WO2011086755A1 - 半導体素子及び半導体素子を作製する方法 - Google Patents

半導体素子及び半導体素子を作製する方法 Download PDF

Info

Publication number
WO2011086755A1
WO2011086755A1 PCT/JP2010/070308 JP2010070308W WO2011086755A1 WO 2011086755 A1 WO2011086755 A1 WO 2011086755A1 JP 2010070308 W JP2010070308 W JP 2010070308W WO 2011086755 A1 WO2011086755 A1 WO 2011086755A1
Authority
WO
WIPO (PCT)
Prior art keywords
degrees
semiconductor region
main surface
type semiconductor
group iii
Prior art date
Application number
PCT/JP2010/070308
Other languages
English (en)
French (fr)
Inventor
慎司 徳山
真寛 足立
孝史 京野
吉広 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP10843110.7A priority Critical patent/EP2528118A4/en
Priority to CN201080018398.1A priority patent/CN102414848B/zh
Publication of WO2011086755A1 publication Critical patent/WO2011086755A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a semiconductor element and a method for manufacturing the semiconductor element.
  • Patent Document 1 describes obtaining ohmic contact with a p-type layer on a c-plane.
  • a metal made of Au, Ni, or the like is used for Ga X Al 1-X N doped with p-type impurities. After the metal layer is deposited, annealing is performed in an oxygen atmosphere. As a result, a light emitting device with low driving voltage and high luminance is realized by using a gallium nitride compound semiconductor.
  • Patent Document 2 describes obtaining ohmic contact with a p-type layer on the c-plane.
  • a nickel layer is formed on the surface of the p + layer, and a gold layer is formed thereon, and then the distribution of elements in the depth direction is reversed by heat treatment. As a result, it is configured so that elements are present in the order of nickel and gold from the surface side.
  • Patent Document 3 describes the formation of an electrode on a p-type GaN contact layer. After forming a translucent electrode on the GaN contact layer 17 to which Mg is added, heat treatment is performed in a gas containing at least oxygen in a range of 500 to 600 degrees Celsius to reduce p-type resistance and alloy the electrode. At the same time.
  • a GaN layer and Mg-added laminate is formed on an sapphire substrate via an AlN buffer layer, and then heated at a temperature of 300 degrees Celsius. After this heating, a metal electrode having a thickness of 50 nm is deposited on the laminate.
  • Patent Documents 1 and 2 give very good results for p-type GaN on a c-plane GaN substrate.
  • p-type GaN on nonpolar and semipolar GaN substrates cannot form a good ohmic electrode, which is due to the influence of the characteristic thick surface oxide film on the nonpolar surface. It is thought that.
  • the difference in the influence of the oxide film is due to the fact that the state of the oxide film (Ga—O bond) on the surface is different between the polar c-plane and the nonpolar plane.
  • a thick oxide film exists on the non-polar surface at the GaN-electrode interface, and therefore, the electrical characteristics are not good.
  • this oxide film due to the difference in oxygen adsorption force between the c-plane and the nonpolar plane, a large amount of oxide is formed at the nonpolar GaN-electrode interface by oxygen annealing to alloy the electrode.
  • an object of the present invention is to provide a semiconductor element having good ohmic contact on a p-type main surface inclined with respect to the c-plane.
  • An object of the present invention is to provide a method for manufacturing a semiconductor element capable of realizing good ohmic contact on a p-type main surface inclined with respect to the p-type main surface.
  • One aspect of the present invention is a semiconductor element having a non-alloy electrode.
  • This semiconductor element comprises (a) a hexagonal group III nitride, and a c-plane of the hexagonal group III nitride along a plane inclined with respect to the c axis of the hexagonal group III nitride.
  • a p-type semiconductor region having a principal surface extending differently; and (b) a metal layer provided on the principal surface of the p-type semiconductor region.
  • the hexagonal group III nitride contains gallium as a group III constituent element, and the metal layer and the p-type semiconductor region are stacked so as to form an interface to form a non-alloy electrode.
  • the inclined principal surface of the support made of hexagonal group III nitride is more easily oxidized than the c-plane of hexagonal group III nitride. Therefore, when alloying is performed after the metal layer for the electrode is formed, oxides increase at the interface between the hexagonal group III nitride and the electrode.
  • the semiconductor element according to the aspect of the present invention the metal layer and the p-type semiconductor region are stacked so as to form an interface to form a non-alloy electrode. Therefore, an increase in oxide due to the alloy after forming the metal layer for the electrode can be avoided.
  • Another aspect of the present invention is a method of manufacturing a semiconductor element.
  • the method includes (a) preparing a support including a p-type semiconductor region having a main surface made of hexagonal group III nitride, and (b) a metal layer on the main surface of the p-type semiconductor region. And a step of forming a non-alloy electrode.
  • the hexagonal group III nitride contains gallium as a group III constituent element, and the principal surface of the p-type semiconductor region is along a plane inclined with respect to the c-axis of the hexagonal group III nitride. It extends differently from the c-plane of the hexagonal group III nitride.
  • the support main surface made of hexagonal group III nitride is more easily oxidized than the c-plane of hexagonal group III nitride, but made of hexagonal group III nitride. Since the metal layer is deposited on the main surface of the p-type semiconductor region to form the non-alloy electrode, an increase in oxide due to the alloy after the metal layer for the electrode is formed can be avoided.
  • the method according to another aspect of the present invention may further include a step of processing the p-type semiconductor region of the support before depositing the metal layer.
  • the treatment is performed by applying an acid wash to the support.
  • the natural oxidation prior to the formation of the metal layer affects the surface of the p-type semiconductor region
  • the influence of the natural oxidation can be reduced by the above pretreatment.
  • the above treatment is performed, for example, by immersing the support in at least one of hydrochloric acid, aqua regia and hydrofluoric acid.
  • the non-alloy electrode comprises (a) a hexagonal group III nitride, and a c-plane of the hexagonal group III nitride along a plane inclined with respect to the c axis of the hexagonal group III nitride.
  • a p-type semiconductor region having a principal surface extending differently; and (b) a metal layer provided on the principal surface of the p-type semiconductor region.
  • the hexagonal group III nitride contains gallium as a group III constituent element, and the metal layer and the p-type semiconductor region are stacked so as to form an interface to form a non-alloy electrode.
  • the metal layer can be made of at least one of platinum (Pt), palladium (Pd), and gold (Au), or an alloy thereof. According to the above aspect, these metal layers can provide good electrical properties.
  • electrode annealing is not performed in an atmosphere containing oxygen. Oxide formation due to electrode annealing can be avoided at the interface.
  • the inclination angle formed between the normal vector on the principal surface of the p-type semiconductor region and the c-axis may be in the range of 10 degrees to 80 degrees, or 100 degrees to 170 degrees. .
  • the main surface of the p-type semiconductor region exhibits a property as a polar surface rather than a semipolar surface.
  • the tilt angle is not less than 80 degrees and not more than 100 degrees, it exhibits a property as a nonpolar plane rather than a semipolar plane.
  • an inclination angle formed between the normal vector on the principal surface of the p-type semiconductor region and the c-axis may be in the range of 63 degrees to 80 degrees, or 100 degrees to 117 degrees. .
  • a high-quality active layer in the blue to green wavelength region can be produced.
  • the active layer includes a gallium nitride-based semiconductor layer containing indium (for example, InGaN), In element can be taken in.
  • the gallium nitride semiconductor is InGaN or the like, the fluctuation of the In composition is small. Therefore, the light emission unevenness can be reduced in the light emitting diode, and the increase in the threshold current due to the fluctuation of the In composition can be reduced in the laser diode.
  • the non-alloy electrode can reduce the series resistance of the element.
  • the semiconductor element may further include a support base made of hexagonal group III nitride.
  • the support base has a semipolar main surface, and the p-type semiconductor region is provided on the semipolar main surface of the support base. According to this aspect, it is easy to provide a semipolar principal surface in the p-type semiconductor region.
  • the inclination angle formed between the normal vector on the semipolar main surface of the support base and the c-axis of the support base is in the range of 10 degrees to 80 degrees, or 100 degrees to 170 degrees. Can be.
  • the main surface of the p-type semiconductor region when the inclination angle of the support base is less than 10 degrees and 170 degrees or more, the main surface of the p-type semiconductor region exhibits a property as a polar surface rather than a semipolar surface.
  • the above-mentioned inclination angle is not less than 80 degrees and not more than 100 degrees, it exhibits a property as a nonpolar plane rather than a semipolar plane.
  • the inclination angle formed between the normal vector on the semipolar main surface of the support substrate and the c-axis of the support substrate may be in the range of 63 degrees to 80 degrees or 100 degrees to 117 degrees.
  • a semipolar surface having an angle range of 63 degrees to 80 degrees or 100 degrees to 117 degrees is provided on the main surface of the p-type semiconductor region. It becomes easy.
  • the support may further include an n-type semiconductor region made of hexagonal group III nitride and an active layer made of hexagonal group III nitride.
  • the active layer is provided between the n-type semiconductor region and the p-type semiconductor region.
  • the electrode which has favorable ohmic property can be provided for a light emitting element.
  • the interface may include an oxide layer having a thickness of 10 nm or less. According to said side surface, if the thickness of an oxide layer is the said range, the favorable ohmic contact with respect to a semipolar surface can be provided.
  • the oxide layer contains gallium as a constituent element.
  • the semipolar surface according to the above-described side surface is easy to form gallium oxide.
  • the oxide layer does not include an oxide of a constituent element of the metal layer. Since the oxide layer according to the above-described side surface is not formed at the time of electrode annealing, the oxide is mainly bonded to the constituent element of the semipolar surface.
  • a semiconductor element having good ohmic contact on the p-type main surface inclined with respect to the c-plane is provided.
  • a method for manufacturing a semiconductor element capable of realizing good ohmic contact on a p-type main surface inclined with respect to a c-plane is provided.
  • FIG. 1 is a drawing showing an example of a semiconductor element according to the present embodiment.
  • FIG. 2 is a drawing showing a process flow showing the main processes in the method of manufacturing a semiconductor device according to the present embodiment.
  • FIG. 3 is a view showing characteristics of an alloy electrode and a non-alloy electrode on a semipolar p-type GaN surface.
  • FIG. 4 is a drawing showing XPS measurement results for an alloy electrode and a non-alloy electrode on a semipolar p-type GaN surface.
  • FIG. 1 is a drawing showing an example of a semiconductor element according to the present embodiment.
  • the semiconductor element 11 has a non-alloy electrode.
  • the semiconductor element 11 includes a p-type semiconductor region 13 and a metal layer 15.
  • the p-type semiconductor region 13 is made of hexagonal group III nitride.
  • the hexagonal group III nitride contains gallium as a group III constituent element and can be made of, for example, a gallium nitride semiconductor.
  • Gallium nitride based semiconductors include, for example, GaN, “InGaN, AlGaN, InAlGaN.
  • the p-type semiconductor region 13 has a main surface 13a, and the main surface 13a extends along a plane inclined with respect to the c-axis ( ⁇ 0001> axis) of the hexagonal group III nitride.
  • An example of such a main surface 13a is a semipolar surface.
  • the direction on the c-axis is represented by a c-axis vector CV.
  • the metal layer 15 is provided on the main surface 13 a of the p-type semiconductor region 13.
  • the metal layer 15 and the p-type semiconductor region 13 are stacked so as to form an interface 17 to constitute a non-alloy electrode.
  • the hexagonal group III nitride contains gallium as a group III constituent element
  • the semipolar main surface 13a made of the hexagonal group III nitride has a hexagonal group III nitride. Compared to the c-plane, it is easily oxidized. Therefore, when alloying is performed after the metal layer 15 for the electrode is formed, oxides increase at the interface between the hexagonal group III nitride and the electrode.
  • the semiconductor element 11 according to the present embodiment the metal layer 15 and the p-type semiconductor region 13 are stacked so as to form the interface 17 and constitute a non-alloy electrode. Therefore, an increase in oxide due to the alloy after forming the metal layer 15 for the electrode can be avoided.
  • the metal layer 15 can be made of at least one of platinum (Pt), palladium (Pd), and gold (Au), and can be made of an alloy thereof. These metal layers can provide good electrical properties.
  • electrode annealing is not performed in an atmosphere containing oxygen after the metal layer 15 is deposited on the main surface 13a. Oxide formation due to electrode annealing in this atmosphere can be avoided at the interface. For example, at the non-alloy electrode interface configured on a semipolar plane, generation of oxide due to electrode annealing in an oxygen atmosphere can be avoided.
  • a normal vector NVP indicating the normal of the main surface 13a is shown.
  • the inclination angle ALPHA formed by the normal vector NVP and the c-axis vector VC can be in the range of 10 degrees to 170 degrees.
  • a semiconductor surface having a polarity different from the polar c-plane is provided on the substrate main surface 13a.
  • the inclination angle APLHA is less than 10 degrees and 170 degrees or more
  • the main surface 13a of the p-type semiconductor region 13 exhibits a property as a polar plane rather than a semipolar plane.
  • the tilt angle is not less than 80 degrees and not more than 100 degrees, it exhibits a property as a nonpolar plane rather than a semipolar plane.
  • the inclination angle ALPHA can be in the range of 10 degrees to 80 degrees, or 100 degrees to 170 degrees.
  • a semipolar surface is provided in the board
  • the inclination angle ALPHA can be in the range of 63 degrees to 80 degrees or 100 degrees to 117 degrees. When the inclination angle ALPHA is in the above range, the surface oxide film is small, and good electrical characteristics can be obtained by the electrode material and pretreatment.
  • the interface 17 can include an oxide layer 19.
  • the thickness of the oxide layer 19 can be 10 nm or less. When the thickness of the oxide layer 19 is in the above range, good ohmic characteristics can be provided for non-alloy contact between the semipolar plane and the metal layer. Further, according to observations by the inventors, the oxide layer 19 has been confirmed to remain at least about 0.5 nm at the interface 17. Since the main surface 13a easily forms gallium oxide, the oxide layer 19 contains gallium as a constituent element. On the other hand, the oxide layer 19 does not contain the oxide of the constituent element of the metal layer 17. Since the oxide layer 19 is not formed during the electrode annealing, the oxide is mainly bonded to the constituent elements of the main surface 13a.
  • the semiconductor element 11 can further include a support base 21 having a main surface made of hexagonal group III nitride.
  • the support base 21 can be made of GaN, InGaN, AlGaN, InAlGaN, AlN, or the like.
  • the support base 21 has a main surface 21a and a back surface 21b. In the form in which the main surface 21a is semipolar, it becomes easy to provide the semipolarity to the main surface 13a of the p-type semiconductor region 13.
  • the p-type semiconductor region is provided on the main surface 21 a of the support base 21.
  • the inclination angle BETA formed by the normal vector NVS on the main surface 21a of the support base 21 and the c-axis vector CVS ( ⁇ 0001> axis direction) of the support base 21 can be in the range of 10 degrees to 170 degrees. .
  • the main surface 13a of the p-type semiconductor region 13 exhibits a property close to a polar c-plane and does not exhibit a polarity different from the polar c-plane.
  • the main surface 13a of the p-type semiconductor region 13 exhibits a property as a nonpolar surface rather than semipolar.
  • the inclination angle BETA can be in the range of 10 degrees to 80 degrees, or 100 degrees to 170 degrees. At this inclination angle, the main surface 21a exhibits semipolarity. According to said form, the electrode which has favorable ohmic property can be provided for a light emitting element.
  • the semiconductor element 11 can further include an n-type semiconductor region 23 made of hexagonal group III nitride and an active layer 25 made of hexagonal group III nitride.
  • the active layer 25 is provided between the n-type semiconductor region 23 and the p-type semiconductor region 13.
  • the n-type semiconductor region 23, the active layer 25, and the p-type semiconductor region 13 constitute a support 29.
  • the n-type semiconductor region 23, the active layer 25, and the p-type semiconductor region 13 are arranged in the direction of the normal vector NVS on the main surface 13 a of the support base 13.
  • the active layer 25 may include a barrier layer 25a and may include a gallium nitride based semiconductor layer 25b (for example, a well layer) containing indium.
  • the well layer 25b can be made of, for example, InGaN
  • the barrier layer 25a can be made of InGaN or GaN.
  • the main surface 13a of the p-type semiconductor region 13 has an angle range of 63 degrees to 80 degrees or 100 degrees to 117 degrees. It is easy to provide a semipolar surface.
  • the active layer 25 includes an InGaN layer
  • the incorporation of In element is good, and therefore light emission with a long wavelength is possible.
  • the gallium nitride semiconductor is InGaN or the like
  • the fluctuation of the In composition is small. Therefore, the light emission unevenness can be reduced in the light emitting diode, and the increase in the threshold current due to the fluctuation of the In composition can be reduced in the laser diode.
  • the tilt angle BETA is substantially equal to the tilt angle ALPHA when the influence of the strain contained in the crystal is ignored.
  • FIG. 2 is a drawing showing a process flow showing main steps in the method of manufacturing a semiconductor element according to the present embodiment.
  • reference numerals of corresponding members in FIG. 1 are given as reference numerals of members appearing in the manufacturing process.
  • a support 29 is prepared.
  • the support 29 includes the p-type semiconductor region 13, and the p-type semiconductor region 13 has a main surface 13 a as the outermost surface of the support 29.
  • the main surface 13a can be a semipolar surface made of, for example, a hexagonal group III nitride.
  • the hexagonal group III nitride contains gallium as a group III constituent element.
  • group III constituent elements can include indium, aluminum, etc.
  • group V constituent elements include nitrogen.
  • the main surface 13a of the p-type semiconductor region 13 can be made of, for example, Mg-doped GaN.
  • the main surface 13a of the p-type semiconductor region 13 extends along a plane inclined with respect to the c-axis of the hexagonal group III nitride. Therefore, the main surface 13a of the p-type semiconductor region 13 is This indicates semipolarity, and in the present embodiment, this is referred to as “semipolar principal surface”.
  • the p-type semiconductor region 13 of the support 29 can be pretreated before depositing the metal layer for the p-side electrode.
  • the p-type semiconductor region 13 is grown in the growth furnace to form the support 29, when the support (epitaxial substrate) 29 is taken out of the growth furnace, the epitaxial substrate is exposed to the atmosphere. Since the epi surface of the epitaxial substrate has a polarity different from that of the polar c-plane, natural oxidation may occur due to oxygen in the atmosphere. Therefore, although the natural oxidation prior to the formation of the electrode film affects the surface 13a of the p-type semiconductor region 13, the influence of the natural oxidation can be reduced by the above pretreatment.
  • the pretreatment is performed by immersing the support 29 in a solution for acid cleaning, such as aqua regia and hydrofluoric acid.
  • step S103 a metal layer 15 is deposited on the main surface 13a of the p-type semiconductor region 13 to form a non-alloy electrode.
  • a substrate product including an array of semiconductor elements including non-alloy electrodes is formed.
  • the principal surface 13a made of hexagonal group III nitride is more easily oxidized than the c-plane of hexagonal group III nitride, according to this method, the p-type semiconductor region made of hexagonal group III nitride is used. Since the non-alloy electrode is formed by depositing the metal layer 15 on the main surface 13a, the increase in oxide due to the alloy after the metal layer 15 for the electrode is formed can be avoided.
  • the metal layer 15 can be made of at least one of platinum (Pt), palladium (Pd), and gold (Au), or an alloy thereof. These metal layers can provide good electrical properties.
  • electrode annealing is not performed in an atmosphere containing oxygen. It is possible to avoid generation of new oxide at the interface 17 during electrode annealing.
  • the contact resistance per unit area in such a non-alloy electrode can be, for example, 2 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm 2 ) or more, and can be 6 ⁇ 10 ⁇ 3 ( ⁇ ⁇ cm 2 ) or less.
  • the inclination angle ALPHA formed by the normal vector NV and the c-axis vector CV in the semipolar principal surface 13a of the p-type semiconductor region 13 can be, for example, in the range of 10 degrees to 80 degrees or 100 degrees to 170 degrees. .
  • step S104 the substrate products are separated without performing electrode annealing in an oxygen atmosphere, and individual semiconductor elements are manufactured. Through these steps, a non-alloy electrode can be manufactured, and a semiconductor element having a non-alloy electrode can be manufactured.
  • a group III nitride substrate is prepared.
  • the group III nitride substrate 21 can be, for example, GaN, AlGaN, InGaN, InAlGaN, AlN, or the like.
  • the substrate 21 has a semipolar main surface.
  • Group III nitride substrate 21 includes a semipolar main surface 21a.
  • the semipolar principal surface 21a has a normal vector NVS inclined at an angle BETA with respect to the c-axis vector CVS of the group III nitride substrate 21 as already described.
  • the inclination of the c-axis can be the a-axis direction or the m-axis direction of the group III nitride substrate 21.
  • an n-type group III nitride semiconductor region 23 is grown on the semipolar main surface 21a of the group III nitride substrate 21.
  • the n-type group III nitride semiconductor region 23 can be an n-type cladding layer or the like.
  • the n-type cladding layer can be made of a quaternary, ternary, or binary III-nitride semiconductor, such as Si-doped GaN, AlGaN, InAlGaN, or InAlN.
  • the main surface of the n-type group III nitride semiconductor region 23 exhibits semipolarity.
  • a light emitting layer is grown on the main surface of the n-type group III nitride semiconductor region 23.
  • the light emitting layer includes an active layer 25, and may include a light guide layer provided on both sides of the active layer 25 if necessary.
  • the active layer 23 is grown.
  • the active layer 23 can have a quantum well structure.
  • a barrier layer 25a is grown on the main surface of the n-type group III nitride semiconductor region 23, and the surface of the barrier layer 25a is semipolar.
  • the well layer 25b is grown on the main surface of the barrier layer 25a, and the surface of the well layer 25b is semipolar.
  • the growth of the barrier layer 25a and the growth of the well layer 25b are repeated.
  • the surface of the completed light emitting layer and active layer 23 exhibits semipolarity. In the semipolar active layer, the influence of the piezoelectric field is reduced as compared with the c-plane.
  • a p-type group III nitride semiconductor region 13 is grown on the semipolar main surface of the light emitting layer.
  • the p-type group III nitride semiconductor region 13 can include a p-type electron block layer, a p-type cladding layer, a p-type contact layer, and the like.
  • a p-type electron blocking layer and / or a p-type cladding layer are grown on the active layer 25.
  • the p-type cladding layer can be made of a quaternary, ternary, or binary III-nitride semiconductor, such as Mg-doped GaN, AlGaN, InAlGaN, or InAlN.
  • a p-type contact layer can be included.
  • the p-type contact layer can be made of a quaternary, ternary, or binary III-nitride semiconductor, such as Mg-doped GaN, AlGaN, InAlGaN, or InAlN.
  • the p-type dopant concentration in the p-type contact layer is, for example, 5 ⁇ 10 19 cm ⁇ 3 or more and can be 5 ⁇ 10 20 cm ⁇ 3 or less.
  • the inventors formed a p-type electrode on the p-type semipolar GaN layer using a method of annealing in an oxygen atmosphere after forming a metal layer.
  • a p-side electrode was formed by applying an alloying process in an oxygen atmosphere after forming a Ni / Au metal laminate on the semipolar (2-0-21) surface of p-type GaN, this p-side The electrode did not show good ohmic characteristics.
  • a Pt electrode was formed on semipolar (2-0-21) p-type GaN by producing a Pt electrode at a high temperature. This Pt electrode also did not show good ohmic characteristics.
  • the c-plane GaN surface and the semipolar GaN surface were analyzed using an X-ray photoelectron spectrometer (XPS). As a result, it was shown that the surface oxide film on the semipolar GaN surface is thicker (Ga—O bond density is higher) than the c-plane GaN surface. In the production by the above two methods, an oxide film was also observed at the GaN / electrode interface after the alloying treatment. On the other hand, in the non-alloy Pt electrode as in the present embodiment, a thick oxide film such as the c-plane was not confirmed.
  • XPS X-ray photoelectron spectrometer
  • the inventors speculated that the interface between the metal electrode and the p-type semiconductor crystal was oxidized due to heat treatment in an oxygen-containing atmosphere, thereby increasing the contact resistance.
  • the bond state (dangling bond) on the semipolar nitride surface is different from the bond state on the c-plane surface, and the semipolar nitride surface is easily bonded to oxygen. Therefore, it was assumed that oxygen during alloying reached the nitride-electrode interface and oxides grew on this interface.
  • the inventors proceeded with the development of electrodes that do not use annealing.
  • a Pt electrode film is deposited at room temperature (for example, 15 degrees Celsius to 40 degrees Celsius), and this electrode film is not subjected to heat treatment.
  • This Pt electrode showed good ohmic properties, and the electrical characteristics of the semiconductor element (for example, contact resistance value by TLM method and IV characteristics of PN diode) were also excellent.
  • the oxide film was estimated to be 10 nm or less.
  • the p-type GaN crystal on the c-plane and the semipolar plane is subjected to ultrasonic organic cleaning with acetone, 2-propanol, etc. before the deposition of the Pt electrode, followed by hydrochloric acid, aqua regia, hydrofluoric acid cleaning. Went.
  • the washing time was about 5 minutes in the solution.
  • Example 1 An epitaxial substrate having the structure shown in FIG. 3A was fabricated by metal organic chemical vapor deposition (MOCVD). The structure is as follows: a GaN buffer layer (if necessary) is grown by MOCVD on an n-type GaN substrate having a semipolar surface with the c-axis inclined in the m-axis direction, and then a Si-doped n-type GaN having a thickness of 1 ⁇ m. An Mg-doped p-type GaN layer having a thickness of 0.4 ⁇ m and a high-concentration Mg-doped p + -type GaN layer having a thickness of 50 nm were grown.
  • MOCVD metal organic chemical vapor deposition
  • a circular resist was formed by photolithography before the deposition of the p-type electrode film. Thereafter, in the same deposition apparatus, a Pt film (thickness 50 nm) and a Ni / Au film (thickness 5 nm / 11 nm) were deposited by an electron beam method and a resistance heating method, respectively.
  • the degree of vacuum was about 1 ⁇ 10 ⁇ 6 Torr.
  • Example 2 The GaN-electrode electrode interface was analyzed using an X-ray photoelectron spectrometer (XPS). The same epitaxial growth as in Example 1 was performed to grow a c-plane epitaxial substrate (evaluation device A) and a semipolar epitaxial substrate (evaluation device B). A Pt electrode was deposited on each of these epitaxial substrates (evaluation devices A and B) by an electron beam method to form a c-plane substrate product (evaluation device C) and a semipolar substrate product (evaluation device D).
  • XPS X-ray photoelectron spectrometer
  • a Ni / Au film is deposited on these epitaxial substrates (evaluation devices A and B) by an electron beam method and a resistance heating method, and a c-plane substrate product (evaluation device E) and a semipolar plane substrate product (evaluation). Device F) was formed.
  • the above organic cleaning and acid cleaning were performed on the epitaxial substrate before vapor deposition.
  • the evaluation devices E and F were annealed for 1 minute in a nitrogen atmosphere containing a small amount of oxygen.
  • the surface oxide film in the evaluation device B is thicker (Ga—O bond density is higher) than that in the evaluation device A.
  • the evaluation device F was also confirmed to have a thick oxide film at the GaN-electrode interface.
  • those oxide films could not be confirmed.
  • FIG. 4A is a drawing showing XPS signals in the range of the binding energy of Ga—O bonds in a non-alloy electrode on a semipolar plane
  • FIG. 4B is a diagram of Ga ⁇ in an alloy electrode on a semipolar plane. It is drawing which shows the XPS signal in the range of the coupling energy of O coupling.
  • FIG. 4 it can be understood as follows. From the results shown in the figure, it can be inferred that surface oxidation is likely to occur on the semipolar substrate and it is difficult to obtain ohmic characteristics. However, even on a semipolar substrate, it has been confirmed that an oxide film does not occur if the electrode is a non-alloy electrode that does not undergo heat treatment. Further, by performing a pretreatment with an acid, it is possible to obtain better ohmic characteristics.
  • Example 3 In order to confirm the difference due to the angle of the semipolarity, the (20-21) plane was inclined at angles of +5 degrees, -5 degrees, +10 degrees, and -10 degrees (four types of angles).
  • a non-polar substrate of a substrate and an m-plane substrate was prepared.
  • An epitaxial substrate was produced using these GaN substrates in the same manner as in Example 2.
  • XPS measurement was performed in the same manner as in Example 2. According to this measurement result, when a Pt non-alloy electrode is formed on an epitaxial substrate using semipolar and nonpolar GaN substrates, the interface of the non-alloy electrode is better than the alloy electrode on the c-plane. all right.
  • the non-alloy electrode on the substrate has a non-polar surface (semipolar / nonpolar) main surface having a different property from the polar c-plane, good ohmic characteristics can be obtained.
  • the present embodiment it is possible to provide a semiconductor element having good ohmic contact on the p-type main surface inclined with respect to the c-plane.
  • a method for producing a semiconductor element having good ohmic contact on a p-type main surface inclined with respect to a c-plane and capable of realizing good ohmic contact on a p-type main surface inclined with respect to a c-plane. is there.
  • SYMBOLS 11 Semiconductor element, 13 ... p-type semiconductor region, 13a ... Main surface, 15 ... Metal layer, 17 ... Interface, ALPHA ... Inclination angle, 19 ... Oxide layer, 21 ... Support base, 21a ... Main surface, 21b ... Back surface , 23 ... n-type semiconductor region, 25 ... active layer, 29 ... support, NVS ... normal vector, 25a ... barrier layer, 25b ... gallium nitride based semiconductor layer, BETA ... tilt angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

 c面に対して傾斜したp型主面において良好なオーミック接触を有する半導体素子を提供する。p型半導体領域13の主面13aは該六方晶系III族窒化物のc軸(<0001>軸)に対して傾斜した平面に沿って延在する。金属層15はp型半導体領域13の主面13a上に設けられる。金属層15とp型半導体領域13とは界面17を形成するように積層されてノンアロイ電極を構成する。六方晶系III族窒化物はIII族構成元素としてガリウムを含むので、六方晶系III族窒化物からなる主面13aは、六方晶系III族窒化物のc面に比べて酸化されやすい。金属層15とp型半導体領域13とは、界面17を形成するように積層されてノンアロイ電極を構成する。電極のための金属層15を形成した後のアロイによる酸化物増加を避ける。

Description

半導体素子及び半導体素子を作製する方法
 本発明は、半導体素子、及び半導体素子を作製する方法に関する。
 特許文献1には、c面のp型層へのオーミック接触を得ることが記載されている。p型不純物をドープしたGaAl1-XNにAu、Ni等よりなる金属を使用する。金属層の堆積後に、酸素雰囲気中でアニールを行う。これにより、窒化ガリウム系化合物半導体を利用して、低駆動電圧化、高輝度化した発光デバイスと実現する。
 特許文献2には、c面のp型層へのオーミック接触を得ることが記載されている。p層の表面上にニッケル層を形成すると共に、その上に金層を形成した後に、熱処理によって深さ方向の元素の分布を反転させる。この結果、表面側からニッケル、金の順に元素が存在するように構成される。
 特許文献3には、p型GaNコンタクト層上への電極の形成が記載されている。Mgの添加されたGaNコンタクト層17上に透光性電極を形成した後に、少なくとも酸素を含むガス中において摂氏500~600度の範囲で熱処理して、p型低抵抗化と電極の合金化処理を同時に行う。
 特許文献4に記載された方法では、サファイア基板上にAlNバッファ層を介してGaN層及びMgを添加した積層体を形成した後に、これを摂氏300度の温度で加熱する。この加熱後に、積層体上に厚さ50nmの金属電極を蒸着する。
特開平05-291621号公報 特開平09-64337号公報 特開平11-186605号公報 特開2004-247323号公報
 特許文献1及び2の方法では、c面GaN基板上のp型GaNに対して非常に良好な結果をもたらす。しかしながら、発明者らの知見によれば、無極性及び半極性のGaN基板上のp型GaNでは、良好なオーミック電極を形成できず、これは、非極性面の特有の厚い表面酸化膜の影響であると考えられる。酸化膜の影響の違いは、有極性のc面と非極性面では表面の酸化膜(Ga-O結合)の状態が異なることに起因する。発明者らの実験によれば、非極性面ではGaN-電極界面により厚い酸化膜が存在しており、これ故に電気特性が良くない。さらに、この酸化膜は、c面と非極性面における酸素吸着力の差異に因り、電極を合金化させる酸素アニールにより非極性GaN-電極の界面により多くの酸化物が形成されている。
 本発明は、このような事情を鑑みて試されたものであり、c面に対して傾斜したp型主面において良好なオーミック接触を有する半導体素子を提供することを目的とし、またc面に対して傾斜したp型主面において良好なオーミック接触を実現できる半導体素子を作製する方法を提供することを目的とする。
 本発明の一側面は、ノンアロイ電極を有する半導体素子である。この半導体素子は、(a)六方晶系III族窒化物からなり、該六方晶系III族窒化物のc軸に対して傾斜した平面に沿って該六方晶系III族窒化物のc面と異なるように延在する主面を有するp型半導体領域と、(b)前記p型半導体領域の前記主面上に設けられた金属層とを備える。前記六方晶系III族窒化物はIII族構成元素としてガリウムを含み、前記金属層と前記p型半導体領域とは界面を成すように積層されてノンアロイ電極を構成する。
 発明者らの知見によれば、六方晶系III族窒化物からなり支持体の傾斜した主面は、六方晶系III族窒化物のc面に比べて酸化されやすい。これ故に、電極のための金属層を形成した後にアロイを行うと、六方晶系III族窒化物と電極との界面に酸化物が増加する。本発明に係る側面に係る半導体素子によれば、金属層とp型半導体領域とは、界面を形成するように積層されてノンアロイ電極を構成する。これ故に、電極のための金属層を形成した後のアロイによる酸化物増加を避けることができる。
 本発明の別の側面は、半導体素子を作製する方法である。この方法は、(a)六方晶系III族窒化物からなる主面を有するp型半導体領域を含む支持体を準備する工程と、(b)前記p型半導体領域の前記主面上に金属層を堆積して、ノンアロイ電極を形成する工程とを備える。前記六方晶系III族窒化物はIII族構成元素としてガリウムを含み、前記p型半導体領域の前記主面は、該六方晶系III族窒化物のc軸に対して傾斜した平面に沿って該六方晶系III族窒化物のc面と異なるように延在する。
 上記側面に係る方法によれば、六方晶系III族窒化物からなる支持体主面は六方晶系III族窒化物のc面に比べて酸化されやすいけれども、六方晶系III族窒化物からなるp型半導体領域の主面上に金属層を堆積してノンアロイ電極を形成するので、電極のための金属層を形成した後のアロイによる酸化物増加を避けることができる。
 本発明の別の側面に係る方法は、前記金属層を堆積する前に、前記支持体の前記p型半導体領域を処理する工程を更に備えることができる。前記処理は、前記支持体に酸洗浄を適用することによって行われる。
 上記側面に係る方法によれば、金属層の形成に先立つ自然酸化がp型半導体領域の表面に影響を与えるけれども、上記の前処理により、自然酸化の影響を低減できる。上記の処理は、例えば、塩酸、王水及びフッ化水素酸の少なくともいずれかに支持体を浸すことによって行われる。
 本発明の更なる別の側面は、ノンアロイ電極である。このノンアロイ電極は、(a)六方晶系III族窒化物からなり、該六方晶系III族窒化物のc軸に対して傾斜した平面に沿って該六方晶系III族窒化物のc面と異なるように延在する主面を有するp型半導体領域と、(b)前記p型半導体領域の前記主面上に設けられた金属層とを備える。前記六方晶系III族窒化物はIII族構成元素としてガリウムを含み、前記金属層と前記p型半導体領域とは界面を成すように積層されてノンアロイ電極を構成する。
 上記の側面では、前記金属層は、白金(Pt)、パラジウム(Pd)及び金(Au)の少なくともいずれか、又はこれらの合金からなることができる。上記側面によれば、これらの金属層は良好な電気特性を提供できる。
 上記の側面では、前記金属層を堆積した後には、酸素を含む雰囲気中で電極アニールを行わない。電極アニールによる酸化物の生成を界面において避けることができる。
 上記の側面では、前記p型半導体領域の前記主面における法線ベクトルと前記c軸との成す傾斜角は、10度以上80度以下、又は100度以上170度以下の範囲であることができる。上記の側面によれば、傾斜角が10度未満170度以上であるとき、p型半導体領域の主面は、半極性面というよりは極性面としての性質を示す。傾斜角が80度以上100度以下であるとき、半極性面というよりは無極性面としての性質を示す。
 上記の側面では、前記p型半導体領域の前記主面における法線ベクトルと前記c軸との成す傾斜角は、63度以上80度以下、又は100度以上117度以下の範囲であることができる。上記の側面によれば、傾斜角が上記範囲にあるとき、青色から緑色波長領域の高品質な活性層が作製可能である。例えば、活性層が、インジウムを含む窒化ガリウム系半導体層(例えば、InGaN等)を含むとき、In元素の取り込みができる。また、窒化ガリウム系半導体がInGaN等であるとき、In組成の揺らぎが小さい。これ故に、発光ダイオードでは発光むらが小さくでき、レーザダイオードでは、In組成の揺らぎよるしきい値電流増加を低減できる。ノンアロイ電極により、素子の直列抵抗を低減できる。
 上記の側面では、半導体素子は六方晶系III族窒化物からなる支持基体を更に備えることができる。前記支持基体は半極性主面を有しており、前記p型半導体領域は、前記支持基体の前記半極性主面上に設けられている。この側面によれば、p型半導体領域に半極性主面を提供することが容易になる。また、この側面において、前記支持基体の前記半極性主面における法線ベクトルと前記支持基体のc軸との成す傾斜角は、10度以上80度以下、又は100度以上170度以下の範囲であることができる。上記の側面によれば、支持基体の傾斜角が10度未満170度以上であるとき、p型半導体領域の主面が半極性面というよりは極性面としての性質を示す。上記の傾斜角が80度以上100度以下であるとき、半極性面というよりは無極性面としての性質を示す。さらに、前記支持基体の前記半極性主面における法線ベクトルと前記支持基体のc軸との成す傾斜角は63度以上80度以下又は100度以上117度以下の範囲であることができる。支持基体の傾斜角が上記角度範囲であるとき、p型半導体領域の主面に、傾斜角は63度以上80度以下又は100度以上117度以下の角度範囲の半極性面を提供することが容易になる。
 上記の側面では、支持体は、六方晶系III族窒化物からなるn型半導体領域と、六方晶系III族窒化物からなる活性層とを更に備えることができる。前記活性層は、前記n型半導体領域と前記p型半導体領域との間に設けられる。上記の側面によれば、良好なオーミック性を有する電極を発光素子に提供できる。
 上記の側面では、前記界面には厚さ10nm以下の酸化物層が含まれることができる。上記の側面によれば、酸化物層の厚さが上記範囲であれば、半極性面に対する良好なオーミック接触を提供できる。
 上記の側面では、前記酸化物層は構成元素としてガリウムを含む。上記の側面に係る半極性面は、ガリウム酸化物を形成しやすい。
 上記の側面では、前記酸化物層は前記金属層の構成元素の酸化物を含まない。上記の側面に係る酸化物層は電極アニールの際に形成されるものではないので、酸化物は主に半極性面の構成元素と結合している。
 本発明の各側面に係る上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
 以上説明したように、本発明の一側面によれば、c面に対して傾斜したp型主面において良好なオーミック接触を有する半導体素子が提供される。また、本発明の別の側面によれば、c面に対して傾斜したp型主面において良好なオーミック接触を実現できる半導体素子を作製する方法が提供される。
図1は、本実施の形態に係る半導体素子の一例を示す図面である。 図2は、本実施の形態に係る半導体素子を作製する方法における主要な工程を示す工程フローを示す図面である。 図3は、半極性p型GaN面におけるアロイ電極及びノンアロイ電極の特性を示す図面である。 図4は、半極性p型GaN面におけるアロイ電極及びノンアロイ電極におけるXPS測定結果を示す図面である。
 本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本実施の形態に係るノンアロイ電極、ノンアロイ電極を有する半導体素子、ノンアロイ電極を作製する方法及び半導体素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
 図1は、本実施の形態に係る半導体素子の一例を示す図面である。半導体素子11は、ノンアロイ電極を有する。半導体素子11は、p型半導体領域13と、金属層15とを含む。p型半導体領域13は、六方晶系III族窒化物からなる。六方晶系III族窒化物はIII族構成元素としてガリウムを含み、例えば窒化ガリウム系半導体からなることができる。窒化ガリウム系半導体は、例えばGaN、」InGaN、AlGaN、InAlGaNを含む。p型半導体領域13は主面13aを有しており、主面13aは該六方晶系III族窒化物のc軸(<0001>軸)に対して傾斜した平面に沿って延在する。このような主面13aとして例えば半極性面がある。図1では、c軸に方向はc軸ベクトルCVで表される。金属層15はp型半導体領域13の主面13a上に設けられる。金属層15とp型半導体領域13とは界面17を形成するように積層されてノンアロイ電極を構成する。
 発明者らの知見によれば、六方晶系III族窒化物はIII族構成元素としてガリウムを含むので、六方晶系III族窒化物からなる半極性主面13aは、六方晶系III族窒化物のc面に比べて酸化されやすい。これ故に、電極のための金属層15を形成した後にアロイを行うと、六方晶系III族窒化物と電極との界面に酸化物が増加する。本実施の形態に係る半導体素子11によれば、金属層15とp型半導体領域13とは、界面17を形成するように積層されてノンアロイ電極を構成する。これ故に、電極のための金属層15を形成した後のアロイによる酸化物増加を避けることができる。
 実施例では、金属層15は、白金(Pt)、パラジウム(Pd)及び金(Au)の少なくともいずれかからなることができ、これらの合金からなることができる。これらの金属層は良好な電気特性を提供できる。金属層15とp型半導体領域13とがノンアロイ電極を構成するためには、金属層15を主面13a上に堆積した後に、酸素を含む雰囲気中で電極アニールを行わない。この雰囲気中での電極アニールによる酸化物の生成を界面において避けることができる。例えば半極性面に構成されるノンアロイ電極界面では、酸素雰囲気中の電極アニールによる酸化物の生成を避けることができる。
 図1を参照すると、主面13aの法線を示す法線ベクトルNVPが示されている。この法線ベクトルNVPとc軸ベクトルVCとの成す傾斜角ALPHAは、10度以上170度以下の範囲であることができる。上記の側面によれば、有極性c面と異なる極性の半導体面が基板主面13aに提供される。傾斜角APLHAが10度未満170度以上であるとき、p型半導体領域13の主面13aは、半極性面というよりは極性面としての性質を示す。傾斜角が80度以上100度以下であるとき、半極性面というよりは無極性面としての性質を示す。また、傾斜角ALPHAは、10度以上80度以下、又は100度以上170度以下の範囲であることができる。上記の側面によれば、半極性面が基板主面13aに提供される。
 傾斜角ALPHAは63度以上80度以下又は100度以上117度以下の範囲であることができる。傾斜角ALPHAが上記範囲にあるとき、表面酸化膜が少なく、電極材料や前処理により良好な電気特性を得ることができる。
 界面17には酸化物層19が含まれることができる。酸化物層19の厚さは10nm以下であることができる。酸化物層19の厚さが上記範囲であれば、半極性面と金属層のノンアロイ接触に良好なオーミック特性を提供できる。また、発明者らの観察によれば、酸化物層19は界面17に、少なくとも0.5nm程度の残留が確認されている。主面13aはガリウム酸化物を形成しやすいので、酸化物層19は構成元素としてガリウムを含んでいる。一方、酸化物層19は金属層17の構成元素の酸化物を含まない。酸化物層19は電極アニールの際に形成されるものではないので、酸化物は主に主面13aの構成元素と結合している。
 半導体素子11は六方晶系III族窒化物からなる主面を有する支持基体21を更に備えることができる。支持基体21は、GaN、InGaN、AlGaN、InAlGaN、AlN等からなることができる。支持基体21は主面21a及び裏面21bを有する。主面21aが半極性を示す形態では、p型半導体領域13の主面13aに半極性を提供することが容易になる。また、p型半導体領域は、支持基体21の主面21a上に設けられている。支持基体21の主面21aにおける法線ベクトルNVSと支持基体21のc軸ベクトルCVS(<0001>軸の方向)との成す傾斜角BETAは、10度以上170度以下の範囲であることができる。傾斜角BETAが10度未満170度以上であるとき、p型半導体領域13の主面13aが、有極性のc面に近い性質を示し、有極性のc面と異なる極性を示さない。傾斜角BETAが80度以上100度以下であるとき、p型半導体領域13の主面13aが半極性というよりは無極性面としての性質を示す。傾斜角BETAは、10度以上80度以下、又は100度以上170度以下の範囲であることができる。この傾斜角では、主面21aが半極性を示す。上記の形態によれば、良好なオーミック性を有する電極を発光素子に提供できる。
 半導体素子11は、六方晶系III族窒化物からなるn型半導体領域23と、六方晶系III族窒化物からなる活性層25とを更に備えることができる。活性層25は、n型半導体領域23とp型半導体領域13との間に設けられる。n型半導体領域23、活性層25及びp型半導体領域13は支持体29を構成する。n型半導体領域23、活性層25及びp型半導体領域13は支持基体13の主面13a上の法線ベクトルNVSの方向に配列される。
 活性層25は、障壁層25aを含むことができ、また、インジウムを含む窒化ガリウム系半導体層25b(例えば、井戸層)を含むことができる。井戸層25bは例えばInGaNからなることができ、また障壁層25aはInGaN又はGaNからなることができる。
 傾斜角BETAが63度以上80度以下又は100度以上117度以下の範囲であるとき、p型半導体領域13の主面13aに、63度以上80度以下又は100度以上117度以下の角度範囲の半極性面を提供することが容易になる。例えば、活性層25がInGaN層を含むとき、In元素の取り込みが良好であり、これ故に長波長の発光が可能である。また、窒化ガリウム系半導体がInGaN等であるとき、In組成の揺らぎを小さい。これ故に、発光ダイオードでは発光むらが小さくでき、レーザダイオードでは、In組成の揺らぎよるしきい値電流増加を低減できる。本実施例では、傾斜角BETAは、結晶に内包される歪みの影響を無視するとき、傾斜角ALPHAと実質的に等しい。
 図2は、本実施の形態に係る半導体素子を作製する方法における主要な工程を示す工程フローを示す図面である。引き続く説明では、理解を容易にするために、製造工程において現れる部材の参照番号として、図1中の対応する部材の参照番号を付する。工程S101では、支持体29を準備する。支持体29はp型半導体領域13を含み、p型半導体領域13は、支持体29最表面として主面13aを有する。主面13aは、例えば六方晶系III族窒化物からなる半極性面であることができる。六方晶系III族窒化物はIII族構成元素としてガリウムを含む。他のIII族構成元素として、インジウム、アルミニウム等を含むことができ、V族構成元素として窒素を含む。p型半導体領域13の主面13aは、例えばMgドープGaNからなることができる。p型半導体領域13の主面13aは、該六方晶系III族窒化物のc軸に対して傾斜した平面に沿って延在しており、これ故に、p型半導体領域13の主面13aは半極性を示し、本実施例では、これを「半極性主面」と呼ぶ。
 p側電極のための金属層を堆積する前に、工程S102では、支持体29のp型半導体領域13の前処理を行うことができる。p型半導体領域13を成長炉で成長して支持体29を形成した後に、支持体(エピタキシャル基板)29を成長炉から取り出すと、エピタキシャル基板は大気にさらされる。エピタキシャル基板のエピ表面は、有極性のc面と異なる極性を示すので、大気中の酸素により自然酸化が生じる可能性がある。したがって、電極膜を形成するに先立つ自然酸化がp型半導体領域13の表面13aに影響を与えるけれども、上記の前処理により、自然酸化の影響を低減できる。上記の前処理は、酸洗浄のための溶液、例えば王水及びフッ化水素酸等に支持体29を浸すことによって行われる。
 工程S103では、p型半導体領域13の主面13a上に金属層15を堆積して、ノンアロイ電極を形成する。これらの工程により、ノンアロイ電極を含む半導体素子の配列を含む基板生産物が形成される。
 六方晶系III族窒化物からなる主面13aは六方晶系III族窒化物のc面に比べて酸化されやすいけれども、この方法によれば、六方晶系III族窒化物からなるp型半導体領域13の主面13a上に金属層15を堆積してノンアロイ電極を形成するので、電極のための金属層15を形成した後のアロイによる酸化物増加を避けることができる。金属層15は、白金(Pt)、パラジウム(Pd)及び金(Au)の少なくともいずれか、或いはこれらの合金からなることができる。これらの金属層は良好な電気特性を提供できる。
 また、金属層15を堆積した後には、酸素を含む雰囲気中で電極アニールを行わない。電極アニール中に界面17に酸化物が新たに生成されることを避けることができる。このようなノンアロイ電極における単位面積当たりの接触抵抗は例えば2×10-4(Ω・cm)以上であることができ、また6×10-3(Ω・cm)以下であることができる。p型半導体領域13の半極性主面13aにおける法線ベクトルNVとc軸ベクトルCVとの成す傾斜角ALPHAは、例えば10度以上80度以下又は100度以上170度以下の範囲であることができる。
 工程S104では、酸素雰囲気中での電極アニールを行うことなく基板生産物を分離して、個々の半導体素子を作製する。これらの工程により、ノンアロイ電極を作製することができ、またノンアロイ電極を有する半導体素子を作製することができる。
 支持体29の作製の一例を、半導体素子として発光素子を作製する工程を参照しながら説明する。工程S105では、III族窒化物基板を準備する。III族窒化物基板21としては、例えばGaN、AlGaN、InGaN、InAlGaN、AlN等であることができる。引き続く説明する実施例では基板21は半極性主面を有する。III族窒化物基板21は半極性主面21aを含む。半極性主面21aは、既に説明したように、III族窒化物基板21のc軸ベクトルCVSに対して角度BETAで傾斜した法線ベクトルNVSを有する。c軸の傾斜は、III族窒化物基板21のa軸の方向又はm軸の方向であることができる。
 工程S106では、III族窒化物基板21の半極性主面21a上にn型III族窒化物半導体領域23を成長する。n型III族窒化物半導体領域23は、n型クラッド層等であることができる。n型クラッド層は、四元系、三元系及び二元系のIII族窒化物半導体からなることができ、例えばSiドープGaN、AlGaN、InAlGaN、InAlN等である。n型III族窒化物半導体領域23の主面は、半極性を示す。
 工程S107では、n型III族窒化物半導体領域23の主面上に、発光層を成長する。発光層は活性層25を含み、必要な場合には活性層25の両側に設けられた光ガイド層を含むことができる。工程S108では、活性層23を成長する。活性層23は、量子井戸構造を有することができる。工程S109では、n型III族窒化物半導体領域23の主面上に障壁層25aを成長し、障壁層25aの表面は半極性を示す。工程S110では井戸層25bを障壁層25aの主面上に成長し、井戸層25bの表面は半極性を示す。必要な場合には、障壁層25aの成長と井戸層25bの成長とを繰り返す。完成した発光層及び活性層23の表面は、半極性を示す。半極性の活性層では、c面に比べてピエゾ電界の影響が低減される。
 工程S111では、発光層の半極性主面上にp型III族窒化物半導体領域13を成長する。p型III族窒化物半導体領域13は、p型電子ブロック層、p型クラッド層、p型コンタクト層等を含むことができる。工程S112では、p型電子ブロック層及び/又はp型クラッド層を活性層25上に成長する。p型クラッド層は、四元系、三元系及び二元系のIII族窒化物半導体からなることができ、例えばMgドープGaN、AlGaN、InAlGaN、InAlN等である。工程S113では、p型電子ブロック層及び/又はp型クラッド層を成長した後に、p型コンタクト層を含むことができる。p型コンタクト層は、四元系、三元系及び二元系のIII族窒化物半導体からなることができ、例えばMgドープGaN、AlGaN、InAlGaN、InAlN等である。p型コンタクト層におけるp型ドーパント濃度は例えば5×1019cm-3以上であり、また5×1020cm-3以下であることができる。
 これらの工程により、エピタキシャル基板の形成が完了し、支持体29が提供される。
 本実施例は、半極性p型GaNのオーミック電極の形成に対し、アニールプロセスを用いることなく例えばPt電極を使用することが有効であることを見出したものである。
 まず、発明者らは、金属層を形成した後に酸素雰囲気アニールを行う方法を用いて、p型半極性GaN層の上にp型電極を形成した。しかし、p型GaNの半極性(2-0-21)面上にNi/Au金属積層を形成した後に酸素雰囲気中での合金化工程を適用してp側電極を形成したけれども、このp側電極は、良好なオーミック特性を示さなかった。また、他の方法として、高温状態でPt電極を作製する方法で、半極性(2-0-21)p型GaN上にPt電極を形成した。このPt電極も、良好なオーミック特性を示さなかった。これらの技術を用いて有極性c面のp型GaNに電極を形成するとき、良好なオーミック電極が形成される。上記の説明のように、既存の2方法を半極性GaNへ適用しても、良好なオーミック電極が得られない。
 この理由を考察するために、X線光電子分光分析装置(XPS)を用いてc面GaN表面および半極性GaN表面の分析を行った。その結果、c面GaN面に比べて、半極性GaN面の表面酸化膜が厚い(Ga-O結合の密度が高い)ことが示された。そして、上記の2方法による作製において、合金化処理の後のGaN/電極界面にも同様に酸化膜が観察された。一方で、本実施の形態のようなノンアロイPt電極では、c面のような厚い酸化膜は確認されなかった。
 そこで、発明者らは、酸素を含む雰囲気中で熱処理することが原因で、金属電極とp型半導体結晶との界面が酸化され、それにより接触抵抗が上昇したと推測した。半極性の窒化物表面におけるボンドの状態(ダングリングボンド)がc面表面におけるボンド状態とは異なっており、半極性の窒化物表面は酸素と結合しやすい。これ故に、合金化中の酸素が、窒化物-電極界面に到達して、この界面に酸化物が成長したと推測した。
 そして、発明者らはアニールを用いない電極の開発を進めた。この電極形成プロセスでは、常温(例えば摂氏15度~摂氏40度)で例えばPt電極膜を蒸着すると共にこの電極膜に熱処理を施さない。このPt電極は良好なオーミック性を示し、半導体素子の電気特性(例えばTLM法による接触抵抗値及びPNダイオードのI-V特性等)も優良であった。そして、XPSにより測定結果には、電極とp型半導体領域との界面における酸素-ガリウム結合を示す信号は観測されなかった。この結果から、酸化膜は10nm以下であると見積もられた。また、発明者らの知見から、0.5nm程度の酸化膜が界面に残されている可能性があると見積もられた。つまり、常温でPt電極を形成し、かつこの電極とIII族窒化物半導体との界面に、酸化膜が0.5nm以上10nm以下であれば,良好なオーミック電極が形成される。同様な結果は、Pt電極だけでなく、Pd電極やAu電極、これらの合金電極でも得られた。
 上記の実施例において、Pt電極の蒸着前に、c面及び半極性面のp型GaN結晶をアセトンや2-プロパノール等での超音波有機洗浄を行った後に、塩酸、王水、フッ酸洗浄を行った。洗浄時間は溶液において5分程度であった。このように酸洗浄を行うことによって、オーミック電極の更に良好な特性が得られた。
 (実施例1)図3(a)に示される構造のエピタキシャル基板を有機金属気相成長(MOCVD)法で作製した。その構造は、m軸方向にc軸が傾斜した半極性表面のn型GaN基板上にMOCVD法により、GaNバッファ層(必要な場合)を成長した後に、厚さ1μmのSiドープn型のGaN層、厚さ0.4μmのMgドープp型のGaN層、厚さ50nmの高濃度Mgドープp+型GaN層を成長した。
 p型電極膜の蒸着前に、フォトリソグラフィにより円形のレジストを形成した。この後に、同一蒸着装置内において、電子ビーム法および抵抗加熱法によりそれぞれPt膜(厚さ50nm)及びNi/Au膜(厚さ5nm/11nm)を蒸着した。真空度は、1×10-6Torr程度であった。
 蒸着後に、レジストをアセトンでリフトオフして、ドーナツ状の空隙を有するPt電極を形成した。空隙で分離された内側電極と,外側電極との間で抵抗を測定して、Pt電極の接触抵抗を評価した(c-TLM測定法)。この結果を図3(b)に示した。
測定結果  抵抗値
Pt電極:5×10-3Ω・cm
Ni/Au膜:3×10-2Ω・cm
 (実施例2)X線光電子分光分析装置(XPS)を用いて、GaN-電極極界面の分析を行った。実施例1と同様のエピタキシャル成長を行って、c面エピタキシャル基板(評価デバイスA)及び半極性エピタキシャル基板(評価デバイスB)を成長した。これらのエピタキシャル基板(評価デバイスA、B)の各々に電子ビーム法でPt電極を蒸着して、c面基板生産物(評価デバイスC)及び半極性基板生産物(評価デバイスD)を形成した。また、これらのエピタキシャル基板(評価デバイスA、B)に電子ビーム法及び抵抗加熱法でNi/Au膜を蒸着して、c面基板生産物(評価デバイスE)及び半極性面基板生産物(評価デバイスF)を形成した。
 上記の全ての評価デバイスの作製において、蒸着前に上記の有機洗浄及び酸洗浄をエピタキシャル基板に行った。また、評価デバイスE、Fには、少量の酸素が入った窒素雰囲気中で1分のアニール処理を行った。
 評価デバイスBにおける表面酸化膜は、評価デバイスAに比べて厚い(Ga-O結合の密度が高い)ことが示された。また、評価デバイスEに比べて、評価デバイスFもGaN-電極界面に厚い酸化膜が確認された。しかしながら、評価デバイスC及びDでは、それらの酸化膜は確認できなかった。
 図4(a)は、半極性面上のノンアロイ電極におけるGa-O結合の結合エネルギの範囲におけるXPS信号を示す図面であり、図4(b)は、半極性面上のアロイ電極におけるGa-O結合の結合エネルギの範囲におけるXPS信号を示す図面である。
 図4を参照すると、以下のように理解される。図示された結果から、半極性基板上では表面酸化が起こりやすく、オーミック特性が得られにくいと推測できる。しかしながら、半極性基板上でも、熱処理を加えないノンアロイである電極であれば、酸化膜が生じないことが確認できた。また、酸による前処理を行うことにより、更に良好なオーミック特性から得られる。
 (実施例3)半極性の角度による違いを確認するために、(20-21)面から+5度、-5度、+10度、-10度の角度で傾けた(四種類の角度)半極性基板、及びm面基板の非極性基板を準備した。これらのGaN基板を用いて、実施例2と同様にエピタキシャル基板を作製した。実施例2と同様にXPSの測定を行った。この測定結果によれば、半極性及び無極性のGaN基板を用いてエピタキシャル基板上にPtノンアロイ電極を形成したとき、このノンアロイ電極の界面は、c面上のアロイ電極よりも良好であることがわかった。また、上記の角度範囲による電気特性の大きな差は測定には現れなかった。したがって、有極性であるc面と異なる性質の非極性面(半極性・無極性)の主面を有する基板上のノンアロイ電極であれば、良好なオーミック特性を得ることができた。
 本実施の形態によれば、c面に対して傾斜したp型主面において良好なオーミック接触を有する半導体素子を提供できる。また、本実施の形態によれば、c面に対して傾斜したp型主面において良好なオーミック接触を実現できる半導体素子を作製する方法を提供できる。さらに、本実施の形態によれば、c面に対して傾斜したp型主面において良好なオーミック接触を実現できるノンアロイ電極を提供できる。
 好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。また、本実施の形態では、発光素子について例示的に説明しているけれども、トランジスタやダイオードといった電子デバイスにおけるp側電極にも適用できる。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
 c面に対して傾斜したp型主面において良好なオーミック接触を有する半導体素子であり、またc面に対して傾斜したp型主面において良好なオーミック接触を実現できる半導体素子を作製する方法である。
11…半導体素子、13…p型半導体領域、13a…主面、15…金属層、17…界面、ALPHA…傾斜角、19…酸化物層、21…支持基体、21a…主面、21b…裏面、23…n型半導体領域、25…活性層、29…支持体、NVS…法線ベクトル、25a…障壁層、25b…窒化ガリウム系半導体層、BETA…傾斜角。

Claims (20)

  1.  ノンアロイ電極を有する半導体素子であって、
     六方晶系III族窒化物からなり、該六方晶系III族窒化物のc軸に対して傾斜した平面に沿って該六方晶系III族窒化物のc面と異なるように延在する主面を有するp型半導体領域と、
     前記p型半導体領域の前記主面上に設けられた金属層と
    を備え、
     前記六方晶系III族窒化物はIII族構成元素としてガリウムを含み、
     前記金属層と前記p型半導体領域とは界面を成すように積層されてノンアロイ電極を構成する、ことを特徴とする半導体素子。
  2.  前記金属層は、白金(Pt)、パラジウム(Pd)及び金(Au)の少なくともいずれかからなる、ことを特徴とする請求項1に記載された半導体素子。
  3.  前記p型半導体領域の前記主面における法線ベクトルと前記c軸との成す傾斜角は、10度以上80度以下、又は100度以上170度以下の範囲である、ことを特徴とする請求項1又は請求項2に記載された半導体素子。
  4.  前記p型半導体領域の前記主面における法線ベクトルと前記c軸との成す傾斜角は、63度以上80度以下、又は100度以上117度以下の範囲である、ことを特徴とする請求項1~請求項3のいずれか一項に記載された半導体素子。
  5.  六方晶系III族窒化物からなる支持基体を更に備え、
     前記支持基体は半極性主面を有しており、
     前記p型半導体領域は前記支持基体の前記半極性主面上に設けられると共に、前記主面は半極性を有する、ことを特徴とする請求項1~請求項4のいずれか一項に記載された半導体素子。
  6.  前記支持基体の前記半極性主面と前記支持基体のc軸との成す傾斜角は、63度以上80度以下、又は100度以上117度以下の範囲である、ことを特徴とする請求項5に記載された半導体素子。
  7.  六方晶系III族窒化物からなるn型半導体領域と、
     六方晶系III族窒化物からなる活性層と
    を更に備え、
     前記活性層は、前記n型半導体領域と前記p型半導体領域との間に設けられる、ことを特徴とする請求項1~請求項6のいずれか一項に記載された半導体素子。
  8.  前記界面には厚さ10nm以下の酸化物層が含まれる、ことを特徴とする請求項1~請求項7のいずれか一項に記載された半導体素子。
  9.  前記酸化物層は構成元素としてガリウムを含む、ことを特徴とする請求項8に記載された半導体素子。
  10.  前記酸化物層は前記金属層の構成元素の酸化物を含まない、ことを特徴とする請求項8又は請求項9に記載された半導体素子。
  11.  半導体素子を作製する方法であって、
     六方晶系III族窒化物からなる主面を有するp型半導体領域を含む支持体を準備する工程と、
     前記p型半導体領域の前記主面上に金属層を堆積して、ノンアロイ電極を形成する工程と
    を備え、
     前記六方晶系III族窒化物はIII族構成元素としてガリウムを含み、
     前記p型半導体領域の前記主面は、該六方晶系III族窒化物のc軸に対して傾斜した平面に沿って該六方晶系III族窒化物のc面と異なるように延在することを特徴とする、半導体素子を作製する方法。
  12.  前記金属層は、白金(Pt)、パラジウム(Pd)及び金(Au)の少なくともいずれかからなることを特徴とする請求項11に記載された、半導体素子を作製する方法。
  13.  前記金属層を堆積する前に、前記支持体の前記p型半導体領域を処理する工程を更に備え、
     前記処理は、酸洗浄を前記支持体に適用することによって行われることを特徴とする請求項11又は請求項12に記載された、半導体素子を作製する方法。
  14.  前記p型半導体領域の前記主面における法線ベクトルと前記c軸との成す傾斜角は、10度以上80度以下、又は100度以上170度以下の範囲であることを特徴とする請求項11~請求項13のいずれか一項に記載された、半導体素子を作製する方法。
  15.  前記p型半導体領域の前記主面における法線ベクトルと前記c軸との成す傾斜角は、63度以上80度以下、又は100度以上117度以下の範囲であることを特徴とする請求項11~請求項14のいずれか一項に記載された、半導体素子を作製する方法。
  16.  前記金属層を堆積した後には、酸素を含む雰囲気中で電極アニールを行わない、ことを特徴とする請求項11~請求項15のいずれか一項に記載された、半導体素子を作製する方法。
  17.  前記金属層と前記p型半導体領域とは、界面を形成するように積層され、
     前記界面には厚さ10nm以下の酸化物層が含まれる、ことを特徴とする請求項11~請求項16のいずれか一項に記載された、半導体素子を作製する方法。
  18.  前記支持体は、六方晶系III族窒化物からなる支持基体を含み、
     前記支持基体は半極性主面を有しており、
     前記p型半導体領域は、前記支持基体の前記半極性主面上に設けられると共に、前記主面は半極性を有することを特徴とする請求項11~請求項17のいずれか一項に記載された、半導体素子を作製する方法。
  19.  前記支持基体の前記半極性主面における法線ベクトルと前記支持基体の前記六方晶系III族窒化物のc軸との成す傾斜角は、63度以上80度以下又は100度以上117度以下の範囲であることを特徴とする請求項18に記載された、半導体素子を作製する方法。
  20.  前記支持体は、六方晶系III族窒化物からなるn型半導体領域と、六方晶系III族窒化物からなる活性層とを更に備え、
     前記n型半導体領域は、前記支持基体の前記半極性主面上に設けられ、
     前記活性層は、前記支持基体の前記半極性主面上に設けられ、
     前記活性層は、前記n型半導体領域と前記p型半導体領域との間に設けられることを特徴とする請求項18又は請求項19に記載された、半導体素子を作製する方法。
PCT/JP2010/070308 2010-01-18 2010-11-15 半導体素子及び半導体素子を作製する方法 WO2011086755A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10843110.7A EP2528118A4 (en) 2010-01-18 2010-11-15 SEMICONDUCTOR ELEMENT AND METHOD FOR PRODUCING THE SEMICONDUCTOR ELEMENT
CN201080018398.1A CN102414848B (zh) 2010-01-18 2010-11-15 半导体元件及制作半导体元件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010008189A JP5749888B2 (ja) 2010-01-18 2010-01-18 半導体素子及び半導体素子を作製する方法
JP2010-008189 2010-01-18

Publications (1)

Publication Number Publication Date
WO2011086755A1 true WO2011086755A1 (ja) 2011-07-21

Family

ID=44276930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070308 WO2011086755A1 (ja) 2010-01-18 2010-11-15 半導体素子及び半導体素子を作製する方法

Country Status (7)

Country Link
US (1) US8227898B2 (ja)
EP (1) EP2528118A4 (ja)
JP (1) JP5749888B2 (ja)
KR (1) KR20110110803A (ja)
CN (1) CN102414848B (ja)
TW (1) TW201131810A (ja)
WO (1) WO2011086755A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573856B2 (ja) * 2012-01-26 2014-08-20 住友電気工業株式会社 Iii族窒化物半導体レーザ、及びiii族窒化物半導体レーザを作製する方法
JP5828568B1 (ja) * 2014-08-29 2015-12-09 株式会社タムラ製作所 半導体素子及びその製造方法
KR101636625B1 (ko) * 2014-12-18 2016-07-05 고려대학교 산학협력단 p형 반도체 박막 구조물의 형성 방법 및 이를 이용한 p형 오믹 전극의 제조 방법
KR102331337B1 (ko) * 2015-02-16 2021-11-26 서울바이오시스 주식회사 발광 소자
KR102544673B1 (ko) * 2020-10-29 2023-06-20 웨이브로드 주식회사 반도체 발광소자 및 이를 제조하는 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291621A (ja) 1992-04-10 1993-11-05 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体の電極材料
JPH0964337A (ja) 1995-06-16 1997-03-07 Toyoda Gosei Co Ltd p伝導形3族窒化物半導体の電極及び電極形成方法及び素子
JPH11186605A (ja) 1997-12-18 1999-07-09 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体の電極形成方法及び素子の製造方法
JP2004247323A (ja) 2002-10-31 2004-09-02 Toyoda Gosei Co Ltd p型III族窒化物系化合物半導体の電極およびその製造方法
JP2006013474A (ja) * 2004-05-26 2006-01-12 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
JP2007258375A (ja) * 2006-03-22 2007-10-04 Rohm Co Ltd 半導体素子の製造方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049243B2 (en) * 2004-05-26 2011-11-01 Showa Denko K.K. Gallium nitride-based compound semiconductor light emitting device
FI20045482A0 (fi) * 2004-12-14 2004-12-14 Optogan Oy Matalamman dislokaatiotiheyden omaava puolijohdesubstraatti, ja menetelmä sen valmistamiseksi
US7432119B2 (en) * 2005-01-11 2008-10-07 Semileds Corporation Light emitting diode with conducting metal substrate
JP2008109021A (ja) * 2006-10-27 2008-05-08 Rohm Co Ltd 半導体発光素子
JP2009081374A (ja) * 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
JP4390007B2 (ja) * 2008-04-07 2009-12-24 住友電気工業株式会社 Iii族窒化物半導体素子及びエピタキシャルウエハ
WO2010029775A1 (ja) * 2008-09-11 2010-03-18 住友電気工業株式会社 窒化物系半導体光素子、窒化物系半導体光素子のためのエピタキシャルウエハ、及び半導体発光素子を製造する方法
US7933303B2 (en) * 2009-06-17 2011-04-26 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291621A (ja) 1992-04-10 1993-11-05 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体の電極材料
JPH0964337A (ja) 1995-06-16 1997-03-07 Toyoda Gosei Co Ltd p伝導形3族窒化物半導体の電極及び電極形成方法及び素子
JPH11186605A (ja) 1997-12-18 1999-07-09 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体の電極形成方法及び素子の製造方法
JP2004247323A (ja) 2002-10-31 2004-09-02 Toyoda Gosei Co Ltd p型III族窒化物系化合物半導体の電極およびその製造方法
JP2006013474A (ja) * 2004-05-26 2006-01-12 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
JP2007258375A (ja) * 2006-03-22 2007-10-04 Rohm Co Ltd 半導体素子の製造方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2528118A4

Also Published As

Publication number Publication date
US8227898B2 (en) 2012-07-24
US20110175103A1 (en) 2011-07-21
TW201131810A (en) 2011-09-16
CN102414848B (zh) 2014-07-09
EP2528118A1 (en) 2012-11-28
JP2011146636A (ja) 2011-07-28
KR20110110803A (ko) 2011-10-07
CN102414848A (zh) 2012-04-11
EP2528118A4 (en) 2015-04-22
JP5749888B2 (ja) 2015-07-15

Similar Documents

Publication Publication Date Title
JP4881491B2 (ja) 半導体発光素子
JP2002016311A (ja) 窒化ガリウム系発光素子
JP5103979B2 (ja) III族窒化物系化合物半導体に対する電極形成方法及びp型III族窒化物系化合物半導体の製造方法
JP2007157853A (ja) 半導体発光素子およびその製造方法
TW201015761A (en) Group III nitride-based compound semiconductor light-emitting device and production method therefor
JP5166594B1 (ja) 半導体発光素子
JP5749888B2 (ja) 半導体素子及び半導体素子を作製する方法
WO2014045882A1 (ja) Led素子及びその製造方法
JP3498698B2 (ja) 窒化ガリウム系化合物半導体素子
JP5327778B2 (ja) 半導体素子およびその製造方法
JP6002109B2 (ja) Iii族窒化物半導体素子の製造方法
JP2001015852A (ja) p型のIII族窒化物半導体層上の電極構造とその形成方法
WO2011086730A1 (ja) Iii族窒化物系半導体素子
JP5434343B2 (ja) Ito電極の形成方法、半導体素子のito電極及びito電極を備えた半導体素子
KR101528098B1 (ko) 전자 빔 빗각 증착과 열처리를 이용하는 질화갈륨 계열 발광 다이오드 제조 방법
TWI535054B (zh) LED components
JP5135465B2 (ja) 半導体発光素子及びその製造方法
JP5136615B2 (ja) Iii族窒化物半導体発光素子を製造する方法
JP2003188414A (ja) 半導体発光素子の製造方法
JP2010245109A (ja) Iii族窒化物系半導体素子、及び電極を作製する方法
JP5482771B2 (ja) Iii族窒化物半導体発光素子を製造する方法
JP6785221B2 (ja) 半導体発光素子
JP5458162B2 (ja) 半導体発光素子
JP5811413B2 (ja) Led素子
JP2020027905A (ja) 積層体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018398.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117018941

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010843110

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE