JP2012220456A - 電磁界分布測定方法と電磁界分布測定装置 - Google Patents

電磁界分布測定方法と電磁界分布測定装置 Download PDF

Info

Publication number
JP2012220456A
JP2012220456A JP2011089665A JP2011089665A JP2012220456A JP 2012220456 A JP2012220456 A JP 2012220456A JP 2011089665 A JP2011089665 A JP 2011089665A JP 2011089665 A JP2011089665 A JP 2011089665A JP 2012220456 A JP2012220456 A JP 2012220456A
Authority
JP
Japan
Prior art keywords
probe
measurement
signal
electromagnetic field
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011089665A
Other languages
English (en)
Inventor
Norio Matsui
紀夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011089665A priority Critical patent/JP2012220456A/ja
Publication of JP2012220456A publication Critical patent/JP2012220456A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】近傍電磁界の位相分布測定において、位相差の絶対値だけでなく、位相差の符号を、広い周波数範囲で判別できる測定方法を提供することを目的とする。
【解決手段】測定点の電磁界強度と、位相比較用の隣接点の電磁界強度の測定を同時に行い、位相比較用信号の位相をずらしてから測定信号と加算することで測定点間の位相差の絶対値と符号を算出する。
【選択図】図1

Description

本発明は、EMC(電磁環境適合性)分野において電子機器からの不要輻射を測定するために用いられる電磁界分布測定方法に関するものである。
近年、各種の電子機器から発生する不要輻射による妨害を最小限に抑えるために、多くの国で規制が設けられており、例えば海外では、FCC(アメリカ連邦通信委員会)、CISPR(国際無線障害特別委員会)、VDE(ドイツ電気技術者協会)等の規格が設けられている。我国でも、VCCI(情報処理装置等電波障害自主規制協議会)の自主規制規格が決められ、電子機器製造メーカにおいて、各種の電子機器から発生する不要輻射を抑える対策を行うようになってきている。
その規格測定方法は、不要輻射の発生源である電子機器から所定の遠方距離(例えば、3mまたは10m)を隔てた位置での電界強度を測定するものであり、測定環境や測定器は特殊なものになるため、その測定技術はかなりの専門技術を必要とする。
この不要輻射の測定は一般的に「遠方測定」と呼ばれており、その規格値は「遠方規格値」と呼ばれている.また、遠方で測定するため、電磁波の発生源が電子機器のどこであるのかを特定するのが困難で、不要輻射の対策を行うには、多くの時間と費用が発生する。
そこで、最近では、電子機器近傍での電磁界強度を測定する電磁界分布測定装置が用いられており、対策の時間とコストの低減が図られている。このような計測機器として、例えば、電子機器の近傍を電界あるいは磁界センサを用いて走査測定し、被測定物の近傍電磁界分布を測定することで、不要輻射の発生源を推定するような電磁界分布測定装置の活用が多くなってきている。さらに、不要輻射対策の効率を向上するために、前述した近傍電磁界分布結果を用いて遠方の電界強度を推定する手法への要求が高まっている。
一般的な電磁界分布測定装置は電磁界強度と方向のみを測定し、近傍電磁界分布の表示を行う。しかし、上記のように近傍電磁界分布から遠方の電界強度を推定するためには、電磁界の強度と方向の情報だけでなく、位相の情報が重要である。例えば、同じ電磁界強度の発生源が複数あると仮定した場合、発生した電磁界の位相が揃っていれば、お互いに強め合うため、遠方の電界強度は大きくなる。一方、発生した電磁界の位相が反転していれば、お互いに打ち消しあうため、遠方の電界強度は小さくなる。このように、同じ近傍電磁界の強度分布であったとしても、位相分布によって遠方の電界強度の推定値は大きく異なる。
従来の位相分布を測定することを目的とした電磁界分布測定装置としては、近傍電磁界の強度を測定するためのプローブとは別に、固定された位相比較用のプローブを有し、近傍電磁界の強度分布と位相分布を測定する特許文献1がある。図8は特許文献1に記載された電磁界分布測定装置を示す。
図8において、被測定物20は測定対象である。プローブ21は被測定物20から発生する電磁界強度を測定する。駆動装置22によってプローブ21は任意の位置に移動して測定を行う。プローブ21に対してプローブ23は固定されており、被測定物20から発生する電磁界を常に一定の状態で測定することで、位相比較用の基準信号を得ている。24は位相ずらし部、25はスイッチ群であり、制御部26と関連してプローブ21とプローブ23との間の位相差を算出するために用いられる。
また、位相分布をより高精度に測定するために、同期検波方式で近傍電磁界の強度分布と位相分布を測定する特許文献2がある。図9は特許文献2に記載された電磁界分布測定装置を示す。
図9において、プローブ30は被測定装置から発生する電磁界を測定する。駆動装置31によってプローブ30は任意の位置に移動して測定を行う。測定したい周波数のクロックを発振器32によって発生させ、この発生した信号の周波数を、分周器34により測定対象のLSIチップ33の動作周波数になるように分周する。この分周した動作周波数をLSIチップ33の動作クロックとして入力し、発振器32による測定したい周波数となる信号とLSIチップ33から放射される磁界または電界とを、同期検波器35によって同期検波することにより、測定対象のLSIチップ33の近傍磁界または電界の強度および位相を測定する。36はデータ処理用のコンピュータである。
特開2000−346886号公報 特開2005−134169号公報
しかしながら従来の構成では、任意の測定対象に対して広い周波数範囲で位相差の絶対値だけでなく符号判別が困難であるという課題を有している。
特に特許文献1の構成では、位相差を求めるために位相ずらし部24を有しているが、位相差の絶対値を求めることが主目的であり、狭い周波数範囲でしか位相差の符号を判別することができない。また、位相比較用のプローブ23が固定されているため、位相比較信号と測定信号のレベルが大きく異なる場合がある。この場合、演算結果の変化が小さく、位相差の絶対値と符号の両方を求めることができないという課題も有している。
また、特許文献2の構成では、位相比較用信号を装置の内部で生成しているため、位相差の絶対値測定と符号判別を高い精度で行うことが可能である。しかしながら、位相比較信号を測定対象に入力する必要があり、さらに測定対象は入力された信号を基に動作する必要がある。従って、実質的な測定対象はデジタル回路のクロック信号に限定されており、アナログ回路等から発生する電磁波放射の位相測定はできないという課題を有している。
本発明は、広い周波数範囲で測定対象の各測定点とその隣接測定点の位相差の絶対値と符号の両方を求めることができる電磁界分布測定方法および装置を提供することを目的とする。
本発明の電磁界分布測定方法は、被測定物から放射される近傍電磁界の位相分布を測定するに際し、前記被測定物の近傍の電界強度を測定する第1プローブと前記第1プローブの近傍で前記第1プローブによる測定面と同じ測定面に位置するよう規定距離だけ離して併設されて電界強度を測定する第2プローブを一体にして、被測定物と相対移動させて、前記被測定物の複数の測定点を測定して、各測定点における前記第1プローブの測定信号から電磁界強度を判別し、前記第1プローブからの信号と前記第2プローブからの信号のうちの一方の測定信号と、前記第1プローブからの信号と前記第2プローブからの信号のうちの他方の測定信号のうちの、前記他方の測定信号を測定周波数の0波長から2分の1波長までの間で位相を遅延した信号と前記一方の信号とを加算した出力から、前記第1プローブと前記第2プローブが測定している前記測定点の近傍点との位相差の絶対値と位相差の符号を判別することを特徴とする。
この構成によれば、測定点の電磁界強度と、位相比較用の隣接点の電磁界強度の測定を同時に行い、位相比較用信号の位相をずらしてから測定信号と加算することで測定点間の位相差と符号を判別することができ、高精度の位相分布測定が可能となる。
本発明の実施の形態1における電磁界分布測定装置の斜視図 合成波の強度の位相差依存性を示す図 位相をずらした合成波の強度の位相差依存性を示す図 複数の第1,第2プローブを設けて同時に走査させて測定時間を短縮する場合の説明図 本発明の実施の形態2における電磁界分布測定装置の斜視図 第1プローブに対して複数の第2プローブを設けて右方向走査、回転角0°(X方向測定)の場合と左方向走査、回転角0°(X方向測定)の場合の説明図 第1プローブに対して複数の第2プローブを設けて右方向走査、回転角度90°(Y方向測定)の場合の説明図と左方向走査、回転角度90°(Y方向測定)の場合の説明図 特許文献1の電磁界分布測定装置の構成図 特許文献2の電磁界分布測定装置の構成図
本発明の電磁界分布測定方法を、各実施の形態に基づいて説明する。
(実施の形態1)
図1〜図3は本発明の実施の形態1を示す。
図1は電磁界分布測定装置を示す。
図1において、被測定物9は測定対象である。第1プローブ1は被測定物9から発生する電磁界強度の測定を行う。第1プローブ1に併設された第2プローブ2は被測定物9から発生する電磁波の強度を測定する。
第1プローブ1による電磁界強度の測定に影響を与えないために、第2プローブ2は第1プローブ1よりも小型であることが望ましいが、これに限られることはない。また、電磁界プローブである第1,第2プローブ1,2としては、ループアンテナ、微小ダイポールアンテナなどがあるが、これらに限られることはない。
駆動部3は、第1,第2プローブ1,2を同時に三次元的に移動して、被測定物9の近傍の任意の点で測定を行う。
合成手段14は、高周波スイッチ5A,5Bと位相遅延回路4および高周波合成器6を有しており、第1プローブ1からの信号を出力する第1の状態と、第2プローブ2からの信号を測定周波数の0波長から2分の1波長までの間で位相を遅延した信号と第1プローブ1からの信号とを加算信号を出力する第2の状態に切り換えることができる。
高周波スイッチ5A,5Bは、第2プローブ2からの信号の開閉、および位相遅延回路4の選択を行う。位相遅延回路4は遅延線路4A,4B,4Cなどで構成され、広範囲の周波数帯域に応じた遅延量となるように複数個が用意されている。なお、位相遅延回路4は遅延線路の変わりにコンデンサやインダクタを用いた位相遅延フィルタで構成しても良い。
高周波合成器6は、第1プローブ1からの信号と高周波スイッチ5A,5Bを通過した第2プローブ2からの信号の合成を行う。
スペクトラムアナライザ7は、入力信号の周波数毎の強度の分布を測定する。計測制御部8はパーソナルコンピュータ等で構成されており、駆動部3、高周波スイッチ5A,5B、スペクトラムアナライザ7の制御、および測定結果の演算処理、保存、表示等を行う。
次に、測定対象の近傍の電磁界強度分布と位相分布を測定する手順に基づいて、図1の構成を具体的に説明する。
図1において、第1プローブ1と第2プローブ2は駆動部3のアーム先端に固定され、被測定物9の近傍を立体的に走査しながら測定を行う。第1プローブ1が測定点11に、プローブ2が測定点10に位置した場合を考える。
先ず、高周波スイッチ5A,5Bが開放し、スペクトラムアナライザ7は第1プローブ1からの信号のみを受信する。これは測定点11から発生する電磁界強度を測定していることになる。
次に、駆動部3によって第1プローブ1は測定点12に、第2プローブ2は測定点11に移動する。第1プローブ1は測定点12から発生する電磁界の強度を測定する。また、第2プローブ2は測定点11から発生する電磁界の強度を測定する。
先ず、高周波スイッチ5A,5Bが開放し、スペクトラムアナライザ7は第1プローブ1からの信号を受信することで測定点12から発生する電磁界の強度のみを測定する。
次に、高周波スイッチ5A,5Bが位相遅延回路4のうちの位相遅延量ゼロの遅延線路を選択するように接続し、スペクトラムアナライザ7は第1プローブ1からの信号と第2プローブ2からの信号との合成信号を測定する。第1プローブ1からの信号と、第1プローブ2からの信号との位相が揃っていれば、合成信号は強め合い、第1プローブ1からのみの信号よりも強度が大きくなる。また、位相が反転していれば、合成信号は弱め合い、第1プローブ1からのみの信号よりも強度が小さくなる。
このように、合成前後の信号強度変化を比較することによって、測定点11と測定点12から発生する電磁界の位相差を求めることができる。例として、位相と振幅が異なり、周波数が同じである正弦波の合成について述べる。
測定点12から発生する電磁界信号をY12 = A・sin(X)
測定点11から発生する電磁界信号をY11 = B・sin(X+θ)
とする。ここでθは算出対象となる位相差である。この時、2つの信号の合成は第1式で表される。
Figure 2012220456
上式の結果から、合成された信号は正弦波であり、信号強度である振幅は測定点12と測定点11からの信号の強度と位相差に依存することがわかる。測定点12と測定点11からの信号強度は第1プローブ1であらかじめ高い分解能で測定されているため、既知である。従って、測定された合成波の信号強度から、測定点12と測定点11の間の電磁界の位相差を求めることができる。
図2は合成信号の振幅変化を位相差の依存性として示した図である。位相遅延回路4による位相遅延量はゼロの場合である。2つの測定点からの信号強度が大きく異なる場合は合成信号の強度変化は小さいが、信号強度がほぼ同じである場合、位相差によって合成信号の強度が大きく変化する。
しかし、第1式で表される合成波の信号強度を表す式は偶関数であり、算出対象のθは正と負の両方の解を持つ。従って、合成波の信号強度から位相差の符号は判別できない。そこで、位相差の符号を区別するために、第2プローブ2からの信号を位相遅延してから第1プローブ1からの信号と合成することで位相の符号を判別する。例として、第1式と同じ条件の波の合成を考える。
測定点12から発生する電磁界信号をY12 = A・sin(X)
測定点11から発生する電磁界信号をY11 = B・sin(X+θ)
とする。ここでθは算出対象となる位相差である。この時、測定点11の信号を4分の1波長、つまりπ/2ラジアンだけ遅延させると電磁界信号は
Y11 = B・sin(X+θ+π/2)
となり、これら2つの信号の合成は第2式で表される。
Figure 2012220456
上式の結果から、合成波の信号強度である振幅は奇関数となり、算出対象のθが正と負の場合で異なる解を持つ。つまり、合成波の信号強度から位相符号を区別することが可能となる。
図3は第1プローブ2からの測定信号を4分の1波長、つまりπ/2ラジアン遅らせてから合成した信号の振幅変化を位相差の依存性として示した図である。位相差θの絶対値が同じであっても、符号が正と負の場合で合成振幅が異なることを示している。位相遅延の量は測定周波数の4分の1波長である必要はなく、0波長より大きく、2分の1波長より小さければ位相符号の判別は可能である。従って、複数個の位相遅延線路を組み合わせることで広い周波数範囲の符号を判別することが可能である。
例として、EMC規格測定において一般的な放射妨害波の測定周波数である30MHzから1GHzを測定する場合、最小で6種類の電気長の位相遅延線路を選択することで、全帯域の位相の正負を判別することが可能である。具体的には、測定周波数が30MHzから60MHzまでは2500mmの電気長、60MHzから120MHzまでは1250mmの電気長、120MHzから240MHzまでは625mmの電気長、240MHzから480MHzまでは312.5mmの電気長、480MHzから960MHzまでは156.25mmの電気長、960MHzから1000MHzまでは78.125mmの電気長の組み合わせが挙げられる。この場合、測定精度に余裕を持たせるために、位相遅延線路の電気長の組み合わせ数は6以上であっても良い。
上記の計算を測定した全周波数帯域に対して行う。測定点11と測定点12での測定が終わると、駆動部3によって、第1プローブ1は測定点13に、第2プローブ2は測定点12に移動する。これらの動作を繰り返すことによって、全ての測定点から発生する電磁界の強度と、測定点間の位相差、および位相符号を測定することが可能となる。測定した結果と、駆動部3への位置制御情報とから、高分解能の近傍電磁界強度分布と位相分布を得ることができる。
かかる構成によれば、電磁界強度測定用の第1プローブ1と位相比較用の第2プローブ2を被測定物9に接近して測定することにより、近傍電磁界の強度分布と位相分布を高分解能で測定することができる。その結果、遠方規格値を高精度で推定することができる。
なお、本実施の形態において、第1プローブ1と第2プローブ2とを各一つずつ有しているが、測定時間を短縮するために等、必要に応じて複数有しても良い。具体的には前記複数が2の場合には、図4に示すように第1プローブ1a,1bと第2プローブ2a,2bを設け、駆動部3を運転して第1プローブ1a,第2プローブ2aが測定点10a〜13aの上をX軸方向に走査するときに、同時に第1プローブ1b,第2プローブ2bが測定点10b〜13bの上を走査するようにして、複数のプローブで複数列を一度に走査すれば測定時間を短縮できる。第1プローブ1a,第2プローブ2aの出力を処理する装置とは別に第1プローブ1b,第2プローブ2bの出力を処理する装置を別に設けて処理したり、1台の処理装置によって時分割で、第1プローブ1a,第2プローブ2aの出力と、第1プローブ1b,第2プローブ2bの出力を処理することもできる。
(実施の形態2)
図5〜図7は、本発明の実施の形態2における電磁界分布測定装置を示す。
図5において、図1と同じ構成要素については同じ符号を用いてその説明を省略する。
図5において、第2プローブ2は第1プローブ1を取り囲むように環状に複数本が設置されている。本構成図では第2プローブ2の数は4本であるが、4本より多くても、少なくても良い。
高周波スイッチ5A,5B,5Cのうちの高周波スイッチ5Cは、複数ある第2プローブ2の中から有効な信号を選択し、高周波スイッチ5Aと必要な位相遅延回路4と高周波スイッチ5Bを介して、高周波合成器6に接続されている。
かかる構成によれば、第1プローブ1と第2プローブ2の配置方向が駆動部3による走査方向と常に一致し、走査方向、および電磁界の方向に依存しない電磁界の測定が可能となる。
一般に、電磁界プローブは指向性を持ち、測定できる電磁界の方向に制限がある。従って、電磁界の方向に合わせて電磁界を測定するため、プローブを回転させる必要がある。プローブ方向を回転させた場合、実施の形態1だと第1プローブ1と第2プローブ2の配置方向が、走査方向と一致しなくなる。従ってプローブの向きを揃えて再測定する必要があり、測定時間が増加する。対策として、第2プローブ2を複数設け、第1プローブ1の回転角度に合わせて有効な第2プローブ2を高周波スイッチ5Cで選択することで、走査方向、および電磁界の方向に依存しない電磁界の測定が可能となる。具体例を図6と図7で説明する。
この具体例では、図6(a)に示すように第1プローブ1を中央にしてその周囲に4つの第2プローブ2−1,2−2,2−3,2−4が配置されている。第1プローブ1の丸印の中に記載されている矢印は第1プローブ1の指向性を示す。第2プローブ2−1〜2−4の丸印の中に記載されている矢印も同様にその指向性を示す。
図6(a)は右方向に走査、回転角度0°(X方向測定)の場合で、この場合には制御部8は、第1プローブ1の進行方向に対して進行方向の後方の第2プローブ2−1を選択して測定に使用する。
図6(b)は左方向に走査、回転角度0°(X方向測定)の場合で、この場合には制御部8は、第1プローブ1の進行方向に対して進行方向の後方の第2プローブ2−3を選択して測定に使用する。
図7(a)は右方向に走査、回転角度90°(Y方向測定)の場合で、この場合には制御部8は、第1プローブ1の進行方向に対して進行方向の後方の第2プローブ2−4を選択して測定に使用する。
図7(b)は左方向に走査、回転角度90°(Y方向測定)の場合で、この場合には制御部8は、第1プローブ1の進行方向に対して進行方向の後方の第2プローブ2−4を選択して測定に使用する。
上記の各実施の形態では、位相遅延回路4が第2プローブ2の信号を遅延するように構成し、この遅延した信号と第1プローブ1の信号を加算して位相差の符号を検出したが、位相遅延回路4が第1プローブ1の信号を遅延するように構成し、この遅延した信号と第2プローブ2の信号を加算して位相差の符号を検出することもできる。
本発明は、近傍電磁界の強度分布と位相分布を高分解能で測定することが可能であり、遠方規格値を高精度で推定する機能を有し、EMC(電磁環境適合性)分野等の電子機器からの不要電磁波輻射の測定、および対策の用途にも適用できる。
1 第1プローブ(強度測定用プローブ)
2 第2プローブ(位相比較用プローブ)
3 駆動部
4 位相遅延回路
5 高周波スイッチ
6 高周波合成器
7 スペクトラムアナライザ
8 計測制御部
9 被測定物
10 測定点
11 測定点
12 測定点
13 測定点
14 合成手段

Claims (3)

  1. 被測定物から放射される近傍電磁界の位相分布を測定するに際し、
    前記被測定物の近傍の電界強度を測定する第1プローブと前記第1プローブの近傍で前記第1プローブによる測定面と同じ測定面に位置するよう規定距離だけ離して併設されて電界強度を測定する第2プローブを一体にして、被測定物と相対移動させて、前記被測定物の複数の測定点を測定して、各測定点における前記第1プローブの測定信号から電磁界強度を判別し、
    前記第1プローブからの信号と前記第2プローブからの信号のうちの一方の測定信号と、前記第1プローブからの信号と前記第2プローブからの信号のうちの他方の測定信号のうちの、前記他方の測定信号を測定周波数の0波長から2分の1波長までの間で位相を遅延した信号と前記一方の信号とを加算した出力から、前記第1プローブと前記第2プローブが測定している前記測定点の近傍点との位相差の絶対値と位相差の符号を判別する
    電磁界分布測定方法。
  2. 被測定物の近傍の電界強度を測定する第1プローブと、
    前記第1プローブの近傍で前記第1プローブによる測定面と同じ測定面に位置するよう併設されて電界強度を測定する第2プローブと、
    前記被測定物と一体の前記第1,第2プローブとを相対的に移動させる駆動部と、
    前記第1プローブからの信号を出力する第1の状態と、前記第2プローブからの信号を測定周波数の0波長から2分の1波長までの間で位相を遅延した信号と前記第1プローブからの信号とを加算信号を出力する第2の状態に切り換える合成手段と、
    前記合成手段の出力から入力された測定信号の周波数毎の電磁界強度の分布を測定するスペクトラムアナライザと、
    前記駆動部と前記合成手段制御する計測制御部と
    を設け、前記計測制御部を、
    前記駆動部を制御して前記被測定物と前記第1,第2プローブを相対的に移動させ、
    前記被測定物における時々の測定点について、前記合成手段を第1の状態に切り換えた時の前記スペクトラムアナライザの出力と、前記合成手段を第2の状態に切り換えた時の前記スペクトラムアナライザの出力をデータ収集し、
    第1の状態に切り換えた時の前記スペクトラムアナライザの出力をそのときの駆動部による位置情報で特定される測定点の電磁界強度とし、この時に第2の状態に切り換えた時の前記合成手段の出力から、前記第2プローブが測定している前記測定点の近傍点との位相差の符号を判別するよう構成した
    電磁界分布測定装置。
  3. 被測定物の近傍の電界強度を測定する第1プローブと、
    前記第1プローブの近傍で前記第1プローブによる測定面と同じ測定面に位置するよう併設されて電界強度を測定する第2プローブと、
    前記被測定物と一体の前記第1,第2プローブとを相対的に移動させる駆動部と、
    前記第1プローブからの信号を出力する第1の状態と、
    前記第1プローブからの信号を測定周波数の0波長から2分の1波長までの間で位相を遅延した信号と前記第2プローブからの信号とを加算信号を出力する第2の状態に切り換える合成手段と、
    前記合成手段の出力から入力された測定信号の周波数毎の電磁界強度の分布を測定するスペクトラムアナライザと、
    前記駆動部と前記合成手段を制御する計測制御部と
    を設け、前記計測制御部を、
    前記駆動部を制御して前記被測定物と前記第1,第2プローブを相対的に移動させ、
    前記被測定物における時々の測定点について、前記合成手段を第1の状態に切り換えた時の前記スペクトラムアナライザの出力と、前記合成手段を第2の状態に切り換えた時の前記スペクトラムアナライザの出力をデータ収集し、
    第1の状態に切り換えた時の前記スペクトラムアナライザの出力をそのときの駆動部による位置情報で特定される測定点の電磁界強度とし、この時に第2の状態に切り換えた時の前記合成手段の出力から、前記第2プローブが測定している前記測定点の近傍点との位相差の絶対値と位相差の符号を判別するよう構成した
    電磁界分布測定装置。
JP2011089665A 2011-04-14 2011-04-14 電磁界分布測定方法と電磁界分布測定装置 Withdrawn JP2012220456A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089665A JP2012220456A (ja) 2011-04-14 2011-04-14 電磁界分布測定方法と電磁界分布測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089665A JP2012220456A (ja) 2011-04-14 2011-04-14 電磁界分布測定方法と電磁界分布測定装置

Publications (1)

Publication Number Publication Date
JP2012220456A true JP2012220456A (ja) 2012-11-12

Family

ID=47272104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089665A Withdrawn JP2012220456A (ja) 2011-04-14 2011-04-14 電磁界分布測定方法と電磁界分布測定装置

Country Status (1)

Country Link
JP (1) JP2012220456A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207464A (ja) * 2016-05-17 2017-11-24 アンリツ株式会社 アンテナ測定システム及びアンテナ測定方法
CN112255474A (zh) * 2020-09-10 2021-01-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 芯片近场扫描系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207464A (ja) * 2016-05-17 2017-11-24 アンリツ株式会社 アンテナ測定システム及びアンテナ測定方法
CN112255474A (zh) * 2020-09-10 2021-01-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 芯片近场扫描系统及方法

Similar Documents

Publication Publication Date Title
JP5249294B2 (ja) 電磁界分布測定装置並びにコンピュータ読み取り可能な記録媒体
US7652485B2 (en) Measuring method for electromagnetic field intensity and apparatus therefor, measuring method for electromagnetic field intensity distribution and apparatus therefor, measuring method for current and voltage distributions and apparatus therefor
US20130238264A1 (en) Measurement device for identifying electromagnetic interference source, method for estimating the same, and computer readable information recording medium enabling operations thereof
US7541818B2 (en) Method and apparatus of electromagnetic measurement
JP4635544B2 (ja) 電界分布測定方法及び電界分布測定装置
US20060033510A1 (en) Method and device for measuring intensity of electromagnetic field, method and device for measuring current-voltage distribution, and method for judging quality of electronic device, and electronic device therefor
WO2000065362A1 (fr) Dispositif et procede de sondage pour la recherche de source d'ondes electromagnetiques, et procede d'analyse associe
US10451663B2 (en) Method for measuring electromagnetic field, electromagnetic field measurement device, and phase imaging device
JP5410827B2 (ja) 電磁波発生源判定方法及び装置
JP2011191078A (ja) 電磁界測定方法と電磁界測定装置
US10684235B2 (en) Material determination by sweeping a range of frequencies
JP5930850B2 (ja) 電磁ノイズ検出装置
JP2012220456A (ja) 電磁界分布測定方法と電磁界分布測定装置
JP3760908B2 (ja) 狭指向性電磁界アンテナプローブおよびこれを用いた電磁界測定装置、電流分布探査装置または電気的配線診断装置
JP5362599B2 (ja) 電磁波源探査方法、電磁波源探査プログラム、電磁波源探査装置
US20200090900A1 (en) Charged particle beam system
JP2009002757A (ja) 電磁波測定装置及び電磁波測定方法
JP2003185689A (ja) 電界測定装置、電界測定方法、プログラム、及び記憶媒体
JP2008082945A (ja) 近傍電磁界分布測定装置
JP2006242672A (ja) 電磁波測定装置
JP2005134169A (ja) 電磁界測定方法および測定装置、ならびに半導体装置
JP2007163236A (ja) 電磁波測定方法および電磁波測定装置
JP2012181161A (ja) 電磁波放射源検出方法および装置
WO2017073757A1 (ja) 検出装置、信号処理方法及びプログラム
WO2022162869A1 (ja) 物体透視装置、制御回路、記憶媒体、および物体透視方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701