WO2011093090A1 - 分析装置及び分析方法 - Google Patents

分析装置及び分析方法 Download PDF

Info

Publication number
WO2011093090A1
WO2011093090A1 PCT/JP2011/000474 JP2011000474W WO2011093090A1 WO 2011093090 A1 WO2011093090 A1 WO 2011093090A1 JP 2011000474 W JP2011000474 W JP 2011000474W WO 2011093090 A1 WO2011093090 A1 WO 2011093090A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
laser light
light
reagent
reaction vessel
Prior art date
Application number
PCT/JP2011/000474
Other languages
English (en)
French (fr)
Inventor
吉川 えみ子
貴行 水谷
Original Assignee
ベックマン コールター, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベックマン コールター, インコーポレイテッド filed Critical ベックマン コールター, インコーポレイテッド
Publication of WO2011093090A1 publication Critical patent/WO2011093090A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the present invention relates to an analysis apparatus and an analysis method for analyzing a sample using Raman spectroscopy called surface enhanced Raman scattering (SERS: “Surface-enhanced” Raman Scattering).
  • SERS surface enhanced Raman scattering
  • Raman spectroscopic analysis is an analysis method for detecting Raman scattered light generated by irradiating a specimen with laser light, and can obtain unique information depending on the molecular structure of the detection target. For this reason, Raman spectroscopic analysis is known as an effective analysis method for detecting biochemical substances such as viruses and proteins, environmental chemical substances, biosensors, and the like. However, the Raman spectroscopic analysis has a problem that the Raman scattered light is very weak and is not suitable for the microanalysis.
  • the Raman scattering intensity of adsorbed species on a metal surface such as gold or silver having an atomic level roughness may be enhanced 10 2 to 10 6 times as compared with non-adsorbed species. This phenomenon is called surface enhanced Raman scattering. Furthermore, it has been discovered that by aggregating metal nanoparticles, the Raman scattering intensity can be increased to about 10 14 times that of non-adsorbed species. Therefore, in recent years, by using metal nanoparticles such as gold and silver having an atomic level roughness as a labeling substance, and further increasing the Raman scattering intensity by aggregating the complex of the labeling substance and the detection target An analysis method for analyzing a detection object has attracted attention.
  • an analyzer has been proposed in which a reagent containing magnetic nanoparticles that react with a detection target in a specimen is added to the specimen containing a metal nanoparticle as a labeling substance (see Patent Document 1).
  • a complex of magnetic particles, an object to be detected, and a labeling substance is aggregated by applying a magnetic force, and the generated aggregate is irradiated with laser light, and surface-enhanced Raman scattered light is collected.
  • the detection target in the specimen is detected by measuring
  • the present invention has been made in view of the above, and an object of the present invention is to provide an analysis apparatus and an analysis method capable of suppressing variations in measured values in surface-enhanced Raman spectroscopy.
  • the analyzer of the present invention performs a magnetic flux collection process on a reaction container in which a specimen and a reagent containing labeled particles composed of magnetic particles and metal nanoparticles are dispensed.
  • a magnetic flux collecting means for generating an aggregate in which a complex of the measurement object in the specimen and the reagent is aggregated; and Raman scattered light generated by irradiating the aggregate with laser light emitted from a laser light source.
  • the aggregate is irradiated by changing the irradiation position of the laser beam by holding the reaction vessel and rotating or moving the laser beam.
  • a driving unit that suppresses the amount of energy per unit time and unit area of the laser light, and a control unit that controls the Raman scattered light to be measured in a time-sharing manner by the light receiving unit.
  • the analyzer according to the present invention is the above-described invention, wherein the objective lens for converging the laser light and irradiating the aggregate, the laser light source, the objective lens, and the photometric means are mounted on the reaction vessel.
  • a driving stage that approaches or separates from the reaction vessel, and a control unit that performs control to change the spot diameter of the laser beam irradiated to the aggregate by moving the driving stage toward or away from the reaction vessel. It is characterized by that.
  • the analyzer according to the present invention in the above invention, includes a condenser lens that condenses the Raman scattered light, and a light receiving stage that is mounted with the photometry means and approaches or separates from the condenser lens. It is characterized by having.
  • the analyzer according to the present invention in the above invention, the reflecting mirror and the beam splitter are arranged in parallel at a predetermined interval, and are inclined with respect to the optical path of the laser beam emitted from the laser light source, It has a light branching means for branching the laser light into a plurality of light beams and irradiating the branched light beams at different positions on the aggregate.
  • the laser beam applied to the aggregate has a spot diameter of 100 to 200 ⁇ m.
  • the analysis method of the present invention includes a magnetic flux collecting process in a reaction container in which a specimen and a reagent containing labeled particles composed of magnetic particles and metal nanoparticles are dispensed.
  • the analysis method of the present invention is characterized in that, in the above invention, the laser beam irradiated to the aggregate has a spot diameter of 100 to 200 ⁇ m.
  • the amount of energy per unit time and unit area of the laser light irradiated to the aggregate is suppressed to 0.001 to 0.005 mW / ⁇ m 2 , discoloration and denaturation of the aggregate can be avoided.
  • an analysis apparatus and an analysis method capable of suppressing variations in measured values in surface-enhanced Raman spectroscopy.
  • FIG. 1 is a schematic diagram illustrating a configuration of an analyzer 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a reaction vessel in which a complex in which a specimen reacts with a first reagent and a second reagent is settled as an aggregate on the inner surface of the bottom wall by magnetic force.
  • FIG. 3 is a perspective view showing a schematic configuration of the container first transfer device, the magnetic flux collecting table, and the container second transfer device.
  • FIG. 4 is a diagram showing a configuration of a container storage portion of the magnetic flux collecting table shown in FIG.
  • FIG. 5 is a diagram for explaining the reaction between the measurement target in the specimen and the magnetic particles and label particles contained in the reagent.
  • FIG. 1 is a schematic diagram illustrating a configuration of an analyzer 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a reaction vessel in which a complex in which a specimen reacts with a first reagent and a second reagent is
  • FIG. 6 is a schematic configuration diagram showing the photometry unit shown in FIG.
  • FIG. 7 is a schematic diagram showing a configuration of the light receiving device of the photometric unit shown in FIG.
  • FIG. 8 is a cross-sectional view showing the configuration of the drive stage that holds and rotates the reaction vessel.
  • FIG. 9 is a diagram showing an apparent irradiation spot of the laser beam that the aggregate has on the bottom wall of the reaction vessel.
  • FIG. 10 is a diagram showing an apparent irradiation spot of the laser beam that the aggregate has on the bottom wall of the reaction container when the reaction container is movable in the two-dimensional direction.
  • FIG. 11 shows the signal intensity in the range of 750 to 950 cm ⁇ 1 when the surface-enhanced Raman scattered light generated by the agglomerates of the rotated reaction vessel was measured 10 times as Example 1-1. It is a figure which shows the relationship.
  • FIG. 12 shows, as Comparative Example 1-1, the Raman scattered light in the wave number range of 750 to 950 cm ⁇ 1 when the surface-enhanced Raman scattered light in which the agglomerates of the reaction vessel that was not rotated was generated 10 times. It is a figure which shows the relationship with signal strength.
  • FIG. 13 is a schematic configuration diagram showing a photometric unit used by the analyzer according to the second embodiment.
  • FIG. 13 is a schematic configuration diagram showing a photometric unit used by the analyzer according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing a configuration of a container holding stage that holds the reaction container.
  • FIG. 15 shows signals with respect to elapsed time of surface-enhanced Raman scattered light generated when laser beams having different spot diameters were irradiated as Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-4. It is a figure which shows the time change of an intensity
  • FIG. 16 is a schematic configuration diagram showing a photometric unit used by the analyzer according to the third embodiment.
  • FIG. 17 is a diagram for explaining the configuration of the light branching element of the photometry unit and the principle of light branching.
  • FIG. 1 is a schematic diagram illustrating a configuration of an analyzer 1 according to the first embodiment.
  • the analyzer 1 irradiates a laser beam to an aggregate in which a complex of a specimen and a reagent including magnetic particles and labeled particles is aggregated, and the surface of the aggregate is enhanced.
  • a measurement mechanism 2 that measures Raman scattered light
  • a control mechanism 5 that controls the entire analyzer 1 including the measurement mechanism 2 and analyzes the measurement results in the measurement mechanism 2 are provided.
  • the analyzer 1 automatically performs Raman spectroscopic analysis on a plurality of specimens in cooperation with the measurement mechanism 2 and the control mechanism 5.
  • the measurement mechanism 2 includes a sample transport device 21, a sample dispensing device 22, a reaction container transfer device 23, a first reagent storage 24, a first reagent dispensing device 25, a second reagent storage 26, A two-agent dispensing device 27, a container first transfer device 28, a magnetic collection table 30, a container second transfer device 32, and a photometric unit 33 are provided.
  • the sample transport device 21 includes a plurality of sample racks 21b that hold a plurality of sample containers 21a containing samples and sequentially transfer them in the direction of the arrows in the figure.
  • the specimen stored in the specimen container 21a is a body fluid such as blood, urine, saliva collected from the specimen provider.
  • the sample dispensing device 22 has a sample nozzle for aspirating and discharging a sample attached to the distal end portion, and an arm that freely moves up and down in the vertical direction and rotates around a vertical line passing through the base end portion of the sample dispensing device 22 as a central axis. It has. As shown in FIG. 1, the sample dispensing device 22 sucks a sample from the sample container 21 a transferred to the sample suction position Psa on the sample transport device 21 by the sample nozzle, and the sample on the reaction container transfer device 23. The specimen is discharged into the reaction container 20 that has been transferred to the discharge position Psd.
  • the reaction container transfer device 23 holds a plurality of reaction containers 20, and, as shown in FIG. 1, each reaction container 20 is moved in the direction of the arrow along the specimen discharge position Psd, the first reagent discharge position Pr1d, and the second reagent discharge position. Sequentially transferred to Pr2d.
  • the reaction vessel 20 is a cylindrical body in which a plurality of ribs 20 a are formed in the vertical direction on the upper outer periphery, and the bottom wall 20 c is formed via a tapered portion 20 b that is reduced in taper. A small-diameter portion 20d having a flat surface is provided at the lower portion.
  • the first reagent storage 24 stores a plurality of first reagent containers 24 a that store the first reagent.
  • the first reagent storage 24 is rotated clockwise or counterclockwise by a drive mechanism (not shown), and transfers the first reagent container 24a to be dispensed to the first reagent suction position Pr1a by the first reagent dispensing device 25. .
  • the second reagent storage 26 stores a plurality of second reagent containers 26a storing the second reagent, and transfers the second reagent containers 26a to be dispensed to the second reagent suction position Pr2a. To do.
  • examples of the measurement target in the sample to be analyzed include, for example, antibodies, proteins, peptides, amino acids, carbohydrates, hormones, steroids, vitamins, bacteria, DNA, RNA, cells, viruses, and any antigen. Materials, haptens, antibodies and combinations thereof.
  • the first reagent is a reagent containing a magnetic substance having a solid phase of the reaction substance bound to the measurement object in the specimen or the measurement object or an analog thereof.
  • the second reagent is a reagent containing a labeling substance that binds to the measurement object or a labeling substance that binds the measurement object or an analog thereof.
  • the labeling substance is a nanoparticle containing gold or silver having an atomic level surface roughness, and on the surface of the nanoparticle containing gold or silver, the reactive substance that binds to the measurement object, or the above-mentioned
  • the object to be measured or its analog is coated.
  • the first reagent is a reagent containing a labeling substance that binds to the measurement object
  • the second reagent is a reagent containing magnetic particles solid-phased with a reaction substance that binds to the measurement object. The relationship between the reagent and the second reagent may be reversed.
  • the first reagent dispensing device 25 has a probe for aspirating and discharging the first reagent attached to the distal end portion, and can freely move up and down in the vertical direction and rotate around a vertical line passing through its base end portion as a central axis. It has an arm to perform. As shown in FIG. 1, the first reagent dispensing device 25 sucks the first reagent from the first reagent container 24a transferred to the first reagent suction position Pr1a of the first reagent storage 24 with the probe, and transfers the reaction container. The apparatus 23 discharges to the reaction container 20 transferred to the first reagent discharge position Pr1d.
  • the second reagent dispensing device 27 has the same configuration as that of the first reagent dispensing device 25, and as shown in FIG. 1, the second reagent transferred to the second reagent suction position Pr2a of the second reagent storage 26.
  • the second reagent is sucked from the container 26a by the probe and discharged to the reaction container 20 transferred to the second reagent discharge position Pr2d by the reaction container transfer device 23.
  • FIG. 3 is a perspective view showing a schematic configuration of the container first transfer device 28, the magnetic flux collecting table 30, and the container second transfer device 32.
  • FIG. 4 is a diagram showing the configuration of the container storage portion 30a of the magnetic flux collecting table 30 shown in FIG.
  • the container first transfer device 28 sets the reaction container 20 into which the sample, the first reagent, and the second reagent are dispensed from the reaction container transfer device 23 to the set position of the magnetic collection table 30 at a predetermined timing. Transfer to Pst.
  • the container first transfer device 28 includes an arm 28b having a gripping device 28a for gripping the reaction vessel 20 at the tip as shown by an arrow Y1, and the other end supported by a column 28c. ing.
  • the support column 28c is driven by a rotation mechanism and an elevating mechanism (not shown), and moves the support column 28c together with the arm 28b as indicated by an arrow Y2, and rotates the support column 28c together with the arm 28b as indicated by an arrow Y3.
  • the magnetic flux collecting table 30 is formed with a plurality of container storage portions 30a for storing the reaction containers 20 along the circumferential direction, and is rotated by driving means (not shown) and set at the set position Pst. The reaction container 20 is transferred along the circumferential direction.
  • the magnetic flux collecting table 30 is provided with a magnetic flux collecting member 31 made of, for example, a permanent magnet at the lower portion of each container storage portion 30 a.
  • the magnetism collecting member 31 is provided in each container storage unit 30a so as to be close to or in contact with the bottom wall 20c of each stored reaction container 20, and a complex obtained by reacting the specimen with the first reagent and the second reagent by a magnetic force. It settles as an aggregate on the inner surface of the bottom wall 20c.
  • FIG. 5 is a diagram for explaining the reaction between the measurement target in the specimen and the magnetic particles and label particles contained in the reagent.
  • the reaction in the reaction vessel 20 transferred to the magnetism collecting table 30 will be described.
  • the sample is dispensed in the reaction container transfer device 23, and as shown in FIG.
  • a second reagent containing the gold nanoparticle Gnp as a substance is dispensed.
  • These magnetic particles Mp and gold nanoparticles Gnp react with the measurement object Om in the specimen, and as shown in FIG. 5 (2), a complex in which the magnetic particles Mp, gold nanoparticles Gnp, and the measurement object Om are combined.
  • Cb is formed. With the composite Cb formed in the reaction vessel 20, the reaction vessel 20 is transferred to the magnetism collection table 30.
  • the complex Cb formed in the reaction vessel 20 contains magnetic particles Mp.
  • the reaction vessel 20 is transferred to the magnetic collection table 30, the composite Cb is attracted and aggregated by the magnetic force of the magnetic collection member 31 to the bottom wall 20c of the reaction vessel 20, and the reaction vessel 20 is aggregated. It sinks to the inner surface of the bottom wall 20c.
  • the container second transfer device 32 moves the reaction container 20 in which aggregates have settled in the magnetic collection table 30 from the extraction position Pto of the magnetic collection table 30 to the photometric unit 33 at a predetermined timing.
  • Transport The container second transfer device 32 has the same configuration as the container first transfer device 28, has a gripping device 32a for gripping the reaction vessel 20 as indicated by an arrow Y6, and the other end supported by a column 32c.
  • the support column 32c is driven by a rotation mechanism and an elevating mechanism (not shown) to move the support column 32c together with the arm 32b as indicated by an arrow Y7, and to rotate the support column 32c together with the arm 32b as indicated by an arrow Y8.
  • FIG. 6 is a schematic configuration diagram showing the photometry unit shown in FIG.
  • FIG. 7 is a schematic diagram showing a configuration of the light receiving device of the photometric unit shown in FIG.
  • the photometry unit 33 turns the reaction vessel 20 transferred by the vessel second transfer device 32 around the rotation center axis Arc of the reaction vessel 20 into an aggregate that has settled on the inner surface of the bottom wall 20c of the reaction vessel 20.
  • a photometric process is performed on the surface, and the surface-enhanced Raman scattered light emitted from the aggregate is spectrally measured.
  • the photometric unit 33 includes a laser light source 33a, a dichroic mirror 33c, a reflecting mirror 33e, and a light receiving device 33g.
  • the laser light source 33a is a light source that emits laser light that generates Raman-scattered light whose surface is enhanced on the aggregate of the reaction vessel 20, and emits laser light having a wavelength of 785 nm, for example. As shown in FIG. 6, the laser light is converged into parallel light by a collimator lens 33b disposed between the laser light source 33a and the dichroic mirror 33c, and then incident on the dichroic mirror 33c.
  • the dichroic mirror 33c is a mirror having a wavelength selectivity that reflects the laser light emitted from the laser light source 33a and transmits the surface-enhanced Raman scattered light generated by the aggregate of the reaction vessel 20. As shown in FIG. 6, the laser beam reflected by the dichroic mirror 33c is converged by an objective lens 33d arranged between the reflecting mirror 33e.
  • the reflecting mirror 33e reflects the laser beam converged by the objective lens 33d, and irradiates the aggregate that has settled on the inner surface of the bottom wall 20c of the reaction vessel 20 from below.
  • the reflecting mirror 33e irradiates the reflected laser light to a position off the center of the bottom wall 20c of the reaction vessel 20, that is, a position off the rotation center axis Arc of the reaction vessel 20 on the bottom wall 20c.
  • the aggregate generates Raman scattered light whose surface is enhanced by the laser light reflected by the reflecting mirror 33e.
  • the generated Raman scattered light is reflected by the reflecting mirror 33e, converged to parallel light by the objective lens 33d, and then transmitted through the dichroic mirror 33c.
  • transmitted the dichroic mirror 33c is condensed by the condensing lens 33f, and injects into the light-receiving device 33g.
  • the light receiving device 33g is provided with a slit 33h on the incident side of the Raman scattered light, and the grating 33i that splits the Raman scattered light that has passed through the slit 33h, and the Raman scattered light that has been split by the grating 33i. It has a line sensor 33j that receives and measures light for each wavelength. The light amount signal for each wavelength of the Raman scattered light measured by the light receiving device 33g is output to the control unit 51, and the analysis unit 53 analyzes the specific component of the sample and its content.
  • FIG. 8 is a cross-sectional view showing the configuration of the drive stage 40 that holds and rotates the reaction vessel 20.
  • the drive stage 40 rotates the reaction vessel 20 around the rotation center axis Arc (see FIG. 6), so that the unit time and unit of laser light applied to the aggregate Ag settled on the bottom wall 20c of the reaction vessel 20 It is a drive means which suppresses the energy amount per area.
  • a rotary holder 42 that holds the reaction vessel 20 is rotatably installed via a bearing 41 that is disposed in an opening 40c formed in the stage 40b above the support column 40a. .
  • the rotation holder 42 rotates together with the reaction vessel 20 about the vertical rotation center axis Arh by engaging the gear portion 42 a provided on the upper portion with the gear 44 attached to the rotation shaft 43 a of the drive motor 43. Therefore, the rotation holder 42 rotates with the rotation center axis Arc (see FIG. 6) of the reaction vessel 20 aligned with the rotation center axis Arh.
  • the rotation holder 42 is preferably rotated at 10 to 30 revolutions per minute (rpm), and most preferably at 20 revolutions per minute (rpm).
  • a mirror holder 45 for holding the reflecting mirror 33e is provided on the support column 40a.
  • the mirror holder 45 is inclined at 45 ° with respect to the horizontal plane so as to hold the reflecting mirror 33e so that the laser light always enters the bottom wall 20c of the reaction vessel 20 perpendicularly.
  • the mirror holder 45 is slightly displaced from the position where the optical axis AOL of the objective lens 33d and the rotation center axis Arh of the rotation holder 42 intersect the surface of the reflecting mirror 33e to the optical axis AOL direction or the rotation center axis Arh direction.
  • the reflecting mirror 33e is held.
  • the laser beam is perpendicularly incident on a position deviated from the center of the bottom wall 20c of the reaction vessel 20, that is, a position deviated from the rotation center axis Arc of the reaction vessel 20 on the bottom wall 20c, and the inner surface of the bottom wall 20c.
  • the aggregate Ag settled on the substrate is irradiated.
  • reaction vessel 20 that has been subjected to photometric processing in the photometric unit 33 is taken out of the photometric unit 33 by a transfer mechanism (not shown) and discarded.
  • the control mechanism 5 includes a control unit 51, an input unit 52, an analysis unit 53, a storage unit 54, and an output unit 55, as shown in FIG. These units included in the measurement mechanism 2 and the control mechanism 5 are electrically connected to the control unit 51.
  • the control unit 51 is configured using a CPU or the like, and controls the processing and operation of each of the above-described components of the analyzer 1.
  • the control unit 51 performs predetermined input / output control on information input / output to / from each of these components, and performs predetermined information processing on the information.
  • the control unit 51 controls the light receiving device 33g so as to measure Raman scattered light in a time division manner.
  • the input unit 52 is configured using a keyboard, a mouse, and the like, and acquires various information necessary for analyzing the specimen, instruction information for the analysis operation, and the like from the outside.
  • the analysis unit 53 analyzes the sample based on the light quantity signal of the Raman scattered light based on the Raman spectroscopic analysis result input from the photometry unit 33.
  • the storage unit 54 is configured using a hard disk that magnetically stores information and a memory that loads various programs related to the process from the hard disk and electrically stores them when the analyzer 1 executes the process. Various information including the analysis result of the sample is stored.
  • the storage unit 54 may include an auxiliary storage device that can read information from a storage medium such as a CD-ROM, a DVD-ROM, and a PC card.
  • the output unit 55 is configured using a printer, a speaker, or the like, and outputs various information including the analysis result of the sample.
  • the analyzer 1 configured as described above controls the sample distribution in each reaction vessel 20 while transferring the plurality of reaction vessels 20 by the reaction vessel transfer device 23 as shown in FIG. 1.
  • the sample is dispensed by the injection device 22, the first reagent is dispensed by the first reagent dispensing device 25, and the first reagent is dispensed by the second reagent dispensing device 27.
  • the sample, the first reagent, and the second reagent are dispensed, and the reaction container 20 transferred to the end of the reaction container transfer device 23 is transferred from the reaction container transfer device 23 to the magnetic collection table 30 by the container first transfer device 28. It is transferred to the set position Pst.
  • the reaction container 20 transferred to the set position Pst of the magnetic collection table 30 is transferred to the extraction position Pto by the rotation of the magnetic collection table 30, while the magnetic particles Mp contained in the first reagent are included.
  • the gold nanoparticle Gnp which is a labeling substance contained in the second reagent, reacts with the measurement object Om in the specimen to form a complex Cb (see FIG. 5).
  • the composite Cb in which the magnetic particles Mp, the gold nanoparticles Gnp, and the measurement object Om are combined is attracted to the bottom wall 20c by the magnetic force of the magnetic collecting member 31. Then, it aggregates and settles on the inner surface of the bottom wall 20c as aggregate Ag (see FIG. 8).
  • the reaction container 20 thus transferred to the take-out position Pto of the magnetic collecting table 30 is transferred to the photometric unit 33 by the container second transfer device 32 as shown in FIG.
  • the reaction vessel 20 transferred to the photometry unit 33 is rotated by the rotary holder 42 around the rotation center axis Arh, while the laser light emitted from the laser light source 33a is reflected on the bottom wall 20c.
  • the aggregate Ag settled on the inner surface from below is irradiated. Thereby, the aggregate Ag generates Raman scattered light whose surface is enhanced by the irradiated laser light.
  • the generated surface-enhanced Raman scattered light is reflected by the reflecting mirror 33e, and then enters the light receiving device 33g through the objective lens 33d, the dichroic mirror 33c, and the condenser lens 33f.
  • the light receiving device 33 g measures the Raman scattered light in a time-sharing manner under the control of the control unit 51 and outputs the light amount signal to the control unit 51.
  • the analysis unit 53 analyzes the specific component of the specimen and its content based on the light quantity signal.
  • the analyzer 1 rotates the reaction vessel 20 around the rotation center axis Arh by the rotation holder 42, while the laser light emitted from the laser light source 33 a is bottomed from the bottom of the reaction vessel 20.
  • the aggregate Ag settled on the inner surface of the wall 20c is irradiated.
  • the aggregate Ag on the inner surface of the bottom wall 20c changes the irradiation position of the laser beam in the circumferential direction under the analysis method according to the first embodiment of the present invention, and is irradiated per unit time and unit area.
  • the amount of energy is controlled to an appropriate value that does not cause fading or denaturation.
  • the amount of energy per unit time and unit area of the laser light irradiated to each irradiation spot Sp is calculated, it is 0.001 to 0.005 mW / ⁇ m 2 per unit time and unit area.
  • the light receiving device 33g measures the surface-enhanced Raman scattered light generated by the aggregate Ag by irradiation with the laser beam having the appropriate energy amount in a time-sharing manner.
  • the analyzer 1 of Embodiment 1 can acquire the data which are reproducible and reliable, suppressing the dispersion
  • the reaction vessel 20 is continuously irradiated with laser light from below the bottom wall 20c, but the light receiving device 33g measures the surface-enhanced Raman scattered light generated by the aggregate Ag in a time-sharing manner.
  • the aggregate of the reaction container 20 apparently has a plurality of laser beam irradiation spots Sp per unit time on the bottom wall 20c, as shown in FIG. 9A. Accordingly, when the number of rotations of the rotary holder 42 for rotating the reaction vessel 20 is increased and the measurement time by the light receiving device 33g is shortened, the aggregate of the reaction vessel 20 is apparently unit, as shown in FIG. 9B.
  • the number of laser beam irradiation spots Sp per time can be increased.
  • the driving stage 40 is replaced with two axes orthogonal to each other in the horizontal plane instead of rotating the reaction vessel 20 with the rotating holder 42.
  • the reaction vessel 20 may be configured to be movable in two directions. In this way, the aggregate of the reaction vessel 20 apparently has a plurality of laser beam irradiation spots Sp in two axial directions per unit time on the bottom wall 20c as shown in FIG. 10 (a). Become.
  • the aggregates in the reaction vessel 20 appear to be unit, as shown in FIG. 10 (b).
  • the number of laser light irradiation spots Sp per time can be increased.
  • the aggregate of the reaction vessel 20 can freely change the position and number of irradiation spots Sp as shown in FIG. 10 (c) and FIG. 10 (d). .
  • Example 1-1 Next, Example 1-1 of the analyzer according to the first embodiment will be described.
  • the laser light source 33a is placed on the bottom wall 20c of the reaction vessel 20 while the reaction vessel 20 is rotated at 12 revolutions per minute (rpm) by the rotating holder 42 using the analyzer 1 of the first embodiment.
  • the emitted laser beam was irradiated.
  • the surface-enhanced Raman scattering light generated by the aggregate Ag in the reaction vessel 20 is dispersed by the light receiving device 33g, and the wave number when measured 10 times in 0.04 seconds per time is 750 to 950 cm.
  • FIG. 11 shows the relationship with the signal intensity of the output signal of the light receiving device 33g in the range of ⁇ 1 . In FIG. 11, ten curves are displayed as output signals of the light receiving device 33g.
  • the output signal had a small difference in intensity between the signals in 10 measurements. Therefore, it can be seen that the analyzer 1 can suppress variations in measured values. For this reason, the analyzer 1 can acquire reproducible and reliable data.
  • Example 1-1 the Raman scattered light generated by the aggregate Ag in the reaction vessel 20 was used in Example 1-1, except that the rotation of the reaction vessel 20 by the rotary holder 42 was stopped using the analyzer 1 of the first embodiment. And measured under the same conditions. The results are shown in FIG. 12 as in Example 1-1. Also in FIG. 12, ten curves are displayed as output signals of the light receiving device 33g.
  • Example 1-1 As is clear from comparison with the measurement result of Example 1-1, the ten output signals of Comparative Example 1-1 have a large difference in intensity between the signals in 10 measurements, and the measured values vary. It was found that it was difficult to obtain reproducible data. Regarding the intensities of the ten output signals shown in Comparative Example 1-1, the dispersion coefficient was obtained in the same manner as in Example 1-1, and was 10.0 (%). The dispersion coefficient in Example 1-1 was The performance was larger than the dispersion coefficient of Comparative Example 1-1.
  • the photometric unit 33 intermittently oscillates the laser light source 33a to intermittently generate laser light to irradiate the aggregate of the reaction vessel 20, and the surface-enhanced Raman scattering generated by the intermittently oscillated laser light.
  • the light may be measured by the light receiving device 33g.
  • FIG. 13 is a schematic configuration diagram showing a photometric unit used by the analyzer according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing a configuration of a container holding stage that holds the reaction container.
  • the same reference numerals are used for the same components as those of the analyzer according to the first embodiment.
  • the photometric unit rotates the reaction vessel to change the irradiation position of the laser beam, thereby suppressing the amount of energy per unit time and unit area of the laser beam irradiated on the aggregate.
  • the analyzer of the second embodiment suppresses the amount of energy per unit time and unit area of the laser light irradiated to the aggregate by the spot diameter of the laser light irradiated to the reaction vessel by the photometric unit.
  • the photometric unit 33A includes a laser light source 33a, a collimator lens 33b, a dichroic mirror 33c, an objective lens 33d, a reflecting mirror 33e, a condensing lens 33f, and a light receiving device 33g.
  • a light receiving device 33g is installed on the light receiving stage 34, and a laser light source 33a, a collimator lens 33b, a dichroic mirror 33c, an objective lens 33d, a condensing lens 33f, and a light receiving stage 34 are installed on the drive stage 36. Yes.
  • a single axis stage such as a rectilinear stage capable of approaching or moving away from the condenser lens 33f is used as indicated by an arrow A in the figure, and the light receiving device 33g is operated by operating an adjusting screw 34a such as a micrometer. And the condenser lens 33f are adjusted.
  • the drive stage 36 is a uniaxial stage similar to the light receiving stage 34, and approaches or separates from the reflecting mirror 33e as indicated by an arrow B in the drawing by an adjusting screw 36a such as a micrometer, thereby reflecting the reflecting mirror of the objective lens 33d. Adjust the distance to 33e.
  • the drive stage 36 is a control unit that performs control to change the spot diameter of the laser light irradiated to the aggregate Ag that has moved closer to and away from the reaction vessel 20 and settled on the bottom wall 20c.
  • the spot diameter of the laser light applied to the aggregate Ag is preferably 100 to 200 ⁇ m.
  • the photometric unit 33 has a unit time of the laser beam irradiated to the aggregate Ag and an energy amount per unit area of 0.001 to It is suppressed to 0.005 mW / ⁇ m 2 and does not cause discoloration or modification to the aggregate Ag.
  • the photometric unit 33A operates the adjusting screw 34a so that the Raman scattered light incident on the light receiving device 33g can be properly received, thereby moving the light receiving stage 34 closer to or away from the condenser lens 33f.
  • the distance between the device 33g and the condenser lens 33f is adjusted.
  • the light receiving stage 34 and the driving stage 36 may be provided with actuators and automatically driven by the control unit 51.
  • FIG. 14 is a cross-sectional view showing a configuration of a container holding stage that holds the reaction container.
  • the container holding stage 40A is a drive stage in which a container holder 42A is installed in an opening 40c formed in the stage 40b above the support column 40a.
  • the container holding stage 40A holds the reaction container 20 in the container holder 42A.
  • the reflecting mirror 33e is supported by the container holding stage 40A via the mirror holder 45, but the horizontal plane so that the laser light is always incident on the bottom wall 20c of the reaction container 20 vertically. It is arranged at an angle of 45 ° to the angle.
  • the reflecting mirror 33e is arranged so that the optical axis AOL of the objective lens 33d and the axis Ac passing through the center of the reaction vessel 20 intersect at the surface of the reflecting mirror 33e.
  • the laser beam is incident on the aggregate Ag that is perpendicularly incident on the bottom wall 20 c on the axis Ac passing through the center of the reaction vessel 20 and settles on the inner surface of the bottom wall 20 c of the reaction vessel 20.
  • the photometric unit 33A and the container holding stage 40A are configured as described above. Therefore, in the analyzer of the second embodiment, the laser beam having a spot diameter of 100 to 200 ⁇ m emitted from the laser light source 33a is irradiated to the aggregate that has settled on the inner surface of the bottom wall 20c from below the reaction vessel 20.
  • the aggregate has a laser beam with an energy amount of 0.001 to 0.005 mW / ⁇ m 2 that does not cause discoloration or denaturation of the aggregate per unit time or unit area under the analysis method of the present invention. Is irradiated.
  • the analyzer according to the second embodiment can suppress the variation in the measured value in the analysis of the sample using the surface-enhanced Raman spectroscopy, and can acquire the reproducible and highly reliable data.
  • Examples 2-1 to 2-3 The analysis method of the present invention is applied to each of the aggregates of the plurality of reaction vessels 20 in which the same amount of the same specimen, the first reagent, and the second reagent are dispensed and reacted using the analyzer of the second embodiment.
  • the emission intensity is 28.5 mW
  • the spot diameter is 100 ⁇ m (Example 2-1), 150 ⁇ m (Example 2-2), and 200 ⁇ m (Example 2-3).
  • the surface-enhanced Raman scattered light was measured by the light receiving device 33g for 95 seconds. The result is shown in FIG. 15 as the time change of the signal intensity output from the light receiving device 33g.
  • the analyzer according to the second embodiment can suppress variations in measured values. For this reason, the analyzer according to the second embodiment can acquire reproducible and highly reliable data.
  • each of the aggregates in the plurality of reaction vessels 20 in which the same sample, the first reagent, and the second reagent are dispensed in the same amount and reacted using the analyzer of the second embodiment is used.
  • the surface is enhanced by irradiating laser beams with spot diameters of 250 ⁇ m (Comparative Example 2-1), 50 ⁇ m (Comparative Examples 2-2 and 2-3), and 7 ⁇ m (Comparative Example 2-4).
  • the Raman scattered light was measured in the same manner as in Examples 2-1 to 2-3. The results are also shown in FIG.
  • the spot diameter is 250 ⁇ m (Comparative Example 2-1)
  • the spot diameter is larger than that of Examples 2-1 to 2-3, and the unit of laser light irradiated to the aggregate in the reaction vessel 20 It is considered that the amount of energy per unit time and area is reduced, and the discoloration and denaturation of the aggregates are suppressed.
  • the spot diameter is 50 ⁇ m (Comparative Examples 2-2 and 2-3)
  • the measured values of Examples 2-1 to 2-3 are reduced to about 80 to 50%, and the spot diameter is 7 ⁇ m.
  • the measured values of Examples 1 to 3 were reduced to about 60 to 20%. This is because when the spot diameter is 7 ⁇ m (Comparative Example 2-4), the spot time is smaller than that of Examples 2-1 to 2-3, and the unit time of the laser light irradiated to the aggregate in the reaction vessel 20 It is considered that the energy amount per unit area is increased and the aggregate is discolored or denatured.
  • FIG. 16 is a schematic configuration diagram showing a photometric unit used by the analyzer according to the third embodiment.
  • FIG. 17 is a diagram for explaining the configuration of the light branching element of the photometry unit and the principle of light branching.
  • the amount of energy per unit time and unit area of the laser light irradiated on the aggregate is controlled by the spot diameter of the laser light irradiated on the reaction vessel by the photometric unit.
  • the analyzer of the third embodiment branches the laser light that the photometric unit irradiates the reaction vessel into a plurality of light beams, and irradiates the branched light beams to different positions on the aggregate. The amount of energy per unit time and unit area of the laser light irradiated to the aggregate is suppressed.
  • the photometry unit 33B includes a laser light source 33a, an optical branching element 33k, a dichroic mirror 33c, a collimator lens 33b, a condensing lens 33f, and a light receiving device 33g.
  • the light branching element 33k is an optical element that branches the laser light emitted from the laser light source 33a into four light beams. As shown in FIG. 17, the reflecting mirror M and the beam splitter Sb are parallel with a surface interval d. Is arranged.
  • the optical branching element 33k is disposed between the laser light source 33a and the dichroic mirror 33c on the optical path of the laser light L0 emitted from the laser light source 33a. At this time, the optical branching element 33k is inclined at an angle ⁇ with respect to a plane orthogonal to the transmission direction of the laser light transmitted through the beam splitter Sb, and the reflecting mirror M is positioned in the front stage in the irradiation direction of the laser light source 33a.
  • the beam splitter Sb is disposed at the position.
  • the optical branching element 33k transmits a part as the branched light beam L1 and reflects the remaining part at the reflection angle ⁇ .
  • the light beam reflected at the first incident point P1 is reflected by the reflecting mirror M and enters the second incident point P2 at an incident angle ⁇ , and a part of the light beam is branched as a branched light beam L2 as in the case of the first incident point P1.
  • the light beam L1 is transmitted parallel to the light beam L1, and the remainder is reflected at the reflection angle ⁇ .
  • the light branching element 33k transmits the branched light beams L3 and L4 in parallel with the branched light beam L1 at the third incident point P3 and the fourth incident point P4.
  • the laser light L0 has four light beams L1 to L4. It is branched into the luminous flux.
  • the reflectance R1 at the first incident point P1 is 3/4
  • the reflectance R2 at the second incident point P2 is 2/3
  • the reflectance R3 at the third incident point P3 is 1/2
  • the four incident points P4 are created so as to have a reflectance distribution in which the reflectance R4 is zero.
  • the transmitted branched light beams L1 to L4 have the light intensity I1 to I4 given by the following equation equal to I0 / 4, and the laser light L0 has the light intensity Are split into four light beams having the same value.
  • I3 I0.R1.R2.
  • (1-R3) I0 / 4
  • the laser light emitted from the laser light source 33a is 4 by the light branching element 33k as shown in FIG. It is branched into a luminous flux of books.
  • the four branched light beams L1 to L4 pass through the dichroic mirror 33c and are irradiated to different positions of the aggregate in the reaction vessel 20, and generate Raman scattered light whose surface is enhanced.
  • the Raman scattered light is reflected by the dichroic mirror 33c, converged to parallel light by the collimator lens 33b, condensed by the condenser lens 33f, and then incident on the light receiving device 33g.
  • the amount of energy per unit time and unit area of the laser light irradiated to the different positions of the aggregate by the branched light beams L1 to L4 is 0.001 to 0.005 mW / ⁇ m 2 .
  • the analyzer according to the third embodiment branches the laser beam irradiated to the reaction vessel by the optical branching element 33k into a plurality of light beams having the same light intensity, and irradiates the branched branch light beams to different positions of the aggregate.
  • the analyzer of Embodiment 3 suppresses the amount of energy per unit time and unit area of the laser light irradiated to the aggregate based on the analysis method of the present invention. For this reason, the aggregate is irradiated with laser light with appropriate values per unit time and unit area, which does not cause fading or denaturation.
  • the analysis apparatus can suppress the variation in the measured value in the analysis of the sample using the surface-enhanced Raman spectroscopy, and can acquire reproducible and highly reliable data.
  • the analysis apparatus and analysis method of the present invention are useful for suppressing variations in measured values in surface-enhanced Raman spectroscopy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】表面増強ラマン分光法における測定値のばらつきを抑えることが可能な分析装置及び分析方法を提供すること。検体と、磁性粒子及び金属ナノ粒子からなる標識粒子を含む試薬とを分注した反応容器に集磁処理を行なって、検体内の測定対象物と試薬との複合体が凝集した凝集体を生成する集磁部材31と、レーザ光源が出射したレーザ光を凝集体に照射することによって発生するラマン散乱光を分光して測光する測光ユニット33とを備え、測光ユニットが測光した表面増強されたラマン散乱光をもとに検体を分析する分析装置1及び分析方法。分析装置1は、凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を0.001~0.005mW/μmに抑制する。

Description

分析装置及び分析方法
 本発明は、表面増強ラマン散乱(SERS: Surface-enhanced Raman Scattering)と呼ばれるラマン分光法を利用して検体を分析する分析装置及び分析方法に関する。
 ラマン分光分析は、検体にレーザ光を照射することにより発生するラマン散乱光を検出する分析法であり、検出対象物の分子構造に依存した特有な情報を得ることができる。このため、ラマン分光分析は、ウィルス、蛋白質等の生化学物質や環境化学物質の検出、バイオセンサ等に有効な分析方法として知られている。しかしながら、ラマン分光分析は、ラマン散乱光が極めて微弱であることから、微量分析には適さないという問題があった。
 ところで、原子レベルの粗さを持つ金、銀などの金属表面における吸着種のラマン散乱強度は、非吸着種に比較して10~10倍増強される場合があることが知られており、この現象は表面増強ラマン散乱と呼ばれている。更に、金属ナノ粒子を凝集させることによって、非吸着種と比較してラマン散乱強度を1014倍程度まで増強させることができることが発見された。そこで、近年、原子レベルの粗さを持つ金・銀などの金属ナノ粒子を標識物質として用い、更に、この標識物質と検出対象物との複合体を凝集させてラマン散乱強度を増強させることによって、検出対象物を分析する分析方法が注目されている。
 具体的には、標識物質である金属ナノ粒子を含む試薬に検体内の検出対象物と反応する磁性粒子を含んだ試薬を検体に加える分析装置が提案されている(特許文献1参照)。このような分析装置では、磁性粒子と、検出対象物と、標識物質との複合体を、磁力を与えることによって凝集させ、生成した凝集体にレーザ光を照射し、表面増強されたラマン散乱光を測定することによって検体内の検出対象物を検出している。
国際公開第2008/116093号
 ところで、表面増強ラマン分光法は、従来、測定されるラマンシグナルの強度が変動し、測定値がばらついて再現性が低いことが知られている。このため、表面増強ラマン分光法は、生体物質の測定を含む臨床検査に応用する場合、測定値のばらつきを抑えることが望まれていた。
 本発明は、上記に鑑みてなされたものであって、表面増強ラマン分光法における測定値のばらつきを抑えることが可能な分析装置及び分析方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の分析装置は、検体と、磁性粒子及び金属ナノ粒子からなる標識粒子を含む試薬とを分注した反応容器に集磁処理を行なって、前記検体内の測定対象物と前記試薬との複合体が凝集した凝集体を生成する集磁手段と、レーザ光源が出射したレーザ光を前記凝集体に照射することによって発生するラマン散乱光を分光して測光する測光手段と、を備え、前記測光手段が測光した表面増強されたラマン散乱光をもとに前記検体を分析する分析装置において、前記凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を0.001~0.005mW/μmに抑制することを特徴とする。
 また、本発明の分析装置は、上記の発明において、前記反応容器を保持して前記レーザ光に対して回転又は移動させて前記レーザ光の照射位置を変化させることによって前記凝集体に照射される前記レーザ光の単位時間、単位面積当たりのエネルギー量を抑制する駆動手段と、前記ラマン散乱光を前記受光手段によって時分割で測光するように制御する制御手段とを備えることを特徴とする。
 また、本発明の分析装置は、上記の発明において、前記レーザ光を収束させて前記凝集体に照射する対物レンズと、前記レーザ光源,前記対物レンズ及び前記測光手段を搭載して前記反応容器に対して接近又は離反する駆動ステージと、前記駆動ステージを前記反応容器に対して接近又は離反させて前記凝集体に照射される前記レーザ光のスポット径を変化させる制御を行う制御手段と、を有することを特徴とする。
 また、本発明の分析装置は、上記の発明において、前記ラマン散乱光を集光する集光レンズと、前記測光手段を搭載して前記集光レンズに対して接近又は離反する受光ステージと、を有することを特徴とする。
 また、本発明の分析装置は、上記の発明において、反射鏡とビームスプリッタとが所定間隔で平行に配置されると共に、前記レーザ光源が出射したレーザ光の光路に対して傾斜させて設置され、前記レーザ光を複数の光束に分岐し、分岐した複数の分岐光束を前記凝集体のそれぞれ異なる位置に照射させる光分岐手段を有することを特徴とする。
 また、本発明の分析装置は、上記の発明において、前記凝集体に照射されるレーザ光は、スポット径が直径100~200μmであることを特徴とする。
 また、上述した課題を解決し、目的を達成するために、本発明の分析方法は、検体と、磁性粒子及び金属ナノ粒子からなる標識粒子を含む試薬とを分注した反応容器に集磁処理を行なって、前記検体内の測定対象物と前記試薬との複合体が凝集した凝集体を生成する集磁工程と、レーザ光を前記凝集体に照射することによって発生するラマン散乱光を分光して測光する測光工程と、を含み、前記測光工程で測光した表面増強されたラマン散乱光をもとに前記検体を分析する分析方法において、前記測光工程は、前記凝集体に照射するレーザ光の単位時間、単位面積当たりのエネルギー量が0.001~0.005mW/μmであることを特徴とする。
 また、本発明の分析方法は、上記の発明において、前記凝集体に照射するレーザ光は、スポット径が直径100~200μmであることを特徴とする。
 本発明によれば、凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を0.001~0.005mW/μmに抑制するので、凝集体の退色や変性を回避することができ、これにより表面増強ラマン分光法における測定値のばらつきを抑えることが可能な分析装置及び分析方法を提供することができるという効果を奏する。
図1は、実施の形態1に係る分析装置1の構成を示す模式図である。 図2は、検体が第1試薬及び第2試薬と反応した複合体を磁力によって底壁の内面に凝集体として沈降させた反応容器を示す断面図である。 図3は、容器第1移送装置、集磁テーブル及び容器第2移送装置の概略構成を示す斜視図である。 図4は、図1に示す集磁テーブルの容器収納部の構成を示す図である。 図5は、検体内の測定対象物と、試薬中に含まれる磁性粒子及び標識粒子との反応を説明する図である。 図6は、図1に示す測光ユニットを示す概略構成図である。 図7は、図6に示す測光ユニットの受光装置を平面から見た構成を示す模式図である。 図8は、反応容器を保持して回転させる駆動ステージの構成を示す断面図である。 図9は、凝集体が反応容器の底壁に有するレーザ光の見掛け上の照射スポットを示す図である。 図10は、反応容器を2次元方向へ移動可能とした場合における、凝集体が反応容器の底壁に有するレーザ光の見掛け上の照射スポットを示す図である。 図11は、実施例1-1として、回転させた反応容器の凝集体が発生した表面増強されたラマン散乱光を10回測定した際の、波数が750~950cm-1の範囲における信号強度との関係を示す図である。 図12は、比較例1-1として、回転させない反応容器の凝集体が発生した表面増強されたラマン散乱光を10回測定した際の、波数が750~950cm-1の範囲におけるラマン散乱光の信号強度との関係を示す図である。 図13は、実施の形態2に係る分析装置が使用する測光ユニットを示す概略構成図である。 図14は、反応容器を保持する容器保持ステージの構成を示す断面図である。 図15は、実施例2-1~2-3及び比較例2-1~2-4として、スポット径の異なるレーザ光を照射した際に発生した表面増強されたラマン散乱光の経過時間に対する信号強度の時間変化を示す図である。 図16は、実施の形態3に係る分析装置が使用する測光ユニットを示す概略構成図である。 図17は、測光ユニットの光分岐素子の構成と光分岐の原理を説明する図である。
 以下に、本発明の分析装置に係る実施の形態を図面を参照して詳細に説明する。なお、本発明の分析装置は、以下に説明する実施の形態によって限定されるものではない。
(実施の形態1)
 先ず、本発明の分析装置及び分析方法に係る実施の形態1を図面を参照して以下に説明する。図1は、実施の形態1に係る分析装置1の構成を示す模式図である。分析装置1は、図1に示すように、検体と、磁性粒子や標識粒子を含む試薬との複合体が凝集した凝集体に対してレーザ光を照射し、凝集体が発生する表面増強されたラマン散乱光を測定する測定機構2と、測定機構2を含む分析装置1全体の制御を行なうと共に、測定機構2における測定結果の分析を行なう制御機構5とを備えている。分析装置1は、測定機構2と制御機構5とが連携することによって複数の検体に関するラマン分光分析を自動的に行なう。
 測定機構2は、図1に示すように、検体搬送装置21、検体分注装置22、反応容器移送装置23、第1試薬庫24、第1試薬分注装置25、第2試薬庫26、第2試薬分注装置27、容器第1移送装置28、集磁テーブル30、容器第2移送装置32及び測光ユニット33を備えている。
 検体搬送装置21は、図1に示すように、検体を収容した複数の検体容器21aを保持し、図中の矢印方向に順次移送する複数の検体ラック21bを備えている。検体容器21aに収容された検体は、検体の提供者から採取した血液、尿及び唾液などの体液である。
 検体分注装置22は、検体の吸引及び吐出を行なう検体ノズルが先端部に取り付けられ、鉛直方向への昇降及び自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備えている。検体分注装置22は、図1に示すように、検体搬送装置21上の検体吸引位置Psaに移送された検体容器21aの中から検体ノズルによって検体を吸引し、反応容器移送装置23上の検体吐出位置Psdに移送された反応容器20へ検体を吐出する。
 反応容器移送装置23は、複数の反応容器20を保持し、図1に示すように、各反応容器20を矢印方向に沿って検体吐出位置Psd、第1試薬吐出位置Pr1d、第2試薬吐出位置Pr2dに順次移送する。ここで、反応容器20は、図2に示すように、上部外周に複数のリブ20aが上下方向に形成された筒体であり、テーパ状に縮径するテーパ部20bを介して底壁20cが平面からなる細径部20dが下部に設けられている。
 第1試薬庫24は、図1に示すように、第1試薬を収容した第1試薬容器24aを複数収納する。第1試薬庫24は、図示しない駆動機構によって時計回り又は反時計回りに回動され、分注対象の第1試薬容器24aを第1試薬分注装置25による第1試薬吸引位置Pr1aまで移送する。
 第2試薬庫26は、第1試薬庫24と同様に、第2試薬を収容した第2試薬容器26aを複数収納し、分注対象の第2試薬容器26aを第2試薬吸引位置Pr2aまで移送する。
 ここで、分析対象である検体内の測定対象物としては、例えば、抗体、タンパク質、ペプチド、アミノ酸、炭水化物、ホルモン、ステロイド、ビタミン、細菌、DNA、RNA、細胞、ウィルス等に加え、任意の抗原物質、ハプテン、抗体及びこれらの組み合わせ等がある。
 第1試薬は、検体内の上記測定対象物と結合する反応物質、若しくは、上記測定対象物又はそのアナログを固相した磁性粒子を含む試薬である。第2試薬は、上記測定対象物と結合する標識物質、若しくは、上記測定対象物又はそのアナログを結合させた標識物質を含む試薬である。
 ここで、標識物質は、原子レベルの表面粗さを持つ金又は銀を含むナノ粒子であり、この金又は銀を含むナノ粒子の表面には、測定対象物と結合する反応物質、若しくは、上記測定対象物又はそのアナログがコーティングされている。なお、第1試薬が上記測定対象物と結合する標識物質を含む試薬であり、第2試薬が上記測定対象物と結合する反応物質を固相した磁性粒子を含む試薬であるように、第1試薬と第2試薬とは逆の関係であってもよい。
 第1試薬分注装置25は、第1試薬の吸引及び吐出を行なうプローブが先端部に取り付けられ、鉛直方向への昇降及び自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備えている。第1試薬分注装置25は、図1に示すように、第1試薬庫24の第1試薬吸引位置Pr1aに移送された第1試薬容器24aからプローブによって第1試薬を吸引し、反応容器移送装置23によって第1試薬吐出位置Pr1dへ移送された反応容器20に吐出する。
 第2試薬分注装置27は、第1試薬分注装置25と同様の構成を有し、図1に示すように、第2試薬庫26の第2試薬吸引位置Pr2aに移送された第2試薬容器26aからプローブによって第2試薬を吸引し、反応容器移送装置23によって第2試薬吐出位置Pr2dへ移送された反応容器20に吐出する。
 次に、図1,図3及び図4を参照して容器第1移送装置28、集磁テーブル30及び容器第2移送装置32について説明する。図3は、容器第1移送装置28、集磁テーブル30及び容器第2移送装置32の概略構成を示す斜視図である。図4は、図1に示す集磁テーブル30の容器収納部30aの構成を示す図である。
 容器第1移送装置28は、検体、第1試薬及び第2試薬が分注された反応容器20を、図1に示すように、所定タイミングで反応容器移送装置23から集磁テーブル30のセット位置Pstに移送する。容器第1移送装置28は、例えば、図3に示すように、矢印Y1のように反応容器20を把持する把持装置28aを先端に有し、他端が支柱28cによって支持されるアーム28bを備えている。支柱28cは、図示しない回転機構及び昇降機構によって駆動され、支柱28cをアーム28bと共に矢印Y2のように昇降させると共に、支柱28cをアーム28bと共に矢印Y3のように回転させる。
 集磁テーブル30は、図3に示すように、反応容器20を収納する容器収納部30aが周方向に沿って複数形成されると共に、図示しない駆動手段によって回転され、セット位置Pstにセットされた反応容器20を周方向に沿って移送する。集磁テーブル30は、図4に示すように、各容器収納部30aの下部に、例えば、永久磁石からなる集磁部材31が設けられている。集磁部材31は、収納された各反応容器20の底壁20cに近接又は接触するように各容器収納部30aに設けられ、検体が第1試薬及び第2試薬と反応した複合体を磁力によって底壁20cの内面に凝集体として沈降させる。
 ここで、図5を参照して、集磁テーブル30による集磁処理について説明する。図5は、検体内の測定対象物と、試薬中に含まれる磁性粒子及び標識粒子との反応を説明する図である。
 まず、集磁テーブル30に移送された反応容器20内における反応について説明する。反応容器20は、集磁テーブル30に移送される前に、反応容器移送装置23において検体が分注されると共に、図5(1)に示すように、磁性粒子Mpを含む第1試薬と標識物質である金ナノ粒子Gnpを含む第2試薬が分注される。これら磁性粒子Mp及び金ナノ粒子Gnpは、検体中の測定対象物Omと反応し、図5(2)に示すように、磁性粒子Mp、金ナノ粒子Gnp及び測定対象物Omが結合した複合体Cbが形成される。この複合体Cbが反応容器20内で形成された状態で、反応容器20は、集磁テーブル30に移送される。
 このとき、反応容器20内で形成された複合体Cbは、磁性粒子Mpを含んでいる。このため、反応容器20が集磁テーブル30に移送されると、複合体Cbは、集磁部材31の磁力によって反応容器20の底壁20cに引き寄せられて凝集し、凝集体として反応容器20の底壁20cの内面に沈降する。
 容器第2移送装置32は、集磁テーブル30において凝集体を沈降させた反応容器20を、図1及び図3に示すように、所定タイミングで集磁テーブル30の取出位置Ptoから測光ユニット33に移送する。容器第2移送装置32は、容器第1移送装置28と同様の構成を有し、矢印Y6のように反応容器20を把持する把持装置32aを先端に有し、他端が支柱32cによって支持されるアーム32bを備えている。支柱32cは、図示しない回転機構及び昇降機構によって駆動され、支柱32cをアーム32bと共に矢印Y7のように昇降させると共に、支柱32cをアーム32bと共に矢印Y8のように回転させる。
 次に、図6及び図7を参照して測光ユニット33について説明する。図6は、図1に示す測光ユニットを示す概略構成図である。図7は、図6に示す測光ユニットの受光装置を平面から見た構成を示す模式図である。測光ユニット33は、容器第2移送装置32によって移送されてきた反応容器20を反応容器20の回転中心軸Arcの周りに回転させながら、反応容器20の底壁20cの内面に沈降した凝集体に対し測光処理を行ない、凝集体から出射される表面増強されたラマン散乱光を分光して測光する。測光ユニット33は、図6に示すように、レーザ光源33a、ダイクロイックミラー33c、反射鏡33e及び受光装置33gを有している。
 レーザ光源33aは、反応容器20の凝集体に表面増強されたラマン散乱光を発生させるレーザ光を出射する光源であり、例えば、波長785nmのレーザ光を出射する。レーザ光は、図6に示すように、レーザ光源33aとダイクロイックミラー33cとの間に配置されたコリメータレンズ33bによって平行光に収束させられた後、ダイクロイックミラー33cに入射される。
 ダイクロイックミラー33cは、レーザ光源33aが出射したレーザ光を反射すると共に、反応容器20の凝集体が発生した表面増強されたラマン散乱光を透過させる波長選択性を有する鏡である。ダイクロイックミラー33cで反射したレーザ光は、図6に示すように、反射鏡33eとの間に配置された対物レンズ33dによって収束される。
 反射鏡33eは、図6に示すように、対物レンズ33dによって収束されたレーザ光を反射し、下方から反応容器20の底壁20cの内面に沈降した凝集体に照射する。このとき、反射鏡33eは、反射するレーザ光を反応容器20の底壁20cの中心から外れた位置、即ち、底壁20cの反応容器20の回転中心軸Arcから外れた位置に照射させる。これにより、凝集体は、反射鏡33eによって反射されたレーザ光によって表面増強されたラマン散乱光を発生させる。発生したラマン散乱光は、反射鏡33eで反射された後、対物レンズ33dによって平行光に収束させられた後、ダイクロイックミラー33cを透過する。そして、ダイクロイックミラー33cを透過したラマン散乱光は、集光レンズ33fによって集光されて受光装置33gへ入射する。
 受光装置33gは、図7に示すように、ラマン散乱光の入射側にスリット33hが設けられ、スリット33hを通過したラマン散乱光を分光するグレーティング33iと、グレーティング33iによって分光されたラマン散乱光を波長毎に受光して測光するラインセンサ33jを有している。受光装置33gが測光したラマン散乱光の波長毎の光量信号は、制御部51に出力され、分析部53において検体の特定成分やその含有量が分析される。
 図8は、反応容器20を保持して回転させる駆動ステージ40の構成を示す断面図である。駆動ステージ40は、反応容器20を回転中心軸Arc(図6参照)を中心として回転させることにより、反応容器20の底壁20cに沈降した凝集体Agに照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を抑制する駆動手段である。駆動ステージ40は、図8に示すように、支柱40aの上部のステージ40bに形成した開口40cに配置されるベアリング41を介して反応容器20を保持する回転ホルダ42が回転自在に設置されている。
 回転ホルダ42は、上部に設けたギア部42aを駆動モータ43の回転軸43aに取り付けたギア44と噛合させることによって鉛直方向の回転中心軸Arhの回りに反応容器20と共に回転する。従って、回転ホルダ42は、反応容器20の回転中心軸Arc(図6参照)を回転中心軸Arhと一致させて回転する。回転ホルダ42は、例えば、毎分10~30回転(rpm)で回転させることが好ましく、最も好ましくは、毎分20回転(rpm)である。
 ここで、駆動ステージ40は、図8に示すように、反射鏡33eを保持するミラーホルダ45が支柱40aに設けられている。ミラーホルダ45は、レーザ光が反応容器20の底壁20cへ常に垂直に入射するように水平面に対して45°に傾けて反射鏡33eを保持する。但し、ミラーホルダ45は、対物レンズ33dの光軸AOLと回転ホルダ42の回転中心軸Arhとが反射鏡33eの表面と交わる位置から光軸AOL方向又は回転中心軸Arh方向へ僅かに変異した位置に反射鏡33eを保持する。これにより、レーザ光は、反応容器20の底壁20cの中心から外れた位置、即ち、底壁20cの反応容器20の回転中心軸Arcから外れた位置に垂直に入射し、底壁20cの内面に沈降した凝集体Agに照射される。
 なお、測光ユニット33において測光処理が終了した反応容器20は、図示しない移送機構によって測光ユニット33から取り出され、廃棄される。
 制御機構5は、図1に示すように、制御部51、入力部52、分析部53、記憶部54及び出力部55を備えている。測定機構2及び制御機構5が備えているこれらの各部は、制御部51に電気的に接続されている。
 制御部51は、CPU等を用いて構成され、分析装置1の上述した各構成部の処理及び動作を制御する。制御部51は、これらの各構成部に入出力される情報について所定の入出力制御を行い、かつ、この情報に対して所定の情報処理を行う。実施の形態1においては、制御部51は、ラマン散乱光を時分割で測光するように受光装置33gを制御する。
 入力部52は、キーボードやマウス等を用いて構成され、検体の分析に必要な諸情報や分析動作の指示情報等を外部から取得する。
 分析部53は、測光ユニット33から入力されたラマン分光分析結果に基づくラマン散乱光の光量信号をもとに検体の分析を行う。
 記憶部54は、情報を磁気的に記憶するハードディスクと、分析装置1が処理を実行する際にその処理にかかわる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを用いて構成され、検体の分析結果等を含む諸情報を記憶する。記憶部54は、CD-ROM、DVD-ROM及びPCカード等の記憶媒体から情報を読み取ることができる補助記憶装置を備えていてもよい。
 出力部55は、プリンタやスピーカー等を用いて構成され、検体の分析結果を含む諸情報を出力する。
 以上のように構成される分析装置1は、制御部51の制御のもと、図1に示すように、反応容器移送装置23によって複数の反応容器20を移送しながら各反応容器20に検体分注装置22によって検体を、第1試薬分注装置25によって第1試薬を、第2試薬分注装置27によって第1試薬を、それぞれ分注してゆく。そして、検体、第1試薬及び第2試薬が分注され、反応容器移送装置23の終端へ移送された反応容器20は、容器第1移送装置28によって反応容器移送装置23から集磁テーブル30のセット位置Pstに移送される。
 集磁テーブル30のセット位置Pstに移送された反応容器20は、図1に示すように、集磁テーブル30の回転によって取出位置Ptoへ移送される間に、第1試薬に含まれる磁性粒子Mpと第2試薬に含まれる標識物質である金ナノ粒子Gnpが検体中の測定対象物Omと反応して結合した複合体Cbが形成される(図5参照)。この結果、反応容器20は、取出位置Ptoへ移送される間に、磁性粒子Mp、金ナノ粒子Gnp及び測定対象物Omが結合した複合体Cbが集磁部材31の磁力によって底壁20cに引き寄せられて凝集し、凝集体Agとして底壁20cの内面に沈降する(図8参照)。
 このようにして集磁テーブル30の取出位置Ptoへ移送された反応容器20は、図1に示すように、容器第2移送装置32によって測光ユニット33へ移送される。測光ユニット33に移送された反応容器20は、図8に示すように、回転ホルダ42によって反応容器20を回転中心軸Arhの周りに回転されながら、レーザ光源33aが出射したレーザ光が底壁20cの下方から内面に沈降した凝集体Agに照射される。これにより、凝集体Agが、照射されるレーザ光によって表面増強されたラマン散乱光を発生させる。
 発生した表面増強されたラマン散乱光は、反射鏡33eで反射された後、対物レンズ33d、ダイクロイックミラー33c及び集光レンズ33fを経て受光装置33gへ入射する。そして、受光装置33gは、制御部51の制御のもとに前記ラマン散乱光を時分割で測光し、その光量信号を制御部51に出力する。これにより、分析部53において光量信号をもとに検体の特定成分やその含有量が分析される。
 このとき、分析装置1は、図8に示すように、反応容器20を回転ホルダ42によって回転中心軸Arhの周りに回転させながら、レーザ光源33aが出射したレーザ光を反応容器20の下方から底壁20cの内面に沈降した凝集体Agに照射する。このため、底壁20c内面の凝集体Agは、本発明の実施の形態1に係る分析方法のもとに、レーザ光の照射位置が周方向に変化し、照射される単位時間、単位面積当たりのエネルギー量が退色や変性を起こすことのない適切な値に抑制される。
 ここで、レーザ光源33aが出射するレーザ光のエネルギー量、照射スポットSpの直径、照射スポットSpの反応容器20の回転中心軸Arcからの距離、回転ホルダ42の回転数(rpm)をもとに、各照射スポットSpに照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を算出すると、単位時間、単位面積当たり0.001~0.005mW/μmとなる。
 そして、受光装置33gは、上記適宜のエネルギー量のレーザ光の照射によって凝集体Agが発生した表面増強されたラマン散乱光を時分割で測光する。
 このため、実施の形態1の分析装置1は、表面増強ラマン分光法を用いた検体の分析において測定値のばらつきを抑え、再現性のある信頼性に優れたデータを取得することがで
きる。
 ここで、反応容器20は、底壁20cの下方からレーザ光が連続的に照射されるが、受光装置33gは、凝集体Agが発生した表面増強されたラマン散乱光を時分割で測光する。このため、反応容器20の凝集体は、見掛け上、図9(a)に示すように、底壁20cに単位時間当たり複数個所のレーザ光の照射スポットSpを有することになる。従って、反応容器20を回転させる回転ホルダ42の回転数を増すと共に、受光装置33gによる測定時間を短くすると、反応容器20の凝集体は、図9(b)に示すように、見掛け上、単位時間当たりのレーザ光の照射スポットSpの数を増加させることができる。
 また、底壁20c内面の凝集体Agに照射するレーザ光の照射位置を変化させる際、反応容器20を回転ホルダ42によって回転させるのに代えて、駆動ステージ40を水平面内で互いに直交する2軸方向へ移動可能に構成し、反応容器20を2軸方向へ移動させてもよい。このようにすると、反応容器20の凝集体は、見掛け上、図10(a)に示すように、底壁20cに単位時間当たり2軸方向に複数個所のレーザ光の照射スポットSpを有することになる。このとき、駆動ステージ40の2軸方向の移動速度を速くすると共に、受光装置33gによる測定時間を短くすると、反応容器20の凝集体は、図10(b)に示すように、見掛け上、単位時間当たりのレーザ光の照射スポットSp箇所を増加させることができる。更に、2軸方向の移動を組み合わせると、反応容器20の凝集体は、図10(c)や図10(d)に示すように、照射スポットSpの位置と数を自由に変化させることができる。
(実施例1-1)
 次に、実施の形態1に係る分析装置の実施例1-1を説明する。実施例1-1は、実施の形態1の分析装置1を用い、回転ホルダ42によって反応容器20を毎分12回転(rpm)で回転させながら、反応容器20の底壁20cにレーザ光源33aが出射したレーザ光を照射した。このとき、反応容器20の凝集体Agが発生した表面増強されたラマン散乱光を、受光装置33gによって分光しつつ、1回当たり0.04秒間で10回測定した際の、波数が750~950cm-1の範囲における受光装置33gの出力信号の信号強度との関係を図11に示す。図11は、受光装置33gの出力信号として10個の曲線が表示されている。
 図11から明らかなように、出力信号は、10回の測定において信号相互間での強度の差が小さかった。従って、分析装置1は、測定値のばらつきを抑えられることが分かる。このため、分析装置1は、再現性のある信頼性に優れたデータを取得することができる。
 このとき、10個の出力信号の強度に関する標準偏差σと算術平均Xとの比である分散係数CV(=σ/X)を求めたところ1.5(%)であった。
(比較例1-1)
 比較のため、実施の形態1の分析装置1を用い、回転ホルダ42による反応容器20の回転を停止したことを除き、反応容器20の凝集体Agが発生したラマン散乱光を実施例1-1と同一条件で測定した。この結果を、実施例1-1と同様にして図12に示す。図12も、受光装置33gの出力信号として10個の曲線が表示されている。
 実施例1-1の測定結果と比較すると明らかなように、比較例1-1の10個の出力信号は、10回の測定において信号相互間での強度の差が大きく、測定値がばらついており、再現性のあるデータの取得が難しいことが分かった。比較例1-1に示す10個の出力信号の強度に関し、実施例1-1と同様にして分散係数を求めたところ10.0(%)であり、実施例1-1の分散係数は、比較例1-1の分散係数よりも大きく性能が向上して
いた。
 なお、測光ユニット33は、レーザ光源33aを間欠発振させることによりレーザ光を間欠的に発生させて反応容器20の凝集体に照射し、間欠発振させたレーザ光によって生じた表面増強されたラマン散乱光を受光装置33gによって測定するようにしてもよい。
(実施の形態2)
 次に、本発明の分析装置及び分析方法に係る実施の形態2を図面を参照して以下に説明する。図13は、実施の形態2に係る分析装置が使用する測光ユニットを示す概略構成図である。図14は、反応容器を保持する容器保持ステージの構成を示す断面図である。以下の説明においては、実施の形態1の分析装置と同一の構成要素には同一の符号を使用している。
 実施の形態1の分析装置は、測光ユニットが反応容器を回転させてレーザ光の照射位置を変更することによって凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を抑制した。これに対して、実施の形態2の分析装置は、測光ユニットが反応容器に照射するレーザ光のスポット径によって凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を抑制する。
 測光ユニット33Aは、図13に示すように、レーザ光源33a、コリメータレンズ33b、ダイクロイックミラー33c、対物レンズ33d、反射鏡33e、集光レンズ33f及び受光装置33gを有している。測光ユニット33Aは、受光装置33gが受光ステージ34に設置されると共に、レーザ光源33a、コリメータレンズ33b、ダイクロイックミラー33c、対物レンズ33d、集光レンズ33f及び受光ステージ34が駆動ステージ36に設置されている。
 受光ステージ34は、図中矢印Aで示すように集光レンズ33fへ接近又は離反が可能な直進ステージ等の1軸ステージが使用され、マイクロメータ等の調節ねじ34aを操作することによって受光装置33gと集光レンズ33fとの距離が調整される。
 駆動ステージ36は、受光ステージ34と同様な1軸ステージが使用され、マイクロメータ等の調節ねじ36aによって図中矢印Bで示すように反射鏡33eへ接近又は離反することによって対物レンズ33dの反射鏡33eに対する距離を調整する。これにより、駆動ステージ36は、反応容器20に対して接近、離反し、底壁20cに沈降した凝集体Agに照射されるレーザ光のスポット径を変化させる制御を行う制御手段である。
 このとき、凝集体Agに照射されるレーザ光のスポット径としては、直径100~200μmが好ましい。レーザ光のスポット径をこの範囲の直径に設定すると、測光ユニット33は、凝集体Agに照射されるレーザ光の単位時間、単位面積あたりのエネルギー量が本発明の分析方法である0.001~0.005mW/μmに抑制され、凝集体Agに対して退色や変性を起こすことがない。
 ここで、駆動ステージ36は、反射鏡33eとの距離を調整すると、反応容器20の凝集体が発生し、反射鏡33eで反射して対物レンズ33dに入射する表面増強されたラマン散乱光の入射角度が変化する。このため、集光レンズ33fに入射するラマン散乱光の入射角度が変化する結果、集光レンズ33fから受光装置33gへ入射するラマン散乱光の入射角度が変化する。そこで、測光ユニット33Aは、受光装置33gへ入射するラマン散乱光を適正に受光することができるように、調節ねじ34aを操作することによって受光ステージ34を集光レンズ33fへ接近又は離反させ、受光装置33gと集光レンズ33fとの距離を調整する。なお、受光ステージ34や駆動ステージ36は、アクチュエータを設け、制御部51によって自動で駆動するようにしてもよい。
 次に、反射鏡33eによる反応容器20へのレーザ光の照射について図14を参照して以下に説明する。図14は、反応容器を保持する容器保持ステージの構成を示す断面図である。
 容器保持ステージ40Aは、図14に示すように、支柱40aの上部のステージ40bに形成した開口40cに容器ホルダ42Aが設置された駆動ステージである。容器保持ステージ40Aは、容器ホルダ42Aに反応容器20を保持している。
 このとき、反射鏡33eは、図14に示すように、ミラーホルダ45を介して容器保持ステージ40Aに支持されるが、レーザ光が反応容器20の底壁20cへ常に垂直に入射するように水平面に対して45°に傾けて配置される。また、反射鏡33eは、対物レンズ33dの光軸AOLと反応容器20の中心を通る軸Acとが反射鏡33eの表面で交わるように配置される。これにより、レーザ光は、反応容器20の中心を通る軸Ac上の底壁20cに垂直に入射して反応容器20の底壁20cの内面に沈降した凝集体Agに照射される。
 実施の形態2の分析装置は、測光ユニット33Aと容器保持ステージ40Aが上記のように構成されている。従って、実施の形態2の分析装置は、レーザ光源33aが出射した直径100~200μmのスポット径のレーザ光が、反応容器20の下方から底壁20cの内面に沈降した凝集体に対して照射される。即ち、凝集体には、本発明の分析方法のもとに、単位時間、単位面積あたり凝集体に退色や変性を起こすことのない0.001~0.005mW/μmのエネルギー量のレーザ光が照射される。
 このため、実施の形態2の分析装置は、表面増強ラマン分光法を用いた検体の分析において測定値のばらつきを抑え、再現性のある信頼性に優れたデータを取得することができる。
(実施例2-1~2-3)
 実施の形態2の分析装置を用い、同一の検体、第1試薬及び第2試薬を同量分注して反応させた複数の反応容器20の凝集体のそれぞれに、本発明の分析方法のもとに、出射強度が28.5mWであり、スポット径が100μm(実施例2-1)、150μm(実施例2-2)、200μm(実施例2-3)のレーザ光を照射した際に発生した表面増強されたラマン散乱光を受光装置33gによって95秒間測定した。その結果を、受光装置33gが出力する信号強度の時間変化として図15に示す。
 図15に示すように、レーザ光のスポット径が100μm、150μm、200μmの場合、受光装置33gが出力する信号強度は、時間経過に対して安定していた。従って、実施の形態2に係る分析装置は、測定値のばらつきを抑えられることが分かる。このため、実施の形態2に係る分析装置は、再現性のある信頼性に優れたデータを取得することができる。
(比較例2-1~2-4)
 比較のため、実施の形態2の分析装置を用い、同一の検体、第1試薬及び第2試薬を同量分注して反応させた複数の反応容器20の凝集体のそれぞれに、本発明の分析方法のもとに、スポット径が250μm(比較例2-1)、50μm(比較例2-2,2-3)、7μm(比較例2-4)のレーザ光を照射して表面増強されたラマン散乱光を実施例2-1~2-3と同様に測定した。その結果を、図15に併せて示す。
 実施例2-1~2-3の測定結果と比較すると明らかなように、レーザ光のスポット径が50μm(比較例2-2,2-3)や7μm(比較例2-4)の場合、受光装置33gが出力する信号強度は、経時的に減少する傾向を示しており、スポット径が7μm(比較例2-4)の場合には、信号強度の変化幅が大きくなっている。但し、スポット径が250μm(比較例2-1)の場合、受光装置33gが出力する信号強度に経時的な変化や大幅な変化は見られないが、実施例2-1~2-3の測定値の約5割へと小さくなっている。これは、スポット径が250μm(比較例2-1)の場合は、実施例2-1~2-3に比べてスポット径が大きい分、反応容器20の凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量が減少し、凝集体の退色や変性が抑制されていることに起因するものと判断される。
 そして、スポット径が50μm(比較例2-2,2-3)の場合、実施例2-1~2-3の測定値の約8~5割へと小さくなっており、スポット径が7μmの場合には、実施例1~3の測定値の約6~2割へと小さくなっていた。これは、スポット径が7μm(比較例2-4)の場合、実施例2-1~2-3に比べてスポット径が小さい分、反応容器20の凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量が増加し、凝集体の退色や変性が生じていることに起因するものと判断される。
(実施の形態3)
 次に、本発明の分析装置及び分析方法に係る実施の形態3を図面を参照して以下に説明する。図16は、実施の形態3に係る分析装置が使用する測光ユニットを示す概略構成図である。図17は、測光ユニットの光分岐素子の構成と光分岐の原理を説明する図である。
 実施の形態2の分析装置は、測光ユニットが反応容器に照射するレーザ光のスポット径によって凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を抑制した。これに対して、実施の形態3の分析装置は、測光ユニットが反応容器に照射するレーザ光を複数の光束に分岐し、分岐した複数の分岐光束を凝集体のそれぞれ異なる位置に照射することによって凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を抑制する。
 測光ユニット33Bは、図16に示すように、レーザ光源33a、光分岐素子33k、ダイクロイックミラー33c、コリメータレンズ33b、集光レンズ33f及び受光装置33gを有している。
 光分岐素子33kは、レーザ光源33aが出射したレーザ光を4本の光束に分岐する光学素子であり、図17に示すように、反射鏡MとビームスプリッタSbとが面間隔dを置いて平行に配置されている。光分岐素子33kは、レーザ光源33aが出射するレーザ光L0の光路上のレーザ光源33aとダイクロイックミラー33cとの間に配置される。このとき、光分岐素子33kは、ビームスプリッタSbを透過してゆくレーザ光の透過方向に直交する面に対して角度α傾斜させ、レーザ光源33aの照射方向前段に反射鏡Mが位置し、後段にビームスプリッタSbが位置するように配置される。
 光分岐素子33kは、レーザ光L0がビームスプリッタSbの第1入射点P1に入射角θで入射すると、一部を分岐光束L1として透過させ、残部を反射角θで反射させる。第1入射点P1で反射した光束は、反射鏡Mで反射して第2入射点P2に入射角θで入射し、第1入射点P1の場合と同様に、一部を分岐光束L2として分岐光束L1と平行に透過させ、残部を反射角θで反射させる。
 以下同様にして、光分岐素子33kは、第3入射点P3及び第4入射点P4において分岐光束L3,L4を分岐光束L1と平行に透過させる。但し、第4入射点P4で反射した光束は、反射鏡Mで反射することなく、分岐光束L1~L4とは異なる方向へ出射されるため、レーザ光L0は、分岐光束L1~L4の4本の光束に分岐される。
 このとき、ビームスプリッタSbは、第1入射点P1~第4入射点P4における反射率RiがRi=(4-i)/(5-i)(但し、i=1~4)で表される反射率分布を有するように作成しておく。
 従って、ビームスプリッタSbは、第1入射点P1の反射率R1が3/4、第2入射点P2の反射率R2が2/3、第3入射点P3の反射率R3が1/2、第4入射点P4の反射率R4が0、の反射率分布を有するように作成する。ビームスプリッタSbの反射率分布を上記のように作成すると、透過する分岐光束L1~L4は、次式で与えられる光強度I1~I4がI0/4の等しい値となり、レーザ光L0は、光強度の等しい4本の光束に分岐される。
 I1=I0・(1-R1)=I0/4
 I2=I0・R1・(1-R2)=I0/4
 I3=I0・R1・R2・(1-R3)=I0/4
 I4=I0・R1・R2・R3・(1-R4)=I0/4
 実施の形態3の分析装置の測光ユニット33Bは、光分岐素子33kが上述のように構成されているため、図16に示すように、レーザ光源33aが出射したレーザ光は光分岐素子33kによって4本の光束に分岐される。4本の分岐光束L1~L4は、ダイクロイックミラー33cを透過して反応容器20の凝集体のそれぞれ異なる位置に照射され、凝集体が表面増強されたラマン散乱光を発生する。このラマン散乱光は、ダイクロイックミラー33cで反射され、コリメータレンズ33bで平行光に収束させられた後、集光レンズ33fによって集光されて受光装置33gへ入射する。
 このとき、分岐光束L1~L4が凝集体のそれぞれ異なる位置に照射するレーザ光の単位時間、単位面積当たりのエネルギー量としては、0.001~0.005mW/μmとなる。
 実施の形態3の分析装置は、光分岐素子33kが反応容器に照射するレーザ光を光強度の等しい複数の光束に分岐し、分岐した複数の分岐光束を凝集体のそれぞれ異なる位置に照射する。これにより、実施の形態3の分析装置は、本発明の分析方法のもとに、凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を抑制している。このため、凝集体には、単位時間、単位面積あたりの値が適正で、退色や変性を起こすことのないレーザ光が照射される。
 従って、実施の形態3の分析装置は、表面増強ラマン分光法を用いた検体の分析において測定値のばらつきを抑え、再現性のある信頼性に優れたデータを取得することができる。
 以上のように、本発明の分析装置及び分析方法は、表面増強ラマン分光法における測定値のばらつきを抑えるのに有用である。
 1 分析装置
 2 測定機構
 20 反応容器
 21 検体搬送装置
 22 検体分注装置
 23 反応容器移送装置
 24 第1試薬庫
 25 第1試薬分注装置
 26 第2試薬庫
 27 第2試薬分注装置
 28 容器第1移送装置
 30 集磁テーブル
 31 集磁部材
 32 容器第2移送装置
 33,33A 測光ユニット
 33a レーザ光源
 33b コリメータレンズ
 33c ダイクロイックミラー
 33d 対物レンズ
 33e 反射鏡
 33f 集光レンズ
 33g 受光装置
 33k 光分岐素子
 34 受光ステージ
 36 駆動ステージ
 40 駆動ステージ
 41 ベアリング
 42 回転ホルダ
 43 駆動モータ
 44 ギア
 45 ミラーホルダ
 5 制御機構
 51 制御部
 52 入力部
 53 分析部
 54 記憶部
 55 出力部
 Ag 凝集体
 M 反射鏡
 Sb ビームスプリッタ

Claims (8)

  1.  検体と、磁性粒子及び金属ナノ粒子からなる標識粒子を含む試薬とを分注した反応容器に集磁処理を行なって、前記検体内の測定対象物と前記試薬との複合体が凝集した凝集体を生成する集磁手段と、
     レーザ光源が出射したレーザ光を前記凝集体に照射することによって発生するラマン散乱光を分光して測光する測光手段と、
     を備え、前記測光手段が測光した表面増強されたラマン散乱光をもとに前記検体を分析する分析装置において、
     前記凝集体に照射されるレーザ光の単位時間、単位面積当たりのエネルギー量を0.001~0.005mW/μmに抑制することを特徴とする分析装置。
  2.  前記反応容器を保持して前記レーザ光に対して回転又は移動させて前記レーザ光の照射位置を変化させることによって前記凝集体に照射される前記レーザ光の単位時間、単位面積当たりのエネルギー量を抑制する駆動手段と、
     前記ラマン散乱光を前記受光手段によって時分割で測光するように制御する制御手段とを備えることを特徴とする請求項1に記載の分析装置。
  3.  前記レーザ光を収束させて前記凝集体に照射する対物レンズと、
     前記レーザ光源,前記対物レンズ及び前記測光手段を搭載して前記反応容器に対して接近又は離反する駆動ステージと、
     前記駆動ステージを前記反応容器に対して接近又は離反させて前記凝集体に照射される前記レーザ光のスポット径を変化させる制御を行う制御手段と、
     を有することを特徴とする請求項1に記載の分析装置。
  4.  前記ラマン散乱光を集光する集光レンズと、前記測光手段を搭載して前記集光レンズに対して接近又は離反する受光ステージと、を有することを特徴とする請求項3に記載の分析装置。
  5.  反射鏡とビームスプリッタとが所定間隔で平行に配置されると共に、前記レーザ光源が出射したレーザ光の光路に対して傾斜させて設置され、前記レーザ光を複数の光束に分岐し、分岐した複数の分岐光束を前記凝集体のそれぞれ異なる位置に照射させる光分岐手段を有することを特徴とする請求項1に記載の分析装置。
  6.  前記凝集体に照射されるレーザ光は、スポット径が直径100~200μmであることを特徴とする請求項1~5のいずれか一つに記載の分析装置。
  7.  検体と、磁性粒子及び金属ナノ粒子からなる標識粒子を含む試薬とを分注した反応容器に集磁処理を行なって、前記検体内の測定対象物と前記試薬との複合体が凝集した凝集体を生成する集磁工程と、
     レーザ光を前記凝集体に照射することによって発生するラマン散乱光を分光して測光する測光工程と、
     を含み、前記測光工程で測光した表面増強されたラマン散乱光をもとに前記検体を分析する分析方法において、
     前記測光工程は、前記凝集体に照射するレーザ光の単位時間、単位面積当たりのエネルギー量が0.001~0.005mW/μmであることを特徴とする分析方法。
  8.  前記凝集体に照射するレーザ光は、スポット径が直径100~200μmであることを特徴とする請求項7に記載の分析方法。
PCT/JP2011/000474 2010-01-29 2011-01-28 分析装置及び分析方法 WO2011093090A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010019211A JP2011158327A (ja) 2010-01-29 2010-01-29 分析装置及び分析方法
JP2010-019211 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093090A1 true WO2011093090A1 (ja) 2011-08-04

Family

ID=44319084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000474 WO2011093090A1 (ja) 2010-01-29 2011-01-28 分析装置及び分析方法

Country Status (2)

Country Link
JP (1) JP2011158327A (ja)
WO (1) WO2011093090A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411944A (zh) * 2013-06-24 2013-11-27 吉林大学 含酚羟基的环境激素类化合物的表面增强拉曼检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454219A (zh) * 2013-08-22 2013-12-18 深圳市锦瑞电子有限公司 一种激光测量系统
WO2021225600A1 (en) * 2020-05-08 2021-11-11 Hewlett-Packard Development Company, L.P. Fluid dispensing for calibrated plasmonic sensing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083465B2 (ja) * 1987-05-15 1996-01-17 株式会社島津製作所 試料の時間的変化測定方法
JP2001091521A (ja) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd 自動分析装置
JP2004103108A (ja) * 2002-09-10 2004-04-02 Sony Corp 磁気記録媒体の製造方法、カーボン膜評価方法およびカーボン膜評価装置
JP2005009969A (ja) * 2003-06-18 2005-01-13 Olympus Corp 生体分子解析装置及び生体分子解析方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法
JP2007256414A (ja) * 2006-03-22 2007-10-04 Olympus Corp 顕微鏡装置
JP2008116432A (ja) * 2006-07-06 2008-05-22 Ricoh Co Ltd ラマン分光測定装置、及びこれを用いたラマン分光測定法
WO2008116093A2 (en) * 2007-03-20 2008-09-25 Becton, Dickinson And Company Assays using surface-enhanced raman spectroscopy (sers)-active particles
JP6105224B2 (ja) * 2012-08-09 2017-03-29 東洋インキScホールディングス株式会社 プライマー組成物、ニッケル水素二次電池正極及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083465B2 (ja) * 1987-05-15 1996-01-17 株式会社島津製作所 試料の時間的変化測定方法
JP2001091521A (ja) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd 自動分析装置
JP2004103108A (ja) * 2002-09-10 2004-04-02 Sony Corp 磁気記録媒体の製造方法、カーボン膜評価方法およびカーボン膜評価装置
JP2005009969A (ja) * 2003-06-18 2005-01-13 Olympus Corp 生体分子解析装置及び生体分子解析方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法
JP2007256414A (ja) * 2006-03-22 2007-10-04 Olympus Corp 顕微鏡装置
JP2008116432A (ja) * 2006-07-06 2008-05-22 Ricoh Co Ltd ラマン分光測定装置、及びこれを用いたラマン分光測定法
WO2008116093A2 (en) * 2007-03-20 2008-09-25 Becton, Dickinson And Company Assays using surface-enhanced raman spectroscopy (sers)-active particles
JP6105224B2 (ja) * 2012-08-09 2017-03-29 東洋インキScホールディングス株式会社 プライマー組成物、ニッケル水素二次電池正極及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411944A (zh) * 2013-06-24 2013-11-27 吉林大学 含酚羟基的环境激素类化合物的表面增强拉曼检测方法

Also Published As

Publication number Publication date
JP2011158327A (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5221549B2 (ja) 試薬層を有した高速バイオセンサ
Vestergaard et al. Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip
US20040142482A1 (en) High-resolution ellipsometry method for quantitative or qualitative analysis of sample variations, biochip and measuring device
JP5734091B2 (ja) 生体分子検出装置および生体分子検出方法
JP5703098B2 (ja) 生体分子検出装置および生体分子検出方法
WO2007049487A1 (ja) ラマン分光分析に用いる分析用基板及び分析用基板組合体
DK3014244T3 (en) Biosensor based on measurements of cluster dynamics of magnetic particles using a dual-pass device
WO2011093090A1 (ja) 分析装置及び分析方法
JP4247398B2 (ja) 局在化表面プラズモンセンサ
JP2009258034A (ja) 表面プラズモン放射光検出方法および装置、表面プラズモン放射光検出用試料セルおよびキット
JP5703126B2 (ja) 生体分子検出装置および生体分子検出方法
KR20160040478A (ko) 분석대상 시료의 실시간 분석이 가능한 표면 플라즈몬 공명 센서 시스템 및 이를 이용한 분석방법
JP5685492B2 (ja) 生体分子検出装置および生体分子検出方法
EP3584561B1 (en) Inspection chip and inspection system
JP2019012041A (ja) 濃度測定方法、濃度測定装置及び検査方法
US20110195516A1 (en) Wire grid substrate structure and method for manufacturing such a substrate
JP7177913B2 (ja) 高消光係数標識子と誘電体基板を用いた高感度バイオセンサチップ、測定システム、及び測定方法
JP2011179983A (ja) 標準粒子および自動分析装置
WO2012132964A1 (ja) 生体分子検出装置および生体分子検出方法
WO2015155799A1 (ja) 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定方法
JP6711285B2 (ja) 検出方法、検出装置およびチップ
JP2015096813A (ja) ラマン分光装置、及び電子機器
WO2011013333A1 (ja) 分析装置
WO2016093037A1 (ja) 検出装置および検出方法
JP6638303B2 (ja) 分析装置用チップホルダおよび分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736805

Country of ref document: EP

Kind code of ref document: A1