WO2011080897A1 - 駆動装置及び搬送装置 - Google Patents
駆動装置及び搬送装置 Download PDFInfo
- Publication number
- WO2011080897A1 WO2011080897A1 PCT/JP2010/007446 JP2010007446W WO2011080897A1 WO 2011080897 A1 WO2011080897 A1 WO 2011080897A1 JP 2010007446 W JP2010007446 W JP 2010007446W WO 2011080897 A1 WO2011080897 A1 WO 2011080897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- drive device
- actuator
- shaft
- arm unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67742—Mechanical parts of transfer devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0095—Manipulators transporting wafers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/04—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
- B25J9/041—Cylindrical coordinate type
- B25J9/042—Cylindrical coordinate type comprising an articulated arm
- B25J9/043—Cylindrical coordinate type comprising an articulated arm double selective compliance articulated robot arms [SCARA]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/106—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
- B25J9/1065—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
- B25J9/126—Rotary actuators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
Definitions
- the present invention relates to a transport device that transports a semiconductor substrate, a glass substrate, and the like, and a drive device used therefor.
- the transport device described in Patent Document 1 includes a casing that houses a main part of the drive unit, and a drive unit support frame that is housed in the casing.
- the drive unit support frame supports a plurality of motors and the like for expanding and contracting and turning the arms and the like.
- the drive unit support frame is moved up and down in the casing along a linear guide rail provided in the vertical direction via a ball screw mechanism by a motor disposed at the bottom of the casing.
- the entire arm moves up and down (see, for example, paragraph [0016] of FIG. 1 and FIG. 1).
- a base plate is connected to the upper part of the casing, and the base plate is installed in an opening formed in a base (fixed part) in a vacuum environment. That is, the drive unit is supported by the base plate so that the transfer device (drive unit thereof) is suspended from the opening formed in the base.
- the drive device which concerns on one form is a drive device which drives the conveyance body which is arrange
- the actuator drives the carrier.
- the frame is formed by integral molding, is connected to the partition wall of the chamber, and mounts the actuator.
- the frame is formed by integral molding, the rigidity of the frame can be increased and the durability of the frame can be improved. Since a part of the frame is connected to the partition wall, the frame can be reliably prevented from being damaged even if stress due to a reaction generated when the transport body is driven by the actuator is applied to the frame.
- the actuator may include a turning shaft, a motor, and a support base.
- the turning shaft is connected to the carrier and turns the carrier.
- the motor applies a rotational driving force to the turning shaft.
- the support base supports the turning shaft and the motor.
- the turning shaft and the motor are integrated by the support base.
- the operator can easily assemble the drive device of the transport device by assembling the actuator integrated in this way to the frame.
- the drive device includes the actuator and the frame.
- the carrier may be an articulated arm unit.
- the actuator further includes a telescopic shaft for expanding and contracting the arm of the arm unit.
- the frame may include a connection portion, a facing portion, and a connection portion.
- the connecting portion is connected to the partition wall.
- the facing portion is disposed to face the connecting portion.
- the connecting portion connects the connecting portion and the facing portion such that the support base is disposed between the connecting portion and the facing portion.
- the operator can assemble the actuator to the frame by inserting the integrated actuator into the frame from the connection portion side or the facing portion side.
- the actuator may further include an elevating mechanism that elevates and lowers the support base between the connection portion and the facing portion. When the support base is lifted and lowered by the lifting mechanism, the carrier can be lifted and lowered.
- the connecting portion or the facing portion may have a notch, and the elevating mechanism may have an elevating drive source unit provided in the notch.
- the transport body may be an articulated arm unit, and a plurality of the transport bodies may be provided.
- the actuator may have a first rotating shaft, a second rotating shaft, a turning shaft, and a motor.
- the first rotating shaft is connected to a first arm unit of the plurality of arm units, and expands and contracts an arm of the first arm unit.
- the second rotating shaft is connected to a second arm unit of the plurality of arm units, and expands and contracts an arm included in the second arm unit.
- the pivot shaft integrally pivots the first arm unit and the second arm unit.
- the motor drives the first rotating shaft, the second rotating shaft, and the turning shaft, respectively.
- the motors may be arranged at equiangular intervals along the direction in which the first arm unit and the second arm unit turn. Thereby, the stress applied to the frame or the like via each motor can be evenly distributed.
- the actuator may further include a lift motor and a plurality of guide shafts.
- the lift motor moves the support base up and down along a direction in which the shaft extends.
- the plurality of guide shafts are arranged at equiangular intervals along the direction in which the shaft rotates, and guide the lifting operation of the support base by the lifting motor.
- a plurality of the connecting portions may be arranged at equiangular intervals on a circumference centered on the turning shaft.
- FIG. 1 is a perspective view showing a transport apparatus according to an embodiment of the present invention.
- the transfer apparatus 100 transfers the substrate G as a transfer object between the processing chambers or the like that are processed under vacuum.
- Examples of the substrate G include a glass substrate mounted on a display device.
- the transport apparatus 100 includes two arm units 30 serving as transport bodies provided in the upper part, and a drive unit 50 (drive) that is connected to these arm units 30 on the lower side of these arm units 30 and drives the arm units 30. Device).
- the two arm units 30 each have a first arm 1, a second arm 2, a third arm 3, a fourth arm 4, a link member 5, a hand base 6, and a hand member 7, and the two arm units 30.
- the two arm units 30 can be expanded and contracted independently. Further, the turning block 8 is turned by one turning shaft 73 driven by the drive unit 50 as will be described later. As the turning block 8 turns, the two arm units 30 turn together.
- the configuration of the two arm units 30 is substantially the same, and the configuration of one arm unit 30 will be described below.
- the first arm 1 and the second arm 2 constitute a parallel link
- the third arm 3 and the fourth arm 4 constitute a parallel link
- the first joint shaft 11 is connected to the drive unit 50 via the turning block 8 at one end of each of the first arm 1 and the second arm 2.
- these first joint shafts 11 are connected to one common shaft 71 (or 72) (see FIG. 8) provided in the drive unit 50 via the turning block 8.
- one shaft 71 (or 72) of the drive unit 50 is rotationally driven, one arm unit 30 expands and contracts.
- the second joint shaft 12 is connected between the guide shaft 15 and the third joint shaft 13 of the third arm 3 and the fourth arm 4 and closer to the guide shaft 15 than the third joint shaft 13. Yes.
- the first arm 1 and the second arm 2 are connected to the third arm 3 and the fourth arm 4 via the second joint shaft 12, respectively.
- the bearing roller 18 is positioned in the cam groove 17a at the end of the cam groove 17a far from the central axis (the three coaxial shafts 75) of the drive unit 50. Is done.
- the hand member 7, the hand base 6, the guide plate 16, and the link member 5 move without changing the direction.
- the guide shaft 15 and the second joint shaft are set so that the height of the third arm 3 and the fourth arm 4 of one arm unit 30 is different from the height of the third arm 3 and the fourth arm 4 of the other arm unit 30.
- a length of 12 is set. Thereby, both arm units 30 can be extended and contracted without interference.
- each of the third arm 3 and the fourth arm 4 becomes free in one direction, and is guided by the guide shaft 15 and the cam plate in the one direction. That one direction is a direction orthogonal to the direction in which the arm unit 30 expands and contracts. That is, the guide mechanism 10 acts so as to restrain the movement of the end portion of the second parallel link mechanism 32 in the Y-axis direction. Therefore, it is possible to control the operation of the holding portion 67 that is the working end of the second parallel link mechanism 32 and its positioning with high accuracy.
- the guide mechanism 10 can reduce the size of the arm unit 30 and can provide an operating range of the arm unit 30 corresponding to the required footprint of the large substrate G even when the large substrate G is transported. Can be secured.
- FIG. 2 is a plan view showing a cluster type vacuum processing apparatus to which the transfer apparatus 100 according to the present embodiment is applied, for example.
- the vacuum processing apparatus 200 includes a plurality of vacuum processing units 210, a load lock unit 220, and a transfer unit 150 connected to the vacuum processing unit 210 and the load lock unit 220 via each gate 205.
- the vacuum processing unit 210 is a unit that performs, for example, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), or other vacuum processing.
- the apparatus to which the transfer apparatus 100 is applied is not limited to such a cluster type apparatus, and can be applied to various vacuum processing apparatuses 200.
- FIG. 3 is a perspective view showing the drive unit 50, and FIG. 4 is a plan view thereof.
- the drive unit 50 includes an actuator 70 and a frame 60 on which the actuator 70 is mounted.
- FIG. 5 is a perspective view showing the frame 60
- FIG. 6 is a plan view thereof.
- the frame 60 is made of a metal material such as steel, aluminum, or magnesium, and is integrally formed by casting.
- the frame 60 includes a connection portion 61 that can be connected to the partition wall 152 (see FIG. 8) of the transfer chamber 151, a bottom plate portion 62 as a facing portion provided to face the connection portion 61, and the connection portion 61 and the bottom plate portion. And a plurality of connecting portions 63 that connect 62.
- the connecting portion 61 is formed in a ring shape and has a flange 61a.
- a lid 65 can be attached to and detached from the connecting portion 61.
- the flange 61a has a plurality of holes through which bolts are passed.
- the frame 61 is fixed to the partition wall 152 by fixing the flange 61 a to the opening 152 a formed in the partition wall 152 with the bolt 53.
- the frame 60 is formed by integral molding, the rigidity of the frame 60 can be increased and the durability of the frame 60 can be improved. In particular, it is possible to realize the frame 60 having sufficient resistance against the stress applied by the reaction generated in the actuator 70 when the arm unit 30 is driven.
- the connecting portion 61 side of the connecting portion 63 is a portion to which a large shear stress is applied among the stress due to the reaction generated when the arm unit 30 is driven.
- FIG. 7 is a perspective view showing the actuator 70.
- FIG. 8 is a schematic cross-sectional view taken along line AA shown in FIG. FIG. 8 shows a state where the actuator 70 is mounted on the frame 60.
- the actuator 70 includes a coaxial three-axis shaft 75 (two rotating shafts 71 and 72 and one turning shaft 73), three motors 74, and a driving force for rotation by these three motors 74. And a transmission mechanism for transmitting to the three shafts 75.
- the turning shaft 73 and the rotating shaft 72 are formed in a hollow shape. A rotating shaft 72 having a smaller diameter is disposed in the turning shaft 73, and a rotating shaft 71 having a smaller diameter is disposed in the rotating shaft 72. As shown in FIG.
- the transmission mechanism typically includes a drive pulley 76 connected to each motor 74, a driven pulley 83 provided on each of the shafts 71, 72 and 73, and the drive pulley 76 and A belt 77 spanned between the driven pulleys 83 is provided.
- the actuator 70 includes a support base 40 that supports the triaxial shaft 75, the motor 74, and the like.
- FIG. 9 is a plan view showing the support base 40.
- FIG. 10 is a bottom view showing the support base 40.
- the support base 40 is integrally formed by casting.
- the actuator 70 has an elevating mechanism 35 (not shown in FIG. 7) that drives the support base 40 to elevate.
- the elevating mechanism 35 includes an elevating drive source unit 36 attached to the bottom plate portion 62 and a ball screw 37 provided so as to extend from the elevating drive source unit 36 and driven to rotate by the elevating drive source unit 36.
- the drive mechanism for driving the ball screw 37 of the lift drive source unit 36 includes a lift motor, a belt and a pulley (not shown) (not shown).
- the elevating drive source unit 36 is fixed to a notch 62a (see FIG. 5) formed in the bottom plate 62 with a bolt or the like.
- the support base 40 is formed with an insertion portion 43 through which the ball screw 37 is inserted.
- a ball nut 78 is fixed to the lower portion of the insertion portion 43. ing.
- the notch part 62a is provided, and the raising / lowering drive source unit 36 is arrange
- the support base 40 has a plurality of guide portions 41 arranged at equiangular intervals along the rotation direction of the shafts 71, 72 and 73.
- Each of these guide portions 41 includes a hole 41 a through which the lifting guide shaft 64 (see FIGS. 3 and 8, etc.) is inserted and a bearing (bush) that supports the lifting guide shaft 64, and is supported by the lifting guide shaft 64.
- the smooth raising / lowering operation of the base 40 is ensured.
- the elevating guide shaft 64 is mounted and fixed to a hole-shaped mounting portion 69 provided in the bottom plate portion 62 of the frame 60 shown in FIG.
- three elevating guide shafts 64 are provided, and are arranged at intervals of 120 ° along the rotation direction of the shafts 71, 72, and 73.
- the actuator 70 has the shaft and the motor 74 integrated with the support base 40. Therefore, the operator can easily assemble the drive unit 50 by assembling the actuator 70 thus integrated into the frame 60 so as to be inserted into the frame 60 from the connection portion 61 side. Further, even after the actuator 70 is assembled to the frame 60, the lifting drive source unit 36 can be easily assembled to the frame 60 and the actuator 70.
- the motors 74 are arranged at equiangular intervals, the stress applied to the frame 60 via the motors 74 can be evenly distributed when the arm unit 30 is turned. Further, since the lifting guide shafts 64 are also arranged at equal angular intervals, the stress applied to the guide shafts 64 and the stress applied to the frame 60 via the guide shafts 64 can be evenly distributed.
- FIG. 11 is a schematic cross-sectional view showing the structure inside the turning block 8
- FIG. 12 is a plan view showing an engaged state of gears inside the turning block 8.
- the turning block 8 has a case 27 fixed to the turning shaft 73.
- the gear 21 is fixed to the rotary shaft 71
- the gear 22 is fixed to the rotary shaft 72.
- a hole through which the rotary shaft 71 passes is formed in the center of the gear 22, and these gears 21 and 22 are arranged coaxially.
- Gears 25 a and 25 b that mesh with the gear 21 are fixed to the first joint shaft 11 connected to the first arm 1 and the second arm 2 of one arm unit 30, respectively. These gears 25a and 25b are arranged side by side in a horizontal plane.
- gears 26 a and 26 b meshing with the gear 22 are fixed to the first joint shaft 11 connected to the first arm 1 and the second arm 2 of the other arm unit 30, respectively. These gears 26a and 26b are arranged side by side in a horizontal plane.
- the drive unit 50 extends and retracts both arm units 30 independently using the coaxial rotating shafts 71 and 72, and turns both arm units 30 using the coaxial turning shaft 73. be able to.
- the drive shaft 11 is rotated relative to the case 37 by the inertial force, so that the rotating shafts 71 and 72 may be driven so as to suppress the rotation. .
- the rotation shafts 71 and 72 may be driven so as to synchronize with the rotation drive of the turning shaft 73.
- FIG. 13 is a perspective view schematically showing a transport apparatus according to the second embodiment of the present invention.
- the transport apparatus 200 according to the present embodiment includes an arm unit 210 as a transport body, and a drive unit 220 (drive apparatus) that drives the arm unit 210 to rotate, extend, and retract.
- a drive unit 220 drive apparatus
- the arm unit 210 includes an articulated arm 201, a hand member 202 formed at the tip of the articulated arm 201, and a turning block 203 that supports the articulated arm 201.
- the multi-joint arm 201 is composed of a connected body of a first arm 201a and a second arm 201b.
- One end of the first arm 201a is connected to the swivel block 203, and the other end is rotatably connected to one end of the second arm 202 via a rotation axis R2.
- the other end of the second arm 201b is rotatably connected to the hand member 202 via a rotation axis R3.
- the arm unit 210 configured as described above constitutes a so-called SCARA (Selective Compliance Assembly Robot Arm) type substrate transfer robot.
- the drive unit 220 includes a turning shaft 273 and a rotating shaft 271.
- the turning shaft 273 is connected to the turning block 203 and turns the arm unit 210 in the horizontal plane together with the turning block 203.
- the rotation shaft 271 passes through the turning block 203 and is connected to a rotation axis R1 attached to one end of the first arm 201a.
- the rotation axis R1 and the rotation axis R2 are connected via a first timing belt (not shown), and the rotation axis R2 and the rotation axis R3 are connected via a second timing belt (not shown).
- the articulated arm 201 is expanded and contracted in accordance with the rotation direction of the rotating shaft.
- FIG. 14 is a perspective view of the drive unit 220.
- the drive unit 220 includes an actuator 270 and a frame 260 on which the actuator 270 is mounted.
- FIG. 15 is a perspective view of the actuator 270
- FIG. 16 is a cross-sectional view of the main part of the actuator 270.
- FIG. 17 is a perspective view of the frame 260.
- the frame 260 is made of a metal material such as steel, aluminum, or magnesium, and is formed by being integrally formed by casting.
- the frame 260 includes a connecting portion 261 that can be connected to the partition wall (see FIG. 8) of the transfer chamber, a bottom plate portion 262 as an opposing portion provided to face the connecting portion 261, and the connecting portion 261 and the bottom plate portion 262. And a plurality of connecting portions 263 to be connected.
- the connecting portions 263 By disposing the connecting portions 263 at equiangular intervals along the turning direction of the arm unit 210, particularly when the arm unit 210 turns, the stress applied to the connecting portion 263 and the connecting portion 261 is evenly distributed. Can do.
- the actuator 270 includes a coaxial biaxial shaft 275 (one rotating shaft 271 and one turning shaft 273) and two motors M1 and M2.
- the motor M1 is connected to the lower end of the rotating shaft 271 and rotates the rotating shaft 271.
- the motor M1 passes through an opening 262a (FIG. 17) formed in the center of the bottom plate portion 262 of the frame 260.
- the motor M2 rotates the turning shaft 273 via a rotation transmission mechanism.
- the bottom plate portion 262 is formed with a thin portion 262b (FIG. 17).
- the actuator 270 includes a support base 240 that supports the biaxial shaft 275, the motors M1 and M2, and the like.
- the support base 240 is integrally formed by casting, for example, using the same metal material as the frame 260.
- the adjustment unit 290 includes a bracket 293a fixed to the support base 240, and a bolt member 293b having a tip portion that is screwed into the bracket 293a and abuts against the movable body 291.
- the drive shaft of the motor M1 is connected to the rotary shaft 271 through a long hole 291a formed in the bottom surface of the movable body 291.
- a linear guide rail 294 is installed between the movable body 291 and the fixed plate 292.
- the adjustment unit 290 moves the movable body 291 relative to the fixed plate 292 in a direction in which the driving pulley 276 and the driven pulley 283 are separated from each other and in a direction in which the driving pulley 276 and the driven pulley 283 are close to each other by a rotation operation of the bolt member 293b.
- a belt tension adjusting mechanism is realized while avoiding an increase in size of the actuator 270.
- a vacuum seal bearing is provided between the rotating shaft 271 and the turning shaft 273.
- a vacuum seal bearing is provided between the turning shaft 273 and the outer cylinder 281 erected on the support base 240.
- a bellows 279 is installed on the support base 240 and a lid 265 provided on the connection portion 261 of the frame 260. With such a configuration, the outside of the bellows 279 is atmospheric pressure, and the inside of the partition wall of the transfer chamber can be maintained in a vacuum state.
- the motor M3 is fixed to a notch 262a (see FIGS. 14 and 17) formed in the bottom plate 262 with a bolt or the like.
- the support base 240 is formed with an insertion portion 243 through which the ball screw 237 is inserted, and a ball nut 278 is fixed to the lower portion of the insertion portion 243.
- the notch part 262a is provided, and the motor M3 is disposed in the notch part 262a, whereby the drive unit 220 can be reduced in size.
- the elevating mechanism 236 can be easily attached to the frame 260 and the actuator 270.
- the support base 240 has a plurality of guide portions 241 arranged at equiangular intervals along the rotation direction of the shafts 271 and 273. Each of these guide portions 241 has a hole 241a through which the lifting guide shaft 264 (see FIG. 14) is inserted and a bearing (bush) that supports the lifting guide shaft 264, and the support base 40 by the lifting guide shaft 264 is provided. Ensures smooth up and down movement.
- An upper end portion of the lifting guide shaft 264 is fixed to the lid 265, and a lower end portion is mounted and fixed to a hole-shaped mounting portion 269 provided on the bottom plate portion 262 of the frame 260.
- four lifting guide shafts 264 are provided, and are arranged at 90 ° intervals along the rotation direction of the shafts 271 and 273.
- the ball screw 237 of the elevating mechanism 236 rotates, the ball nut 278 receives the power of the rotation, and the support base 240 moves up and down while being guided by the elevating guide shaft 264 by the guide portion 241.
- the turning block 203 and the arm unit 210 move up and down.
- the actuator 270 has the shaft 275 and the motors M1 and M2 integrated with the support base 240. Therefore, the operator can easily assemble the drive unit 220 by assembling the actuator 70 thus integrated into the frame 260 so as to be inserted into the frame 260 from the connection portion 261 side. Further, even after the actuator 270 is assembled to the frame 260, the lifting mechanism 236 can be easily assembled to the frame 260 and the actuator 270.
- the elevating guide shafts 264 are similarly arranged at equiangular intervals, so that the stress applied to the guide shaft 264 and the stress applied to the frame 260 via the guide shaft 264 can be evenly distributed. .
- the drive unit 220 can extend and retract the arm unit 210 using the rotating shaft 271, and can turn the arm unit 210 using the turning shaft 273.
- the glass substrate G is taken as an example of the substrate, but it may be a semiconductor wafer substrate.
- the conveyance object is not limited to the substrate, and may be various parts, products, and other objects.
- the transport apparatus 100 has been described as being used in a vacuum chamber, but may be used under atmospheric pressure.
- the belt driving mechanism is taken as an example of the mechanism for driving the shafts 71, 72, and 73 of the actuator 70 to rotate.
- a gear drive mechanism may be used instead of the belt drive mechanism.
- the form with which the rotating shaft of each shaft and the rotating shaft of each motor which rotates these correspond, ie, the form where a motor is directly connected to a shaft, respectively may be sufficient.
- an articulated arm unit (arm robot) is taken as an example of a transport body that transports a transport target, but instead, a linear motion type slider unit (slider robot) is used. May be.
- a linear motion type slider unit sliding robot
- one turning shaft is connected to the slider unit, and the slider unit is driven to turn.
- Such a slider unit may also be provided in a plurality of stages such as upper and lower two stages.
- the hand member that holds the conveyance object of the slider unit is driven by a known drive mechanism such as a belt drive mechanism, a linear motor drive mechanism, a rack and pinion drive mechanism, or a ball screw drive mechanism that the slider unit itself has. Just do it.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manipulator (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
前記アクチュエータは、前記搬送体を駆動する。
前記フレームは、一体成形により形成され、前記チャンバの前記隔壁に接続されており、前記アクチュエータを搭載する。
前記搬送体は、隔壁を有するチャンバ内に配置され、搬送対象物を搬送することが可能である。
前記アクチュエータは、搬送体を駆動する。
前記フレームは、一体成形により形成され、前記チャンバの前記隔壁に接続されており、前記アクチュエータを搭載する。
前記アクチュエータは、前記搬送体を駆動する。
前記フレームは、一体成形により形成され、前記チャンバの前記隔壁に接続されており、前記アクチュエータを搭載する。
前記旋回用シャフトは、前記搬送体に接続され、前記搬送体を旋回させる。
前記モータは、前記旋回用シャフトに回転の駆動力を与える。
前記支持ベースは、前記旋回用シャフト及び前記モータを支持する。
前記接続部は、前記隔壁に接続される。
前記対向部は、前記接続部に対向して配置されている。
前記連結部は、前記支持ベースが前記接続部と前記対向部との間に配置されるように、前記接続部と前記対向部とを連結する。
その場合、前記アクチュエータは、第1の回転シャフトと、第2の回転シャフトと、旋回シャフトと、モータとを有していればよい。
前記第1の回転シャフトは、前記複数のアームユニットのうちの第1のアームユニットに接続され、前記第1のアームユニットが有するアームを伸縮させる。
前記第2の回転シャフトは、前記複数のアームユニットのうちの第2のアームユニットに接続され、前記第2のアームユニットが有するアームを伸縮させる。
前記旋回シャフトは、前記第1のアームユニット及び前記第2のアームユニットを一体的に旋回させる。
前記モータは、前記第1の回転シャフト、前記第2の回転シャフト及び前記旋回シャフトをそれぞれ駆動する。
前記昇降モータは、前記シャフトが延びる方向に沿って前記支持ベースを昇降させる。
前記複数のガイド軸は、前記シャフトが回転する方向に沿って等角度間隔で配置され、前記昇降モータによる前記支持ベースの昇降動作をガイドする。
その場合、前記アクチュエータは、回転シャフトと、旋回シャフトと、モータとを有する。
前記回転シャフトは、前記アームユニットに接続され、前記アームユニットが有するアームを伸縮させる。
前記旋回シャフトは、前記アームユニットを旋回させる。
前記モータは、前記回転シャフト及び前記旋回シャフトをそれぞれ駆動する。
前記搬送体は、隔壁を有するチャンバ内に配置され、搬送対象物を搬送することが可能である。
前記アクチュエータは、搬送体を駆動する。
前記フレームは、一体成形により形成され、前記チャンバの前記隔壁に接続されており、前記アクチュエータを搭載する。
図1は、本発明の一実施形態に係る搬送装置を示す斜視図である。
すなわち、ガイド機構10は、第2の平行リンク機構32の端部の動きをY軸方向で拘束するように作用する。したがって、第2の平行リンク機構32の作用端である保持部67の動作及びそのポジショニングを高精度に制御することができる。また、ガイド機構10により、アームユニット30の小型化を実現しつつ、大型の基板Gの搬送時においても、要求されるその大型の基板Gの占有フットプリントに見合う、アームユニット30の動作範囲を確保することができる。
図13は、本発明の第2の実施形態に係る搬送装置を概略的に示す斜視図である。本実施形態の搬送装置200は、搬送体としてのアームユニット210と、アームユニット210を旋回、伸縮及び昇降駆動する駆動ユニット220(駆動装置)とを備える。
30、210…アームユニット
35、236…昇降機構
36…昇降駆動源ユニット
40、240…支持ベース
41、241…ガイド部
41a、241a…穴
50、220…駆動ユニット
60、260…フレーム
61、261…接続部
62、262…底板部
62a、262a…切り欠き部
63、263…連結部
64、264…昇降ガイド軸
70、270…アクチュエータ
71、271…回転シャフト
72…回転シャフト
73、273…旋回シャフト
74、M1、M2、M3…モータ
100、200…搬送装置
151…搬送チャンバ
152…隔壁
Claims (13)
- 隔壁を有するチャンバ内に配置される、搬送対象物を搬送することが可能な搬送体を駆動する駆動装置であって、
前記搬送体を駆動するためのアクチュエータと、
一体成形により形成され、前記チャンバの前記隔壁に接続された、前記アクチュエータを搭載したフレームと
を具備する駆動装置。 - 請求項1に記載の駆動装置であって、
前記アクチュエータは、
前記搬送体に接続され、前記搬送体を旋回させるための旋回用シャフトと、
前記旋回用シャフトに回転の駆動力を与えるモータと、
前記旋回用シャフト及び前記モータを支持する支持ベースと
を有する駆動装置。 - 請求項2に記載の駆動装置であって、
前記搬送体は、多関節型のアームユニットであり、
前記アクチュエータは、前記アームユニットのアームを伸縮させるための伸縮用シャフトをさらに有する駆動装置。 - 請求項2に記載の駆動装置であって、
前記フレームは、
前記隔壁に接続された接続部と、
前記接続部に対向して配置された対向部と、
前記支持ベースが前記接続部と前記対向部との間に配置されるように、前記接続部と前記対向部とを連結する連結部と
を有する駆動装置。 - 請求項4に記載の駆動装置であって、
前記アクチュエータは、前記接続部と前記対向部との間で、前記支持ベースを昇降させる昇降機構をさらに有する駆動装置。 - 請求項5に記載の駆動装置であって、
前記接続部または前記対向部は、切り欠き部を有し、
前記昇降機構は、前記切り欠き部に設けられた昇降駆動源ユニットを有する駆動装置。 - 請求項1に記載の駆動装置であって、
前記搬送体は、多関節型のアームユニットであって複数設けられ、
前記アクチュエータは、
前記複数のアームユニットのうちの第1のアームユニットに接続され、前記第1のアームユニットが有するアームを伸縮させるための第1の回転シャフトと、
前記複数のアームユニットのうちの第2のアームユニットに接続され、前記第2のアームユニットが有するアームを伸縮させるための第2の回転シャフトと、
前記第1のアームユニット及び前記第2のアームユニットを一体的に旋回させるための旋回シャフトと、
前記第1の回転シャフト、前記第2の回転シャフト及び前記旋回シャフトをそれぞれ駆動するモータと
を有する駆動装置。 - 請求項7に記載の駆動装置であって、
前記モータは、前記第1のアームユニット及び前記第2のアームユニットが旋回する方向に沿って、等角度間隔で配置されている駆動装置。 - 請求項5に記載の駆動装置であって、
前記アクチュエータは、
前記旋回用シャフトが延びる方向に沿って前記支持ベースを昇降させるための昇降モータと、
前記旋回用シャフトが回転する方向に沿って等角度間隔で配置され、前記昇降モータによる前記支持ベースの昇降動作をガイドする複数のガイド軸と
をさらに有する駆動装置。 - 請求項9に記載の駆動装置であって、
前記支持ベースは、前記複数のガイド軸をそれぞれ支持する複数のガイド部を有する駆動装置。 - 請求項2に記載の駆動装置であって、
前記連結部は、前記旋回用シャフトを中心とする円周上に等角度間隔で複数配置されている駆動装置。 - 請求項1に記載の駆動装置であって、
前記搬送体は、多関節型の単一のアームユニットであり、
前記アクチュエータは、
前記アームユニットに接続され、前記アームユニットが有するアームを伸縮させるための回転シャフトと、
前記アームユニットを旋回させるための旋回シャフトと、
前記回転シャフト及び前記旋回シャフトをそれぞれ駆動するモータと
を有する駆動装置。 - 隔壁を有するチャンバ内に配置され、搬送対象物を搬送することが可能な搬送体と、
前記搬送体を駆動するためのアクチュエータと、
一体成形により形成され、前記チャンバの前記隔壁に接続された、前記アクチュエータを搭載したフレームと
を具備する搬送装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/519,232 US9252038B2 (en) | 2009-12-28 | 2010-12-22 | Drive device and conveyance device |
JP2011547308A JP5463367B2 (ja) | 2009-12-28 | 2010-12-22 | 駆動装置及び搬送装置 |
KR1020127016014A KR101477366B1 (ko) | 2009-12-28 | 2010-12-22 | 구동장치 및 반송 장치 |
CN201080059894.1A CN102686367B (zh) | 2009-12-28 | 2010-12-22 | 驱动装置及输送装置 |
EP10840757.8A EP2520398A4 (en) | 2009-12-28 | 2010-12-22 | DRIVE DEVICE AND CONVEYOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009297918 | 2009-12-28 | ||
JP2009-297918 | 2009-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011080897A1 true WO2011080897A1 (ja) | 2011-07-07 |
Family
ID=44226325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/007446 WO2011080897A1 (ja) | 2009-12-28 | 2010-12-22 | 駆動装置及び搬送装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9252038B2 (ja) |
EP (1) | EP2520398A4 (ja) |
JP (1) | JP5463367B2 (ja) |
KR (1) | KR101477366B1 (ja) |
CN (1) | CN102686367B (ja) |
TW (1) | TWI498203B (ja) |
WO (1) | WO2011080897A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104428884A (zh) * | 2012-07-05 | 2015-03-18 | 应用材料公司 | 吊杆驱动装置、多臂机械手装置、电子器件处理系统及用于在电子器件制造系统中传送基板的方法 |
CN105269564A (zh) * | 2014-07-03 | 2016-01-27 | 株式会社大亨 | 工件输送装置 |
CN109227571A (zh) * | 2018-11-20 | 2019-01-18 | 东台市海邦电气有限公司 | 摇臂机器人主轴旋转控制装置改良工艺 |
WO2024143527A1 (ja) * | 2022-12-28 | 2024-07-04 | 川崎重工業株式会社 | 基板搬送ロボット |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8573919B2 (en) * | 2005-07-11 | 2013-11-05 | Brooks Automation, Inc. | Substrate transport apparatus |
JP5729319B2 (ja) * | 2012-02-01 | 2015-06-03 | 株式会社安川電機 | ロボット |
JP5682721B1 (ja) * | 2014-03-31 | 2015-03-11 | ソニー株式会社 | 産業用ロボットおよびその架台ユニット |
CN106695763B (zh) * | 2017-01-20 | 2023-05-05 | 珠海格力智能装备有限公司 | 气动部件安装结构 |
CN107283405B (zh) * | 2017-08-24 | 2024-01-30 | 上海岭先机器人科技股份有限公司 | 一种机械臂 |
DE102017217907B4 (de) * | 2017-10-09 | 2019-06-19 | Kuka Deutschland Gmbh | Roboterarm mit einer Roboterhand-Antriebsvorrichtung |
US10109517B1 (en) * | 2018-01-10 | 2018-10-23 | Lam Research Corporation | Rotational indexer with additional rotational axes |
US11781238B2 (en) | 2019-05-20 | 2023-10-10 | Applied Materials, Inc. | Systems and methods for plate-up detection |
WO2021011229A1 (en) | 2019-07-12 | 2021-01-21 | Applied Materials, Inc. | Robot for simultaneous substrate transfer |
CN114097069A (zh) * | 2019-07-12 | 2022-02-25 | 应用材料公司 | 用于同步基板传送的机械手 |
US11574826B2 (en) | 2019-07-12 | 2023-02-07 | Applied Materials, Inc. | High-density substrate processing systems and methods |
US11117265B2 (en) | 2019-07-12 | 2021-09-14 | Applied Materials, Inc. | Robot for simultaneous substrate transfer |
US11443973B2 (en) | 2019-07-12 | 2022-09-13 | Applied Materials, Inc. | Robot for simultaneous substrate transfer |
US12076859B2 (en) * | 2020-10-14 | 2024-09-03 | Applied Materials, Inc. | Infinite rotation of vacuum robot linkage through timing belt with isolated environment |
KR102307690B1 (ko) * | 2021-06-25 | 2021-10-05 | (주) 티로보틱스 | 진공 챔버에서 기판을 이송하기 위한 기판 이송 로봇 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63315387A (ja) * | 1988-06-10 | 1988-12-23 | 本田技研工業株式会社 | 車体フレーム |
JPH06128982A (ja) * | 1992-10-19 | 1994-05-10 | Iseki & Co Ltd | ホイールローダのフロアステップ装置 |
JPH10249757A (ja) * | 1997-03-18 | 1998-09-22 | Komatsu Ltd | 搬送用ロボット |
JP2000195923A (ja) * | 1998-12-28 | 2000-07-14 | Hitachi Ltd | 搬送用ロボット、搬送装置、真空チャンバ内搬送装置およびプロセス処理装置 |
JP2003054482A (ja) * | 2001-08-09 | 2003-02-26 | Yamaha Motor Co Ltd | 雪上車のフレーム構造 |
JP2007118171A (ja) * | 2005-09-30 | 2007-05-17 | Daihen Corp | 搬送装置 |
JP2007246357A (ja) * | 2006-03-17 | 2007-09-27 | Toshiba Ceramics Co Ltd | 固形状原料のリチャージ管およびこれを用いたリチャージ方法 |
JP2008135630A (ja) | 2006-11-29 | 2008-06-12 | Jel:Kk | 基板搬送装置 |
JP2008235494A (ja) * | 2007-03-20 | 2008-10-02 | Okamoto Machine Tool Works Ltd | 半導体基板の受け渡し方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224075A (ja) * | 1988-07-13 | 1990-01-26 | Mitsubishi Electric Corp | 産業用ロボット |
JP2808826B2 (ja) * | 1990-05-25 | 1998-10-08 | 松下電器産業株式会社 | 基板の移し換え装置 |
JP3264076B2 (ja) * | 1994-01-31 | 2002-03-11 | 松下電器産業株式会社 | 真空処理装置 |
US5993142A (en) * | 1997-07-10 | 1999-11-30 | Genmark Automation, Inc. | Robot having multiple degrees of freedom in an isolated environment |
JP3722598B2 (ja) * | 1997-07-16 | 2005-11-30 | 株式会社ダイヘン | 2アーム方式の搬送用ロボット装置 |
JP3806812B2 (ja) * | 1997-07-16 | 2006-08-09 | 株式会社ダイヘン | 2アーム方式の搬送用ロボット装置 |
JPH1138909A (ja) * | 1997-07-18 | 1999-02-12 | Toa Resin Kk | 看 板 |
JPH11188671A (ja) * | 1997-12-26 | 1999-07-13 | Daihen Corp | 2アーム方式の搬送用ロボット装置 |
JPH11188670A (ja) * | 1997-12-26 | 1999-07-13 | Daihen Corp | 2アーム方式の搬送用ロボット装置 |
US8573919B2 (en) * | 2005-07-11 | 2013-11-05 | Brooks Automation, Inc. | Substrate transport apparatus |
JP5264050B2 (ja) * | 2005-09-02 | 2013-08-14 | 東京エレクトロン株式会社 | 昇降機構および搬送装置 |
CN100519095C (zh) * | 2005-09-30 | 2009-07-29 | 株式会社大亨 | 搬送装置 |
JP2008035630A (ja) * | 2006-07-28 | 2008-02-14 | Toyota Motor Corp | ステッピングモータ |
WO2008059815A1 (fr) * | 2006-11-14 | 2008-05-22 | Ulvac, Inc. | Dispositif d'introduction de rotation, dispositif de transfert de substrat, appareil de traitement à vide |
KR101312989B1 (ko) * | 2007-03-08 | 2013-10-01 | 주식회사 로보스타 | 진공 환경 작업용 반송 로봇 |
JP4950745B2 (ja) * | 2007-04-19 | 2012-06-13 | 株式会社ダイヘン | 搬送装置 |
-
2010
- 2010-12-22 JP JP2011547308A patent/JP5463367B2/ja active Active
- 2010-12-22 WO PCT/JP2010/007446 patent/WO2011080897A1/ja active Application Filing
- 2010-12-22 US US13/519,232 patent/US9252038B2/en active Active
- 2010-12-22 KR KR1020127016014A patent/KR101477366B1/ko active IP Right Grant
- 2010-12-22 EP EP10840757.8A patent/EP2520398A4/en not_active Withdrawn
- 2010-12-22 CN CN201080059894.1A patent/CN102686367B/zh active Active
- 2010-12-27 TW TW099146103A patent/TWI498203B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63315387A (ja) * | 1988-06-10 | 1988-12-23 | 本田技研工業株式会社 | 車体フレーム |
JPH06128982A (ja) * | 1992-10-19 | 1994-05-10 | Iseki & Co Ltd | ホイールローダのフロアステップ装置 |
JPH10249757A (ja) * | 1997-03-18 | 1998-09-22 | Komatsu Ltd | 搬送用ロボット |
JP2000195923A (ja) * | 1998-12-28 | 2000-07-14 | Hitachi Ltd | 搬送用ロボット、搬送装置、真空チャンバ内搬送装置およびプロセス処理装置 |
JP2003054482A (ja) * | 2001-08-09 | 2003-02-26 | Yamaha Motor Co Ltd | 雪上車のフレーム構造 |
JP2007118171A (ja) * | 2005-09-30 | 2007-05-17 | Daihen Corp | 搬送装置 |
JP2007246357A (ja) * | 2006-03-17 | 2007-09-27 | Toshiba Ceramics Co Ltd | 固形状原料のリチャージ管およびこれを用いたリチャージ方法 |
JP2008135630A (ja) | 2006-11-29 | 2008-06-12 | Jel:Kk | 基板搬送装置 |
JP2008235494A (ja) * | 2007-03-20 | 2008-10-02 | Okamoto Machine Tool Works Ltd | 半導体基板の受け渡し方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2520398A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104428884A (zh) * | 2012-07-05 | 2015-03-18 | 应用材料公司 | 吊杆驱动装置、多臂机械手装置、电子器件处理系统及用于在电子器件制造系统中传送基板的方法 |
CN105269564A (zh) * | 2014-07-03 | 2016-01-27 | 株式会社大亨 | 工件输送装置 |
JP2016013603A (ja) * | 2014-07-03 | 2016-01-28 | 株式会社ダイヘン | ワーク搬送装置 |
CN105269564B (zh) * | 2014-07-03 | 2020-02-14 | 株式会社大亨 | 工件输送装置 |
CN109227571A (zh) * | 2018-11-20 | 2019-01-18 | 东台市海邦电气有限公司 | 摇臂机器人主轴旋转控制装置改良工艺 |
WO2024143527A1 (ja) * | 2022-12-28 | 2024-07-04 | 川崎重工業株式会社 | 基板搬送ロボット |
Also Published As
Publication number | Publication date |
---|---|
EP2520398A1 (en) | 2012-11-07 |
TWI498203B (zh) | 2015-09-01 |
EP2520398A4 (en) | 2014-10-29 |
JP5463367B2 (ja) | 2014-04-09 |
CN102686367B (zh) | 2015-05-20 |
TW201139250A (en) | 2011-11-16 |
KR101477366B1 (ko) | 2015-01-06 |
US20120293026A1 (en) | 2012-11-22 |
US9252038B2 (en) | 2016-02-02 |
KR20120097528A (ko) | 2012-09-04 |
CN102686367A (zh) | 2012-09-19 |
JPWO2011080897A1 (ja) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5463367B2 (ja) | 駆動装置及び搬送装置 | |
JP6766227B2 (ja) | 双腕ロボット | |
JP4950745B2 (ja) | 搬送装置 | |
JP6499826B2 (ja) | 産業用ロボット | |
JP2011199121A (ja) | 搬送装置 | |
JP4955447B2 (ja) | 搬送装置 | |
JP4971063B2 (ja) | 搬送装置 | |
JP4694436B2 (ja) | 搬送ロボット | |
KR101419948B1 (ko) | 산업용 로봇 및 집합 처리 장치 | |
JP5627599B2 (ja) | 搬送アーム、及びこれを備える搬送ロボット | |
JP2008246644A (ja) | 搬送装置 | |
JP2003188231A (ja) | ワーク搬送用ロボット及びこのロボットを備えたワーク加工装置 | |
US20230115509A1 (en) | Travel Robot for Moving Substrate Transfer Robot in Chamber | |
JP2014037027A (ja) | 搬送装置 | |
JP5255683B2 (ja) | 搬送装置 | |
WO2011161888A1 (ja) | 搬送装置及び搬送装置の製造方法 | |
CN115958573B (zh) | 一种用于使基板传送机器人在传送室内行走的行走机器人 | |
JP2002134585A (ja) | ワーク搬送装置 | |
JP3672717B2 (ja) | 試料搬送装置 | |
JP2008018480A (ja) | 多関節ロボットおよびそのロボットの移送方法と設置方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080059894.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10840757 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011547308 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127016014 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13519232 Country of ref document: US Ref document number: 2010840757 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |