WO2011077679A1 - 導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品 - Google Patents

導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品 Download PDF

Info

Publication number
WO2011077679A1
WO2011077679A1 PCT/JP2010/007323 JP2010007323W WO2011077679A1 WO 2011077679 A1 WO2011077679 A1 WO 2011077679A1 JP 2010007323 W JP2010007323 W JP 2010007323W WO 2011077679 A1 WO2011077679 A1 WO 2011077679A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive connection
connection material
terminals
resin
Prior art date
Application number
PCT/JP2010/007323
Other languages
English (en)
French (fr)
Inventor
中馬 敏秋
奉広 鍵本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020127014938A priority Critical patent/KR101191686B1/ko
Priority to JP2011516598A priority patent/JP4924773B2/ja
Priority to CN201080059170.7A priority patent/CN102687603B/zh
Priority to US13/518,798 priority patent/US20120261174A1/en
Priority to SG2012042081A priority patent/SG181575A1/en
Priority to EP10838919A priority patent/EP2519088A1/en
Publication of WO2011077679A1 publication Critical patent/WO2011077679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/115Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/1152Self-assembly, e.g. self-agglomeration of the bump material in a fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/2912Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2916Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8322Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/83222Induction heating, i.e. eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83885Combinations of two or more hardening methods provided for in at least two different groups from H01L2224/83855 - H01L2224/8388, e.g. for hybrid thermoplastic-thermosetting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83886Involving a self-assembly process, e.g. self-agglomeration of a material dispersed in a fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0405Solder foil, tape or wire
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/043Reflowing of solder coated conductors, not during connection of components, e.g. reflowing solder paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31688Next to aldehyde or ketone condensation product

Definitions

  • the present invention relates to a conductive connection material, a method for manufacturing an electronic component, an electronic member with a conductive connection material, and an electronic component.
  • An anisotropic conductive adhesive or anisotropic conductive film is a film or paste in which conductive particles are dispersed in an adhesive mainly composed of a thermosetting resin (for example, JP-A-61-276873).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-260131 (Patent Document 2)).
  • connection terminal on an electrode of an electronic member conventionally, a solder paste is printed on a substrate provided with a metal pad, and the connection terminal is formed by heating and melting the solder paste using a solder reflow device. It was. However, in this method, if the connection terminals have a narrow pitch, the cost of the mask used when printing the solder paste increases. Moreover, if the size of the connection terminal is too small, the solder paste may not be printed. There is also a method of manufacturing the connection terminal by mounting the solder ball on the connection terminal and heating and melting the solder ball using a solder reflow apparatus. However, in this method, if the connection terminal is too small, the manufacturing cost of the solder ball is high, and it may be technically difficult to manufacture a small-diameter solder ball.
  • a conductive connecting material used for forming a conductive portion on a plurality of terminals of an electronic member having a substrate and a plurality of terminals provided on the substrate, A metal layer; A resin layer having a resin component and a filler; With A conductive connecting material configured to abut on and heat the a plurality of terminals so that the metal layer aggregates on each terminal and forms the conductive portion on the plurality of terminals is provided.
  • the metal layer is formed on the terminal by using a conductive connection material including a metal layer and a resin layer instead of the film in which the conductive particles are dispersed. It has been found that it is easy to agglomerate. For this reason, according to this invention, the favorable electrical connection between the terminals which oppose can be obtained. Moreover, it can suppress that a metal layer remains in a resin layer, and can obtain the high insulation reliability between adjacent terminals. In addition, since the metal layer aggregates on each terminal by heating the conductive connection material, the electronic members having a plurality of terminals can be easily connected, and the connection terminals can be easily formed on the plurality of electrodes of the electronic member. can do.
  • the conductive connecting material described above is disposed between the two electronic members facing each other with the plurality of terminals facing inward, and the two electronic members respectively contact the plurality of terminals.
  • the step of contacting, the step of heating the conductive connecting material, and connecting the plurality of terminals of the two electronic members to each other via the conductive portions formed on the plurality of terminals, and the resin And a step of curing or solidifying the layer.
  • the terminal is an electrode and the conductive part is a connection terminal
  • the manufacturing method of an electronic component provided with the process of forming the said electroconductive part on these terminals and the process of hardening or solidifying the said resin layer is provided.
  • an electronic member with a conductive connection material formed by adhering the conductive connection material described above on the substrate of the electronic member so as to contact the plurality of terminals.
  • the plurality of terminals respectively included in the two electronic members facing the plurality of terminals inward through the conductive portion formed using the conductive connection material described above. Electronic components that are connected to each other.
  • the present invention it is possible to obtain good electrical connection between opposing terminals and high insulation reliability between adjacent terminals, and connection between electronic members having a plurality of terminals, It is possible to provide a conductive connection material that facilitates formation of a connection terminal on an electrode.
  • connection method of the electronic component of this invention it is sectional drawing which shows roughly an example of the state of the board
  • connection method of the electronic component of this invention it is sectional drawing which shows roughly an example of the state of the board
  • connection method of the electronic component of this invention it is sectional drawing which shows roughly an example of the state of the board
  • manufacturing method of the electronic component of this invention it is sectional drawing which shows roughly an example of the state of a board
  • manufacturing method of the electronic component of this invention it is sectional drawing which shows roughly an example of the state of a board
  • the conductive connection material of the present invention a method for connecting an electronic component using the conductive connection material, and an electronic component electrically connected using the conductive connection material will be specifically described.
  • the conductive connection material of the present invention comprises a resin layer and a metal layer.
  • the form is a laminate having a multilayer structure composed of a resin layer and a metal layer, and each of the resin layer and the metal layer may be a single layer or a plurality of layers.
  • the laminated structure of the conductive connecting material is not particularly limited, and may be a two-layer structure (resin layer / metal layer) of a resin layer and a metal layer, or a three-layer structure including a plurality of either or both of a resin layer and a metal layer, or A multilayer structure of more than that may be used. When a plurality of resin layers or metal layers are used, the composition of each layer may be the same or different.
  • the upper and lower layers of the metal layer are preferably resin layers from the viewpoint of reducing the surface oxide film of the metal layer with a compound having a flux function.
  • a three-layer structure resin layer / metal layer / resin layer
  • the thicknesses of the resin layers on both sides of the metal layer may be the same or different.
  • the thickness of the resin layer may be appropriately adjusted depending on the conductor thickness of the terminal to be connected. For example, when manufacturing a connection terminal using conductive connection materials having different thicknesses of resin layers on both sides of the metal layer, it is preferable to arrange the thinner one on the side of one connection terminal (electrode side). By shortening the distance between the metal layer and the connection terminal, the aggregation of the metal layer on the connection terminal portion can be easily controlled.
  • connection terminal on an electronic member such as a semiconductor wafer
  • the conductive connection material has a resin layer only on one side of the metal layer, a part of the metal layer is exposed. This is preferable.
  • the resin layer side may be disposed so as to be in contact with the connection terminal, or the metal layer side may be disposed so as to be in contact with the connection terminal.
  • the conductive connection material is attached to both of the opposing electronic members, and then the electronic member with the conductive connection material is attached. Is preferred.
  • the arrangement direction of the conductive connection material may be appropriately selected depending on the pattern shape of the metal layer.
  • a resin layer is comprised with the resin composition containing a resin component and a filler.
  • the resin composition may be in a liquid or solid form at normal temperature.
  • liquid at normal temperature means a state where there is no fixed form at normal temperature (25 ° C.). Paste forms are also included in liquid form.
  • any of a curable resin composition and a thermoplastic resin composition may be used as the resin composition.
  • the curable resin composition used in the present invention include those that are cured by heating or irradiation with actinic radiation.
  • a thermosetting resin composition is preferable in that it is excellent in mechanical properties such as linear expansion coefficient and elastic modulus after curing.
  • the thermoplastic resin composition used in the present invention is not particularly limited as long as it is flexible enough to be molded by heating to a predetermined temperature.
  • Curable resin composition used in the present invention has a film-forming resin, a curing agent, a curing accelerator, and a flux function as necessary, in addition to the curable resin and the filler.
  • a curing agent e.g., a curing accelerator
  • a flux function e.g., a flux function of a curable resin composition
  • Compounds, silane coupling agents and the like are included.
  • curable resin used in the present invention is not particularly limited as long as it can be used as an adhesive component for manufacturing a semiconductor device.
  • epoxy resin phenoxy resin, silicone resin, oxetane resin, phenol resin, (meth) acrylate resin, polyester resin (unsaturated polyester resin), diallyl phthalate resin, maleimide resin, polyimide resin (polyimide precursor resin), bismaleimide -Triazine resins and the like.
  • thermosetting resin containing at least one selected from the group consisting of epoxy resins, (meth) acrylate resins, phenoxy resins, polyester resins, polyimide resins, silicone resins, maleimide resins, and bismaleimide-triazine resins.
  • epoxy resin from a viewpoint that it is excellent in sclerosis
  • curable resins may be used alone or in combination of two or more.
  • Content of curable resin can be suitably set according to the form of curable resin composition.
  • the content of the curable resin is preferably 10% by weight or more, more preferably 15% by weight or more, and more preferably 20% by weight with respect to the total weight of the curable resin composition.
  • the above is more preferable, 25% by weight or more is further more preferable, 30% by weight or more is still more preferable, and 35% by weight or more is particularly preferable.
  • it is preferably less than 100% by weight, more preferably 95% by weight or less, still more preferably 90% by weight or less, still more preferably 75% by weight or less, still more preferably 65% by weight or less, and particularly preferably 55% by weight or less.
  • the content of the curable resin is preferably 5% by weight or more, more preferably 10% by weight or more, and more preferably 15% by weight with respect to the total weight of the curable resin composition.
  • the above is more preferable, and 20% by weight or more is particularly preferable.
  • 90 weight% or less is preferable, 85 weight% or less is more preferable, 80 weight% or less is further more preferable, 75 weight% or less is still more preferable, 65 weight% or less is still more preferable, 55 weight% or less is especially preferable.
  • the content of the curable resin is within the above range, the electrical connection strength and the mechanical adhesive strength between the terminals can be sufficiently secured.
  • any epoxy resin that is liquid at room temperature and solid at room temperature may be used.
  • An epoxy resin that is liquid at room temperature and an epoxy resin that is solid at room temperature may be used in combination.
  • the curable resin composition is liquid, it is preferable to use a liquid epoxy resin at room temperature, and when the curable resin composition is solid, use either a liquid or solid epoxy resin.
  • a solid epoxy resin it is preferable to use a film-forming resin in combination.
  • Preferred examples of the epoxy resin that is liquid at room temperature include bisphenol A type epoxy resins and bisphenol F type epoxy resins.
  • a bisphenol A type epoxy resin and a bisphenol F type epoxy resin may be used in combination.
  • the epoxy equivalent of the epoxy resin that is liquid at room temperature is preferably 150 to 300 g / eq, more preferably 160 to 250 g / eq, and particularly preferably 170 to 220 g / eq. If the epoxy equivalent is less than the above lower limit, the shrinkage of the cured product tends to increase, and warping may occur. On the other hand, when the upper limit is exceeded, when a film-forming resin is used in combination, the reactivity with a film-forming resin, particularly a polyimide resin, tends to decrease.
  • solid epoxy resins at room temperature examples include bisphenol A type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl amine type epoxy resins, and glycidyl ester type epoxies. Resin, trifunctional epoxy resin, tetrafunctional epoxy resin, etc. are mentioned. Among these, solid trifunctional epoxy resin, cresol novolac type epoxy resin and the like are preferable. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy equivalent of the epoxy resin solid at room temperature is preferably 150 to 3000 g / eq, more preferably 160 to 2500 g / eq, and particularly preferably 170 to 2000 g / eq.
  • the softening point of the epoxy resin solid at room temperature is preferably 40 to 120 ° C, more preferably 50 to 110 ° C, and particularly preferably 60 to 100 ° C. When the softening point is within the above range, tackiness can be suppressed and handling can be easily performed.
  • the filler used in the present invention is not particularly limited as long as it does not change quality and is stable during storage at normal temperature or during heating, and an inorganic filler or an organic filler is used. can do.
  • a filler may be used individually by 1 type, or may use 2 or more types together.
  • the inorganic filler examples include silica, alumina, zinc oxide, magnesium oxide, titanium oxide, antimony oxide, aluminum hydroxide, magnesium hydroxide, boron nitride, calcium carbonate, clay, talc, mica, glass fiber, and glass flake. , Glass beads, barium sulfate and the like, and silica and alumina with few impurities are preferable. These may be used alone or in combination of two or more.
  • organic filler examples include cellulose, fluororesin, epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, styrene resin, styrene butadiene copolymer, and the like.
  • Epoxy resins and phenol resins that have a large effect of reducing the linear expansion coefficient of the product are preferred. These may be used alone or in combination of two or more.
  • the shape of the filler is preferably spherical or scaly. Particularly, the spherical filler is more preferable because it has less anisotropy and is excellent in the ability to reduce the linear expansion coefficient of the entire resin composition.
  • the particle size of the filler is preferably 10 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more. Further, it is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less. When the particle size of the filler is less than the lower limit, workability and dispersibility in the resin composition are lowered. On the other hand, when the upper limit is exceeded, the filler exists so as to straddle between the adjacent terminals, and inter-terminal connection by the metal foil is hindered.
  • the content of the filler is preferably 1% by weight or more, more preferably 10% by weight or more, and particularly preferably 20% by weight or more with respect to the total weight of the curable resin composition. preferable. Further, it is preferably 80% by weight or less, more preferably 70% by weight or less, and particularly preferably 60% by weight or less. If the filler content is less than the lower limit, the effect of reducing the linear expansion coefficient of the cured resin composition cannot be obtained. On the other hand, when the upper limit is exceeded, the adhesion of the resin composition to the adherend is lowered, the reliability of the electronic component is lowered, and the fluidity of the resin composition is extremely lowered, making it impossible to mold.
  • the content of the filler is such that the volume of the filler is Fv, and the volume of the metal layer is Mv.
  • Fv / Mv is preferably 0.01 to 10.0, more preferably 0.02 to 8.0, and particularly preferably 0.05 to 5.0.
  • the linear expansion coefficient of the cured resin layer is reduced by blending a filler in the resin layer, and further, a thermal cycle test.
  • the filler is blended, the resin component content in the resin layer is reduced, so that the moisture absorption and water absorption of the cured resin layer can be reduced, and the moisture absorption heat resistance of the electronic component can be improved.
  • blending a filler it is suppressed that the metal layer aggregated on each terminal flows out on a terminal.
  • (Iii) Film-forming resin When a solid curable resin composition is used, it is preferable to use the curable resin and the film-forming resin in combination.
  • the film-forming resin used in the present invention is not particularly limited as long as it is soluble in an organic solvent and has film-forming properties alone. Either a thermoplastic resin or a thermosetting resin can be used, and these can be used in combination.
  • (meth) acrylic resin refers to a polymer of (meth) acrylic acid and its derivatives, or a copolymer of (meth) acrylic acid and its derivatives and other monomers. Means. When expressed as “(meth) acrylic acid” or the like, it means “acrylic acid or methacrylic acid” or the like.
  • Examples of the (meth) acrylic resin used in the present invention include polyacrylic acid such as polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, and poly-2-ethylhexyl acrylate.
  • esters such as polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, polymethacrylonitrile, polyacrylamide, butyl acrylate-ethyl acrylate-acrylonitrile copolymer, acrylonitrile-butadiene Copolymer, acrylonitrile-butadiene-acrylic acid copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, methyl methacrylate-styrene copolymer, Methyl lurate-acrylonitrile copolymer, methyl methacrylate- ⁇ -methylstyrene copolymer, butyl acrylate-ethyl acrylate-acrylonitrile-2-hydroxyethyl methacrylate-methacrylic acid copolymer, butyl acrylate-ethy
  • butyl acrylate-ethyl acrylate-acrylonitrile copolymer and ethyl acrylate-acrylonitrile-N, N-dimethylacrylamide copolymer are preferable.
  • These (meth) acrylic resins may be used alone or in combination of two or more.
  • the skeleton of the phenoxy resin used in the present invention is not particularly limited, bisphenol A type, bisphenol F type, biphenyl type and the like are preferable.
  • the polyimide resin used in the present invention is not particularly limited as long as the resin has an imide bond in the repeating unit.
  • the resin has an imide bond in the repeating unit.
  • diamine and acid dianhydride react heating the obtained polyamic acid, and carrying out dehydration ring closure is mentioned.
  • diamine examples include aromatic diamines such as 3,3′-dimethyl-4,4′-diaminodiphenyl, 4,6-dimethyl-m-phenylenediamine, and 2,5-dimethyl-p-phenylenediamine.
  • siloxane diamines such as 3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane.
  • a diamine may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the acid dianhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, pyromellitic dianhydride, 4,4′-oxydiphthalic dianhydride, and the like.
  • An acid dianhydride may be used individually by 1 type, or may use 2 or more types together.
  • the polyimide resin may be soluble or insoluble in a solvent, but is preferably a solvent-soluble one because it is easily varnished when mixed with other components and has excellent handleability.
  • a siloxane-modified polyimide resin is preferably used because it can be dissolved in various organic solvents.
  • the weight average molecular weight of the film-forming resin used in the present invention is preferably 8,000 to 1,000,000, more preferably 8,500 to 950,000, and further preferably 9,000 to 900,000.
  • the weight average molecular weight of the film-forming resin can be measured by GPC (gel permeation chromatography).
  • a commercially available product can be used as such a film-forming resin.
  • a film-forming resin may be blended with various additives such as a plasticizer, a stabilizer, an antistatic agent, an antioxidant, and a pigment.
  • the content of the film-forming resin can be appropriately set according to the form of the curable resin composition to be used.
  • the content of the film-forming resin is preferably 5% by weight or more with respect to the total weight of the curable resin composition, and is 10% by weight or more. It is more preferable that the content is 15% by weight or more. Further, it is preferably 50% by weight or less, more preferably 45% by weight or less, and particularly preferably 40% by weight or less.
  • the content of the film-forming resin is within the above range, the fluidity of the curable resin composition before melting can be suppressed, and the conductive connecting material can be easily handled.
  • curing agent used in the present invention include phenols, acid anhydrides, and amine compounds.
  • curing agent can be suitably selected according to the kind etc. of curable resin. For example, when an epoxy resin is used as the curable resin, good reactivity with the epoxy resin, low dimensional change during curing, and appropriate physical properties after curing (for example, heat resistance, moisture resistance, etc.) are obtained. Phenols are preferably used as the curing agent, and bifunctional or higher functional phenols are more preferable in terms of excellent physical properties after curing of the curable resin. Moreover, such a hardening
  • phenols examples include bisphenol A, tetramethylbisphenol A, diallyl bisphenol A, biphenol, bisphenol F, diallyl bisphenol F, trisphenol, tetrakisphenol, phenol novolac resin, and cresol novolac resin.
  • phenol novolac resins and cresol novolac resins are preferable because they have good reactivity with epoxy resins and excellent physical properties after curing.
  • the content of the curing agent has a functional group that functions as a curing agent when the compound having a flux function described below and the type of the curable resin or the curing agent to be used have a functional group
  • the content should be selected as appropriate. Can do.
  • the content of the curing agent is preferably 0.1 to 50% by weight, more preferably 0.2 to 40% by weight, based on the total weight of the curable resin composition. Preferably, 0.5 to 30% by weight is particularly preferable.
  • the content of the curing agent is within the above range, the electrical connection strength between the terminals and the mechanical adhesive strength can be sufficiently secured.
  • (V) Curing accelerator The curing accelerator used in the present invention includes imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole.
  • Content of a hardening accelerator can be suitably set according to the kind of hardening accelerator to be used.
  • the content of the imidazole compound is preferably 0.001% by weight or more, more preferably 0.003% by weight or more, based on the total weight of the curable resin composition. 0.005% by weight or more is particularly preferable.
  • 1.0 weight% or less is preferable, 0.7 weight% or less is more preferable, and 0.5 weight% or less is especially preferable.
  • the content of the imidazole compound is less than the lower limit, the effect as a curing accelerator is not sufficiently exhibited, and the curable resin composition may not be sufficiently cured.
  • the metal layer does not move sufficiently to the terminal surface before the curing of the curable resin composition is completed, and the metal layer remains in the insulating region and the insulation is sufficient. May not be secured. In addition, the storage stability of the conductive connection material may be reduced.
  • the compound having a flux function used in the present invention has a function of reducing a metal oxide film such as a surface oxide film of a terminal and a metal foil.
  • the compound having a flux function is preferably a compound having a phenolic hydroxyl group and / or a carboxyl group.
  • Examples of the compound having a phenolic hydroxyl group include phenol, o-cresol, 2,6-xylenol, p-cresol, m-cresol, o-ethylphenol, 2,4-xylenol, 2,5-xylenol, m- Ethylphenol, 2,3-xylenol, mesitol, 3,5-xylenol, p-tert-butylphenol, catechol, p-tert-amylphenol, resorcinol, p-octylphenol, p-phenylphenol, bisphenol F, bisphenol AF, biphenol Monomers containing phenolic hydroxyl groups such as diallyl bisphenol F, diallyl bisphenol A, trisphenol, tetrakisphenol, phenol novolac resins, o-cresol novolac resins, bisphenols Nord F novolak resins, resins containing a phenolic hydroxyl group such as
  • Examples of the compound having a carboxyl group include aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, aliphatic carboxylic acids, and aromatic carboxylic acids.
  • Examples of the aliphatic acid anhydride include succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, and polysebacic acid anhydride.
  • Examples of the alicyclic acid anhydride include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene dicarboxylic acid. An anhydride etc. are mentioned.
  • Examples of the aromatic acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, and glycerol tris trimellitate.
  • Examples of the aliphatic carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, acrylic acid, methacrylic acid, crotonic acid, Examples include oleic acid, fumaric acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, and pimelic acid.
  • n is an integer of 1 to 20
  • adipic acid, sebacic acid, and dodecanedioic acid are more preferable.
  • the structure of the aromatic carboxylic acid is not particularly limited, but a compound represented by the following formula (2) or (3) is preferable.
  • R 1 to R 5 are each independently a monovalent organic group, and at least one of R 1 to R 5 is a hydroxyl group.
  • R 6 to R 20 are each independently a monovalent organic group, and at least one of R 6 to R 20 is a hydroxyl group or a carboxyl group.
  • Aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, planitic acid, pyromellitic acid, merit acid, xylyl acid, hemelitonic acid, mesitylene Acid, prenylic acid, toluic acid, cinnamic acid, salicylic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, gentisic acid (2,5-dihydroxybenzoic acid), 2,6-dihydroxybenzoic acid, Benzoic acid derivatives such as 3,5-dihydroxybenzoic acid and gallic acid (3,4,5-trihydroxybenzoic acid); 1,4-dihydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid Naphthoic acid derivatives such as 3,5-2-dihydroxy-2-naphth
  • a compound that not only has a flux function but also acts as a curing agent for the curable resin is preferable. That is, as the compound having a flux function used in the present invention, a compound having a functional group capable of reacting with a curable resin and exhibiting an action of reducing a metal surface oxide film such as a metal layer and a terminal is used. preferable.
  • the functional group is appropriately selected depending on the type of curable resin. For example, when an epoxy resin is used as the curable resin, the functional group is preferably a functional group capable of reacting with an epoxy group such as a carboxyl group, a hydroxyl group, and an amino group.
  • the compound having the flux function also acts as a curing agent, thereby reducing the metal surface oxide film such as the metal layer and the terminal to increase the wettability of the metal surface, facilitating the formation of the conductive region, and conducting After forming the property region, it can be added to the curable resin to increase the elastic modulus or Tg of the resin.
  • the compound having a flux function acts as a curing agent, there is an advantage that flux cleaning is not required and the occurrence of ion migration due to the remaining flux component can be suppressed.
  • the compound having such a flux function preferably has at least one carboxyl group.
  • examples of the compound include aliphatic dicarboxylic acids or compounds having a carboxyl group and a phenolic hydroxyl group.
  • Preferred examples of the aliphatic dicarboxylic acid include compounds in which two carboxyl groups are bonded to an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be saturated or unsaturated acyclic, or may be saturated or unsaturated cyclic. Further, when the aliphatic hydrocarbon group is acyclic, it may be linear or branched.
  • n in the formula (1) is preferably exemplified.
  • n in the formula (1) is within the above range, the balance between the flux activity, the outgas at the time of bonding, the elastic modulus after the conductive connecting material is cured, and the glass transition temperature becomes good.
  • n is preferably 3 or more because an increase in the elastic modulus after curing of the conductive connecting material can be suppressed and the adhesion to the adherend can be improved.
  • n is preferably 10 or less because it is possible to suppress a decrease in elastic modulus and further improve connection reliability.
  • Examples of the aliphatic dicarboxylic acid represented by the formula (1) include glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, and pentadecane.
  • Examples include diacid, octadecanedioic acid, nonadecanedioic acid, and eicosanedioic acid.
  • adipic acid, suberic acid, sebacic acid and dodencandioic acid are preferable, and sebacic acid is particularly preferable.
  • Examples of the compound having a carboxyl group and a phenolic hydroxyl group include salicylic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, gentisic acid (2,5-dihydroxybenzoic acid), and 2,6-dihydroxybenzoic acid.
  • Benzoic acid derivatives such as acid, 3,4-dihydroxybenzoic acid, gallic acid (3,4,5-trihydroxybenzoic acid); 1,4-dihydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid
  • naphthoic acid derivatives such as acids; phenolphthaline; diphenolic acid and the like. Of these, phenolphthaline, gentisic acid, 2,4-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid are preferable, and phenolphthalin and gentisic acid are particularly preferable.
  • a compound having a flux function may be used alone or in combination of two or more. Moreover, since any compound easily absorbs moisture and causes voids, it is preferable to dry the compound having a flux function in advance before use.
  • Content of the compound which has a flux function can be suitably set according to the form of the resin composition to be used.
  • the content of the compound having a flux function is preferably 1% by weight or more, more preferably 2% by weight or more, more preferably 3% by weight with respect to the total weight of the curable resin composition. % Or more is particularly preferable. Moreover, 50 weight% or less is preferable, 40 weight% or less is more preferable, 30 weight% or less is further more preferable, and 25 weight% or less is especially preferable.
  • the content of the compound having a flux function is preferably 1% by weight or more, more preferably 2% by weight or more, more preferably 3% by weight with respect to the total weight of the curable resin composition. % Or more is particularly preferable. Moreover, 50 weight% or less is preferable, 40 weight% or less is more preferable, 30 weight% or less is further more preferable, and 25 weight% or less is especially preferable.
  • the content of the compound having the flux function is within the above range, the metal layer and the surface oxide film of the terminal can be removed to such an extent that they can be electrically joined.
  • the resin composition when the resin composition is a curable resin, it can be efficiently added to the resin at the time of curing to increase the elastic modulus or Tg of the resin. Moreover, generation
  • silane coupling agent examples include an epoxy silane coupling agent and an aromatic-containing aminosilane coupling agent. By adding the silane coupling agent, the adhesion between the bonding member and the conductive connecting material can be enhanced.
  • a silane coupling agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the silane coupling agent can be appropriately selected according to the type of the joining member, the curable resin, and the like.
  • the content of the silane coupling agent is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and particularly preferably 0.1% by weight or more with respect to the total weight of the curable resin composition. It is preferably 2% by weight or less, more preferably 1.5% by weight or less, and particularly preferably 1% by weight or less.
  • the curable resin composition used in the present invention contains a plasticizer, a stabilizer, a tackifier, a lubricant, a filler, an antistatic agent, an antioxidant, a pigment, and the like as long as the effects of the present invention are not impaired. May be.
  • the curable resin composition can be prepared by mixing and dispersing the above components.
  • the mixing method and dispersion method of each component are not specifically limited, It can mix and disperse
  • a liquid curable resin composition may be prepared by mixing the above components in a solvent or without a solvent.
  • the solvent used at this time is not particularly limited as long as it is inert to each component.
  • acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), diisobutyl ketone (DIBK), cyclohexanone Ketones such as diacetone alcohol (DAA); aromatic hydrocarbons such as benzene, xylene and toluene; alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and n-butyl alcohol; methyl cellosolve, ethyl cellosolve, butyl cellosolve; Cellosolves such as methyl cellosolve acetate and ethyl cellosolve acetate, N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THMP), t
  • thermoplastic resin composition in this invention, can also be used as a resin composition.
  • the thermoplastic resin composition used in the present invention includes a compound having a flux function, a silane coupling agent, and the like, if necessary, in addition to the thermoplastic resin and the filler.
  • thermoplastic resin used in the present invention examples include vinyl acetate, polyvinyl alcohol resin, polyvinyl butyral resin, vinyl chloride resin, (meth) acrylic resin, phenoxy resin, polyester resin, polyimide resin, and polyamide.
  • the softening point of the thermoplastic resin is not particularly limited, but is preferably 10 ° C. or more lower than the melting point of the metal layer constituting the conductive connection material, particularly preferably 20 ° C. or more, and more preferably 30 ° C. or more.
  • the decomposition temperature of the thermoplastic resin is not particularly limited, but is preferably 10 ° C. or higher, particularly preferably 20 ° C. or higher, and more preferably 30 ° C. or higher than the melting point of the metal layer constituting the conductive connecting material. More preferred.
  • thermoplastic resin composition can be suitably set according to the form of the thermoplastic resin composition to be used.
  • the content of the thermoplastic resin is preferably 10% by weight or more, more preferably 15% by weight or more, and more preferably 20% by weight with respect to the total weight of the thermoplastic resin composition.
  • the above is more preferable, 25% by weight or more is further more preferable, 30% by weight or more is still more preferable, and 35% by weight or more is particularly preferable.
  • 100 weight% or less is preferable, 95 weight% or less is more preferable, 90 weight% or less is more preferable, 75 weight% or less is still more preferable, 65 weight% or less is still more preferable, 55 weight% or less is especially preferable.
  • the content of the thermoplastic resin is preferably 5% by weight or more, more preferably 10% by weight or more, and more preferably 15% by weight with respect to the total weight of the thermoplastic resin composition.
  • the above is more preferable, and 20% by weight or more is particularly preferable.
  • 90 weight% or less is preferable, 85 weight% or less is more preferable, 80 weight% or less is further more preferable, 75 weight% or less is still more preferable, 65 weight% or less is still more preferable, 55 weight% or less is especially preferable.
  • the content of the thermoplastic resin is within the above range, the electrical connection strength between the terminals and the mechanical adhesive strength can be sufficiently secured.
  • thermoplastic resin composition of the present invention (Ii) Other additives
  • the filler, the compound having a flux function, the silane coupling agent, and other additives used in the thermoplastic resin composition of the present invention are described in the above-mentioned "(a) Curable resin composition". The same can be used.
  • the content of each component, preferred compounds and preparation methods are also the same as those described for the curable resin composition.
  • the epoxy resin is 10 to 90% by weight
  • the filler is 1 to 80% by weight
  • the curing agent is 0.1 to 50% by weight
  • the film-forming resin is 5 to 50% by weight
  • the flux function with respect to the total weight of the resin composition. More preferred are those containing 1 to 50% by weight of the compound having The epoxy resin is 20 to 80% by weight
  • the filler is 10 to 70% by weight
  • the curing agent is 0.2 to 40% by weight
  • the film-forming resin is 10 to 45% by weight
  • the flux function based on the total weight of the resin composition.
  • a compound containing 2 to 40% by weight of a compound having The epoxy resin is 35 to 55% by weight, the filler is 20 to 60% by weight, the curing agent is 0.5 to 30% by weight, the film-forming resin is 15 to 40% by weight, and the flux function based on the total weight of the resin composition.
  • Particularly preferred are those containing 3 to 25% by weight of a compound having
  • the thickness of each resin layer is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the thickness of the resin layer is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the composition of each resin layer may be the same, or may be different depending on the type of resin component used, the difference in formulation, and the like.
  • the physical properties such as melt viscosity and softening temperature of the resin layer may be the same or different.
  • a liquid resin layer and a solid resin layer may be used in combination.
  • the resin layer of the present invention preferably has an average linear expansion coefficient from room temperature to 100 ° C. of 3 to 70 ppm. In this case, it is possible to reduce the stress applied to the connecting portion that electrically connects the electronic members due to the thermal expansion due to the thermal cycle test or heating during component mounting.
  • a metal layer is a layer comprised with metal foil.
  • the metal layer should just be formed in at least one part of the resin layer by planar view, and may be formed in the whole surface of the resin layer.
  • the shape of the metal layer is not particularly limited, and a certain shape may be repeatedly formed in a pattern shape, or the shape may be irregular. Regular shapes and irregular shapes may be mixed.
  • FIG. 1 is a schematic plan view showing an example of the shape of the metal layer.
  • Metal layers 110 having various shapes are formed on the resin layer 120.
  • As the shape of the metal layer for example, a dotted pattern (a), stripe pattern (b), polka dot pattern (c), rectangular pattern (d), checker pattern (as shown in FIG. e), frame shape (f), lattice pattern shape (g), or multiple frame shape (h). These shapes are examples, and these shapes can be combined or deformed depending on the purpose and application.
  • a sheet-like metal layer is formed on the entire surface of the resin layer. Is preferably formed.
  • a viewpoint of effectively using the metal layer and between adjacent electrodes From the viewpoint of not leaving the metal layer, it is preferable to form a patterned metal layer repeatedly on at least a part of the resin layer.
  • the shape of the metal layer can be appropriately selected depending on the pitch and form of the electrodes.
  • the metal layer used in the present invention preferably has a surface oxide film that can be removed by the reducing action of the compound having a flux function, such as tin (Sn), lead (Pb), silver (Ag), bismuth (Bi), Selected from the group consisting of indium (In), zinc (Zn), nickel (Ni), antimony (Sb), iron (Fe), aluminum (Al), gold (Au), germanium (Ge) and copper (Cu) It is preferably made of an alloy of at least two kinds of metals or a simple tin.
  • a flux function such as tin (Sn), lead (Pb), silver (Ag), bismuth (Bi), Selected from the group consisting of indium (In), zinc (Zn), nickel (Ni), antimony (Sb), iron (Fe), aluminum (Al), gold (Au), germanium (Ge) and copper (Cu)
  • a flux function such as tin (Sn), lead (Pb), silver (Ag), bismuth
  • the metal layer is composed of an Sn—Pb alloy, an Sn—Bi alloy which is a lead-free solder, an Sn—Ag—Cu alloy, an Sn—In alloy, Sn.
  • a solder foil made of an alloy containing Sn such as an alloy of -Ag is more preferable.
  • the content of tin is preferably 30% by weight or more and less than 100% by weight, more preferably 35% by weight or more and less than 100% by weight, and particularly preferably 40% by weight or more. Moreover, less than 100 weight% is preferable.
  • the content of tin is preferably 15% by weight or more and less than 100% by weight, more preferably 20% by weight or more and less than 100% by weight, and particularly preferably 25% by weight or more and less than 100% by weight.
  • Sn-Pb alloys include Sn63-Pb (melting point 183 ° C), Sn-3.0Ag-0.5Cu (melting point 217 ° C), Sn-3.5Ag (melting point 221 ° C), Sn-58Bi (melting point) 139 ° C.), Sn-9.0Zn (melting point 199 ° C.), Sn-3.5Ag-0.5Bi-3.0In (melting point 193 ° C.), Au-20Sn (melting point 280 ° C.), and the like.
  • the metal layer may be appropriately selected according to the heat resistance of the electronic member or semiconductor device to be connected.
  • the melting point is 330 ° C. or lower (more preferably 300 ° C. or lower, particularly preferably 280 ° C. or lower, more preferably, in order to prevent the members of the semiconductor device from being damaged by thermal history. It is preferable to use a metal layer that is 260 ° C. or lower.
  • a metal layer having a melting point of 100 ° C. or higher more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher.
  • fusing point of a metal layer can be measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the thickness of the metal layer can be appropriately selected according to the gap between the opposing terminals, the separation distance between adjacent terminals, and the like.
  • the thickness of the metal layer is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, 100 micrometers or less are preferable, 50 micrometers or less are more preferable, and 20 micrometers or less are especially preferable.
  • the thickness of the metal layer is less than the lower limit, the metal for constituting the conductive portion is insufficient, and the number of unconnected terminals tends to increase.
  • the upper limit is exceeded, the metal becomes surplus, and bridging occurs between adjacent terminals, which tends to cause a short circuit.
  • Examples of the method for producing the metal layer include a method of producing from a lump such as an ingot by rolling, and a method of forming the metal layer by direct vapor deposition, sputtering, plating, etc. on the resin layer.
  • a method for producing a repetitive patterned metal layer for example, a method of punching a metal layer into a predetermined pattern, a method of forming a predetermined pattern by etching, etc., or using a shielding plate or a mask Examples thereof include a method of forming by vapor deposition, sputtering, plating, and the like.
  • the content of the metal layer is preferably 5% by weight or more, more preferably 20% by weight or more, and particularly preferably 30% by weight or more based on the total weight of the conductive connecting material. Moreover, less than 100 weight% is preferable, 80 weight% or less is more preferable, and 70 weight% or less is especially preferable. If the content of the metal layer is less than the above lower limit, the metal for constituting the conductive part may be insufficient, and the number of unconnected terminals may increase. On the other hand, when the content of the metal layer exceeds the above upper limit, the metal becomes surplus and it is easy to cause a bridge between adjacent terminals.
  • the content of the metal layer may be defined as a volume ratio with respect to the conductive connection material.
  • the content of the metal layer is preferably 1% by volume or more, more preferably 5% by volume or more, and particularly preferably 10% by volume or more with respect to the conductive connection material.
  • 90 volume% or less is preferable, 80 volume% or less is more preferable, and 70 volume% or less is especially preferable. If the content of the metal layer is less than the above lower limit, the metal for constituting the conductive part may be insufficient, and the number of unconnected terminals may increase. On the other hand, if the content of the metal layer exceeds the above upper limit, the metal becomes excessive, and bridging is likely to occur between adjacent terminals.
  • the form of the conductive connection material can be appropriately selected according to the form of the resin composition.
  • the resin composition when the resin composition is in a liquid state, the resin composition is applied on both surfaces of the metal layer, the resin composition is applied on a release substrate such as a polyester sheet, and semi-cured at a predetermined temperature (B stage)
  • a film obtained by drying and forming a film and bonding the metal layers to form a film can be used as the conductive connection material.
  • the varnish of the resin composition dissolved in an organic solvent is applied onto a release substrate such as a polyester sheet and dried at a predetermined temperature, and then a metal layer is laminated or vapor deposited.
  • a film formed using the above method can be used as a conductive connection material.
  • the conductive connection material of the present invention and the metal layer used in the conductive connection material can be embossed to enhance contact with the terminal.
  • the thickness of the conductive connecting material of the present invention is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less. .
  • the resin composition can be sufficiently filled in the gap between adjacent terminals.
  • the mechanical adhesive strength after the resin component is cured or solidified and the electrical connection between the opposing terminals can be sufficiently ensured.
  • the resin composition used in the present invention is liquid at 25 ° C., for example, the metal layer is immersed in the liquid resin composition, and the liquid resin composition is adhered to both surfaces of the metal layer, so that the conductive connecting material of the present invention is used. Can be manufactured.
  • the thickness of the resin composition needs to be controlled, it is prepared by passing a metal layer immersed in a liquid resin composition through a bar coater having a certain gap or spraying the liquid resin composition with a spray coater or the like. can do.
  • the conductive connecting material can be produced as follows. First, a varnish of a resin composition dissolved in an organic solvent is applied on a release substrate such as a polyester sheet, dried at a predetermined temperature to form a film, and a film-like resin composition is produced. Next, two resin compositions formed into a film on a release substrate were prepared and laminated with a hot roll with a metal layer sandwiched therebetween, whereby resin layers were arranged above and below the metal layer, resin layer / metal layer / A three-layer conductive connecting material made of a resin layer can be produced. In addition, a two-layer conductive connecting material composed of a resin layer / metal layer can be produced by disposing a resin layer on one side of the metal layer by the above-described laminating method.
  • the metal layer when using a wound metal layer, the metal layer is used as a base substrate, and the film-like resin composition is laminated on the upper and lower sides or one side of the metal layer with a hot roll, thereby winding the conductive layer.
  • a connection material can also be obtained.
  • a varnish-like resin composition is directly applied to the upper or lower side or one side of the metal layer, and the solvent is evaporated to produce a wound conductive connection material. it can.
  • a patterned metal layer is prepared, and the film-like resin composition may be laminated with a hot roll.
  • the resin layer is provided on both surfaces of the patterned metal layer, the release substrate is peeled off, and the film-shaped resin composition is applied to the surface of the patterned metal layer opposite to the surface on which the resin layer is formed. Further lamination may be performed.
  • the manufacturing method of a conductive connection material is not restrict
  • a first electronic component manufacturing method relates to a method of connecting terminals using the conductive connection material, wherein the conductive connection material is formed by two electrons facing a plurality of terminals inward.
  • An arrangement step of arranging between the members and contacting a plurality of terminals of each of the two electronic members, and heating the conductive connecting material to provide the two electronic members via the conductive portions formed on the plurality of terminals. Includes a heating step of connecting a plurality of terminals, respectively, and a curing / solidifying step of curing or solidifying the resin layer.
  • the manufacturing method of the 1st electronic component in this invention can be used, for example, when connecting the terminals currently formed in the semiconductor wafer, the semiconductor chip, the rigid board
  • the steps of the connection method are slightly different depending on whether the resin composition of the conductive connection material is a curable resin composition or a thermoplastic resin composition.
  • the resin layer of the conductive connecting material has a curable resin
  • the case where the resin layer includes a thermoplastic resin is described as a second embodiment.
  • the step of connecting the electronic members to each other is equal to or higher than the melting point of the metal layer and the curing of the resin layer is completed.
  • the step of curing or solidifying the resin layer is performed by heating the conductive connection material at a temperature at which the curing of the resin layer is completed.
  • the heat-melted metal layer can be selectively agglomerated between terminals to form a conductive region, and an insulating region can be formed around the curable resin composition.
  • insulation between adjacent terminals can be ensured and leakage current can be prevented, so that connection reliability of connection between terminals can be improved.
  • electrical connection between a large number of terminals can be performed all at once, and connection between electronic members having a plurality of terminals can be facilitated.
  • the mechanical strength of the conductive region or the insulating region can be increased by curing the curable resin composition.
  • a substrate 10 provided with a plurality of terminals 11 and a substrate 20 provided with a plurality of terminals 21 are divided into a plurality of terminals 11 and a plurality of terminals 21. Align so that they face each other. And between these terminals, the conductive connection material 30 provided with the metal layer 110 and the resin layer 120 which consists of a curable resin composition provided in both surfaces of the metal layer 110 is arrange
  • the conductive connecting material 30 is thermocompression bonded to one side of the substrate 10 or the substrate 20 or both of the substrate 10 and the substrate 20 as shown in FIG. 4 using an apparatus such as a roll laminator or a press. Also good. Further, the surfaces of the terminal 11 and the terminal 21 may be subjected to treatments such as cleaning, polishing, plating, and surface activation as necessary in order to improve electrical connection. Then, the conductive connection material 30 is brought into contact with the plurality of terminals 11 and the plurality of terminals 21.
  • the conductive connection material 30 arranged between the terminals in the arrangement step is heated at a temperature equal to or higher than the melting point of the metal layer 110.
  • the heating temperature may be equal to or higher than the melting point of the metal layer 110.
  • the upper limit is not particularly limited as long as the curing of the resin layer 120 made of is not completed.
  • the heating temperature is preferably 5 ° C. or more higher than the melting point of the metal layer 110, more preferably 10 ° C. or more, more preferably 20 ° C. or more, and particularly preferably 30 ° C. or more.
  • the heating temperature can be appropriately selected depending on the metal layer to be used and the composition of the curable resin composition, but is preferably 100 ° C or higher, more preferably 130 ° C or higher, particularly preferably 140 ° C or higher, and 150 ° C or higher. Most preferred. In order to prevent thermal degradation of the substrate or the like to be connected, the heating temperature is preferably 260 ° C. or lower, more preferably 250 ° C. or lower, and particularly preferably 240 ° C. or lower.
  • the metal layer 110 When the conductive connecting material 30 is heated at such a temperature, the metal layer 110 is melted, and the molten metal layer 110 can move in the resin layer 120 made of the curable resin composition.
  • the molten metal layer 110 aggregates on the terminals 11 and 21 due to its wettability. Thereby, as shown in FIG. 3, a conductive portion 130 is formed between the terminals, and the terminals 11 and 21 are electrically connected.
  • aggregation on the terminal does not mean that the area in plan view of the metal layer 110 is larger or smaller than the original area, but a good shape for connecting the terminal 11 and the terminal 21. That is, the metal layer 110 moves onto the terminals 11 and 21. Therefore, the case where the area of the metal layer 110 in plan view is reduced or enlarged is included.
  • the conductive region 130 is filled with a curable resin composition to form an insulating region 140.
  • insulation between adjacent terminals is ensured, and a short circuit between adjacent terminals can be prevented. That is, the conductive connecting material 30 is brought into contact with the plurality of terminals 11 and 21 and heated, thereby taking a structure having anisotropic conductivity.
  • the surface oxide film of the metal layer 110 is removed by the reducing action of the compound having the flux function contained in the curable resin composition. This is a state in which the wettability is enhanced, and metal bonding is promoted to easily aggregate between opposing terminals.
  • the surface oxide films of the terminals 11 and 21 are also removed by the reducing action of the compound having a flux function and the wettability is enhanced, metal bonding with the metal layer 110 is facilitated.
  • heating may be performed by applying pressure so that the distance between opposing terminals is reduced.
  • the distance between the terminals facing each other can be controlled to be constant by heating and pressurizing using means such as a known thermocompression bonding apparatus in the direction in which the substrates 10 and 20 in FIG. 2 face each other. It is possible to increase the reliability of electrical connection between the terminals to be performed.
  • an ultrasonic wave or an electric field may be applied, or special heating such as laser or electromagnetic induction may be applied.
  • (C) Curing Step In the first method for manufacturing an electronic component according to the present invention, after forming the conductive portion 130 and the insulating region 140 in the heating step, the curable resin composition is cured to insulate the insulating region 140. To fix. Thereby, electrical reliability and mechanical connection strength between the terminals can be sufficiently ensured. In particular, in the first method for manufacturing an electronic component according to the present invention, since the curable resin composition having a high insulation resistance value is used, the insulation of the insulating region can be more sufficiently ensured.
  • Curing of the curable resin composition can be performed by heating the conductive connection material 30 or the like.
  • the curing temperature of the conductive connecting material 30 can be appropriately set according to the composition of the curable resin composition, but is preferably at least 5 ° C. lower than the heating temperature in the heating step, and at least 10 ° C. lower.
  • a temperature is particularly preferred. Specifically, it is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, particularly preferably 130 ° C. or higher, and most preferably 150 ° C. or higher. Further, it is preferably 300 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower, and most preferably 240 ° C. or lower.
  • the curing temperature is within the above range, the conductive connecting material 30 is not thermally decomposed and the curable resin composition can be sufficiently cured.
  • the step of connecting the electronic members to each other heats the conductive connection material at a temperature equal to or higher than the melting point of the metal layer and the resin layer softening.
  • the step of curing or solidifying the resin layer is performed by cooling the conductive connecting material to a temperature at which the resin layer solidifies.
  • (A) Arrangement Step When the conductive connection material 30 including the thermoplastic resin composition and the metal layer 110 is used, the conductive connection material 30 including the curable resin composition and the metal layer 110 is used.
  • the conductive connection material 30 can be disposed on the substrate.
  • the heating step is not particularly limited, the conductive connection material 30 arranged between the terminals in the arrangement step is heated at a melting point or higher of the metal layer 110.
  • the heating temperature is preferably 5 ° C. or more higher than the melting point of the metal layer, more preferably 10 ° C. or more, more preferably 20 ° C. or more, and particularly preferably 30 ° C. or more.
  • the heating temperature is equal to or higher than the melting point of the metal layer 110, and the resin layer 120 made of the thermoplastic resin composition is softened so that the metal layer 110 can move in the resin layer 120 made of the thermoplastic resin, that is, “thermoplastic resin”.
  • the upper limit is not particularly limited as long as the resin layer 120 made of the composition is softened.
  • the heating temperature can be appropriately selected depending on the metal layer to be used and the composition of the thermoplastic resin composition. For example, it can be heated at the same heating temperature as the conductive connecting material containing the curable resin composition and the metal layer.
  • the metal layer 110 When the conductive connecting material 30 is heated at the above temperature, the metal layer 110 is melted and the molten metal layer 110 can move in the resin layer 120 made of the thermoplastic resin composition.
  • the molten metal layer 110 aggregates on the terminals 11 and 21 due to its wettability. Thereby, as shown in FIG. 3, a conductive portion 130 is formed between the terminals, and the terminals 11 and 21 are electrically connected.
  • the insulating region 140 is formed by filling the periphery of the conductive portion 130 with the thermoplastic resin composition. As a result, insulation between adjacent terminals is ensured, and a short circuit between adjacent terminals can be prevented. That is, the conductive connecting material 30 is brought into contact with the plurality of terminals 11 and 21 and heated, thereby taking a structure having anisotropic conductivity.
  • the surface oxide film of the metal layer 110 is removed by the reducing action of the compound having the flux function contained in the thermoplastic resin composition. This is a state in which the wettability is enhanced, and metal bonding is promoted to easily aggregate between opposing terminals.
  • the surface oxide films of the terminals 11 and 21 are also removed by the reducing action of the compound having a flux function and the wettability is enhanced, metal bonding with the metal layer 110 is facilitated.
  • thermoplastic resin composition is solidified to form the insulating region 140. Fix the area. Thereby, electrical reliability and mechanical connection strength between the terminals can be sufficiently ensured.
  • the solidification of the thermoplastic resin composition can be carried out by cooling and solidifying the conductive connecting material 30 heated and melted in the heating step.
  • the cooling and solidification of the conductive connecting material 30 can be appropriately set according to the composition of the thermoplastic resin composition, and is not particularly limited, but may be a method by natural cooling, or may be blown with cold air. The method may be used.
  • the solidification temperature of the thermoplastic resin composition is not particularly limited, but is preferably lower than the melting point of the metal layer 110. More specifically, the solidification temperature of the thermoplastic resin composition is preferably 10 ° C. or more lower than the melting point of the metal layer 110, and particularly preferably 20 ° C. or more lower. The solidification temperature of the thermoplastic resin composition is preferably 50 ° C. or higher, particularly preferably 60 ° C. or higher, and further preferably 100 ° C. or higher. When the solidification temperature of the thermoplastic resin composition is within the above range, the conductive portion 130 can be reliably formed, and the insulating region 140 can have a desired heat resistance. For this reason, the insulation between adjacent terminals is ensured, and a short circuit between adjacent terminals can be more reliably prevented.
  • a conductive connection material composed of a resin layer and a metal layer is used. For this reason, by heating the conductive connection material, the metal layer can be selectively agglomerated between the terminals facing each other, electrically connecting the terminals facing each other, and ensuring insulation between adjacent terminals. can do. Further, in a fine wiring circuit such as a semiconductor device, a large number of terminals can be brought into conduction at once, and the connection between terminals with excellent reliability can be easily performed.
  • the second electronic component manufacturing method according to the present invention includes a placement step of contacting the conductive connection material on the plurality of terminals, a heating step of heating the conductive connection material to form a conductive portion on the plurality of terminals, A curing / solidifying step for curing or solidifying the resin layer.
  • the manufacturing method of a 2nd electronic component is based on the method of manufacturing a connection terminal on the electrode of an electronic member, for example using the said conductive connection material.
  • the terminal is, for example, an electrode.
  • the conductive part is, for example, a connection terminal.
  • the second electronic component manufacturing method of the present invention can be used, for example, when manufacturing connection terminals on electrodes of a semiconductor wafer, a semiconductor chip, a rigid substrate, a flexible substrate, and other electronic components.
  • connection terminal manufacturing process is slightly different between the case where the resin composition of the conductive connection material is a curable resin composition and the case where the resin composition is a thermoplastic resin composition.
  • the resin composition of the conductive connecting material is a curable resin composition
  • the case where it is a thermoplastic resin composition will be described as a second embodiment.
  • the step of forming the conductive portion is equal to or higher than the melting point of the metal layer, and the curing of the resin layer is not completed.
  • the step of curing or solidifying the resin layer is performed by heating the conductive connection material at a temperature
  • the step of curing or solidifying the resin layer is performed by heating the conductive connection material at a temperature at which the curing of the resin layer is completed.
  • a metal layer that has been heated and melted is selectively aggregated on electrodes on a substrate to form connection terminals, and an insulating region is formed around the curable resin composition. Can do.
  • connection terminal since the periphery of the connection terminal can be covered with the curable resin composition, the conductive region is fixed. Moreover, since the insulation between adjacent connection terminals is ensured by the insulating region, the connection reliability can be improved. According to this method, a large number of connection terminals can be manufactured at once even in a fine wiring circuit, and the connection terminals can be easily formed on the electrodes.
  • a conductive connection material 50 having a resin layer 120 made of a curable resin composition and a metal layer 110 is arranged on a substrate 40 provided with a plurality of electrodes 41. To do. At this time, when the patterned metal layer 110 is used, it is necessary to align the conductive connecting material 50 and the electrode 41 on the substrate 40.
  • the resin layer 120 made of the curable resin composition is formed on one side of the metal layer 110, but the resin layer 120 made of the curable resin composition is the same as the metal layer 110. It may be formed on both sides.
  • the resin layer 120 made of the curable resin composition is disposed so as to face the electrode 41, but the metal foil 110 may be disposed so as to face the electrode 41.
  • the conductive connection material 50 may be thermocompression bonded to the substrate 40 using an apparatus such as a roll laminator or a press.
  • the resin layer 120 made of the curable resin composition covers the electrode 41, but the thickness of the resin layer 120 made of the thermosetting resin composition may be smaller than the thickness of the electrode 41, It may be thicker than the thickness of the electrode 41, and can be appropriately adjusted according to the purpose and application.
  • the surface of the electrode 41 may be cleaned, polished, plated, surface activated, or the like, if necessary, in order to improve electrical connection or to improve the bondability with the metal layer 110. Processing may be performed.
  • (B) Heating step In the heating step, the conductive connecting material 50 placed on the electrode 41 on the substrate 40 in the placement step is equal to or higher than the melting point of the metal layer 110, and the curing of the curable resin composition is completed. Heat at a temperature that does not. Thereby, the connection terminal 150 can be formed on the electrode 41 as shown in FIG. On the other hand, a curable resin composition is filled around the connection terminal 150 to form an insulating region 140. As a result, insulation between the adjacent connection terminals 150 is ensured, and a short circuit between the adjacent connection terminals 150 can be prevented.
  • the heating temperature and the pressurizing condition of the curable resin composition are as follows.
  • the terminal is connected using a conductive connecting material having the curable resin composition and a metal layer. It can be performed under the same conditions.
  • (C) Curing Step In the curing step, after forming the connection terminal 150 and the insulating region 140 in the heating step, the curable resin composition is cured and the insulating region 140 is fixed. Thereby, joining of the electrode 41 and the connection terminal 150 on the board
  • this curing step is preferably performed after the connection terminal 150 is formed and then the substrate 60 is mounted and connected to another electronic component or substrate.
  • the heating temperature of the conductive connection material in the curing step is the same as that in the case of performing inter-terminal connection using the conductive connection material having the curable resin composition and the metal layer in the first electronic component manufacturing method. Can be done under conditions.
  • the step of forming the conductive part is heating the conductive connection material at a temperature that is equal to or higher than the melting point of the metal layer and the resin layer is softened.
  • the step of curing or solidifying the resin layer is performed by cooling the conductive connection material to a temperature at which the resin layer is solidified.
  • the metal layer that has been heated and melted can be selectively agglomerated on the electrodes on the substrate to form connection terminals, and an insulating region can be formed around the thermoplastic resin composition. .
  • connection terminal since the periphery of the connection terminal can be covered with the thermoplastic resin composition, the conductive region is fixed. Moreover, since the insulation between adjacent connection terminals is ensured by the insulating region, the connection reliability can be improved. According to this method, a large number of connection terminals can be manufactured at once even in a fine wiring circuit.
  • (A) Arrangement step When a conductive connection material including a thermoplastic resin composition and a metal layer is used, a conductive connection material including the curable resin composition of the first embodiment and a metal layer is used. Similarly, the conductive connection material can be disposed on a substrate provided with electrodes.
  • the conductive connecting material 50 placed on the electrode provided on the substrate in the placing step is a melting point of the metal layer 110 or more and a resin layer made of the thermoplastic resin composition. Heat at a temperature at which 120 softens.
  • the connection terminal 150 can be manufactured on the electrode 41 similarly to the first embodiment.
  • the insulating region 140 is formed by filling the periphery of the connection terminal 150 with the thermoplastic resin composition. As a result, insulation between the adjacent connection terminals 150 is ensured, and a short circuit between the adjacent connection terminals 150 can be prevented.
  • thermoplastic resin composition the heating temperature and pressurizing conditions of the thermoplastic resin composition are as follows.
  • terminal-to-terminal connection is performed using a conductive connection material having the thermoplastic resin composition and a metal foil. It can be performed under the same conditions as in the case of.
  • thermoplastic resin composition is cooled and solidified to fix the insulating region 140, thereby forming the electrode 41.
  • connection terminal 150 can be reinforced.
  • the cooling method and preferable solidification temperature of a thermoplastic resin composition in the manufacturing method of a 1st electronic component, it uses the conductive connection material which has the said thermoplastic resin composition and a metal layer, and connects between terminals. It is the same as the case where it went.
  • connection terminal is simplified. Can be manufactured by a simple method.
  • a plurality of connection terminals can be manufactured at once in a fine wiring circuit such as a semiconductor device.
  • an insulating region can be formed around the plurality of connection terminals, the connection terminals can be fixed and insulation between adjacent connection terminals can be secured. Thereby, the connection terminal excellent in connection reliability can be manufactured easily.
  • the present invention also includes an electronic member with a conductive connection material formed by bonding the conductive connection material of the present invention to an electrical connection surface on which a plurality of terminals are formed among the electronic members.
  • the adhesive surface of the conductive connection material with the electrical connection surface of the electronic member is preferably a resin layer.
  • the resin layer may be directly bonded to the electrical connection surface of the electronic member, or may be bonded via an adhesive layer.
  • the electronic members with the conductive connection material of the present invention are bonded to each other, or the electronic members with the conductive connection material of the present invention are bonded to the electrical connection surfaces of the other electronic members and thermocompression bonded so that the electronic members are electrically connected. Can be connected.
  • the present invention includes a semiconductor wafer, a semiconductor chip, a rigid substrate and a flexible substrate, and other electronic components in which electronic members are electrically connected using the conductive connection material of the present invention thus obtained. To do.
  • Examples 1 to 7 (1) Preparation of curable resin composition Each component shown in Table 1 was dissolved in methyl ethyl ketone (MEK) to obtain a resin composition varnish having a resin solid content of 40%. The obtained varnish was applied to a polyester sheet using a comma coater and dried at 90 ° C. for 5 minutes to obtain a curable resin composition having a film thickness of 30 ⁇ m. (2) Measurement of average linear expansion coefficient of resin composition The average linear expansion coefficient of the resin composition was obtained by curing the curable resin composition obtained in (1) at 180 ° C. for 1 hour.
  • MEK methyl ethyl ketone
  • thermomechanical analyzer manufactured by Seiko Instruments Inc., SS6100
  • connection terminal (terminal diameter) made of a FR-4 base material (thickness 0.1 mm) and a circuit layer (copper circuit, thickness 12 ⁇ m) as a substrate, and Ni / Au plating (thickness 3 ⁇ m) formed on the copper circuit. Two sheets having 100 ⁇ m and a center distance of 200 ⁇ m between adjacent terminals were prepared and used for connection.
  • the conductive connection material is disposed between the substrates having such connection terminals, and using a thermocompression bonding apparatus (“TMV1-200ASB” manufactured by Tsukuba Mechanics Co., Ltd.) under the conditions of 230 ° C., 0.5 MPa, 120 seconds.
  • Thermocompression bonding (gap between substrates: 50 ⁇ m) was applied to connect the terminals. Then, it heated at 180 degreeC for 1 hour, the curable resin composition was hardened, and the laminated body was obtained.
  • Example 1 A curable resin composition containing no filler was prepared in the same manner as in Example 1, and the obtained curable resin composition having a thickness of 30 ⁇ m was laminated on both surfaces of the solder foil shown in Table 1 to have a thickness of 70 ⁇ m.
  • the conductive connection material was manufactured. Furthermore, the terminal connection of the board
  • connection resistance between opposing terminals, conduction path formation between opposing terminals, and conduction resistance after a thermal cycle test were evaluated by methods described below.
  • connection resistance between opposing terminals
  • the connection resistance is a four-terminal method (resistance meter: “Digital” manufactured by Iwasaki Tsushinki Co., Ltd.) in the laminates obtained in Examples and Comparative Examples. 12 points were measured by “Multimeter VOA7510”, measurement probe: “Pin type lead 9771” manufactured by Hioki Electric Co., Ltd.). The case where the average value was less than 30 m ⁇ was determined as “A”, and the case where the average value was 30 m ⁇ or more was determined as “B”.
  • connection resistance after thermal cycle test The connection resistance between the terminals facing each other in the laminates obtained in the examples and comparative examples was determined by the four-terminal method (resistance meter: “Digital Multimeter VOA7510” manufactured by Iwasaki Tsushinki Co., Ltd.) Measurement probe: “Pin type lead 9771” manufactured by Hioki Electric Co., Ltd.) Next, the laminate was subjected to 1000 cycles and 1500 cycles of a thermal cycle test at ⁇ 40 ° C., 10 minutes to 85 ° C. for 10 minutes, and the connection resistance between terminals was measured in the same manner as described above. “A” when the appearance is normal and the rate of change from the initial value of all connection resistances is less than ⁇ 5%.
  • Epoxy resin bisphenol A type epoxy resin, “EPICLON-840S” manufactured by Dainippon Ink and Chemicals, epoxy equivalent of 185 g / eq Curing agent: phenol novolac, “PR-53647” manufactured by Sumitomo Bakelite Co., Ltd.
  • Film-forming resin modified biphenol type phenoxy resin, “YX-6654” manufactured by Japan Epoxy Resin Co., Ltd., weight average molecular weight 39,000
  • Compound having flux function 1 Sebacic acid, “Sebacic acid” manufactured by Tokyo Chemical Industry Co., Ltd.
  • Compound 2 having flux function Phenolphthalene, “Phenolphthalin” manufactured by Tokyo Chemical Industry Co., Ltd.
  • Silane coupling agent 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, “KBM-303” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Imidazole 2-Phenyl-4-methylimidazole, “Cureazole 2P4MZ” manufactured by Shikoku Chemicals Co., Ltd.
  • Filler 1 Silica Admatech, SE2050, average particle size 0.5 ⁇ m, specific gravity 2.2
  • Filler 2 Alumina Showa Denko, AS-50, average particle size 9 ⁇ m, specific gravity 3.8
  • the resin layer containing the resin component and the filler is used as the resin layer of the conductive connecting material, so that the linear expansion coefficient of the cured resin layer is reduced. It was shown that the stress of the connection part due to thermal expansion due to heating during mounting can be reduced, and the reliability of the electronic component can be improved. Furthermore, it is also shown that by using a resin layer containing a filler as the resin layer of the conductive connection material, the moisture absorption and water absorption of the cured resin layer can be reduced, and the moisture absorption heat resistance of the electronic component can be improved. It was.
  • the conductive connection material of the present invention can be suitably used when electrically connecting electronic members in an electronic component or manufacturing a connection terminal on a substrate.
  • By using the conductive connection material of the present invention it is possible to achieve both good electrical connection between electronic members and high insulation reliability.
  • connection between terminals in a fine wiring circuit is also possible.
  • By using the conductive connection material of the present invention it is possible to meet the demand for higher functionality and downsizing of electronic devices.

Abstract

 基板(10)および基板(10)上に設けられた複数の端子(11)を有する電子部材の、当該複数の端子(11)上に導電部を形成するために用いられる導電接続材料(30)であって、金属層(110)と、樹脂成分と充填剤とを有する樹脂層(120)と、を備え、複数の端子(11)上に当接し、加熱することによって、金属層(110)が各端子(11)上に凝集し、複数の端子(11)上に導電部を形成するように構成されている。

Description

導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品
 本発明は、導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品に関する。
 近年、電子機器の高機能化及び小型化の要求に伴い、電子材料における接続端子間の狭ピッチ化がますます進む方向にある。これに伴い、微細な配線回路における端子間接続も高度化している。端子間の接続方法としては、例えば、ICチップを回路基板に電気的に接続する際に異方性導電接着剤又は異方性導電フィルムを用いて多数の端子間を一括で接続するフリップチップ接続技術が知られている。異方性導電接着剤又は異方性導電フィルムは、熱硬化性樹脂を主成分とする接着剤に導電性粒子を分散させたフィルム又はペーストである(例えば、特開昭61-276873号公報(特許文献1)及び特開2004-260131号公報(特許文献2)参照)。これを接続すべき電子部材の間に配置して熱圧着することにより、対向する多数の端子間を一括で接続することができ、接着剤中の樹脂により隣接する端子間の絶縁性を確保することを可能にする。
 しかし、導電性粒子の凝集を制御することは非常に難しく、(1)導電性粒子と端子、或いは、導電性粒子同士が十分に接触せずに対向する端子間の一部が導通しない場合や、(2)対向する端子間(導通性領域)以外の樹脂中(絶縁性領域)に導電性粒子が残存してリーク電流が発生し、隣接端子間の絶縁性が十分に確保できない場合があった。このため、従来の異方性導電接着剤や異方性導電フィルムでは、端子間の更なる狭ピッチ化に対応することが困難な状況である。
 他方、電子部材の電極上に接続端子を製造する場合、従来は金属パッドが設けられた基板上に半田ペーストを印刷し、半田リフロー装置を用いて半田ペーストを加熱溶融させて接続端子を形成していた。しかし、この方法では、接続端子が狭ピッチであると半田ペーストを印刷するときに使用するマスクのコストが高くなる。また、接続端子のサイズが小さすぎると、半田ペーストを印刷できない場合もある。半田ボールを接続端子に搭載し、半田リフロー装置を用いて半田ボールを加熱溶融させることで、接続端子を製造する方法もある。しかし、この方法では、接続端子が小さすぎると、半田ボールの作製コストが高く、また、小径の半田ボールを作製することが技術的に困難な場合があった。
特開昭61-276873号公報 特開2004-260131号公報
 このような状況の下、対向する端子間における良好な電気的接続と、隣接端子間における高い絶縁信頼性を得ることを可能にする導電接続材料の提供が求められている。また、複数の端子を有する電子部材間を接続することや、電子部材の電極上に接続端子を形成することを容易にする導電接続材料の提供が望まれている。
 本発明によれば、基板および前記基板上に設けられた複数の端子を有する電子部材の、前記複数の端子上に導電部を形成するために用いられる導電接続材料であって、
 金属層と、
 樹脂成分と充填剤とを有する樹脂層と、
 を備え、
 前記複数の端子上に当接し、加熱することによって、前記金属層が各端子上に凝集し、前記複数の端子上に前記導電部を形成するように構成された導電接続材料が提供される。
 上記の課題を解決するべく、本発明者が鋭意検討した結果、導電性粒子を分散させたフィルムに代えて、金属層と樹脂層とを備える導電接続材料を用いることで、金属層を端子上へ凝集させることが容易となることを見いだした。このため、本発明によれば、対向する端子間における良好な電気的接続を得ることができる。また、樹脂層中に金属層が残存することを抑制することができ、隣接する端子間における高い絶縁信頼性を得ることができる。さらに、導電接続材料を加熱することによって金属層は各端子上に凝集するため、複数の端子を有する電子部材間を容易に接続し、また電子部材の複数の電極上に接続端子を容易に形成することができる。
 本発明によれば、上記に記載の導電接続材料を、前記複数の端子を内側に向けて対向する二つの前記電子部材間に配置し、前記二つの電子部材がそれぞれ有する前記複数の端子に当接させる工程と、前記導電接続材料を加熱して、前記複数の端子上に形成された前記導電部を介して前記二つの電子部材がそれぞれ有する前記複数の端子を互いに接続する工程と、前記樹脂層を硬化または固化する工程と、を備える電子部品の製造方法が提供される。
 本発明によれば、前記端子が電極であり、前記導電部が接続端子である場合において、上記に記載の導電接続材料を、前記複数の端子上に当接する工程と、前記導電接続材料を加熱して、前記複数の端子上に前記導電部を形成する工程と、前記樹脂層を硬化または固化する工程と、を備える電子部品の製造方法が提供される。
 本発明によれば、上記に記載の導電接続材料を、前記複数の端子に当接するように前記電子部材の前記基板上に接着してなる導電接続材料付き電子部材が提供される。
 本発明によれば、上記に記載の導電接続材料を用いて形成された前記導電部を介して、前記複数の端子を内側に向けて対向する二つの前記電子部材がそれぞれ有する前記複数の端子を互いに接続させてなる電子部品。
 本発明によれば、対向する端子間における良好な電気的接続と、隣接する端子間における高い絶縁信頼性を得ることを可能とし、かつ複数の端子を有する電子部材間の接続や、電子部材の電極上への接続端子の形成を容易にする導電接続材料を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる
本発明に用いる金属層の形状の一例を示す平面模式図である。 本発明の電子部品の接続方法において、端子間に導電接続材料を配置した後の基板及び導電接続材料の状態の一例を概略的に示す断面図である。 本発明の電子部品の接続方法において、端子間に配置した導電接続材料を加熱、硬化/固化した後の基板、導電性領域及び絶縁性領域の状態の一例を概略的に示す断面図である。 本発明の電子部品の接続方法において、端子間に導電接続材料を配置した後の基板及び導電接続材料の状態の一例を概略的に示す断面図である。 本発明の電子部品の製造方法において、基板上に設けられた電極上に導電接続材料を配置した後の基板及び導電接続材料の状態の一例を概略的に示す断面図である。 本発明の電子部品の製造方法において、基板上に設けられた電極上に導電接続材料を配置した後の基板及び導電接続材料の状態の一例を概略的に示す断面図である。 本発明の電子部品の製造方法において、基板の電極上に配置した導電接続材料を加熱、硬化/固化した後の基板、導電性領域及び絶縁性領域の状態の一例を概略的に示す断面図である。
 以下、本発明の導電接続材料、該導電接続材料を用いた電子部品の接続方法、および該導電接続材料を用いて電気的に接続されてなる電子部品等についてそれぞれ具体的に説明する。
 1.導電接続材料
 本発明の導電接続材料は、樹脂層と金属層とから構成される。その形態は、樹脂層と金属層とからなる多層構造を有する積層体であり、樹脂層及び金属層は各々一層であっても複数層であってもよい。導電接続材料の積層構造は特に制限されず、樹脂層と金属層との二層構造(樹脂層/金属層)でもよいし、樹脂層あるいは金属層の何れか又は両方を複数含む三層構造又はそれ以上の多層構造でもよい。なお、樹脂層又は金属層を複数用いる場合、各層の組成は同一でもよく、異なっていてもよい。
 本発明の一実施形態では、金属層の表面酸化膜を、フラックス機能を有する化合物で還元する観点から、金属層の上下層は樹脂層であることが好ましい。例えば、三層構造(樹脂層/金属層/樹脂層)が好ましい。この場合、金属層の両側にある樹脂層の厚みは、同一でもよく、異なっていてもよい。樹脂層の厚みは、接続しようとする端子の導体厚みなどによって適宜調整すればよい。例えば、金属層の両側にある樹脂層の厚みが異なる導電接続材料を用いて接続端子を製造する場合、厚みが薄い方を一方の接続端子側(電極側)に配置することが好ましい。金属層と接続端子との距離を短くすることで、接続端子部分への金属層の凝集を制御しやすくなる。
 本発明の他の実施形態において、例えば半導体ウエハ等の電子部材に接続端子を製造する場合、導電接続材料が金属層の片側にのみ樹脂層を有していると、金属層の一部を露出させることができ好ましい。二層構造の導電接続材料を用いて対向する接続端子同士を接続する場合、樹脂層側が接続端子と接するように配置してもよいし、金属層側が接続端子と接するように配置してもよい。二層構造の導電接続材料を用いて対向する電子部材の接続端子同士を接続する場合、対向する電子部材の双方に該導電接続材料を貼り付け、その後、導電接続材料付き電子部材を貼り合わせることが好ましい。導電接続材料の配置方向は、金属層のパターン形状によって適宜選択すればよい。
 次に、本発明で用いる樹脂層及び金属層についてそれぞれ説明する。
(1)樹脂層
 本発明において、樹脂層は、樹脂成分及び充填剤を含有する樹脂組成物で構成される。樹脂組成物は、常温で液状又は固形状のいずれの形態であってもよい。ここで「常温で液状」とは、常温(25℃)で一定の形態を持たない状態を意味する。ペースト状も液状に含まれる。
 本発明では、樹脂組成物として、硬化性樹脂組成物及び熱可塑性樹脂組成物のいずれを用いてもよい。本発明で用いる硬化性樹脂組成物としては、加熱又は化学線を照射することにより硬化するものなどが挙げられる。硬化後の線膨張率や弾性率等の機械特性に優れるという点では、熱硬化性樹脂組成物が好ましい。本発明で用いる熱可塑性樹脂組成物としては、所定の温度に加熱することにより、成形が可能な程度に柔軟性を有するものであれば、特に制限されない。
 (a)硬化性樹脂組成物
 本発明で用いる硬化性樹脂組成物には、硬化性樹脂及び充填剤のほか、必要に応じて、フィルム形成性樹脂、硬化剤、硬化促進剤、フラックス機能を有する化合物、シランカップリング剤などが含まれる。
 (i)硬化性樹脂
 本発明で用いる硬化性樹脂は、通常、半導体装置製造用の接着剤成分として使用できるものであれば特に限定されない。例えば、エポキシ樹脂、フェノキシ樹脂、シリコーン樹脂、オキセタン樹脂、フェノール樹脂、(メタ)アクリレート樹脂、ポリエステル樹脂(不飽和ポリエステル樹脂)、ジアリルフタレート樹脂、マレイミド樹脂、ポリイミド樹脂(ポリイミド前駆体樹脂)、ビスマレイミド-トリアジン樹脂などが挙げられる。特に、エポキシ樹脂、(メタ)アクリレート樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、マレイミド樹脂、ビスマレイミド-トリアジン樹脂からなる群より選ばれる少なくとも1種を含む熱硬化性樹脂を用いることが好ましい。中でも、硬化性と保存性、硬化物の耐熱性、耐湿性、耐薬品性に優れるという観点からエポキシ樹脂を用いることが好ましい。これらの硬化性樹脂は1種単独で用いても、2種以上を併用してもよい。
 硬化性樹脂の含有量は硬化性樹脂組成物の形態に応じて適宜設定することができる。
 例えば、硬化性樹脂組成物が液状の場合、硬化性樹脂の含有量は、硬化性樹脂組成物の全重量に対して、10重量%以上が好ましく、15重量%以上がより好ましく、20重量%以上がさらに好ましく、25重量%以上がさらにより好ましく、30重量%以上がなお好ましく、35重量%以上が特に好ましい。また、100重量%未満が好ましく、95重量%以下がより好ましく、90重量%以下がさらに好ましく、75重量%以下がさらにより好ましく、65重量%以下がなお好ましく、55重量%以下が特に好ましい。
 硬化性樹脂組成物が固形状の場合は、硬化性樹脂の含有量は、硬化性樹脂組成物の全重量に対して、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましく、20重量%以上が特に好ましい。また、90重量%以下が好ましく、85重量%以下がより好ましく、80重量%以下がさらに好ましく、75重量%以下がさらにより好ましく、65重量%以下がなお好ましく、55重量%以下が特に好ましい。
 硬化性樹脂の含有量が前記範囲内にあると端子間の電気的接続強度及び機械的接着強度を十分に確保することができる。
 本発明では、室温で液状及び室温で固形状のいずれのエポキシ樹脂を使用してもよい。室温で液状のエポキシ樹脂と室温で固形状のエポキシ樹脂とを併用してもよい。硬化性樹脂組成物が液状の場合には、室温で液状のエポキシ樹脂を用いることが好ましく、硬化性樹脂組成物が固形状の場合には、液状及び固形状のいずれのエポキシ樹脂を使用してもよいが、固形状のエポキシ樹脂を使用する場合はフィルム形成性樹脂を適宜併用することが好ましい。
 室温(25℃)で液状のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などが好ましく挙げられる。ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂とを併用してもよい。
 室温で液状のエポキシ樹脂のエポキシ当量は、150~300g/eqが好ましく、160~250g/eqがより好ましく、170~220g/eqが特に好ましい。前記エポキシ当量が上記下限未満になると硬化物の収縮率が大きくなる傾向があり、反りが生じることがある。他方、前記上限を超えると、フィルム形成性樹脂を併用した場合に、フィルム形成性樹脂、特にポリイミド樹脂との反応性が低下する傾向にある。
 室温(25℃)で固形状のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、3官能エポキシ樹脂、4官能エポキシ樹脂などが挙げられる。中でも、固形3官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などが好ましい。これらのエポキシ樹脂は1種単独で用いても、2種以上を併用してもよい。
 室温で固形状のエポキシ樹脂のエポキシ当量は、150~3000g/eqが好ましく、160~2500g/eqがより好ましく、170~2000g/eqが特に好ましい。
 室温で固形状のエポキシ樹脂の軟化点は、40~120℃が好ましく、50~110℃がより好ましく、60~100℃が特に好ましい。前記軟化点が前記範囲内にあると、タック性を抑えることができ、容易に取り扱うことが可能となる。
 (ii)充填剤
 本発明に用いる充填剤は、常温保管時や加熱時に、変質することがなく性能が安定しているものであれば特に制限はなく、無機充填剤や有機充填剤などを使用することができる。充填剤は1種単独で用いても、2種以上を併用してもよい。
 前記無機充填剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、窒化ホウ素、炭酸カルシウム、クレー、タルク、マイカ、ガラス繊維、ガラスフレーク、ガラスビーズ、硫酸バリウムなどが挙げられ、不純物が少ないシリカ、アルミナが好ましい。これらは1種単独で用いても、2種以上を併用してもよい。
 前記有機充填剤としては、例えば、セルロース、フッ素樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレンブタジエン共重合体などが挙げられ、樹脂組成物の硬化物の線膨張係数を低下させる効果が大きいエポキシ樹脂、フェノール樹脂が好ましい。これらは1種単独で用いても、2種以上を併用してもよい。
 前記充填剤の形状としては、球状や鱗片状が好ましく、特に球状の充填剤は異方性が少ないため、樹脂組成物全体の線膨張係数を低減する能力に優れているので、さらに好ましい。充填剤の粒径としては、10nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることが特に好ましい。また50μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることが特に好ましい。充填剤の粒径が前記下限値未満になると作業性、樹脂組成物中における分散性が低下する。他方前記上限値を超えると隣接端子間に跨る様に充填剤が存在することとなり、金属箔による端子間接続を阻害する。
 前記充填剤の含有量は、硬化性樹脂組成物の全重量に対して、1重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることが特に好ましい。また、80重量%以下であることが好ましく、70重量%以下であることがより好ましく、60重量%以下であることが特に好ましい。充填剤の含有量が前記下限値未満になると硬化後の樹脂組成物の線膨張係数を低下させる効果が得られない。他方、前記上限値を超えると樹脂組成物の被着体に対する密着力が低下し電子部品の信頼性が低下することと、樹脂組成物の流動性が極端に低下し成形できなくなる。
 また、前記充填剤の含有量は、前記充填剤の体積をFv、金属層の体積をMvとした時、
Fv/Mvが0.01~10.0であることが好ましく、さらに、0.02~8.0であることが好ましく、0.05~5.0であることが特に好ましい。Fv/Mvを上記下限値以上とすることで、硬化後の樹脂組成物の線膨張係数を効果的に低下させることができるため、電子部品の信頼性を向上させることができる。また、Fv/Mvを上記上限値以下とすることで、金属層が加熱工程(後述する)で樹脂組成物中を確実に移動することができるため、良好な端子間接続を実現することができる。
 樹脂層と、金属層とから構成される積層構造を有する導電接続材料において、樹脂層中に充填剤を配合することにより、硬化後の樹脂層の線膨張係数を低減し、さらに、冷熱サイクル試験や部品実装時の加熱による熱膨張に起因する接続部の応力を低減することができ、電子部品の信頼性を高めることができる。さらに、充填剤を配合すると樹脂層中の樹脂成分含有率が低下するため、硬化後の樹脂層の吸湿、吸水量が低減でき、電子部品の吸湿耐熱性が向上することもできる。また、充填剤を配合することによって、各端子上に凝集した金属層が、端子上の外へ流動することが抑制される。この理由は必ずしも明らかではないが、樹脂層に配合された充填剤が、各端子上に凝集した金属層を保持し、端子上の外へ流動することを抑制することに起因していると考えられる。このため、電子部品の信頼性を高めることができる。
(iii)フィルム形成性樹脂
 固形状の硬化性樹脂組成物を使用する場合、前記硬化性樹脂とフィルム形成性樹脂とを併用することが好ましい。本発明で用いるフィルム形成性樹脂としては、有機溶媒に可溶であり、単独で製膜性を有するものであれば特に制限はない。熱可塑性樹脂又は熱硬化性樹脂のいずれのものも使用することができ、また、これらを併用することもできる。具体的に、フィルム形成性樹脂としては、(メタ)アクリル系樹脂、フェノキシ樹脂、ポリエステル樹脂(飽和ポリエステル樹脂)、ポリウレタン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シロキサン変性ポリイミド樹脂、ポリブタジエン樹脂、ポリプロピレン樹脂、スチレン-ブタジエン-スチレン共重合体、スチレン-エチレン-ブチレン-スチレン共重合体、ポリアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ブチルゴム、クロロプレンゴム、ポリアミド樹脂、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-アクリル酸共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリ酢酸ビニル、ナイロンなどが挙げられる。中でも、(メタ)アクリル系樹脂、フェノキシ樹脂、ポリエステル樹脂及びポリイミド樹脂が好ましい。フィルム形成性樹脂は1種単独で用いても、2種以上を併用してもよい。
 なお、本明細書において、「(メタ)アクリル系樹脂」とは、(メタ)アクリル酸及びその誘導体の重合体、又は(メタ)アクリル酸及びその誘導体と他の単量体との共重合体を意味する。「(メタ)アクリル酸」などと表記するときは、「アクリル酸又はメタクリル酸」などを意味する。
 本発明で用いる(メタ)アクリル系樹脂としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリアクリル酸-2-エチルヘキシルなどのポリアクリル酸エステル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチルなどのポリメタクリル酸エステル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリアクリルアミド、アクリル酸ブチル-アクリル酸エチル-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-アクリル酸共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、メタクリル酸メチル-スチレン共重合体、メタクリル酸メチル-アクリロニトリル共重合体、メタクリル酸メチル-α-メチルスチレン共重合体、アクリル酸ブチル-アクリル酸エチル-アクリロニトリル-2-ヒドロキシエチルメタクリレート-メタクリル酸共重合体、アクリル酸ブチル-アクリル酸エチル-アクリロニトリル-2-ヒドロキシエチルメタクリレート-アクリル酸共重合体、アクリル酸ブチル-アクリロニトリル-2-ヒドロキシエチルメタクリレート共重合体、アクリル酸ブチル-アクリロニトリル-アクリル酸共重合体、アクリル酸エチル-アクリロニトリル-N,N-ジメチルアクリルアミド共重合体などが挙げられる。中でも、アクリル酸ブチル-アクリル酸エチル-アクリロニトリル共重合体、アクリル酸エチル-アクリロニトリル-N,N-ジメチルアクリルアミド共重合体が好ましい。これらの(メタ)アクリル系樹脂は1種単独で用いても、2種以上を併用してもよい。
 本発明で用いるフェノキシ樹脂の骨格は、特に制限されないが、ビスフェノールAタイプ、ビスフェノールFタイプ、ビフェニルタイプなどが好ましく挙げられる。
 本発明で用いるポリイミド樹脂としては、繰り返し単位中にイミド結合を持つ樹脂であれば特に制限されない。例えば、ジアミンと酸二無水物を反応させ、得られたポリアミド酸を加熱、脱水閉環することにより得られるものが挙げられる。
 前記ジアミンとしては、例えば、3,3'-ジメチル-4,4'-ジアミノジフェニル、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミンなどの芳香族ジアミン、1,3-ビス(3-アミノプロピル)―1,1,3,3―テトラメチルジシロキサンなどのシロキサンジアミンが挙げられる。ジアミンは1種単独で用いても、2種以上を併用してもよい。
 また、前記酸二無水物としては、3,3',4,4'-ビフェニルテトラカルボン酸、ピロメリット酸二無水物、4,4'-オキシジフタル酸二無水物などが挙げられる。酸二無水物は1種単独で用いても、2種以上を併用してもよい。
 ポリイミド樹脂は、溶剤に可溶なものでも、不溶なものでもよいが、他の成分と混合する際のワニス化が容易であり、取扱性に優れている点で溶剤可溶性のものが好ましい。特に、様々な有機溶媒に溶解できる点でシロキサン変性ポリイミド樹脂を用いることが好ましい。
 本発明で用いるフィルム形成性樹脂の重量平均分子量は8,000~1,000,000が好ましく、8,500~950,000がより好ましく、9,000~900,000がさらに好ましい。フィルム形成性樹脂の重量平均分子量が上記の範囲であると、製膜性を向上させることが可能で、且つ、硬化前の導電接続材料の流動性を抑制することができる。なお、フィルム形成性樹脂の重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)により測定することができる。
 本発明においては、このようなフィルム形成性樹脂として市販品を使用することができる。さらに、本発明の効果を損ねない範囲で、フィルム形成性樹脂に、可塑剤、安定剤、帯電防止剤、酸化防止剤や顔料などの各種添加剤を配合したものを使用してもよい。
 本発明に用いられる導電接続材料において、前記フィルム形成性樹脂の含有量は、使用する硬化性樹脂組成物の形態に応じて適宜設定することができる。
 例えば、固形状の硬化性樹脂組成物の場合には、フィルム形成性樹脂の含有量は、硬化性樹脂組成物の全重量に対して、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、15重量%以上であることが特に好ましい。また、50重量%以下であることが好ましく、45重量%以下であることがより好ましく、40重量%以下であることが特に好ましい。フィルム形成性樹脂の含有量が前記範囲内にあると溶融前の硬化性樹脂組成物の流動性を抑制することができ、導電接続材料を容易に取り扱うことが可能となる。
 (iv)硬化剤
 本発明で用いる硬化剤としては、フェノール類、酸無水物及びアミン化合物が好ましく挙げられる。硬化剤は、硬化性樹脂の種類などに応じて適宜選択することができる。例えば、硬化性樹脂としてエポキシ樹脂を使用する場合、エポキシ樹脂との良好な反応性、硬化時の低寸法変化及び硬化後の適切な物性(例えば、耐熱性、耐湿性など)が得られる点で硬化剤としてフェノール類を用いることが好ましく、硬化性樹脂の硬化後の物性が優れている点で2官能以上のフェノール類がより好ましい。また、このような硬化剤は1種単独で用いてもよいし、2種以上を併用してもよい。
 前記フェノール類としては、例えば、ビスフェノールA、テトラメチルビスフェノールA、ジアリルビスフェノールA、ビフェノール、ビスフェノールF、ジアリルビスフェノールF、トリスフェノール、テトラキスフェノール、フェノールノボラック樹脂、クレゾールノボラック樹脂などが挙げられる。中でも、エポキシ樹脂との反応性が良好であり、硬化後の物性が優れている点でフェノールノボラック樹脂及びクレゾールノボラック樹脂が好ましい。
 硬化剤の含有量は、使用する硬化性樹脂や硬化剤の種類及び後述するフラックス機能を有する化合物が硬化剤として機能する官能基を有する場合、その官能基の種類や使用量によって適宜選択することができる。
 例えば、硬化性樹脂としてエポキシ樹脂を用いた場合、硬化剤の含有量は硬化性樹脂組成物の全重量に対して、0.1~50重量%が好ましく、0.2~40重量%がより好ましく、0.5~30重量%が特に好ましい。硬化剤の含有量が前記範囲内にあると端子間の電気的接続強度及び機械的接着強度を十分に確保することができる。
 (v)硬化促進剤
 本発明で用いる硬化促進剤としては、イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2'-メチルイミダゾリル(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-ウンデシルイミダゾリル(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-エチル-4-メチルイミダゾリル(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-メチルイミダゾリル(1')]-エチル-s-トリアジンのイソシアヌル酸付加物、2-フェニルイミダゾールのイソシアヌル酸付加物、2-メチルイミダゾールのイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシジメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール化合物が挙げられる。
 硬化促進剤の含有量は、使用する硬化促進剤の種類に応じて適宜設定することができる。
 例えば、イミダゾール化合物を使用する場合には、イミダゾール化合物の含有量は、硬化性樹脂組成物の全重量に対して、0.001重量%以上が好ましく、0.003重量%以上がより好ましく、0.005重量%以上が特に好ましい。また、1.0重量%以下が好ましく、0.7重量%以下がより好ましく、0.5重量%以下が特に好ましい。イミダゾール化合物の含有量が前記下限未満になると硬化促進剤としての作用が十分に発揮されず、硬化性樹脂組成物を十分に硬化できない場合がある。他方、イミダゾール化合物の含有量が前記上限を超えると、硬化性樹脂組成物の硬化が完了する前に金属層が端子表面に十分に移動せず、絶縁性領域に金属層が残り絶縁性が十分に確保できない場合がある。また、導電接続材料の保存安定性が低下する場合がある。
 (vi)フラックス機能を有する化合物
 本発明で用いるフラックス機能を有する化合物は、端子及び金属箔の表面酸化膜など金属酸化膜を還元する作用を有するものである。例えば、フラックス機能を有する化合物としては、フェノール性水酸基及び/又はカルボキシル基を有する化合物が好ましい。フェノール性水酸基を有する化合物としては、例えば、フェノール、o-クレゾール、2,6-キシレノール、p-クレゾール、m-クレゾール、o-エチルフェノール、2,4-キシレノール、2,5-キシレノール、m-エチルフェノール、2,3-キシレノール、メシトール、3,5-キシレノール、p-tert-ブチルフェノール、カテコール、p-tert-アミルフェノール、レゾルシノール、p-オクチルフェノール、p-フェニルフェノール、ビスフェノールF、ビスフェノールAF、ビフェノール、ジアリルビスフェノールF、ジアリルビスフェノールA、トリスフェノール、テトラキスフェノールなどのフェノール性水酸基を含有するモノマー類、フェノールノボラック樹脂、o-クレゾールノボラック樹脂、ビスフェノールFノボラック樹脂、ビスフェノールAノボラック樹脂などのフェノール性水酸基を含有する樹脂が挙げられる。
 カルボキシル基を有する化合物としては、例えば、脂肪族酸無水物、脂環式酸無水物、芳香族酸無水物、脂肪族カルボン酸、芳香族カルボン酸などが挙げられる。前記脂肪族酸無水物としては、無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物などが挙げられる。前記脂環式酸無水物としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などが挙げられる。前記芳香族酸無水物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、グリセロールトリストリメリテートなどが挙げられる。
 前記脂肪族カルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、カプロン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アクリル酸、メタクリル酸、クロトン酸、オレイン酸、フマル酸、マレイン酸、シュウ酸、マロン酸、琥珀酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジオン酸、ピメリン酸などが挙げられる。中でも、下記式(1):
   HOOC-(CH-COOH   (1)
(式(1)中、nは1~20の整数である。)
で表される脂肪族カルボン酸が好ましく、アジピン酸、セバシン酸、ドデカンジオン酸がより好ましい。
 芳香族カルボン酸の構造は特に制限されないが、下記式(2)又は(3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
[式中、R~Rは、それぞれ独立して、1価の有機基であり、R~Rの少なくとも一つは水酸基である。]
Figure JPOXMLDOC01-appb-C000002
[式中、R~R20は、それぞれ独立して、1価の有機基であり、R~R20の少なくとも一つは水酸基又はカルボキシル基である。]
 芳香族カルボン酸としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリット酸、トリメリット酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリット酸、メリット酸、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、トルイル酸、ケイ皮酸、サリチル酸、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、ゲンチジン酸(2,5-ジヒドロキシ安息香酸)、2,6-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、没食子酸(3,4,5-トリヒドロキシ安息香酸)、などの安息香酸誘導体;1,4-ジヒドロキシ-2-ナフトエ酸、3,5-ジヒドロキシ-2-ナフトエ酸、3,5-2-ジヒドロキシ-2-ナフトエ酸などのナフトエ酸誘導体;フェノールフタリン;ジフェノール酸などが挙げられる。
 これらの中でも、本発明では、フラックス機能を有するだけでなく、硬化性樹脂の硬化剤として作用する化合物であることが好ましい。すなわち、本発明で用いるフラックス機能を有する化合物としては、金属層及び端子などの金属の表面酸化膜を還元する作用を示し、且つ、硬化性樹脂と反応可能な官能基を有する化合物を用いることが好ましい。該官能基は、硬化性樹脂の種類によって適宜選択する。例えば、硬化性樹脂としてエポキシ樹脂を用いる場合、該官能基は、カルボキシル基、水酸基及びアミノ基などのエポキシ基と反応可能な官能基が好ましい。フラックス機能を有する化合物が硬化剤としても作用することで、金属層及び端子などの金属の表面酸化膜を還元して金属表面の濡れ性を高め、導電性領域の形成を容易にすると共に、導電性領域を形成した後は、硬化性樹脂に付加して樹脂の弾性率又はTgを高めることができる。また、フラックス機能を有する化合物が硬化剤として作用することで、フラックス洗浄が不要となり、フラックス成分が残存することによるイオンマイグレーションの発生を抑制することができるといった利点がある。
 このようなフラックス機能を有する化合物としては、カルボキシル基を少なくとも1つ有していることが好ましい。例えば、硬化性樹脂としてエポキシ樹脂を用いる場合、該化合物としては、脂肪族ジカルボン酸又はカルボキシル基とフェノール性水酸基とを有する化合物などが挙げられる。
 脂肪族ジカルボン酸としては、脂肪族炭化水素基にカルボキシル基が2個結合した化合物が好ましく挙げられる。脂肪族炭化水素基は、飽和又は不飽和の非環式であってもよいし、飽和又は不飽和の環式であってもよい。また、脂肪族炭化水素基が非環式の場合には直鎖状でも分岐状でもよい。
 このような脂肪族ジカルボン酸としては、前記式(1)においてnが1~20の整数である化合物が好ましく挙げられる。前記式(1)中のnが上記範囲内であると、フラックス活性、接着時のアウトガス、導電接続材料が硬化した後の弾性率及びガラス転移温度のバランスが良好なものとなる。特に、導電接続材料の硬化後の弾性率の増加を抑制し、被接着物との接着性を向上させることができることから、nは3以上が好ましい。また、弾性率の低下を抑制し、接続信頼性をさらに向上させることができることから、nは10以下が好ましい。
 前記式(1)で示される脂肪族ジカルボン酸としては、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸などが挙げられる。中でも、アジピン酸、スベリン酸、セバシン酸、ドデンカン二酸が好ましく、セバシン酸が特に好ましい。
 前記カルボキシル基とフェノール性水酸基とを有する化合物としては、サリチル酸、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、ゲンチジン酸(2,5-ジヒドロキシ安息香酸)、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、没食子酸(3,4,5-トリヒドロキシ安息香酸)などの安息香酸誘導体;1,4-ジヒドロキシ-2-ナフトエ酸、3,5-ジヒドロキシ-2-ナフトエ酸などのナフトエ酸誘導体;フェノールフタリン;ジフェノール酸などが挙げられる。中でも、フェノールフタリン、ゲンチジン酸、2,4-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸が好ましく、フェノールフタリン、ゲンチジン酸が特に好ましい。
 フラックス機能を有する化合物は、1種単独で用いても2種以上を併用してもよい。また、いずれの化合物も吸湿しやすく、ボイド発生の原因となるため、フラックス機能を有する化合物を使用前に予め乾燥させておくことが好ましい。
 フラックス機能を有する化合物の含有量は、使用する樹脂組成物の形態に応じて適宜設定することができる。
 例えば、樹脂組成物が液状の場合、フラックス機能を有する化合物の含有量は、硬化性樹脂組成物の全重量に対して、1重量%以上が好ましく、2重量部%以上がより好ましく、3重量%以上が特に好ましい。また、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下がさらに好ましく、25重量%以下が特に好ましい。
 固形状の樹脂組成物の場合には、フラックス機能を有する化合物の含有量は、硬化性樹脂組成物の全重量に対して、1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上が特に好ましい。また、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下がさらに好ましく、25重量%以下が特に好ましい。
 フラックス機能を有する化合物の含有量が上記範囲内であると、金属層及び端子の表面酸化膜を電気的に接合できる程度に除去することができる。さらに、樹脂組成物が硬化性樹脂の場合、硬化時に、樹脂に効率よく付加して樹脂の弾性率又はTgを高めることができる。また、未反応のフラックス機能を有する化合物に起因するイオンマイグレーションの発生を抑制することができる。
 (vii)シランカップリング剤
 本発明で用いるシランカップリング剤としては、エポキシシランカップリング剤、芳香族含有アミノシランカップリング剤などが挙げられる。シランカップリング剤を添加することにより、接合部材と導電接続材料との密着性を高めることができる。シランカップリング剤は1種単独で用いてもよいし、2種以上を併用してもよい。
 シランカップリング剤の含有量は、接合部材や硬化性樹脂などの種類に応じて適宜選択することができる。例えば、シランカップリング剤の含有量は、硬化性樹脂組成物の全重量に対して、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.1重量%以上が特に好ましく、また、2重量%以下が好ましく、1.5重量%以下がより好ましく、1重量%以下が特に好ましい。
 本発明で用いる硬化性樹脂組成物には、本発明の効果を損ねない範囲で、可塑剤、安定剤、粘着付与剤、滑剤、充填剤、帯電防止剤、酸化防止剤及び顔料などを配合してもよい。
 本発明において、前記硬化性樹脂組成物は、上記各成分を混合・分散させることによって調製することができる。各成分の混合方法や分散方法は特に限定されず、従来公知の方法で混合、分散させることができる。
 また、本発明においては、前記各成分を溶媒中で又は無溶媒下で混合して液状の硬化性樹脂組成物を調製してもよい。このとき用いられる溶媒としては、各成分に対して不活性なものであれば特に限定はないが、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジイソブチルケトン(DIBK)、シクロヘキサノン、ジアセトンアルコール(DAA)などのケトン類;ベンゼン、キシレン、トルエンなどの芳香族炭化水素類、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブチルアルコールなどのアルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテートなどのセロソルブ類、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、ニ塩基酸エステル(DBE)、3-エトキシプロピオン酸エチル(EEP)、ジメチルカーボネート(DMC)などが挙げられる。また、溶媒の使用量は、溶媒に混合した成分の固形分濃度が10~60重量%となる量であることが好ましい。
 (b)熱可塑性樹脂組成物
 本発明においては、樹脂組成物として熱可塑性樹脂組成物を用いることもできる。
 本発明で用いる熱可塑性樹脂組成物は、熱可塑性樹脂及び充填剤のほか、必要に応じて、フラックス機能を有する化合物、シランカップリング剤などが含まれる。
 (i)熱可塑性樹脂
 本発明で用いる熱可塑性樹脂としては、例えば、酢酸ビニル系、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、塩化ビニル樹脂、(メタ)アクリル樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シロキサン変性ポリイミド樹脂、ポリブタジエン樹脂、アクリル樹脂、スチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、セルロース樹脂、イソブチレン樹脂、ビニルエーテル樹脂、液晶ポリマー樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリウレタン樹脂、スチレン-ブタジエン-スチレン共重合体、スチレン-エチレン-ブチレン-スチレン共重合体、ポリアセタール樹脂、ポリビニルアセタール樹脂、ブチルゴム、クロロプレンゴム、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-アクリル酸共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリ酢酸ビニル等が挙げられる。熱可塑性樹脂は、単一の重合体でもよく、上記熱可塑樹脂の2種以上の共重合体でもよい。
 熱可塑性樹脂の軟化点は、特に制限されないが、導電接続材料を構成する金属層の融点より10℃以上低いことが好ましく、20℃以上低いことが特に好ましく、30℃以上低いことがより好ましい。
 また、熱可塑性樹脂の分解温度は、特に制限されないが、導電接続材料を構成する金属層の融点よりも10℃以上高いことが好ましく、20℃以上高いことが特に好ましく、30℃以上高いことがより好ましい。
 熱可塑性樹脂の含有量は使用する熱可塑性樹脂組成物の形態に応じて適宜設定することができる。
 例えば、熱可塑性樹脂組成物が液状の場合、熱可塑性樹脂の含有量は、熱可塑性樹脂組成物の全重量に対して、10重量%以上が好ましく、15重量%以上がより好ましく、20重量%以上がさらに好ましく、25重量%以上がさらにより好ましく、30重量%以上がなお好ましく、35重量%以上が特に好ましい。また、100重量%以下が好ましく、95重量%以下がより好ましく、90重量%以下がさらに好ましく、75重量%以下がさらにより好ましく、65重量%以下がなお好ましく、55重量%以下が特に好ましい。
 熱可塑性樹脂組成物が固形状の場合は、熱可塑性樹脂の含有量は、熱可塑性樹脂組成物の全重量に対して、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましく、20重量%以上が特に好ましい。また、90重量%以下が好ましく、85重量%以下がより好ましく、80重量%以下がさらに好ましく、75重量%以下がさらにより好ましく、65重量%以下がなお好ましく、55重量%以下が特に好ましい。
 熱可塑性樹脂の含有量が上記の範囲内であると端子間の電気的接続強度及び機械的接着強度を十分に確保することができる。
 (ii)その他の添加剤
 本発明の熱可塑性樹脂組成物で用いる充填剤、フラックス機能を有する化合物、シランカップリング剤、その他の添加剤は、前記「(a)硬化性樹脂組成物」において説明したものと同じものを用いることができる。各成分の含有量、好ましい化合物及び調製方法も硬化性樹脂組成物で説明したものと同様である。
 本発明においては、樹脂組成物として硬化性樹脂組成物を用いることが好ましい。中でも、樹脂組成物の全重量に対して、エポキシ樹脂10~90重量%、充填剤1~80重量%、硬化剤0.1~50重量%、フィルム形成性樹脂5~50重量%及びフラックス機能を有する化合物1~50重量%を含むものがより好ましい。また、樹脂組成物の全重量に対して、エポキシ樹脂20~80重量%、充填剤10~70重量%、硬化剤0.2~40重量%、フィルム形成性樹脂10~45重量%及びフラックス機能を有する化合物2~40重量%を含むものがさらに好ましい。また、樹脂組成物の全重量に対して、エポキシ樹脂35~55重量%、充填剤20~60重量%、硬化剤0.5~30重量%、フィルム形成性樹脂15~40重量%及びフラックス機能を有する化合物3~25重量%を含むものが特に好ましい。
 本発明の導電接続材料において樹脂層の各々の厚みは、特に制限されないが、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましい。また、樹脂層の厚みは、200μm以下が好ましく、150μm以下がより好ましく、100μm以下が特に好ましい。樹脂層の厚みが前記範囲内にあると、隣接する端子間の間隙に樹脂組成物を十分に充填することができ、樹脂組成物の硬化後、固化後の機械的接着強度及び対向する端子間の電気的接続を十分に確保することができ、接続端子の製造も可能にすることができる。
 本発明の導電接続材料が樹脂層を複数含む場合、各樹脂層の組成は同一でもよいし、用いる樹脂成分の種類や配合処方の違いなどにより異なっていてもよい。樹脂層の溶融粘度や軟化温度などの物性も同一でもよいし異なっていてもよい。例えば液状の樹脂層と固形状の樹脂層とを組み合わせて用いてもよい。
 本発明の樹脂層は、室温から100℃における平均線膨張係数が、3~70ppmであることが好ましい。この場合、冷熱サイクル試験や部品実装時の加熱による熱膨張に起因する、電子部材間を電気的に接続する接続部にかかる応力を低減することができる。
(2)金属層
 本発明において金属層は、金属箔で構成される層である。金属層は平面視で樹脂層の少なくとも一部に形成されていればよく、樹脂層の全面に形成されていてもよい。
 金属層の形状は特に制限されず、一定の形状が繰り返しパターン状に形成されていてもよいし、形状が不規則であってもよい。規則的な形状と不規則な形状とが混在していてもよい。図1は、金属層の形状の一例を示す平面模式図である。樹脂層120の上に様々な形状をもつ金属層110が形成されている。金属層の形状としては、例えば、図1に示されるような点線の抜き模様状(a)、縞模様状(b)、水玉模様状(c)、矩形模様状(d)、チェッカー模様状(e)、額縁状(f)、格子模様状(g)又は多重の額縁状(h)などが挙げられる。これらの形状は一例であり、目的や用途に応じてこれらの形状を組み合わせたり、変形させて用いたりすることができる。
 本発明の一実施態様において、接続しようとする電極が被着体の接続面全体に配置されているようなフルグリッド型の被着体を接続する場合、樹脂層の全面にシート状の金属層を形成することが好ましい。
 また、接続しようとする電極が被着体の接続面の周辺部に配置されるようなペリフェラル型の被着体を接続する場合、金属層を有効に利用する観点、及び、隣接する電極間に金属層を残存させないという観点から、樹脂層の少なくとも一部に繰り返しパターン状の金属層を形成することが好ましい。このとき、金属層の形状は電極のピッチや形態等によって適宜選択することができる。
 本発明に使用する金属層は、フラックス機能を有する化合物の還元作用により除去可能な表面酸化膜を有するものが好ましく、錫(Sn)、鉛(Pb)、銀(Ag)、ビスマス(Bi)、インジウム(In)、亜鉛(Zn)、ニッケル(Ni)、アンチモン(Sb)、鉄(Fe)、アルミニウム(Al)、金(Au)、ゲルマニウム(Ge)及び銅(Cu)からなる群から選択される少なくとも2種以上の金属の合金、又は錫単体からなることが好ましい。
 これらのうち、溶融温度及び機械的物性を考慮すると、金属層は、Sn-Pbの合金、鉛フリー半田であるSn-Biの合金、Sn-Ag-Cuの合金、Sn-Inの合金、Sn-Agの合金などのSnを含む合金からなる半田箔がより好ましい。Sn-Pbの合金を用いる場合、錫の含有率は、30重量%以上100重量%未満が好ましく、35重量%以上100重量%未満がより好ましく、40重量%以上が特に好ましい。また、100重量%未満が好ましい。また、鉛フリー半田の場合の錫の含有率は、15重量%以上100重量%未満が好ましく、20重量%以上100重量%未満がより好ましく、25重量%以上100重量%未満が特に好ましい。例えば、Sn-Pbの合金としては、Sn63-Pb(融点183℃)、Sn-3.0Ag-0.5Cu(融点217℃)、Sn-3.5Ag(融点221℃)、Sn-58Bi(融点139℃)、Sn-9.0Zn(融点199℃)、Sn-3.5Ag-0.5Bi-3.0In(融点193℃)、Au-20Sn(融点280℃)、等が好ましく挙げられる。
 金属層は、接続しようとする電子部材や半導体装置の耐熱性に応じて適宜選択すればよい。例えば、半導体装置における端子間接続においては、半導体装置の部材が熱履歴により損傷するのを防止するため、融点が330℃以下(より好ましくは300℃以下、特に好ましくは280℃以下、さらに好ましくは260℃以下)である金属層を用いることが好ましい。また、端子間接続後の半導体装置の耐熱性を確保するためには、融点が100℃以上(より好ましくは110℃以上、特に好ましくは120℃以上)である金属層を用いることが好ましい。なお、金属層の融点は、示差走査熱量計(DSC)により測定することができる。
 金属層の厚みは、対向する端子間のギャップ、隣接する端子間の離隔距離などに応じて適宜選択することができる。例えば、半導体装置における半導体チップ、基板、半導体ウエハなどの各接続端子間の接続の場合、金属層の厚みは、0.5μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましく、また、100μm以下が好ましく、50μm以下がより好ましく、20μm以下が特に好ましい。金属層の厚みが前記下限未満になると導電部を構成するための金属が不足し、未接続の端子が増加する傾向にある。他方、前記上限を超えると金属が余剰となり、隣接端子間でブリッジを起こし、ショートしやすくなる傾向にある。
 金属層の作製方法としては、例えば、インゴットなどの塊から圧延により作製する方法、樹脂層へ直接蒸着、スパッタ、めっきなどにより金属層を形成する方法が挙げられる。また、繰り返しパターン状の金属層の作製方法としては、例えば、金属層を所定のパターンに打抜く方法、エッチングなどにより所定のパターンを形成する方法、また、遮蔽板やマスクなどを使用することにより蒸着、スパッタ、めっきなどで形成する方法が挙げられる。
 金属層の含有量は、導電接続材料の全重量に対して、5重量%以上が好ましく、20重量%以上がより好ましく、30重量%以上が特に好ましい。また、100重量%未満が好ましく、80重量%以下がより好ましく、70重量%以下が特に好ましい。金属層の含有量が上記下限未満になると、導電部を構成するための金属が不足し、未接続の端子が増加する場合がある。他方、金属層の含有量が上記上限を超えると、金属が余剰となり、隣接端子間でブリッジを起こしやすくなる。
 あるいは、金属層の含有量を導電接続材料に対する体積比率で定義してもよい。例えば、金属層の含有量は、導電接続材料に対して1体積%以上が好ましく、5体積%以上がより好ましく、10体積%以上が特に好ましい。また、90体積%以下が好ましく、80体積%以下がより好ましく、70体積%以下が特に好ましい。金属層の含有量が上記下限未満になると、導電部を構成するための金属が不足し、未接続の端子が増加する場合がある。他方、金属層の含有量が上記上限を超えると金属が余剰となり、隣接端子間でブリッジを起こしやすくなる。
 本発明において導電接続材料の形態は、樹脂組成物の形態などに応じて適宜選択することができる。例えば、樹脂組成物が液状の場合は、金属層の両面に樹脂組成物を塗布したもの、ポリエステルシート等の剥離基材上に樹脂組成物を塗布し、所定温度で半硬化(Bステージ化)等の目的で乾燥、製膜させた後に金属層を張り合わせてフィルム状にしたもの等を導電接続材料として供することができる。樹脂組成物が固形状の場合は、有機溶剤に溶解した樹脂組成物のワニスをポリエステルシート等の剥離基材上に塗布し、所定の温度で乾燥させた後に金属層を張り合わせ、又は、蒸着などの手法を使いフィルム状に形成したものを導電接続材料として供することができる。
 また、本発明の導電接続材料及びこれに用いられる金属層は、端子との接触を高めるためにエンボス加工を施したものを用いることもできる。
 本発明の導電接続材料の厚みは、特に制限されないが、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましく、また、200μm以下が好ましく、150μm以下がより好ましく、100μm以下が特に好ましい。導電接続材料の厚みが前記範囲内にあると隣接する端子間の間隙に樹脂組成物を十分に充填することができる。また、樹脂成分の硬化後又は固化後の機械的接着強度及び対向する端子間の電気的接続を十分に確保することができる。また、目的や用途に応じた接続端子の製造も可能にすることができる。
 次に、導電接続材料の製造方法について説明する。
 本発明で用いる樹脂組成物が25℃で液状の場合、例えば、金属層を液状の樹脂組成物に浸漬させ、金属層の両面に液状の樹脂組成物を付着させて、本発明の導電接続材料を製造することができる。樹脂組成物の厚み制御が必要な場合は、液状の樹脂組成物に浸漬させた金属層を一定の間隙を有するバーコーターを通過させる方法や液状の樹脂組成物をスプレーコーター等により吹き付ける方法により作製することができる。
 また、本発明で用いる樹脂組成物が25℃でフィルム状の場合は、例えば、次のようにして導電接続材料を製造することができる。まず、有機溶剤に溶解した樹脂組成物のワニスをポリエステルシート等の剥離基材上に塗布し、所定の温度で乾燥させ製膜させてフィルム状の樹脂組成物を作製する。次に、剥離基材上に製膜させた樹脂組成物を2枚準備し金属層を挟んで熱ロールでラミネートすることで、金属層の上下に樹脂層を配置した、樹脂層/金属層/樹脂層からなる3層の導電接続材料を作製することができる。また、上述のラミネート方式により、金属層の片面に樹脂層を配置することで樹脂層/金属層からなる2層の導電接続材料を作製することができる。
 また、巻重状の金属層を使用する場合は、金属層をベース基材として、金属層の上下又は片側に前記フィルム状の樹脂組成物を熱ロールでラミネートすることで、巻重状の導電接続材料を得ることもできる。さらに、巻重状の金属層を使用する場合、金属層の上下又は片側に、ワニス状の樹脂組成物を直接塗布し、溶剤を揮散させることにより巻重状の導電接続材料を作製することができる。
 パターン状の金属層を使用して導電接続材料を作製する場合、剥離基材上に金属層を配置し、金属層側から金型で金属層をハーフカットし、余分な金属層を除去することによりパターン状の金属層を作製し、前記フィルム状の樹脂組成物を熱ロールでラミネートすればよい。パターン状の金属層の両面に樹脂層を設ける場合は、前記剥離基材を剥がし、樹脂層が形成された面とは反対側のパターン状の金属層の面に、フィルム状の樹脂組成物をさらにラミネートすればよい。
 なお、導電接続材料の製造方法は上記方法に制限されない。導電接続材料の製造方法は、目的や用途に応じて当業者が適宜選択することができる。
 2.第1の電子部品の製造方法
 次に、本発明における第1の電子部品の製造方法について説明する。
 本発明における第1の電子部品の製造方法は、前記導電接続材料を用いて端子間を接続する方法にかかるものであり、導電接続材料を、複数の端子を内側に向けて対向する二つの電子部材間に配置し、二つの電子部材がそれぞれ有する複数の端子に当接させる配置工程と、前記導電接続材料を加熱して、複数の端子上に形成された導電部を介して二つの電子部材がそれぞれ有する複数の端子を互いに接続する加熱工程と、前記樹脂層を硬化又は固化する硬化/固化工程と、を含む。本発明における第1の電子部品の製造方法は、例えば、半導体ウエハ、半導体チップ、リジッド基板、フレキシブル基板、その他の電子部材に形成されている端子同士を接続する際などに用いることができる。
 本発明における第1の電子部品の製造方法は、前記導電接続材料の樹脂組成物が硬化性樹脂組成物である場合と、熱可塑性樹脂組成物である場合とで接続方法の工程が若干異なる。以下、前記導電接続材料の樹脂層が硬化性樹脂を有する場合を第1実施態様とし、熱可塑性樹脂を有する場合を第2実施態様として、それぞれの態様ごとに説明する。
(1)第1実施態様
 本発明の第1実施態様における第1の電子部品の製造方法において、電子部材を互いに接続する工程は、金属層の融点以上であって、かつ樹脂層の硬化が完了しない温度で導電接続材料を加熱することにより行われ、樹脂層を硬化または固化する工程は、樹脂層の硬化が完了する温度で導電接続材料を加熱することにより行われる。
 この製造方法によれば、加熱溶融した金属層を選択的に端子間で凝集させて導電性領域を形成し、その周囲に硬化性樹脂組成物による絶縁性領域を形成することができる。その結果、隣接する端子間の絶縁性を確保してリーク電流を防ぐことができるので、端子間の接続の接続信頼性を高めることができる。また、微細な配線回路においても多数の端子間の電気的接続を一括で実施することが可能となり、複数の端子を有する電子部材間の接続を容易にすることができる。さらに硬化性樹脂組成物を硬化させることによって導電性領域又は絶縁性領域の機械的強度を高めることができる。
 以下、図面を参照しながら、本発明の第1実施態様に係る第1の電子部品の製造方法の好適な実施形態について詳細に説明するが、本発明の接続方法はこれらの図面に限定されるものではない。
 (a)配置工程
 先ず、図2に示すように、複数の端子11が設けられた基板10と、複数の端子21が設けられた基板20とを、複数の端子11と複数の端子21とが対向するように位置あわせする。そして、これらの端子間に、金属層110と、金属層110の両面に設けられた硬化性樹脂組成物からなる樹脂層120と、を備える導電接続材料30を配置する。この時、導電接続材料30はロールラミネータ又はプレス等の装置を使用し、図4に示すように、あらかじめ基板10又は基板20の片側、あるいは、基板10及び基板20の双方に熱圧着されていてもよい。また、端子11および端子21の表面は、電気的な接続を良好にするために、必要により、洗浄、研磨、めっき及び表面活性化などの処理を施してもよい。そして、導電接続材料30を、複数の端子11および複数の端子21へ当接させる。
 (b)加熱工程
 加熱工程では、前記配置工程において端子間に配置した導電接続材料30を、金属層110の融点以上で加熱する。加熱温度は、金属層110の融点以上であればよく、例えば加熱時間を短くするなど、加熱時間を調整することによって、金属層110が硬化性樹脂中を移動できる範囲すなわち「硬化性樹脂組成物からなる樹脂層120の硬化が完了しない」範囲であれば、その上限は特に制限されない。加熱温度は、金属層110の融点より5℃以上高い温度が好ましく、10℃以上高い温度がより好ましく、20℃以上高い温度がさらに好ましく、30℃以上高い温度が特に好ましい。
 加熱温度は、使用する金属層及び硬化性樹脂組成物の組成などによって適宜選択することができるが、100℃以上が好ましく、130℃以上がより好ましく、140℃以上が特に好ましく、150℃以上が最も好ましい。接続しようとする基板などの熱劣化を防止するためには、加熱温度は260℃以下が好ましく、250℃以下がより好ましく、240℃以下が特に好ましい。
 このような温度で導電接続材料30を加熱すると、金属層110が溶融し、溶融した金属層110が硬化性樹脂組成物からなる樹脂層120中を移動できるようになる。溶融した金属層110は、その濡れ性によって端子11および21上へ凝集することとなる。これにより、図3に示すように、前記端子間には導電部130が形成され、端子11と端子21とが電気的に接続される。ここで、端子上へ凝集するとは、金属層110の平面視における面積がもとの面積よりも拡大または縮小することを言うのではなく、端子11と端子21とを接続するための良好な形状となるよう、金属層110が端子11および21上へ移動することを言う。よって、金属層110の平面視における面積が、縮小する場合や拡大する場合を含む。他方、導電部130の周囲には硬化性樹脂組成物が充填されて絶縁性領域140が形成される。その結果、隣接する端子間の絶縁性が確保され、隣接する端子間のショートを防止することが可能となる。すなわち、導電接続材料30は、複数の端子11および21へ当接され、加熱されることにより、異方導電性を有する構造をとることとなる。
 硬化性樹脂組成物がフラックス機能を有する化合物を含む場合、硬化性樹脂組成物に含まれるフラックス機能を有する化合物の還元作用により、金属層110の表面酸化膜が除去されるため、金属層110は濡れ性が高められた状態であり、金属結合が促されて対向する端子間に凝集しやすくなる。他方、フラックス機能を有する化合物の還元作用により端子11及び21の表面酸化膜も除去されて濡れ性が高められているため、金属層110との金属結合が容易になる。
 本発明における第1の電子部品の製造方法においては、対向する端子間の距離を近づけるように加圧して加熱してもよい。例えば、図2中の基板10及び20が対向する方向に公知の熱圧着装置などの手段を用いて加熱及び加圧することにより、対向する各端子間の距離を一定に制御することができ、対向する端子間の電気的な接続信頼性を高めることが可能となる。
 さらに、加圧又は加熱する際に超音波や電場などを加えたり、レーザーや電磁誘導などの特殊加熱を適用したりしてもよい。
 (c)硬化工程
 本発明における第1の電子部品の製造方法においては、前記加熱工程で導電部130と絶縁性領域140とを形成した後、硬化性樹脂組成物を硬化させて絶縁性領域140を固定する。これにより、前記端子間の電気的信頼性及び機械的接続強度を十分に確保することができる。特に本発明における第1の電子部品の製造方法においては、高絶縁抵抗値を有する硬化性樹脂組成物を使用しているため、絶縁性領域の絶縁性をより十分に確保することができる。
 硬化性樹脂組成物の硬化は、導電接続材料30を加熱することなどによって実施することができる。導電接続材料30の硬化温度は、硬化性樹脂組成物の組成に応じて適宜設定することができるが、前記加熱工程での加熱温度より少なくとも5℃低い温度であることが好ましく、少なくとも10℃低い温度であることが特に好ましい。具体的には、100℃以上であることが好ましく、120℃以上であることがより好ましく、130℃以上であることが特に好ましく、150℃以上であることが最も好ましい。また、300℃以下であることが好ましく、260℃以下であることがより好ましく、250℃以下であることが特に好ましく、240℃以下であることが最も好ましい。硬化温度が前記範囲内にあると、導電接続材料30が熱分解せず、硬化性樹脂組成物を十分に硬化させることができる。
(2)第2実施態様
 次に、本発明の第2実施態様における第1の電子部品の製造方法について説明する。本発明の第2実施態様における第1の電子部品の製造方法において、電子部材を互いに接続する工程は、金属層の融点以上であって、かつ樹脂層が軟化する温度で導電接続材料を加熱することにより行われ、樹脂層を硬化または固化する工程は、樹脂層が固化する温度まで導電接続材料を冷却することにより行われる。
 (a)配置工程
 熱可塑性樹脂組成物と金属層110とを含む導電接続材料30を使用した場合も、前記硬化性樹脂組成物と金属層110とを含む導電接続材料30を使用した場合と同様に導電接続材料30を配置することができる。
 (b)加熱工程
 加熱工程は、特に制限されないが、前記配置工程において端子間に配置した導電接続材料30を、金属層110の融点以上で加熱する。加熱温度は、金属層の融点より5℃以上高い温度が好ましく、10℃以上高い温度がより好ましく、20℃以上高い温度がさらに好ましく、30℃以上高い温度が特に好ましい。加熱温度は、金属層110の融点以上であり、熱可塑性樹脂組成物からなる樹脂層120が軟化して、金属層110が熱可塑性樹脂からなる樹脂層120中を移動できる範囲すなわち「熱可塑性樹脂組成物からなる樹脂層120が軟化する」範囲であれば、その上限は特に制限されない。
 加熱温度は、使用する金属層及び熱可塑性樹脂組成物の組成などによって適宜選択することができる。例えば、硬化性樹脂組成物と金属層とを含む導電接続材料と同様の加熱温度で加熱することができる。
 上記の温度で前記導電接続材料30を加熱すると、金属層110が溶融し、溶融した金属層110が熱可塑性樹脂組成物からなる樹脂層120中を移動できるようになる。溶融した金属層110は、その濡れ性によって、端子11および21上へ凝集することとなる。これにより、図3に示すように、前記端子間には導電部130が形成され、端子11と端子21とが電気的に接続される。他方、導電部130の周囲には熱可塑樹脂組成物が充填されて絶縁性領域140が形成される。その結果、隣接する端子間の絶縁性が確保され、隣接する端子間のショートを防止することが可能となる。すなわち、導電接続材料30は、複数の端子11および21へ当接され、加熱されることにより、異方導電性を有する構造をとることとなる。
 熱可塑性樹脂組成物がフラックス機能を有する化合物を含む場合、熱可塑性樹脂組成物に含まれるフラックス機能を有する化合物の還元作用により、金属層110の表面酸化膜は除去されるため、金属層110は濡れ性が高められた状態であり、金属結合が促されて対向する端子間に凝集しやすくなる。他方、フラックス機能を有する化合物の還元作用により端子11及び21の表面酸化膜も除去されて濡れ性が高められているため、金属層110との金属結合が容易になる。
 (c)固化工程
 本発明における第1の電子部品の製造方法においては、前記加熱工程で導電部130と絶縁性領域140とを形成した後、熱可塑性樹脂組成物を固化させて絶縁性領域140領域を固定する。これにより、前記端子間の電気的信頼性及び機械的接続強度を十分に確保することができる。
 熱可塑性樹脂組成物の固化は、前記加熱工程で加熱溶融した導電接続材料30を冷却・固化することによって実施することができる。導電接続材料30の冷却・固化は、熱可塑性樹脂組成物の組成に応じて適宜設定することができるものであり、特に制限されないが、自然冷却による方法でもよく、また、冷気を吹きつけるなどの方法でもよい。
 前記熱可塑性樹脂組成物の固化温度は、特に制限されないが、金属層110の融点より低いことが好ましい。より具体的には、前記熱可塑性樹脂組成物の固化温度は、金属層110の融点より10℃以上低いことが好ましく、20℃以上低いことが特に好ましい。また、前記熱可塑性樹脂組成物の固化温度は、50℃以上であることが好ましく、60℃以上であることが特に好ましく、100℃以上であることがさらに好ましい。前記熱可塑性樹脂組成物の固化温度が前記範囲内にあると、導電部130を確実に形成することができ、また、絶縁性領域140が所望の耐熱性を有することができる。このため、隣接する端子間の絶縁性が確保され、隣接する端子間のショートをより確実に防止することができる。
 本発明における第1の電子部品の製造方法では、樹脂層と金属層とからなる導電接続材料を用いている。このため、導電接続材料を加熱することで、金属層を選択的に対向する端子間に凝集させることができ、対向する端子間を電気的に接続するとともに、隣接する端子間の絶縁性を確保することができる。さらに、半導体装置などの微細な配線回路において多数の端子間を一括で導通させることが可能であり、信頼性に優れた端子間接続を容易に実施することができる。
 3.第2の電子部品の製造方法
 次に、本発明における第2の電子部品の製造方法について説明する。
 本発明における第2の電子部品の製造方法は、導電接続材料を複数の端子上に当接する配置工程と、導電接続材料を加熱して、複数の端子上に導電部を形成する加熱工程と、樹脂層を硬化または固化する硬化/固化工程と、を備えている。第2の電子部品の製造方法は、例えば前記導電接続材料を用いて電子部材の電極上に接続端子を製造する方法にかかるものである。この場合、上記端子は、例えば電極である。また、上記導電部は、例えば接続端子である。本発明における第2の電子部品の製造方法は、例えば、半導体ウエハ、半導体チップ、リジッド基板、フレキシブル基板、その他の電子部品の電極上に接続端子を製造する際に用いることができる。
 本発明における第2の電子部品の製造方法は、前記導電接続材料の樹脂組成物が硬化性樹脂組成物である場合と、熱可塑性樹脂組成物である場合とで接続端子の製造工程が若干異なる。以下、前記導電接続材料の樹脂組成物が硬化性樹脂組成物である場合を第1実施態様とし、熱可塑性樹脂組成物である場合を第2実施態様として、それぞれの態様ごとに説明する。
(1)第1実施態様
 本発明の第1実施態様における第2の電子部品の製造方法において、導電部を形成する工程は、金属層の融点以上であって、かつ樹脂層の硬化が完了しない温度で導電接続材料を加熱することにより行われ、樹脂層を硬化または固化する工程は、樹脂層の硬化が完了する温度で導電接続材料を加熱することにより行われる。
 この第2の電子部品の製造方法では、加熱溶融した金属層を選択的に基板上の電極に凝集させて接続端子を形成し、その周囲に硬化性樹脂組成物による絶縁性領域を形成することができる。その結果、接続端子の周囲を硬化性樹脂組成物で被覆することができるため、導電性領域が固定される。また、絶縁性領域によって隣接する接続端子間の絶縁性が確保されるので、接続信頼性を高めることができる。この方法によれば、微細な配線回路においても多数の接続端子を一括で製造することが可能となり、電極上への接続端子の形成が容易となる。
 以下、図面を参照しながら、本発明の第1実施態様における第2の電子部品の製造方法について、さらに詳細に説明する。但し、本発明における第2の電子部品の製造方法は、これらの図面に限定されるものではない。
 (a)配置工程
 先ず、図5に示すように、硬化性樹脂組成物からなる樹脂層120と金属層110とを有する導電接続材料50を、複数の電極41が設けられた基板40上に配置する。この時、パターン状の金属層110を使用した場合は、導電接続材料50と基板40上の電極41との位置合わせが必要となる。なお、図5では、硬化性樹脂組成物からなる樹脂層120が金属層110の片面に形成されたものを使用しているが、硬化性樹脂組成物からなる樹脂層120は、金属層110の両面に形成されていてもよい。また、図5では、硬化性樹脂組成物からなる樹脂層120が電極41と対向するように配置されているが、金属箔110が電極41と対向するように配置されていてもよい。
 図5に示すように、導電接続材料50は、ロールラミネータ、プレス等の装置を使用し、基板40に熱圧着されていてもよい。なお、図6では、硬化性樹脂組成物からなる樹脂層120が電極41を被覆しているが、熱硬化樹脂組成物からなる樹脂層120の厚みは、電極41の厚みより薄くてもよく、電極41の厚みより厚くてもよく、目的及び用途等に応じて適宜調整することができる。また、前記電極41の表面は、電気的な接続を良好にするために、あるいはまた、金属層110との接合性を向上させるために、必要により、洗浄、研磨、めっき及び表面活性化などの処理を施してもよい。
 (b)加熱工程
 加熱工程では、前記配置工程において基板40上の電極41上に配置した導電接続材料50を、金属層110の融点以上であり、且つ、前記硬化性樹脂組成物の硬化が完了しない温度で加熱する。これにより、図7に示すように、電極41上に接続端子150を形成することができる。他方、前記接続端子150の周囲には硬化性樹脂組成物が充填されて絶縁性領域140が形成される。その結果、隣接する接続端子150間の絶縁性が確保され、隣接する接続端子150間のショートを防止することができる。
 硬化性樹脂組成物の加熱温度及び加圧条件は、第1の電子部品の製造方法において、前記硬化性樹脂組成物と金属層とを有する導電接続材料を使用して端子間接続を行った場合と同様の条件で行うことができる。
 (c)硬化工程
 硬化工程では、前記加熱工程で接続端子150と絶縁性領域140とを形成した後、硬化性樹脂組成物を硬化させて、絶縁性領域140を固定する。これにより、基板40上の電極41と接続端子150の接合を補強することができる。特に本発明の第1実施態様では、高絶縁抵抗値を有する硬化性樹脂組成物を使用しているため、絶縁性領域の絶縁性をより十分に確保することができる。特に制限されないが、この硬化工程は、接続端子150を形成した後、基板60を、別の電子部品又は基板等に搭載し、接続した後に行なうことが好ましい。
 硬化工程における導電接続材料の加熱温度は、第1の電子部品の製造方法において、前記硬化性樹脂組成物と金属層とを有する導電接続材料を使用して端子間接続を行った場合と同様の条件で行うことができる。
(2)第2実施態様
 次に、本発明の第2実施態様における第2の電子部品の製造方法について説明する。
 本発明の第2実施態様における第2の電子部品の製造方法において、導電部を形成する工程は、金属層の融点以上であって、かつ樹脂層が軟化する温度で導電接続材料を加熱することにより行われ、樹脂層を硬化または固化する工程は、樹脂層が固化する温度まで導電接続材料を冷却することにより行われる。
 第2実施態様の製造方法では、加熱溶融した金属層を選択的に基板上の電極に凝集させて接続端子を形成し、その周囲に熱可塑性樹脂組成物による絶縁性領域を形成することができる。その結果、接続端子の周囲を熱可塑性樹脂組成物で被覆することができるため、導電性領域が固定される。また、絶縁性領域によって隣接する接続端子間の絶縁性が確保されるので、接続信頼性を高めることができる。この方法によれば、微細な配線回路においても多数の接続端子を一括で製造することが可能となる。
 (a)配置工程
 熱可塑性樹脂組成物と金属層とを含む導電接続材料を使用した場合も、前記第1実施態様の硬化性樹脂組成物と金属層とを含む導電接続材料を使用した場合と同様に導電接続材料を電極が設けられた基板上に配置することができる。
 (b)加熱工程
 加熱工程では、前記配置工程において基板に設けられた電極上に配置した導電接続材料50を、金属層110の融点以上であり、且つ、前記熱可塑性樹脂組成物からなる樹脂層120が軟化する温度で加熱する。これにより、第1実施態様と同様に、電極41上に接続端子150を製造することができる。他方、接続端子150の周囲には熱可塑性樹脂組成物が充填されて絶縁性領域140が形成される。その結果、隣接する接続端子150間の絶縁性が確保され、隣接する接続端子150間のショートを防止することができる。
 なお、熱可塑性樹脂組成物の加熱温度及び加圧条件は、第1の電子部品の製造方法において、前記熱可塑性樹脂組成物と金属箔とを有する導電接続材料を使用して端子間接続を行った場合と同様の条件で行うことができる。
 (c)固化工程
 固化工程では、前記加熱工程で接続端子150と絶縁性領域140とを形成した後、熱可塑性樹脂組成物を冷却固化させて、絶縁性領域140を固定することにより、電極41と接続端子150との接合を補強することができる。
 なお、熱可塑性樹脂組成物の冷却方法及び好ましい固化温度については、第1の電子部品の製造方法において、前記熱可塑性樹脂組成物と金属層とを有する導電接続材料を使用して端子間接続を行った場合と同様である。
 上述したように、本発明における第2の電子部品の製造方法では、本発明の導電接続材料を用いることにより金属層を選択的に接続端子形成部位に凝集させることができるため、接続端子を簡便な方法で製造することができる。また、本発明の第2の電子部品の製造方法によれば、半導体装置などの微細な配線回路において複数の接続端子を一括で製造することができる。さらに、複数の接続端子の周囲に絶縁性領域を形成することができるので、接続端子が固定されるとともに、隣接する接続端子間の絶縁性を確保することができる。これにより、接続信頼性に優れた接続端子を容易に製造することができる。
 4.導電接続材料付き電子部材および電子部品
 本発明は、電子部材のうち複数の端子が形成された電気的接続面に、本発明の導電接続材料を接着してなる導電接続材料付き電子部材をも包含する。本発明の導電接続材料付き電子部材において、導電接続材料の電子部材の電気的接続面との接着面は樹脂層であることが好ましい。該樹脂層は、電子部材の電気的接続面に直接接着されていてもよいし、接着剤層を介して接着されていてもよい。本発明の導電接続材料付き電子部材を互いに貼り合わせ、あるいは、本発明の導電接続材料付き電子部材を他の電子部材の電気的接続面と貼り合わせて熱圧着させることで、電子部材間を電気的に接続することができる。
 本発明では、このようにして得られた本発明の導電接続材料を用いて電子部材間が電気的に接続されてなる半導体ウエハ、半導体チップ、リジッド基板及びフレキシブル基板、その他の電子部品をも包含する。
 以下、本発明を実施例に基づいて説明するが、本発明は、下記の実施例に制限されるものではない。
 [実施例1~7]
(1)硬化性樹脂組成物の調製
 表1に示した各成分を、メチルエチルケトン(MEK)に溶解して樹脂固形分40%の樹脂組成物のワニスを得た。得られたワニスを、コンマコーターを用いて、ポリエステルシートに塗布し、90℃で5分間乾燥させてフィルム状の厚さ30μmの硬化性樹脂組成物を得た。
(2)樹脂組成物の平均線膨張係数測定
 樹脂組成物の平均線膨張係数は、(1)で得られた硬化性樹脂組成物を180℃、1時間の条件で硬化し、得られたサンプルを用い、熱機械分析装置(TMA;セイコーインスツルメンツ(株)社製、SS6100)で、引っ張り法、昇温速度10℃/min、荷重50mNの条件で測定し、室温から100℃までの線膨張係数の平均値を測定値とした。
(3)導電接続材料の製造
 得られたフィルム状の硬化性樹脂組成物を60℃、2kgf/cm、0.3m/minの条件で、表1に示した半田箔の両面にラミネートし、厚み70μmの導電接続材料を製造した。
(4)端子間接続
 次に、得られた導電接続材料を用いて基板の端子間接続を行った。基板として、FR-4基材(厚み0.1mm)と回路層(銅回路、厚み12μm)からなり、銅回路上にNi/Auメッキ(厚み3μm)を施して形成される接続端子(端子径100μm、隣接する端子間の中心距離200μm)を有するものを2枚準備し、接続に使用した。このような接続端子を有する基板間に、前記導電接続材料を配置し、熱圧着装置((株)筑波メカニクス製「TMV1-200ASB」)を用いて230℃、0.5MPa、120秒の条件で熱圧着(基板間ギャップ50μm)を施し、端子間を接続した。その後、180℃で1時間加熱して硬化性樹脂組成物を硬化させて、積層体を得た。
 [比較例1]
 実施例1と同様にして充填剤が含まれていない硬化性樹脂組成物を調製し、得られた厚さ30μm硬化性樹脂組成物を表1に示した半田箔の両面にラミネートして厚み70μmの導電接続材料を製造した。さらに、実施例1と同様の方法(前記「(4)端子間接続」記載の方法)で、得られた導電接続材料を用いて基板の端子間接続を行った。
 実施例及び比較例で得られた積層体において対向する端子間の接続抵抗、対向する端子間の導通路形成性及び冷熱サイクル試験後の導通抵抗を後述する方法により評価した。
[1]対向する端子間の接続抵抗
 接続抵抗は、実施例および比較例で得られた積層体において対向する端子間の接続抵抗を4端子法(抵抗計:岩崎通信機(株)製「デジタルマルチメータVOA7510」、測定プローブ:日置電機(株)製「ピン型リード9771」)により12点測定した。その平均値が30mΩ未満の場合を「A」、30mΩ以上の場合を「B」と判定した。
[2]対向する端子間の導通路形成性
 実施例および比較例で得られた積層体において対向する端子10組について、その端子間の断面を走査型電子顕微鏡(SEM)(日本電子(株)製「JSM-7401F」)で観察し、10組全てにおいて半田により円柱状の導通路が形成されている場合を「A」、1組でも導通路が形成されていない端子が存在する場合を「B」、隣接している端子とショート接触している場合を「C」と判定した。
[3]冷熱サイクル試験後の接続抵抗
 実施例および比較例で得られた積層体において対向する端子間の接続抵抗を4端子法(抵抗計:岩崎通信機(株)製「デジタルマルチメータVOA7510」、測定プローブ:日置電機(株)製「ピン型リード9771」)により12点測定した。次に、積層体を-40℃、10分⇔85℃、10分で1サイクルの冷熱サイクル試験を1000サイクル、1500サイクル実施し、上述と同様の方法で端子間の接続抵抗を測定した。
 外観に異常がなく、全ての接続抵抗の初期値からの変化率が、±5%未満である場合を「A」。外観に異常がなく、接続抵抗の初期値からの変化率が、±5%以上で±10%未満である場合を「B」。冷熱サイクル試験後外観に膨れ、剥がれ等の異常がある、または接続抵抗の初期値からの変化率が±10%以上である場合を「C」と判定した。
[4]吸水率
 実施例および比較例で得られた導電接続材料が備える樹脂層の吸水率WA[%]を、以下のようにして求めた。まず、製造された導電接続材料が備える樹脂層を、180℃×1時間の条件で硬化を兼ねた乾燥を行う。そして、その直後における樹脂層の重さW[g]を測定した。次に、導電接続材料を、温度85℃、湿度85%RHの雰囲気下に24時間配置した後の、樹脂層の重さW[g]を測定した。そして、測定されたW[g]およびW[g]から、下記式を用いて吸水率WA[%]を求めた。
 WA[%]=(W-W)/W×100
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1における樹脂層の成分及び金属層は以下に示したものを用いた。
エポキシ樹脂:ビスフェノールA型エポキシ樹脂、大日本インキ化学工業(株)製「EPICLON-840S」、エポキシ当量185g/eq
硬化剤:フェノールノボラック、住友ベークライト(株)製「PR-53647」
フィルム形成性樹脂:変性ビフェノール型フェノキシ樹脂、ジャパンエポキシレジン(株)製「YX-6954」、重量平均分子量39,000
フラックス機能を有する化合物1:セバシン酸、東京化成工業(株)製「セバシン酸」
フラックス機能を有する化合物2:フェノールフタリン、東京化成工業(株)製「フェノールフタリン」
シランカップリング剤:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、信越化学工業(株)製「KBM-303」
イミダゾール:2-フェニル-4-メチルイミダゾール、四国化成工業(株)製「キュアゾール2P4MZ」
充填剤1:シリカ アドマテック社製、SE2050、平均粒径0.5μm、比重2.2
充填剤2:アルミナ 昭和電工製、AS-50、平均粒径9μm、比重3.8
金属層A:Sn/Pb=63/37(融点:183℃)、厚さ10μm
金属層B:Sn/Ag/Cu=96.5/3.0/0.5(融点:217℃)、厚さ10μm
 表1から明らかなように、樹脂成分と充填剤を含有する樹脂層を導電接続材料の樹脂層として用いることで、硬化後の樹脂層の線膨張係数が低下し、また、冷熱サイクル試験や部品実装時の加熱による熱膨張に起因する接続部の応力を低減することができ、電子部品の信頼性を高めることができることが示された。さらに、充填剤を含有する樹脂層を導電接続材料の樹脂層として用いることで、硬化後の樹脂層の吸湿、吸水量が低減でき、電子部品の吸湿耐熱性が向上することができることも示された。
 この出願は、2009年12月24日に出願された日本出願特願2009-292706を基礎とする優先権を主張し、その開示の総てをここに取り込む。
 本発明の導電接続材料は、電子部品において電子部材間を電気的に接続したり、基板上に接続端子を製造したりする際に好適に用いることができる。本発明の導電接続材料を用いることで、電子部材間の良好な電気的接続と高い絶縁信頼性とを両立させることができる。本発明の導電接続材料を用いることで微細な配線回路における端子間接続も可能である。本発明の導電接続材料を用いることで、電子機器の高機能化及び小型化の要求にも対応することが可能である。

Claims (22)

  1.  基板および前記基板上に設けられた複数の端子を有する電子部材の、前記複数の端子上に導電部を形成するために用いられる導電接続材料であって、
     金属層と、
     樹脂成分と充填剤とを有する樹脂層と、
     を備え、
     前記複数の端子上に当接し、加熱することによって、前記金属層が各端子上に凝集し、前記複数の端子上に前記導電部を形成するように構成された導電接続材料。
  2.  請求項1に記載の導電接続材料において、
     前記複数の端子上に当接し、加熱することによって、前記金属層が分離して各端子上に凝集するように構成された導電接続材料。
  3.  請求項1または2に記載の導電接続材料において、
     前記金属層のうち、前記樹脂層が設けられている面とは反対側の面に、他の樹脂層が設けられている導電接続材料。
  4.  請求項1ないし3いずれか1項に記載の導電接続材料において、
     前記金属層は、半田または錫によって構成されている導電接続材料。
  5.  請求項1ないし4いずれか1項に記載の導電接続材料において、
     前記充填剤の粒径が、10nm~50μmである導電接続材料。
  6.  請求項1ないし5いずれか1項に記載の導電接続材料において、
     前記充填剤の含有量が、前記樹脂層の全重量に対し1~80重量%である導電接続材料。
  7.  請求項1ないし6いずれか1項に記載の導電接続材料において、
     前記充填剤の体積をFv、前記金属層の体積をMvとしたとき、Fv/Mvが0.01~10である導電接続材料。
  8.  請求項1ないし7いずれか1項に記載の導電接続材料において、
     前記樹脂層の室温から100℃における平均線膨張係数は、3~70ppmである導電接続材料。
  9.  請求項1ないし8いずれか1項に記載の導電接続材料において、
     前記樹脂層は、フラックス機能を有する化合物を含む導電接続材料。
  10.  請求項9に記載の導電接続材料において、
    前記フラックス機能を有する化合物は、フェノール性水酸基及び/またはカルボキシル基を有する導電接続材料。
  11.  請求項9または10に記載の導電接続材料において、
     前記フラックス機能を有する化合物は、下記一般式(1)で示される化合物を含む導電接続材料。
      HOOC-(CH-COOH・・・・・(1)
    [式中、nは、1~20の整数である。]
  12.  請求項9または10に記載の導電接続材料において、
     前記フラックス機能を有する化合物は、下記一般式(2)及び/又は(3)で示される化合物を含む導電接続材料。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R~Rは、それぞれ独立して、1価の有機基であり、R~Rの少なくとも一つは水酸基である。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、R~R20は、それぞれ独立して、1価の有機基であり、R~R20の少なくとも一つは水酸基又はカルボキシル基である。]
  13.  請求項1ないし12いずれか1項に記載の導電接続材料において、
     前記金属層の融点が100℃~330℃である導電接続材料。
  14.  請求項1ないし13いずれか1項に記載の導電接続材料において、
     前記端子は、電極であり、
     前記導電部は、接続端子である導電接続材料。
  15.  請求項1ないし13いずれか1項に記載の導電接続材料を、前記複数の端子を内側に向けて対向する二つの前記電子部材間に配置し、前記二つの電子部材がそれぞれ有する前記複数の端子に当接させる工程と、
     前記導電接続材料を加熱して、前記複数の端子上に形成された前記導電部を介して前記二つの電子部材がそれぞれ有する前記複数の端子を互いに接続する工程と、
     前記樹脂層を硬化または固化する工程と、
     を備える電子部品の製造方法。
  16.  請求項15に記載の電子部品の製造方法であって、
     前記樹脂層は、熱硬化性樹脂を有しており、
     前記電子部材を互いに接続する工程は、前記金属層の融点以上であって、かつ前記樹脂層の硬化が完了しない温度で前記導電接続材料を加熱することにより行われ、
     前記樹脂層を硬化または固化する工程は、前記樹脂層の硬化が完了する温度で前記導電接続材料を加熱することにより行われる電子部品の製造方法。
  17.  請求項15に記載の電子部品の製造方法であって、
     前記樹脂層は、熱可塑性樹脂を有しており、
     前記電子部材を互いに接続する工程は、前記金属層の融点以上であって、かつ前記樹脂層が軟化する温度で前記導電接続材料を加熱することにより行われ、
     前記樹脂層を硬化または固化する工程は、前記樹脂層が固化する温度まで前記導電接続材料を冷却することにより行われる電子部品の製造方法。
  18.  請求項14に記載の導電接続材料を、前記複数の端子上に当接する工程と、
     前記導電接続材料を加熱して、前記複数の端子上に前記導電部を形成する工程と、
     前記樹脂層を硬化または固化する工程と、
     を備える電子部品の製造方法。
  19.  請求項18に記載の電子部品の製造方法であって、
     前記樹脂層は、熱硬化性樹脂を有しており、
     前記導電部を形成する工程は、前記金属層の融点以上であって、かつ前記樹脂層の硬化が完了しない温度で前記導電接続材料を加熱することにより行われ、
     前記樹脂層を硬化または固化する工程は、前記樹脂層の硬化が完了する温度で前記導電接続材料を加熱することにより行われる電子部品の製造方法。
  20.  請求項18に記載の電子部品の製造方法であって、
     前記樹脂層は、熱可塑性樹脂を有しており、
     前記導電部を形成する工程は、前記金属層の融点以上であって、かつ前記樹脂層が軟化する温度で前記導電接続材料を加熱することにより行われ、
     前記樹脂層を硬化または固化する工程は、前記樹脂層が固化する温度まで前記導電接続材料を冷却することにより行われる電子部品の製造方法。
  21.  請求項1ないし14いずれか1項に記載の導電接続材料を、前記複数の端子に当接するように前記電子部材の前記基板上に接着してなる導電接続材料付き電子部材。
  22.  請求項1ないし14いずれか1項に記載の導電接続材料を用いて形成された前記導電部を介して、前記複数の端子を内側に向けて対向する二つの前記電子部材がそれぞれ有する前記複数の端子を互いに接続させてなる電子部品。
PCT/JP2010/007323 2009-12-24 2010-12-17 導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品 WO2011077679A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127014938A KR101191686B1 (ko) 2009-12-24 2010-12-17 도전 접속 재료, 전자 부품의 제조 방법, 도전 접속 재료가 부착된 전자 부재 및 전자 부품
JP2011516598A JP4924773B2 (ja) 2009-12-24 2010-12-17 導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品
CN201080059170.7A CN102687603B (zh) 2009-12-24 2010-12-17 导电连接材料、电子部件的生产方法以及具有导电连接材料的电子构件和电子部件
US13/518,798 US20120261174A1 (en) 2009-12-24 2010-12-17 Conductive connecting material, method for producing electronic component, electronic member with conductive connecting material and electronic component
SG2012042081A SG181575A1 (en) 2009-12-24 2010-12-17 Conductive connection material, method for producing electronic component, electronic member with conductive connective material and electronic component
EP10838919A EP2519088A1 (en) 2009-12-24 2010-12-17 Conductive connection material, electronic component producing method, and electronic member and electronic component with conductive connection material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009292706 2009-12-24
JP2009-292706 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077679A1 true WO2011077679A1 (ja) 2011-06-30

Family

ID=44195233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007323 WO2011077679A1 (ja) 2009-12-24 2010-12-17 導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品

Country Status (8)

Country Link
US (1) US20120261174A1 (ja)
EP (1) EP2519088A1 (ja)
JP (1) JP4924773B2 (ja)
KR (1) KR101191686B1 (ja)
CN (1) CN102687603B (ja)
SG (1) SG181575A1 (ja)
TW (1) TWI540039B (ja)
WO (1) WO2011077679A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159481A (ja) * 2010-01-29 2011-08-18 Sumitomo Bakelite Co Ltd 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011176143A (ja) * 2010-02-24 2011-09-08 Sumitomo Bakelite Co Ltd 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2014075317A (ja) * 2012-10-05 2014-04-24 Sumitomo Bakelite Co Ltd 導電接続シート、半導体装置および電子機器
US20200180233A1 (en) * 2012-06-18 2020-06-11 Ormet Circuits, Inc. Conductive film adhesive
WO2023276792A1 (ja) * 2021-07-01 2023-01-05 日東電工株式会社 接合シートおよび電子部品の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664558B2 (ja) * 2010-01-29 2015-02-04 住友ベークライト株式会社 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
CN102947929B (zh) * 2010-04-19 2016-05-18 日东电工株式会社 倒装芯片型半导体背面用膜
TWI618728B (zh) * 2013-08-07 2018-03-21 日立化成股份有限公司 環氧樹脂組成物及電子零件裝置
CN103607856A (zh) * 2013-10-26 2014-02-26 溧阳市东大技术转移中心有限公司 一种复合挠性基板的制造方法
US10808123B2 (en) * 2014-09-23 2020-10-20 The Boeing Company Nanoparticles for improving the dimensional stability of resins
US9899330B2 (en) * 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
JP6500565B2 (ja) * 2015-04-01 2019-04-17 富士電機株式会社 半導体モジュール
CN106132102B (zh) * 2016-07-12 2018-09-07 北京梦之墨科技有限公司 液态金属双层电路制作方法及复合电路制作方法
GB201613051D0 (en) 2016-07-28 2016-09-14 Landa Labs (2012) Ltd Applying an electrical conductor to a substrate
JP7160302B2 (ja) * 2018-01-31 2022-10-25 三国電子有限会社 接続構造体および接続構造体の作製方法
JP7185252B2 (ja) 2018-01-31 2022-12-07 三国電子有限会社 接続構造体の作製方法
JP7046351B2 (ja) 2018-01-31 2022-04-04 三国電子有限会社 接続構造体の作製方法
TWI730493B (zh) * 2019-11-06 2021-06-11 台灣愛司帝科技股份有限公司 具有加熱功能的非導電薄膜以及電子裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276873A (ja) 1985-05-31 1986-12-06 Sony Chem Kk 導電異方性接着剤
JP2000332393A (ja) * 1999-05-21 2000-11-30 Sumitomo Bakelite Co Ltd 厚さ方向導電シート
JP2004260131A (ja) 2003-02-05 2004-09-16 Japan Science & Technology Agency 端子間の接続方法及び半導体装置の実装方法
JP2005203693A (ja) * 2004-01-19 2005-07-28 Mitsubishi Electric Corp 接続シートおよび実装部品の実装方法
JP2008111990A (ja) * 2006-10-30 2008-05-15 Sumitomo Bakelite Co Ltd 接着剤付き光回路基板、光素子実装用部品及び光素子実装部品

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034331A (en) * 1996-07-23 2000-03-07 Hitachi Chemical Company, Ltd. Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
CN1103803C (zh) * 1997-02-27 2003-03-26 精工爱普生株式会社 粘接剂、液晶装置、液晶装置的制造方法和电子装置
JPH10270497A (ja) * 1997-03-27 1998-10-09 Sumitomo Bakelite Co Ltd 半導体素子固定方法
JP3335896B2 (ja) * 1997-12-26 2002-10-21 株式会社東芝 ハンダ材及びハンダ材の製造方法
TW459032B (en) * 1998-03-18 2001-10-11 Sumitomo Bakelite Co An anisotropic conductive adhesive and method for preparation thereof and an electronic apparatus using said adhesive
US7331502B2 (en) * 2001-03-19 2008-02-19 Sumitomo Bakelite Company, Ltd. Method of manufacturing electronic part and electronic part obtained by the method
DE602004024672D1 (de) * 2003-06-25 2010-01-28 Hitachi Chemical Co Ltd Schaltglied-verbindungsstruktur und herstellungsverfahren dafür
JP4282417B2 (ja) * 2003-09-12 2009-06-24 ソニーケミカル&インフォメーションデバイス株式会社 接続構造体
JP4397947B2 (ja) * 2005-03-28 2010-01-13 パナソニック株式会社 フリップチップ実装体とフリップチップ実装方法及びフリップチップ実装装置
KR101063710B1 (ko) * 2006-09-26 2011-09-07 히다치 가세고교 가부시끼가이샤 이방 도전성 접착제 조성물, 이방 도전성 필름, 회로 부재의 접속 구조, 및 피복 입자의 제조 방법
CN101669197B (zh) * 2007-04-27 2012-07-18 住友电木株式会社 半导体晶片的接合方法和半导体装置的制造方法
WO2010027017A1 (ja) * 2008-09-05 2010-03-11 住友ベークライト株式会社 導電接続材料およびそれを用いた端子間の接続方法ならびに接続端子の製造方法
US8157887B2 (en) * 2010-08-06 2012-04-17 Scott William Frame Metal recovery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276873A (ja) 1985-05-31 1986-12-06 Sony Chem Kk 導電異方性接着剤
JP2000332393A (ja) * 1999-05-21 2000-11-30 Sumitomo Bakelite Co Ltd 厚さ方向導電シート
JP2004260131A (ja) 2003-02-05 2004-09-16 Japan Science & Technology Agency 端子間の接続方法及び半導体装置の実装方法
JP2005203693A (ja) * 2004-01-19 2005-07-28 Mitsubishi Electric Corp 接続シートおよび実装部品の実装方法
JP2008111990A (ja) * 2006-10-30 2008-05-15 Sumitomo Bakelite Co Ltd 接着剤付き光回路基板、光素子実装用部品及び光素子実装部品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159481A (ja) * 2010-01-29 2011-08-18 Sumitomo Bakelite Co Ltd 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011176143A (ja) * 2010-02-24 2011-09-08 Sumitomo Bakelite Co Ltd 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
US20200180233A1 (en) * 2012-06-18 2020-06-11 Ormet Circuits, Inc. Conductive film adhesive
JP2014075317A (ja) * 2012-10-05 2014-04-24 Sumitomo Bakelite Co Ltd 導電接続シート、半導体装置および電子機器
WO2023276792A1 (ja) * 2021-07-01 2023-01-05 日東電工株式会社 接合シートおよび電子部品の製造方法

Also Published As

Publication number Publication date
CN102687603A (zh) 2012-09-19
JPWO2011077679A1 (ja) 2013-05-02
CN102687603B (zh) 2015-07-15
EP2519088A1 (en) 2012-10-31
KR20120070622A (ko) 2012-06-29
US20120261174A1 (en) 2012-10-18
SG181575A1 (en) 2012-07-30
TW201130646A (en) 2011-09-16
KR101191686B1 (ko) 2012-10-16
TWI540039B (zh) 2016-07-01
JP4924773B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924773B2 (ja) 導電接続材料、電子部品の製造方法、導電接続材料付き電子部材および電子部品
JP4730484B2 (ja) 導電接続材料、端子間の接続方法及び接続端子の製造方法
JP4752985B2 (ja) 導電接続材料及びそれを用いた端子間の接続方法
KR20110063483A (ko) 도전 접속 재료 및 그것을 이용한 단자간 접속 방법 및 접속 단자의 제조 방법
JP2011171258A (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP5482143B2 (ja) 導電接続材料、端子間の接続方法及び接続端子の製造方法
JP5471551B2 (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP5564964B2 (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011181467A (ja) 導電接続シートの製造方法、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011165954A (ja) 導電接続材料、端子間の接続方法、接続端子の製造方法、電子部材及び電気、電子部品
JP5381774B2 (ja) 半田層の形成方法、端子間の接続方法、半導体装置および電子機器
JP5447008B2 (ja) 端子間の接続方法及び接続端子の製造方法
JP2011187487A (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法および電子機器
JP5381769B2 (ja) 端子間の接続方法
JP5381783B2 (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP5533041B2 (ja) 導電接続材料の製造方法、半導体装置および電子機器
JP5544915B2 (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP5381784B2 (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP5316441B2 (ja) 電子部品の製造方法及び電子部品
JP5471601B2 (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011181703A (ja) 導電接続シートの製造方法、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011171553A (ja) 導電接続材料の製造方法、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2012079527A (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法および電子機器
JP2012079526A (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法および電子機器
JP2011176143A (ja) 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059170.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011516598

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127014938

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12012501156

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13518798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010838919

Country of ref document: EP