WO2011086650A1 - LiCoO2焼結体の製造方法及びスパッタリングターゲット - Google Patents

LiCoO2焼結体の製造方法及びスパッタリングターゲット Download PDF

Info

Publication number
WO2011086650A1
WO2011086650A1 PCT/JP2010/007510 JP2010007510W WO2011086650A1 WO 2011086650 A1 WO2011086650 A1 WO 2011086650A1 JP 2010007510 W JP2010007510 W JP 2010007510W WO 2011086650 A1 WO2011086650 A1 WO 2011086650A1
Authority
WO
WIPO (PCT)
Prior art keywords
licoo
sintered body
sintering
preform
powder
Prior art date
Application number
PCT/JP2010/007510
Other languages
English (en)
French (fr)
Inventor
金 豊
弘綱 鄒
正一 橋口
隆則 三ヶ島
涼太 上園
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN2010800615947A priority Critical patent/CN102770392A/zh
Priority to US13/522,226 priority patent/US20120305392A1/en
Priority to JP2011549776A priority patent/JP5704571B2/ja
Priority to EP10843009.1A priority patent/EP2532634A4/en
Publication of WO2011086650A1 publication Critical patent/WO2011086650A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a LiCoO 2 sintered body and a sputtering target used for producing a positive electrode of a thin film lithium secondary battery, for example.
  • a thin film lithium secondary battery has a configuration in which a solid electrolyte is sandwiched between a positive electrode and a negative electrode.
  • a LiPON (lithium phosphate phosphate) film is used for the solid electrolyte
  • a LiCoO 2 (lithium cobaltate) film is used for the positive electrode
  • a metal Li film is used for the negative electrode.
  • Patent Document 1 a method of forming a LiCoO 2 film is marked on a substrate by sputtering a LiCoO 2 target by DC pulse discharge having a resistivity of 3 ⁇ 10k ⁇ ⁇ cm, the LiCoO 2 Target There is no description about the detailed manufacturing method.
  • a sputtering target manufacturing method includes a method of melting and casting a material, and a method of sintering a raw material powder compact. Moreover, as the quality required for the sputtering target, first, the purity is controlled, second, the crystal structure is fine and the distribution of crystal grain size is narrow, and third, the composition distribution is uniform. Fourthly, when powder is used as a raw material, the relative density of the sintered body is high.
  • the relative density refers to the ratio between the density of the porous body and the density of the material having the same composition and having no pores.
  • the first to third material organization requirements can be satisfied relatively easily by adjusting the raw material powder.
  • the high density which is the fourth requirement, is greatly affected by physical properties (physical properties, chemical properties) inherent to the material, and cannot be easily achieved.
  • the LiCoO 2 crystal has a layered structure and is easily peeled between layers. Therefore, the LiCoO 2 crystal easily breaks during and after the production of the sintered body, and there is a problem that a high-density sintered body cannot be produced stably.
  • an object of the present invention is to provide a method for producing a LiCoO 2 sintered body and a sputtering target capable of stably producing a high-density sintered body.
  • a method for producing a LiCoO 2 sintered body includes a step of preforming LiCoO 2 powder by a cold isostatic pressing method at a pressure of 1000 kg / cm 2 or more.
  • the LiCoO 2 powder preform is sintered at a temperature of 1050 ° C. or higher and 1120 ° C. or lower.
  • the sputtering target according to an embodiment of the present invention consists of LiCoO 2 sintered body has 90% or higher relative density, and 3 k [Omega ⁇ cm or less in specific resistance and an average particle size of 20 ⁇ m or 50 ⁇ m or less.
  • Described in the first embodiment of the present invention it is a diagram schematically showing the X-ray line measurements of LiCoO 2 powder after the heat treatment. It is a figure which shows the half value width of the peak of (003) plane in each process temperature in the X-ray-diffraction measurement result of FIG. 1 compared with the case where different raw material powder is used. Described in the first embodiment of the present invention, it is a diagram schematically showing a differential thermal analysis of the LiCoO 2 powder. It is an experimental result showing the relationship between the molding pressure and the relative density of LiCoO 2 sintered body according to the first embodiment of the present invention.
  • the relationship between the sintering time and the relative density of LiCoO 2 sintered body according to the first embodiment of the present invention is an experimental result showing.
  • the relationship between the sintering temperature and the relative density of LiCoO 2 sintered body according to the first embodiment of the present invention is an experimental result showing. It is a figure which shows an example of the temperature profile of a sintering furnace demonstrated in the 1st Embodiment of this invention. It is a figure which shows another example of the temperature profile of a sintering furnace demonstrated in the 1st Embodiment of this invention. It is a figure which shows an example of the temperature profile of a sintering furnace demonstrated in the 2nd Embodiment of this invention. It is a figure which shows another example of the temperature profile of a sintering furnace demonstrated in the 2nd Embodiment of this invention.
  • the method for producing a LiCoO 2 sintered body according to an embodiment of the present invention includes a step of preforming LiCoO 2 powder by a cold isostatic pressing method at a pressure of 1000 kg / cm 2 or more.
  • the LiCoO 2 powder preform is sintered at a temperature of 1050 ° C. or higher and 1120 ° C. or lower.
  • a high-density LiCoO 2 sintered body having a relative density of 90% or more can be stably manufactured.
  • the preform In the step of sintering the preform, the preform may be held at the temperature for 2 hours or more.
  • the sintering time is less than 2 hours, it is difficult to obtain a relative density of 90% or more.
  • the sintering time is 2 hours or more, even if the sintering time is increased, no significant increase effect is observed in the relative density, so the upper limit of the sintering time is not particularly limited.
  • the preform may be sintered in the air or in an oxygen atmosphere.
  • a high-density LiCoO 2 sintered body of 90% or more can be stably produced.
  • Step of preforming the LiCoO 2 powder may include the step of adding a binder to the LiCoO 2 powder.
  • the LiCoO 2 powder to which the binder is added is formed by a cold isostatic pressing method.
  • the LiCoO 2 powder compact to which the binder is added is crushed.
  • the crushed LiCoO 2 powder is formed by a cold isostatic pressing method.
  • the method for producing the LiCoO 2 sintered body includes a step of degreasing the LiCoO 2 powder preform including the binder at a temperature lower than a sintering temperature before the step of sintering the formed body. May be. As a result, it is possible to manufacture a high-purity LiCoO 2 sintered body by preventing the carbon derived from the binder from remaining.
  • the sputtering target according to an embodiment of the present invention consists of LiCoO 2 sintered body has 90% or higher relative density, and 3 k [Omega ⁇ cm or less in specific resistance and an average particle size of 20 ⁇ m or 50 ⁇ m or less. Thereby, generation
  • FIG. 1 is a schematic view showing the X-ray diffraction result (source: CuK ⁇ ) of LiCoO 2 powder heat-treated at 600 ° C., 700 ° C., 800 ° C., 900 ° C. and 1000 ° C. in the atmosphere.
  • a powder X-ray diffractometer “RINT1000” manufactured by Rigaku Corporation was used as the measuring apparatus.
  • a commercially available powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.) was used as a sample of LiCoO 2 powder.
  • the heat treatment time was 30 minutes.
  • FIG. 3 is a result of an experiment schematically showing a state change when a commercially available LiCoO 2 powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.) is heated in an Ar atmosphere.
  • CELLSEED registered trademark
  • ULVAC-RIKO differential thermal analyzer
  • the pressure during preform formation to prepare a plurality of preform samples varied 500 kg / cm 2 from (0.5ton / cm 2) to 2000kg / cm 2 (2ton / cm 2), the atmosphere 1050, respectively
  • the relative density after heating for 1 hour at a temperature of ° C. was measured.
  • the CIP method was used for forming the preform.
  • FIGS. 4 (A) and 4 (B) the pressure at the time of forming the preform affects the relative density of the sintered body. If the pressure is 1000 kg / cm 2 or more, the relative density is 90% or more. It was confirmed that it was obtained.
  • the formation pressure of the preform was set to 2000 kg / cm 2
  • the sintering temperature was set to 1050 ° C. and 1120 ° C.
  • the sintering time dependency on the relative density of the sintered body was examined.
  • the sintering atmosphere is atmospheric for samples sintered at 1050 ° C. and samples sintered at 1120 ° C. for 4 hours and 8 hours, and oxygen (O 2 ) under atmospheric pressure for samples sintered at 1120 ° C. for 2 hours.
  • the results are shown in FIGS. 5 (A) and 5 (B).
  • the sintering time that is the same condition as the sample of FIGS. 4 (A) and 4 (B) is 1 hour. Unlike the samples A) and (B), it was not possible to obtain a relative density of 90% or more, but it was confirmed that a relative density of 90% or more can be obtained by isothermal holding for 4 hours or more. On the other hand, when the sintering temperature was 1120 ° C., it was confirmed that a relative density of 90% or more was obtained for any sample. Further, since a relative density of 90% or more was obtained for the sample sintered in an oxygen atmosphere, it was confirmed that the atmosphere during sintering may be either oxygen or air. In addition, regardless of the sintering temperature, a phenomenon indicating an increase in relative density by increasing the sintering time was not confirmed. The reason is considered to be that no pressing force is applied during sintering.
  • the molding pressure of the preform was set to 2000 kg / cm 2 and the sintering time was fixed to 2 hours, respectively, and the dependency of the sintering temperature on the sintering density was examined.
  • the results are shown in FIGS. 6 (A) and 6 (B). It was confirmed that a relative density of 90% or more could be obtained for all samples having sintering temperatures of 1050 ° C., 1080 ° C., 1100 ° C., and 1120 ° C. In general, the sintering temperature dependence on the relative density of the sintered body is considered to be large, but for LiCoO 2 , the results show that the influence of the sintering temperature on the relative density is small within this temperature range. Met.
  • the method for producing a LiCoO 2 sintered body includes a step of preforming LiCoO 2 powder at a pressure of 1000 kg / cm 2 or more by a cold isostatic pressing method.
  • the LiCoO 2 powder preform is sintered at a temperature of 1050 ° C. or higher and 1120 ° C. or lower.
  • LiCoO 2 powder having an average particle diameter (D 50 ) of, for example, 20 ⁇ m or less is used.
  • the LiCoO 2 powder may be a commercially available powder, or may be prepared by a wet method or a dry method.
  • Examples of the commercially available raw material powder include “Cell Seed (registered trademark) C-5” or “Cell Seed (registered trademark) C-5H” manufactured by Nippon Chemical Industry Co., Ltd.
  • the manufacturing method of the LiCoO 2 sintered body employs a CIP & Sintering method having a forming step by a cold isostatic pressing method and a sintering step. According to the above manufacturing method, it is possible to stably produce LiCoO 2 sintered body having a relative density of 90% or more.
  • a rubber mold (rubber) is filled with powder, the rubber mold is put in a laminated bag and sealed, and then hydrostatic pressure is applied at a predetermined molding pressure.
  • the molding pressure is 1000 kg / cm 2 or more. If the molding pressure is less than 1000 kg / cm 2 , the molding pressure is too low and it is difficult to stably obtain a sintered body having a relative density of 90% or more. The higher the molding pressure, the higher the relative density tends to be.
  • the upper limit of the molding pressure is not particularly limited, and is, for example, 3000 kg / cm 2 .
  • the sintering temperature is set to be equal to or higher than the temperature at which the growth of LiCoO 2 crystal grains occurs. Thereby, sintering of the raw material powder is promoted, and a high-density sintered body can be obtained. If the sintering temperature is less than 1050 ° C., the growth of crystal grains cannot be promoted, and it is difficult to obtain a sintered body having a relative density of 90% or more. On the other hand, when the sintering temperature exceeds 1120 ° C., the crystal structure of the sintered body is composed of coarse crystal grains, and the characteristic of “hard but brittle” becomes remarkable.
  • the sintering time of the preform (the holding time at the sintering temperature) can be 2 hours or more.
  • a LiCoO 2 sintered body having a relative density of 90% or more can be obtained with a sintering time of 2 hours or more. That is, when the sintering time is less than 2 hours, it is difficult to obtain a relative density of 90% or more.
  • the sintering time is 2 hours or longer, even if the sintering time is lengthened, no significant increase effect is observed in the relative density, so the upper limit of the sintering time is not particularly limited. Considering productivity and the like, the maximum sintering time is 8 hours. In FIG.
  • a degassing step of the preform may be additionally performed.
  • gas components contained in the raw material powder can be reliably removed. For this reason, the influence of the moisture absorption of the raw material powder used can be excluded.
  • the preform is held for a predetermined time at a temperature lower than the sintering temperature.
  • the degassing temperature is, for example, 600 ° C. to 700 ° C.
  • the holding time is not particularly limited, and is, for example, 1 hour.
  • FIG. 8 shows an example of a temperature profile for heat treatment including degassing and sintering treatment on the pre-sintered body.
  • LiCoO 2 sintered body having a relative density of 90% or more.
  • strength of a sintered compact improves and a handleability is improved, it can machine stably to a target shape.
  • durability is obtained even when high power is applied, it is possible to sufficiently meet the demand for an improvement in the sputtering rate.
  • the sintered body has a relative density of 90% or more, it is possible to reduce the specific resistance of the sintered body.
  • a LiCoO 2 sintered body having a specific resistance of 3 k ⁇ ⁇ cm or less can be obtained. This enables RF + DC discharge (superimposed discharge of RF and DC) instead of RF discharge at the time of sputtering film formation, improves discharge stability, and can improve the sputtering rate.
  • the average particle size of the sintered body has a strong correlation with the relative density and mechanical strength of the sintered body.
  • the relative density increases and the mechanical strength also increases.
  • the characteristic of “hard but brittle” becomes prominent and impact resistance decreases.
  • the average particle size of the LiCoO 2 sintered body according to one embodiment of the present invention is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the machining of the sintered body includes peripheral machining and surface machining using a lathe.
  • a lathe When used as a sputtering target, it is necessary to join the sintered body to a backing plate.
  • molten In (indium) may be applied to the bonded surface of the sintered body, or a Cu (copper) thin film is formed in advance on the bonded surface of the sintered body, and molten In is applied thereon. May be.
  • the target and backing plate are cleaned in a dry environment.
  • the binder is not particularly limited as long as it is a polymer material that can be degreased by heat treatment.
  • a polyvinyl acetate-based or polyvinyl alcohol-based polymer material is used.
  • the mixing amount of the binder can be set as appropriate, for example, 2 wt% or less.
  • This binder is mixed with LiCoO 2 raw material powder, dried, and then pulverized to an appropriate size.
  • the pulverization size is not particularly limited, and is, for example, # 500 or less (25 ⁇ m or less).
  • the pulverized mixed powder is subjected to CIP treatment and then pulverized again.
  • the powder granulated as described above is subjected to CIP treatment again to produce a LiCoO 2 powder preform.
  • Zr (zirconia) balls as a mixing medium and ethanol as a solvent can be mixed and dispersed in a resin container while rotating.
  • a vacuum dryer can be used for drying.
  • a spray dryer may be used.
  • a roll mill or a ball mill can be used.
  • the aggregated powder is removed using a # 500 sieve.
  • CIP molding for example, powder is filled in a rubber mold (rubber) of 360 mm ⁇ , the rubber mold is put in a laminate bag and sealed, and then hydrostatic pressure is applied at a predetermined molding pressure.
  • the pressure condition of the CIP process is set to 1000 kg / cm 2 or more as in the first embodiment.
  • the regrind size is set to # 500 or less.
  • the degreasing treatment of the preform may be performed at the same time as the sintering step, but degreasing at a temperature lower than the sintering temperature can prevent the binder component from bumping and obtain a high-density sintered body. it can.
  • the degreasing temperature is not particularly limited, but can be, for example, about 300 ° C.
  • the holding time at the degreasing temperature is not particularly limited, and is, for example, 1 to 6 hours.
  • the degassing treatment of the preform is performed at a temperature higher than the degreasing temperature and lower than the sintering temperature.
  • the degassing temperature is not particularly limited, but is, for example, 600 ° C. to 700 ° C., and in this embodiment, about 650 ° C.
  • the holding time at the degassing temperature is not particularly limited, and is, for example, 1 hour.
  • the preform after degreasing is sintered at a temperature of 1050 ° C. to 1120 ° C. for 2 hours or more. Thereby, a LiCoO 2 sintered body is produced.
  • degreasing treatment was performed at 300 ° C. for 1 hour, and sintering treatment was performed at 1120 ° C. for 4 hours to produce a LiCoO 2 sintered body having a diameter of about 330 mm and a thickness of 10 mm.
  • the density was 92%, the average particle size was 40 ⁇ m, and the specific resistance was 2 k ⁇ ⁇ cm.
  • the preform and the sintered body were not cracked when the preform was transported to the sintering furnace and when the sintered body was taken out of the sintering furnace.
  • the composition of the sintered body was analyzed by ICP emission spectroscopic analysis, and the increase in the carbon amount due to the binder was examined by the combustion infrared absorption method using a gas analyzer manufactured by LECO. Regardless of whether the binder was added or not. It was 60 ppm.
  • FIG. 9 shows an example of a temperature profile for heat treatment including degreasing and sintering treatment for the LiCoO 2 pre-sintered body of the present embodiment.
  • FIG. 10 shows an example of a temperature profile of heat treatment including degreasing, degassing, and sintering treatment. After degreasing, the temperature inside the furnace is raised to 650 ° C. and maintained at that temperature for 1 hour, whereby the presintered body is degassed. Thereafter, the sintering process is performed by maintaining the sintering temperature for a predetermined time.
  • Example 1-1 An average particle size (D 50 , the same shall apply hereinafter) 5-6 ⁇ m LiCoO 2 raw material powder (“Celseed (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.), a rubber mold having a size of ⁇ 150 mm at 2000 kg / cm 2 was used for CIP molding.
  • the obtained preform was sintered in the atmosphere at 1050 ° C. for 8 hours. During machining to the target shape, no cracks were observed in the sintered body. When a target discharge test was performed, it was confirmed that stable RF + DC discharge was sustained.
  • the relative density, specific resistance value, and average particle diameter of the obtained sintered body were measured, the relative density was 90%, the specific resistance value was 3 k ⁇ ⁇ cm, and the average particle diameter was about 20 ⁇ m.
  • required the ratio of the apparent density of a sintered compact, and theoretical density (5.16g / cm ⁇ 3 >) by calculation.
  • the apparent density is obtained by machining the obtained sintered body and measuring the outer circumference and thickness using a caliper, micrometer or three-dimensional measuring instrument to determine the volume, and then measuring the weight with an electronic balance. And obtained from the formula of (weight / volume).
  • the specific resistance value was measured by the 4-probe method.
  • the measuring device used was “RT-6” manufactured by Napson.
  • the average particle size was measured by using a cross-sectional SEM photograph of the sintered body and visually judging based on a particle size table of “ASTM (American Society for Testing and Materials) E112” (JIS (Japanese Industrial Standards) G0551).
  • Example 1-2 A LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of 5 to 6 ⁇ m was CIP-molded using a rubber mold having a diameter of 2000 mm / cm 2 and a diameter of 150 mm. The obtained preform was sintered in air at 1120 ° C. for 4 hours. During machining to the target shape, no cracks were observed in the sintered body. When a target discharge test was performed, it was confirmed that stable RF + DC discharge was sustained. The relative density of the obtained sintered body was 92%, the specific resistance value was 2 k ⁇ ⁇ cm, and the average particle size was about 50 ⁇ m.
  • Example 1-3 A LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of 5 to 6 ⁇ m was CIP-molded using a rubber mold having a size of ⁇ 150 mm at 1500 kg / cm 2 .
  • the obtained preform was sintered in air at 1120 ° C. for 3 hours. During machining to the target shape, no cracks were observed in the sintered body. When a target discharge test was performed, it was confirmed that stable RF + DC discharge was sustained.
  • the relative density of the obtained sintered body was 90.5%, the specific resistance value was 3 k ⁇ ⁇ cm, and the average particle size was about 40 ⁇ m.
  • LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5H” manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of 6 to 7 ⁇ m was CIP-molded using a rubber mold having a size of ⁇ 150 mm at 1500 kg / cm 2 .
  • the obtained preform was sintered in air at 1120 ° C. for 3 hours. During machining to the target shape, no cracks were observed in the sintered body. When a target discharge test was performed, it was confirmed that stable RF + DC discharge was sustained.
  • the relative density of the obtained sintered body was 91%, the specific resistance value was 3 k ⁇ ⁇ cm, and the average particle size was about 40 ⁇ m.
  • LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5H” manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of 6 to 7 ⁇ m was CIP-molded using a rubber mold having a diameter of 950 kg / cm 2 and a diameter of 150 mm.
  • the obtained preform was sintered in air at 1050 ° C. for 2 hours. Cracking of the molded body after sintering was not observed.
  • the relative density of the obtained sintered body was 86%, the specific resistance value was 8 k ⁇ ⁇ cm, and the average particle size was about 15 ⁇ m.
  • Example 1 The conditions and results of Example 1 are summarized in Table 1.
  • the molding pressure of the preform is 1000 kg / cm 2 or more
  • the sintering temperature is 1050 ° C. or more and 1120 ° C. or less
  • the sintering time is 2 hours or more.
  • a LiCoO 2 sintered body having a specific resistance value of 3 k ⁇ ⁇ cm or less and an average particle diameter of 20 ⁇ m or more and 50 ⁇ m or less can be obtained.
  • Comparative Example 1-1 since the sintering temperature was as low as 950 ° C., the average particle size was as small as about 7 ⁇ m. As a result, the relative density was as low as 80%, and the specific resistance value was as extremely high as 12 k ⁇ ⁇ cm. In Comparative Example 1-2, since the sintering time was as short as 1 hour, the relative density was as low as 88% and the specific resistance value was relatively high as 7 k ⁇ ⁇ cm. On the other hand, in Comparative Example 1-3, since the sintering temperature was as high as 1130 ° C., the average particle size was relatively large at 100 ⁇ m. As a result, the hardness increased and cracks were easily generated during the processing of the sintered body.
  • Example 2 After adding 2 wt% of a polyvinyl acetate binder to LiCoO 2 raw material powder (Nippon Chemical Industry Co., Ltd. “CELLSEED (registered trademark) C-5”) having an average particle size of 5 to 6 ⁇ m, ethanol was added and mixed, Dried. Thereafter, a powder having an average particle size of 5 to 6 ⁇ m, which was granulated by carrying out roll pulverization, classification, CIP, roll pulverization, and classification in this order, was subjected to CIP molding using a rubber mold having a diameter of 2000 mm / cm 2 and a diameter of 360 mm. The obtained preform was held in the atmosphere at 300 ° C.
  • the composition analysis of the sintered compact was performed by ICP emission spectroscopic analysis, and it measured as an increase amount of the carbon amount resulting from a binder by the combustion infrared absorption method using the gas analyzer by LECO.
  • Example 2-2 After adding 1 wt% of a polyvinyl acetate binder to LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Kagaku Kogyo Co., Ltd.) having an average particle size of 5 to 6 ⁇ m, ethanol is added and mixed. Dried. Then, the powder granulated by carrying out pulverization, classification, CIP, pulverization, and classification in order was CIP-molded using a rubber mold having a size of ⁇ 360 mm at 2000 kg / cm 2 . The obtained preform was held in the atmosphere at 300 ° C. for 1 hour to remove the binder component, and then sintered at 1120 ° C. for 4 hours.
  • LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Kagaku Kogyo Co., Ltd.) having an average particle size of 5 to 6 ⁇ m
  • ethanol is added and mixed. Dried. Then, the
  • the obtained sintered body had a relative density of 92%, a specific resistance value of 2 k ⁇ ⁇ cm, and an average particle size of about 40 ⁇ m. When the amount of residual carbon was confirmed, it was 60 ppm or less.
  • Example 2-3 After adding 2 wt% of a polyvinyl acetate binder to LiCoO 2 raw material powder (Nippon Chemical Industry Co., Ltd. “CELLSEED (registered trademark) C-5”) having an average particle size of 5 to 6 ⁇ m, ethanol was added and mixed, Dried. Then, after roll pulverization, the powder was pulverized, mixed and homogenized using a ball mill. As a result, the average particle size of the raw material powder was refined to about 0.6 ⁇ m. This powder was CIP-molded using a rubber mold having a size of ⁇ 360 mm at 2000 kg / cm 2 . The obtained preform was held in the atmosphere at 300 ° C.
  • Example 2-4 After adding 2 wt% of a polyvinyl acetate binder to LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5H” manufactured by Nippon Kagaku Kogyo Co., Ltd.) having an average particle size of 6 to 7 ⁇ m, ethanol is added and mixed. Dried. Then, after roll pulverization, the powder was pulverized, mixed and homogenized using a ball mill. As a result, the average particle size of the raw material powder was refined to about 0.6 ⁇ m. This powder was CIP-molded using a rubber mold having a size of ⁇ 360 mm at 2000 kg / cm 2 . The obtained preform was held in the atmosphere at 300 ° C.
  • LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5H” manufactured by Nippon Kagaku Kogyo Co., Ltd.) having an average particle size of 6 to 7 ⁇ m
  • ethanol is added and mixed. Dried. Then,
  • LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of 5 to 6 ⁇ m was CIP-molded using a rubber die having a diameter of 360 mm at 2000 kg / cm 2 .
  • the molded body strength was low, and 3 of 6 sheets were cracked.
  • the preform that was not cracked was sintered in air at 1120 ° C. for 3 hours.
  • One of the sintered compacts was broken and the other one was cracked during machining.
  • the relative density of the obtained sintered body was 92%, the specific resistance value was 3 k ⁇ ⁇ cm, and the average particle size was about 40 ⁇ m.
  • LiCoO 2 raw material powder (“CELLSEED (registered trademark) C-5” manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of 5 to 6 ⁇ m was CIP-molded using a rubber die having a diameter of 360 mm at 2000 kg / cm 2 . The molded body strength was low and most of them were cracked. The preform that was not cracked was sintered in air at 1130 ° C. for 3 hours. The obtained sintered body had a relative density of 93%, a specific resistance value of 3 k ⁇ ⁇ cm, and an average particle size of about 80 ⁇ m.
  • a relatively large sintered body can be stably produced. Further, by setting the molding pressure of the preform to 1000 kg / cm 2 or more, the sintering temperature to 1050 ° C. to 1120 ° C., and the sintering time to 2 hours or more, the relative density of 90% or more and 3 k ⁇ ⁇ cm or less And a LiCoO 2 sintered body having a specific resistance value of 20 ⁇ m to 50 ⁇ m.
  • the sintered body molded without mixing the binder with the raw material powder was formed with the same molding conditions and sintering conditions as in Example 2. Since the size of the sintered body was larger than that of Example 1, cracks in the sintered body were observed.
  • the molding pressure of the preform is 1000 to 2000 kg / cm 2 , but the preform may be manufactured at a pressure exceeding 2000 kg / cm 2 .
  • the sintering atmosphere of the preform was in the air, it may be in an oxygen atmosphere.
  • the size of the preform is two types of ⁇ 150 mm and ⁇ 360 mm, but of course it is not limited to these. Whether or not the binder is mixed with the raw material powder may be determined based on the strength of the preform and the sintered body to be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Secondary Cells (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】高密度な焼結体を安定して製造することができるLiCoO焼結体の製造方法を提供する。 【解決手段】本発明の一実施形態に係るLiCoO焼結体の製造方法は、冷間静水圧プレス法による成形工程と焼結工程とを有する、CIP&Sintering法が採用される。成形圧力は1000kg/cm以上、焼結温度は1050℃以上1120℃以下、焼結時間は2時間以上とする。これにより、90%以上の相対密度と、3kΩ・cm以下の比抵抗と、20μm以上50μm以下の平均粒径とを有するLiCoO焼結体を安定して製造することができる。

Description

LiCoO2焼結体の製造方法及びスパッタリングターゲット
 本発明は、例えば薄膜リチウム二次電池の正極の作製に供されるLiCoO焼結体の製造方法及びスパッタリングターゲットに関する。
 近年、薄膜リチウム二次電池の開発が進められている。薄膜リチウム二次電池は、固体電解質を正極と負極とで挟み込んだ構成を有している。例えば、固体電解質にはLiPON(リン酸リチウム窒化物)膜が、正極にはLiCoO(コバルト酸リチウム)膜が、そして負極には金属Li膜がそれぞれ用いられている。
 LiCoO膜の形成方法として、LiCoOを含むターゲットをスパッタリングし、基板上にLiCoO膜を形成する方法が知られている。下記特許文献1には、3~10kΩ・cmの抵抗率を有するLiCoOターゲットをDCパルス放電によりスパッタすることで基板上にLiCoO膜を形成する方法が記載されているが、LiCoOターゲットの詳しい製造方法については記載がない。
 一般的に、スパッタリングターゲットの製造方法には、材料を溶解して鋳造する方法と、原料粉末の成形体を焼結する方法とがある。また、スパッタリングターゲットに要求される品質として、第1に純度が制御されていること、第2に結晶組織が微細であり結晶粒径の分布が狭いこと、第3に組成分布が均一であること、第4に、粉末を原料とする場合は焼結体の相対密度が高いこと、が挙げられる。ここで、相対密度とは、多孔質体の密度と、それと同一組成の材料で気孔のない状態における密度との比をいう。
特開2008-45213号公報
 原料粉末の焼結体でスパッタリングターゲットを構成する場合、上記第1から第3の材料組織的な要件は、原料粉末の調整によって比較的容易に満たすことができる。しかし、第4の要件である高密度化には、材料固有の物性(物理的性質、化学的性質)が大きく影響するため、容易に達成できないのが現状である。特にLiCoO結晶は層状構造を有し、層間で剥離し易いため、焼結体の作製時および作製後に割れやすく、高密度な焼結体を安定に製造することができないという問題がある。
 以上のような事情に鑑み、本発明の目的は、高密度な焼結体を安定して製造することができるLiCoO焼結体の製造方法及びスパッタリングターゲットを提供することにある。
 上記目的を達成するため、本発明の一形態に係るLiCoO焼結体の製造方法は、LiCoO粉末を冷間静水圧プレス法により1000kg/cm以上の圧力で予備成形する工程を含む。上記LiCoO粉末の予備成形体は、1050℃以上1120℃以下の温度で焼結される。
 本発明の一形態に係るスパッタリングターゲットは、LiCoO焼結体からなり、90%以上の相対密度と、3kΩ・cm以下の比抵抗と、20μm以上50μm以下の平均粒径とを有する。
本発明の第1の実施形態において説明する、熱処理後のLiCoO粉末のX線回線測定結果を概略的に示す図である。 図1のX線回折測定結果における各処理温度での(003)面のピークの半値幅を、異なる原材料粉末を用いた場合と比較して示す図である。 本発明の第1の実施形態において説明する、LiCoO粉末の示差熱分析結果を概略的に示す図である。 本発明の第1の実施形態におけるLiCoO焼結体の成形圧力と相対密度との関係を示す一実験結果である。 本発明の第1の実施形態におけるLiCoO焼結体の焼結時間と相対密度との関係を示す一実験結果である。 本発明の第1の実施形態におけるLiCoO焼結体の焼結温度と相対密度との関係を示す一実験結果である。 本発明の第1の実施形態において説明する、焼結炉の温度プロファイルの一例を示す図である。 本発明の第1の実施形態において説明する、焼結炉の温度プロファイルの他の一例を示す図である。 本発明の第2の実施形態において説明する、焼結炉の温度プロファイルの一例を示す図である。 本発明の第2の実施形態において説明する、焼結炉の温度プロファイルの他の一例を示す図である。
 本発明の一実施形態に係るLiCoO焼結体の製造方法は、LiCoO粉末を冷間静水圧プレス法により1000kg/cm以上の圧力で予備成形する工程を含む。上記LiCoO粉末の予備成形体は、1050℃以上1120℃以下の温度で焼結される。
 上記製造方法によれば、相対密度が90%以上という高密度なLiCoO焼結体を安定して製造することができる。
 上記予備成形体を焼結する工程は、上記予備成形体を上記温度に2時間以上保持してもよい。焼結時間が2時間未満の場合、90%以上の相対密度を得ることが困難である。焼結時間が2時間以上の場合、焼結時間を長くしても相対密度に大きな上昇効果が認められないため、焼結時間の上限は特に限定されない。
 上記予備成形体は、大気中で焼結されてもよいし、酸素雰囲気中で焼結されてもよい。いずれの焼結雰囲気においても、90%以上という高密度なLiCoO焼結体を安定して製造することができる。
 上記LiCoO粉末を予備成形する工程は、上記LiCoO粉末にバインダを添加する工程を含んでもよい。この場合、上記バインダが添加されたLiCoO粉末は、冷間静水圧プレス法により成形される。上記バインダが添加されたLiCoO粉末の成形体は、破砕される。破砕された上記LiCoO粉末は、冷間静水圧プレス法により成形される。
 これにより、比較的大型のLiCoO焼結体を製造する場合においても、相対密度90%以上という高密度なLiCoO焼結体を安定して製造することができる。
 上記LiCoO焼結体の製造方法は、上記成形体を焼結する工程の前に、上記バインダを含む上記LiCoO粉末の予備成形体を焼結温度よりも低い温度で脱脂する工程を有してもよい。
 これにより、バインダに由来するカーボンの残留を防止して高純度なLiCoO焼結体を製造することができる。
 本発明の一形態に係るスパッタリングターゲットは、LiCoO焼結体からなり、90%以上の相対密度と、3kΩ・cm以下の比抵抗と、20μm以上50μm以下の平均粒径とを有する。
 これにより、パーティクルの発生を抑制でき、直流電力と高周波電力との重畳放電による安定したスパッタリングが可能となる。
 以下、図面を参照しながら、本発明の実施形態を説明する。
(第1の実施形態)
 本実施形態では、均一な結晶組織、高い相対密度、低い比抵抗値を有するLiCoO(コバルト酸リチウム)焼結体を製造するために、焼結による残留応力が低いと予想される冷間静水圧プレス(CIP:Cold Isostatic Press)&Sintering法を採用する。ここでは先ず、予備成形圧力、焼結温度、焼結時間が、LiCoO焼結体に及ぼす影響について説明する。
[予備検討1:結晶性の変化]
 図1は、大気中、600℃、700℃、800℃、900℃及び1000℃で熱処理したLiCoO粉末のX線回折結果(線源:CuKα)を示す概略図である。測定装置には、理学電気株式会社製粉末X線回折装置「RINT1000」を用いた。LiCoO粉末のサンプルには、市販の粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を用いた。熱処理時間は、それぞれ30分とした。そして、各温度でのXRD結果から、(003)面のピークの半値幅(FWHM:full width at half maximum)と、(104)面と(003)面とのピーク強度比(面積比)((104)/(003))を、温度ごとに測定した。併せて、市販の粉末(日本化学工業株式会社製「セルシード(登録商標)C-5H」)を用いた場合の半値幅の変化も同様に測定した。その結果を図2に示す。
 図1及び図2の結果より、「セルシード(登録商標)C-5」では1000℃までの加熱では顕著なピークシフトは認められないが、900℃以上で半値幅の増加とピーク強度比の変化が確認された。このことから、900℃以上の温度でLiCoO結晶粒の成長が生じると考えられる。他方、「セルシード(登録商標)C-5H」では1000℃まで半値幅の変化は認められず、結晶粒の成長は1000℃以下では生じないが、1100℃で半値幅が変化していることから、結晶粒の成長は1000℃から1100℃の間で生じると考えられる。
[予備検討2:加熱による状態変化]
 図3は、市販(日本化学工業株式会社製「セルシード(登録商標)C-5」)のLiCoO粉末をAr雰囲気中で加熱したときの状態変化を概略的に示す一実験結果である。測定装置には、アルバック理工社製示差熱分析装置「TGD-9600」を用いた。Ar気流中で一定の昇温速度(20℃/min.)で加熱した際のサンプルの熱重量(TG:thermogravimetry)の変化を調べたところ、図3に示すように、1050℃程度までは僅かな重量減少があり、それより高温になると急激な重量減少が生じることが確認された。1050℃までの緩やかな重量減少は、サンプルからのガス放出と考えられ、また、1100℃程度で吸熱反応が示されていることから、この温度付近で融解が生じることが確認された。
[予備検討結果]
 高温保持された大気中に設置したサンプルの結晶性変化と、Ar気流中で昇温しながら測定したサンプルの状態変化とで条件は異なるものの、以下のような知見を得ることができる。すなわち、LiCoOの顕著な結晶粒の合体(成長)が生じ始める温度は1050℃以上であり、従ってLiCoO粉末の焼結が進行する温度条件は、1050℃以上の温度領域が適当であると判断される。なお、LiCoOの融点は、1130℃である。
 以上の知見をもとに、LiCoO焼結体に及ぼす焼結条件(成形圧力、焼結温度、保持時間)の影響を明確にする目的で、直径60mmの小サンプルを試作した。
 まず、焼結体の相対密度に及ぼす予備成形圧力の依存性を調べた。予備成形体形成時の圧力を500kg/cm(0.5ton/cm)から2000kg/cm(2ton/cm)まで変化させた複数の予備成形体サンプルを準備し、それぞれを大気中1050℃の温度で1時間加熱した後の相対密度を測定した。予備成形体の形成には、CIP法を用いた。その結果を図4(A),(B)に示す。図4(A),(B)に示すように、予備成形体形成時の圧力は、焼結体の相対密度に影響を及ぼし、1000kg/cm以上であれば、90%以上の相対密度を得られることが確認された。
 次に、予備成形体の形成圧力を2000kg/cm、焼結温度を1050℃及び1120℃とし、焼結体の相対密度に及ぼす焼結時間依存性を調べた。焼結雰囲気は、1050℃で焼結したサンプルと、1120℃で4時間及び8時間焼結したサンプルについては大気とし、1120℃で2時間焼結したサンプルについては常圧下の酸素(O)雰囲気とした。その結果を図5(A),(B)に示す。
 図5(A),(B)に示すように、焼結温度が1050℃の場合、図4(A),(B)のサンプルと同じ条件となる焼結時間が1時間では、図4(A),(B)のサンプルと異なって90%以上の相対密度を得ることができなかったが、4時間以上等温保持することで、90%以上の相対密度を得られることが確認された。他方、焼結温度が1120℃の場合、何れのサンプルについても90%以上の相対密度を得られることが確認された。また、酸素雰囲気下で焼結したサンプルについても90%以上の相対密度を得られていることから、焼結時の雰囲気としては酸素・大気のどちらでもよいことが確認された。なお焼結温度に関係なく、焼結時間を長くすることによる相対密度の増加を示す現象は確認されなかった。その理由は、焼結時に加圧力が加わらないためと考えられる。
 さらに、予備成形体の成形圧力2000kg/cm、焼結時間を2時間にそれぞれ固定し、焼結体の相対密度に及ぼす焼結温度依存性を調べた。その結果を図6(A),(B)に示す。焼結温度1050℃、1080℃、1100℃及び1120℃の全てのサンプルについて、90%以上の相対密度を得られることが確認された。一般的に、焼結体の相対密度に及ぼす焼結温度依存性は大きいとされているが、LiCoOに関しては、この温度範囲内では相対密度に及ぼす焼結温度の影響は小さいことを示す結果であった。
 以上の検討結果より、本発明の一実施形態に係るLiCoO焼結体の製造方法は、LiCoO粉末を冷間静水圧プレス法により1000kg/cm以上の圧力で予備成形する工程を含む。上記LiCoO粉末の予備成形体は、1050℃以上1120℃以下の温度で焼結される。
 原料粉末としては、平均粒径(D50)が例えば20μm以下のLiCoO粉末が用いられる。LiCoO粉末は、市販の粉末でもよいし、湿式法あるいは乾式法によって作製されてもよい。市販の原料粉末としては、例えば、日本化学工業株式会社製「セルシード(登録商標)C-5」、或いは、「セルシード(登録商標)C-5H」が挙げられる。
 上記LiCoO焼結体の製造方法は、冷間静水圧プレス法による成形工程と焼結工程とを有する、CIP&Sintering法が採用される。上記製造方法によれば、90%以上の相対密度を有するLiCoO焼結体を安定して製造することができる。
 CIP成形は、ゴム型(ラバー)内に粉末を充填し、ゴム型をラミネート袋に入れて封じた後、所定の成形圧力で静水圧加圧を行う。成形圧力は1000kg/cm以上とされる。成形圧力が1000kg/cm未満では、成形圧力が低すぎて、90%以上の相対密度を有する焼結体を安定して得ることが困難である。成形圧力が高いほど、相対密度は高くなる傾向にある。成形圧力の上限は特に限定されず、例えば3000kg/cmである。
 一方、焼結温度は、LiCoOの結晶粒の成長が生じる温度以上に設定される。これにより原料粉末の焼結が促進され、高密度な焼結体を得ることが可能となる。焼結温度が1050℃未満では、結晶粒の成長を促進できず、90%以上の相対密度を有する焼結体を得ることが困難である。逆に、焼結温度が1120℃を越えると、焼結体の結晶組織は粗大な結晶粒からなり、「硬いが脆い」という特性が顕著になる。
 上記予備成形体の焼結時間(焼結温度での保持時間)は、2時間以上とすることができる。2時間以上の焼結時間で90%以上の相対密度を有するLiCoO焼結体を得ることができる。つまり、焼結時間が2時間未満の場合、90%以上の相対密度を得ることが困難である。焼結時間が2時間以上の場合、焼結時間を長くしても相対密度に大きな上昇効果が認められないため、焼結時間の上限は特に限定されない。生産性等を考慮すると、焼結時間は最長でも8時間とされる。図7に、上記予備成形体の焼結工程における焼結炉の温度プロファイルの一例を示す。昇温速度及び降温速度は特に限定されず、例えば100℃/Hr.以下とされる。
 必要に応じて、予備成形体の脱ガス工程を追加的に実施してもよい。脱ガス工程を追加することで、原料粉末に含まれるガス成分を確実に除去することができる。このため、使用される原料粉末の吸湿度の影響を排除することができる。脱ガス工程では、予備成形体は、焼結温度よりも低い温度に所定時間保持される。脱ガス温度は、例えば600℃~700℃とされる。保持時間も特に限定されず、例えば1時間である。図8に、予備焼結体に対する脱ガス及び焼結処理を含む熱処理のための温度プロファイルの一例を示す。
 上記製造方法によれば、90%以上の相対密度を有するLiCoO焼結体を安定して製造することができる。これにより、焼結体の強度が向上し、取り扱い性が改善されるため、ターゲット形状に安定に機械加工できる。また、高電力の印加時にも耐久性が得られるため、スパッタレートの向上に対する要求にも十分に応えることが可能となる。
 さらに、焼結体が90%以上の相対密度を有することで、焼結体の比抵抗の低減を図ることが可能となる。上記製造方法によれば、3kΩ・cm以下の比抵抗を有するLiCoO焼結体を得ることができる。これにより、スパッタ成膜時にRF放電ではなくRF+DC放電(RFとDCとの重畳放電)が可能になり、且つ、放電安定性が向上し、スパッタレートの向上が見込める。
 焼結体の平均粒径は、焼結体の相対密度及び機械的強度と強い相関をもつ。焼結体の相対密度を高めるためには、LiCoO結晶が成長しやすい温度で焼結することが好ましい。焼結が進行して平均粒径が大きくなるに従い、相対密度が増大し機械的強度も上昇するが、他方では、「硬いが脆い」という特性が顕著になり、耐衝撃性が低下する。本発明の一実施形態に係るLiCoO焼結体の平均粒径は、20μm以上50μm以下が好ましい。
 焼結体の機械加工には、旋盤を用いた外周加工及び表面加工が含まれる。スパッタリングターゲットとして用いる上で、焼結体をバッキングプレートへ接合する必要がある。その接合には、溶融In(インジウム)を焼結体の接合面へ塗布してもよいし、焼結体の接合面にあらかじめCu(銅)薄膜を形成し、その上に溶融Inを塗布してもよい。ボンディング後、ターゲットおよびバッキングプレートはドライな環境にて洗浄される。
(第2の実施形態)
 一方、比較的大型のLiCoO焼結体を製造する場合、予備成形体自体の自重が大きくなり、成形体の形状を維持する上で成形体強度を高める必要が出てくる。そこで、原料粉末にバインダを添加し、成形と破砕を繰り返すことで、予備成形体の大型化に伴う強度の低下を抑制することができる。また、予備成形体の作製後は、適宜の温度で脱脂処理および必要な場合は脱ガス処理を施すことで、予備成形体から不純物成分を除去することができる。
 バインダとしては、加熱処理によって脱脂することが可能な高分子材料であれば特に限定されず、例えばポリ酢酸ビニル系、ポリビニルアルコール系の高分子材料が用いられる。バインダの混合量は適宜設定することができ、例えば2wt%以下とされる。このバインダをLiCoO原料粉末と混合し、乾燥させた後、適宜の大きさに粉砕する。粉砕サイズは特に限定されず、例えば#500以下(25μm以下)である。粉砕された混合粉末は、CIP処理された後、再度粉砕される。以上のようにして造粒された粉末を再度CIP処理することで、LiCoO粉末の予備成形体が作製される。
 原料粉末とバインダとの混合には、混合媒体としてZr(ジルコニア)ボール、溶媒としてエタノールを用い、樹脂製の容器に入れ回転させながら混合分散させることができる。乾燥には、真空乾燥機を用いることができる。これ以外の方法として、スプレードライアが用いられてもよい。粉砕には、ロールミルやボールミルを用いることができ、分級では#500の篩いを用いて凝集粉を除去する。CIP成形は、例えば360mmφのゴム型(ラバー)内に粉末を充填し、ゴム型をラミネート袋に入れて封じた後、所定の成形圧力で静水圧加圧を行う。
 上記CIP処理の圧力条件は、上述の第1の実施形態と同様に、1000kg/cm以上とされる。再粉砕サイズも同様に、#500以下とされる。このようにCIP処理と粉砕処理とを交互に繰り返すことにより、粒子サイズの均一化と、バインダの分散を図ることが可能となる。繰り返し回数は特に限定されない。上記処理を繰り返すことにより、原料粉末の密着強度が高まり、予備成形体の強度を向上させることが可能となる。
 予備成形体の脱脂処理は、焼結工程と同時に行われてもよいが、焼結温度よりも低い温度で脱脂することにより、バインダ成分の突沸を防いで高密度の焼結体を得ることができる。脱脂温度は特に限定されないが、例えば300℃程度とすることができる。脱脂温度での保持時間も特に限定されず、例えば1時間~6時間である。
 予備成形体の脱ガス処理は、脱脂温度よりも高く、焼結温度よりも低い温度で実施される。脱ガス温度は特に限定されないが、例えば600℃~700℃であり、本実施形態では650℃程度とされる。脱ガス温度での保持時間も特に限定されず、例えば1時間である。
 脱脂後の予備成形体は、1050℃以上1120℃以下の温度で2時間以上保持されることで、焼結される。これによりLiCoO焼結体が作製される。予備成形体の成形圧力を2000kg/cm、脱脂処理を300℃で1時間、焼結処理を1120℃で4時間行って直径約330mm、厚み10mmのLiCoO焼結体を作製したところ、相対密度は92%、平均粒径は40μm、比抵抗は2kΩ・cmであった。このとき、焼結炉への予備成形体の搬送時および焼結炉から焼結体の取り出し時において、予備成形体および焼結体の割れは発生しなかった。また、ICP発光分光分析により焼結体の組成分析を行い、LECO社製ガス分析装置を用いて燃焼赤外吸収法によりバインダに起因する炭素量の増加を調べたが、バインダ添加の有無にかかわらず60ppmであった。
 図9に、本実施形態のLiCoO予備焼結体に対する脱脂および焼結処理を含む熱処理のための温度プロファイルの一例を示す。予備成形体が加熱炉へ装填された後、所定の昇温速度で300℃まで炉内が加熱される。昇温後、その温度に1~6時間保持されることで、予備成形体が脱脂される。次に、予備成形体は、焼結温度(1050℃~1120℃)まで加熱され、その温度に2~8時間保持されることで焼結される。焼結後、炉内が所定の降温速度で室温まで冷却される。昇温速度及び降温速度は特に限定されず、例えば100℃/Hr.以下とされる。
 図10は、脱脂、脱ガスおよび焼結処理を含む熱処理の温度プロファイルの一例を示している。脱脂後、炉内温度が650℃になるまで昇温され、その温度に1時間保持されることで、予備焼結体が脱ガスされる。その後、焼結温度に所定時間保持されることで、焼結処理が実施される。
 以下、本発明の実施例について説明するが、本発明はこれに限定されない。
(実施例1)
 (実施例1-1)
 平均粒径(D50、以下同じ。)5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、2000kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1050℃で8時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度、比抵抗値、平均粒径を測定したところ、相対密度は90%、比抵抗値は3kΩ・cm、平均粒径は約20μmであった。
 なお、相対密度は、焼結体の見掛け密度と理論密度(5.16g/cm)との比を計算により求めた。見掛け密度は、得られた焼結体を機械加工して外周及び厚みの寸法をノギス、マイクロメータ或いは3次元測定器を用いて測定して体積を求め、次に、電子天秤にて重量を測定し、(重量/体積)の式から求めた。
 比抵抗値の測定は、4探針法によって行った。測定装置は、ナプソン社製「RT-6」を用いた。
 平均粒径の測定は、焼結体の断面SEM写真を用い、「ASTM(American Society for Testing and Materials)E112」(JIS(Japanese Industrial Standards) G0551)の粒度表に基づく目視判断とした。
 (実施例1-2)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、2000kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1120℃で4時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は92%、比抵抗値は2kΩ・cm、平均粒径は約50μmであった。
 (実施例1-3)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、1500kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1120℃で3時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は90.5%、比抵抗値は3kΩ・cm、平均粒径は約40μmであった。
 (実施例1-4)
 平均粒径6~7μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5H」)を、1500kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1120℃で3時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は91%、比抵抗値は3kΩ・cm、平均粒径は約40μmであった。
 (比較例1-1)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、2000kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、950℃で3時間焼結した。焼結後の成形体の割れは認められなかった。得られた焼結体の相対密度は80%、比抵抗値は12kΩ・cm、平均粒径は約7μmであった。
 (比較例1-2)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、950kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1050℃で1時間焼結した。焼結後の成形体の割れは認められなかった。得られた焼結体の相対密度は88%、比抵抗値は7kΩ・cm、平均粒径は約20μmであった。
 (比較例1-3)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、2000kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1130℃で3時間焼結した。焼結後の成形体の割れは認められなったが、ターゲット形状への加工時にチッピングが多数発生した。得られた焼結体の相対密度は93%、比抵抗値は2kΩ・cm、平均粒径は約100μmであった。
 (比較例1-4)
 平均粒径6~7μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5H」)を、950kg/cmでφ150mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、1050℃で2時間焼結した。焼結後の成形体の割れは認められなかった。得られた焼結体の相対密度は86%、比抵抗値は8kΩ・cm、平均粒径は約15μmであった。
 実施例1の条件及び結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、予備成形体の成形圧力が1000kg/cm以上、焼結温度が1050℃以上1120℃以下、焼結時間を2時間以上とすることで、90%以上の相対密度と、3kΩ・cm以下の比抵抗値と、20μm以上50μm以下の平均粒径とを有するLiCoO焼結体を得ることができる。
 一方、比較例1-1では、焼結温度が950℃と低かったため、平均粒径が約7μmと小さかった。その結果、相対密度が80%と低く、比抵抗値も12kΩ・cmと非常に高かった。比較例1-2では、焼結時間が1時間と短かったため、相対密度が88%と低く、比抵抗値も7kΩ・cmと比較的高かった。一方、比較例1-3では、焼結温度が1130℃と高かったため、平均粒径が100μmと比較的大きかった。その結果、硬度が高くなり、焼結体の加工時に割れが生じ易かった。
(実施例2)
 (実施例2-1)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)にポリ酢酸ビニル系のバインダを2wt%添加し、エタノールを加えて混合した後、乾燥させた。その後、ロール粉砕、分級、CIP、ロール粉砕、分級を順に実施することで造粒した平均粒径5~6μmの粉末を、2000kg/cmでφ360mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、300℃で3時間保持してバインダ成分を除去した後、1050℃で8時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は90%、比抵抗値は3kΩ・cm、平均粒径は約20μmであった。残留カーボン量を確認したところ、60ppm以下であった。
 なお、残留カーボン量に関しては、ICP発光分光分析により焼結体の組成分析を行い、LECO社製ガス分析装置を用いて燃焼赤外吸収法によりバインダに起因する炭素量の増加量として測定した。
 (実施例2-2)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)にポリ酢酸ビニル系のバインダを1wt%添加し、エタノールを加えて混合した後、乾燥させた。その後、粉砕、分級、CIP、粉砕、分級を順に実施することで造粒した粉末を、2000kg/cmでφ360mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、300℃で1時間保持してバインダ成分を除去した後、1120℃で4時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は92%、比抵抗値は2kΩ・cm、平均粒径は約40μmであった。残留カーボン量を確認したところ、60ppm以下であった。
 (実施例2-3)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)にポリ酢酸ビニル系のバインダを2wt%添加し、エタノールを加えて混合した後、乾燥させた。その後、ロール粉砕した後に、粉末をボールミルを用いて粉砕・混合・均一化処理した。この結果、原料粉末の平均粒径は0.6μm程度まで微細化した。この粉末を、2000kg/cmでφ360mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、300℃で3時間保持してバインダ成分を除去した後、650℃で1時間保持し、その後昇温して1050℃に到達後、同温度で8時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は95%、比抵抗値は0.5kΩ・cm、平均粒径は30μmであった。残留カーボン量を確認したところ、60ppmであった。
 (実施例2-4)
 平均粒径6~7μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5H」)にポリ酢酸ビニル系のバインダを2wt%添加し、エタノールを加えて混合した後、乾燥させた。その後、ロール粉砕した後に、粉末をボールミルを用いて粉砕・混合・均一化処理した。この結果、原料粉末の平均粒径は0.6μm程度まで微細化した。この粉末を、2000kg/cmでφ360mmのサイズのゴム型を用いてCIP成形した。得られた予備成形体を大気中、300℃で3時間保持してバインダ成分を除去した後、650℃で1時間保持し、その後昇温して1050℃に到達後、同温度で8時間焼結した。ターゲット形状への機械加工時、焼結体の割れは認められなかった。ターゲットの放電テストを行ったところ、安定したRF+DC放電の持続が確認された。得られた焼結体の相対密度は94%、比抵抗値は0.6kΩ・cm、平均粒径は30μmであった。残留カーボン量を確認したところ、60ppmであった。
 (比較例2-1)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、2000kg/cmでφ360mmのサイズのゴム型を用いてCIP成形した。成形体強度が低く、6枚中3枚が割れた。割れなかった予備成形体を大気中、1120℃で3時間焼結した。焼結後の成形体のうち1枚は割れてしまい、他の1枚は機械加工時に割れが認められた。得られた焼結体の相対密度は92%、比抵抗値は3kΩ・cm、平均粒径は約40μmであった。
 (比較例2-2)
 平均粒径5~6μmのLiCoO原料粉末(日本化学工業株式会社製「セルシード(登録商標)C-5」)を、2000kg/cmでφ360mmのサイズのゴム型を用いてCIP成形した。成形体強度が低く、ほとんどが割れた。割れなかった予備成形体を大気中、1130℃で3時間焼結した。得られた焼結体の相対密度は93%、比抵抗値は3kΩ・cm、平均粒径は約80μmであった。
 実施例2の条件及び結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 原料粉末にバインダを混合し、成形及び粉砕した造粒粉を用いることで、比較的大型の焼結体を安定して作製することができる。また、予備成形体の成形圧力が1000kg/cm以上、焼結温度が1050℃以上1120℃以下、焼結時間を2時間以上とすることで、90%以上の相対密度と、3kΩ・cm以下の比抵抗値と、20μm以上50μm以下の平均粒径とを有するLiCoO焼結体を得ることができる。
 一方、比較例2-1及び2-2のように、原料粉末にバインダを混合せずに成形した焼結体は、実施例2と同様な成形条件及び焼結条件であったにもかかわらず、焼結体のサイズが実施例1よりも大型であったため、焼結体の割れが認められた。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。
 例えば以上の実施形態では、予備成形体の成形圧力を1000~2000kg/cmとしたが、2000kg/cmを超える圧力で予備成形体を作製してもよい。また、以上の実施形態では、予備成形体の焼結雰囲気を大気中としたが、酸素雰囲気中としてもよい。
 さらに、以上の実施形態では、予備成形体の大きさをφ150mmとφ360mmの2種類としたが、勿論これらに限られない。原料粉末にバインダを混合するかどうかは、作製される予備成形体及び焼結体の強度に基づいて判断すればよい。
 DTA…示差熱分析
 TG…熱重量分析
 DTG…熱重量の変化率

Claims (6)

  1.  LiCoO粉末を冷間静水圧プレス法により1000kg/cm以上の圧力で予備成形し、
     前記LiCoO粉末の予備成形体を1050℃以上1120℃以下の温度で焼結する
     LiCoO焼結体の製造方法。
  2.  請求項1に記載のLiCoO焼結体の製造方法であって、
     前記予備成形体を焼結する工程は、前記予備成形体を前記温度に2時間以上保持する
     LiCoO焼結体の製造方法。
  3.  請求項2に記載のLiCoO焼結体の製造方法であって、
     前記予備成形体を焼結する工程は、大気中または酸素雰囲気中で前記予備成形体を焼結する
     LiCoO焼結体の製造方法。
  4.  請求項1に記載のLiCoO焼結体の製造方法であって、
     前記LiCoO粉末を予備成形する工程は、
     前記LiCoO粉末にバインダを添加する工程と、
     前記バインダを添加した前記LiCoO粉末を冷間静水圧プレス法により成形する工程と、
     前記バインダを添加した前記LiCoO粉末の成形体を破砕する工程と、
     粉砕した前記LiCoO粉末を冷間静水圧プレス法により成形する工程とを含む
     LiCoO焼結体の製造方法。
  5.  請求項4に記載のLiCoO焼結体の製造方法であって、さらに、
     前記予備成形体を焼結する工程の前に、前記バインダを含む前記LiCoO粉末の予備成形体を焼結温度よりも低い温度で脱脂する
     LiCoO焼結体の製造方法。
  6.  LiCoO焼結体からなり、90%以上の相対密度と、3kΩ・cm以下の比抵抗と、20μm以上50μm以下の平均粒径とを有する
     スパッタリングターゲット。
PCT/JP2010/007510 2010-01-15 2010-12-24 LiCoO2焼結体の製造方法及びスパッタリングターゲット WO2011086650A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800615947A CN102770392A (zh) 2010-01-15 2010-12-24 LiCoO2烧结体的制造方法及溅射靶材
US13/522,226 US20120305392A1 (en) 2010-01-15 2010-12-24 MANUFACTURING METHOD FOR LiCoO2, SINTERED BODY AND SPUTTERING TARGET
JP2011549776A JP5704571B2 (ja) 2010-01-15 2010-12-24 LiCoO2焼結体の製造方法
EP10843009.1A EP2532634A4 (en) 2010-01-15 2010-12-24 PROCESS FOR PREPARING SINTERED LICOO2 AND SPUTTER TARGET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006753 2010-01-15
JP2010-006753 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011086650A1 true WO2011086650A1 (ja) 2011-07-21

Family

ID=44303956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007510 WO2011086650A1 (ja) 2010-01-15 2010-12-24 LiCoO2焼結体の製造方法及びスパッタリングターゲット

Country Status (7)

Country Link
US (1) US20120305392A1 (ja)
EP (1) EP2532634A4 (ja)
JP (1) JP5704571B2 (ja)
KR (1) KR20120101505A (ja)
CN (1) CN102770392A (ja)
TW (1) TWI504582B (ja)
WO (1) WO2011086650A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412389A (zh) * 2011-08-04 2012-04-11 横店集团东磁股份有限公司 一种锂离子电池用掺镁镍钴酸锂正极材料的制备方法
WO2013141254A1 (ja) * 2012-03-21 2013-09-26 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2014198901A (ja) * 2013-03-13 2014-10-23 株式会社コベルコ科研 LiCoO2含有焼結体およびスパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
WO2014178382A1 (ja) * 2013-04-30 2014-11-06 株式会社コベルコ科研 Li含有酸化物ターゲット接合体
WO2015146574A1 (ja) * 2014-03-26 2015-10-01 Jx日鉱日石金属株式会社 LiCoO2スパッタリングターゲット及びその製造方法並びに正極材薄膜
JP2017075377A (ja) * 2015-10-15 2017-04-20 株式会社コベルコ科研 LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
JP2017088956A (ja) * 2015-11-10 2017-05-25 株式会社神戸製鋼所 LiCoO2含有スパッタリングターゲットおよびLiCoO2含有焼結体
JP2017165626A (ja) * 2016-03-17 2017-09-21 Jx金属株式会社 コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
JP2018511701A (ja) * 2015-03-18 2018-04-26 ユミコア リチウム含有遷移金属酸化物ターゲット
US11505501B1 (en) 2021-08-20 2022-11-22 Corning Incorporated Sintered lithium cobaltite electrodes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364414B1 (ko) * 2010-01-15 2014-02-18 가부시키가이샤 아루박 LiCoO₂ 소결체의 제조방법 및 스퍼터링 타겟
JP6011838B2 (ja) * 2011-08-31 2016-10-19 トヨタ自動車株式会社 リチウム二次電池
CN103066269B (zh) * 2012-12-25 2015-08-19 贵州安达科技能源股份有限公司 一种三元正极活性材料制备方法及电池
BE1025799B1 (nl) * 2017-12-18 2019-07-19 Soleras Advanced Coatings Bvba Gespoten lithiumcobaltoxide-targets
US11274363B2 (en) * 2019-04-22 2022-03-15 Nxp Usa, Inc. Method of forming a sputtering target
CN113652657B (zh) * 2021-08-25 2023-10-10 有研亿金新材料有限公司 铝钪合金靶材及采用大气高温扩散烧结成型制造方法
CN114057233B (zh) * 2021-11-17 2023-09-26 鄂尔多斯市紫荆创新研究院 用于制备薄膜锂电池的钴酸锂正极靶材及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012970A1 (fr) * 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Cible d'oxyde de métal de transition contenant du lithium, procédé de fabrication associé et batterie lithium-ion secondaire en couche mince
JP2008045213A (ja) 2007-08-24 2008-02-28 Symmorphix Inc LiCoO2の堆積
JP2008053217A (ja) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225603A (ja) * 1989-02-27 1990-09-07 Koujiyundo Kagaku Kenkyusho:Kk 粉末成形薄板の製造方法
JP3444713B2 (ja) * 1996-02-27 2003-09-08 三井金属鉱業株式会社 Itoスパッタリング用ターゲットの製造方法
JP2003238242A (ja) * 2002-02-19 2003-08-27 Kyocera Corp 誘電体磁器及びこれを用いた誘電体共振器
JP2004091249A (ja) * 2002-08-30 2004-03-25 Sumitomo Metal Mining Co Ltd Bzo焼結体およびその製造方法
JP2006335599A (ja) * 2005-06-01 2006-12-14 Nippon Tungsten Co Ltd マイクロ波誘電体磁器組成物の特性制御法とそれによって得られた組成物
JP4797712B2 (ja) * 2006-03-08 2011-10-19 東ソー株式会社 ZnO−Al2O3系焼結体、スパッタリングターゲット及び透明導電膜の製造方法
CN101246959A (zh) * 2007-02-13 2008-08-20 中信国安盟固利新能源科技有限公司 一种锂离子二次电池正极薄膜极片的制备方法
JP5142700B2 (ja) * 2007-03-28 2013-02-13 京セラ株式会社 誘電体磁器組成物および誘電体共振器
KR101364414B1 (ko) * 2010-01-15 2014-02-18 가부시키가이샤 아루박 LiCoO₂ 소결체의 제조방법 및 스퍼터링 타겟

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053217A (ja) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法
WO2008012970A1 (fr) * 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Cible d'oxyde de métal de transition contenant du lithium, procédé de fabrication associé et batterie lithium-ion secondaire en couche mince
JP2008045213A (ja) 2007-08-24 2008-02-28 Symmorphix Inc LiCoO2の堆積

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532634A4 *
YASUHIRO SETO, TOMEI DODENMAKU, 26 September 2005 (2005-09-26), pages 117 - 124, XP008169412 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412389A (zh) * 2011-08-04 2012-04-11 横店集团东磁股份有限公司 一种锂离子电池用掺镁镍钴酸锂正极材料的制备方法
WO2013141254A1 (ja) * 2012-03-21 2013-09-26 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2013194299A (ja) * 2012-03-21 2013-09-30 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2014198901A (ja) * 2013-03-13 2014-10-23 株式会社コベルコ科研 LiCoO2含有焼結体およびスパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
JP2017190527A (ja) * 2013-04-30 2017-10-19 株式会社コベルコ科研 Li含有酸化物ターゲット接合体およびその製造方法
WO2014178382A1 (ja) * 2013-04-30 2014-11-06 株式会社コベルコ科研 Li含有酸化物ターゲット接合体
JP2014231639A (ja) * 2013-04-30 2014-12-11 株式会社コベルコ科研 Li含有酸化物ターゲット接合体
US9870902B2 (en) 2013-04-30 2018-01-16 Kobelco Research Institute, Inc. Li-containing oxide target assembly
WO2015146574A1 (ja) * 2014-03-26 2015-10-01 Jx日鉱日石金属株式会社 LiCoO2スパッタリングターゲット及びその製造方法並びに正極材薄膜
KR20160124200A (ko) 2014-03-26 2016-10-26 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
JPWO2015146574A1 (ja) * 2014-03-26 2017-04-13 Jx金属株式会社 LiCoO2スパッタリングターゲット及びその製造方法並びに正極材薄膜
KR20180081173A (ko) 2014-03-26 2018-07-13 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
JP2018511701A (ja) * 2015-03-18 2018-04-26 ユミコア リチウム含有遷移金属酸化物ターゲット
US10822690B2 (en) 2015-03-18 2020-11-03 Umicore Lithium-containing transition metal oxide target
JP2017075377A (ja) * 2015-10-15 2017-04-20 株式会社コベルコ科研 LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
JP2017088956A (ja) * 2015-11-10 2017-05-25 株式会社神戸製鋼所 LiCoO2含有スパッタリングターゲットおよびLiCoO2含有焼結体
JP2017165626A (ja) * 2016-03-17 2017-09-21 Jx金属株式会社 コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
US11505501B1 (en) 2021-08-20 2022-11-22 Corning Incorporated Sintered lithium cobaltite electrodes

Also Published As

Publication number Publication date
EP2532634A4 (en) 2014-07-02
JPWO2011086650A1 (ja) 2013-05-16
TW201130780A (en) 2011-09-16
TWI504582B (zh) 2015-10-21
KR20120101505A (ko) 2012-09-13
CN102770392A (zh) 2012-11-07
JP5704571B2 (ja) 2015-04-22
US20120305392A1 (en) 2012-12-06
EP2532634A1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5704571B2 (ja) LiCoO2焼結体の製造方法
TWI487176B (zh) LiCoO2燒結體的製造方法及濺鍍靶
JP6018930B2 (ja) 正極−固体電解質複合体の製造方法
EP3219690B1 (en) Lithium cobalt sintered body and sputtering target produced by using the sintered body, production method of lithium cobalt oxide sintered body, and thin film formed from lithium cobalt oxide
JP5730903B2 (ja) スパッタリングターゲット
JP6326396B2 (ja) LiCoO2含有スパッタリングターゲットおよびLiCoO2含有焼結体
US10153142B2 (en) LiCoO2 sputtering target, production method therefor, and positive electrode material thin film
JP6982712B2 (ja) リチウムイオン伝導性酸化物焼結体およびその用途
JP7002199B2 (ja) 全固体電池の製造方法
WO2012073879A1 (ja) スパッタリングターゲット
JP2012246167A (ja) 圧粉焼結体の作製方法
WO2017064920A1 (ja) LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
JP6585251B2 (ja) コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
CN106278248A (zh) 溅射靶

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061594.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127017328

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011549776

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010843009

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13522226

Country of ref document: US