WO2011093272A1 - 電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置 - Google Patents

電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置 Download PDF

Info

Publication number
WO2011093272A1
WO2011093272A1 PCT/JP2011/051322 JP2011051322W WO2011093272A1 WO 2011093272 A1 WO2011093272 A1 WO 2011093272A1 JP 2011051322 W JP2011051322 W JP 2011051322W WO 2011093272 A1 WO2011093272 A1 WO 2011093272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave source
antenna
antennas
absolute value
Prior art date
Application number
PCT/JP2011/051322
Other languages
English (en)
French (fr)
Inventor
中村聡
横田等
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/575,189 priority Critical patent/US20130024148A1/en
Publication of WO2011093272A1 publication Critical patent/WO2011093272A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0892Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing

Definitions

  • the present invention relates to a technique for exploring an electromagnetic wave source that generates an electromagnetic wave.
  • EMC electromagnetic wave environment
  • Patent Document 1 describes a magnetic field detection device and a magnetic field distribution measurement device that can measure magnetic field components in different directions (equivalent to current components) with high resolution using three magnetic field probes orthogonal to each other in the XYZ plane. Has been.
  • Patent Document 2 listed below describes an electromagnetic field intensity detection device that simply detects an electromagnetic field intensity of a specified level or more by using three omnidirectional antennas.
  • an EMI Electromagnetic Interference
  • a loop antenna for measuring a magnetic field on a 4-axis scanner operating in the XYZ direction and the ⁇ direction (rotation direction about the Z axis).
  • Measuring apparatus and measuring method are described. With this apparatus and method, the current intensity distribution, phase, and direction can be measured.
  • Patent Document 1 proposes a technique for measuring a magnetic field (current) distribution using three magnetic field probes orthogonal to each other in the XYZ plane.
  • current current
  • there are several directions other than 45 degrees and 135 degrees that are difficult to distinguish for example, 30 degrees and 150 degrees. It is difficult to estimate.
  • Patent Document 2 an electromagnetic field measuring apparatus using three antennas is proposed. However, since all three antennas are non-directional, it is difficult to estimate the direction of the current that is the wave source.
  • Patent Document 3 a measuring device is proposed in which a magnetic field measuring loop antenna is mounted on a four-axis scanner operating in the XYZ direction and the ⁇ direction.
  • the magnetic field measurement probe is rotated in the ⁇ direction immediately above the current, and the XY plane is scanned.
  • the angle at which the probe induced voltage is maximum is the current direction in the XY plane. Therefore, if the magnetic field (current) map is measured by rotating the magnetic field measurement probe in the ⁇ direction while scanning the XY plane, and the angle at which the probe induced voltage becomes maximum at each scanning point is mapped, the current flows in the XY plane.
  • the current direction can be estimated.
  • the probe rotation angle fine.
  • the probe rotation range of 0 to 180 degrees must be measured at 18 points in 10 degree increments.
  • a value obtained by multiplying the number of measurement points on the XY plane by the number of rotation angle points is the number of measurement points. Therefore, if the direction estimation accuracy is improved, the number of measurement points increases and the measurement time becomes longer. That is, there is a trade-off relationship between estimation accuracy and measurement time.
  • this is measured at 9 points in the rotation direction and 18 points, it becomes a measurement point of about 10 times, and the measurement time increases accordingly. Therefore, it is required to accurately estimate the current direction in a short time.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technique for accurately measuring in a short time the direction of a current serving as an electromagnetic wave source.
  • the absolute value of the induced voltage is measured using three or more antennas having different arrangement angles when viewed from the reference position on the same plane, and the arrangement angle and induced voltage of each antenna are determined. To calculate the direction angle of the current.
  • the electromagnetic wave source search method since only the absolute value of the induced voltage is used, the measurement can be performed in a short time. Moreover, since three or more antennas on the same plane are used, any current direction can be reliably identified, and good estimation accuracy can be obtained.
  • FIG. 1 is a configuration diagram of an electromagnetic wave source exploration device 100 according to Embodiment 1.
  • FIG. It is a figure which shows a mode that an induced voltage arises in the antenna 111 with the electric current which flows on the to-be-measured object 200.
  • FIG. It is a figure explaining the method of estimating the direction of the voltage and electric current induced in the antenna module 110.
  • FIG. It is an operation
  • FIG. It is a block diagram of the electromagnetic wave source exploration apparatus 100 which concerns on Embodiment 2.
  • FIG. It is a block diagram of the electromagnetic wave source exploration apparatus 100 which concerns on Embodiment 3.
  • FIG. It is a block diagram of the electromagnetic wave source search apparatus 100 which concerns on Embodiment 4.
  • FIG. 4 is a side sectional view of the antenna module 110.
  • FIG. 3 is a plan view of planes 1100 to 1300 viewed from the coaxial cable 2000 side.
  • FIG. 20 is a perspective view of an antenna array substrate 3000 according to Embodiment 8.
  • FIG. 1 is a configuration diagram of an electromagnetic wave source exploration device 100 according to Embodiment 1 of the present invention.
  • the electromagnetic wave source exploration device 100 is a device that measures the direction of a current that flows on the measurement target 200 and becomes an electromagnetic wave generation source.
  • the electromagnetic wave source exploration apparatus 100 includes an antenna module 110, a stage 120, a triaxial scanner 130, a coaxial switch 140, a spectrum analyzer 150, a motor control unit 160, and a control computer 170.
  • the object 200 to be measured is fixed to the stage 120.
  • the antenna module 110 includes three antennas 111, 112, and 113. In each antenna, an induced voltage is generated by an electromagnetic wave source. Each antenna detects this induced voltage and outputs an output signal corresponding to that value.
  • the coaxial switch 140 receives each output of the antenna module 110, amplifies an output signal via an amplifier as necessary, and outputs the amplified signal to the spectrum analyzer 150.
  • the control computer 170 controls the three-axis scanner 130 via the motor control unit 160, thereby moving the antenna module 110 in each of the XYZ directions.
  • the coaxial switch 140 is switched to control which output of the antenna module 110 is received.
  • the measurement result for each frequency of the antenna module 110 is acquired from the spectrum analyzer 150, and the current direction on the measurement target 200 is calculated based on the measurement result. Details of the calculation method will be described later.
  • the control computer 170 corresponds to the “arithmetic apparatus” in the first embodiment.
  • the lower right diagram in FIG. 1 shows the arrangement of each antenna when the antenna module 110 is viewed from the bottom (measured object 200 side in FIG. 1).
  • the three antennas 111, 112, and 113 included in the antenna module 110 are arranged such that, for example, when the direction in which the antenna 111 faces is a reference angle, the arrangement angles viewed from the reference angle on the same plane are different by 120 °. Yes. In other words, the antennas are arranged radially so that the arrangement angles are sequentially increased by 120 ° when viewed from the antenna 111.
  • the configuration of the electromagnetic wave source exploration device 100 has been described above. Next, the principle by which the electromagnetic wave source exploration apparatus 100 calculates the direction of the current flowing on the measurement target 200 will be described.
  • FIG. 2 is a diagram illustrating a state in which an induced voltage is generated in the antenna 111 due to a current flowing on the measurement target 200.
  • a current 301 is a current (i) flowing on the measurement target 200 and corresponds to an electromagnetic wave source detected by the electromagnetic wave source exploration device 100.
  • An antenna 111 is disposed immediately above the current 301.
  • the antenna 111 is a magnetic field antenna configured as a loop antenna, and the area of the loop surface is S.
  • the height from the current 301 to the antenna 111 (the center of the loop) is r.
  • a magnetic field 302 H
  • an induced voltage 303 Vant
  • the antenna induced voltage 303 (Vant) generated in the antenna 111 can be defined by the following (formula 1), and V0 can be defined by the following (formula 2).
  • f is the frequency of the current 301, and ⁇ 0 is the vacuum permeability.
  • FIG. 3 is a diagram for explaining a method for estimating the direction of voltage and current induced in the antenna module 110.
  • the antenna module 110 has a configuration in which the antenna 111, the antenna 112, and the antenna 113 are radially arranged in 120 ° increments (divided into three equal parts).
  • the angle of the current 301 is defined as ⁇ with reference to the direction in which the antenna 111 faces on the XY plane.
  • the current angle ⁇ is an angle based on the antenna 111.
  • the voltages Vant1 to Vant3 induced in the antennas 111 to 113 can be calculated as in the following (Expression 3) using the above (Expression 1) and (Expression 2).
  • the angle ⁇ can be calculated as in (Expression 4) and (Expression 5) below. Note that ⁇ 1 is used for the angle in the range of 90 ° to 180 °, and ⁇ 2 is used for the range of 0 ° to 90 °.
  • FIG. 4 is an operation flow of the electromagnetic wave source exploration apparatus 100. Hereinafter, each step of FIG. 4 will be described.
  • the control computer 170 sets coordinates on the XY plane for calculating the direction of the current 301.
  • the XY plane referred to here is a plane composed of the XY axes in FIG.
  • Step 402 The control computer 170 acquires induced voltages Vant1 to Vant3 induced in the antennas 111 to 113 via the coaxial switch 140 to the spectrum analyzer 150, respectively. At this time, the control computer 170 switches the coaxial switch 140 as necessary and designates a frequency for the spectrum analyzer 150. The control computer 170 determines whether Vant1 is the largest among the three induced voltages. If Vant1 is the largest, the process proceeds to step S405, and if not, the process proceeds to step S403.
  • the control computer 170 calculates ratios Vant1 / Vant2 and Vant1 / Vant3 of Vant1 with respect to Vant2 and Vant3 in order to determine whether Vant1 is 0 or a value close to 0. If the calculated ratio is equal to or less than a predetermined threshold (for example, 10 ⁇ 2 ), the control computer 170 determines that Vant1 is 0 or a value close to 0, and proceeds to step S408. Otherwise, the process proceeds to step S404.
  • a predetermined threshold for example, 10 ⁇ 2
  • Step 403 Supplement
  • FIG. 4 Step 407
  • is in the range of 90 ° to 150 °.
  • the control computer 170 calculates ⁇ using the above (Equation 4).
  • the control computer 170 stores the coordinates (m, n) at which the above steps have been executed, the value i mn of the current 301, and the direction angle ⁇ mn of the current 301 in a storage device such as a memory or HDD (Hard Disk Drive).
  • a storage device such as a memory or HDD (Hard Disk Drive).
  • Step 410 When the control computer 170 further calculates the direction of the current 301 for other coordinates on the XY plane, the control computer 170 returns to step S401 and repeats the same processing. When the direction of the current 301 is not calculated any more, this operation flow is finished.
  • the electromagnetic wave source exploration device 100 acquires the absolute values of the induced voltages Vant1 to Vant3 generated in the respective antennas, and uses (Expression 4) and (Expression 5) to calculate the current 301.
  • the direction angle ⁇ is calculated. Since the direct measurement object to be measured using each antenna is only the induced voltages Vant1 to Vant3, the measurement can be completed in a short time.
  • the antenna module 110 includes three antennas 111 to 113 whose arrangement angles are shifted by 120 °, and the electromagnetic wave source exploration apparatus 100 uses the arrangement angles to set the direction angle ⁇ of the current 301. calculate. This eliminates the angle at which the induced voltages are exactly the same in both the X direction and the Y direction, so that the direction angle ⁇ can be calculated with high accuracy.
  • the direction angle ⁇ is more accurately compared to the case where the number of antennas on the same plane (XY plane) is two or less. Can be calculated.
  • FIG. 5 is a configuration diagram of the electromagnetic wave source exploration device 100 according to Embodiment 2 of the present invention.
  • the electromagnetic wave source exploration apparatus 100 according to the second embodiment includes an oscilloscope 180 instead of the coaxial switch 140 and the spectrum analyzer 150 described in FIG. 1 of the first embodiment.
  • the oscilloscope 180 has a function of sampling and holding a plurality of signal inputs. Therefore, it is not necessary to switch and input signals output from the antennas 111 to 113 one by one as in the first embodiment, and the coaxial switch 140 becomes unnecessary.
  • the output waveform at the same time cannot be obtained.
  • the output waveforms of all the antennas 111 to 113 can be acquired simultaneously using the antenna 111 as a trigger. In other words, there is an advantage that the waveforms at the same time of all the antennas 111 to 113 can be acquired.
  • the output signal that the oscilloscope 180 acquires from each antenna is a waveform with respect to the time axis. Therefore, the control computer 170 converts the output signal acquired by the oscilloscope 180 into a spectrum for each frequency by using FFT (Fast Fourier Transform) processing or the like. The control computer 170 acquires the absolute value of the induced voltage for each frequency based on the output of each antenna, and calculates the direction angle ⁇ of the current 301 for each frequency using the same method as in the first embodiment.
  • FFT Fast Fourier Transform
  • the electromagnetic wave source search can be performed more dynamically.
  • a device having a function of simultaneously sampling and holding a plurality of signals can be used instead of the oscilloscope 180.
  • FIG. 6 is a configuration diagram of the electromagnetic wave source exploration device 100 according to the third embodiment.
  • the electromagnetic wave source exploration device 100 according to the third embodiment has the following configuration in addition to the configuration described in FIG. 1 of the first embodiment.
  • the coaxial switch 140 can input four (or more) signals. Further, a distributor 191, four amplifiers, and hybrid baluns 192 and 193 are provided in front of the coaxial switch 140.
  • the distributor 191 divides the output of the antenna 111 serving as a reference for calculating the direction angle ⁇ into two. Each of the divided signals is equal to the signal before the division.
  • the four amplifiers amplify the output of the divided antenna 111 and the outputs of the antennas 112 to 113, respectively.
  • Hybrid baluns 192 and 193 are parts called 180-degree hybrids, and output the sum and difference of two input signals.
  • the hybrid balun 192 receives the outputs of the antennas 111 and 113 and outputs the sum and difference thereof.
  • the hybrid balun 193 receives the outputs of the antennas 111 and 112 and outputs the sum and difference thereof.
  • the control computer 170 acquires the output of each hybrid balun via the coaxial switch 140 and the spectrum analyzer 150.
  • the control computer 170 can acquire the sum and difference of Vant1 and Vant3 based on the output of the hybrid balun 192.
  • the sum and difference of Vant1 and Vant2 can be acquired based on the output of the hybrid balun 193.
  • Vant1 to Vant3 are each expressed by the above (formula 3). Since these sums and differences include cos ⁇ and sin ⁇ , respectively, an arithmetic expression for calculating ⁇ can be obtained by solving simultaneous equations.
  • the control computer 170 calculates ⁇ by substituting the output of each hybrid balun into the arithmetic expression.
  • the same effects as those of the first embodiment can be obtained by using the configuration of the detection device and the arithmetic expression different from those of the first embodiment. That is, since the direction angle ⁇ is calculated using only the induced voltage generated in the antennas 111 to 113, the measurement can be completed in a short time, and the direction angle ⁇ can be accurately calculated by the arrangement of the antennas 111 to 113. Can do.
  • FIG. 7 is a configuration diagram of the electromagnetic wave source exploration device 100 according to the fourth embodiment.
  • the electromagnetic wave source exploration device 100 according to the fourth embodiment has the following configuration in addition to the configuration described in FIG. 5 of the second embodiment.
  • the oscilloscope 180 in the fourth embodiment can input four (or more) signals.
  • a distributor 191, four amplifiers, and hybrid baluns 192 and 193 are provided in front of the oscilloscope 180.
  • the functions of distributor 191, four amplifiers, and hybrid baluns 192 and 193 are the same as those in the third embodiment.
  • the oscilloscope 180 acquires the time waveform of each input.
  • the control computer 170 acquires the frequency spectrum of the time waveform of each input, and calculates ⁇ for each frequency using the same arithmetic expression as that described in the third embodiment.
  • the same effects as those of the second embodiment can be obtained by using the configuration of the detection device and the arithmetic expression different from those of the second embodiment. That is, since the direction angle ⁇ is calculated using only the induced voltage generated in the antennas 111 to 113, the measurement can be completed in a short time, and the direction angle ⁇ can be accurately calculated by the arrangement of the antennas 111 to 113. Can do. Furthermore, the direction angle ⁇ can be calculated using the output waveforms at the same time of the antennas 111 to 113.
  • FIG. 8 is a diagram for explaining a method for estimating the direction of voltage and current induced in the antenna module 110.
  • the antenna 111, the antenna 112, and the antenna 113 are arranged so that the position angles are the angles ⁇ , ⁇ , and ⁇ , respectively, with the direction in which the antenna 111 is directed as a reference angle. Has been.
  • the voltages Vant1 to Vant3 induced in the antennas 111 to 113 can be calculated as in the following (Expression 6) using the above (Expression 1) and (Expression 2).
  • the angle ⁇ can be calculated as in (Expression 7) and (Expression 8) below. Note that ⁇ 1 is used for the angle in the range of 90 ° to 180 °, and ⁇ 2 is used for the range of 0 ° to 90 °.
  • the overall operation procedure of the electromagnetic wave source exploration apparatus 100 may be the same as that in FIG. 4 described in the first embodiment.
  • Vant1 to Vant3 when the angle ⁇ of the current 301 is changed by two or more points are measured and substituted into the equation (6) to solve the simultaneous equations, and the step angles ⁇ , ⁇ , ⁇ can be calculated.
  • the step angle of the antenna of the antenna module 110 that is important for the current direction estimation.
  • the method for estimating the direction of the voltage and current induced in the antenna module 110 in the fifth embodiment has been described above.
  • the method described in the fifth embodiment can also be applied to the configuration of the electromagnetic wave source exploration device 100 described in the second to fourth embodiments.
  • the electromagnetic wave source searching method described in the first to fifth embodiments can be applied to an existing electromagnetic wave source searching device by introducing processing executed by the control computer 170.
  • the above-described processing executed by the control computer 170 is implemented as a software program (electromagnetic wave source search program), and this electromagnetic wave source search program is introduced into a control computer or an arithmetic unit of an existing electromagnetic wave source search device.
  • the electromagnetic wave source exploration program is installed in a control computer, the processing executed by the electromagnetic wave source exploration program is incorporated into a circuit device to constitute an arithmetic device, and the electromagnetic wave source exploration device is controlled by the arithmetic device.
  • a method can be considered.
  • the electromagnetic wave source exploration apparatus that introduces the electromagnetic wave source exploration program needs to be able to detect induced voltages in three directions on the XY plane, similarly to the antenna module 110 described in the first to fifth embodiments. . If the electromagnetic wave source exploration device satisfies this condition, the same processing as that of the electromagnetic wave source exploration method described in the first to fifth embodiments can be performed by introducing the processing executed by the control computer 170 regardless of the specific device configuration. The effect can be demonstrated.
  • FIG. 9 is a side sectional view of the antenna module 110.
  • the antenna module 110 according to the seventh embodiment has a configuration in which the antennas 111 to 113 are formed by metal wiring inside the antenna module substrate 1000.
  • each antenna 111 to 113 is formed as a loop antenna, and the example in which the antenna 111 is arranged with the arrangement angle shifted with the direction in which the antenna 111 is directed as the reference angle is shown.
  • a coaxial cable 2000 is connected to the surface of the antenna module substrate 1000, and each antenna and the coaxial cable are directly connected or connected by a connecting member such as a connector.
  • a connecting member such as a connector
  • the antenna module 110 is internally divided into two layers with a portion forming one side of the loop antenna as a boundary surface.
  • a surface to which the coaxial cable 2000 is connected is referred to as a surface 1100
  • a surface on which one side of the loop antenna is internally wired is a surface 1200
  • a surface facing the measurement target 200 is a surface 1300.
  • FIG. 10 is a plan view of the surfaces 1100, 1200, and 1300 viewed from the coaxial cable 2000 side.
  • 10A shows a plane 1100
  • FIG. 10B shows a plane 1200
  • FIG. 10C shows a plan view of the plane 1300.
  • three signal patterns 1120 for connecting the respective antennas 111 to 113 and the coaxial cable 2000 and a GND pattern 1110 for grounding the coaxial cable 2000 are formed.
  • the GND pattern 1110 is connected to a common GND via 1310 described later.
  • a signal via 1210 connected to the signal pattern 1120 is formed on the surface 1200.
  • a common GND via 1310 is formed on the surface 1300.
  • the common GND via 1310 is connected to GND outside the antenna module 110.
  • the antennas 111 to 113 and the GND pattern 1110 are connected to the common GND via 1310.
  • the antennas 111 to 113 are arranged at the arrangement angle described in any of the first to sixth embodiments.
  • the antenna module 110 is mounted on the printed circuit board, the antenna module 110 is precisely manufactured by the same method as that used when manufacturing the printed circuit board.
  • the arrangement angles of the antennas 111 to 113 can be strictly controlled.
  • FIG. 11 is a perspective view of an antenna array substrate 3000 according to Embodiment 8 of the present invention.
  • a plurality of antenna modules 110 can be arranged on the board.
  • a planar antenna in which the antenna modules 110 are arranged in an array can be formed.
  • this antenna array substrate 3000 By using this antenna array substrate 3000, it is possible to detect the current flowing through the plane without moving the antenna module 110 or with a small amount of movement. Therefore, there is no need to provide a moving mechanism such as the three-axis scanner 130, and there is an advantage that the configuration of the electromagnetic wave source exploration device 100 can be simplified.
  • the antenna module 110 includes the three antennas 111 to 113.
  • the number of antennas is not necessarily three.
  • the number of antennas is an odd number.
  • the number of antennas is desirably three or more.
  • each of the antennas 111 to 113 is a magnetic field antenna formed as a loop antenna, but an electric field antenna is used instead of or in combination with this. You can also. In other words, any antenna can be employed as long as it can detect electromagnetic waves generated due to the current 301. However, the above (Formula 2) needs to be changed according to the mechanism in which the antenna detects electromagnetic waves.
  • the principle of calculating the direction angle ⁇ of the current 301 using the arrangement angle of each antenna is the same regardless of whether the number of antennas is more than three or when an antenna other than the loop antenna is used. I will add that.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 電磁波源となる電流の方向を精度良く短時間で測定する技術を提供する。 本発明に係る電磁波源探査方法では、同一平面上における基準位置からみた配置角度が異なる3本以上奇数本数のアンテナを用いて誘起電圧の絶対値を測定し、各アンテナの配置角度と誘起電圧を用いて電流の方向角を算出する(図3参照)。

Description

電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置
 本発明は、電磁波を発生させる電磁波源を探査する技術に関するものである。
 近年の電気・電子装置に搭載される半導体の低電圧化・高速化や無線通信装置の普及に伴い、電磁波環境(EMC)問題が深刻化している。EMCは、装置のイミュニティレベルの劣化、電磁波放射レベルの増大、装置内部干渉などの原因となる。半導体の低電圧化・高速化などに伴い、EMC問題も複雑化する。EMC問題に対処するために要する製品の開発・対策期間の増大を避けるには、EMCメカニズムに基づく最適な設計技術の構築が鍵となる。
 このEMCメカニズムの解明には、電磁波放射の波源およびノイズの伝搬経路を特定することが重要である。そのため、装置の金属筐体表面や基板表面に流れる電流を測定することが必要になる場合がある。この波源および伝搬経路を同定するためには、電流の流れている方向・角度を高精度かつ短時間で測定することが重要である。これにより、EMCメカニズムを効率的に解明することができる。
 下記特許文献1には、XYZ平面で直交させた3本の磁界プローブにより、異なる方向の磁界成分(電流成分と同等)を高い分解能で測定することのできる磁界検出装置および磁界分布測定装置が記載されている。
 下記特許文献2には、3本の無指向性アンテナを使うことで規定レベル以上の電磁界強度を簡易的に検出する電磁界強度検出装置が記載されている。
 下記特許文献3には、XYZ方向およびθ方向(Z軸を中心とした回転方向)に稼動する4軸スキャナへ磁界測定用のループアンテナを搭載し、被測定対象表面を走査するEMI(Electromagnetic Interference)測定装置および測定方法が記載されている。この装置および方法により、電流の強度分布、位相、方向を測定することができる。
特願平10-111350号公報 特願2007-325916号公報 特願平11-156317号公報
 上記特許文献1では、XYZ平面で直交させた3本の磁界プローブを使って磁界(電流)分布測定する技術を提案している。しかし、このプローブを使って電流方向を推定した場合、例えば、X平面を基準として45度と135度の方向に流れている電流を識別することが困難である。これは、XY平面における45度と135度の方向に流れる各電流が発生する磁界によってプローブに誘起する電圧は、X方向とY方向ともに全く同じとなることに起因する。このため、磁界プローブの誘起電圧がXY平面における45度方向と135度方向のいずれに向いているか識別することが困難となる。XYZ各軸に対応する3本の磁界プローブを用いた場合、角度45度と135度以外にも、例えば30度と150度など方向を識別することが難しい方向が幾つかあるため、電流方向を推定することが困難である。
 上記特許文献2では、3本のアンテナを使った電磁界測定装置を提案している。しかし、3本のアンテナ何れも無指向性であるため、波源である電流の方向を推定することが難しい。
 上記特許文献3では、XYZ方向およびθ方向に稼動する4軸スキャナに磁界測定用ループアンテナを搭載した測定装置が提案されている。この装置では、電流の直上で磁界測定用プローブをθ方向に回転させ、XY平面を走査する。プローブ誘起電圧が最大となる角度が、XY平面における電流方向となる。したがって、XY平面を走査しながら磁界測定用プローブをθ方向に回転させて磁界(電流)マップを測定し、各走査点でプローブ誘起電圧が最大となった角度をマッピングすれば、XY平面に流れる電流方向を推定することができる。
 しかし、この装置において電流方向の推定精度を向上させるためには、プローブ回転角を細かくする必要がある。例えば、±10度の精度で測定するためには、プローブ回転範囲の0度~180度を10度刻み18点で測定しなければならない。実際は、XY平面上での測定点数に前記の回転角度点数を掛けた値が測定点数となる。そのため、方向推定精度を向上させると測定点数が増大して測定時間が長くなる。すなわち、推定精度と測定時間がトレードオフの関係となる。
 例えば、X方向:30点、Y方向:20点、回転方向:2点(0度と90度)を測定する場合、測定点数は30×20×2=1200点となり、測定時間は1時間程度となる。これを回転方向に9倍のステップ、18点で測定した場合、約10倍弱の測定点となり、測定時間もその分だけ増大する。したがって、短時間で精度良く電流方向を推定することが求められる。
 本発明は、上記のような課題を解決するためになされたものであり、電磁波源となる電流の方向を精度良く短時間で測定する技術を提供することを目的とする。
 本発明に係る電磁波源探査方法では、同一平面上における基準位置からみた配置角度が異なる3本以上奇数本数のアンテナを用いて誘起電圧の絶対値を測定し、各アンテナの配置角度と誘起電圧を用いて電流の方向角を算出する。
 本発明に係る電磁波源探査方法によれば、誘起電圧の絶対値のみを用いるので、短時間で測定を行うことができる。また、同一平面上における3本以上奇数本数のアンテナを用いるので、任意の電流方向を確実に識別することができ、良好な推定精度を得ることができる。
実施の形態1に係る電磁波源探査装置100の構成図である。 被測定対象200上を流れる電流によってアンテナ111に誘起電圧が生じる様子を示す図である。 アンテナモジュール110に誘起する電圧および電流の方向を推定する手法を説明する図である。 電磁波源探査装置100の動作フローである。 実施の形態2に係る電磁波源探査装置100の構成図である。 実施の形態3に係る電磁波源探査装置100の構成図である。 実施の形態4に係る電磁波源探査装置100の構成図である。 アンテナモジュール110に誘起する電圧および電流の方向を推定する手法を説明する図である。 アンテナモジュール110の側断面図である。 面1100~1300を同軸ケーブル2000側から見た平面図である。 実施の形態8に係るアンテナアレイ基板3000の斜視図である。
<実施の形態1>
 図1は、本発明の実施の形態1に係る電磁波源探査装置100の構成図である。電磁波源探査装置100は、被測定対象200上を流れて電磁波発生源となる電流の方向を測定する装置である。電磁波源探査装置100は、アンテナモジュール110、ステージ120、3軸スキャナ130、同軸スイッチ140、スペクトラムアナライザ150、モータ制御ユニット160、制御コンピュータ170を備える。
 被測定対象200は、ステージ120に固定される。
 アンテナモジュール110は、3本のアンテナ111、112、113を備える。各アンテナには、電磁波源によって誘起電圧が生じる。各アンテナはこの誘起電圧を検出し、その値に相当する出力信号を出力する。
 同軸スイッチ140は、アンテナモジュール110の各出力を受け取り、必要に応じてアンプを介して出力信号を増幅し、スペクトラムアナライザ150に出力する。
 制御コンピュータ170は、モータ制御ユニット160を介して3軸スキャナ130を制御し、これによりアンテナモジュール110をXYZ各方向に移動させる。また、同軸スイッチ140を切り替えてアンテナモジュール110のいずれの出力を受信するかを制御する。その他、スペクトラムアナライザ150からアンテナモジュール110の周波数毎の測定結果を取得し、これに基づき被測定対象200上の電流方向を算出する。算出方法の詳細については後述する。制御コンピュータ170は、本実施の形態1における「演算装置」に相当する。
 図1の右下図は、アンテナモジュール110を底面(図1の被測定対象200側)から見た各アンテナの配置を示す。アンテナモジュール110が備える3つのアンテナ111、112、113は、例えばアンテナ111が向いている方向を基準角とすると、同一平面上における基準角から見た配置角度が120°ずつ異なるように配置されている。すなわち、各アンテナはアンテナ111から見て120°ずつ順に配置角度を開いていくようにして放射状に配置されている。
 以上、電磁波源探査装置100の構成を説明した。次に、電磁波源探査装置100が被測定対象200上を流れる電流の方向を算出する原理を説明する。
 図2は、被測定対象200上を流れる電流によってアンテナ111に誘起電圧が生じる様子を示す図である。電流301は、被測定対象200上を流れる電流(i)であり、電磁波源探査装置100が検出する電磁波源に相当する。電流301の真上にアンテナ111が配置されている。アンテナ111は、ループアンテナとして構成された磁界アンテナであり、ループ面の面積はSである。電流301からアンテナ111(のループ中央部)までの高さはrである。
 電流301が流れると、磁界302(H)が発生する。この磁界302がアンテナ111に鎖交すると、アンテナ111に誘起電圧303(Vant)が生じる。アンテナ111のループ面と電流301とがXY平面上で成す角度をθとする。この両者が平行となる場合をθ=0°と定義し、このときの誘起電圧303をV0と定義する。
 この状態において、アンテナ111に生じるアンテナ誘起電圧303(Vant)は下記(式1)で、V0は下記(式2)で定義することができる。fは電流301の周波数、μ0は真空の透磁率である。
Figure JPOXMLDOC01-appb-M000001
 図3は、アンテナモジュール110に誘起する電圧および電流の方向を推定する手法を説明する図である。アンテナモジュール110は、アンテナ111、アンテナ112、アンテナ113を放射状に120°刻み(3等分)に配置した構成となっている。ここで、アンテナ111がXY平面上で向いている方向を基準として、電流301の角度をθと定義する。以後の説明では、記載の便宜上、電流角度θはアンテナ111を基準とした角度であるものとする。
 アンテナ111~アンテナ113に誘起される電圧Vant1~Vant3は、上記(式1)(式2)を用いて、下記(式3)のように算出することができる。
Figure JPOXMLDOC01-appb-M000002
 アンテナ1に誘起する電圧Vant1を基準として、角度θは下記(式4)(式5)のように算出することができる。なお、90度~180度の範囲の角度はθ1、0度~90度の範囲はθ2を用いる。
Figure JPOXMLDOC01-appb-M000003
 以上、被測定対象200上を流れる電流301の方向角θを算出する原理を説明した。次に、電磁波源探査装置100が上記原理を用いて電流301の方向角θを算出する手順を説明する。
 図4は、電磁波源探査装置100の動作フローである。以下、図4の各ステップについて説明する。
(図4:ステップ400)
 ユーザが制御コンピュータ170を用いて、測定を開始するよう電磁波源探査装置100に対して指示すると、本動作フローが開始される。
(図4:ステップ401)
 制御コンピュータ170は、電流301の方向を算出するXY平面上の座標を設定する。ここでいうXY平面とは、図1におけるXY軸からなる平面のことである。
(図4:ステップ402)
 制御コンピュータ170は、アンテナ111~113に誘起されている誘起電圧Vant1~Vant3を、同軸スイッチ140~スペクトラムアナライザ150を介してそれぞれ取得する。このとき、制御コンピュータ170は、必要に応じて同軸スイッチ140を切り替え、またスペクトラムアナライザ150に対して周波数を指定する。制御コンピュータ170は、Vant1が3つの誘起電圧のなかで最も大きいか否かを判定する。Vant1が最も大きい場合はステップS405へ進み、そうでない場合はステップS403へ進む。
(図4:ステップ403)
 制御コンピュータ170は、Vant1が0または0に近い値となっているか否かを判定するため、Vant2およびVant3に対するVant1の比Vant1/Vant2およびVant1/Vant3を算出する。制御コンピュータ170は、算出した比が所定閾値(例えば10-2)以下である場合は、Vant1が0または0に近い値となっているものと判断し、ステップS408へ進む。そうでない場合はステップS404へ進む。
(図4:ステップ403:補足)
 本ステップは、θ=90°となっているか否かを判定する意義がある。すなわち、Vant2またはVant3が最大値をとる場合、θ=90°となっている可能性があり、このときVant1=0となるので、上記(式4)において0除算が発生する。本ステップにより、これを回避する。
(図4:ステップ404)
 制御コンピュータ170は、Vant2が3つの誘起電圧のなかで最も大きいか否かを判定する。Vant2が最も大きい場合はステップS406へ進み、そうでない場合はステップS407へ進む。
(図4:ステップ405)
 Vant1が3つの誘起電圧のなかで最も大きい場合、θは0°~30°または150°~180°の範囲内にある。制御コンピュータ170は、上記(式5)を用いてθを算出する。
(図4:ステップ406)
 Vant2が3つの誘起電圧のなかで最も大きい場合、θは30°~90°の範囲内にある。制御コンピュータ170は、上記(式5)を用いてθを算出する。
(図4:ステップ407)
 Vant3が3つの誘起電圧のなかで最も大きい場合、θは90°~150°の範囲内にある。制御コンピュータ170は、上記(式4)を用いてθを算出する。
(図4:ステップ408)
 制御コンピュータ170は、ステップS403においてVant1が0または0に近い値になっていると判断した場合、θ=90°とする。
(図4:ステップ409)
 制御コンピュータ170は、以上のステップを実行した座標(m,n)、電流301の値imn、電流301の方向角θmnを、メモリやHDD(Hard Disk Drive)などの記憶装置に格納する。
(図4:ステップ410)
 制御コンピュータ170は、XY平面上の他の座標についてさらに電流301の方向を算出する場合はステップS401に戻って同様の処理を繰り返す。これ以上電流301の方向を算出しない場合は、本動作フローを終了する。
 以上、本実施の形態1における電磁波源探査装置100の動作フローを説明した。
 以上のように、本実施の形態1に係る電磁波源探査装置100は、各アンテナに生じた誘起電圧Vant1~Vant3の絶対値を取得し、(式4)(式5)を用いて電流301の方向角θを算出する。各アンテナを用いて測定する直接的な測定対象は誘起電圧Vant1~Vant3のみであるため、短時間で測定を完了することができる。
 また、本実施の形態1において、アンテナモジュール110は配置角度を120°ずつずらした3本のアンテナ111~113を備え、電磁波源探査装置100はその配置角度を用いて電流301の方向角θを算出する。これにより、X方向とY方向ともに誘起電圧が全く同じとなる角度がなくなるので、方向角θを精度良く算出することができる。
 また、本実施の形態1では、同一平面上におけるアンテナ本数が3本であるため、同一平面(XY平面)上におけるアンテナ本数が2本以下である場合と比較して、より正確に方向角θを算出することができる。
<実施の形態2>
 図5は、本発明の実施の形態2に係る電磁波源探査装置100の構成図である。本実施の形態2に係る電磁波源探査装置100は、実施の形態1の図1で説明した同軸スイッチ140とスペクトラムアナライザ150に代えて、オシロスコープ180を備える。
 オシロスコープ180は、複数本の信号入力をサンプリングし、保持する機能を有している。そのため、実施の形態1のように各アンテナ111~113が出力する信号を1つずつ切り替えながら入力する必要がなくなり、同軸スイッチ140は不要となる。
 実施の形態1のように同軸スイッチ140を用いてアンテナを1本ずつ切り替えながら出力信号を取得する場合には、同時刻の出力波形を得ることはできない。これに対し、本実施の形態2の場合、例えばアンテナ111をトリガとして、アンテナ111~113全ての出力波形を同時に取得することができる。換言すると、アンテナ111~113全ての同時刻の波形を取得することができる利点がある。ただし本実施の形態2では、アンテナ毎にアンプを設ける必要がある。
 オシロスコープ180が各アンテナから取得する出力信号は、時間軸に対する波形である。そのため、制御コンピュータ170は、FFT(Fast Fourier Transform)処理などを用いて、オシロスコープ180が取得した出力信号を周波数毎のスペクトラムに変換する。制御コンピュータ170は、各アンテナの出力に基づき誘起電圧の絶対値を周波数毎に取得し、実施の形態1と同様の手法を用いて電流301の方向角θを周波数毎に算出する。
 以上のように、本実施の形態1によれば、各アンテナ出力の同時刻の信号波形を同時に得ることができる。したがって、電磁波源探査をより動的に行うことができる。なお、オシロスコープ180と同様に、複数信号を同時にサンプリングし保持する機能を有する機器を、オシロスコープ180に代えて用いることもできる。
<実施の形態3>
 本発明の実施の形態3では、実施の形態1で説明した(式4)(式5)とは別の手法を用いて電流301の方向角θを算出する構成を説明する。
 図6は、本実施の形態3に係る電磁波源探査装置100の構成図である。本実施の形態3に係る電磁波源探査装置100は、実施の形態1の図1で説明した構成の他に、以下の構成を有する。
 本実施の形態3における同軸スイッチ140は、4本(以上)の信号を入力することができる。また、同軸スイッチ140の前段に、分配器191、4つのアンプ、ハイブリッドバラン192および193を備える。
 分配器191は、方向角θを算出する基準となるアンテナ111の出力を2分割する。分割された各信号は、それぞれが分割前の信号と等しい。4つのアンプは、分割されたアンテナ111の出力およびアンテナ112~113の出力をそれぞれ増幅する。
 ハイブリッドバラン192と193は、180度ハイブリッドと言われる部品であり、入力された2つの信号の和と差を出力する。ハイブリッドバラン192はアンテナ111と113の出力を受け取り、これらの和と差を出力する。ハイブリッドバラン193はアンテナ111と112の出力を受け取り、これらの和と差を出力する。
 制御コンピュータ170は、同軸スイッチ140、スペクトラムアナライザ150を介して、各ハイブリッドバランの出力を取得する。制御コンピュータ170は、ハイブリッドバラン192の出力に基づき、Vant1とVant3の和と差を取得することができる。同様に、ハイブリッドバラン193の出力に基づき、Vant1とVant2の和と差を取得することができる。
 Vant1~Vant3は、それぞれ上述の(式3)で表される。これらの和と差にはそれぞれcosθとsinθが含まれるので、連立方程式を解くことにより、θを算出する演算式を得ることができる。制御コンピュータ170は、その演算式に各ハイブリッドバランの出力を代入してθを算出する。
 以上のように、本実施の形態3によれば、実施の形態1とは異なる検出機器の構成および演算式を用いて、実施の形態1と同様の効果を得ることができる。すなわち、アンテナ111~113に生じる誘起電圧のみを用いて方向角θを算出するので、短時間に測定を終えることができ、また各アンテナ111~113の配置により方向角θを精度良く算出することができる。
<実施の形態4>
 図7は、本実施の形態4に係る電磁波源探査装置100の構成図である。本実施の形態4に係る電磁波源探査装置100は、実施の形態2の図5で説明した構成の他に、以下の構成を有する。
 本実施の形態4におけるオシロスコープ180は、4本(以上)の信号を入力することができる。また、オシロスコープ180の前段に、分配器191、4つのアンプ、ハイブリッドバラン192および193を備える。
 分配器191、4つのアンプ、ハイブリッドバラン192および193の機能は、実施の形態3と同様である。オシロスコープ180は、各入力の時間波形を取得する。制御コンピュータ170は、各入力の時間波形の周波数スペクトルを取得し、周波数毎に実施の形態3で説明したものと同様の演算式を用いてθを算出する。
 以上のように、本実施の形態4によれば、実施の形態2とは異なる検出機器の構成および演算式を用いて、実施の形態2と同様の効果を得ることができる。すなわち、アンテナ111~113に生じる誘起電圧のみを用いて方向角θを算出するので、短時間に測定を終えることができ、また各アンテナ111~113の配置により方向角θを精度良く算出することができる。さらには、各アンテナ111~113の同時刻の出力波形を用いて方向角θを算出することができる。
<実施の形態5>
 実施の形態1~4では、3本のアンテナ111~113を120°刻みで放射状に配置した例を示した。しかし、電流301の方向角θを算出するためには、基準角度から見た各アンテナの配置角度は必ずしも均等である必要はない。本発明の実施の形態5では、各アンテナの配置角度についてより一般化した例を説明する。
 図8は、アンテナモジュール110に誘起する電圧および電流の方向を推定する手法を説明する図である。実施の形態1で説明した図3とは異なり、アンテナ111、アンテナ112、アンテナ113は、アンテナ111が向いている方向を基準角としてそれぞれは位置角度が角度α、β、γとなるように配置されている。
 アンテナ111~アンテナ113に誘起される電圧Vant1~Vant3は、上記(式1)(式2)を用いて、下記(式6)のように算出することができる。
Figure JPOXMLDOC01-appb-M000004
 アンテナ1に誘起する電圧Vant1を基準として、角度θは下記(式7)(式8)のように算出することができる。なお、90度~180度の範囲の角度はθ1、0度~90度の範囲はθ2を用いる。
Figure JPOXMLDOC01-appb-M000005
 制御コンピュータ170は、上記(式7)(式8)を用いることにより、3本のアンテナ111~113が任意の配置角度で配置されているアンテナモジュール110を用いて、電流301の方向角θを算出することができる。例えば上記(式7)(式8)に、α=120°、γ=120°を代入すると、(式4)(式5)と同様となる。電磁波源探査装置100の全体的な動作手順は、実施の形態1で説明した図4と同様でよい。
 また、図8において電流301の角度θを2点以上変えたときのVant1~Vant3を測定し、式(6)に代入して連立方程式を解くことでするアンテナモジュール110の刻み角度α,β,γを算出することができる。これにより、電流方向推定に重要となるアンテナモジュール110のアンテナの刻み角を構成する事が可能となる。
 以上、本実施の形態5においてアンテナモジュール110に誘起する電圧および電流の方向を推定する手法を説明する手法を説明した。本実施の形態5で説明した手法は、実施の形態2~4で説明した電磁波源探査装置100の構成に適用することもできる。
<実施の形態6>
 実施の形態1~5で説明した電磁波源探査手法は、制御コンピュータ170が実行する処理を導入することにより、既設の電磁波源探査装置に適用することができる。例えば制御コンピュータ170が実行する上述の処理をソフトウェアプログラム(電磁波源探査プログラム)として実装し、この電磁波源探査プログラムを既設の電磁波源探査装置の制御コンピュータや演算装置などに導入することが考えられる。
 具体的には、上記電磁波源探査プログラムを制御コンピュータにインストールする、電磁波源探査プログラムが実行する処理を回路デバイス上に組み込んで演算装置を構成し、電磁波源探査装置をその演算装置によって制御する、などの手法が考えられる。
 ただし、上記電磁波源探査プログラムを導入する電磁波源探査装置は、実施の形態1~5で説明したアンテナモジュール110と同様に、XY平面上における3方向の誘起電圧を検出することができる必要がある。この条件を満たす電磁波源探査装置であれば、具体的な装置構成によらず、制御コンピュータ170が実行する処理を導入することにより、実施の形態1~5で説明した電磁波源探査手法と同様の効果を発揮することができる。
<実施の形態7>
 本発明の実施の形態7では、アンテナモジュール110の実装形態として、プリント基板上に各アンテナ111~113を実装した例を説明する。アンテナモジュール110の実装形態以外の構成は、実施の形態1~6と同様である。
 図9は、アンテナモジュール110の側断面図である。本実施の形態7におけるアンテナモジュール110は、アンテナモジュール基板1000の内部に各アンテナ111~113を金属配線によって形成した構成を有する。ここでは、実施の形態1と同様に、各アンテナ111~113をループアンテナとして形成し、アンテナ111が向いている方向を基準角度として配置角度をずらして配置した例を示した。
 アンテナモジュール基板1000の表面には同軸ケーブル2000が接続され、各アンテナと同軸ケーブルは直接接続またはコネクタ等の接続部材によって接続される。アンテナモジュール基板1000の裏面には、各アンテナおよび同軸ケーブル2000を接地するための共通GNDビア1310が存在する。
 アンテナモジュール110は、ループアンテナの1辺を形成する部分を境界面として、内部的に2層に分かれている。以下の説明の都合上、同軸ケーブル2000を接続する面を面1100、ループアンテナの1辺を内装配線する面を面1200、被測定対象200と対向する面を面1300とする。
 図10は、面1100、1200、1300を同軸ケーブル2000側から見た平面図である。図10(a)は面1100、図10(b)は面1200、図10(c)は面1300の平面図をそれぞれ示す。
 面1100には、各アンテナ111~113と同軸ケーブル2000を接続する3つの信号パターン1120と、同軸ケーブル2000を接地するGNDパターン1110とが形成されている。GNDパターン1110は、後述する共通GNDビア1310に接続されている。
 面1200には、信号パターン1120と接続される信号ビア1210が形成されている。
 面1300には、共通GNDビア1310が形成されている。共通GNDビア1310は、アンテナモジュール110外のGNDに接続される。また、各アンテナ111~113およびGNDパターン1110は、共通GNDビア1310に接続される。アンテナ111~113は、実施の形態1~6いずれかで説明した配置角度で配置される。
 以上のように、本実施の形態7によれば、プリント基板上にアンテナモジュール110を実装するので、プリント基板を製造する際に用いる製造手法と同様の手法により、アンテナモジュール110を精密に製造することができる利点がある。例えば、アンテナ111~113の配置角度を厳密に制御することができる。
<実施の形態8>
 図11は、本発明の実施の形態8に係るアンテナアレイ基板3000の斜視図である。実施の形態7で説明した、プリント基板上にアンテナモジュール110を製造する手法を用いることにより、基板上に複数のアンテナモジュール110を配置することができる。これにより、アンテナモジュール110をアレイ状に配置した平面アンテナを形成することができる。
 このアンテナアレイ基板3000を用いることにより、アンテナモジュール110を移動させることなく、または少ない移動量で、平面を流れる電流を検出することができる。そのため、3軸スキャナ130のような移動機構を設ける必要がなくなり、電磁波源探査装置100の構成を簡易化できる利点がある。
<実施の形態9>
 以上の実施の形態1~8において、アンテナモジュール110は3本のアンテナ111~113を有することを説明したが、アンテナ本数は必ずしも3本でなくともよい。ただし、特許文献1のように各軸方向に生じる誘起電圧が全く同じとなるような状況を回避するため、アンテナ本数は奇数本であることが望ましい。また、アンテナ本数が2本以下になると電流301の方向角θを正確に検出することが難しくなるため、アンテナ本数は3本以上であることが望ましい。
 また、以上の実施の形態1~8において、各アンテナ111~113はループアンテナとして形成された磁界アンテナであることを説明したが、これに代えてまたはこれと併用して、電界アンテナを用いることもできる。すなわち、電流301に起因して生じる電磁波を検出することができるアンテナであれば、任意のアンテナを採用することができる。ただし、アンテナが電磁波を検出する仕組みに応じて、上述の(式2)は変更する必要がある。
 アンテナ本数を3本より多くした場合、およびループアンテナ以外のアンテナを用いた場合のいずれにおいても、各アンテナの配置角度を用いて電流301の方向角θを算出する原理そのものは同様であることを付言しておく。
 100:電磁波源探査装置、110:アンテナモジュール、111~113:アンテナ、120:ステージ、130:3軸スキャナ、140:同軸スイッチ、150:スペクトラムアナライザ、160:モータ制御ユニット、170:制御コンピュータ、180:オシロスコープ、191:分配器、192~193:ハイブリッドバラン、200:被測定対象、301:電流、302:磁界、303:誘起電圧、1000:アンテナモジュール基板、1100、1200、1300:面、1110:GNDパターン、1120:信号パターン、1210:信号ビア、1310:共通GNDビア、2000:同軸ケーブル、3000:アンテナアレイ基板。

Claims (9)

  1.  電磁波を発生させる電磁波源を探査する方法であって、
     同一平面上における基準位置からみた配置角度がそれぞれ異なる3本以上奇数本数のアンテナそれぞれに前記電磁波源によって生じる電圧を取得するステップと、
     前記3本以上のアンテナのなかから前記電磁波源が向いている方向を算出する基準とする基準アンテナおよび前記基準アンテナとは別の第2アンテナを指定するステップと、
     前記基準アンテナに生じた前記電圧の絶対値と前記第2アンテナに生じた前記電圧の絶対値を算出する絶対値算出ステップと、
     前記基準アンテナと前記第2アンテナの間の配置角度差および前記絶対値を用いて前記基準アンテナを基準とする前記電磁波源の方向角を算出する角度算出ステップと、
     を有することを特徴とする電磁波源探査方法。
  2.  前記絶対値算出ステップでは、
     前記基準アンテナに生じた前記電圧の時間波形と前記第2アンテナに生じた前記電圧の時間波形それぞれの周波数スペクトルを取得し、得られた周波数に対応する前記電圧の絶対値を算出する
     ことを特徴とする請求項1記載の電磁波源探査方法。
  3.  前記絶対値算出ステップでは、
     前記基準アンテナに生じた前記電圧と前記第2アンテナに生じた前記電圧との加算値の絶対値および差分値の絶対値を取得し、
     前記角度算出ステップでは、
     前記加算値の絶対値と前記差分値の絶対値を用いて前記電磁波源の方向角を算出する
     ことを特徴とする請求項1記載の電磁波源探査方法。
  4.  請求項1記載の電磁波源探査方法をコンピュータに実行させることを特徴とする電磁波源探査プログラム。
  5.  同一平面上における基準位置からみた配置角度がそれぞれ異なる3本以上奇数本数のアンテナと、
     請求項1記載の電磁波源探査方法を実行する演算装置と、
     を備えたことを特徴とする電磁波源探査装置。
  6.  同一平面上における基準位置からみた配置角度がそれぞれ異なる3本以上奇数本数のアンテナと、
     前記3本以上のアンテナそれぞれに同時刻に生じる前記電圧を測定してそれぞれの前記電圧の値を保持する測定器と、
     請求項2記載の電磁波源探査方法を実行する演算装置と、
     を備えたことを特徴とする電磁波源探査装置。
  7.  同一平面上における基準位置からみた配置角度がそれぞれ異なる3本以上奇数本数のアンテナと、
     前記基準アンテナに生じた前記電圧と前記第2アンテナに生じた前記電圧とを測定しこれらの加算値および差分値を取得する測定器と、
     請求項3記載の電磁波源探査方法を実行する演算装置と、
     を備えたことを特徴とする電磁波源探査装置。
  8.  前記アンテナはプリント基板上に実装されていることを特徴とする請求項5記載の電磁波源探査装置。
  9.  前記3本以上のアンテナを組にしたアンテナモジュールを複数配置したアンテナモジュールアレイを備えることを特徴とする請求項8記載の電磁波源探査装置。
PCT/JP2011/051322 2010-01-26 2011-01-25 電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置 WO2011093272A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/575,189 US20130024148A1 (en) 2010-01-26 2011-01-25 Electromagnetic Wave Source Survey Method, Electromagnetic Wave Source Survey Program, and Electromagnetic Wave Source Survey Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014412 2010-01-26
JP2010014412A JP5362599B2 (ja) 2010-01-26 2010-01-26 電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置

Publications (1)

Publication Number Publication Date
WO2011093272A1 true WO2011093272A1 (ja) 2011-08-04

Family

ID=44319259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051322 WO2011093272A1 (ja) 2010-01-26 2011-01-25 電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置

Country Status (3)

Country Link
US (1) US20130024148A1 (ja)
JP (1) JP5362599B2 (ja)
WO (1) WO2011093272A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038027A1 (ja) * 2012-09-06 2014-03-13 株式会社日立製作所 電流プローブ、電流測定システム及び電流測定方法
TWI540322B (zh) * 2012-09-08 2016-07-01 西凱渥資訊處理科技公司 關於近場電磁探針及掃描器之系統,裝置及方法
JP6063823B2 (ja) * 2013-06-17 2017-01-18 株式会社日立製作所 近傍電界計測用プローブ及びこれを用いた近傍電界計測システム
US9335384B2 (en) 2013-09-25 2016-05-10 Qualcomm Incorporated Adjustable magnetic probe for efficient near field scanning
US20150165915A1 (en) * 2013-12-16 2015-06-18 Honda Motor Co., Ltd. Vehicle charging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009775A (ja) * 1998-06-19 2000-01-14 Nec Corp 電流測定装置および電流発生源特定方法
JP2001221823A (ja) * 2000-02-08 2001-08-17 Elena Electronics Co Ltd Emc試験に用いるアンテナ装置
JP2003087207A (ja) * 2001-09-10 2003-03-20 Kenwood Corp 携帯形端末等のsar検査装置およびsar検査方法
JP2007139472A (ja) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd 電磁放射測定装置、電磁放射測定方法、プログラムおよび記録媒体
JP2007187539A (ja) * 2006-01-13 2007-07-26 Hitachi Ltd 磁界プローブ装置及び磁界の測定方法
JP2008185575A (ja) * 2007-01-26 2008-08-14 Gcomm Corp 三次元電磁界測定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394202B2 (ja) * 1999-01-13 2003-04-07 太陽誘電株式会社 電磁界強度の測定方法及び装置並びに電流電圧分布の測定方法及び装置
JP3689578B2 (ja) * 1999-01-25 2005-08-31 株式会社日立製作所 磁界プローブ校正機能を有する近傍磁界測定装置および電磁波発生源探査装置
JP2000304790A (ja) * 1999-04-23 2000-11-02 Hitachi Ltd 電磁波発生源探査装置、その方法およびその解析方法
JP2001194399A (ja) * 2000-01-05 2001-07-19 Fukuoka Prefecture 放射妨害波源の探知方法
JP2001318112A (ja) * 2000-05-10 2001-11-16 Hitachi Ltd 電磁界測定装置または電磁界測定方法およびそれを用いた電子部品または電子装置の製造方法
US7286085B2 (en) * 2004-08-11 2007-10-23 Sierra Nevada Corporation Precision geolocation system and method using a long baseline interferometer antenna system
US7201054B2 (en) * 2004-10-18 2007-04-10 The Boeing Company System and method for resolving phase ambiguity of a transducer array to determine direction of arrival of received signals
JP5044100B2 (ja) * 2005-03-04 2012-10-10 株式会社エヌ・ティ・ティ・ドコモ 電磁波測定装置、電磁波測定用プローブ、電磁波測定用プローブアレイ
JP2007078666A (ja) * 2005-09-16 2007-03-29 National Institute Of Information & Communication Technology 電磁波形状検出方法及び装置
GB2452872B (en) * 2006-05-19 2011-02-02 Exxonmobil Upstream Res Co Determining orientatation for seafloor electromagnetic receive
GB2438430B (en) * 2006-05-22 2008-09-17 Ohm Ltd Electromagnetic surveying
US8164340B2 (en) * 2008-10-23 2012-04-24 Kjt Enterprises, Inc. Method for determining electromagnetic survey sensor orientation
US8878519B2 (en) * 2009-10-26 2014-11-04 Arizona Board Of Regents On Behalf Of The University Of Arizona Differential target antenna coupling (DTAC)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009775A (ja) * 1998-06-19 2000-01-14 Nec Corp 電流測定装置および電流発生源特定方法
JP2001221823A (ja) * 2000-02-08 2001-08-17 Elena Electronics Co Ltd Emc試験に用いるアンテナ装置
JP2003087207A (ja) * 2001-09-10 2003-03-20 Kenwood Corp 携帯形端末等のsar検査装置およびsar検査方法
JP2007139472A (ja) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd 電磁放射測定装置、電磁放射測定方法、プログラムおよび記録媒体
JP2007187539A (ja) * 2006-01-13 2007-07-26 Hitachi Ltd 磁界プローブ装置及び磁界の測定方法
JP2008185575A (ja) * 2007-01-26 2008-08-14 Gcomm Corp 三次元電磁界測定装置

Also Published As

Publication number Publication date
JP5362599B2 (ja) 2013-12-11
JP2011153860A (ja) 2011-08-11
US20130024148A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP3394202B2 (ja) 電磁界強度の測定方法及び装置並びに電流電圧分布の測定方法及び装置
US10712369B2 (en) Current measurement using magnetic sensors and contour intervals
JP5249294B2 (ja) 電磁界分布測定装置並びにコンピュータ読み取り可能な記録媒体
JP4635544B2 (ja) 電界分布測定方法及び電界分布測定装置
JP5362599B2 (ja) 電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置
JP4130365B2 (ja) 電磁界強度の測定方法及びその装置、電磁界強度分布の測定方法及びその装置電流電圧分布の測定方法及びその装置
US9606198B2 (en) Magnetic field probe, magnetic field measurement system and magnetic field measurement method
JP2003279611A (ja) 電磁波発生源探査装置
JP2011191078A (ja) 電磁界測定方法と電磁界測定装置
Spang et al. Application of probes with multiple outputs on probe-compensated EMC near-field measurements
JP2004150907A (ja) 狭指向性電磁界アンテナプローブおよびこれを用いた電磁界測定装置、電流分布探査装置または電気的配線診断装置
JP2009052990A (ja) 電磁界測定装置、測定システム、および電磁界測定方法
JP2009002757A (ja) 電磁波測定装置及び電磁波測定方法
JP4747208B2 (ja) 電磁界計測装置および方法
JP2000346886A (ja) Emi測定装置およびemi測定方法
US10545197B2 (en) Self-calibrating system architecture for magnetic distortion compensation
JP5170955B2 (ja) 電磁波測定方法および電磁波測定装置
JP3489363B2 (ja) 回路基板の電磁障害測定方法および測定装置
JP4944636B2 (ja) リニアアレーアンテナ放射近傍電界測定装置、及びその方法
JP2004069372A (ja) 遠方電磁界強度の算出方法及び装置、遠方電磁界強度の算出プログラム、及び、そのプログラムを記録した記録媒体
JP2005134169A (ja) 電磁界測定方法および測定装置、ならびに半導体装置
JP3675317B2 (ja) 電磁波発生源探査装置
JP6052355B1 (ja) 試験装置
JP2012220456A (ja) 電磁界分布測定方法と電磁界分布測定装置
Nadeau et al. Extrapolations using vectorial planar near-field measurements for EMC applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13575189

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11736985

Country of ref document: EP

Kind code of ref document: A1