JP2019105004A - サイジング剤付着繊維 - Google Patents

サイジング剤付着繊維 Download PDF

Info

Publication number
JP2019105004A
JP2019105004A JP2017238630A JP2017238630A JP2019105004A JP 2019105004 A JP2019105004 A JP 2019105004A JP 2017238630 A JP2017238630 A JP 2017238630A JP 2017238630 A JP2017238630 A JP 2017238630A JP 2019105004 A JP2019105004 A JP 2019105004A
Authority
JP
Japan
Prior art keywords
fiber
sizing agent
adhered
matrix resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017238630A
Other languages
English (en)
Inventor
泰佑 藤本
Taisuke Fujimoto
泰佑 藤本
畳開 真之
Masayuki Jokai
真之 畳開
晃久 野村
Akihisa Nomura
晃久 野村
裕貴 鈴木
Yuki Suzuki
裕貴 鈴木
内藤 猛
Takeshi Naito
猛 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2017238630A priority Critical patent/JP2019105004A/ja
Publication of JP2019105004A publication Critical patent/JP2019105004A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

【課題】マトリクス樹脂との接着性と、繊維束内へのマトリクス樹脂の含浸性を満足し、優れた取扱性を有するサイジング剤付着繊維を提供する。【解決手段】サイジング剤付着繊維は、繊維表面にサイジング剤が付着した繊維であって、該サイジング剤が重量平均分子量が10,000を超え、かつ、下式(1)もしくは(2)に記載の構造であらわされる側鎖にアミドを有するポリオレフィンを含む。(1)(2)[R1、R2はそれぞれ飽和炭化水素基を表わす]【選択図】なし

Description

本発明はサイジング剤付着繊維に関し、さらに詳しくは繊維とマトリクス樹脂からなる複合材料に最適なサイジング剤が付着した繊維およびその製造方法に関する。
繊維によってマトリクス樹脂を強化された複合材料は、軽量でありながら強度、剛性、寸法安定性等に優れることから、事務機器用途、自動車用途、コンピューター用途(ICトレイ、ノートパソコンの筐体(ハウジング)など)等の一般産業分野に広く展開され、その需要は年々増加しつつある。しかしこの複合材料に用いられる強化用の繊維は、マトリクス樹脂と化学組成や分子構造が異なるため、親和性や接着性の向上が大きな課題となっている。
また、中でも強化用の繊維が、マトリクス樹脂中にて複数のフィラメント(単糸)が集合した繊維束の形態で使用される場合には、上記の繊維とマトリクス樹脂との親和性、接着性などの界面の問題に加えて、様々な問題があった。例えば繊維束をカットする工程や開繊する工程の安定性や、マトリクス樹脂を含浸する工程における加工性等の問題があった。繊維束の状態が安定しない場合には、内層部に高粘度の樹脂を含浸させる際に含浸の度合いが大きく異なることとなり、安定した複合材料の物性を得ることが出来ないのである。
従来、繊維とマトリクス樹脂との親和性を高める目的では、さまざまサイジング剤が検討されている。例えば特許文献1ではエポキシエマルジョン系サイジング剤を繊維に付着させることで、繊維とマトリクス樹脂との界面接着性を向上させて、複合材料の強度を改善する方法が開示されている。あるいは特許文献2では熱可塑性樹脂のポリプロピレンをマトリクスとする場合に、アミノ基含有ポリオレフィン系サイジング剤で処理する方法が開示されている。
しかしこれらの方法では、界面接着強度こそ向上するもののマトリクスの含浸性に関しては乏しいという問題があった。
特に、複合材料のマトリクス樹脂が、熱硬化性樹脂に比べて比較的高粘度の熱可塑性樹脂である場合、この問題が顕著であった。
特開平4−170435号公報 国際公開第2011/030544号
本発明は、マトリクス樹脂との接着性と、繊維束内へのマトリクス樹脂の含浸性を満足し、優れた取扱性を有するサイジング剤付着繊維を提供することにある。
本発明のサイジング剤付着繊維は、繊維表面にサイジング剤が付着した繊維であって、該サイジング剤が、重量平均分子量が10,000を超え、かつ、下式(1)もしくは(2)に記載の構造であらわされる側鎖にアミドを有するポリオレフィンを含むサイジング剤であるサイジング剤付着繊維である。
Figure 2019105004
(1)
(ただし、RはC1〜C6の飽和炭化水素基)
Figure 2019105004
(2)
(ただし、RはC1〜C6の飽和炭化水素基)
本発明において、サイジング剤の付着量はサイジング剤付着繊維の重量の0.1重量%〜10重量%であることが好ましく、繊維は炭素繊維であることが好ましい。
さらに本発明には、これらのサイジング剤付着繊維とマトリクス樹脂からなる複合材料を包含する。
本発明のサイジング剤付着炭素繊維は、優れた取扱性を有し、また、マトリクス樹脂との接着性に優れ、繊維束内へのマトリクス樹脂の含浸性も高いため、機械特性に優れた複合材料を得ることができる。
本発明のサイジング剤付着繊維は、繊維表面にサイジング剤が付着した繊維であって、サイジング剤が、重量平均分子量が10,000を超え、かつ、下式(1)もしくは(2)に記載の構造であらわされる側鎖にアミドを有するポリオレフィンを含むサイジング剤であるサイジング剤付着繊維である。
Figure 2019105004
(1)
(ただし、RはC1〜C6の飽和炭化水素基)
Figure 2019105004
(2)
(ただし、RはC1〜C6の飽和炭化水素基)
このような構造を有するポリオレフィンをサイジング剤として用いることで、ポリオレフィン側鎖のアミド結合と繊維表面の極性基およびマトリクス樹脂との間に水素結合が生成され、繊維とマトリクス樹脂の接着性を高めることが出来る。また、ポリオレフィン側鎖のアミド結合が有する極性の影響によりサイジング剤付着繊維の表面自由エネルギーが大きくなり、マトリクス樹脂の繊維内部への含浸性を向上させることが出来る。
このような構造を有するポリオレフィンとしては、例えば、ポリ−N−ビニルアセトアミド、ポリ−N−イソプロピルアクリルアミド、ポリ−N−ビニルイソブチルアミド、ポリ−N−ビニルプロピルアミド、ポリ−N−ビニルブチルアミド、ポリ−N−ビニルペンチルアミド、ポリ−N−ビニルへキシルアミド等が挙げられる。この中でもポリ−N−ビニルアセトアミドが好ましい。ポリ−N−ビニルアセトアミドは水に対する溶解性が高く、サイジング剤水溶液を容易に調整することが出来る。
また、本発明で用いる側鎖にアミドを有するポリオレフィンは、その重量平均分子量が、10,000を超えるポリオレフィンであり、より好ましくは重量平均分子量が、20,000〜1,000,000の範囲のポリオレフィンである。この範囲にあることで十分な水素結合生成能が得られ、十分な含浸性および接着性を得ることが出来ると共に、主鎖中の水素結合頻度が高くなることにより、より強固な皮膜を形成し、耐擦過性に優れた繊維を得ることができる。なお、重量平均分子量が大きすぎる場合は、水溶液にした際の粘度が高く、繊維表面に均一にサイジングすることが困難となる場合がある。
平均分子量が10,000を超える側鎖にアミドを有するポリオレフィンとしては、具体的には、商品名「GE191−103」(昭和電工株式会社製、ポリ−N−ビニルアセトアミド、重量平均分子量900,000)、「GE191−104」(昭和電工株式会社製、ポリ−N−ビニルアセトアミド、重量平均分子量300,000)、「GE191−107」(昭和電工株式会社製、ポリ−N−ビニルアセトアミド、重量平均分子量50,000)、「GE191−405」(昭和電工株式会社製、ポリ−N−ビニルアセトアミド、重量平均分子量90,000)等が挙げられる。
サイジング剤の付着量としては、サイジング剤付着繊維の重量に対し、0.1重量%〜10重量%であることが好ましい。サイジング剤付着量がこの範囲であると、繊維表面に均一にサイジングしやすくなり、毛羽立ち等を抑制することができ、また、十分な水素結合生成能が得られ、十分な含浸性および接着性を得ることが出来る。さらに好ましくは0.2重量%〜5重量%であり、さらに好ましくは0.2重量%〜2重量%である。サイジング剤の付着量はサイジング剤液中の側鎖にアミドを有するポリオレフィンの濃度を調整することで調整できる。
本発明で用いるサイジング剤は、上記の構造を有するポリオレフィンを単独で含むものであってもよく、必要に応じて、他のサイジング剤との混合物であってもよい。
上記の構造を有するポリオレフィンと混合する他のサイジング剤としては、例えば、上記の構造を有さないポリオレフィン、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテル、ポリウレタン、エポキシ樹脂、ビニルエステル樹脂、アクリル樹脂やその変性物などが挙げられる。また、本発明の効果を妨げない範囲で、分散剤、界面活性剤、酸化防止剤などの補助成分や、フィラーなどの添加剤を含んでいてもよい。
本発明で用いるサイジング剤に含まれる上記の構造を有するポリオレフィンの割合は、溶媒を除くサイジング剤の乾燥重量に対して、30〜100質量%であることが好ましく、50質量%以上であることがより好ましく、70質量%の以上であることがさらに好ましい。
本発明のサイジング剤付着繊維は、特に制限されるものではないが、複数のフィラメント(単糸)が集合した繊維束として使用される場合に、特に顕著な効果が得られる。繊維束を構成するフィラメントの構成本数としては、本発明では、10本以上であれば繊維束状態と定義されるが、100本以上であることが好ましく、さらには1,000〜100,000本であることが好ましい。サイジング剤付着繊維が炭素繊維である場合には、生産性の観点などから3,000〜80,000本であることが好ましく、さらには6,000本〜50,000本の範囲であることが好ましい。繊維束を構成するフィラメントの本数が少ないと、繊維束の柔軟性が増してハンドリング性が向上する傾向がある一方、強化繊維の生産性が低下する傾向にある。一方、本数が多い場合には繊維束の生産が困難になる場合があり、また、表面処理剤が十分に処理されにくい傾向になる。
繊維束の全体形状としては扁平繊維束であることが好ましい。繊維束が扁平繊維束であると、繊維束の内部にまで塗布したサイジング剤、及びその後の複合材料とした時に用いるマトリクス樹脂が、より拡散しやすくなる。繊維束の扁平率(繊維束の幅/厚み)としては10倍以上、特には50〜400倍の範囲にあることが好ましい。
また、繊維束の中心までサイジング剤や、マトリクス樹脂が浸透するまでにかかる時間は、繊維束の厚みの2乗に比例するため、短時間で含浸を完了させるためには繊維束を拡幅し、繊維束の厚みを薄くすることが好ましい。繊維束の厚みのとしては200μm以下であることが好ましい。また、ハンドリング性と成形性の観点からは繊維束の厚みとしては10μm以上であることが好ましい。さらには繊維束の厚みとしては30〜150μmの範囲が好ましく、特に50〜120μmの範囲がより好ましい。
このような繊維束の幅としては5mm以上であることが好ましく、10〜100mmの範囲であることが特に好ましい。また繊維束の長さには特に限定はなく、連続繊維であっても、不連続繊維であってもよい。不連続繊維として用いる場合、その繊維長としては1〜100mmの範囲であることが好ましい。さらには5〜50mmの範囲であることがより好ましい。
本発明で用いる繊維(単糸)の平均直径としては、0.001〜100μmの範囲が好ましく、3〜20μmの範囲がより好ましい。さらに好ましい平均直径の範囲としては4〜15μm、特に好ましい範囲は、5〜10μmである。繊維径が小さすぎると、繊維成分が嵩高くなり、繊維の体積分率を高くしにくくなる傾向がある。一方、繊維径が大きすぎると、高い強度を有する繊維を得にくくなる傾向がある。繊維径が上記の範囲であると、機械強度に優れた複合材料を得ることができる。
側鎖にアミドを有するポリオレフィンをサイジング剤として繊維または繊維束に付着させる方法としては、特に制限はないが、側鎖にアミドを有するポリオレフィンを溶媒に溶解させたサイジング剤水溶液を調整し、サイジング剤溶液を繊維に付着させる方法(サイジング処理)が好ましい。側鎖にアミドを有するポリオレフィンを溶解する溶媒としては、特に制限はないが、水であることが好ましい。また、側鎖にアミドを有するポリオレフィンを、界面活性剤を用いて乳化させ、サイジング剤水分散液を調整し、サイジングする方法も好ましい。
サイジング剤水分散液を調整する場合、界面活性剤は、特に制限されるものではなく、アニオン系、カチオン系、ノニオン系界面活性剤等を用いることができる。中でもノニオン系界面活性剤が、乳化性能および分散液の安定性の観点から好ましい。
ノニオン系界面活性剤としては、ポリエチレングリコール型(高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物等)、多価アルコール型(グリセリンの脂肪酸エステル、ソルビトール脂肪酸エステル、脂肪酸アルカノールアミド等)等の界面活性剤が挙げられる。
乳化方法としては、撹拌翼を具備したバッチを用いる方法、ボールミルを用いる方法、振とう器を用いる方法、ガウリンホモジナイザ等の高せん断乳化機を用いる方法等が挙げられる。
また、前記界面活性剤は、側鎖にアミドを有するポリオレフィンを乳化できれば特に制限はなく、通常0.1〜30質量%程度添加すればよい。
サイジング処理する方法の例としては、サイジング剤液に繊維束を接触させる方法が挙げられる。具体的には、サイジング剤液中にロールの一部を浸漬させ表面転写した後、このロールに繊維束を接触させてサイジング剤水溶液を付着させるタッチロール式、繊維束を直接サイジング剤液に浸漬させ、その後必要に応じてニップロールを通過させてサイジング剤液の付着量を制御する浸漬方式等が挙げられる。
また、繊維束から溶媒を除去する方法に限定はなく、熱処理、風乾、遠心分離等の様々な手段を併用しても良い。コストの観点から熱処理が好ましく、熱処理の加熱手段としては、例えば、熱風、熱板、ローラー、赤外線ヒーター等を使用することが出来る。
本発明のサイジング剤付着繊維に好ましく用いられる繊維としては、マトリクス樹脂を補強することができる各種の強化繊維を挙げることができる。具体的には、炭素繊維、ガラス繊維、セラミック繊維、炭化ケイ素繊維などの各種無機繊維、芳香族ポリアミド繊維(アラミド繊維)、ポリエチレン繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリアリレート繊維、ポリアセタール繊維、ポリベンゾオキサゾール繊維、ポリフェニレンサルファイド繊維、ポリケトン繊維、ポリベンゾイミダゾール繊維等の各種有機遷移を好ましく挙げることができる。中でも本発明に適した繊維としては、炭素繊維、ガラス繊維、芳香族ポリアミド繊維が好ましく、特に比強度、比弾性率が良好で、軽量かつ高強度の繊維強化複合材料が得られる炭素繊維であることが好ましい。
炭素繊維を用いる場合、特に制限が無く、ピッチ系、レーヨン系、PAN系、単層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノファイバー等何れの炭素繊維も使用できるが、操作性、工程通過性、及び機械強度等を鑑みるとアクリロニトリル(PAN)系が好ましい。炭素繊維の繊度、強度等の特性も特に制限が無く、公知の何れの炭素繊維も制限無く使用できる。PAN系の炭素繊維は、例えば、以下の方法により製造することができる。
<前駆体繊維>
炭素繊維の前駆体繊維としては、アクリロニトリルを好ましくは90質量%以上、より好ましくは95質量%以上含有し、その他の単量体を10質量%以下含有する単量体を単独又は共重合した紡糸溶液を紡糸して製造するアクリル系前駆体繊維が好ましい。その他の単量体としてはイタコン酸、(メタ)アクリル酸エステル等が例示される。紡糸後の原料繊維を、水洗、乾燥、延伸、オイリング処理することにより、前駆体繊維が得られる。前駆体繊維のフィラメント数は、製造効率の面では1000本以上が好ましく、12000本以上がより好ましく、24000本以上がさらに好ましい。
<耐炎化処理>
得られた前駆体繊維を、加熱空気中200〜300℃で10〜100分間耐炎化(不融化)処理する。耐炎化処理では、前駆体繊維を延伸倍率0.90〜1.20の範囲で繊維を延伸処理することが好ましい。
<炭素化処理>
不融化処理した前駆体繊維を、300〜2000℃で炭素化することで炭素繊維が得られる。より引張強度の高い緻密な内部構造をもつ炭素繊維束を得るためには、300℃〜1000℃で低温炭素化した後、1000〜2000℃で高温炭素化する二段階の炭素化工程を経て、炭素化処理を行うことが好ましい。より高い弾性率が求められる場合は、さらに2000〜3000℃の高温で黒鉛化処理を行ってもよい。
<表面酸化処理>
上記で得られた炭素繊維は、サイジング剤及びマトリクスとなる樹脂との濡れ性を改善するために、表面処理を行うことが好ましい。表面処理は、従来公知のいずれの方法でも行うことができるが、装置が簡便であり、工程での管理が容易であることから、工業的には電解酸化を用いることが一般的である。
表面処理の電気量は、炭素繊維1gに対して10〜150クーロンになる範囲とすることが好ましい。電気量をこの範囲で調節すると、繊維としての力学的特性に優れ、かつ、樹脂との接着性の向上した炭素繊維を得ることができる。
電解液としては、例えば、硝酸、硫酸、硫酸アンモニウムや炭酸水素ナトリウムなどが挙げられる。電解液の電解質濃度は0.1規定以上が好ましく、0.1〜1規定がより好ましい。
<サイジング処理>
このようにして得られた炭素繊維に、上記のサイジング剤をサイジング処理する。サイジング液におけるサイジング剤の濃度は、0.1〜25質量%が好ましい。炭素繊維へのサイジング剤溶液の付与方法は、特に限定されないが、ローラーサイジング法、ローラー浸漬法、スプレー法およびその他公知の方法を用いることができる。中でも、一束あたりの単繊維数が多い炭素繊維束についても、サイジング剤溶液を均一に付与しやすい、ローラー浸漬法が好ましく用いられる。サイズジング剤溶液の液温は、溶媒蒸発によるサイジング剤濃度変動を抑えるため10〜50℃の範囲が好ましい。また、サイジング剤溶液を付与した後に、余剰のサイジング剤を絞り取る絞り量の調整することでも、サイジング剤の付着量を調整できる。
<乾燥処理>
サイジング処理後の炭素繊維は、サイジング処理時の分散媒であった水等を蒸散させるため乾燥処理が施され、サイジング剤付着炭素繊維が得られる。乾燥にはエアドライヤーを用いることが好ましい。乾燥温度は特に限定されるものではないが、汎用的な水系エマルジョンの場合は通常100〜180℃に設定される。また、乾燥工程の後、200℃以上の熱処理工程を経てもよい。
上記のような本発明のサイジング剤付着炭素繊維は、マトリクス樹脂との接着性に優れ、繊維束内へのマトリクス樹脂の含浸性も高いため、機械特性に優れた複合材料を得ることができる。
本発明のもう一つの形態である複合材料は上記の本発明のサイジング剤付着繊維とマトリクス樹脂からなる複合材料である。本発明のサイズ剤付着繊維を用い、マトリックス樹脂と組み合わせ、例えば、オートクレーブ成形、プレス成形、樹脂トランスファー成形、フィラメントワインディング成形、射出成形など、公知の手段・方法により複合材料が得られる。
サイジング剤付着繊維は、繊維束として用いてもよく、複数の繊維束をシート状に加工したシート状強化繊維材料として用いることもできる。シート状の材料とは、繊維を一方向にシート状に引き揃えたもの、繊維材料を織編物や不織布等の布帛に成形したもの、多軸織物等が挙げられる。繊維は連続繊維として用いてもよく、不連続繊維としてもよい。
不連続繊維を用いる場合、繊維束の形態で用いてもよく、開繊処理を行い単糸形態の繊維として用いてもよい。また、開繊処理を完全に行い単糸形態となった繊維と、不完全に開繊された繊維束形態の強化繊維の混合物であってもよい。また、繊維の配向は、同一方向に引き揃えられていてもよく、ランダムな方向に配向したランダムマットも好適に用いられる。
また、本発明のサイジング剤付着繊維をマトリクス樹脂と混練し、コンパウンドやペレットとして用いることや、繊維束にマトリクス樹脂を含浸させたストランドプリプレグやかかるストランドプリプレグを所定長に裁断した中間成形材料として用いてもよい。
また、これらの各種形態を組み合わせて用いてもよい。
本発明のサイジング剤付着繊維をシート状強化繊維材料として用いる場合、その目付としては25〜10000g/mとすることが好ましい。
マトリックス樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が用いられる。マトリックス樹脂は、熱可塑性樹脂であることが好ましい。
熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。
熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリベンズイミダゾール、ポリスチレン等が挙げられる。これらの樹脂は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明において、マトリクス樹脂は、水素結合生成能を有する構造を持つことが好ましい。水素結合生成能を有する構造とは官能基として、アミノ基、カルボキシル基、ヒドロキシル基、カルバモイル基、メルカプト基、リン酸基等が挙げられる。また、マトリクス樹脂が有する結合様式として、アミド結合、エステル結合、ウレタン結合が挙げられる。このようなマトリクス樹脂としては、例えば、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂や、側鎖などに上記の官能基が導入された編性樹脂などが挙げられる。より好ましくはポリアミド樹脂である。ポリアミド樹脂においては主鎖のアミド結合と側鎖にアミドを有するポリオレフィンの側鎖のアミド結合とが強固な水素結合を生成し、高い接着性を発現することが出来る。
ここで複合材料中の強化繊維の含有量としては、10〜90体積%の範囲であることが好ましく、15〜60体積%の範囲であることがより好ましく、20〜45体積%の範囲であることがさらに好ましい。本発明のサイジング剤付着繊維を含有するこのような複合材料は、複合化させるマトリクス樹脂の含浸が容易に行われ、また強度ムラ等が少ない高品位なものとなる。
このような強化繊維を含有する複合材料には、本来の目的を損なわない範囲で各種の添加剤を含んでも良い。また、強化繊維以外に含まれているものとして、その他の強化繊維、1種以上の熱可塑性樹脂、充填材、難燃剤、紫外線防止剤、安定剤、導電剤、内部離型剤等が挙げられる。
上記のような本発明の複合材料は、繊維とマトリクス樹脂との接着性に優れ、繊維束内へのマトリクス樹脂の含浸性も高いため、機械特性に優れた複合材料である。
以下、実施例により本発明をさらに詳細に説明するが、下記実施例は本発明を制限するものではない。なお、本発明の実施例は、下記に示す方法で評価した。
(1)サイジング剤付着量の評価
サイジング剤の付着量は、処理を行った1.0mのサイジング剤付着繊維束を2本採取し、これらを窒素雰囲気下10℃/分で550℃に昇温後、同温度で10分間焼成し、重量減少した分をサイジング剤の付着量として次式で算出した。
サイジング剤の付着量=(a−b)/b×100 [%]
a:焼成処理前の繊維重量 [g]
b:焼成処理後の繊維重量 [g]
(2)含浸性評価
15cm×15cmのSUS板上に繊維束を隙間なく敷き詰め、耐熱テープで固定したものを2組用意する。片方の繊維束上にポリアミド6の粉末9gを均一にまぶす。その後、もう一組の繊維束固定SUS板にて挟み、320℃、0.1MPaの条件にて17分ホットプレスを行う。得られたサンプルの断面を蛍光顕微鏡にて観察し、繊維束内へのポリアミド6樹脂の含浸距離を算出した。
(3)接着性
複合材料界面特性評価装置HM410(東栄産業株式会社製)を使用し、マイクロドロップレット法により接着性を評価した。
実施例および比較例で得られた繊維束より、単糸を取り出し、試料ホルダーにセッティングする。230℃にて溶融させたポリアミド6のドロップを単糸上に形成させ、空冷により冷却し固化させ、測定用の試料を得た。測定試料を装置にセッティングし、ドロップを装置ブレードで挟み、単糸を装置上で0.06mm/分の速度で走行させ、単糸からドロップを引き抜く際の最大引抜き荷重Fを測定した。
次式により界面せん断強度τを算出し、単糸とマトリクス樹脂との接着性を評価した。
界面せん断強度τ(単位:MPa)=F/πdl
(F:最大引抜き荷重 d:単糸直径 l:ドロップの引き抜き方向の粒子径)
(4)取扱性評価
繊維の取扱性として、使用時に発生する毛羽量を下記のFuzzおよびMPFの測定により評価した。いずれの値も低い方が毛羽立ちが抑制され、品位に優れた繊維束であることを意味する。
(4−1)Fuzzの評価
サイジング剤付着炭素繊維束を、125gの重りを乗せたウレタンシートの間を50フィート/分の速度で2分間走行させ、ウレタンシートに溜まった炭素繊維量を測定し、次式にて算出した。Fuzzの値は、150以下であることが好ましく、100以下であることがより好ましい。
Fuzz値(μg/ft)=補足毛羽量(μg)/評価繊維束長(ft)
(4−2)MPFの評価
サイジング剤付着炭素繊維束を200gの張力をかけながら、5本のピンガイドの間を50フィート/分の速度で2分間走行させた後、125gの重りを乗せたウレタンシートの間を通し、ウレタンシートに留まった炭素繊維量を測定し、次式にて算出した。MPFの値は、500以下であることが好ましく、300以下であることがより好ましい。
MPF値(μg/ft)=補足毛羽量(μg)/評価繊維束長(ft)
[実施例1]
〈サイジング剤水溶液の作製〉
分子量300,000のポリ−N−ビニルアセトアミドの10質量%水溶液(昭和電工株式会社製、商品名GE191−104)を水で希釈し、ポリ−N−ビニルアセトアミドの含有量が1.4質量%のサイジング剤水溶液を得た。
〈サイジング剤付着繊維の製造〉
ポリアクリロニトリル繊維を、空気中250℃で耐炎化処理を行った後、窒素ガス雰囲気下、最高温度650℃で低温炭素化させた。その後、窒素雰囲気下1300℃で高温炭素化させて製造した炭素繊維を、10wt%の硫酸アンモニウム水溶液を用い電解酸化により表面処理を行い、未サイジング処理炭素繊維束(引張強度:5100MPa、引張弾性率:245GPa、フィラメント数:24000本)を得た。次に、サイジング剤水溶液の浴に、得られた未サイジング処理炭素繊維束を連続的に浸漬させ、繊維束中のフィラメント間にサイジング剤水溶液を浸透させた。これを乾燥させ、サイジング剤付着繊維を得た。サイジング剤付着量、含浸性、接着性、Fuzz、MPFの測定結果を表1に示す。
実施例1で得られたサイジング剤付着繊維は、含浸性、接着性にとても優れ、また、FuzzとMPFの低い品位に優れた繊維束であった。
[実施例2]
サイジング剤水溶液を以下で得られたサイジング剤水溶液に変更した以外は、実施例1と同様にしてサイジング剤付着繊維束を得た。サイジング剤付着量、含浸性、接着性、Fuzz、MPFの測定結果を表1に示す。
〈サイジング剤水溶液の作製〉
重量平均分子量900,000のポリ−N−ビニルアセトアミドの10質量%水溶液(昭和電工株式会社製、商品名GE191−103)を水で希釈し、ポリ−N−ビニルアセトアミド含有量が1.4質量%のサイジング剤水溶液を得た。
実施例2で得られたサイジング剤付着繊維は、接着性にとても優れ、また、FuzzとMPFの低い品位に優れた繊維束であった。
[実施例3]
サイジング剤水溶液を以下で得られたサイジング剤水溶液に変更した以外は、実施例1と同様にしてサイジング剤付着繊維束を得た。サイジング剤付着量、含浸性、接着性、Fuzz、MPFの測定結果を表1に示す。
〈サイジング剤水溶液の作製〉
分子量50,000のポリ−N−ビニルアセトアミドの10質量%水溶液(昭和電工株式会社製、商品名GE191−107)を水で希釈し、ポリ−N−ビニルアセトアミドの含有量が1.4質量%のサイジング剤水溶液を得た。
実施例3で得られたサイジング剤付着繊維は、FuzzとMPFがやや高くなったものの使用に影響はなく、一方、含浸性にとても優れた繊維束であった。
[比較例1]
サイジング剤水溶液を以下で得られたサイジング剤水溶液に変更した以外は、実施例1と同様にしてサイジング剤付着繊維束を得た。サイジング剤付着量、含浸性、接着性、Fuzz、MPFの測定結果を表1に示す。
〈サイジング剤水溶液の作製〉
分子量10,000のポリ−N−ビニルアセトアミドの10質量%水溶液(昭和電工株式会社製、商品名GE191−108)を水で希釈し、ポリ−N−ビニルアセトアミドの含有量が1.4質量%のサイジング剤水溶液を得た。
分子量の低いポリ−N−ビニルアセトアミドを用いた比較例1で得られたサイジング剤付着繊維は、MPFがとても高く取り扱いにくい繊維束であった。また、含浸性も不十分であった。
Figure 2019105004

Claims (6)

  1. 繊維表面にサイジング剤が付着した繊維であって、該サイジング剤が、重量平均分子量が10,000を超え、かつ、下式(1)もしくは(2)に記載の構造であらわされる側鎖にアミドを有するポリオレフィンを含むサイジング剤であることを特徴とするサイジング剤付着繊維。
    Figure 2019105004
    (1)
    (ただし、RはC1〜C6の飽和炭化水素基)
    Figure 2019105004
    (2)
    (ただし、RはC1〜C6の飽和炭化水素基)
  2. サイジング剤の付着量がサイジング剤付着繊維の重量の0.1重量%〜10重量%である請求項1記載のサイジング剤付着繊維。
  3. 繊維が炭素繊維である請求項1または2記載のサイジング剤付着繊維。
  4. 請求項1〜3のいずれか1項記載のサイジング剤付着繊維とマトリクス樹脂とからなる複合材料。
  5. マトリクス樹脂が水素結合生成能を有する構造を有するマトリクス樹脂を含む請求項4記載の複合材料。
  6. 水素結合生成能を有する構造を有するマトリクス樹脂がポリアミドである請求項5に記載の複合材料。
JP2017238630A 2017-12-13 2017-12-13 サイジング剤付着繊維 Pending JP2019105004A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238630A JP2019105004A (ja) 2017-12-13 2017-12-13 サイジング剤付着繊維

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238630A JP2019105004A (ja) 2017-12-13 2017-12-13 サイジング剤付着繊維

Publications (1)

Publication Number Publication Date
JP2019105004A true JP2019105004A (ja) 2019-06-27

Family

ID=67061045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238630A Pending JP2019105004A (ja) 2017-12-13 2017-12-13 サイジング剤付着繊維

Country Status (1)

Country Link
JP (1) JP2019105004A (ja)

Similar Documents

Publication Publication Date Title
JP6105332B2 (ja) 強化繊維及びそれからなる強化繊維束
WO2011093297A1 (ja) 繊維強化熱可塑性樹脂組成物、強化繊維束、ならびに繊維強化熱可塑性樹脂組成物の製造方法
JP2007070593A (ja) プリプレグ及びその製造方法,炭素繊維並びに繊維体
US20130143025A1 (en) Thermoplastic resin impregnated tape
CN115777032A (zh) 附着有上浆剂的碳纤维束
US9732195B2 (en) Reinforcing carbon fiber bundle, method for manufacturing the same and method for manufacturing composite using the same
JP5251342B2 (ja) 炭素繊維ウェブの製造方法
JP2011157524A (ja) 繊維強化熱可塑性プラスチックおよびその製造方法
US20130309490A1 (en) Carbon fiber braid
Yao et al. Biomimetic and flexible high-performance carbon paper prepared by welding three-dimensional carbon fiber network with polyphenylene sulfide spherical sites for fuel cell gas diffusion layer
JP5908765B2 (ja) 複合材料の製造方法
TWI787467B (zh) 施膠劑組成物、碳纖維之製造方法及施膠劑附著碳纖維
JP2019105004A (ja) サイジング剤付着繊維
JP2015178689A (ja) 強化繊維束、その製造方法及びそれを用いた複合材料
JP2020070517A (ja) サイジング剤組成物、炭素繊維の製造方法及びサイジング剤付着炭素繊維
JP2020023770A (ja) サイジング剤付着炭素繊維束およびその製造方法
JP6846868B2 (ja) 炭素繊維、およびサイジング剤付着炭素繊維の製造方法
Kwon et al. Improvement of interlaminar properties of carbon fiber-reinforced epoxy composites using aluminum trihydroxide
JP5960402B2 (ja) 炭素繊維束及び炭素繊維束の製造方法
JP2012193465A (ja) 炭素繊維用アクリル系前駆体繊維、その製造方法、及びその前駆体繊維から得られる炭素繊維
WO2020071445A1 (ja) 前駆体繊維束の製造方法及び炭素繊維束の製造方法並びに炭素繊維束
JP2020023769A (ja) サイジング剤付着繊維
KR20170107483A (ko) 강화 섬유 복합 재료
JP7267792B2 (ja) サイジング剤付着炭素繊維束
Sinha et al. Study of Electrospun Poly\acrylonitrile (PAN) and PAN/CNT Composite Nanofibrous Webs