JP2010245109A - Iii族窒化物系半導体素子、及び電極を作製する方法 - Google Patents

Iii族窒化物系半導体素子、及び電極を作製する方法 Download PDF

Info

Publication number
JP2010245109A
JP2010245109A JP2009089234A JP2009089234A JP2010245109A JP 2010245109 A JP2010245109 A JP 2010245109A JP 2009089234 A JP2009089234 A JP 2009089234A JP 2009089234 A JP2009089234 A JP 2009089234A JP 2010245109 A JP2010245109 A JP 2010245109A
Authority
JP
Japan
Prior art keywords
substrate
degrees
layer
semiconductor region
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089234A
Other languages
English (en)
Inventor
Masahiro Adachi
真寛 足立
Shinji Tokuyama
慎司 徳山
Koji Katayama
浩二 片山
Takatoshi Ikegami
隆俊 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009089234A priority Critical patent/JP2010245109A/ja
Publication of JP2010245109A publication Critical patent/JP2010245109A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】p型非極性GaN面と電極との間に良好なオーミック接触を提供できる、電極を作製する方法を提供する。
【解決手段】半導体領域13の非極性主面13aの酸化物15上にニッケルを含む金属層17及び金を含む金属層19を順に堆積した後に、基板生産物P2の熱処理を行う。この熱処理によって、金属層17のニッケルが非極性主面13aの自然酸化物中の酸素の少なくとも一部分が除かれる。第1の層21aはニッケルを含み、第2の層21bは金を含む。第2の層21bが半導体領域13に接合を成す。第2の層21bが第1の層21aと半導体領域13との間に移動する。ニッケルと酸素の化合物23は、基板生産物の表面近傍に形成される。ニッケルと酸素の化合物23を除去して、基板生産物P3が得られる。p型ドーパントを含む半導体領域13に接触を成す金属電極21を作製できる。
【選択図】図6

Description

本発明は、III族窒化物系半導体素子、及び電極を作製する方法に関する。
特許文献1には、n型窒化ガリウム系半導体層の電極及びその製造方法が記載されている。この電極は、サファイア基板上に成長されたSiドープn型GaN層上に形成される。このn型GaN層はc軸方向に成長される。電極は、n型窒化ガリウム系半導体層の(0001)面上に形成されたチタン層と、この層上に形成されたチタン及びアルミニウムを含む層とを含む。
特許文献2には、p型III族窒化物系半導体の電極及びその製造方法が記載されている。この電極は、サファイア基板上にAlNバッファ層を介して成長されたp型半導体層上に形成される。このp型半導体層はAlNバッファ層上にc軸方向に成長される。電極は、p型半導体層の(0001)面に順に形成された2種類の金属層(Ni、Au)を有する。熱処理を行って、半導体の表面から深さ方向の元素分布に関して、Au層の構成元素の分布がNi層の構成元素の分布よりも深い。
特開平07−045867号公報 特開平09−064337号公報
金とGaN層との間にニッケル層を設けるとき、金とGaN層との密着性を向上させることができる。しかしながら、特許文献2に記載されているように、c面GaN層上に直接に薄いニッケル層を形成するとき、電極の接触抵抗を低下させることができない。そこで、特許文献2では、ニッケル薄層及び金層をc面上p型GaN層に順次に蒸着した後に電極のアニールを行って、オーミック電極を得ていた。特許文献2によれば、ニッケル薄層による密着性と金の分布による接触抵抗の低減が提供される。
発明者らは、半極性面GaN基板上のp型GaN層にオーミック電極を形成するために、これと同様の作製条件でニッケル及び金を順次に蒸着した後に電極のアニールを行った。しかしながら、半極性面上p型GaN層へのオーミック接触が得られなかった。これ故に、c面上p型GaN層にオーミック電極の形成は、非極性面上p型GaN層にオーミック電極の形成に適用できない。
本発明は、このような事情を鑑みてなされたものであり、p型非極性(無極性及び半極性)面と電極との間に良好なオーミック接触を提供できる、電極を作製する方法を提供することを目的とし、また、この電極を有するIII族窒化物系半導体素子を提供することを目的とする。
本発明の一側面は、III族窒化物系半導体素子のための電極を作製する方法である。この方法は、(a)ウルツ鉱構造のIII族窒化物系半導体からなる非極性主面を有する半導体領域を処理装置を用いて形成して、第1の基板生産物を形成する工程と、(b)成膜装置を用いて、前記第1の基板生産物の前記半導体領域上に、ニッケルを含む第1の金属層を堆積する工程と、(c)前記第1の金属層を形成した後に、金を含む第2の金属層を形成して第2の基板生産物を形成する工程と、(d)前記第2の金属層を形成した後に、前記第1の金属層のニッケルが前記非極性主面の酸素を除くように前記第2の基板生産物の熱処理を酸素を含む雰囲気で行う工程とを備える。前記熱処理により表面の酸素と結合した酸化ニッケルが第2の金属層の上に浮き上がり、前記半導体領域にはp型ドーパントが添加されており、前記非極性主面は半極性及び無極性のいずれかである。
この発明によれば、ニッケルを含む第1の金属層及び金を含む第2の金属層が順に半導体領域の非極性主面上に堆積された第2の基板生産物を酸素を含む雰囲気で熱処理を行うことによって、第1の金属層のニッケルが非極性主面の酸素を除くことができる。熱処理より表面の酸素と結合した酸化ニッケルが第2の金属層の浮き上がり、これ故に、III族窒化物系半導体のc面に比べて非極性面は酸化されやすいけれども、p型ドーパントが添加された半導体領域に良好な電気的接触を成す電極を作製できる。
本発明に係る方法では、前記第1の金属層の厚さは10nm以上であることが好ましい。この方法によれば、半導体領域の非極性主面に対して良好な電気的接触を成す電極を形成できる。
本発明に係る方法では、前記第1の金属層の厚さは20nmを超えることが好ましい。この方法によれば、半導体領域の非極性主面に対して優れた電気的接触を成す電極を形成できる。
本発明に係る方法は、前記第1の金属層を堆積するに先だって、前処理溶液で前記第1の基板生産物の前処理を行う工程を更に備えることが好ましい。前記前処理溶液は王水及びフッ酸のいずれかを含む。この方法によれば、前処理までに非極性面に形成された酸化物を前処理により低減できる。
本発明に係る方法は、前記装置から前記第1の基板生産物を取り出して、前記成膜装置に前記第1の基板生産物を配置する工程を更に備えることが好ましい。前記第1の基板生産物を配置する前記工程では、前記第1の基板生産物の前記半導体領域の前記非極性主面は大気にさらされて、該大気により前記非極性主面が改質されて、前記半導体領域の表面は酸化物で覆われる。
この方法によれば、第1の基板生産物の非極性表面は不可避的に大気にさらされる。酸化されやすい非極性面の半導体領域では、大気への露出によって、その表面に酸化物が形成される。
本発明に係る方法では、前記第2の基板生産物の熱処理を行う前記工程の後では、前記半導体領域の表面からの金属元素の分布に関して、前記Niよりも前記Auが深い。この方法によれば、第2の基板生産物の熱処理により電極が半導体領域に良好な電気的接触を成すことができる。
本発明に係る方法では、前記熱処理の温度は摂氏400度以上であることが好ましい。この方法によれば、摂氏400度以上の温度における熱処理により電極が半導体領域に良好な電気的接触を成すことができる。
本発明に係る方法では、前記半導体領域は窒化ガリウム系半導体からなり、前記熱処理により、前記半導体領域の表面におけるガリウム酸化物の量が低減される。この方法によれば、熱処理により非極性面上の酸化物が低減される。これにより、電極が半導体領域に良好な電気的接触を成すことができる。
本発明に係る方法は、非極性面を有する基板を準備する工程を更に備えることが好ましい。前記半導体領域は前記基板上に設けられており、前記基板は、ウルツ鉱構造のIII族窒化物からなり、前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、10度以上170度以下の範囲にあることが好ましい。
この方法によれば、自然酸化膜に形成において、10度以上170度以下の範囲の角度を有する非極性面はc面と異なる。
本発明に係る方法では、前記角度は、10度以上80度以下及び100度以上170度以下の範囲にあることが好ましい。
この方法によれば、非極性面は、10度以上80度以下及び100度以上170度以下の範囲にある半極性面である。
本発明に係る方法では、前記角度は、63度以上80度以下及び100度以上117度以下の範囲にあることが好ましい。この方法によれば、非極性面は、63度以上80度以下及び100度以上117度以下の範囲にある半極性面である。
本発明に係る方法では、前記角度は80度以上110度以下の範囲にあることが好ましい。この方法によれば非極性面は80度以上110度以下の範囲にある無極性面に近い性質を示す非極性面である。
本発明の別の側面に係る発明は、III族窒化物系半導体素子である。III族窒化物系半導体素子は、(a)ウルツ鉱構造のIII族窒化物からなり非極性主面を有する第1の半導体領域と、(b)ウルツ鉱構造のIII族窒化物からなり前記非極性主面上に設けられた第2の半導体領域と、(c)前記第2の半導体領域の表面に接した金属電極とを備える。前記非極性主面は半極性及び無極性のいずれかであり、前記第2の半導体領域にはp型ドーパントが添加されており、前記金属電極は、少なくとも第1の層及び第2の層を含み、前記第1の層はニッケルを含み、前記第2の層は金を含み、前記第2の層が前記第2の半導体領域に接合を成し、前記第2の層が前記第1の層と前記第2の半導体領域との間にあり、前記金属電極から前記第1の半導体領域への向きに規定された座標軸の方向に関して前記第2の半導体領域において前記金の分布は前記ニッケルの分布より深くなるように形成されることによって、前記第1の層のニッケルが非極性のIII族窒化物主面の酸化物中の酸素原子を該III族窒化物主面から取り除き、前記金属電極は前記第2の半導体領域の前記表面にオーミック接触を形成する。
このIII族窒化物系半導体素子によれば、半導体領域の非極性主面への電気的接触を成す電極では、ニッケルを含む第1の層及び金を含む第2の層を順に堆積した後に第2の基板生産物の熱処理を行うことによって、第1の層のニッケルが非極性のIII族窒化物主面の酸化物中の酸素原子を該III族窒化物主面から取り除き、電極が第2の半導体領域の表面に対してオーミック接触を得ることができる。これ故に、III族窒化物系半導体素子のための電極は、p型ドーパントが添加された半導体領域に電気的接触を成すことができる。
本発明のIII族窒化物系半導体素子では、前記第1の層の厚さは10nm以上であることが好ましい。このIII族窒化物系半導体素子によれば、このIII族窒化物系半導体素子によれば、半導体領域の非極性主面に電気的接触を成す電極を得るためにニッケル量を提供できる。また、本発明のIII族窒化物系半導体素子では、前記第1の層の厚さは20nmを超えることができる。このIII族窒化物系半導体素子によれば、半導体領域の非極性主面に電気的接触を成す電極を得るために十分なニッケル量を提供できる。
本発明のIII族窒化物系半導体素子は、非極性面を有する基板を更に備えることが好ましい。前記第1及び第2の半導体領域は前記基板上に設けられており、前記基板は、ウルツ鉱構造のIII族窒化物からなり、前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、10度以上170度以下の範囲にあることが好ましい。このIII族窒化物系半導体素子によれば、10度以上170度以下の範囲の角度を有する非極性面では、この非極性面と電極との電気的接触に関して自然酸化膜の振る舞いがc面と異なる。
本発明に係るIII族窒化物系半導体素子では、前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、10度以上80度以下及び100度以上170度以下の範囲にあることが好ましい。この発明によれば、非極性面は、10度以上80度以下及び100度以上170度以下の範囲にある半極性面である。
本発明に係るIII族窒化物系半導体素子では、前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、63度以上80度以下及び100度以上117度以下の範囲にあることが好ましい。この発明によれば、非極性面は、63度以上80度以下及び100度以上117度以下の範囲にある半極性面である。
本発明に係るIII族窒化物系半導体素子では、前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は80度以上110度以下の範囲にあることが好ましい。この発明によれば非極性面は80度以上110度以下の範囲にある無極性面に近い性質を示す非極性面である。
本発明のIII族窒化物系半導体素子では、前記基板の前記非極性面は、n型半導体からなる。当該III族窒化物系半導体素子は、前記基板の前記非極性面上に設けられた発光層を更に備えることが好ましい。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、本発明の一側面によれば、p型非極性面と電極との間に良好なオーミック接触を提供できる、電極を作製する方法が提供される。また、本発明の別の側面によれば、p型半導体領域に良好なオーミック接触を成す電極を有するIII族窒化物系半導体素子が提供される。
図1は、本実施の形態に係る、電極を作製する方法、III族窒化物系半導体素子を作製する方法、及び基板生産物を作製する方法における主要な工程を示す図面である。 図2は、図1に示された主要な工程における生産物を模式的に示す図面であり、(a)は工程S101,(b)は工程S102,(c)は工程S103を示す。 図3は、図1に示された主要な工程における生産物を模式的に示す図面であり、(a)は工程S105,(b)は工程S106,(c)は工程S107を示す。 図4は、図1に示された主要な工程における生産物を模式的に示す図面であり、(a)は工程S109,(b)は工程S110,(c)は工程S111を示す。 図5は、半極性面(オフ角58度)及びc面のGaN表面からのX線光電子分光(XPS)信号を示す図面である。 図6は、本実施の形態に係る方法において、自然酸化膜及び金属層の変化を示す図面であり、(a)は熱処理前、(b)は熱処理後である。 図7は実験例に用いたLED構造とその特性を示しており、(a)はLED構造,(b)はLEDモードにおける順方向の電流−電圧特性を示す図面である。 図8は、実施例に係るIII族窒化物系半導体素子及び基板生産物の構造を概略的に示す図面であり、(a)は第一の実施例、(b)は第二の実施例である。 図9は、電気的特性の測定を示す図面であり、(a)は測定方法、(b)は測定結果である。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明に係る、電極を作製する方法、III族窒化物系半導体素子を作製する方法、及び基板生産物を作製する方法における実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本実施の形態に係る、電極を作製する方法、III族窒化物系半導体素子を作製する方法、及び基板生産物を作製する方法並びに基板生産物及びIII族窒化物系半導体素子における主要な工程を示す図面である。また、図2〜図4は、図1に示された主要な工程における生産物を模式的に示す図面である。III族窒化物系半導体素子は、例えばレーザダイオード及び発光ダイオードといった光素子、または例えばpn接合ダイオード及びトランジスタといった電子デバイスであることが好ましい。
図1の工程S101では、基板11を準備する。好適な実施例では、基板11は非極性主面を有することが好ましい。基板11は、例えばウルツ鉱構造のIII族窒化物系半導体からなる。III族窒化物系半導体としては、例えばAlN、並びにAlGaN及びGaNといった窒化ガリウム系半導体等がある。これらの窒化ガリウム系半導体において、基板11の主面11aは非極性を示す。非極性は、半極性又は無極性である。図2(a)の実施例を参照すると、基板11は半極性主面を有する。軸Cxは、基板11のIII族窒化物系半導体のc軸(<0001>軸)の方向を示しており、軸Cxの向きはc軸ベクトルVCとして表される。法線ベクトルNVは、基板11の主面11に垂直である。基板11の非極性面11aの法線と基板11のウルツ鉱構造のc軸Cxとの成す角度Alphaは、例えば10度以上170度以下の範囲にある。
工程S102では、成長炉といった処理装置10aに基板11を配置した後に、図2(b)に示されるように、基板11の非極性主面11a上に半導体領域13を成長する。半導体領域13は、例えば一又は複数の窒化ガリウム系半導体層を含むことが好ましい。本実施例では、半導体領域13は、基板11の非極性主面11aへのエピタキシャル成長によって提供され、この結晶成長は例えば有機金属気相成長法又は分子線エピタキシ法等で行われる。半導体領域13の表面13aは非極性を有する。この非極性もまた半極性又は無極性である。また、半導体領域13の表面13aはp型窒化ガリウム系半導体からなる。p型窒化ガリウム系半導体は、例えばMgといったp型ドーパントで高濃度に添加されている。p型窒化ガリウム系半導体の形成は、エピタキシャル成長に限定されるものではない。これらの工程により第1の基板生産物P1が作製された。
工程S103では、処理装置10aから第1の基板生産物P1を取り出す。この取り出しの後に、引き続く金属の堆積に先だって、必要な場合には、工程S104では、第1の基板生産物P1の前処理を行う工程を設けることが好ましい。前処理のための溶液として、例えば王水及びフッ酸の少なくともいずれかを用いることが好適である。これらの溶液によって、窒化ガリウム系半導体の表面に形成された自然酸化物を除去できる。この後に、図3(a)に示されるように、工程S105では、成膜装置10bに第1の基板生産物P1を配置する。
この取り出しにより、第1の基板生産物P1の半導体領域13の非極性主面13aが大気、もしくは前処理の酸のエッチ・ストップ用の水により、非極性主面13aが改質される。この改質によって、図2(c)に示されるように、半導体領域13の表面13aは酸化物15で覆われる。第1の基板生産物P1の前処理を行うとき、金属層の堆積開始の際における酸化物15の厚さが薄くなる可能性がある。
既に説明したように、大気にさらされたGaNの非極性面(半極性面及び無極性面)は、GaNのc面(極性面)に比べて酸化されやすい。つまり、大気にさらされたGaNの非極性面には、比較的厚い酸化物(いわゆる、厚い自然酸化膜)が形成されている。処理装置10aから成膜装置10bへ基板生産物P1を移動するときに、自然酸化膜が形成されて、第1の基板生産物P1が成膜装置10bに配置されたとき、図2(c)に示されるように、第1の基板生産物P1の表面には酸化物15が存在する。
非極性面における酸化物の形成について説明する。図5は、半極性面(オフ角58度)及びc面のGaN表面からのX線光電子分光(XPS)信号を示す図面である。半極性GaN面からのXPS信号は、c面GaNからのXPS信号よりも大きい。Ga信号のピークはほぼ同じ強度であるけれども、Ga−O信号のピークに関して、半極性GaN面からのXPS信号はc面GaNからのXPS信号よりも大きい。この実験によれば、その信号比率は1.5倍である。
必要な場合には、成膜装置10bへの配置に先立って、第1の基板生産物P1上にリフトオフのためのマスクを形成することができ、このマスクはレジスト層を含む。この後に、工程S105では、図3(a)に示されるように、成膜装置10bに基板生産物P1を配置する。この後に速やかに、成膜装置10bを真空排気して、1×10−6Torr(1Paは0.0075Torrで換算される)程度の真空度を達成する。これ故に、成膜装置10b内では自然酸化膜の形成は実質的に生じない。成膜装置10bを用いて、図3(b)に示されるように、工程S106では、第1の基板生産物P1の表面に第1の金属層17を堆積する。金属層17の形成は、例えば電子ビーム蒸着法または抵抗加熱法等を用いることができる。金属層17はニッケルを含む。一実施例では、金属層17はニッケル層からなり、その厚みは例えば10nm以上であることが好ましい。ニッケル層の形成により、半導体領域13の非極性主面13aに電気的接触を成す電極を形成できる。また、このニッケル層の厚みは、例えば20nmを超えることが更に好ましい。半導体領域13の非極性主面13aに優れた電気的接触を成す電極を形成できる。
第1の金属層17を形成した後に、図3(c)に示されるように、工程S107では、成膜装置10bを用いて第2の金属層19を形成する。金属層19の形成は、例えば電子ビーム蒸着法または抵抗加熱法等を用いることができる。金属層19は金を含む。一実施例では、金属層19は金層からなり、その厚みは例えば20nm以上であることが好ましい。これらの工程により、基板生産物P1の自然酸化物15上に設けられた金属層17及び金属層19を含む第2の基板生産物P2を形成された。
工程S108では、成膜装置10bから第2の基板生産物P2を取り出す。リフトオフのためのマスクを第1の基板生産物P1上に形成していたとき、リフトオフの処理を行う工程を行って、パターン形成された電極層を形成される。リフトオフ処理は、例えばアセトン等を用いて行われる。
工程S109では、図4(a)に示されるように、熱処理装置10cに第2の基板生産物P2を配置する。金属層17、19を形成した後に、工程S110では、図4(b)に示されるように、熱処理装置10cを用いて第2の基板生産物P2の熱処理を行う。熱処理は、第1の金属層17のニッケルが非極性主面の自然酸化物15の酸素の少なくとも一部分を除くように行われる。熱処理中は、熱処理装置10cに熱処理ガスG0が供給される。
熱処理は、酸素を含む雰囲気中で行われることが好ましい。熱処理温度は例えば摂氏400度以上であることが好ましい。また、熱処理温度は例えば摂氏700度以下であることが好ましい。半導体領域13の表面が窒化ガリウム系半導体(例えばp型GaN)からなるとき、この熱処理によって、半導体領域13の表面13aにおけるガリウム酸化物の量が低減される。
酸化物は、以下のように理解される。表面酸化膜がニッケル層に吸収された後に、ニッケルが酸素と結合する。その後に、酸素ガスの酸素とニッケルが結びつくと考えられるので,このニッケル層と金層との順序が入れ替わる。そのため、表面酸化膜の少ないp型GaN領域に金層が接触できる。そして,オーミック電極が形成される。発明者らの実験によれば、良好なオーミック電極が得られている。つまり、本実施の形態によれば、無極性・半極性GaN基板上のp型GaN領域において非極性面に特有の厚い表面酸化膜の影響があるときでも、良好なオーミック電極を形成できる。この方法は、c面GaN基板上のp型GaN層に対して非常に良好な結果をもたらすが、逆に、c面GaN領域への従来の電極形成では、非極性面に特有の厚い表面酸化膜の影響により、良好なオーミック電極を形成できない。
この実施の形態によれば、図6(a)に示されるように、半導体領域13の非極性主面13a上に、ニッケルを含む金属層17及び金を含む金属層19を順に堆積した後に基板生産物P2の熱処理を行う。この熱処理によって、図6(b)に示されるように、金属層17のニッケルが非極性主面13aの自然酸化物中の酸素の少なくとも一部分を除く。これ故に、p型ドーパントが添加された半導体領域13に接触を成しIII族窒化物系半導体素子のための金属電極21を作製できる。金属電極21では、第1の層21aはニッケルを含み、第2の層21bは金を含む。第2の層21bが半導体領域13に接合を成している。第2の層21bが第1の層21aと半導体領域13との間に位置する。また、熱処理により、第2の層21b及び第1の層21aの順序が入れ替わって、第2の層21bが、半導体領域13に近づくように移動する。ニッケルと酸素の化合物23で基板生産物の表層が形成される。ニッケルと酸素の化合物23を除去して、基板生産物P3が得られる。
金属電極21から半導体領域13への向きに規定された座標軸の方向(基板11の法線軸の方向)に関して半導体領域13において金の分布はニッケルの分布より深くなるように形成される。この分布によって、第1の層21aのニッケルが非極性のIII族窒化物主面13aの酸化物15中の酸素原子を該III族窒化物主面13aから遠ざけて、金属電極15は半導体領域13の表面13bにオーミック接触を形成できる。
工程S111では、熱処理の後に、熱処理装置10cから基板生産物P3を取り出す。以上説明したように、図4(c)に示されるように、金属電極21を有する基板生産物P3が形成される。金属電極21は、熱処理装置10cによって金属積層の構造が変更されて、III族窒化物主面13bに良好なオーミック接触を成す。
図2(a)を参照すると、基板11の非極性面13aの法線ベクトルNVと基板11のウルツ鉱構造のc軸Cxとの成す角度Alphaが示されている。この角度Alpha(「オフ角」と呼ばれる)は10度以上80度以下及び100度以上170度以下の範囲にあることが好ましい。この角度範囲では、非極性面13aは半極性を示す。また、角度Alphaは63度以上80度以下及び100度以上117度以下の範囲にあることが好ましい。この角度範囲では、非極性面13aは半極性を示しており、特に自然酸化膜の影響が大きく出現する。さらに、非極性面13aが無極性であるとき、基板11の主面11aは、ウルツ鉱構造のIII族窒化物系半導体のm面、a面、並びにm面及びa面を基準にしてc軸の回りに有限な角度で回転された面であることができる。角度Alphaは、80度以上110度以下の範囲にあることが好ましい。この角度範囲では、非極性面13aは無極性に近い性質を示す。この角度の範囲において、本発明は顕著にその効果を発揮する。
引き続き、実験例の説明を行う。発明者らは、c面GaN基板上に形成されたp型GaN層へp電極を形成するために用いられる条件(ニッケル層厚5nm、金層厚11nm、酸素雰囲気中で摂氏500度アニール)で、半極性p型GaN層上にp電極を形成した。p電極は、図7(a)に示されるエピタキシャル基板Eに形成された。LED構造のエピタキシャル基板は、n型GaN層52、p型GaN層53及びp型GaN層54を含み、これらの窒化ガリウム系半導体層52〜54はGaN基板51上に順に成長された。例えばn型GaN層52は、発光ダイオードの発光層として働く。c面GaNには好適であったオーミック電極形成条件は、図7(b)は、c面上のp電極の特性C、m面上のp電極の特性N、半極性面上の特性Sを示す。図7(b)に示されるように、半極性GaNではオーミック接触が得られなかった。5ボルト程度の順方向電圧を印加したとき、電流が流れない。p層及びn層で挟まれた発光層を含むレーザ構造のエピタキシャル基板についても同様な特性を示した。
また、m面無極性GaN基板上に成長されたp型GaN層上にp電極を形成した。エピタキシャル基板は、n型GaN層、p型GaN層及びp型GaN層を含み、これらの窒化ガリウム系半導体層はm面GaN基板上に順に成長された。c面GaNには好適であったオーミック電極形成条件は、図7(b)に示されるように、無極性GaNでは良好なオーミック接触が得られなかった。この順方向電圧特性における立ち上がり電圧及び直列抵抗が、共に、c面の順方向電圧特性における立ち上がり電圧及び直列抵抗に比べて大きくなった。
発明者らは、GaN非極性面における上記の実験結果を検討した。抵抗増大の理由は、結晶表面の酸化膜の厚みに起因すると考えられる。この違いは、無極性GaNおよび半極性GaNに固有のダングリング・ボンド密度の多さに起因すると考えられる。大きなダングリング・ボンド密度は、表面エネルギを高くする。このため、GaN表面に形成された自然酸化膜がc面よりも厚いと推測される。この推測は、既に図5に示されたXPSの測定結果に矛盾しない。
非極性面(無極性及び半極性)における厚い表面酸化膜を除去するために、様々な検討を行った結果、本明細書で説明した実施の形態が好適であることを見出した。以下の実施例から理解されるように、無極性および半極性のp型GaNへのオーミック電極の形成は、c面のp型GaNへのオーミック電極の形成と異なる。
(実施例1)
図8(a)に示されるエピタキシャル基板をn型半極性GaN基板31を用いて有機金属位相成長法で作製した。GaN基板31の主面にはn型GaNバッファ層が形成された。エピタキシャル基板Epi1は、Siドープn型GaN層32と、0.5μm厚のn型Al0.1Ga0.9N層33と、0.5μm厚のMgドープGaN層34と、Mgドープp型Al0.1Ga0.9N層35と、高濃度Mgドープp型GaN(p+層)層36とを含み、これらの窒化ガリウム系半導体層は基板31上に順に成長された。p型電極の金属層の蒸着前に、円環状の開口を有するレジストをフォトリソグラフィにより形成した。この後に、1×10−6Torr程度の真空度で、蒸着装置内で電子ビーム法により厚さ5nm、10nm、20nmのニッケル層をそれぞれ別のエピタキシャル基板上に蒸着した。この後に、同一蒸着装置内で抵抗加熱法により厚さ20nmの金層を蒸着した。この後に後,レジストをアセトンでリフトオフして、図9(a)に示すように、フォトリソグラフィで形成した内側の電極EINと、これと隔てられた外側の電極EOUTとを含むNi/Au電極構造を作製した。その後に,摂氏500度の温度で、これらの基板生産物に酸素雰囲気中で1分間のアニールを行った。ドーナツ形の開口で分離されたに電極構造を用いて電極の接触抵抗を測定した。接触抵抗の評価は、一定電流を流すために必要な電圧値で表す。図9(b)は、電流10μAを成す際の電圧差を示す。図9(b)を参照すると、ニッケル層厚5nmの電極における電圧差は大きいけれども、ニッケル層厚10nm及び20nmの電極における電圧差は、半分程度に減少した。この理由は、表面の厚い自然酸化膜が、本実施例におけるニッケル厚の増加により除去できたことによると考える。
本実施例では、c面上のp電極の形成に比べて、厚い自然酸化膜上に厚いニッケル膜を蒸着した後に、さらに金層を蒸着した。これらの金属層を形成した後に、酸素雰囲気中でアニールした。このアニールにより、非極性に固有の厚い自然酸化膜は半導体表面から除去された。この結果、非常に高かった接触抵抗は低減され、電流(10μA)を流すために印加される電圧は、図9(b)に示されるように、1/2以下にまで低減された。
また,半極性に特有の厚い自然酸化膜を除去する実験のために、9個のGaNエピタキシャル基板を準備した。電極金属の蒸着前に、これらのエピタキシャル基板を塩酸、王水及びフッ酸の線上により前処理を施した。これらのエピタキシャル基板の前処理毎に、厚さ5nm、10nm、20nmのニッケル層を蒸着して、電気的特性を測定した。すると、ニッケルの厚み5nmでは、pn接合の抵抗が他の実験条件に比べて高くなった。ニッケル層厚10nm及び20nmの電極は良好な接触抵抗を示した。
また、塩酸の前処理を施して形成した電極の接触抵抗よりも,王水およびフッ酸の前処理を施して形成した電極の接触抵抗が低い傾向にあった.これより,王水,フッ酸洗浄後に,厚10nm以上のニッケル層を蒸着することが有効である。また、厚20nmを越えるニッケル層を蒸着することが更に有効である。
(実施例2)
図8(b)に示されるエピタキシャル基板をn型無極性GaN基板41を用いて有機金属位相成長法で作製した。GaN基板41の主面にはn型GaNバッファ層が形成された。エピタキシャル基板Epi2は、Siドープn型GaN層42と、0.5μm厚のn型Al0.1Ga0.9N層43と、0.5μm厚のMgドープGaN層44と、Mgドープp型Al0.1Ga0.9N層45と、高濃度Mgドープp型GaN(p+層)層46とを含み、これらの窒化ガリウム系半導体層は基板41上に順に成長された。無極性に特有の厚い自然酸化膜を除去するために、9個のGaNエピタキシャル基板を準備した。実施例1と同様に、電極のための金属層を無極性のGaN基板主面(無極性m面及びa面)において行った。ニッケル層厚10nm及び20nmの電極が良好な接触抵抗を示した。前処理の条件についても、実施例2は実施例1と同様な結果であった。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。本発明に係る半導体素子は、例えば半導体レーザ、発光ダイオードといった半導体光素子に適用され、さらにp型ドーパントが添加されたIII族窒化物系半導体からなる非極性主面に形成される電極を有する半導体素子に適用される。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
11…基板、11a…基板主面、Cx…軸、VC…c軸ベクトル、NV…法線ベクトル、Alpha…角度(オフ角)、10a…処理装置、10b…成膜装置、10c…熱処理装置、13…半導体領域、13a…半導体領域表面、13b…半導体領域表面、P1、P2、P3…基板生産物、15…酸化物、17…金属層(ニッケル系)、19…金属層(金系)、G0…熱処理ガス、21…金属電極、21a…第1の層(ニッケル系)、21b…第2の層(金系)、23…ニッケルと酸素の化合物、31…n型半極性GaN基板、Epi1…エピタキシャル基板、32…Siドープn型GaN層、33…n型Al0.1Ga0.9N層、34…MgドープGaN層、35…Mgドープp型Al0.1Ga0.9N層、36…高濃度Mgドープp型GaN(p+層)層、41…n型無極性GaN基板、Epi2…エピタキシャル基板、42…Siドープn型GaN層、43…n型Al0.1Ga0.9N層、44…MgドープGaN層、45…Mgドープp型Al0.1Ga0.9N層、46…高濃度Mgドープp型GaN(p+層)層

Claims (19)

  1. III族窒化物系半導体素子のための電極を作製する方法であって、
    ウルツ鉱構造のIII族窒化物系半導体からなる非極性主面を有する半導体領域を処理装置を用いて形成して、第1の基板生産物を形成する工程と、
    成膜装置を用いて、前記第1の基板生産物の前記半導体領域上に、ニッケルを含む第1の金属層を堆積する工程と、
    前記第1の金属層を形成した後に、金を含む第2の金属層を形成して第2の基板生産物を形成する工程と、
    前記第2の金属層を形成した後に、前記第1の金属層のニッケルが前記非極性主面の酸素を除くように前記第2の基板生産物の熱処理を酸素を含む雰囲気で行う工程と
    を備え、
    前記熱処理により表面の酸素と結合した酸化ニッケルが第2の金属層の上に浮き上がることを特徴とし、
    前記半導体領域にはp型ドーパントが添加されており、
    前記非極性主面は半極性及び無極性のいずれかであることを特徴とする、電極を作製する方法。
  2. 前記第1の金属層の厚さは10nm以上である、ことを特徴とする請求項1に記載された、電極を作製する方法。
  3. 前記第1の金属層の厚さは20nmを超える、ことを特徴とする請求項1または請求項2に記載された、電極を作製する方法。
  4. 前記第1の金属層を堆積するに先だって、前処理溶液で前記第1の基板生産物の前処理を行う工程を更に備え、
    前記前処理溶液は王水及びフッ酸のいずれかを含む、ことを特徴とする請求項1〜請求項3のいずれか一項に記載された、電極を作製する方法。
  5. 前記処理装置から前記第1の基板生産物を取り出して、前記成膜装置に前記第1の基板生産物を配置する工程を更に備え、
    前記第1の基板生産物を配置する前記工程では、前記第1の基板生産物の前記半導体領域の前記非極性主面は大気にさらされて、該大気により前記非極性主面が改質されて、前記半導体領域の表面は酸化物で覆われる、ことを特徴とする請求項1〜請求項4のいずれか一項に記載された、電極を作製する方法。
  6. 前記第2の基板生産物の熱処理を行う前記工程の後では、前記半導体領域の表面からの金属元素の分布に関して、前記Niよりも前記Auが深くなっていることを特徴とする請求項1〜請求項5のいずれか一項に記載された、電極を作製する方法。
  7. 前記熱処理の温度は摂氏400度以上である、ことを特徴とする請求項1〜請求項6のいずれか一項に記載された、電極を作製する方法。
  8. 前記半導体領域は窒化ガリウム系半導体からなり、
    前記熱処理により、前記半導体領域の表面におけるガリウム酸化物の量が低減される、ことを特徴とする請求項1〜請求項7のいずれか一項に記載された、電極を作製する方法。
  9. 非極性面を有する基板を準備する工程を更に備え、
    前記半導体領域は前記基板上に設けられており、
    前記基板は、ウルツ鉱構造のIII族窒化物からなり、
    前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、10度以上170度以下の範囲にある、ことを特徴とする請求項1〜請求項8のいずれか一項に記載された、電極を作製する方法。
  10. 前記角度は、10度以上80度以下及び100度以上170度以下の範囲にある、ことを特徴とする請求項9に記載された、電極を作製する方法。
  11. 前記角度は、63度以上80度以下及び100度以上117度以下の範囲にある、ことを特徴とする請求項9又は請求項10に記載された、電極を作製する方法。
  12. 前記角度は、80度以上110度以下の範囲にある、ことを特徴とする請求項9に記載された、電極を作製する方法。
  13. III族窒化物系半導体素子であって、
    ウルツ鉱構造のIII族窒化物からなり非極性主面を有する第1の半導体領域と、
    ウルツ鉱構造のIII族窒化物からなり前記非極性主面上に接して設けられた第2の半導体領域と、
    前記第2の半導体領域の表面に接した金属電極と
    を備え、
    前記非極性主面は半極性及び無極性のいずれかであり、
    前記第2の半導体領域にはp型ドーパントが添加されており、
    前記金属電極は、少なくとも第1の層及び第2の層を含み、
    前記第1の層はニッケルを含み、
    前記第2の層は金を含み、
    前記第2の層が前記第2の半導体領域に接合を成し、
    前記第2の層が前記第1の層と前記第2の半導体領域との間にあり、
    前記金属電極から前記第1の半導体領域への向きに規定された座標軸の方向に関して前記第2の半導体領域において前記金の分布は前記ニッケルの分布より深くなるように形成されることを特徴とし、前記第1の層のニッケルが非極性のIII族窒化物主面の酸化物中の酸素原子を該III族窒化物主面から取り除き、前記金属電極は前記第2の半導体領域の前記表面にオーミック接触を形成する、ことを特徴とするIII族窒化物系半導体素子。
  14. 前記第1の層の厚さは10nm以上である、ことを特徴とする請求項13に記載されたIII族窒化物系半導体素子。
  15. 非極性面を有する基板を更に備え、
    前記第1及び第2の半導体領域は前記基板上に設けられており、
    前記基板は、ウルツ鉱構造のIII族窒化物からなり、
    前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、10度以上170度以下の範囲にある、ことを特徴とする請求項13又は請求項14に記載されたIII族窒化物系半導体素子。
  16. 前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、10度以上80度以下及び100度以上170度以下の範囲にある、ことを特徴とする請求項15に記載されたIII族窒化物系半導体素子。
  17. 前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、63度以上80度以下及び100度以上117度以下の範囲にある、ことを特徴とすることを特徴とする請求項16に記載されたIII族窒化物系半導体素子。
  18. 前記基板の前記非極性面の法線と前記基板のウルツ鉱構造のc軸との成す角度は、80度以上110度以下の範囲にある、請求項16又は請求項17に記載されたIII族窒化物系半導体素子。
  19. 前記基板の前記非極性面は、n型半導体からなり、
    当該III族窒化物系半導体素子は、前記基板の前記非極性面上に設けられた発光層を更に備える、ことを特徴とする請求項16に記載されたIII族窒化物系半導体素子。
JP2009089234A 2009-04-01 2009-04-01 Iii族窒化物系半導体素子、及び電極を作製する方法 Pending JP2010245109A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089234A JP2010245109A (ja) 2009-04-01 2009-04-01 Iii族窒化物系半導体素子、及び電極を作製する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089234A JP2010245109A (ja) 2009-04-01 2009-04-01 Iii族窒化物系半導体素子、及び電極を作製する方法

Publications (1)

Publication Number Publication Date
JP2010245109A true JP2010245109A (ja) 2010-10-28

Family

ID=43097847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089234A Pending JP2010245109A (ja) 2009-04-01 2009-04-01 Iii族窒化物系半導体素子、及び電極を作製する方法

Country Status (1)

Country Link
JP (1) JP2010245109A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062321A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd 窒化物半導体発光素子を作製する方法
JP2013062322A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd 窒化物半導体発光素子を作製する方法
KR20160100684A (ko) * 2015-02-16 2016-08-24 서울바이오시스 주식회사 발광 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135515A (ja) * 1996-11-02 1998-05-22 Toyoda Gosei Co Ltd 3族窒化物半導体の電極形成方法
JPH10308534A (ja) * 1997-05-08 1998-11-17 Showa Denko Kk 発光半導体素子用透光性電極およびその作製方法
JPH11274567A (ja) * 1998-03-26 1999-10-08 Showa Denko Kk 半導体素子の電極の形成方法
JP2006294907A (ja) * 2005-04-12 2006-10-26 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
JP2007043164A (ja) * 2005-07-30 2007-02-15 Samsung Electronics Co Ltd 窒化物系化合物半導体の発光素子及びその製造方法
JP2008109066A (ja) * 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
JP2008177514A (ja) * 2006-12-20 2008-07-31 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135515A (ja) * 1996-11-02 1998-05-22 Toyoda Gosei Co Ltd 3族窒化物半導体の電極形成方法
JPH10308534A (ja) * 1997-05-08 1998-11-17 Showa Denko Kk 発光半導体素子用透光性電極およびその作製方法
JPH11274567A (ja) * 1998-03-26 1999-10-08 Showa Denko Kk 半導体素子の電極の形成方法
JP2006294907A (ja) * 2005-04-12 2006-10-26 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
JP2007043164A (ja) * 2005-07-30 2007-02-15 Samsung Electronics Co Ltd 窒化物系化合物半導体の発光素子及びその製造方法
JP2008109066A (ja) * 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
JP2008177514A (ja) * 2006-12-20 2008-07-31 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062321A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd 窒化物半導体発光素子を作製する方法
JP2013062322A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd 窒化物半導体発光素子を作製する方法
KR20160100684A (ko) * 2015-02-16 2016-08-24 서울바이오시스 주식회사 발광 소자
KR102331337B1 (ko) 2015-02-16 2021-11-26 서울바이오시스 주식회사 발광 소자

Similar Documents

Publication Publication Date Title
US6169297B1 (en) Metal thin film with ohmic contact for light emit diodes
JP6165602B2 (ja) n型負電極の形成方法、およびIII族窒化物半導体発光素子
TW201322487A (zh) 用於製造光電半導體晶片之方法及光電半導體晶片
JP2016058693A (ja) 半導体装置、半導体ウェーハ、及び、半導体装置の製造方法
JP4494567B2 (ja) n型窒化ガリウム系化合物半導体層への電極形成方法
JP5749888B2 (ja) 半導体素子及び半導体素子を作製する方法
US8431936B2 (en) Method for fabricating a p-type semiconductor structure
JP2010245109A (ja) Iii族窒化物系半導体素子、及び電極を作製する方法
TW200529477A (en) Gallium nitride-based compound semiconductor light-emitting device
KR20130093375A (ko) 발광 다이오드의 제조 방법
US8415707B2 (en) Group III nitride semiconductor device
JP2000208813A (ja) GaN系半導体素子およびその製造方法
CN113838816B (zh) 一种具有金刚石钝化层的氮化镓基二极管器件的制备方法
JP6362016B2 (ja) 半導体発光素子及びその製造方法
JP2009272530A (ja) 半導体装置とその製造方法
Cho et al. An improved non-alloyed ohmic contact Cr/Ni/Au to n-type GaN with surface treatment
JP5136615B2 (ja) Iii族窒化物半導体発光素子を製造する方法
RU2399986C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОЗРАЧНОЙ ОМИЧЕСКОЙ КОНТАКТНОЙ СТРУКТУРЫ BeO/Au/BeO/p-GaN
KR101026059B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
JP5482771B2 (ja) Iii族窒化物半導体発光素子を製造する方法
US9419081B2 (en) Reusable substrate bases, semiconductor devices using such reusable substrate bases, and methods for making the reusable substrate bases
KR101566962B1 (ko) P형 반도체층의 저저항 금속접합방법 및 금속접합 구조
JP2008222478A (ja) 配向層の形成方法、結晶製造方法、基板、半導体素子、およびiii族窒化物半導体の製造方法
JP2010192558A (ja) 電子デバイス及びオーミック電極形成方法
JP2020027905A (ja) 積層体及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807