WO2011092947A1 - 一液性エポキシ樹脂組成物およびその利用 - Google Patents

一液性エポキシ樹脂組成物およびその利用 Download PDF

Info

Publication number
WO2011092947A1
WO2011092947A1 PCT/JP2010/072012 JP2010072012W WO2011092947A1 WO 2011092947 A1 WO2011092947 A1 WO 2011092947A1 JP 2010072012 W JP2010072012 W JP 2010072012W WO 2011092947 A1 WO2011092947 A1 WO 2011092947A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
component
long
hydrocarbon group
Prior art date
Application number
PCT/JP2010/072012
Other languages
English (en)
French (fr)
Inventor
満雄 伊藤
智博 福原
修 大谷
中島 誠二
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to KR1020127016583A priority Critical patent/KR101178298B1/ko
Priority to CN2010800596787A priority patent/CN102762659B/zh
Priority to US13/519,328 priority patent/US20130022818A1/en
Publication of WO2011092947A1 publication Critical patent/WO2011092947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Definitions

  • Epoxy resin is used as a sealing material, insulating material, adhesive material, etc. for electric parts and electronic parts.
  • a one-part epoxy resin composition in which an epoxy resin and a curing agent are mixed in advance is stored and handled in comparison with a two-part epoxy resin composition that is used by mixing an epoxy resin and a curing agent immediately before use. Has the advantage of being easy.
  • the latent curing agent method is effective as a method of excellent storage stability and curing in a short time.
  • the latent curing agent used in the latent curing agent method dicyandiamide, dibasic acid dihydrazide, boron trifluoride-amine adduct, guanamines, melamine, etc. are used, but curing reaction with epoxy resin at lower temperature
  • a solid dispersion type amine adduct type latent curing agent has been proposed as a latent curing agent having a good storage stability in a mixed system with an epoxy resin.
  • the storage stability of the mixed system of the epoxy resin and the latent curing agent is not sufficient, and there is a problem that the viscosity increases during storage. Therefore, in order to improve the storage stability, the crystalline alcohol A method of blending a refined product (for example, see Patent Document 2), a method of adding a metal alkoxide (for example, see Patent Document 3), a method of adding a zeolite and an alkoxide compound (Japanese Patent Laid-Open No. 11-310689), etc. have been proposed. ing.
  • the conventional one-component epoxy resin composition has improved storage stability with respect to viscosity increase during storage, but storage stability alone is not sufficient.
  • the one-component epoxy resin composition according to the present invention is treated with (A) an epoxy resin, (B) a modified aliphatic polyamine compound, and (C) a long-chain hydrocarbon group-containing compound. It is characterized by containing an inorganic filler as a main component.
  • the inventors of the present invention have found for the first time that during storage, in addition to a change in the property that the viscosity increases, a change in which the flowability increases is occurring.
  • FIG. 1 (a) schematically shows a state when a one-component epoxy resin composition before storage is applied.
  • the one-component epoxy resin composition is prepared such that the viscosity is low and the spreadability on the coated surface 3 of the one-component epoxy resin composition after application is excellent and the flowability is also reduced.
  • the above problem is solved by using (B) a modified aliphatic polyamine compound as a curing agent and (C) an inorganic filler treated with a long-chain hydrocarbon group-containing compound as an inorganic filler.
  • the reason why this can be done is not clear, but only with thixotropy control using fine particles, which has been used to reduce the flowability in the past, the fine particles aggregate due to changes over time during storage, making it difficult to control the flowability. Can be considered. It can be considered that the use of an inorganic filler treated with a long-chain hydrocarbon group-containing compound as the inorganic filler makes it difficult to proceed with the aggregation of conventional fine particles.
  • liquid epoxy resin examples include, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol A ethylene oxide 2-mole adduct diglycidyl ether, and bisphenol A-1,2-propylene oxide 2-mole addition.
  • the content of the epoxy resin in the one-component epoxy resin composition can be appropriately changed according to the use, but it can be used in the range of 50% by weight to 95% by weight, for example.
  • the modified aliphatic polyamine compound contained in the one-part epoxy resin composition of the present invention is stable in a mixed system with an epoxy resin near room temperature, and It is preferable that it is a compound which functions as a hardening
  • the modified aliphatic polyamine compound is a solid that is insoluble in a liquid general epoxy resin at around room temperature, but is preferably a compound that is solubilized by heating and exhibits its original function.
  • the modified aliphatic polyamine compound includes, for example, (i) a dialkylaminoalkylamine compound and (ii) a cyclic amine compound having one or more nitrogen atoms having active hydrogen in the molecule. And (iii) a reaction product of a diisocyanate compound.
  • the modified aliphatic polyamine compound is a reaction product obtained by reacting (iv) an epoxy compound as a fourth component in addition to the three components (i), (ii) and (iii). Also good.
  • the modified aliphatic polyamine compound includes three components of (i) and (ii), a cyclic amine compound having one or two nitrogen atoms having active hydrogen in the molecule, and (iii).
  • dialkylaminoalkylamine compound examples include, for example, dimethylaminopropylamine, diethylaminopropylamine, dipropylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, dibutylaminoethylamine and the like. Can be mentioned. Among them, the (i) dialkylaminoalkylamine compound is particularly preferably dimethylaminepropylamine or diethylaminopropylamine.
  • the above (i) dialkylaminoalkylamine compounds can be used singly or in combination of two or more.
  • cyclic amine compound having one or more nitrogen atoms having active hydrogen in the molecule is not particularly limited, but specifically, for example, metaxylylenediamine, 1 , 3-bis (aminomethyl) cyclohexane, isophoronediamine, diaminecyclohexane, phenylenediamine, toluylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, piperazine, N-aminoethylpiperazine, benzylamine, cyclohexylamine and the like polyamines or monoamines There can be mentioned.
  • the cyclic amine compound is particularly preferably metaxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, isophoronediamine, N-aminoethylpiperazine, cyclohexylamine or benzylamine.
  • polyamines have a function as a molecular chain growth material as a curing agent compound, and monoamines have a function as a molecular weight adjusting material.
  • the above (ii) cyclic amine compounds having one or more nitrogen atoms having active hydrogen in the molecule can be used singly or in combination of two or more.
  • the above (iii) diisocyanate is not particularly limited, and specific examples thereof include isophorone diisocyanate, metaxylylene diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 2,4-toluylene diisocyanate. 2,6-toluylene diisocyanate, 1,5-naphthylene diisocyanate, 1,4-phenylene diisocyanate, diphenylmethane-4,4′-diisocyanate, 2,2′-dimethyldiphenylmethane-4,4′-diisocyanate, hexamethylene Examples thereof include diisocyanate and trimethylhexamethylene diisocyanate. Among them, the (iii) diisocyanate is particularly preferably a diisocyanate having a cyclic structure. The above (iii) diisocyanate can be used alone or in combination of two or more.
  • the (iv) epoxy compound is not particularly limited, and specific examples include bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, catechol, resorcin, and cresol novolak.
  • a polyhydric phenol such as tetrabromobisphenol A, trihydroxybiphenyl, bisresorcinol, bisphenol hexafluoroacetone, hydroquinone, tetramethylbisphenol A, tetramethylbisphenol F, triphenylmethane, tetraphenylethane, bixylenol, and epichlorohydrin
  • Glycidyl ether obtained by reaction; glycerin, neopentyl glycol, ethylene glycol, propylene glycol, butylene glycol
  • Polyglycidyl ether obtained by reacting an aliphatic polyhydric alcohol such as hexylene glycol, polyethylene glycol or polypropylene glycol with epichlorohydrin; hydroxycarboxylic acid such as p-oxybenzoic acid or ⁇ -oxynaphthoic acid and epichlorohydrin; Glycidyl ether ester obtained by reaction of phthalic acid
  • the above (iv) epoxy compound can be used singly or in combination of two or more.
  • epoxy compound it is more preferable to use a combination of a polyepoxide having a plurality of epoxy groups in the molecule and a monoepoxide having one epoxy group in the molecule.
  • diepoxides such as bisphenol A type diepoxide having an epoxy equivalent of about 190, bisphenol F type diepoxide having an epoxy equivalent of about 175, diglycidyl aniline, diglycidyl orthotoluidine, etc. are particularly preferably used.
  • monoepoxide it is especially preferable to use phenyl glycidyl ether, methylphenyl glycidyl ether, butylphenyl glycidyl ether, or the like.
  • polyepoxides, particularly diepoxides function as molecular chain growth materials
  • monoepoxides function as molecular weight control materials.
  • modified aliphatic polyamine compound those generally marketed as modified aliphatic polyamine compounds can be suitably used, and such commercially available products are not particularly limited.
  • Fujicure FXE-1000 FXR-1030, FXB-1050 manufactured by Fuji Kasei Kogyo Co., Ltd.
  • Fujicure FXE-1000 FXR-1030, FXB-1050 manufactured by Fuji Kasei Kogyo Co., Ltd.
  • Fujicure FXE-1000 FXR-1030, FXB-1050 manufactured by Fuji Kasei Kogyo Co., Ltd.
  • (I-3) Inorganic filler treated with long-chain hydrocarbon group-containing compound Treated with the above-mentioned (C) long-chain hydrocarbon group-containing compound contained in the one-part epoxy resin composition of the present invention.
  • the inorganic filler is obtained by surface-treating an inorganic filler using a long-chain hydrocarbon group-containing compound.
  • the inorganic filler used for the surface treatment is not particularly limited.
  • fused silica, crystalline silica, talc, alumina, silicon nitride, calcium carbonate, calcium silicate and the like can be suitably used.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the ratio of two or more inorganic fillers when used in combination is arbitrary.
  • the inorganic filler used for the surface treatment is more preferably silica or calcium carbonate from the viewpoint of excellent thermal expansion and heat conduction.
  • the shape of the inorganic filler provided for the surface treatment is not particularly limited as long as it is in the form of particles such as a sphere, a crushed shape, a needle shape, and a plate shape. preferable.
  • the particle diameter of the inorganic filler to be subjected to the surface treatment may be appropriately adjusted so that the particle diameter of the inorganic filler treated with the long-chain hydrocarbon group-containing compound after the surface treatment is in a range described later.
  • the average particle diameter of the inorganic filler used for the surface treatment is preferably 10 nm or more and 100 nm or less.
  • the method of adjusting the average particle diameter of an inorganic filler is not specifically limited, A conventionally well-known method can be selected suitably and can be used.
  • the average particle diameter of silica that is an inorganic filler can be adjusted by, for example, the following method.
  • the inorganic filler is hydrolyzed (or oxidatively decomposed) at 1000 to 1200 ° C. in a high-temperature oxyhydrogen flame (or indirectly heated in an oxygen atmosphere), and once the soot-like loose bonds are formed. Let it form. And after heat-melting at the temperature of 1800 degreeC or more, it cools and it recombines at random.
  • the average particle size of calcium carbonate can be adjusted by pulverization and classification.
  • the inorganic filler only needs to be surface-treated with a long-chain hydrocarbon group-containing compound.
  • the surface-treatment with the long-chain hydrocarbon group-containing compound is derived from the long-chain hydrocarbon group-containing compound.
  • the form of the bond is not particularly limited as long as it is bonded by a covalent bond, a coordination bond, a hydrogen bond, or the like.
  • Such surface treatment can improve the dispersibility of the inorganic filler in the one-part epoxy resin composition and the bonding strength between the one-part epoxy resin composition and the inorganic filler.
  • the surface-treated inorganic filler can efficiently control the flowability of the one-part epoxy resin composition even after a change with time.
  • the long-chain hydrocarbon group-containing compound used for the surface treatment is preferably a compound having a hydrocarbon group having 8 to 20 carbon atoms in the main chain. It is preferable that the main chain of the hydrocarbon group has 8 or more carbon atoms because the storage stability can be improved with respect to the flowability and the thixotropic effect is sufficiently large. In addition, since the number of carbon atoms in the main chain of the hydrocarbon group is 20 or less, an effect according to the amount added can be obtained, so that not only can the cost increase due to excessive addition be reduced, but also thixotropic properties can be imparted. The effect is also sufficient.
  • the hydrocarbon group is not particularly limited, and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • Preferred examples include an alkyl group and an alkenyl group.
  • the long-chain hydrocarbon group-containing compound includes a long-chain alkyl group-containing compound, a long-chain alkenyl group-containing compound, and the like.
  • the number of carbon-carbon double bonds of the alkenyl group is not particularly limited, but it is more preferably 1 or more and 5 or less.
  • the hydrocarbon group is more preferably, for example, a palmitoyl group, a stearyl group, a decyl group, a hydrocarbon group contained in a fatty acid and a long-chain alkylsilane compound described later, and the like.
  • the surface treatment method is not particularly limited.
  • the surface treatment can be performed by causing the long-chain hydrocarbon group-containing compound to exist on the surface of the inorganic filler and heating to 200 ° C. or higher. Heating promotes the binding reaction between the long-chain hydrocarbon group-containing compound and the surface of the inorganic filler.
  • heating temperature should just be 200 degreeC or more, 200 degreeC or more and 400 degrees C or less are more suitable.
  • Examples of the method for causing the long-chain hydrocarbon group-containing compound to exist on the surface of the inorganic filler include, for example, a method of spraying the long-chain hydrocarbon group-containing compound onto the inorganic filler, and the long-chain hydrocarbon group-containing compound.
  • a method of immersing the inorganic filler in the above solution can be appropriately selected and used.
  • the surface treatment is more preferably performed in a nitrogen atmosphere.
  • the solvent used for preparing the solution of the long-chain hydrocarbon group-containing compound is not particularly limited, and may be appropriately selected depending on the long-chain hydrocarbon group-containing compound to be used.
  • a saturated fatty acid generally used as a surface treatment agent can be preferably used.
  • saturated fatty acids are not particularly limited, and for example, decanoic acid (capric acid), undecanoic acid, dodecanoic acid (lauric acid), tridecanoic acid, tetradecanoic acid (myristic acid), pentadecanoic acid, hexadecanoic acid (palmitin) Acid), heptadecanoic acid (margaric acid), octadecanoic acid (stearic acid), nonadecanoic acid (tuberculostearic acid), icosanoic acid (arachidic acid), docosanoic acid (behenic acid), and the like.
  • the saturated fatty acid is particularly preferably lauric acid, myristic acid, palmitic acid, or stearic acid.
  • an unsaturated fatty acid generally used as a surface treatment agent can be suitably used as the long-chain alkenyl group-containing compound.
  • unsaturated fatty acids include palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, linoleic acid, eicosadienoic acid, linolenic acid, vinolenic acid, eleostearic acid, mead acid, eicosatrienoic acid, Examples include stearidonic acid, arachidonic acid, eicosatetraenoic acid, boseopentaenoic acid, eicosapentaenoic acid, and the like.
  • the unsaturated fatty acid is particularly preferably oleic acid or linoleic acid.
  • a long-chain alkylsilane-based long-chain alkyl group-containing compound such as dodecyltrimethoxysilane, hexadecyltrimethoxysilane, and octadecyltrimethoxysilane can also be suitably used.
  • dodecyltrimethoxysilane, hexadecyltrimethoxysilane, and octadecyltrimethoxysilane can also be suitably used.
  • hexadecyltrimethoxysilane and octadecyltrimethoxysilane are particularly preferable as the long-chain alkylsilane-based long-chain alkyl group-containing compound.
  • the shape of the inorganic filler treated with the (C) long-chain hydrocarbon group-containing compound is not particularly limited as long as it is in the form of particles such as a spherical shape, a crushed shape, a needle shape, and a plate shape. More preferably spherical or crushed.
  • the average particle size of the inorganic filler treated with the long-chain hydrocarbon group-containing compound is a normal size of the inorganic filler, it is possible to suppress the flowability of the one-part epoxy resin composition.
  • it is more preferably 10 nm or more and 100 nm or less, and further preferably 10 nm or more and 50 nm or less.
  • the average particle diameter of the inorganic filler treated with the long-chain hydrocarbon group-containing compound is 10 nm or more and 100 nm or less, the flowability of the one-part epoxy resin composition is suppressed with a small amount of the inorganic filler. It becomes possible to do.
  • the average particle diameter of the inorganic filler treated with the long-chain hydrocarbon group-containing compound is 10 nm or more, thereby suppressing an increase in viscosity due to the blending of the inorganic filler into the one-part epoxy resin composition. It is possible to prevent deterioration of workability.
  • the average particle diameter of the inorganic filler treated with the long-chain hydrocarbon group-containing compound is 100 nm or less, it is possible to control the flow into narrow gaps by blending a small amount into the one-component epoxy resin composition. It becomes.
  • the average particle diameter of the particles is a value calculated based on a value measured by a particle size distribution measuring device (product name: LA920, manufactured by Horiba, Ltd.) based on the laser diffraction scattering method (D50).
  • a particle size distribution measuring device product name: LA920, manufactured by Horiba, Ltd.
  • D50 laser diffraction scattering method
  • the content ratio of each peak was judged by the area of the frequency distribution ratio.
  • a method of fitting each peak with an appropriate function Lientz-type function or Gaussian function
  • the one-part epoxy resin composition according to the present invention comprises (A) an epoxy resin, (B) a modified aliphatic polyamine compound, and (C) a long-chain hydrocarbon group-containing compound.
  • the content ratio of each component is not particularly limited as long as it contains an inorganic filler treated with the above as a main component, but when the content of (A) is 100 parts by weight, The total of the content of (B) and the content of (C) is more preferably 7 parts by weight or more and 25 parts by weight or less.
  • the sum of the content of (B) and the content of (C) is within the above range, so that more storage is possible with respect to viscosity and flowability.
  • a one-component epoxy resin composition excellent in stability can be realized.
  • the ratio of the content of (B) and the content of (C) is not particularly limited, but the content of (C) / (B) is 0.025 or more and 1.000. The following is more preferable.
  • the content of (C) / the content of (B) is within the above range, it is possible to realize a one-component epoxy resin composition having a better storage stability with respect to viscosity and flowability.
  • the one-component epoxy resin composition according to the present invention is such that the sum of the content of (B) and the content of (C) is within the above range, and the content of (C) / ( More preferably, the content of B) is within the above range.
  • the one-part epoxy resin composition according to the present invention is treated with (A) an epoxy resin, (B) a modified aliphatic polyamine compound, and (C) a long-chain hydrocarbon group-containing compound.
  • A an epoxy resin
  • B a modified aliphatic polyamine compound
  • C a long-chain hydrocarbon group-containing compound.
  • it may contain other components within a range not adversely affecting the effects of the present invention.
  • Examples of the other components include various additives that can be used in conventionally known epoxy resin compositions such as flame retardants, light stabilizers, viscosity modifiers, colorants, reinforcing agents, thickeners, thixotropic agents, and the like. Can be mentioned.
  • the one-part epoxy resin composition according to the present invention comprises (A) an epoxy resin, (B) a modified aliphatic polyamine compound, C)
  • the production method is not particularly limited as long as it contains an inorganic filler treated with a long-chain hydrocarbon group-containing compound as a main component, and a general one-pack epoxy resin composition Such a method may be used as appropriate.
  • a method for example, it was treated with (A) an epoxy resin, (B) a modified aliphatic polyamine compound, and (C) a long chain hydrocarbon group-containing compound using a conventionally known apparatus such as a kneader or a mixing roll.
  • the method of mixing with an inorganic filler, the method of stirring, etc. can be mentioned.
  • the component according to the present invention is an electronic component or an electrical component, as long as at least two members are bonded by the above-described one-component epoxy resin composition. Good.
  • the “electronic component or electrical component” is not particularly limited as long as it is useful for airtight sealing or insulation sealing, and is usually referred to as “electrical component”. May be.
  • Examples of the electronic component or electrical component include a relay, a switch, and a sensor.
  • At least two members are bonded by a one-component epoxy resin composition means that the one-component epoxy resin composition is interposed between at least two members, and the one-component epoxy resin composition. This means that at least two members are bonded together by the adhesive force.
  • the member to be bonded is not particularly limited.
  • attached with a one-component epoxy resin composition is mentioned.
  • the sealing method according to the present invention includes a step of sealing an electronic component or an electrical component by adhering at least two members with the one-component epoxy resin composition described above. Just go out.
  • the above steps can be performed according to a conventionally known method except that the above-described one-component epoxy resin composition is used.
  • the one-component epoxy resin composition is applied to all or a part of at least one member, and the member to be bonded is closely adhered to the member.
  • the one-component epoxy resin composition may be cured.
  • the present invention includes the following inventions.
  • the one-component epoxy resin composition according to the present invention is treated with (A) an epoxy resin, (B) a modified aliphatic polyamine compound, and (C) a long-chain hydrocarbon group-containing compound. It is characterized by containing an inorganic filler as a main component.
  • the content of (A) when the content of (A) is 100 parts by weight, the total of the content of (B) and the content of (C) is 7 parts by weight. More preferably, the content is 25 parts by weight or less and the content of (C) / (B) is 0.025 or more and 1.000 or less.
  • the inorganic filler treated with the long-chain hydrocarbon group-containing compound has a hydrocarbon group having a main chain having 8 to 20 carbon atoms. Is more preferable.
  • the average particle size of the inorganic filler treated with the long-chain hydrocarbon group-containing compound is more preferably 10 nm or more and 50 nm or less.
  • the component according to the present invention is characterized in that at least two members are bonded by the one-component epoxy resin composition.
  • the airtight defect by the viscosity rise during storage is suppressed irrespective of the storage period of a one-component epoxy resin composition, and the components which do not have a problem that flowability becomes large by storage are manufactured. Can do.
  • the sealing method according to the present invention is characterized by including a step of sealing an electronic component or an electrical component by adhering at least two members with the one-component epoxy resin composition.
  • the airtight defect due to the viscosity increase during storage is suppressed regardless of the storage period of the one-part epoxy resin composition, and the electronic component or the electrical component is sealed without a problem that the flowability increases. can do.
  • ⁇ Viscosity storage stability evaluation test> The one-component epoxy resin composition immediately after the preparation was measured with a rotational viscometer (E type viscometer, RE215 type, manufactured by Toki Sangyo Co., Ltd.) to obtain an initial viscosity.
  • the one-part epoxy resin composition was stored in a thermostatic bath at a predetermined temperature (40 ° C.) for one month, and then the viscosity was measured in the same manner to evaluate the rate of change with respect to the initial viscosity. When the rate of change was less than 150%, “ ⁇ ”, when 150% or more and less than 200%, “ ⁇ ”, and when 200% or more, “ ⁇ ”.
  • the one-part epoxy resin composition was stored in a constant temperature bath at a predetermined temperature (40 ° C.) for one month, and then the sagging length was measured in the same manner to evaluate the rate of change relative to the initial sagging length.
  • the rate of change was less than 150%, “ ⁇ ”, when 150% or more and less than 200%, “ ⁇ ”, and when 200% or more, “ ⁇ ”.
  • Example 1 Using bisphenol A diglycidyl ether as an epoxy resin, 20 parts by weight of a modified aliphatic polyamine compound (trade name: Fujicure FXE-1000, manufactured by Fuji Kasei Kogyo Co., Ltd.) is added to 100 parts by weight of bisphenol A diglycidyl ether. Silica treated with a compound containing a long-chain hydrocarbon group having an average particle size of 10 to 50 nm and a main chain of 8 to 20 carbon atoms as an inorganic filler treated with a long-chain hydrocarbon group-containing compound After mixing the weight part, it knead
  • a modified aliphatic polyamine compound trade name: Fujicure FXE-1000, manufactured by Fuji Kasei Kogyo Co., Ltd.
  • the inorganic filler treated with the long-chain hydrocarbon group-containing compound was obtained by spraying silica in which octadecyltriethoxysilane was dissolved in a solvent hexane together with catalyst diethylamine and heated to 200 ° C. is there.
  • the obtained one-component epoxy resin composition was subjected to a storage stability evaluation test regarding viscosity and sagging length.
  • Table 1 shows the results of the property evaluation test (in Table 1, “change rate of sagging length after storage at 40 ° C. for 1 month”).
  • Tables 1 and 2 “(inorganic filler content) / (curing agent content)” has no units, and other numerical units are parts by weight. Indicates.
  • Example 2-12 A one-part epoxy resin composition was prepared in the same manner as in Example 1 except that mixing was performed using the components and preparation amounts described in Table 1 or Table 2, and the obtained one-part epoxy resin composition was obtained. The product was subjected to a storage stability evaluation test of viscosity and sagging length.
  • Example 3 Example 3 except that 20 parts by weight of an epoxy resin amine adduct compound (Novacure (registered trademark) HX-3721, manufactured by Asahi Kasei Kogyo Co., Ltd.) was used instead of 6 parts by weight of the modified aliphatic polyamine compound as a curing agent.
  • Novacure registered trademark
  • HX-3721 manufactured by Asahi Kasei Kogyo Co., Ltd.
  • the one-component epoxy resin composition according to the present invention can be suitably used for hermetically sealing or insulating sealing gaps in various electronic parts or electrical parts such as relays, switches, and sensors. Can and is very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物およびその利用を実現する。(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有する一液性エポキシ樹脂組成物により、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物およびその利用を実現する。

Description

一液性エポキシ樹脂組成物およびその利用
 本発明は、一液性エポキシ樹脂組成物およびその利用に関するものであり、特に粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物およびその利用に関するものである。
 エポキシ樹脂は、電気部品や電子部品の封止材料、絶縁材料、接着材料等として用いられている。特に、エポキシ樹脂と硬化剤とが予め混合された一液性エポキシ樹脂組成物は、使用の直前にエポキシ樹脂と硬化剤とを混合して用いる二液性エポキシ樹脂組成物と比べて保管や取扱いが容易であるという利点を有する。
 一液性エポキシ樹脂組成物に用いられる硬化剤は、貯蔵中にエポキシ樹脂との混合系中で硬化剤として機能しない状態に保たれる。かかる方法として、室温ではエポキシ樹脂の硬化剤として機能せず加熱により硬化剤として機能する潜在性硬化剤を用いる潜在性硬化剤法、硬化剤をマイクロカプセル内部に封入し加熱または加圧で放出させる方法(例えば、特許文献1参照)、硬化剤をホウ酸エステルでキャッピングする方法等が知られている。
 かかる一液性エポキシ樹脂組成物では、一般的に、貯蔵中に硬化反応が進むことによって粘度が増加することが懸念されるため、貯蔵安定性が問題とされる。貯蔵安定性に優れ、短時間で硬化する方法としては潜在性硬化剤法が有効である。潜在性硬化剤法に用いられる潜在性硬化剤としては、ジシアンジアミド、二塩基酸ジヒドラジド、三フッ化ホウ素-アミンアダクト、グアナミン類、メラミン等が用いられているが、より低温でエポキシ樹脂と硬化反応を起こし、且つ、エポキシ樹脂との混合系中の貯蔵安定性の良好な潜在性硬化剤として、固体分散型アミンアダクト系潜在性硬化剤が提案されている。
 しかしながら、なお、エポキシ樹脂と潜在性硬化剤との混合系の貯蔵安定性は十分ではなく、貯蔵中に粘度が上昇するという問題があるため、貯蔵安定性を改良するために、結晶性アルコールの微細化物を配合する方法(例えば、特許文献2参照)、金属アルコキシドを添加する方法(例えば、特許文献3参照)、ゼオライトとアルコキシド化合物とを添加する方法(特開平11-310689)等が提案されている。
日本国公開特許公報「特開2004-115729号公報(2004年4月15日公開)」 日本国公開特許公報「特開2004-277458号公報(2004年10月7日公開)」 日本国公開特許公報「特開平07-196776号公報(1995年8月1日公開)」 日本国公開特許公報「特開平11-310689号公報(1999年11月9日公開)」
 上記従来の一液性エポキシ樹脂組成物は、貯蔵中の粘度上昇に関しては貯蔵安定性の改良がなされているが、貯蔵安定性はそれだけでは十分ではない。
 電気部品や電子部品の小型化、軽量化や高密度化に対する市場からの要請が強まり、制御用小型機器を始めとする電気部品や電子部品の接着部分や封止部分における隙間間隔が非常に狭くなっている。そのため、当該隙間への一液性エポキシ樹脂組成物の流れ込み性の制御が重要となってきている。
 本発明者らは、貯蔵中に粘度が上昇した一液性エポキシ樹脂組成物は、流動性が小さくなるので流れ込み性は小さくなると考えられるにもかかわらず、流れ込み性が貯蔵前に比べて大きくなり、エポキシ樹脂が可動部や接点部など付着し特性不良を引き起こすという重大な問題があることを見出した。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物およびその利用を実現することにある。
 本発明に係る一液性エポキシ樹脂組成物は、上記課題を解決するために、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有することを特徴としている。
 上記の構成によれば、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できる。
 本発明に係る一液性エポキシ樹脂組成物は、以上のように、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有するという構成を備えているので、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できるという効果を奏する。
電子部品の接着部分を模式的に示す図である。
 以下、本発明について、(I)一液性エポキシ樹脂組成物、(II)一液性エポキシ樹脂組成物の利用の順に説明する。
 (I)一液性エポキシ樹脂組成物
 本発明に係る一液性エポキシ樹脂組成物は、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有するものである。
 上記の構成によれば、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できる。
 ここで、上記貯蔵安定性とは、一液性エポキシ樹脂組成物を温度及び湿度等の様々な環境下で一定期間保管する際の、その成分や特性の安定性を意味する。特に、一液性エポキシ樹脂組成物では、一般的に、貯蔵中に、硬化反応が進むことによって粘度が増加することが懸念されるため、従来粘度に関する貯蔵安定性のみが問題とされてきた。
 本発明者らは、貯蔵中に、粘度が増加するという特性の変化に加えて、流れ込み性が大きくなるという変化が起こっていることを初めて見出した。
 例えば、図1に示すリレーは、内部にコイル、スイッチ等の部品が格納されている成形材2と金属端子1とからなり、成形材2の上面が、一液性エポキシ樹脂組成物を塗布して成形材2と金属端子1とを接着させる一液性エポキシ樹脂組成物塗布面3となっている。成形材2の側面は図示しない他の部材とで狭い隙間を形成する。一液性エポキシ樹脂組成物塗布面3に塗布された一液性エポキシ樹脂組成物はかかる隙間に流れ込み、硬化が完了するまでの間は下方に向かって流動する。本発明においては、このように一液性エポキシ樹脂組成物が、接着部分や封止部分における隙間へ流れ込み、硬化が完了するまでに流動する性質を流れ込み性といい、一液性エポキシ樹脂組成物が流動した跡の上端から下端4までの長さ、つまりタレ長さをその指標として用いる。この流れ込み性が大きくなり、エポキシ樹脂が可動部や接点部など付着すると特性不良を引き起こすという重大な問題が起こる。そのため、通常一液性エポキシ樹脂組成物には流れ込み性が小さくなるように微粒子が添加されている。
 図1(a)は貯蔵前の一液性エポキシ樹脂組成物を塗布したときの状態を模式的に示すものである。一液性エポキシ樹脂組成物は、調製時には、粘度が低く塗布後の一液性エポキシ樹脂組成物塗布面3における広がり性に優れ、且つ、流れ込み性も小さくなるように調製されている。
 しかし図1(b)に示すように、貯蔵中に硬化反応が進むことによって粘度が増加すると広がり性不足による気密不良が発生する。また、通常粘度が増加すれば流れ込み性は小さくなると考えられるが、本発明者らは、流れ込み性が小さくなるように調製時に微粒子が添加された一液性エポキシ樹脂組成物においても、貯蔵後塗布したときには、図1(b)に示すように流れ込み性が大きくなることを見出した。
 そこで、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物を得るべく検討を行った結果、エポキシ樹脂と配合する硬化剤と無機充填剤として特定の組み合わせを用いたときに、粘度のみではなく、流れ込み性に関してもより貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できることを見出した。
 すなわち、本発明に係る一液性エポキシ樹脂組成物は、硬化剤として(B)変性脂肪族ポリアミン化合物を用い、無機充填剤として(C)長鎖炭化水素基含有化合物で処理された無機充填剤を用いることにより上記課題を解決する。
 なお、本発明において、上述した「流れ込み性」の指標として用いる「タレ長さ」とは、実施例に記載の測定方法により測定された値をいう。
 なお、本発明において、硬化剤として(B)変性脂肪族ポリアミン化合物を用い、無機充填剤として(C)長鎖炭化水素基含有化合物で処理された無機充填剤を用いることにより上記課題を解決することができる理由は明らかではないが、従来流れ込み性を小さくするために用いられていた微粒子によるチクソ性制御だけでは、貯蔵中の経時変化により微粒子が凝集し、流れ込み性の制御が困難となることが考えられる。無機充填剤として、長鎖炭化水素基含有化合物で処理された無機充填剤を用いることにより、従来の微粒子同士の凝集を進みにくくすることができたことが考えられる。
 また、長鎖炭化水素基含有化合物で処理された無機充填剤を用いても、硬化剤として(B)変性脂肪族ポリアミン化合物以外のものを用いた場合には、貯蔵中の経時変化による流れ込み性の問題が解決できないことから、(B)変性脂肪族ポリアミン化合物と(C)長鎖炭化水素基含有化合物で処理された無機充填剤との相互作用により、流れ込み性に関する貯蔵安定性により優れる一液性エポキシ樹脂組成物が得られると考えられる。
 さらに、粘度に関する貯蔵安定性についても、(B)変性脂肪族ポリアミン化合物と(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを用いる場合は、(B)変性脂肪族ポリアミン化合物と長鎖炭化水素基含有化合物で処理されていない無機充填剤とを用いる場合よりも優れていることが明らかになった。これにより、(C)長鎖炭化水素基含有化合物で処理された無機充填剤が、貯蔵中のエポキシ樹脂と(B)変性脂肪族ポリアミン化合物との硬化反応の抑制に寄与していると考えられる。すなわち、(B)変性脂肪族ポリアミン化合物と(C)長鎖炭化水素基含有化合物で処理された無機充填剤との相互作用により、粘度に関しても、貯蔵安定性により優れる一液性エポキシ樹脂組成物が得られると考えられる。
 本発明に係る一液性エポキシ樹脂組成物は、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有するものであればよい。すなわち、本発明に係る一液性エポキシ樹脂組成物は、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とからなるものであることが好ましいが、一液性エポキシ樹脂組成物に悪影響を与えない限り他の成分が含まれていてもよい。より具体的には、「主成分として」とは、70重量%以上、より好ましくは80重量%以上である。以下、各成分について説明する。
 (I-1)(A)エポキシ樹脂
 本発明の一液性エポキシ樹脂組成物に含有される(A)エポキシ樹脂は、室温付近(例えば、25℃)において液状であるエポキシ樹脂であることが好ましい。かかるエポキシ樹脂としては、従来公知の一液性エポキシ樹脂組成物において使用される各種エポキシ樹脂を用いることができ、例えば、ベンゼン環、ナフタレン環等の芳香族環、または、水添ベンゼン環等の水添芳香族環に、2個以上のエポキシ基が末端に結合した化合物が挙げられる。
 ここで、上記芳香族環及び水添芳香族環には、アルキル、ハロゲン等の置換基が結合していてもよい。また、上記エポキシ基と、上記芳香族環及び水添芳香族環とは、オキシアルキレン、ポリ(オキシアルキレン)、カルボオキシアルキレン、カルボポリ(オキシアルキレン)、アミノアルキレン等を介して結合されていてもよい。
 更には、上記芳香族環及び/又は上記水添芳香族環を複数有する場合には、これら芳香族環及び/又は水添芳香族環同士は、直接結合されていてもよいし、アルキレン基、オキシアルキレン基、又はポリ(オキシアルキレン)基等を介して結合されていてもよい。
 上記液状エポキシ樹脂としては、具体的には、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールAエチレンオキサイド2モル付加物ジグリシジルエーテル、ビスフェノールA-1,2-プロピレンオキサイド2モル付加物ジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、オルソフタル酸ジグリシジルエステル、テトラヒドロイソフタル酸ジグリシジルエステル、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、N,N-ジグリシジルアニリン-3-グリシジルエーテル、テトラグリシジルメタキシレンジアミン、1,3-ビス(N,N-ジグリジルアミノメチレン)シクロヘキサン、テトラブロモビスフェノールAジグリシジルエーテル等が挙げられる。これらは1種単独でも2種類以上組み合わせても使用することができる。
 中でも、硬化物の耐熱性に優れるという観点から、上記エポキシ樹脂としては、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテルがより好ましい。
 一液性エポキシ樹脂組成物における、上記エポキシ樹脂の含有量は、用途に応じて適宜変更し得るが、例えば、50重量%以上95重量%以下の範囲で用いることができる。
 (I-2)(B)変性脂肪族ポリアミン化合物
 本発明の一液性エポキシ樹脂組成物に含有される変性脂肪族ポリアミン化合物は、室温付近ではエポキシ樹脂との混合系中で安定であり、且つ、80℃以上120℃以下で熱処理することにより、高い熱変形温度を示す硬化物が得られる硬化剤として機能する化合物であることが好ましい。また、上記変性脂肪族ポリアミン化合物は、室温付近では、液状の一般エポキシ樹脂には不溶性の固体であるが、加熱することにより可溶化し本来の機能を発揮する化合物であることが好ましい。
 上記変性脂肪族ポリアミン化合物は、少なくともアミン化合物とイソシアネート化合物とを反応させて得られる反応生成物であればよい。一般に、脂肪族ポリアミン変性体と呼称されている化合物は上記変性脂肪族ポリアミン化合物に含まれる。
 上記変性脂肪族ポリアミン化合物としては、より具体的には、例えば、(i)ジアルキルアミノアルキルアミン化合物と、(ii)分子内に活性水素を有する窒素原子を1個または2個以上有する環状アミン化合物と、(iii)ジイソシアネート化合物との反応生成物を挙げることができる。
 また、上記変性脂肪族ポリアミン化合物は、上記(i)、(ii)および(iii)の3成分に加えてさらに(iv)エポキシ化合物を第4成分として反応させて得られる反応生成物であってもよい。
 上記変性脂肪族ポリアミン化合物としては、上記(i)と、上記(ii)のうち分子内に活性水素を有する窒素原子を1個または2個有する環状アミン化合物と、上記(iii)との3成分からなりこれらの成分を加熱反応させて得られる反応生成物;上記(i)と、上記(ii)のうち分子内に活性水素を有する窒素原子を1個または2個有する環状アミン化合物と、上記(iii)と、上記(iv)のうち分子内に平均1個より多いエポキシ基を持つエポキシ化合物との4成分からなりこれらの成分を加熱反応させて得られる反応生成物をより好適に用いることができる。
 さらに、上記変性脂肪族ポリアミン化合物としては、特公昭58-55970号公報、特開昭59-27914号公報、特開昭59-59720号公報、特開平3-296525号公報等に記載の化合物を例示できる。
 ここで、上記(i)ジアルキルアミノアルキルアミン化合物は、特に限定されるものではないが、例えば、下記式(1)
Figure JPOXMLDOC01-appb-C000001
で表される構造を有する化合物を好適に用いることができる。式(1)中、Rは独立して炭素1から4までの直鎖状または分岐状アルキル基を示し、nは2または3を示す。
 上記(i)ジアルキルアミノアルキルアミン化合物の具体的な例としては、例えば、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジブチルアミノエチルアミン等を挙げることができる。中でも、上記(i)ジアルキルアミノアルキルアミン化合物は、ジメチルアミンプロピルアミンまたはジエチルアミノプロピルアミンであることが特に好ましい。上記(i)ジアルキルアミノアルキルアミン化合物は、1種単独でも2種類以上組み合わせても使用することができる。
 また、上記(ii)分子内に活性水素を有する窒素原子を1個または2個以上有する環状アミン化合物も、特に限定されるものではないが、具体的には、例えば、メタキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ジアミンシクロヘキサン、フェニレンジアミン、トルイレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ピペラジン、N-アミノエチルピペラジン、ベンジルアミン、シクロヘキシルアミン等の、ポリアミン類またはモノアミン類を挙げることができる。中でも、上記環状アミン化合物は、メタキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、N-アミノエチルピペラジン、シクロヘキシルアミンまたはベンジルアミンであることが特に好ましい。これらのアミン成分の中で、ポリアミン類は硬化剤化合物としての分子鎖成長材料としての機能を有し、モノアミン類は分子量調節材料としての機能を有する。上記(ii)分子内に活性水素を有する窒素原子を1個または2個以上有する環状アミン化合物は、1種単独でも2種類以上組み合わせても使用することができる。
 上記(iii)ジイソシアネートとしても、特に限定されるものではないが、具体的には、例えば、イソホロンジイソシアネート、メタキシリレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、2,4-トルイレンジイソシアネート、2,6-トルイレンジイソシアネート、1,5-ナフチレンジイソシアネート、1,4-フェニレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、2,2’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等を挙げることができる。中でも、上記(iii)ジイソシアネートは、環状構造を有するジイソシアネートであることが特に好ましい。上記(iii)ジイソシアネートは、1種単独でも2種類以上組み合わせても使用することができる。
 上記(iv)エポキシ化合物としても、特に限定されるものではないが、具体的には、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、カテコール、レゾルシン、クレゾールノボラック、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、ハイドロキノン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリフェニルメタン、テトラフェニルエタン、ビキシレノール等の多価フェノールと、エピクロルヒドリンとを反応させて得られるグリシジルエーテル;グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;p-オキシ安息香酸、β-オキシナフトエ酸等のヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル;アミノフェノール、アミノアルキルフェノール等から得られるグリシジルアミノグリシジルエーテル;アミノ安息香酸から得られるグリシジルアミノグリシジルエステル;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4、4’-ジアミノジフェニルメタン、4、4’-ジアミノジフェニルスルホン等から得られるグリシジルアミン;エポキシ化ポリオレフィン;グリシジルヒダントイン;グリシジルアルキルヒダントイン;トリグリシジルシアヌレート;ブチルグリシジルエーテル、フェニルグリシジルエーテル、アルキルフェニルグリシジルエーテル、安息香酸グリシジルエステル、スチレンオキサイド等に代表されるモノエポキシド等が挙げられる。
 上記(iv)エポキシ化合物は、1種単独でも2種類以上組み合わせても使用することができる。
 上記(iv)エポキシ化合物としては、分子内に複数のエポキシ基を有するポリエポキシドと、分子内に1個のエポキシ基を有するモノエポキシドとを組み合わせて使用することがより好ましい。
 上記ポリエポキシドとしては、例えば、エポキシ当量約190のビスフェノールAタイプジエポキシド、エポキシ当量約175のビスフェノールFタイプジエポキシド、ジグリシジルアニリン、ジグリシジルオルトトルイジン等のジエポキシドを用いることが特に好ましい。また、上記モノエポキシドとしては、フェニルグリシジルエーテル、メチルフェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル等を用いることが特に好ましい。これらのエポキシドの中でポリエポキシド、特にジエポキシドは分子鎖成長材料としての機能を有し、モノエポキシドは分子量調節材料としての機能を有する。
 上記変性脂肪族ポリアミン化合物としては、一般に変性脂肪族ポリアミン化合物として市販されているものも好適に用いることができ、かかる市販品としては、特に限定されるものではないが、例えば、フジキュアFXE-1000、FXR-1030、FXB-1050(富士化成工業(株)製)等を挙げることができる。
 (I-3)(C)長鎖炭化水素基含有化合物で処理された無機充填剤
 本発明の一液性エポキシ樹脂組成物に含有される上記(C)長鎖炭化水素基含有化合物で処理された無機充填剤は、長鎖炭化水素基含有化合物を用いて無機充填剤を表面処理したものである。
 表面処理に供される無機充填剤は特に限定されるものではないが、例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素、炭酸カルシウム、ケイ酸カルシウム等を好適に用いることができる。これらの無機充填剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。併用する場合の2種類以上の無機充填剤の比率は任意である。中でも表面処理に供される無機充填剤は、熱膨張および熱伝導に優れる点で、シリカ、炭酸カルシウムであることがより好ましい。
 表面処理に供される無機充填剤の形状は球状、破砕状、針状、板状等の粒子状であればその形状は特に限定されるものではないが、球状、破砕状であることがより好ましい。
 また、表面処理に供される無機充填剤の粒子径は、表面処理後の長鎖炭化水素基含有化合物で処理された無機充填剤の粒子径が後述する範囲となるように適宜調整すればよい。具体的には、表面処理に供される無機充填剤の平均粒子径は、10nm以上100nm以下であることが好ましい。なお、無機充填剤の平均粒子径を調整する方法は特に限定されるものではなく、従来公知の方法を適宜選択して用いることができる。例えば、無機充填剤であるシリカの平均粒子径は、例えば以下の方法によって調整することができる。すなわち、無機充填剤を高温の酸水素炎中(あるいは酸素雰囲気で間接加熱)、1000~1200℃で加水分解(あるいは酸化分解)し、一旦、スート(すす)状の緩い結合をした凝集体を形成させる。そして、1800℃以上の温度で加熱溶融した後、冷却してランダムに再結合させる。また、炭酸カルシウムの平均粒子径は、粉砕・分級により調整することができる。
 上記無機充填剤は、長鎖炭化水素基含有化合物によって表面処理されていればよいが、ここで、長鎖炭化水素基含有化合物によって表面処理されるとは、長鎖炭化水素基含有化合物に由来する長鎖炭化水素基が無機充填剤の表面に直接的または間接的に結合するように処理されているものであれば、どのような方法で処理されたものであってもよい。また、その結合の形態も特に限定されるものではなく、共有結合、配位結合、水素結合等により結合されていればよい。
 かかる表面処理によって、無機充填剤の一液性エポキシ樹脂組成物への分散性および一液性エポキシ樹脂組成物と無機充填剤との結合力を向上させることができる。その結果、当該表面処理を行った無機充填剤は、貯蔵による経時変化後も、一液性エポキシ樹脂組成物の流れ込み性の制御を効率よく行うことができるようになる。
 表面処理に用いられる上記長鎖炭化水素基含有化合物は、主鎖の炭素数が8個以上20個以下の炭化水素基を有する化合物であることが好ましい。炭化水素基の主鎖の炭素数が8個以上であることにより、流れ込み性に関しても貯蔵安定性を向上することができるとともに、チキソトロピック性の効果が十分大きいため好ましい。また、炭化水素基の主鎖の炭素数が20個以下であることにより、添加量に応じた効果を得ることができるため、過剰な添加によるコスト高を削減できるだけでなく、チキソトロピック性の付与効果も十分である。
 上記炭化水素基は、特に限定されるものではなく、飽和炭化水素基であっても不飽和炭化水素基であってもよいが、好ましくは例えば、アルキル基、アルケニル基等を挙げることができる。したがって、上記長鎖炭化水素基含有化合物には、長鎖アルキル基含有化合物、長鎖アルケニル基含有化合物等が含まれる。また、上記アルケニル基の炭素-炭素二重結合の数も特に限定されるものではないが、1個以上5個以下であることがより好ましい。
 より具体的には、上記炭化水素基は、例えば、パルミトイル基、ステアリル基、デシル基、後述する脂肪酸及び長鎖アルキルシラン系化合物に含まれる炭化水素基等であることがより好ましい。
 上記表面処理の方法は特に限定されるものではないが、例えば、上記長鎖炭化水素基含有化合物を上記無機充填剤の表面に存在させて、200℃以上に加熱することによって行うことができる。加熱によって上記長鎖炭化水素基含有化合物と上記無機充填剤の表面との結合反応が促進される。加熱温度は200℃以上であればよいが、200℃以上400℃以下がより好適である。
 上記長鎖炭化水素基含有化合物を上記無機充填剤の表面に存在させる方法としては、例えば、上記長鎖炭化水素基含有化合物を上記無機充填剤に噴霧する方法、上記長鎖炭化水素基含有化合物の溶液に上記無機充填剤を浸す方法等を適宜選択して用いることができる。また、上記表面処理は窒素雰囲気下で行うことがより好ましい。上記長鎖炭化水素基含有化合物の溶液の調製に用いられる溶媒も特に限定されるものではなく、用いる長鎖炭化水素基含有化合物に応じて適宜選択すればよい。
 上記長鎖アルキル基含有化合物としては、例えば、一般的に表面処理剤として使用される飽和脂肪酸を好適に用いることができる。かかる飽和脂肪酸としては、特に限定されるものではなく、例えば、デカン酸(カプリン酸)、ウンデカン酸、ドデカン酸(ラウリン酸)、トリデカン酸、テトラデカン酸(ミリスチン酸)、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸(マルガリン酸)、オクタデカン酸(ステアリン酸)、ノナデカン酸(ツベルクロステアリン酸)、イコサン酸(アラキジン酸)、ドコサン酸(ベヘン酸)等を挙げることができる。中でも、上記飽和脂肪酸は、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸であることが特に好ましい。
 また、上記長鎖アルケニル基含有化合物としては、例えば、一般的に表面処理剤として使用される不飽和脂肪酸等を好適に用いることができる。かかる不飽和脂肪酸としては、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、リノール酸、エイコサジエン酸、リノレン酸、ビノレン酸、エレオステアリン酸、ミード酸、エイコサトリエン酸、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、ボセオペンタエン酸、エイコサペンタエン酸等を挙げることができる。中でも、上記不飽和脂肪酸は、オレイン酸、リノール酸であることが特に好ましい。
 また、上記長鎖アルキル基含有化合物としては、ドデシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、オクタデシルトリメトキシシラン等の長鎖アルキルシラン系の長鎖アルキル基含有化合物も好適に用いることができる。中でも、長鎖アルキルシラン系の長鎖アルキル基含有化合物としては、ヘキサデシルトリメトキシシラン、オクタデシルトリメトキシシランが特に好ましい。
 上記(C)長鎖炭化水素基含有化合物で処理された無機充填剤の形状も球状、破砕状、針状、板状等の粒子状であればその形状は特に限定されるものではないが、球状、破砕状であることがより好ましい。
 また、長鎖炭化水素基含有化合物で処理された無機充填剤の平均粒子径は、無機充填剤の通常の大きさであれば一液性エポキシ樹脂組成物の流れ込み性を抑制することが可能となるが、10nm以上100nm以下であることがより好ましく、10nm以上50nm以下であることがさらに好ましい。上記長鎖炭化水素基含有化合物で処理された無機充填剤の平均粒子径が10nm以上100nm以下であることにより、当該無機充填剤の少量の配合で一液性エポキシ樹脂組成物の流れ込み性を抑制することが可能となる。また、長鎖炭化水素基含有化合物で処理された無機充填剤の平均粒子径が10nm以上であることにより、一液性エポキシ樹脂組成物に無機充填剤を配合することによる粘度の上昇を抑えることができ、作業性の低下を防ぐことができる。また、長鎖炭化水素基含有化合物で処理された無機充填剤の平均粒子径が100nm以下であることにより、一液性エポキシ樹脂組成物に少量配合することにより、狭い隙間への流れ込み制御が可能となる。
 なお、本明細書において、粒子の平均粒子径は、レーザー回折散乱法(D50)を原理とした粒度分布測定装置(製品名:LA920、堀場製作所社製)によって測定した値に基づいて算出した値をいう。具体的には、上記測定した粒径分布における各ピークについて平均粒子径を求め、その含有割合が最も高いピークの平均粒子径を「平均粒子径」とする。
 尚、各ピークの含有割合は、頻度分布比の面積によって判断した。ここで、複数のピークが重なっている場合には、適切な関数(ローレンツ型関数やガウス関数)により各ピークをそれぞれの関数でフィッティングし、最適な比率で差分する方法を用いることができる。より具体的には、粒度分布測定装置の付属ソフトや一般的な表計算ソフト(Excel、IGOR、Mathmatica等(何れも商品名))で計算をすることが可能である。
 (I-4)各成分の含有量
 本発明に係る一液性エポキシ樹脂組成物は、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有するものであれば、各成分の含有割合は特に限定されるものではないが、上記(A)の含有量を100重量部としたときに、上記(B)の含有量と上記(C)の含有量との合計が7重量部以上25重量部以下であることがより好ましい。上記(A)の含有量を100重量部としたときに、上記(B)の含有量と上記(C)の含有量との合計が上記範囲内であることにより、粘度と流れ込み性に関してより貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現することができる。
 また、上記(B)の含有量と上記(C)の含有量の割合も特に限定されるものではないが、(C)の含有量/(B)の含有量が0.025以上1.000以下であることがより好ましい。(C)の含有量/(B)の含有量が上記範囲内であることにより、粘度と流れ込み性に関してより貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現することができる。
 また、本発明に係る一液性エポキシ樹脂組成物は、上記(B)の含有量と上記(C)の含有量との合計が上記範囲内であり、且つ、(C)の含有量/(B)の含有量が上記範囲内であることがさらに好ましい。
 (I-5)その他の成分
 本発明に係る一液性エポキシ樹脂組成物は、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有するものであれば、本発明の効果に好ましくない影響を及ぼさない範囲でその他の成分を含んでいてもよい。
 上記その他の成分としては、例えば、難燃剤、光安定剤、粘度調製剤、着色剤、補強剤、増粘剤、揺変性付与剤等の従来公知のエポキシ樹脂組成物に用い得る各種添加剤を挙げることができる。
 (I-6)本発明に係る一液性エポキシ樹脂組成物の製造方法
 本発明に係る一液性エポキシ樹脂組成物は、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有するものであれば、その製造方法は特に限定されるものではなく、一液性エポキシ樹脂組成物の一般的な方法を適宜用いればよい。かかる方法としては、例えばニーダーやミキシングロール等の従来公知の装置を用いて(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを混合する方法、攪拌する方法等を挙げることができる。
 (II)本発明に係る一液性エポキシ樹脂組成物の利用
 本発明に係る一液性エポキシ樹脂組成物は、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物であるため、電子部品、電気部品等の部品、或いは、電子部品又は電気部品を封止する封止方法に利用することができる。それゆえ、かかる部品や封止方法も本発明に含まれる。
 (II-1)電子部品、電気部品
 本発明に係る部品は、電子部品又は電気部品であって、上述した一液性エポキシ樹脂組成物によって、少なくとも2つの部材が接着されているものであればよい。
 上記「電子部品又は電気部品」としては、気密封止や絶縁封止を行うことに有用性があるものであれば特に限定されるものではなく、通常「電気部品」と称されるものであってもよい。上記電子部品又は電気部品には、例えば、リレー、スイッチ、センサー等が含まれる。
 なお、「一液性エポキシ樹脂組成物によって、少なくとも2つの部材が接着されている」とは、少なくとも2つの部材の間に一液性エポキシ樹脂組成物が介在し、一液性エポキシ樹脂組成物の接着力によって少なくとも2つの部材が結合していることをいう。
 また、接着の対象となる部材としては特に限定されるものではない。例えば、一液性エポキシ樹脂組成物によって、リレーの成形材と金属端子とを接着する場合が挙げられる。
 (II-2)封止方法
 本発明に係る封止方法は、上述した一液性エポキシ樹脂組成物によって、少なくとも2つの部材を接着させることにより、電子部品又は電気部品を封止する工程を含んでいればよい。
 上記工程は、上述した一液性エポキシ樹脂組成物を用いること以外は、従来公知の方法に従って行うことができる。
 上記一液性エポキシ樹脂組成物によって部材を接着する方法としては、例えば、一液性エポキシ樹脂組成物を少なくとも1の部材の全体または一部分に塗布し、当該部材と接着させたい部材とを密着させ、一液性エポキシ樹脂組成物を硬化させればよい。
 すなわち、本願には以下の発明が含まれる。
 本発明に係る一液性エポキシ樹脂組成物は、上記課題を解決するために、(A)エポキシ樹脂と、(B)変性脂肪族ポリアミン化合物と、(C)長鎖炭化水素基含有化合物で処理された無機充填剤とを主成分として含有することを特徴としている。
 上記の構成によれば、粘度のみではなく、流れ込み性に関しても貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できる。
 本発明に係る一液性エポキシ樹脂組成物では、上記(A)の含有量を100重量部としたとき、上記(B)の含有量と上記(C)の含有量との合計が7重量部以上25重量部以下であり、かつ、(C)の含有量/(B)の含有量が0.025以上1.000以下であることがより好ましい。
 上記の構成によれば、粘度と流れ込み性に関してより貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できる。
 本発明に係る一液性エポキシ樹脂組成物では、上記長鎖炭化水素基含有化合物で処理された無機充填剤は、主鎖の炭素数が8個以上20個以下である炭化水素基を有することがより好ましい。
 上記の構成によれば、粘度のみではなく、流れ込み性に関してもより貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できる。
 本発明に係る一液性エポキシ樹脂組成物では、上記長鎖炭化水素基含有化合物で処理された無機充填剤の平均粒子径が10nm以上50nm以下であることがより好ましい。
 上記の構成によれば、さらに流れ込み性に関してより貯蔵安定性に優れた一液性エポキシ樹脂組成物を実現できる。
 本発明に係る部品は、上記一液性エポキシ樹脂組成物によって、少なくとも2つの部材が接着されていることを特徴としている。
 上記の構成によれば、一液性エポキシ樹脂組成物の貯蔵期間に関係なく貯蔵中の粘度上昇による気密不良が抑制され、且つ、貯蔵により流れ込み性が大きくなるという問題のない部品を製造することができる。
 本発明に係る封止方法は、上記一液性エポキシ樹脂組成物によって、少なくとも2つの部材を接着させることにより、電子部品又は電気部品を封止する工程を含むことを特徴としている。
 上記の構成によれば、一液性エポキシ樹脂組成物の貯蔵期間に関係なく貯蔵中の粘度上昇による気密不良を抑制し、且つ、流れ込み性が大きくなるという問題なく電子部品又は電気部品を封止することができる。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 なお、得られた一液性エポキシ樹脂組成物の粘度とタレ長さに関する貯蔵安定性評価試験は、以下の方法で測定した。
 <粘度の貯蔵安定性評価試験>
 調製した直後の一液性エポキシ樹脂組成物を、回転粘度計(E型粘度計、RE215型、東機産業(株)社製)で測定して初期粘度とした。一液性エポキシ樹脂組成物を所定温度(40℃)の恒温槽で1ヶ月保管した後、同様にして粘度を測定し、初期粘度に対する変化率を評価した。変化率が150%未満の場合「◎」、150%以上200%未満の場合「○」、200%以上の場合「×」とした。
 <タレ長さの貯蔵安定性評価試験>
 寸法が26mm×76mm×0.9mmのB270ガラス(白板ガラス、松浪硝子工業(株)社製)を垂直に取り付け具に固定した。調製した直後の一液性エポキシ樹脂組成物を、ディスペンサーを用いてガラス板上部に約30mg滴下し、ガラス板を100℃のオーブン中で1時間加熱した。一液性エポキシ樹脂組成物が流動した跡の上端から下端までの長さをノギスで計測して初期タレ長さとした。一液性エポキシ樹脂組成物を所定温度(40℃)の恒温槽で1ヶ月保管した後、同様にしてタレ長さを測定し、初期タレ長さに対する変化率を評価した。変化率が150%未満の場合「◎」、150%以上200%未満の場合「○」、200%以上の場合「×」とした。
 〔実施例1〕
 エポキシ樹脂としてビスフェノールAジグリシジルエーテルを用い、ビスフェノールAジグリシジルエーテル100重量部に対して、変性脂肪族ポリアミン化合物(商品名:フジキュアFXE-1000、富士化成工業(株)製)20重量部を加え、長鎖炭化水素基含有化合物で処理された無機充填剤として平均粒子径が10~50nmで主鎖の炭素数8~20個の長鎖炭化水素基を含有する化合物で処理したシリカ0.5重量部を混合した後、ミキシングロールを使って混練し、一液性エポキシ樹脂組成物を調製した。なお、長鎖炭化水素基含有化合物で処理された無機充填剤は、シリカに、オクタデシルトリエトキシシランを触媒ジエチルアミンと共に溶剤ヘキサンに溶解したものをスプレーし、200℃に加熱して得られたものである。
 得られた一液性エポキシ樹脂組成物について、粘度とタレ長さに関する貯蔵安定性評価試験を行った。
 各成分の含有量、変性脂肪族ポリアミン化合物の含有量と長鎖炭化水素基含有化合物で処理された無機充填剤の含有量との合計(表1中、「硬化剤の含有量と無機充填剤の含有量との合計」と表示)、長鎖炭化水素基含有化合物で処理された無機充填剤の含有量/変性脂肪族ポリアミン化合物の含有量(表1中、「(無機充填剤の含有量)/(硬化剤の含有量)」と表示)、粘度の貯蔵安定性評価試験の結果(表1中、「40℃1ヶ月保管後の粘度変化率」と表示)、タレ長さの貯蔵安定性評価試験の結果(表1中、「40℃1ヶ月保管後のタレ長さ変化率」と表示)を表1に示す。なお、表1、2中、「(無機充填剤の含有量)/(硬化剤の含有量)」は単位が無く、その他の数値の単位は重量部であり、エポキシ樹脂100重量部に対する含有量を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〔実施例2-12〕
 表1または表2に記載された成分及び仕込み量で混合を行ったこと以外は、実施例1と同様にして一液性エポキシ樹脂組成物をそれぞれ調製し、得られた一液性エポキシ樹脂組成物について、粘度とタレ長さの貯蔵安定性評価試験を行った。
 各成分の含有量、変性脂肪族ポリアミン化合物の含有量と長鎖炭化水素基含有化合物で処理された無機充填剤の含有量との合計、長鎖炭化水素基含有化合物で処理された無機充填剤の含有量/変性脂肪族ポリアミン化合物の含有量、粘度の貯蔵安定性評価試験の結果、タレ長さの貯蔵安定性評価試験の結果を、実施例1と同様に表1、表2に示す。
 〔比較例1〕
 硬化剤として変性脂肪族ポリアミン化合物6重量部の代わりに2-ヘプタデシルイミダゾール(C17Z、四国化成工業(株)社製)を20重量部用いたこと以外は、実施例3と同様にして一液性エポキシ樹脂組成物を調製し、得られた一液性エポキシ樹脂組成物について、粘度とタレ長さの貯蔵安定性評価試験を行った。結果を表2に示す。
 〔比較例2〕
 硬化剤として変性脂肪族ポリアミン化合物6重量部の代わりにエポキシ樹脂アミンアダクト化合物(ノバキュア(登録商標)HX-3721、旭化成工業(株)社製)を20重量部用いたこと以外は、実施例3と同様にして一液性エポキシ樹脂組成物を調製し、得られた一液性エポキシ樹脂組成物について、粘度とタレ長さの貯蔵安定性評価試験を行った。結果を表2に示す。
 〔比較例3〕
 無機充填剤として長鎖炭化水素基含有化合物で処理シリカ(主鎖の炭素数:8~20個、平均粒子径:10~50nm)0.5重量部の代わりに表面処理無しシリカを1重量部用いたこと以外は、実施例1と同様にして一液性エポキシ樹脂組成物を調製し、得られた一液性エポキシ樹脂組成物について、粘度とタレ長さの貯蔵安定性評価試験を行った。結果を表2に示す。
 以上のように、本発明に係る一液性エポキシ樹脂組成物は、リレー、スイッチ、センサ等の各種電子部品又は電気部品における隙間を気密封止若しくは絶縁封止することに好適に利用することができ、非常に有用である。
 それゆえ、一液性エポキシ樹脂組成物を製造する化学工業の分野のみならず、かかる一液性エポキシ樹脂組成物を用いた各種電子部品又は電気部品の製造に関わる分野、さらには各種電子部品又は電気部品を用いる電化製品、産業機械、自動車や鉄道車両の製造工業にも広く応用することが可能である。
 1 金属端子
 2 成形材
 3 一液性エポキシ樹脂組成物塗布面
 4 一液性エポキシ樹脂組成物が流動した跡の下端

Claims (6)

  1. (A)エポキシ樹脂と、
    (B)変性脂肪族ポリアミン化合物と、
    (C)長鎖炭化水素基含有化合物で処理された無機充填剤と、
    を主成分として含有することを特徴とする一液性エポキシ樹脂組成物。
  2.  上記(A)の含有量を100重量部としたとき、上記(B)の含有量と上記(C)の含有量との合計が7重量部以上25重量部以下であり、かつ、
     (C)の含有量/(B)の含有量が0.025以上1.000以下であることを特徴とする請求項1に記載の一液性エポキシ樹脂組成物。
  3.  上記長鎖炭化水素基含有化合物で処理された無機充填剤は、主鎖の炭素数が8個以上20個以下である炭化水素基を有することを特徴とする請求項1に記載の一液性エポキシ樹脂組成物。
  4.  上記長鎖炭化水素基含有化合物で処理された無機充填剤の平均粒子径が10nm以上50nm以下であることを特徴とする請求項1に記載の一液性エポキシ樹脂組成物。
  5.  請求項1に記載の一液性エポキシ樹脂組成物によって、少なくとも2つの部材が接着されていることを特徴とする部品。
  6.  請求項1に記載の一液性エポキシ樹脂組成物によって、少なくとも2つの部材を接着させることにより、電子部品又は電気部品を封止する工程を含むことを特徴とする封止方法。
PCT/JP2010/072012 2010-01-29 2010-12-08 一液性エポキシ樹脂組成物およびその利用 WO2011092947A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127016583A KR101178298B1 (ko) 2010-01-29 2010-12-08 일액성 에폭시 수지 조성물 및 그 사용
CN2010800596787A CN102762659B (zh) 2010-01-29 2010-12-08 单液性环氧树脂组合物及其利用
US13/519,328 US20130022818A1 (en) 2010-01-29 2010-12-08 One-pack epoxy resin composition, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-018345 2010-01-29
JP2010018345A JP4893836B2 (ja) 2010-01-29 2010-01-29 一液性エポキシ樹脂組成物およびその利用

Publications (1)

Publication Number Publication Date
WO2011092947A1 true WO2011092947A1 (ja) 2011-08-04

Family

ID=44318948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072012 WO2011092947A1 (ja) 2010-01-29 2010-12-08 一液性エポキシ樹脂組成物およびその利用

Country Status (5)

Country Link
US (1) US20130022818A1 (ja)
JP (1) JP4893836B2 (ja)
KR (1) KR101178298B1 (ja)
CN (1) CN102762659B (ja)
WO (1) WO2011092947A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901923B2 (ja) * 2011-09-30 2016-04-13 太陽インキ製造株式会社 熱硬化性樹脂充填材及びプリント配線板
JP6847221B2 (ja) * 2016-12-09 2021-03-24 エルジー・ケム・リミテッド 密封材組成物
CN110050009B (zh) 2016-12-09 2022-05-03 株式会社Lg化学 封装组合物
JP6724854B2 (ja) * 2017-04-26 2020-07-15 信越化学工業株式会社 熱硬化性エポキシ樹脂組成物
JP6772946B2 (ja) * 2017-04-26 2020-10-21 信越化学工業株式会社 低温硬化型液状エポキシ樹脂組成物
EP3460018A1 (de) * 2017-09-25 2019-03-27 Sika Technology Ag Einkomponentiger hitzehärtender epoxidklebstoff mit verbesserter haftung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349850A (ja) * 1998-04-10 1999-12-21 Kyowa Chem Ind Co Ltd 不飽和脂肪酸処理無機化合物の安定化方法およびその使用
JP2002363443A (ja) * 2001-06-01 2002-12-18 Maruo Calcium Co Ltd 表面処理無機フィラー及びこれを配合した樹脂組成物
JP2003007927A (ja) * 2001-06-18 2003-01-10 Somar Corp エリアアレイ端子型表面実装パッケージ補強用アンダーフィル封止剤
JP2007031526A (ja) * 2005-07-26 2007-02-08 Three Bond Co Ltd 加熱硬化型一液性樹脂組成物
JP2007106852A (ja) * 2005-10-13 2007-04-26 Three Bond Co Ltd 一液加熱硬化型難燃性組成物及びその硬化物
JP2008001867A (ja) * 2006-06-26 2008-01-10 Three Bond Co Ltd 硬化性樹脂組成物
JP2009007467A (ja) * 2007-06-28 2009-01-15 Shin Etsu Chem Co Ltd 実装用難燃性サイドフィル材及び半導体装置
JP2009215368A (ja) * 2008-03-07 2009-09-24 Omron Corp 一液性エポキシ樹脂組成物およびその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066621B2 (ja) * 1990-04-16 1994-01-26 富士化成工業株式会社 一成分系加熱硬化性エポキシド組成物
DE4419234A1 (de) * 1994-06-01 1995-12-07 Wacker Chemie Gmbh Verfahren zur Silylierung von anorganischen Oxiden

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349850A (ja) * 1998-04-10 1999-12-21 Kyowa Chem Ind Co Ltd 不飽和脂肪酸処理無機化合物の安定化方法およびその使用
JP2002363443A (ja) * 2001-06-01 2002-12-18 Maruo Calcium Co Ltd 表面処理無機フィラー及びこれを配合した樹脂組成物
JP2003007927A (ja) * 2001-06-18 2003-01-10 Somar Corp エリアアレイ端子型表面実装パッケージ補強用アンダーフィル封止剤
JP2007031526A (ja) * 2005-07-26 2007-02-08 Three Bond Co Ltd 加熱硬化型一液性樹脂組成物
JP2007106852A (ja) * 2005-10-13 2007-04-26 Three Bond Co Ltd 一液加熱硬化型難燃性組成物及びその硬化物
JP2008001867A (ja) * 2006-06-26 2008-01-10 Three Bond Co Ltd 硬化性樹脂組成物
JP2009007467A (ja) * 2007-06-28 2009-01-15 Shin Etsu Chem Co Ltd 実装用難燃性サイドフィル材及び半導体装置
JP2009215368A (ja) * 2008-03-07 2009-09-24 Omron Corp 一液性エポキシ樹脂組成物およびその利用

Also Published As

Publication number Publication date
CN102762659B (zh) 2013-12-11
US20130022818A1 (en) 2013-01-24
JP4893836B2 (ja) 2012-03-07
KR20120087998A (ko) 2012-08-07
CN102762659A (zh) 2012-10-31
KR101178298B1 (ko) 2012-08-29
JP2011157430A (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
JP4893836B2 (ja) 一液性エポキシ樹脂組成物およびその利用
JP5574237B2 (ja) 電子部品封止用エポキシ樹脂組成物
EP2251369B1 (en) One-pack type epoxy resin composition and use thereof
JP5158088B2 (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、並びに一液性エポキシ樹脂組成物及びその硬化物
JP4962554B2 (ja) 一液性エポキシ樹脂組成物及びその利用
JP6619628B2 (ja) 接着フィルム用エポキシ樹脂組成物。
TWI677534B (zh) 液狀樹脂組成物
TWI801488B (zh) 樹脂組成物及其硬化物、電子零件用接著劑、半導體裝置,以及電子零件
WO2013080732A1 (ja) 一液型エポキシ樹脂組成物
JP2013072011A (ja) 処理硬化触媒、一液型エポキシ樹脂組成物及び硬化物
JP2016017121A (ja) 成形用樹脂シート及び電気・電子部品
JP7404127B2 (ja) エポキシ樹脂組成物
JP2009203453A (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤、一液性エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP2021059740A (ja) 表面処理シリカフィラーおよびその製造方法、ならびに表面処理シリカフィラーを含有する樹脂組成物
JP2004269721A (ja) マスターバッチ型硬化剤および一液性エポキシ樹脂組成物
TW201619325A (zh) 樹脂組成物
CN105899635A (zh) 导电性粘接剂和半导体装置
JPWO2018159564A1 (ja) 樹脂組成物
WO2023044701A1 (en) Thermally conductive adhesive composition, preparation method and use thereof
TWI427092B (zh) Wire frame fixing material, lead frame and semiconductor device
JP2005320368A (ja) 半導体封止用樹脂組成物
KR20240070535A (ko) 열 전도성 접착제 조성물, 그의 제조 방법 및 용도
JP6405209B2 (ja) 銅バンプ用液状封止材、および、それに用いる樹脂組成物
JP2023008549A (ja) エポキシ樹脂組成物
JP2017145357A (ja) 液状エポキシ樹脂組成物、半導体封止剤、および半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059678.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016583

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519328

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10844701

Country of ref document: EP

Kind code of ref document: A1