することができる。水には必要に応じて界面活性剤や増粘剤を混合し得る。界面活性剤は、陽イオン型、陰イオン型、非イオン型および両性の各種に分類されるが、このうち非イオン性界面活性剤が好ましく用いられ、中でもポリオキシエチレンラウリルエーテルがより好ましく用いられる。増粘剤はポリアクリルアミド、ポリエチレンオキシド、でんぷんなどが好ましく用いられる。界面活性剤や増粘剤を水に混合する場合の濃度は、好ましくは0.0001質量%以上0.1質量%以下、より好ましくは0.0003質量%以上0.05質量%以下である。
 スラリーとは固体成分が分散している懸濁液を言う。スラリーにおける固体成分濃度は、0.001質量%以上1質量%以下であることが好ましく、0.01質量%以上0.5質量%以下であることがより好ましい。ここで、スラリーにおける固体成分濃度とは、スラリー中に固体成分として強化繊維以外の成分が含まれていない場合には、スラリー中の強化繊維の質量含有率を意味し、スラリー中に強化繊維以外にも、例えば熱可塑性樹脂の繊維あるいは粒子などの固体成分を含む場合には、それら全ての固体成分のスラリー中の質量含有率のことを意味する。スラリーにおける固体成分濃度が0.01質量%以上1質量%以下であることにより、均一に分散したスラリーを短時間で得ることができ抄造を効率よく行うことができる。水(分散液)に対し強化繊維束を分散させる際には、必要に応じて撹拌を行う。
 スラリーの抄造は、上記スラリーから水を吸引して行うことができる。スラリーの抄造は、いわゆる抄紙法に倣って行うことができる。一例を挙げて説明すると、底部に抄紙面を有し水を底部から吸引できる槽に、スラリーを流し込み、水を吸引する。前記槽としては、熊谷理機工業株式会社製、No.2553-I(商品名)、底部に幅200mmの抄紙面を有するメッシュコンベアを備える槽が例示される。このようにして強化繊維基材(A1)が得られる。
 固形成分が均一に配合された抄造体を製造するためには、原料スラリーを抄造工程に供給する前にスラリー濃度を希釈することが一般的である(例えば、特開2006-104608号公報参照)。具体的には、スラリーにおける強化繊維の分散性を保つために、まず強化繊維濃度の高いスラリーを作成し、次にこれを希釈して強化繊維濃度の低いスラリーとすることが提案されている。しかし、2段階を踏むことにより作業が煩雑となるとともに、スラリーの分散媒体への親和性の低い強化繊維の場合、強化繊維濃度の高いスラリーの作製は非常に難しいという問題点がある。
 そこで、湿式法による強化繊維基材(A1)を製造する際には、次の方法で製造することがより好ましい。すなわち、分散媒体に不連続な強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒中に分散したスラリーを調製する工程(ii)と、前記スラリーより分散媒体を除去して強化繊維基材(A1)を得る工程(iii)とを含み、前記工程(ii)で調製されたスラリー中の強化繊維の質量含有率をC1とし、前記工程(iii)開始時のスラリー中の強化繊維の質量含有率をC2とした場合に、C1/C2が0.8以上1.2以下の範囲である強化繊維基材(A1)の製造方法である。この強化繊維基材(A1)の製造方法によれば、スラリー調整の際の分散媒体への親和性の低い強化繊維にも適用でき、抄造時の強化繊維の繊維分散性を保持し、樹脂等を配合し成形品とした場合に成形品の力学特性に優れる強化繊維基材(A1)を短時間で得ることができるため好ましい。C1/C2の好ましい範囲は0.8以上1.2以下であるが、0.9以上1.1以下の範囲であることがより好ましい。
 また工程(ii)の所要時間は10分以内であることが好ましく、より好ましくは5分以内であり、さらに好ましくは3分以内である。10分を超えると、強化繊維の種類によっては、スラリー中で分散した強化繊維が再凝集するおそれがある。工程(ii)の所要時間の下限は特に限定されないが、通常は1分以上である。
 工程(iii)へのスラリーの流量は、0.001m/秒以上0.1m/秒以下であることが好ましく、0.005m/秒以上0.05m/秒以下であることがより好ましい。0.001m/秒未満であると供給量が少なく、プロセスに時間がかかるために生産性が悪くなるおそれがあり、0.1m/秒を超えるとスラリーの流速が速いため、スラリーに剪断がかかりやすくなり分散状態が不十分となるおそれがある。
 工程(ii)~(iii)において、繊維濃度パラメータnLを(0<)nL<L/Dの範囲として抄造することが好ましい。ここで各パラメータは以下の通りである。
n:スラリー単位体積当たりに含まれる強化繊維の本数
L:強化繊維の長さ
D:強化繊維の直径。
 図1に強化繊維1を分散媒体2に含むスラリーの模式図を示す。Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics 324(1986)では繊維濃度パラメータnLが、nL<1の場合に希薄状態、1<nL<L/Dの場合に準希薄状態と記載されている。繊維濃度パラメータnLがL/D未満であると、スラリー中に分散した各強化繊維1同士が力学的に干渉しにくくなるため、強化繊維1の再凝集を抑え、スラリー中での強化繊維1の分散性を高めるうえで好ましい。強化繊維1の濃度は低いほど強化繊維1の分散性を高めることができるので好ましいが、得られる強化繊維基材(A1)の目付や厚みを確保したい場合や、強化繊維基材(A1)の生産性を高めたい場合には、強化繊維1の濃度が高い方が有利である。したがって、準希薄状態である1<nL<L/Dの強化繊維濃度で抄造することが好ましい。
 また、得られる強化繊維基材(A1)の含水率は、第2a工程の(メタ)アクリル系重合体の付与工程において、(メタ)アクリル系重合体を付与する前に、脱水や乾燥工程により、好ましくは10質量%以下、より好ましくは5質量%以下に調整されることが好ましい。これにより、第2a工程に要する時間を短縮し、プリプレグを短時間で得ることができる。
 強化繊維の分散が阻害されにくく、強化繊維を良好に分散させる観点および、強化繊維基材(A1)を熱可塑性樹脂と複合させた場合に効率的に補強効果を発現することができる観点からは、強化繊維基材(A1)に占める強化繊維の割合は、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。この場合、後の工程において強化繊維基材に、熱可塑性樹脂を含浸させる割合が多くなる。
 一方、強化繊維基材(A1)に熱可塑性樹脂を容易に含浸しやすくする観点からは、強化繊維基材(A1)を製造する際に、熱可塑性樹脂を繊維状または粒子状の形態にて強化繊維基材(A1)中に混合させることが好ましい。この結果、強化繊維基材(A1)の内部に熱可塑性樹脂が配置されるため、熱可塑性樹脂を加熱溶融して複合化する工程において容易に強化繊維基材(A1)に熱可塑性樹脂が含浸できる。この場合、熱可塑性樹脂は強化繊維基材(A1)に予備的に複合化された状態である。乾式法では、例えば、第1a工程において強化繊維束と繊維状の熱可塑性樹脂とを混合カーディングすることにより実施することができる。湿式法では、例えば第1a工程において、強化繊維束と繊維状または粒子状の熱可塑性樹脂とを混抄することにより実施することができる。
 強化繊維基材(A1)の目付は、10g/m以上500g/m以下であることが好ましく、50g/m以上300g/m以下あることがより好ましい。目付が10g/m未満であると基材の破れなどの取り扱い性に不具合を生じるおそれがある。目付が500g/mを超えると、湿式法では基材の乾燥に長時間かかることや、乾式法ではウェブが厚くなる場合があり、その後のプロセスで取り扱い性が難しくなるおそれがある。
 第2a工程では、第1a工程において得られる強化繊維基材(A1)1~70質量部に、側鎖に水酸基を有する(メタ)アクリル系重合体を0.1~10質量部付与する。(メタ)アクリル系重合体は、工程中における強化繊維基材(A2)の取り扱い性を高める観点および強化繊維と熱可塑性樹脂との界面接着性に対して重要である。(メタ)アクリル系重合体が0.1質量部よりも少なくなると、強化繊維基材(A2)を引き取ることが困難となり、繊維強化熱可塑性樹脂組成物の生産効率が悪くなる。また、10質量部よりも多くなると、強化繊維と熱可塑性樹脂との界面接着性に劣ることになる。
 (メタ)アクリル系重合体が水酸基を有することで、(メタ)アクリル系重合体同士の相互作用を高め、強化繊維基材(A2)の取り扱い性を高める効果がみられる。また、強化繊維と熱可塑性樹脂との界面接着性を高める効果も有する。
 側鎖に水酸基を有する(メタ)アクリル系重合体を形成する水酸基を有する(メタ)アクリル系単量体単位としては、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、グリセリンモノメタクリレート、グリセリル-1-メタクリロイルオキシエチルウレタン、3,4-ジヒドロキシブチル-1-メタクリロイルオキシエチルウレタン、α-ヒドロキシメチルアクリレート、α-ヒドロキシエチルアクリレート、ジエチレングリコールモノアクリレート、トリエチレングリコールモノアクリレート、ポリエチレングリコールモノアクリレート、ジプロピレングリコールモノアクリレート、トリプロピレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート、ジブタンジオールモノアクリレート、トリブタンジオールモノアクリレート、ポリテトラメチレングリコールモノアクリレート、ジエチレングリコールモノメタクリレート、トリエチレングリコールモノメタクリレート、ポリエチレングリコールモノメタクリレート、ジプロピレングリコールモノメタクリレート、トリプロピレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ジブタンジオールモノメタクリレート、トリブタンジオールモノメタクリレート、ポリテトラメチレングリコールモノメタクリレートなどの水酸基含有(メタ)アクリル単量体単位が挙げられる。なかでも、入手が容易なアクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチルが好ましい。これら単量体は単独または混合で使用してもよい。
 側鎖に水酸基を有する(メタ)アクリル系重合体を形成するその他の(メタ)アクリル系単量体単位としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、β-カルボキシエチルアクリレートなどのカルボキシル基含有(メタ)アクリル系単量体、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸ベンジル、イソボルニルアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸イソブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸ベンジル、イソボルニルメタクリレート、トリフルオロエチルメタクリレートなどの(メタ)アクリル酸(フルオロ)アルキルエステル;ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレートなどのジシクロペンテニル基を有する(メタ)アクリル系単量体単位;N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルメタクリレートなどのアミノ基含有(メタ)アクリル系単量体単位;グリシジルアクリレート、メチルグリシジルアクリレート、グリシジルメタクリレート、メチルグリシジルメタクリレート、ビニルベンジルグリシジルエーテル、3,4-エポキシシクロヘキシルメチルメタクリレートなどのエポキシ基含有(メタ)アクリル系単量体単位;アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミド、N-メチロールアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N-(3-ヒドロキシプロピルアクリルアミド)、N-(4-ヒドロキシブチル)アクリルアミドなどのアミド基含有(メタ)アクリル系単量体単位;N-(2-メタクリロイルオキシエチル)エチレンウレア、N-(2-メタクリルアミドエチル)エチレンウレアなどのウレア基含有(メタ)アクリル系単量体単位;アクリル酸2-メトキシエチル、アクリル酸2-エトキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸2-エトキシエチルなどのメトキシ基またはエトキシ基を有する(メタ)アクリル系単量体単位;N-ビニル-2-ピロリドン、ダイアセトンアクリルアミドなどのカルボニル基含有(メタ)アクリル系単量体単位;アクリル酸亜鉛、メタクリル酸亜鉛、ハイブリッドポリエステルアクリレートオリゴマー「サートマー(登録商標)CN-2402」(サートマー(株)社のZn含有アクリルオリゴマー)、ハイブリッドポリウレタンオリゴマー「サートマー(登録商標)2405」(サートマー(株)社のZn含有アクリルオリゴマー)などの分子中に金属原子(Zn、Al、Ca、Mg、Zr、Cuなど)を含有するモノマー、オリゴマーなどが例示される。これらは単独または混合で使用してもよい。
 側鎖に水酸基を有する(メタ)アクリル系共重合体の凝集エネルギー密度CEDは、好ましくは、385~500MPa、より好ましくは、395~450MPa、さらに好ましくは、405~420MPaであるのが望ましい。凝集エネルギー密度が385MPa以上であれば、強化繊維基材(A1)や熱可塑性樹脂に対する浸透性、ヌレ性および親和性が良好となり、良好な界面接着性が発揮される傾向が見られる。
 ここで、上記(メタ)アクリル系共重合体の凝集エネルギー密度CED(単位MPa)の算出方法については、前記した繊維強化熱可塑性樹脂組成物における、(メタ)アクリル系重合体の凝集エネルギー密度CED(単位MPa)の算出方法と同様の方法で算出することができる。
 上記水酸基を有する(メタ)アクリル系単量体単位および、その他の(メタ)アクリル系単量体単位は、アクリロイルオキシ基またはメタクリロイルオキシ基が、水素および/または1級炭素原子に結合した前記(メタ)アクリル系重合体を構成する全ての(メタ)アクリル系単量体単位のうち、アクリロイルオキシ基またはメタクリロイルオキシ基が、水素および/または1級炭素原子に結合した(メタ)アクリル系単量体単位が60質量%以上であることが好ましい。より好ましくは75質量%以上、さらに好ましくは90質量%以上である。この範囲とすることで、(メタ)アクリル系重合体が比較的柔軟になり、強化繊維基材(A2)の取り扱い性を向上させることができること、および(メタ)アクリル系重合体が比較的柔軟になることによって、強化繊維と(メタ)アクリル系重合体および、(メタ)アクリル系重合体と熱可塑性樹脂との接着において、界面部分すなわち接着部分を柔軟に保つことができ、接着性を高めることができる。
 強化繊維基材(A1)への(メタ)アクリル系重合体の付与は、(メタ)アクリル系重合体を含む水溶液、エマルジョンまたはサスペンジョンを用いて行うことが好ましい。水溶液とは、(メタ)アクリル系重合体が水にほぼ完全に溶解した状態の溶液を意味する。エマルジョンとは、分散媒である液体中に(メタ)アクリル系重合体を含む液体が微細粒子を形成して分散している状態を意味する。サスペンジョンとは、固体の(メタ)アクリル系重合体が水に懸濁した状態を意味する。液中の成分粒径の大きさは、水溶液<エマルジョン<サスペンジョンの順である。(メタ)アクリル系重合体を強化繊維基材(A1)に付与する方法は、特に制限されないが、例えば、(メタ)アクリル系重合体を含む水溶液、エマルジョンまたはサスペンジョンに強化繊維基材(A1)を浸漬する方法、(メタ)アクリル系重合体を含む水溶液、エマルジョンまたはサスペンジョンを強化繊維基材(A1)にシャワーする方法等によることができる。付与後は、例えば吸引除去する方法または吸収紙などの吸収材へ吸収させる方法などで、過剰分の水溶液、エマルジョンまたはサスペンジョンを除去しておくことが好ましい。
 さらにこの場合、前記第2a工程において、強化繊維基材(A1)は、(メタ)アクリル系重合体の付与後に加熱されることが好ましい。これにより、(メタ)アクリル系重合体が付与された後の強化繊維基材(A1)に含まれる水分を除去し、第3a工程に要する時間を短縮し、繊維強化熱可塑性樹脂組成物を短時間で得ることができる。加熱温度は、適宜設定することができ、100℃以上300℃以下であることが好ましく、120℃以上250℃以下であることがより好ましい。
 前記第2a工程において得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)は、短時間に多く製造するためには、引き取りを行うことが好ましい。またその際、強化繊維基材(A2)にしわ、たるみが発生しないよう引張強力が1N/cm以上の状態として引き取ることが好ましい。引張強力は、より好ましくは3N/cm以上、さらに好ましくは5N/cm以上である。強化繊維基材(A2)にかけることができる引張強力は、(メタ)アクリル系重合体の種類や付与量を調整することで制御でき、付与量が多くすると引張強力を高くすることができる。また、かけられる引張強力が1N/cm未満の状態となると、強化繊維基材(A2)がちぎれ易い状態であり、強化繊維基材(A2)の取り扱い性の観点からも、引張強力が1N/cm以上あることが好ましい。引張強力の上限は特に限定されないが、100N/cmもあれば、強化繊維基材(A2)の取り扱い性も十分に満足できる状態である。
 第3a工程では、第2a工程において得られる(メタ)アクリル系重合体が付与された強化繊維基材(A2)に熱可塑性樹脂を含浸させ、強化繊維基材(A2)と熱可塑性樹脂とを複合化し、繊維強化熱可塑性樹脂組成物を得る。ここで熱可塑性樹脂としては、前記した繊維強化熱可塑性樹脂組成物における熱可塑性樹脂と同様の思想で選定することができる。中でも、得られる成形品の軽量性の観点からはポリオレフィンが好ましい。強度の観点からはポリアミドが好ましい。表面外観の観点からポリカーボネートやスチレン系樹脂のような非晶性樹脂が好ましい。耐熱性の観点からはポリアリーレンスルフィドが好ましい。連続使用温度の観点からはポリエーテルエーテルケトンが好ましい。耐薬品性の観点からはフッ素系樹脂が好ましく用いられる。なお、熱可塑性樹脂としては、本発明の目的を損なわない範囲で、これらの熱可塑性樹脂の複数種からなる熱可塑性樹脂組成物が用いられても良い。
 得られる繊維強化熱可塑性樹脂組成物に対する強化繊維、(メタ)アクリル系重合体および熱可塑性樹脂の含有量は、強化繊維が1~70質量%、(メタ)アクリル系重合体(B)が0.1~10質量%、熱可塑性樹脂が20~98.9質量%である。この範囲とすることにより、強化繊維の補強を効率良く発揮可能な成形材料が得られ易い。より好ましくは、強化繊維が10~60質量%以下、(メタ)アクリル系重合体が0.5~10質量%、熱可塑性樹脂が30~89.5質量%である。さらに好ましくは、強化繊維が20~60質量%、(メタ)アクリル系重合体が1~8質量%、熱可塑性樹脂が32~79質量%である。
 熱可塑性樹脂と、(メタ)アクリル系重合体が付与された強化繊維基材(A2)との複合化は、熱可塑性樹脂を強化繊維基材(A2)に接触させることにより行うことができる。この場合の熱可塑性樹脂の形態は、特に限定されないが、例えば布帛、不織布およびフィルムから選択される少なくとも1種の形態であることが好ましい。接触の方式は特に限定されないが、熱可塑性樹脂の布帛、不織布またはフィルムを2枚用意し、(メタ)アクリル系重合体が付与された強化繊維基材(A2)の上下両面に配置する方式が例示される。
 熱可塑性樹脂と、(メタ)アクリル系重合体が付与された強化繊維基材(A2)との複合化は、加圧および/または加熱により行われることが好ましく、加圧と加熱の両方が同時に行われることがより好ましい。加圧の条件は0.01MPa以上10MPa以下であることが好ましく、0.05MPa以上5MPa以下であることがより好ましい。加熱の条件は、用いる熱可塑性樹脂が溶融または流動可能な温度であることが好ましく、温度領域では50℃以上400℃以下であることが好ましく、80℃以上350℃以下であることがより好ましい。加圧および/または加熱は、熱可塑性樹脂を(メタ)アクリル系重合体が付与された強化繊維基材(A2)に接触させた状態で行うことができる。例えば、熱可塑性樹脂の布帛、不織布またはフィルムを2枚用意し、(メタ)アクリル系重合体が付与された強化繊維基材(A2)の上下両面に配置し、両面から加熱および/または加熱を行う(ダブルベルトプレス装置で挟み込む方法等)方法が挙げられる。
 本発明は、上記第1a工程~第3a工程のほかに、さらに第4a工程を含む。第4a工程は、前記第3a工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程である。側鎖に水酸基を有する(メタ)アクリル系重合体が付与された強化繊維基材(A2)と熱可塑性樹脂を複合化することにより、強化繊維基材(A2)が熱可塑性樹脂によってより強固に補強されることとなり、上記速度で繊維強化熱可塑性樹脂組成物を引き取ることが可能となる。繊維強化熱可塑性樹脂組成物の引き取りは、ロールに巻き取って行うことができる。引取速度は3m/分であることが好ましく、より好ましくは5m/分、さらに好ましくは10m/分以上である。引取速度の上限は好ましくは、100m/分以下、より好ましくは30m/分以下である。
 繊維強化熱可塑性樹脂組成物を短時間で得ることができるため、第1a工程~第4a工程のすべてがオンラインで実施されることがより好ましい。オンラインとは、各工程が連続的に一連の流れとして実施されるプロセスあり、各工程が独立して実施されるオフラインの反対語である。
 さらに、第1a工程において、分散媒体と強化繊維束とが継続的に投入され、前記工程(i)から工程(iii)までが継続的に実施されることが好ましい。これにより、強化繊維基材(A1)をより短時間でより多く得ることができる。また、一度にスラリーを大量に投入すると、スラリーの一部は抄紙されるまでに長時間かかり分散状態が不良になってしまう可能性があるが、前記工程(i)から工程(iii)までを継続的に行うことにより、スラリーを少量ずつ投入し、効率よく、かつ、分散状態を保持しつつ抄紙することが可能である。ここで、「継続的に行う」とは、工程(i)において原料を間欠的に、あるいは連続的に投入し、引き続き工程(ii)~(iii)を実施することを意味する。言い換えれば一連の工程において、分散スラリーの原料の供給、および後工程へのスラリー供給を継続しながら実施する状態を意味し、量産を考慮したプロセスである。継続的に投入を行う方法としては、一定の速度で投入する方法、所定の間隔に略一定量を投入する方法が例示される。一定の速度で投入する条件としては、分散媒体を1×10g/分以上1×10g/分以下、強化繊維束を0.1g/分以上1×10g/分以下の速度で投入する条件が例示される。所定の間隔に略一定量を投入する条件としては、1~5分おきに分散媒体を1×10g以上1×10g以下ずつ、強化繊維束を0.1g以上1×10g以下ずつ投入する条件が例示される。
 本発明の繊維強化熱可塑性樹脂組成物の製造方法の第2の形態は、次の第1b工程、第2b工程および第3b工程を含む繊維強化熱可塑性樹脂組成物の製造方法である。
第1b:強化繊維束1~70質量部に対して、側鎖に水酸基を有する(メタ)アクリル系重合体が0.1~10質量部付着した不連続な強化繊維束をシート状の強化繊維基材(A2)に加工する工程
第2b:第1b工程で得られた(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%と、熱可塑性樹脂20~98.9質量%を複合化して、繊維強化熱可塑性樹脂組成物を得る工程
第3b:第2b工程で得られた繊維強化熱可塑性樹脂組成物を1/分以上の速度で引き取る工程。
 第1の形態と異なる部分は、第1b工程において、(メタ)アクリル系重合体がすでに付与されている強化繊維束を用いる部分である。(メタ)アクリル系重合体がすでに付与されている強化繊維束は、具体的には(メタ)アクリル系重合体の水溶液、エマルジョンまたはサスペンジョンに、強化繊維束を浸漬するか、あるいは強化繊維束にそれらをシャワー式、カーテンコート式等で含浸させてから、乾燥させることで、準備することができる。
 第2b工程および、第3b工程は、第1の形態の第3a工程および第4a工程とそれぞれ同じである。
 本発明の繊維強化熱可塑性樹脂組成物の製造方法の第3の形態は、次の第1c工程、第2c工程および第3c工程を含む繊維強化熱可塑性樹脂組成物の製造方法である。
第1c:不連続な強化繊維束をシート状の強化繊維基材(A1)に加工すると同時に、側鎖に水酸基を有する(メタ)アクリル系重合体を前記強化繊維基材(A1)に、強化繊維基材(A1)1~70質量部に対して0.1~10質量部付与し、(メタ)アクリル系重合体が付与された強化繊維基材(A2)を得る工程
第2c:第1c工程で得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%を、熱可塑性樹脂20~98.9質量%と複合化して、繊維強化熱可塑性樹脂組成物を得る工程
第3c:第2c工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
 第1の形態と異なる部分は、第1c工程において、不連続な強化繊維束をシート状の強化繊維基材(A1)に加工すると同時に(メタ)アクリル系重合体を付与する部分である。具体的には、乾式法により第1c工程を行う場合は、強化繊維束に空気や不活性ガスなどの気体を吹き付けで開繊させるときに、同時に(メタ)アクリル系重合体の水溶液、エマルジョンまたはサスペンジョンを、強化繊維束に塗布または噴霧することで付与する方法や、強化繊維束をカーディング、ニードルパンチ、ローラー開繊などの接触式法で開繊する際には、同時に(メタ)アクリル系重合体の水溶液、エマルジョンまたはサスペンジョンを強化繊維束に浸漬、塗布あるいは噴霧することで付与する方法が適用できる。湿式法により第1c工程を行う場合は、強化繊維束を分散させる分散槽に(メタ)アクリル系重合体を投入しておき、強化繊維束を分散して強化繊維基材(A1)にすると同時に(メタ)アクリル系重合体を強化繊維基材(A1)に付与する方法が適用できる。
 第2c工程および第3c工程は、第1の形態の第3a工程および第4a工程とそれぞれ同じである。
 第1の形態では、(メタ)アクリル系重合体を後工程で付与するため、強化繊維束に予め(メタ)アクリル系重合体が付与されて集束されている第2の形態よりも強化繊維束を容易に分散させやすくなる。また同様に、第1の形態は、強化繊維束をシート状の強化繊維基材(A1)に加工すると同時に(メタ)アクリル系重合体を付与する第3の形態よりも、強化繊維束を容易に分散させやすくなる。例えば湿式法では、第3の形態では分散槽に多量の(メタ)アクリル系重合体を投入するのに対し、第1の形態では、分散槽に(メタ)アクリル系重合体を投入する必要がないので、強化繊維束の分散を容易にすることができる。したがって、第1の形態が最も好ましい。
 繊維強化熱可塑性樹脂組成物を、射出成形に使用する成形材料とするために、前記第4a、3b、3cのいずれかの工程の後に、得られた繊維強化熱可塑性樹脂組成物を長さ方向、幅方向ともに1~30mmにカットする工程を設けてもよい。成形材料の取り扱い性(射出成形機への供給安定性など)および得られる成形品の力学特性を考慮すると、長さ方向、幅方向ともに3~10mmにカットすることが好ましい。
 本発明の繊維強化熱可塑性樹脂組成物および強化繊維束は、種々の用途に展開できる。特にインストルメントパネル、ドアビーム、アンダーカバー、ランプハウジング、ペダルハウジング、ラジエータサポート、スペアタイヤカバー、フロントエンドなどの各種モジュール等の自動車・二輪車用部品;ノートパソコン、携帯電話、デジタルスチルカメラ、PDA、プラズマディスプレーなどの電気・電子部品;電話、ファクシミリ、VTR、コピー機、テレビ、電子レンジ、音響機器、トイレタリー用品、レーザーディスク、冷蔵庫、エアコンなどの家庭・事務電気製品部品;土木・建築用部品;航空機用部品等の各種用途に用いることができる。なかでも電子機器部品、自動車部品により好ましく用いられる。
 以下、実施例により本発明をさらに詳細に説明する。なお、実施例に用いた原料は以下のとおりである。
 (原料1)強化繊維束A1(PAN系炭素繊維)
 強化繊維束A1は、下記のようにして製造した。アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数24,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで、昇温速度を200℃/分とし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行った後、120℃の温度の加熱空気中で乾燥し、強化繊維束A1(PAN系炭素繊維)を得た。強化繊維束A1の物性を下記に示す。
 総フィラメント数:24,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.10。
 (原料2)強化繊維束A2(PAN系炭素繊維)
 強化繊維束A2は、下記のようにして製造した。アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数24,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで昇温速度を200℃/分とし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に重炭酸アンモニウムを電解質とした水溶液で、炭素繊維1gあたり80クーロンの電解表面処理を行った後、120℃の温度の加熱空気中で乾燥し、強化繊維束A2(PAN系炭素繊維)を得た。強化繊維束A2の物性を下記に示す。
 総フィラメント数:24,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.20。
 (原料3)強化繊維束A3(PAN系炭素繊維)
 強化繊維A3は、下記のようにして製造した。アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数24,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで昇温速度を200℃/分とし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥し、強化繊維束A3(PAN系炭素繊維)を得た。強化繊維束A3の物性を下記に示す。
 総フィラメント数:24,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.10
 サイジング剤種類:ポリオキシエチレンオレイルエーテル
 サイジング剤付着量:1.5質量%。
 (原料4)(メタ)アクリル系重合体P(1)
 撹拌装置、温度センサー、還流冷却器およびモノマー滴下口がついた1L四つ口フラスコに、イオン交換水137.4gを仕込み、脱気および窒素ガスのバブリングを数回繰り返し溶存酸素濃度が2mg/L以下になるまで脱酸素した後、昇温を開始した。以後の乳化重合工程では、窒素ガスの吹き込みを継続した。
 メタクリル酸メチル(MMA)35.0g、メタクリル酸n-ブチル(BMA)54.0g、メタクリル酸(MA)1.0gおよびメタクリル酸2-ヒドロキシエチル(HEMA)10.0gからなるアクリル単量体混合物100g、「アデカリアソーブ(登録商標)SR-1025」(アデカ(株)社製の反応性乳化剤、25%水溶液)8.0g、および、プレエマルジョン製造用イオン交換水39.7gを混合し、乳化機にかけ10000回転で10分間乳化し、プレエマルジョンを製造した。
 フラスコ内温度が重合温度の75℃になった時点で、前記プレエマルジョンの10wt%(14.8g)を投入した。フラスコ内温度が重合温度の75℃に回復した時点で、重合開始剤である過硫酸アンモニウム0.2gを添加し、この後75℃で1時間乳化重合を行った。
 プレエマルジョンの残り90wt%(132.9g)を3時間かけてフラスコ内に滴下し、滴下終了後75℃でさらに30分間重合を行った後、30分で80℃に昇温して熟成反応を行った。昇温30分後に過硫酸アンモニウム0.020gおよびイオン交換水0.400gを添加し、この後30分後に、さらに過硫酸アンモニウム0.010gおよびイオン交換水0.200gを添加し、添加終了後さらに30分間熟成反応を行った後、冷却した。
 40℃以下になるまで冷却して、「アデカネート(登録商標)B-1016」(アデカ(株)の消泡剤)0.05gを添加し、さらに30分間撹拌混合した後、25%アンモニア水0.47gおよび希釈用イオン交換水393.5gを添加して(メタ)アクリル系重合体P(1)を15.0質量%含むエマルジョンを製造した。
 以下、表中の記載を含め、(メタ)アクリル系単量体を次のように略記する場合がある。メタクリル酸メチル(MMA)、メタクリル酸n-ブチル(BMA)、アクリル酸シクロヘキシル(CHA)、メタクリル酸イソボルニル(IBOMA)、アクリル酸(AA)、メタクリル酸(MAA)、メタクリル酸2-ヒドロキシエチル(HEMA)、N-(2-メタクリロイルオキシエチル)エチレンウレア(MEEU)、N-2-ヒドロキシエチルアクリルアミド(HEAA)。
 (原料5~13)(メタ)アクリル系重合体P(2~8、11、12)
 表1-2~表1-6に示した(メタ)アクリル系単量体および反応性乳化剤の配合を用いて、(メタ)アクリル系重合体P(1)と同様にして、(メタ)アクリル系重合体を15.0質量%含むエマルジョンを製造した。
 (原料14)(メタ)アクリル系重合体P(9)
 ALDRICH製、ポリアクリルアミド(50質量%水溶液)を用いた。
 (原料15)(メタ)アクリル系重合体P(10)
 日本触媒製、“ポリメント(登録商標)”SK1000を用いた。
 (原料16)熱可塑性樹脂(未変性ポリプロピレン樹脂)
 プライムポリマー(株)製、“プライムポリプロ(登録商標)”J105Gを用いた。その物性は下記の通りである。
比重:0.91
融点:160℃。
 (原料17)熱可塑性樹脂(酸変性ポリプロピレン樹脂)
 三井化学(株)製、“アドマー”(登録商標)QE510を用いた。その物性は下記の通りである。
比重:0.91
融点:160℃。
 (原料18)熱可塑性樹脂(ポリアミド6樹脂)
 東レ(株)製、“アミラン(登録商標)”CM1001を用いた。その物性は下記の通りである。
比重:1.13
融点:225℃。
 (原料19)強化繊維束A4(PAN系炭素繊維)
 強化繊維束A4は、下記のようにして製造した。アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで昇温速度を200℃/分とし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥し、強化繊維束A4(PAN系炭素繊維)を得た。強化繊維束A4の物性を下記に示す。
 総フィラメント数:12,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.10
 サイジング剤種類:ポリオキシエチレンオレイルエーテル
 サイジング剤付着量:0.6質量%。
(原料20)強化繊維束A5(PAN系炭素繊維)
 強化繊維束A5は、下記のようにして製造した。アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数24,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで昇温速度を200℃/分とし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に重炭酸アンモニウムを電解質とした水溶液で、炭素繊維1gあたり80クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥し、強化繊維束A5(PAN系炭素繊維)を得た。強化繊維束A5の物性を下記に示す。
 総フィラメント数:24,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.20
 サイジング剤種類 :ポリオキシエチレンオレイルエーテル
 サイジング剤付着量:1.5質量%。
 (原料21)強化繊維束A6(ガラス繊維)
 強化繊維束A6には、日東紡製、商品名 PF-E001を用いた。
 (原料22)強化繊維束A7(PAN系炭素繊維)
 強化繊維束A7は、下記のようにして製造した。アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数24,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換した。次いで昇温速度を200℃/分とし、窒素雰囲気中300~900℃の温度領域で10%の延伸を行った後、1,300℃の温度まで昇温し焼成し、炭素繊維束を得た。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥し、強化繊維束A7(PAN系炭素繊維)を得た。強化繊維束A7の物性を下記に示す。
 総フィラメント数:24,000本
 単繊維直径:7μm
 単位長さ当たりの質量:0.8g/m
 比重:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 O/C:0.10
 サイジング剤種類:(メタ)アクリル系重合体B1
 サイジング剤付着量:0.5質量%。
 (原料23)(メタ)アクリル系重合体B1
 メタクリル酸メチル35.0g、メタクリル酸n-ブチル54.0g、アクリル酸1.0g、およびメタクリル酸2-ヒドロキシエチル10.0gからなる(メタ)アクリル単量体混合物100gを用いた以外は、(メタ)アクリル系重合体P(1)と同様にして、(メタ)アクリル系重合体B1を15.0質量%含むエマルジョンを製造した。
 (原料24)(メタ)アクリル系重合体B2
 メタクリル酸n-ブチル60.0g、メタクリル酸イソボルニル36.0g、アクリル酸1.0g、およびメタクリル酸2-エチルヘキシル3.0gからなる(メタ)アクリル単量体混合物100gを用いた以外は、(メタ)アクリル系重合体B1と同様にして、(メタ)アクリル系重合体B2を15.0質量%含むエマルジョンを製造した。
 (原料25)(メタ)アクリル系重合体B3
 メタクリル酸メチル29.0g、アクリル酸シクロヘキシル60.0g、アクリル酸1.0g、およびメタクリル酸2-ヒドロキシエチル10.0gからなる(メタ)アクリル単量体混合物100gを用いた以外は、(メタ)アクリル系重合体B1と同様にして、(メタ)アクリル系重合体B3を15.0質量%含むエマルジョンを製造した。
 (原料26)(メタ)アクリル系重合体B4
 メタクリル酸メチル30.0g、アクリル酸シクロヘキシル50.0g、メタクリル酸2-ヒドロキシエチル10.0g、およびN-(2-メタクリロイルオキシエチル)エチレンウレア10.0gからなる(メタ)アクリル単量体混合物100gを用いた以外は、(メタ)アクリル系重合体B1と同様にして、(メタ)アクリル系重合体B4を15.0質量%含むエマルジョンを製造した。
 (原料27)(メタ)アクリル系重合体B5
 メタクリル酸メチル30.0g、アクリル酸シクロヘキシル50.0g、およびN-2-ヒドロキシエチルアクリルアミド20.0gからなる(メタ)アクリル単量体混合物100gを用いた以外は、(メタ)アクリル系重合体B1と同様にして、(メタ)アクリル系重合体B5を15.0質量%含むエマルジョンを製造した。
 (原料28)(メタ)アクリル系重合体B6
 メタクリル酸メチル35.0g、メタクリル酸n-ブチル54.0g、アクリル酸1.0g、およびメタクリル酸2-エチルヘキシル10.0gからなる(メタ)アクリル単量体混合物100gを用いた以外は、(メタ)アクリル系重合体B1と同様にして、(メタ)アクリル系重合体B6を15.0質量%含むエマルジョンを製造した。
 (原料29)ポリビニルアルコールB7
 ナカライテスク製のポリビニルアルコール(重合度2000)を用いた。
 (原料30)熱可塑性樹脂(PPS樹脂)
 東レ(株)製、“トレリナ(登録商標)”A900を用いた。その物性は下記の通りである。
比重:1.34
融点:278℃。
 <強化繊維束の引張強度および引張弾性率の測定>
 強化繊維束の引張強度および引張弾性率は、日本工業規格(JIS)-R-7601「樹脂含浸ストランド試験法」に記載された手法により、求めた。ただし、測定する炭素繊維の樹脂含浸ストランドは、“BAKELITE”(登録商標)ERL4221(100質量部)/3フッ化ホウ素モノエチルアミン(3質量部)/アセトン(4質量部)を、炭素繊維に含浸させ、130℃、30分で硬化させて形成した。また、ストランドの測定本数は、6本とし、各測定結果の平均値を、その炭素繊維の引張強度、引張弾性率とした。
 <強化繊維束のO/Cの測定の測定>
 強化繊維束の表面酸素濃度(O/C)は、X線光電子分光法により次の手順に従って求めた。まず、溶剤で炭素繊維表面の付着物などを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた。X線源としてA1Kα1、2を用い、試料チャンバー中を1×10Torrに保った。測定時の帯電に伴うピークの補正値としてC1Sの主ピークの運動エネルギー値(K.E.)を1202cVに合わせた。K.E.として1191~1205eVの範囲で直線のベースラインを引くことにより、C1Sピーク面積を求めた。K.E.として947~959eVの範囲で直線のベースラインを引くことにより、O1Sピーク面積を求めた。
 O/Cを、上記O1Sピーク面積とC1Sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出した。X線光電子分光法装置として、国際電気社製モデルES-200を用い、感度補正値を1.74とした。
 <強化繊維束へのサイジング剤の付着量の測定>
 試料として、サイジング剤が付着している炭素繊維約5gを採取し、耐熱性の容器に投入した。次にこの容器を120℃で3時間乾燥した。吸湿しないようにデシケーター中で注意しながら室温まで冷却後、秤量した質量をW(g)とした。続いて、容器ごと、窒素雰囲気中で、450℃で15分間加熱後、同様にデシケーター中で吸湿しないように注意しながら室温まで冷却後、秤量した質量をW(g)とした。以上の処理を経て、炭素繊維へのサイジング剤の付着量を次の式により求めた。
付着量(質量%)=100×{(W-W)/W
なお、測定は3回行い、その平均値を付着量として採用した。
 <強化繊維束への(メタ)アクリル系重合体の付着量の測定>
 試料として、(メタ)アクリル系重合体が付着している炭素繊維約5gを採取し、耐熱性の容器に投入した。次にこの容器を120℃で3時間乾燥した。吸湿しないようにデシケーター中で注意しながら室温まで冷却後、秤量した質量をW(g)とした。続いて、容器ごと、窒素雰囲気中で、450℃で15分間加熱後、同様にデシケーター中で吸湿しないように注意しながら室温まで冷却後、秤量した質量をW(g)とした。以上の処理を経て、炭素繊維への(メタ)アクリル系重合体の付着量を次の式により求めた。
付着量(質量%)=100×{(W-W)/W
なお、測定は3回行い、その平均値を付着量として採用した。
 <(メタ)アクリル系重合体のtanδおよびヤング率E’の測定>
 「Reogel E4000」((株)ユービーエム社製の動的粘弾性測定装置)を用いて、(メタ)アクリル系重合体のtanδおよびヤング率E’を測定した。測定条件は、測定法:動的粘弾性率測定(正弦波)、測定モード:温度依存性、チャック:引張、波形:正弦波、加振の種類:ストップ加振、初期荷重:初期歪み制御(0.02mm)、条件:周波数1Hz、測定開始温度10℃、ステップ温度1℃、測定終了温度170℃、昇温速度4℃/分とした。
 <(メタ)アクリル系重合体の酸価および水酸基価の測定>
 JIS K0070に準拠して(メタ)アクリル系重合体の酸価および水酸基価の測定をおこなった。
 <(メタ)アクリル系重合体の重量平均分子量の測定>
 (メタ)アクリル系重合体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定した。GPCカラムにはポリスチレン架橋ゲルを充填したものを用いた。溶媒に1,2,4-トリクロロベンゼンを用い、150℃にて測定した。分子量は標準ポリスチレン換算にて重量平均分子量を算出した。
 (参考例1、射出成形品の製造方法)
 強化繊維束に(メタ)アクリル系重合体のエマルジョンまたは水溶液を浸漬法にて付与し、140℃で5分間乾燥させ、(メタ)アクリル系重合体が付着した強化繊維束を得た。付着量は(メタ)アクリル系重合体のエマルジョンまたは水溶液の濃度を適宜調整する方法、あるいは浸漬と乾燥を複数回繰り返して調整する方法のいずれか、または両方法を用いて調整した。得られた強化繊維束を、カートリッジカッターにて長さ1/4インチにカットし、チョップド糸を得た。
 日本製鋼所(株)TEX-30α型2軸押出機(スクリュー直径30mm、L/D=32)を使用し、熱可塑性樹脂をメインホッパーから供給し、次いでその下流のサイドホッパーから前記のチョップド糸を供給し、温度220℃(ポリプロピレン系樹脂の場合)、あるいは260℃(ポリアミド6樹脂の場合)において、スクリュー回転数150rpmで混練した。チョップド糸の供給は、得られる繊維強化熱可塑性樹脂組成物の全重量に対して、チョップド糸の質量含有率が20%となるように調整した。混練後に直径5mmのダイス口より押し出したストランドを冷却後、カッターで切断してペレット状の成形材料を得た。
 このペレット状成形材料を、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度220℃、金型温度60℃(ポリプロピレン系樹脂の場合)、あるいはシリンダー温度260℃、金型温度80℃(ポリアミド6樹脂の場合)で射出成形し、特性評価用成形品を得た。
 (参考例2、プレス成形品の製造方法)
 強化繊維束をカートリッジカッターで1/4インチにカットし、チョップド糸を得た。
 水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液に、前記チョップド糸を繊維の質量含有率が0.02質量%となるように投入した。5分間撹拌してスラリーを調製後、水を吸引除去して、300mm角の強化繊維基材を得た。次いで該強化繊維基材の上面部より、(メタ)アクリル系重合体の1質量%エマルジョン液を散布した。余剰なエマルジョン液を吸引除去した後、200℃で15分間乾燥し、(メタ)アクリル系重合体が付与された強化繊維基材を得た。付着量は表中に記載した。
 この(メタ)アクリル系重合体が付与された強化繊維基材の質量含有率が30質量%となるように、熱可塑性樹脂を上下両面に配置し、220℃(ポリプロピレン系樹脂の場合)、あるいは250℃(ポリアミド6樹脂の場合)で10MPaの加圧を3分間行い、次いで圧力を維持したまま、50℃まで冷却してプレス成形品を得た。
 各実施例で得られる評価基準は次の通りである。
(強化繊維束の界面剪断強度の評価)
 評価詳細についてはDrzal, L.T., Mater. Sci. Eng. A126, 289(1990)を参考にした。(メタ)アクリル系重合体が付着した強化繊維束より長さ20cmの単繊維1本を取り出した。続いて未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ(登録商標)”J105G)50重量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー(登録商標)”QB510)50重量%とからなる厚み150μmの樹脂フィルムを20×20cm角の大きさで2枚作製し、前記取り出した単繊維を1枚目の樹脂フィルム上に直線状に配置した。もう1枚の樹脂フィルムを前記単繊維を挟むように重ねて配置し、200℃で3分間、0.5MPaの圧力で加圧プレスし、単繊維が樹脂に埋め込まれたサンプルを作製した。得られたサンプルを切り出し、単繊維が中央に埋没した厚さ0.2mm、幅10mm、長さ70mmの試験片を得た。上記と同様にして試験片を10ピース作製した。
 この試験片を通常の引張試験治具を用いて、試験長25mmに設定し、歪速度0.5mm/minで引張試験を行った単繊維の破断がもはや起こらなくなった時の、単繊維の全ての断片の長さを透過型顕微鏡で測定し、それを平均することにより平均破断繊維長lを得た。
 界面剪断強度(τ)を下式より求めた。
τ=(σf・d)/(2・lc)
lc=(4/3)・l。
ここで、l(μm)は上記の平均破断繊維長、σf(MPa) は単繊維の引張強さ、d(μm)は単繊維の直径である。σfは、強化繊維の引張強度分布がワイブル分布に従うとして次の方法により求めた。即ち、(メタ)アクリル系重合体を付着させる前の単繊維を用い、試料長がそれぞれ5mm、25mm、50mmにおける単繊維の引張り強度をJIS R7606に基づいて求めた。具体的には、炭素繊維束をほぼ4等分し、4つの束から順番に単繊維を100本サンプリングした。このとき、束全体からできるだけまんべんなくサンプリンした。サンプリングした単繊維は、穴あき台紙に接着剤を用いて固定した。単繊維を固定した台紙を引張り試験機に取り付け、歪速度1mm/分、試料数100で引張試験を行った。得られた平均引張強度から最小2乗法により、試料長と平均引張強度との関係式を求め、試料長lcの時の平均引張強度を算出した。
界面剪断強度の評価は以下の基準で行った。
A:14MPa以上
B:13MPa以上14MPa未満
C:12MPa以上13MPa未満
D:12MPa未満。
 (繊維強化熱可塑性樹脂組成物の曲げ強度の評価)
 得られた成形品から試験片を切り出し、ASTM D-790(2004)に従い曲げ強度を測定した。試験片は、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を曲げ強度とした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
評価は成形品の曲げ強度をもとに、以下の基準で判定した。
AA:200MPa以上
A:150MPa以上200MPa未満
B:130MPa以上150MPa未満
C:100MPa以上130MPa未満
D:100MPa未満。
 (繊維強化熱可塑性樹脂組成物のIzod衝撃強度(ノッチ有)の評価)
 得られた成形品から試験片を切り出し、ASTM D-256(2004)に従いIzod衝撃強度(ノッチ有)を測定した。試験片は、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値をIzod衝撃強度(ノッチ有)とした。
評価は成形品の曲げ強度をもとに、以下の基準で判定した。
A:150J/m以上
B:120J/m以上150J/m未満
C:100J/m以上120J/m未満
D:100J/m未満。
 (繊維強化熱可塑性樹脂組成物の生産効率の評価)
 繊維強化熱可塑性樹脂組成物10kgを製造するのに要する時間を測定し、以下の基準で判定した。
A:30分未満
B:30分以上60分未満
C:60分以上120分未満
D:120分以上。
 (繊維強化熱可塑性樹脂組成物における強化繊維分散状態の評価)
 得られた強化繊維基材(A2)の任意の部位より、50mm×50mmの正方形状に基材を切り出して顕微鏡にて観察した。10本以上の炭素繊維の単繊維が束状になった状態、すなわち分散が不十分な炭素繊維の束の個数を測定した。この手順で20回の測定を行い、その平均値をもって、分散が不十分な炭素繊維の束の個数を評価した。判定は以下の基準で判定した。
A:分散が不十分な炭素繊維の束の個数1個未満
B:分散が不十分な炭素繊維の束の個数1個以上5個未満
C:分散が不十分な炭素繊維の束の個数5個以上10個未満
D:分散が不十分な炭素繊維の束の個数10個以上。
 (繊維強化熱可塑性樹脂組成物の比強度の評価)
 得られた繊維強化熱可塑性樹脂組成物を200mm×200mmに切り出して、120℃で1時間乾燥させた。乾燥後の繊維強化熱可塑性樹脂組成物を4枚積層し、熱可塑性樹脂が酸変性ポリプロピレン樹脂の場合は温度230℃、ポリアミド6樹脂の場合は温度250℃、PPS樹脂の場合は温度300℃とし、圧力30MPaで5分間プレス成形し、圧力を保持したまま50℃まで冷却して厚み1.0mmの成形品を得た。成形品から試験片を切り出し、ISO1183(1987)に基づいて成形品の比重ρを測定した。次いで成形品から試験片を切り出し、ISO527-3法(1995)に従い引張強度を測定した。試験片は、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を引張強度σcとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。得られた結果より次式により、成形品の比強度を算出した。
成形品の比強度=σc/ρ
判定は成形品の比強度をもとに以下の基準で判定した。
AAA:比強度350MPa以上 
AA:比強度325MPa以上350MPa未満
A:比強度300MPa以上325MPa未満
B:比強度275MPa以上300MPa未満
C:比強度250MPa以上275MPa未満
D:比強度250MPa未満。
 (繊維強化熱可塑性樹脂組成物の比剛性の評価)
 得られた繊維強化熱可塑性樹脂組成物を200mm×200mmに切り出して、120℃で1時間乾燥させた。乾燥後の繊維強化熱可塑性樹脂組成物を4枚積層し、熱可塑性樹脂が酸変性ポリプロピレン樹脂の場合は温度230℃、ポリアミド6樹脂の場合は温度250℃、PPS樹脂の場合は温度300℃とし、圧力30MPaで5分間プレス成形した後、圧力を保持したまま50℃まで冷却して厚み1.0mmの成形品を得た。成形品から試験片を切り出し、ISO178法(1993)に従い曲げ弾性率を測定した。試験片は、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を曲げ弾性率Ecとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。得られた結果より次式により、成形品の比剛性を算出した。
成形品の比剛性 =Ec1/3/ρ(ρ:成形品の比重)。
判定は成形品の比剛性をもとに以下の基準で判定した。
A:比剛性2.20以上
B:比剛性2.00以上2.20未満
C:比剛性1.50以上2.00未満
D:比剛性1.50未満。
 (成形品の均一性の評価)
成形品の引張強度の評価結果の変動係数(CV値)を評価した。判定は変動係数(CV値)をもとに以下の基準で判定した。
A:変動係数5未満
B:変動係数5以上10未満
C:変動係数10以上15未満
D:変動係数15以上。
 (強化繊維基材(A2)の引張強力の評価)
 強化繊維基材(A2)より、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について幅12.5mm、長さ200mmの試験片を作製した。速度1.6mm/分の引張速度で引張試験し、強化繊維基材(A2)の破断時の荷重を幅12.5mmで除して、引張強力(N/cm)を測定した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を引張強力とした。
 (実施例1-1)
 強化繊維A1、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-2にまとめた。
 (実施例1-2)
 強化繊維A1、(メタ)アクリル系重合体P(2)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-2にまとめた。
 (実施例1-3)
 強化繊維A1、(メタ)アクリル系重合体P(3)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-2にまとめた。
 (実施例1-4)
 強化繊維A1、(メタ)アクリル系重合体P(4)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-2にまとめた。
 (実施例1-5)
 強化繊維A1、(メタ)アクリル系重合体P(5)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-3にまとめた。
 (実施例1-6)
 強化繊維A1、(メタ)アクリル系重合体P(6)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-3にまとめた。
 (実施例1-7)
 強化繊維A1、(メタ)アクリル系重合体P(7)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-3にまとめた。
 (実施例1-8)
 強化繊維A1、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(ポリアミド6樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-3にまとめた。
 (実施例1-9)
 強化繊維A1、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-4にまとめた。
 (実施例1-10)
 強化繊維A1、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-4にまとめた。
 (実施例1-11)
 強化繊維A2、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-4にまとめた。
 (実施例1-12)
 強化繊維A3、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例2に記載の要領でプレス成形品を得た。評価結果は表1-4にまとめた。なお、プレス成形品は強化繊維がランダムに配向しており、曲げ強度の測定方向によるバラツキが小さく、射出成形品と比較して良好であった。
 (実施例1-13)
 強化繊維A3、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(ポリアミド6樹脂)を用いて、参考例2に記載の要領でプレス成形品を得た。評価結果は表1-4にまとめた。なお、プレス成形品は強化繊維がランダムに配向しており、曲げ強度の測定方向によるバラツキが小さく、射出成形品と比較して良好であった。
 (比較例1-1)
 強化繊維A2、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、(メタ)アクリル系重合体は使用せずに参考例1に記載の要領で射出成形品を得た。評価結果は表1-5にまとめた。
 (比較例1-2)
 強化繊維A1、(メタ)アクリル系重合体P(8)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表2にまとめた。
 (比較例1-3)
 強化繊維A1、(メタ)アクリル系重合体P(9)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-5にまとめた。
 (比較例1-4)
 強化繊維A1、(メタ)アクリル系重合体P(10)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-5にまとめた。
 (比較例1-5)
 強化繊維A1、(メタ)アクリル系重合体P(11)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-6にまとめた。
 (比較例1-6)
 強化繊維A1、(メタ)アクリル系重合体P(12)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-6にまとめた。
 (比較例1-7)
 強化繊維A1、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-6にまとめた。
 (比較例1-8)
 強化繊維A1、(メタ)アクリル系重合体P(1)、熱可塑性樹脂(酸変性ポリプロピレン樹脂)を用いて、参考例1に記載の要領で射出成形品を得た。評価結果は表1-6にまとめた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上のように、実施例1-1~1-11においては、力学特性に優れた射出成形品を得ることができた。また実施例1-12、1-13のプレス成形品では、曲げ強度の測定方向によるバラツキも小さい良好な結果が得られた。
 一方、比較例1-1では、(メタ)アクリル系重合体がないため、成形品の力学特性に劣る結果となった。比較例1-2、1-3では、(メタ)アクリル系重合体の凝集エネルギー密度が大きすぎるため、成形品の力学特性が低い結果となった。また、比較例1-4~1-6では、(メタ)アクリル系重合体の凝集エネルギー密度が小さく、成形品の力学特性が低い結果となった。さらに、比較例1-7、1-8のように、(メタ)アクリル系重合体の含有量が低すぎる場合および高すぎる場合にも、成形品の力学特性が低い結果となった。このように(メタ)アクリル系重合体の凝集エネルギー密度が大きすぎても小さすぎても、得られる成形品の力学特性が低くなった。
 (実施例2-1)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図2に示す装置3を用いて、強化繊維基材(A2)を製造した。装置3は、分散槽4、抄紙槽6、および、供給槽9を備えている。分散槽4は、直径500mmの円筒形状の容器であり、容器下部に開口コック5を備える。抄紙槽6は、底部に幅300mmの抄紙面7を有するメッシュコンベア8を備える。供給槽9は、(メタ)アクリル系重合体のエマルジョンを強化繊維基材(A1)11に供給する。供給槽9には開口コック5を備える。(メタ)アクリル系重合体のエマルジョン付与部10はカーテンコート式であり、強化繊維基材(A1)11上に均一に(メタ)アクリル系重合体のエマルジョンを散布可能である。分散槽4の上面の開口部には撹拌機12が付属し、開口部から強化繊維束13および分散媒体2を投入可能である。
 まず、強化繊維束A3(炭素繊維)をカートリッジカッターで6mmにカットし、チョップド炭素繊維を得た。
 分散槽4に水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を入れ、そこに、前記チョップド炭素繊維を繊維の質量含有率が0.02質量%となるように投入した。5分間撹拌してスラリーを調製後、容器下部の開口コック5を開放し、該スラリーを幅300mmの抄紙面7を有するメッシュコンベア8の上に流し込み、水を吸引して引き取り、長さ15m、幅300mmの強化繊維基材(A1)11を得た。次いで供給槽9の開口コック5を開放して、該強化繊維基材(A1)の上面に、(メタ)アクリル系重合体B1の1質量%エマルジョン液を散布した。余剰分のエマルジョン液を吸引したのち、強化繊維基材を200℃の乾燥炉14に3分間で通過させ、巻取機18で巻き取ることで、(メタ)アクリル系重合体B1が付与された強化繊維基材(A2)15を得た。
 得られた強化繊維基材(A2)15を製造装置3から取り出し、加圧、加熱および冷却が可能なダブルベルトプレス装置19が設けられた図3の装置20へセットした。装置20は、ダブルベルトプレス装置19の導入部の上下2カ所に熱可塑性樹脂の不織布を収容するためのクリール16を備え、強化繊維基材(A2)15に熱可塑性樹脂が含浸した繊維強化熱可塑性樹脂組成物17を引き取るための巻取機18を備える。
 強化繊維基材(A2)にクリール16より供給される熱可塑性樹脂(酸変性ポリプロピレン樹脂)の不織布(目付:100g/m)を上下方向から狭持し、ダブルベルトプレス装置19に導入した。ダブルベルトプレス装置19では、前半部にて230℃、3.5MPaで加熱加圧し、後半部にて60℃、3.5MPaで冷却加圧して、強化繊維基材(A2)と熱可塑性樹脂(酸変性ポリプロピレン樹脂)が複合化された繊維強化熱可塑性樹脂組成物17を得た。
 強化繊維束、(メタ)アクリル系重合体および熱可塑性樹脂の配合量は表2-1に示したとおりである。また、各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-1に示した。
 (実施例2-2)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図4に示す装置21を用いて、繊維強化熱可塑性樹脂組成物を製造した。装置21は、装置3に装置20が一体化された装置である。装置21を用いて、強化繊維束と分散媒体を継続的に投入し、全工程をオンラインで実施した以外は、実施例2-1と同様にして、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-1に示した。
 (実施例2-3)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体の配合量を0.4質量%とした以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-1に示した。
 (実施例2-4)乾式プロセスによる繊維強化熱可塑性樹脂組成物の製造
 図5に示した装置22を用いて、繊維強化熱可塑性樹脂組成物を製造した。装置22は、装置21の抄紙部分の構造がカード機23に置き換わった装置である。装置22を用いて、カード機23部分に強化繊維束として強化繊維束A4を継続的に投入し、全工程をオンラインで実施した以外は、実施例2-2と同様にして、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-1に示した。
 (実施例2-5)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 分散槽4におけるスラリー中の強化繊維の濃度を0.04質量%とし、抄紙槽6において分散媒体2を継続供給してスラリー中の強化繊維の濃度を0.02質量%に薄めた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-2に示した。
 (実施例2-6)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 分散槽4におけるスラリー中の強化繊維の濃度を1.5質量%とした以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-2に示した。
 (実施例2-7)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 分散槽4におけるスラリー中の強化繊維の濃度を0.1質量%とした以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-2に示した。
 (実施例2-8)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 分散槽4におけるスラリー中に強化繊維と熱可塑性樹脂(酸変性ポリプロピレン樹脂)のカット繊維(単繊維繊度3dtex、カット長6mm)とを投入し、強化繊維の濃度を0.02質量%、熱可塑性樹脂のカット繊維の濃度を0.03質量%とし、固形成分の合計濃度を0.05質量%とし、クリール16より供給される熱可塑性樹脂(酸変性ポリプロピレン樹脂)の不織布を用いずに、ダブルベルトプレス装置19に導入した以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-2に示した。
 (実施例2-9)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体として(メタ)アクリル系重合体B2を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-3に示した。
 (実施例2-10)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体として(メタ)アクリル系重合体B3を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-3に示した。
 (実施例2-11)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 強化繊維束として強化繊維束A5を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-3に示した。
 (実施例2-12)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 強化繊維束として強化繊維束A6を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-3に示した。
 (実施例2-13)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体として(メタ)アクリル系重合体B4を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-4に示した。
 (実施例2-14)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体として(メタ)アクリル系重合体B5を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-4に示した。
 (実施例2-15)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 熱可塑性樹脂としてポリアミド6樹脂を用い、ダブルベルトプレス装置19では、前半部にて温度を250℃とした以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-4に示した。
 (実施例2-16)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 熱可塑性樹脂としてPPS樹脂を用い、ダブルベルトプレス装置19では、前半部にて温度を300℃とした以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-4に示した。
 (実施例2-17)乾式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図5の装置22において、(メタ)アクリル系重合体の供給槽9を用いずに、予め(メタ)アクリル系重合体を付与した強化繊維束A7を、カード機23部分に継続的に投入した以外は、実施例2-4と同様にして、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-5に示した。
 (実施例2-18)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図4の装置21において、(メタ)アクリル系重合体の供給槽9を用いず、予め(メタ)アクリル系重合体を付与した強化繊維束A7を用いた以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-5に示した。
 (実施例2-19)乾式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図7の装置26を用いて、繊維強化成形基材を製造した。装置26は、装置22の(メタ)アクリル系重合体のエマルジョンの供給槽9が、カード機23部分に設置され、強化繊維基材(A1)の作製と同時に(メタ)アクリル系重合体を強化繊維基材(A1)に付与することができる装置である。装置26を用いて、カード機23部分に強化繊維束として強化繊維束A3を継続的に投入した以外は、実施例2-4と同様にして、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-6に示した。
 (実施例2-20)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図8の装置27を用いて、繊維強化成形基材を製造した。装置27は、装置21の(メタ)アクリル系重合体のエマルジョンの供給槽9が、分散槽4部分に設置されている装置である。分散槽4に(メタ)アクリル系重合体を継続的に供給することが可能であり、強化繊維基材(A1)の作製と同時に(メタ)アクリル系重合体を強化繊維基材(A1)に付与することができる。装置26を用いて、分散槽4に(メタ)アクリル系重合体を継続的に供給したこと以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-6に示した。
 (比較例2-1)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体を付与しなかったこと以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-7に示した。
 (比較例2-2)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体のかわりにポリビニルアルコールB7を用いたこと以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-7に示した。
 (参考例2-1)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 図6の装置25を用いて、強化繊維基材(A2)を製造した。装置6は、分散槽4、抄紙槽6および供給槽9を備えている。分散槽4は、容器下部に開口コック5を備える直径500mmの円筒形状の容器である。抄紙槽6は、底部に300mm角の正方形の抄紙面7を有するメッシュシート24を備える槽である。供給槽9は、(メタ)アクリル系重合体のエマルジョンを強化繊維基材(A1)11に供給する。供給槽9には開口コック5を備える。(メタ)アクリル系重合体のエマルジョン付与部10は開口コック出口が可動式であり、強化繊維基材(A1)11上に均一に(メタ)アクリル系重合体のエマルジョンが散布可能である。分散槽4の上面の開口部には撹拌機12が付属し、開口部から強化繊維束13および分散媒体2を投入可能である。なお、装置6は、バッチ式の製造装置であり、強化繊維基材(A1)の引き取りはできない。メッシュシート24の抄紙面7上に強化繊維基材(A1)11が形成された後、(メタ)アクリル系重合体を付与する。(メタ)アクリル系重合体が付与された強化繊維基材を装置25から取り出し、乾燥機に入れて乾燥させることで、強化繊維基材(A2)を得る。
 熱可塑性樹脂として酸変性ポリプロピレン樹脂の不織布(樹脂目付100g/m)を、強化繊維基材(A2)の上下に1枚ずつ配置し、温度230℃、3.5MPaで5分間加熱加圧し、次いで60℃、3.5MPaで5分間冷却加圧して、強化繊維基材(A2)と熱可塑性樹脂が複合化された繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-7に示した。
 (参考例2-2)湿式プロセスを用いた繊維強化熱可塑性樹脂組成物の製造
 (メタ)アクリル系重合体として(メタ)アクリル系重合体B6を用いたこと以外は、実施例2-2と同様に処理を行い、繊維強化熱可塑性樹脂組成物を得た。材料の配合量と各工程における実施条件および得られた強化繊維基材と繊維強化熱可塑性樹脂組成物との評価結果を、表2-7に示した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表2-1~2-7から明らかなように、実施例2-1~2-20ではいずれも短時間で炭素繊維の分散状態に優れ、成形品とした場合にも高い力学特性を保つことのできる繊維強化熱可塑性樹脂組成物を得ることができた。特に原料を継続的に投入して全工程をオンラインで行い、(メタ)アクリル系重合体の付与を後から行うことにより、成形品とした場合に力学特性に優れる繊維強化熱可塑性樹脂組成物を効率的に製造することができた(実施例2-2、2-18、2-20参照)。また、C1/C2を0.8~1.2の範囲とすることで、より優れた強化繊維の分散状態を確保でき、得られる成形品の力学特性も向上することが判明した(実施例2-2、実施例2-5参照)。
 また、(メタ)アクリル系重合体を用いなかった場合には、強化繊維基材の引き取りが不可能であった(比較例2-1)。さらには、 (メタ)アクリル系重合体のかわりにポリビニルアルコールを用いた場合(比較例2-2)には、得られる成形品の力学特性が大きく劣る結果となった。
 本発明の繊維強化熱可塑性樹脂組成物および強化繊維束は、種々の用途に展開できる。特にインストルメントパネル、ドアビーム、アンダーカバー、ランプハウジング、ペダルハウジング、ラジエータサポート、スペアタイヤカバー、フロントエンドなどの各種モジュール等の自動車・二輪車用部品;ノートパソコン、携帯電話、デジタルスチルカメラ、PDA、プラズマディスプレーなどの電気・電子部品;、電話、ファクシミリ、VTR、コピー機、テレビ、電子レンジ、音響機器、トイレタリー用品、レーザーディスク、冷蔵庫、エアコンなどの家庭・事務電気製品部品;土木・建築用部品;航空機用部品等の各種用途に用いることができる。なかでも電子機器部品、自動車部品により好ましく用いられる。
1 強化繊維
2 分散媒体
3 強化繊維基材(A1)、(A2)の製造装置
4 分散槽
5 開口コック
6 抄紙槽
7 抄紙面
8 メッシュコンベア
9 (メタ)アクリル系重合体の供給槽
10 (メタ)アクリル系重合体のエマルジョン付与部
11 強化繊維基材(A1)
12 撹拌機
13 強化繊維束
14 乾燥機
15 強化繊維基材(A2)
16 クリール
17 繊維強化熱可塑性樹脂組成物
18 巻取機
19 ダブルベルトプレス装置
20 繊維強化熱可塑性樹脂組成物の製造装置
21 強化繊維基材(A1)、(A2)、繊維強化熱可塑性樹脂組成物の製造装置
22 強化繊維基材(A1)、(A2)、繊維強化熱可塑性樹脂組成物の製造装置
23 カード機
24 メッシュシート
25 強化繊維基材(A1)、(A2)、繊維強化熱可塑性樹脂組成物の製造装置
26 強化繊維基材(A1)の製造装置

Claims (15)

  1. (メタ)アクリル系重合体0.1~10質量%、強化繊維1~70質量%、および熱可塑性樹脂20~98.9質量%を含む繊維強化熱可塑性樹脂組成物であって、該(メタ)アクリル系重合体が、側鎖に、水酸基、カルボキシル基、アミド基およびウレア基より選ばれる少なくとも1種の官能基を有し、かつ、下式で算出される凝集エネルギー密度CEDが385~550MPaである重合体である繊維強化熱可塑性樹脂組成物;
    CED=1.15×Σ{P(n)×CE(n)}/Σ{P(n)×M(n)}
    ここで、(メタ)アクリル系重合体に含まれる(メタ)アクリル系単量体単位の種類をm種類として、各(メタ)アクリル系単量体単位をそれぞれ(メタ)アクリル系単量体単位(n)(nは1~mの整数)としたとき、CE(n)は、(メタ)アクリル系単量体単位(n)の化学構造CS(n)から計算された凝集エネルギーを意味する;また同様に、M(n)は(メタ)アクリル系単量体単位(n)の分子量を、P(n)は(メタ)アクリル系重合体中の(メタ)アクリル系単量体単位(n)のモル分率を意味する;ただしΣP(n)=1である。
  2. 前記(メタ)アクリル系重合体が、メタクリル酸2-ヒドロキシエチル単位、N-(2-ヒドロキシエチル)アクリルアミド単位、N-(2-メタクリロイルオキシエチル)エチレンウレア単位から選ばれた1種以上の(メタ)アクリル系単量体単位を含む、請求項1に記載の繊維強化熱可塑性樹脂組成物。
  3. 前記(メタ)アクリル系重合体が、カルボキシル基含有(メタ)アクリル系単量体単位0~5質量%、水酸基含有(メタ)アクリル系単量体単位3~25質量%、アルキル基の炭素原子数が1~4個の(メタ)アクリル酸アルキルエステル単位70~97質量%を含む請求項1または2に記載の繊維強化熱可塑性樹脂組成物。
  4. 前記(メタ)アクリル系重合体を構成する全ての(メタ)アクリル系単量体単位のうち、アクリロイルオキシ基またはメタクリロイルオキシ基が、水素および/または1級炭素原子に結合した(メタ)アクリル系単量体単位が60質量%以上である、請求項1~3のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  5. 前記(メタ)アクリル系重合体が側鎖に水酸基を有し、水酸基価が10~100mgKOH/gである、請求項1~4のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  6. 前記(メタ)アクリル系重合体が側鎖にカルボキシル基を有し、酸価が1~10mgKOH/gである、請求項1~5のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  7. 前記強化繊維が炭素繊維である、請求項1~6のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  8. 前記熱可塑性樹脂がカルボキシル基、酸無水物基およびエポキシ基より選ばれる少なくとも1種の官能基を含む変性ポリオレフィン樹脂である、請求項1~7のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  9. 強化繊維に(メタ)アクリル系重合体が付着した強化繊維束であって、該(メタ)アクリル系重合体が、側鎖に、水酸基、カルボキシル基、アミド基およびウレア基より選ばれる少なくとも1種の官能基を有し、かつ、下式で算出される凝集エネルギー密度CEDが385~550MPaである重合体であり、かつ、該(メタ)アクリル系重合体の付着量が0.1~30質量%である(メタ)アクリル系重合体が付着した強化繊維束;
    CED=1.15×Σ{P(n)×CE(n)}/Σ{P(n)×M(n)}
    ここで、(メタ)アクリル系重合体に含まれる(メタ)アクリル系単量体単位の種類をm種類として、各(メタ)アクリル系単量体単位をそれぞれ(メタ)アクリル系単量体単位(n)(nは1~mの整数)としたとき、CE(n)は、(メタ)アクリル系単量体単位(n)の化学構造CS(n)から計算された凝集エネルギーを意味する;また同様に、M(n)は(メタ)アクリル系単量体単位(n)の分子量を、P(n)は(メタ)アクリル系重合体中の(メタ)アクリル系単量体単位(n)のモル分率を意味する;ただしΣP(n)=1である。
  10. 前記(メタ)アクリル系重合体が、カルボキシル基含有(メタ)アクリル系単量体単位0~5質量%、水酸基含有(メタ)アクリル系単量体単位3~25質量%、アルキル基の炭素原子数が1~4個の(メタ)アクリル酸アルキルエステル単位70~97質量%を含む請求項9に記載の(メタ)アクリル系重合体が付着した強化繊維束。
  11. 前記強化繊維が炭素繊維である、請求項9または10に記載の(メタ)アクリル系重合体が付着した強化繊維束。
  12. 次の第1a工程、第2a工程、第3a工程および第4a工程を含む繊維強化熱可塑性樹脂組成物の製造方法;
     第1a:不連続な強化繊維束をシート状の強化繊維基材(A1)に加工する工程;
     第2a:第1a工程で得られた強化繊維基材(A1)1~70質量部に、側鎖に水酸基を有する(メタ)アクリル系重合体を0.1~10質量部を付与する工程;
     第3a:第2a工程で得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)に、熱可塑性樹脂を複合化して、強化繊維基材(A2)1.1~80質量%および熱可塑性樹脂20~98.9質量%を含む繊維強化熱可塑性樹脂組成物を得る工程;
     第4a:第3a工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
  13. 次の第1b工程、第2b工程および第3b工程を含む繊維強化熱可塑性樹脂組成物の製造方法;
     第1b:強化繊維束1~70質量部に対して、側鎖に水酸基を有する(メタ)アクリル系重合体が0.1~10質量部付着した、不連続な強化繊維束をシート状の強化繊維基材(A2)に加工する工程;
     第2b:第1b工程で得られた(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%に、熱可塑性樹脂20~98.9質量%を複合化して、繊維強化熱可塑性樹脂組成物を得る工程;
     第3b:第2b工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
  14. 次の第1c工程、第2c工程および第3c工程を含む繊維強化熱可塑性樹脂組成物の製造方法;
     第1c:不連続な強化繊維束をシート状の強化繊維基材(A1)に加工すると同時に、側鎖に水酸基を有する(メタ)アクリル系重合体を前記強化繊維基材(A1)に、強化繊維基材(A1)1~70質量部に対して0.1~10質量部付与し、(メタ)アクリル系重合体が付与された強化繊維基材(A2)を得る工程;
     第2c:第1c工程で得られた、(メタ)アクリル系重合体が付与された強化繊維基材(A2)1.1~80質量%を、熱可塑性樹脂20~98.9質量%と複合化して、繊維強化熱可塑性樹脂組成物を得る工程;
     第3c:第2c工程で得られた繊維強化熱可塑性樹脂組成物を1m/分以上の速度で引き取る工程。
  15. 前記強化繊維が炭素繊維である、請求項12~14のいずれかに記載の繊維強化熱可塑性樹脂組成物の製造方法。
PCT/JP2011/051398 2010-01-29 2011-01-26 繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法 WO2011093297A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180007638.2A CN102741350B (zh) 2010-01-29 2011-01-26 纤维增强热塑性树脂组合物、增强纤维束以及纤维增强热塑性树脂组合物的制造方法
EP11737010.6A EP2530124B1 (en) 2010-01-29 2011-01-26 Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and process for production of fiber-reinforced thermoplastic resin composition
CA2786714A CA2786714C (en) 2010-01-29 2011-01-26 Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and process for production of fiber-reinforced thermoplastic resin composition
KR1020127017986A KR101578045B1 (ko) 2010-01-29 2011-01-26 섬유 강화 열가소성 수지 조성물, 강화 섬유 다발, 및 섬유 강화 열가소성 수지 조성물의 제조 방법
US13/575,749 US9475929B2 (en) 2010-01-29 2011-01-26 Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and process for production of fiber-reinforced thermoplastic resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-018296 2010-01-29
JP2010018296 2010-01-29
JP2010-018295 2010-01-29
JP2010018295 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093297A1 true WO2011093297A1 (ja) 2011-08-04

Family

ID=44319284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051398 WO2011093297A1 (ja) 2010-01-29 2011-01-26 繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法

Country Status (7)

Country Link
US (1) US9475929B2 (ja)
EP (1) EP2530124B1 (ja)
KR (1) KR101578045B1 (ja)
CN (1) CN102741350B (ja)
CA (1) CA2786714C (ja)
TW (1) TWI495672B (ja)
WO (1) WO2011093297A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039873A (zh) * 2012-01-10 2014-09-10 东丽株式会社 碳纤维增强聚丙烯片材及其成型品
EP2813532A1 (en) 2012-02-09 2014-12-17 Toray Industries, Inc. Carbon fiber composite material
EP2808433A4 (en) * 2012-07-31 2015-01-21 Teijin Ltd REGULATED MAT AND PRESSLING OF FIBER REINFORCED COMPOSITE
EP2754685A4 (en) * 2011-09-06 2015-03-11 Teijin Ltd MOLDED BODY HAVING EXCELLENT SURFACE DESIGN CAPABILITY AND COMPRISING A FIBER REINFORCED COMPOSITE MATERIAL
JP2016060976A (ja) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 強化繊維束、繊維強化熱可塑性樹脂組成物およびその成形品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2539902T3 (es) * 2011-02-01 2015-07-07 Teijin Limited Malla aleatoria y material compuesto reforzado con fibra
KR101437212B1 (ko) * 2012-01-11 2014-09-11 (주)엘지하우시스 함침성이 우수한 연속 탄소섬유보강 열가소성 플라스틱 복합재 및 그 제조 방법
EP2927267B1 (en) * 2012-11-27 2020-03-25 Mitsubishi Chemical Corporation Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg
EP2747097B1 (en) * 2012-12-19 2019-02-20 ABB Schweiz AG Transformer insulation
JP6136329B2 (ja) * 2013-02-13 2017-05-31 Dic株式会社 繊維集束剤
WO2016159118A1 (ja) * 2015-03-30 2016-10-06 三菱レイヨン株式会社 成形体及びその製造方法
JP6263504B2 (ja) * 2015-08-25 2018-01-17 矢崎総業株式会社 導電性樹脂体及び車両アース構造
WO2017179506A1 (ja) * 2016-04-11 2017-10-19 三菱ケミカル株式会社 繊維強化樹脂材料の製造方法及び繊維強化樹脂材料の製造装置
CA3080701A1 (en) * 2017-11-07 2019-05-16 Toray Industries, Inc. Fiber-reinforced thermoplastic resin filament and shaped product of same
CN108330687B (zh) * 2018-01-29 2020-09-18 西安工程大学 基于本体聚合法的热熔性纺织浆料制备方法
CN117229535A (zh) * 2019-03-26 2023-12-15 日铁化学材料株式会社 交联硬化物的制造方法及交联硬化物
CN114085542B (zh) * 2021-11-30 2023-02-10 常州玖翔电子有限公司 一种耐高温材料及耐高温喇叭

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869047A (ja) 1981-10-22 1983-04-25 株式会社クラレ シート状物およびその製造方法
JPS59137573A (ja) 1983-01-19 1984-08-07 三菱レイヨン株式会社 炭素繊維の表面保護方法
JPS61209940A (ja) 1985-03-12 1986-09-18 旭硝子株式会社 補強用繊維
JPH09176923A (ja) * 1995-10-23 1997-07-08 Toray Ind Inc 炭素繊維用プリカーサーおよびその製造方法ならびに炭素繊維の製造方法
JPH1119998A (ja) * 1997-07-08 1999-01-26 Sekisui Chem Co Ltd 複合成形品
JP2003261359A (ja) * 2002-03-11 2003-09-16 Mitsubishi Rayon Co Ltd ガラス繊維用集束剤、ガラス繊維束、(メタ)アクリル系樹脂組成物、および(メタ)アクリル系樹脂成形品
JP2005146431A (ja) 2003-11-11 2005-06-09 Mitsubishi Rayon Co Ltd 強化繊維用サイジング剤、炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品
JP2006104608A (ja) 2004-10-04 2006-04-20 Kao Corp 抄造体の製造方法
WO2007037260A1 (ja) 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
WO2007097436A1 (ja) 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081143A (en) * 1959-08-04 1963-03-12 American Cyanamid Co Stiff, strong paper
FR2129905B1 (ja) 1971-03-19 1974-09-06 Commissariat Energie Atomique
US4433020A (en) 1981-10-22 1984-02-21 Kuraray Co., Ltd. Sheet-like material, heat-insulating material derived therefrom and methods of manufacturing same
CN101305055A (zh) * 2005-09-29 2008-11-12 东丽株式会社 纤维增强热塑性树脂组合物、其制造方法、及热塑性树脂用碳纤维
JP2009074229A (ja) 2007-08-29 2009-04-09 Sanyo Chem Ind Ltd 繊維用集束剤
JP2009197359A (ja) 2008-02-21 2009-09-03 Toray Ind Inc 強化繊維、および繊維強化複合材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869047A (ja) 1981-10-22 1983-04-25 株式会社クラレ シート状物およびその製造方法
JPS59137573A (ja) 1983-01-19 1984-08-07 三菱レイヨン株式会社 炭素繊維の表面保護方法
JPS61209940A (ja) 1985-03-12 1986-09-18 旭硝子株式会社 補強用繊維
JPH09176923A (ja) * 1995-10-23 1997-07-08 Toray Ind Inc 炭素繊維用プリカーサーおよびその製造方法ならびに炭素繊維の製造方法
JPH1119998A (ja) * 1997-07-08 1999-01-26 Sekisui Chem Co Ltd 複合成形品
JP2003261359A (ja) * 2002-03-11 2003-09-16 Mitsubishi Rayon Co Ltd ガラス繊維用集束剤、ガラス繊維束、(メタ)アクリル系樹脂組成物、および(メタ)アクリル系樹脂成形品
JP2005146431A (ja) 2003-11-11 2005-06-09 Mitsubishi Rayon Co Ltd 強化繊維用サイジング剤、炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品
JP2006104608A (ja) 2004-10-04 2006-04-20 Kao Corp 抄造体の製造方法
WO2007037260A1 (ja) 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
WO2007097436A1 (ja) 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"SP value Foundation/Application and Calculation Method(Sixth ed.,", 2008, JOHOKIKO, CO., LTD., pages: 69
DOI, M.; EDWARDS, S.F., THE THEORY OF POLYMER DYNAMICS, 1986, pages 324
DRZAL, L.T., MATER. SCI. ENG., 1990
R. F. FEDORS: "A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids", POLM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154
See also references of EP2530124A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754685A4 (en) * 2011-09-06 2015-03-11 Teijin Ltd MOLDED BODY HAVING EXCELLENT SURFACE DESIGN CAPABILITY AND COMPRISING A FIBER REINFORCED COMPOSITE MATERIAL
CN104039873A (zh) * 2012-01-10 2014-09-10 东丽株式会社 碳纤维增强聚丙烯片材及其成型品
US20140357777A1 (en) * 2012-01-10 2014-12-04 Toray Industries, Inc. Carbon fiber-reinforced polypropylene sheet and molded article thereof
EP2803693A4 (en) * 2012-01-10 2015-09-16 Toray Industries CARBON FIBER REINFORCED POLYPROPYLENE SHEET AND ASSOCIATED MOLDED ARTICLE
TWI554556B (zh) * 2012-01-10 2016-10-21 東麗股份有限公司 碳纖維強化聚丙烯薄片及其成形品
US9475920B2 (en) * 2012-01-10 2016-10-25 Toray Industries, Inc. Carbon fiber-reinforced polypropylene sheet and molded article thereof
EP2813532A1 (en) 2012-02-09 2014-12-17 Toray Industries, Inc. Carbon fiber composite material
EP2808433A4 (en) * 2012-07-31 2015-01-21 Teijin Ltd REGULATED MAT AND PRESSLING OF FIBER REINFORCED COMPOSITE
US10208174B2 (en) 2012-07-31 2019-02-19 Teijin Limited Random mat and fiber-reinforced composite material shaped product
JP2016060976A (ja) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 強化繊維束、繊維強化熱可塑性樹脂組成物およびその成形品

Also Published As

Publication number Publication date
KR20120130749A (ko) 2012-12-03
KR101578045B1 (ko) 2015-12-16
US20130234361A1 (en) 2013-09-12
EP2530124B1 (en) 2021-02-24
EP2530124A4 (en) 2013-09-18
EP2530124A1 (en) 2012-12-05
CA2786714C (en) 2018-04-10
TW201144363A (en) 2011-12-16
CN102741350A (zh) 2012-10-17
CN102741350B (zh) 2015-04-15
US9475929B2 (en) 2016-10-25
TWI495672B (zh) 2015-08-11
CA2786714A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2011093297A1 (ja) 繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法
TWI554556B (zh) 碳纖維強化聚丙烯薄片及其成形品
KR101288676B1 (ko) 섬유 처리용 수분산체
WO2010074108A1 (ja) 成形材料および樹脂付着強化繊維束
US9506169B2 (en) Carbon fiber bundle and manufacturing method of the same
CA2731283C (en) Prepreg, preform, molded product, and method for manufacturing prepreg
JP5905740B2 (ja) 炭素繊維束およびこの炭素繊維束を用いた繊維強化熱可塑性樹脂成形体
WO2007037260A1 (ja) 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
JP2011157638A (ja) 抄紙基材および繊維強化成形基材の製造方法
JP2006077343A (ja) 炭素繊維マットおよびその製造方法、それを用いた成形用基材
JP5251342B2 (ja) 炭素繊維ウェブの製造方法
TW201736099A (zh) 不連續纖維強化複合材料
JP5655592B2 (ja) 炭素繊維強化成形材料の製造方法
JP2010149353A (ja) 強化繊維束
JP5747524B2 (ja) 炭素繊維強化熱可塑性樹脂組成物および炭素繊維束
WO2013172318A1 (ja) 補強用炭素繊維束、その製造方法及びそれを用いた複合体の製造方法
JP2012007280A (ja) 炭素繊維束及びその製造方法、ならびにそれからの成形品
JP5908765B2 (ja) 複合材料の製造方法
JP6520662B2 (ja) 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体
JP2015178611A (ja) 複合強化繊維束および成形材料
WO2017056958A1 (ja) プロピレン系樹脂付着繊維束
JP2019073725A (ja) 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体
JP2019105004A (ja) サイジング剤付着繊維
JP2020023769A (ja) サイジング剤付着繊維
JP2006002257A (ja) 湿式法ガラス不織布およびプリプレグ、複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007638.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2786714

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127017986

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011737010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13575749

Country of ref document: US