WO2011074370A1 - 方向性結合器 - Google Patents

方向性結合器 Download PDF

Info

Publication number
WO2011074370A1
WO2011074370A1 PCT/JP2010/070537 JP2010070537W WO2011074370A1 WO 2011074370 A1 WO2011074370 A1 WO 2011074370A1 JP 2010070537 W JP2010070537 W JP 2010070537W WO 2011074370 A1 WO2011074370 A1 WO 2011074370A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
directional coupler
line
sub
pass filter
Prior art date
Application number
PCT/JP2010/070537
Other languages
English (en)
French (fr)
Inventor
育生 田丸
清志 相川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP10837399.4A priority Critical patent/EP2439812B1/en
Priority to JP2011522323A priority patent/JP5327324B2/ja
Priority to CN201080037283.7A priority patent/CN102484305B/zh
Priority to TW099143698A priority patent/TWI482354B/zh
Publication of WO2011074370A1 publication Critical patent/WO2011074370A1/ja
Priority to US13/411,858 priority patent/US8314663B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines

Definitions

  • the present invention relates to a directional coupler, and more particularly to a directional coupler used in a wireless communication device or the like that performs communication using a high-frequency signal.
  • a directional coupler described in Patent Document 1 As a conventional directional coupler, for example, a directional coupler described in Patent Document 1 is known.
  • the directional coupler is configured by laminating a plurality of dielectric layers on which a coiled conductor and a ground conductor are formed. Two coiled conductors are provided. One coiled conductor constitutes a main line, and the other coiled conductor constitutes a sub line. The main line and the sub line are electromagnetically coupled to each other. Further, the ground conductor sandwiches the coiled conductor from the stacking direction. A ground potential is applied to the ground conductor.
  • a signal when a signal is input to the main line, a signal having power proportional to the power of the signal is output from the sub line.
  • the degree of coupling between the main line and the sub-line increases as the frequency of the signal input to the main line increases (that is, the degree of coupling characteristic). Is not flat). For this reason, even if a signal with the same power is input to the main line, if the frequency of the signal fluctuates, the power of the signal output from the sub line fluctuates. Therefore, the IC connected to the sub line needs to have a function of correcting the power of the signal based on the frequency of the signal.
  • an object of the present invention is to bring the coupling characteristic in the directional coupler closer to flat.
  • a directional coupler is a directional coupler used in a predetermined frequency band, and includes a first terminal to a fourth terminal, the first terminal, and the second terminal.
  • a main line connected between the first terminal and the first sub line connected between the third terminal and the fourth terminal and electromagnetically coupled to the main line;
  • a first low-pass filter connected between the third terminal and the first sub-line, wherein the attenuation increases as the frequency increases in the predetermined frequency band; And a first low-pass filter.
  • the degree of coupling characteristic in the directional coupler can be made nearly flat.
  • FIG. 18 is a graph showing the coupling degree characteristic and the isolation characteristic of the directional coupler. It is a disassembled perspective view of the laminated body of the directional coupler which concerns on 9th Embodiment. It is a disassembled perspective view of the laminated body of the directional coupler which concerns on 10th Embodiment. It is an equivalent circuit schematic of the directional coupler which concerns on 11th Embodiment. It is a disassembled perspective view of the laminated body of the directional coupler which concerns on 11th Embodiment. It is an equivalent circuit schematic of the directional coupler which concerns on 12th Embodiment. It is a disassembled perspective view of the laminated body of the directional coupler which concerns on 12th Embodiment.
  • FIG. 1 is an equivalent circuit diagram of the directional couplers 10a to 10d according to the first to fourth embodiments.
  • the circuit configuration of the directional coupler 10a will be described.
  • the directional coupler 10a is used in a predetermined frequency band.
  • the predetermined frequency band is, for example, when a signal having a frequency of 824 MHz to 915 MHz (GSM800 / 900) and a signal having a frequency of 1710 MHz to 1910 MHz (GSM1800 / 1900) are input to the directional coupler 10a. 824 MHz to 1910 MHz.
  • the directional coupler 10a includes external electrodes (terminals) 14a to 14f, a main line M, a sub line S, and a low-pass filter LPF1 as a circuit configuration.
  • the main line M is connected between the external electrodes 14a and 14b.
  • the sub line S is connected between the external electrodes 14c and 14d and is electromagnetically coupled to the main line M.
  • the low-pass filter LPF1 is connected between the external electrode 14c and the sub line S, and has a characteristic that the amount of attenuation increases as the frequency increases in a predetermined frequency band.
  • the low-pass filter LPF1 includes a capacitor C1 and a coil L1.
  • the coil L1 is connected in series between the external electrode 14c and the sub line S.
  • the capacitor C1 is connected between the sub line S and the external electrode 14c (more precisely, between the coil L1 and the external electrode 14c) and between the external electrodes 14e and 14f.
  • the external electrode 14a is used as an input port, and the external electrode 14b is used as an output port.
  • the external electrode 14c is used as a coupling port, and the external electrode 14d is used as a termination port terminated with 50 ⁇ .
  • the external electrodes 14e and 14f are used as ground ports that are grounded.
  • FIG. 2 is a graph showing coupling characteristics and isolation characteristics of a conventional directional coupler that does not have the low-pass filter LPF1.
  • FIG. 3 is a graph showing the coupling degree characteristic of a conventional directional coupler not having the low-pass filter LPF1 and the insertion loss characteristic of the low-pass filter LPF1.
  • FIG. 4 is a graph showing the coupling degree characteristic and the isolation characteristic of the directional coupler 10a. 2 to 4 show simulation results.
  • the degree of coupling characteristic refers to the ratio of power between the signal input to the external electrode 14a (input port) and the signal output from the external electrode 14c (coupling port) (that is, attenuation), and It is a relationship of frequency
  • the isolation characteristic is a ratio of power between a signal input from the external electrode 14b (output port) and a signal output from the external electrode 14c (coupling port) (that is, an attenuation amount).
  • the insertion loss characteristic is the relationship between the attenuation amount and frequency of the low-pass filter. 2 to 4, the vertical axis represents the attenuation, and the horizontal axis represents the frequency.
  • the degree of coupling between the main line and the sub line increases as the signal frequency increases. Therefore, as shown in FIG. 2, in the coupling degree characteristic of the conventional directional coupler, the ratio of the electric power input from the input port and output to the coupling port increases as the frequency increases.
  • a low-pass filter LPF1 is connected between the external electrode 14c and the sub line S.
  • the low-pass filter LPF1 has an insertion loss characteristic in which the amount of attenuation increases as the frequency increases. Therefore, even if the power of the signal output from the sub line S to the external electrode 14c increases due to the increase in the frequency of the signal, the power of the signal is reduced by the low-pass filter LPF1.
  • the coupling degree characteristic can be made closer to flat.
  • the directional coupler 10a shown in FIG. 3 is provided with a low-pass filter LPF1. As a result, the attenuation of the isolation characteristic does not increase.
  • FIG. 5 is an external perspective view of the directional couplers 10a to 10e according to the first to fifth embodiments.
  • FIG. 6 is an exploded perspective view of the laminate 12a of the directional coupler 10a according to the first embodiment.
  • the stacking direction is defined as the z-axis direction
  • the long side direction of the directional coupler 10a when viewed in plan from the z-axis direction is defined as the x-axis direction
  • the directionality when viewed in plan from the z-axis direction is defined as the y-axis direction.
  • the x-axis, y-axis, and z-axis are orthogonal to each other.
  • the directional coupler 10a includes a laminated body 12a, external electrodes 14 (14a to 14f), a main line M, a sub line S, a low-pass filter LPF1, and a shield conductor layer 26a.
  • the laminated body 12a has a rectangular parallelepiped shape.
  • the insulator layer 16 (16a to 16m) is moved from the positive side in the z-axis direction to the negative side. It is configured by stacking them in order.
  • the insulator layer 16 is a dielectric ceramic and has a rectangular shape.
  • the external electrodes 14a, 14e, and 14b are provided on the side surface of the laminate 12a on the positive direction side in the y-axis direction so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction.
  • the external electrodes 14c, 14f, and 14d are provided on the side surface on the negative direction side in the y-axis direction of the multilayer body 12a so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the main line M is composed of a line portion 18 (18a, 18b) and a via-hole conductor b1, and rotates clockwise as it goes from the positive direction side to the negative direction side in the z-axis direction. It has a spiral shape.
  • an end portion on the upstream side in the clockwise direction is called an upstream end
  • an end portion on the downstream side in the clockwise direction is called a downstream end.
  • the line portion 18a is a linear conductor layer provided on the insulator layer 16b, and its upstream end is connected to the external electrode 14a.
  • the line portion 18b is a linear conductor layer provided on the insulator layer 16c, and its downstream end is connected to the external electrode 14b.
  • the via-hole conductor b1 penetrates the insulator layer 16b in the z-axis direction, and connects the downstream end of the line portion 18a and the upstream end of the line portion 18b. Thereby, the main line M is connected between the external electrodes 14a and 14b.
  • the sub-line S is composed of a line portion 20 (20a, 20b) and via-hole conductors b2 to b4, and counterclockwise as it goes from the positive side to the negative side in the z-axis direction. It has a spiral shape that turns around. That is, the sub line S rotates in the direction opposite to the main line M. Further, the region surrounded by the sub line S overlaps the region surrounded by the main line M when viewed in plan from the z-axis direction. That is, the main line M and the sub line S are opposed to each other with the insulator layer 16c interposed therebetween. As a result, the main line M and the sub line S are electromagnetically coupled.
  • the line portion 20a is a linear conductor layer provided on the insulator layer 16d, and its upstream end is connected to the external electrode 14d.
  • the line portion 20b is a linear conductor layer provided on the insulator layer 16e.
  • the via-hole conductor b2 penetrates the insulator layer 16d in the z-axis direction, and connects the downstream end of the line portion 20a and the upstream end of the line portion 20b.
  • the via-hole conductors b3 and b4 pass through the insulator layers 16e and 16f in the z-axis direction and are connected to each other.
  • the via-hole conductor b3 is connected to the downstream end of the line portion 20b.
  • the low pass filter LPF1 includes a coil L1 and a capacitor C1.
  • the coil L1 is composed of the line portion 22 (22a to 22d) and the via-hole conductors b5 to b7, and has a spiral shape that rotates counterclockwise as it goes from the positive direction side to the negative direction side in the z-axis direction. ing.
  • a counterclockwise upstream end is called an upstream end
  • a counterclockwise downstream end is called a downstream end.
  • the line portion 22a is a linear conductor layer provided on the insulator layer 16g, and its upstream end is connected to the via-hole conductor b4.
  • the line portions 22b and 22c are linear conductor layers provided on the insulator layers 16h and 16i, respectively.
  • the line portion 22d is a linear conductor layer provided on the insulator layer 16j, and its downstream end is connected to the external electrode 14c.
  • the via-hole conductor b5 penetrates the insulator layer 16g in the z-axis direction, and connects the downstream end of the line portion 22a and the upstream end of the line portion 22b.
  • the via-hole conductor b6 penetrates the insulator layer 16h in the z-axis direction, and connects the downstream end of the line portion 22b and the upstream end of the line portion 22c.
  • the via-hole conductor b7 penetrates the insulator layer 16i in the z-axis direction, and connects the downstream end of the line portion 22c and the upstream end of the line portion 22d. Thereby, the coil L1 is connected between the sub line S and the external electrode 14c.
  • the capacitor C1 is composed of the planar conductor layer 24 (24a to 24c).
  • the planar conductor layers 24a and 24c are provided so as to cover substantially the entire surface of the insulator layers 16k and 16m, respectively, and are connected to the external electrodes 14e and 14f.
  • the planar conductor layer 24b is provided on the insulator layer 16l and connected to the external electrode 14c.
  • the planar conductor layer 24b has a rectangular shape and overlaps the planar conductor layers 24a and 24c when viewed in plan from the z-axis direction. Thereby, a capacitance is generated between the planar conductor layers 24a and 24c and the planar conductor layer 24b.
  • the capacitor C1 is connected between the external electrode 14c and the external electrodes 14e and 14f. That is, the capacitor C1 is connected between the coil L1 and the external electrode 14c and between the external electrodes 14e and 14f.
  • the shield conductor layer 26a is provided so as to cover substantially the entire surface of the insulator layer 16f, and is connected to the external electrodes 14e and 14f. That is, a ground potential is applied to the shield conductor layer 26a.
  • the shield conductor layer 26a is provided between the main line M and the sub line S and the coil L1 in the z-axis direction, thereby suppressing the sub line S and the coil L1 from being electromagnetically coupled.
  • FIG. 7 is an exploded perspective view of the multilayer body 12b of the directional coupler 10b according to the second embodiment.
  • the circuit configuration of the directional coupler 10b is the same as that of the directional coupler 10a, description thereof is omitted.
  • the difference between the directional coupler 10b and the directional coupler 10a is that an insulator layer 16n provided with a shield conductor layer 26b is provided between the insulator layers 16a and 16b. Is a point.
  • the shield conductor layer 26b is provided so as to cover substantially the entire surface of the insulator layer 16n, and is connected to the external electrodes 14e and 14f. That is, a ground potential is applied to the shield conductor layer 26b.
  • the shield conductor layer 26b is provided on the positive side of the main line M in the z-axis direction.
  • the shield conductive layer 26b is configured so as to sandwich the main line M, the sub line S, and the coil L1 together with the planar conductor layers 24a and 24c from the z-axis direction. For this reason, the shield conductor layer 26b and the planar conductor layers 24a and 24c prevent the magnetic fields generated in the main line M, the sub line S, and the coil L1 from leaking to the outside of the multilayer body 12b.
  • FIG. 8 is an exploded perspective view of the laminate 12c of the directional coupler 10c according to the third embodiment.
  • the circuit configuration of the directional coupler 10c is the same as that of the directional couplers 10a and 10b, description thereof is omitted.
  • the difference between the directional coupler 10c and the directional coupler 10b is that the stacking order of the main line M, the sub line S, the low-pass filter LPF1 (the coil L1 and the capacitor C1), and the shield conductor layers 26a and 26b is different. It is.
  • the shield conductor layer 26b, the main line M, the sub line S, and the shield conductor layer 26a are arranged from the positive direction side to the negative direction side in the z-axis direction.
  • Coil L1 and capacitor C1 are arranged in this order.
  • the capacitor C1, the coil L1, the shield conductor layer 26a, the sub line S, the main line M, the shield The conductor layers 26b are arranged in this order.
  • the directional coupler 10c Similar to the directional coupler 10b, the directional coupler 10c having the above-described configuration also prevents the magnetic fields generated in the main line M, the sub line S, and the coil L1 from leaking to the outside, while reducing the coupling characteristics. Can be made flat.
  • FIG. 9 is an exploded perspective view of the laminate 12d of the directional coupler 10d according to the fourth embodiment.
  • the circuit configuration of the directional coupler 10d is the same as that of the directional couplers 10a and 10b, description thereof is omitted.
  • the difference between the directional coupler 10d and the directional coupler 10a is that the stacking order of the main line M, the sub line S, the low-pass filter LPF1 (the coil L1 and the capacitor C1), and the shield conductor layer 26a is different. .
  • the main line M, the sub line S, the shield conductor layer 26a, the coil L1, and the capacitor are arranged in the order of C1.
  • the directional coupler 10d as shown in FIG. 9, from the positive direction side to the negative direction side in the z-axis direction, the coil L1, the shield conductor layer 26a, the sub line S, the main line M, and the capacitor C1 are arranged in this order. Are lined up.
  • the degree of coupling characteristic can be made nearly flat as in the directional coupler 10a.
  • a capacitor C1 is provided on the negative direction side of the main line M and the sub line S in the z-axis direction.
  • the planar conductor layers 24a and 24c sandwich the main line M and the sub line S from the z-axis direction together with the shield conductor layer 26a. Therefore, leakage of the magnetic field generated in the main line M and the sub line S to the outside of the multilayer body 12d is prevented by the planar conductor layers 24a and 24c and the shield conductor layer 26a. That is, in the directional coupler 10d, it is not necessary to add a new shield conductor layer 26 for preventing the electric field generated by the main line M and the sub line S from leaking outside the multilayer body 12d.
  • FIG. 10 is an exploded perspective view of the multilayer body 12e of the directional coupler 10e according to the fifth embodiment.
  • the directional coupler 10e is a circuit in which a termination resistor R for terminating the external electrode 14d is added between the external electrode 14d and the external electrode 14e in the circuit configuration of the directional coupler 10a shown in FIG. It has a configuration. And in the directional coupler 10e, as shown in FIG. 10, the resistance conductor layer 28a as the termination resistance R is provided in the insulator layer 16j.
  • the resistance conductor layer 28a is connected between the external electrode 14d and the external electrode 14e, and is a meandering linear conductor layer.
  • the resistance conductor layer 28a has, for example, an impedance of 50 ⁇ .
  • the directional coupler 10e can also incorporate the termination resistor R.
  • the substrate on which this directional coupler is mounted can be reduced in size by the space of the termination resistor, compared to when the termination resistor is provided outside.
  • FIG. 11 is an equivalent circuit diagram of a directional coupler 10f according to the sixth embodiment.
  • the circuit configuration of the directional coupler 10f will be described.
  • the configuration of the low-pass filter LPF1 in the directional coupler 10f is different from the configuration of the low-pass filter LPF1 in the directional coupler 10a.
  • the capacitor C1 is connected between the external electrode 14c and the coil L1 and between the external electrodes 14e and 14f as shown in FIG. It was.
  • the capacitor C1 is connected between the sub line S and the coil L1 and between the external electrode 14e as shown in FIG.
  • a low-pass filter LPF2 is added to the directional coupler 10a.
  • the low-pass filter LPF2 is connected between the external electrode 14d and the sub line S, and has a characteristic that the amount of attenuation increases as the frequency increases in a predetermined frequency band.
  • the low pass filter LPF2 includes a capacitor C2 and a coil L2.
  • the coil L2 is connected in series between the external electrode 14d and the sub line S.
  • the capacitor C2 is connected between the sub line S and the external electrode 14d (more precisely, between the coil L2 and the sub line S) and the external electrode 14f.
  • the directional coupler 10f as described above can use both the external electrodes 14c and 14d as coupling ports. More specifically, in the directional coupler 10f, as a first usage method, as in the directional coupler 10a, the external electrode 14a is used as an input port, and the external electrode 14b is used as an output port. The external electrode 14c is used as a coupling port, and the external electrode 14d is used as a terminate port. The external electrodes 14e and 14f are used as terminator ports. In this case, when a signal is input to the external electrode 14a, the signal is output from the external electrode 14b. Further, since the main line M and the sub line S are electromagnetically coupled, a signal having power proportional to the power of the signal is output from the external electrode 14c.
  • the external electrode 14b is used as an input port, and the external electrode 14a is used as an output port.
  • the external electrode 14d is used as a coupling port, and the external electrode 14c is used as a termination port.
  • the external electrodes 14e and 14f are used as terminator ports. In this case, when a signal is input to the external electrode 14b, the signal is output from the external electrode 14a. Further, since the main line M and the sub line S are electromagnetically coupled, a signal having power proportional to the power of the signal is output from the external electrode 14d.
  • the directional coupler 10f as described above can be applied to a transmission / reception circuit of a wireless communication terminal such as a mobile phone. That is, 14a may be used as the input port when detecting the power of the transmission signal, and the external electrode 14b may be used as the input port when detecting the reflected power from the antenna.
  • the low-pass filters LPF1 and LPF2 are provided regardless of which of the external electrodes 14a and 14b is used as the input port.
  • termination resistors R1 and R2 are connected between the external electrodes 14g and 14h and the ground potential. Thereby, reflection of signals from the external electrodes 14g and 14h to the external electrodes 14c and 14d via the low-pass filters LPF1 and LPF2 is suppressed.
  • FIG. 12 is an external perspective view of the directional couplers 10f and 10g according to the sixth embodiment and the seventh embodiment.
  • FIG. 13 is an exploded perspective view of the laminated body 12f of the directional coupler 10f according to the sixth embodiment.
  • the stacking direction is defined as the z-axis direction
  • the long side direction of the directional coupler 10f when viewed in plan from the z-axis direction is defined as the x-axis direction
  • the directionality when viewed in plan from the z-axis direction is defined as the y-axis direction.
  • the x-axis, y-axis, and z-axis are orthogonal to each other.
  • the directional coupler 10f includes a laminated body 12f, external electrodes 14 (14a to 14h), a main line M, a sub line S, low-pass filters LPF1 and LPF2, and a shield conductor layer 26 (26a To 26c).
  • the laminated body 12f has a rectangular parallelepiped shape as shown in FIG. 12, and as shown in FIG. 13, the insulator layer 16 (16a to 16p) is moved from the positive direction side to the negative direction side in the z-axis direction. It is configured by stacking them in order.
  • the insulator layer 16 is a dielectric ceramic and has a rectangular shape.
  • the external electrodes 14a, 14h, and 14b are provided so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction on the side surface on the positive direction side in the y-axis direction of the multilayer body 12f.
  • the external electrodes 14c, 14g, and 14d are provided on the side surface on the negative direction side in the y-axis direction of the multilayer body 12f so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the external electrode 14e is provided on the side surface on the negative side in the x-axis direction of the multilayer body 12f.
  • the external electrode 14f is provided on the side surface on the positive direction side in the x-axis direction of the multilayer body 12f.
  • the main line M is composed of a line portion 18 (18a, 18b) and a via-hole conductor b1, and the main line M is counterclockwise as it goes from the positive direction side to the negative direction side in the z-axis direction. It has a spiral shape that turns.
  • an end portion on the upstream side in the counterclockwise direction is called an upstream end
  • an end portion on the downstream side in the counterclockwise direction is called a downstream end.
  • the line portion 18a is a linear conductor layer provided on the insulator layer 16o, and its downstream end is connected to the external electrode 14a.
  • the line portion 18b is a linear conductor layer provided on the insulator layer 16n, and its upstream end is connected to the external electrode 14b.
  • the via-hole conductor b1 penetrates the insulator layer 16n in the z-axis direction, and connects the upstream end of the line portion 18a and the downstream end of the line portion 18b. Thereby, the main line M is connected between the external electrodes 14a and 14b.
  • the sub-line S is composed of a line portion 20 (20a, 20b) and via-hole conductors b2 to b6, b13 to b15, and goes from the positive direction side in the z-axis direction to the negative direction side. Therefore, it forms a spiral shape that rotates clockwise. That is, the sub line S rotates in the direction opposite to the main line M. Further, the region surrounded by the sub line S overlaps the region surrounded by the main line M when viewed in plan from the z-axis direction. That is, the main line M and the sub line S are opposed to each other with the insulator layer 16m interposed therebetween. As a result, the main line M and the sub line S are electromagnetically coupled.
  • the line portion 20a is a linear conductor layer provided on the insulator layer 16m.
  • the line portion 20b is a linear conductor layer provided on the insulator layer 16l.
  • the via-hole conductor b2 passes through the insulator layer 161 in the z-axis direction, and connects the upstream end of the line portion 20a and the downstream end of the line portion 20b.
  • the via-hole conductors b3, b4, b5, and b6 pass through the insulator layers 16l, 16k, 16j, and 16i in the z-axis direction and are connected to each other.
  • the via-hole conductor b3 is connected to the downstream end of the line portion 20a.
  • the via-hole conductors b13, b14, and b15 penetrate the insulator layers 16k, 16j, and 16i in the z-axis direction and are connected to each other.
  • the via-hole conductor b13 is connected to the upstream end of the line portion 20b.
  • the low pass filter LPF1 includes a coil L1 and a capacitor C1.
  • the capacitor C1 includes a planar conductor layer 24 (24a to 24d) and via hole conductors b16 and b17.
  • the planar conductor layers 24a and 24c are rectangular conductor layers provided on the insulator layers 16j and 16h, respectively, and connected to the external electrode 14e.
  • the planar conductor layers 24b and 24d are provided on the insulator layers 16i and 16g.
  • the planar conductor layers 24b and 24d have a rectangular shape and overlap the planar conductor layers 24a and 24c when viewed in plan from the z-axis direction.
  • the via-hole conductors b16 and b17 penetrate the insulator layers 16h and 16g in the z-axis direction and are connected to each other.
  • the via-hole conductors b16 and b17 connect the planar conductor layers 24b and 24d.
  • a via-hole conductor b15 is connected to the planar conductor layer 24b.
  • the capacitor C1 is connected to the upstream end of the sub line S.
  • the coil L1 is composed of the line portion 22 (22a to 22d) and the via-hole conductors b18 to b21, and has a spiral shape that rotates clockwise from the positive direction side to the negative direction side in the z-axis direction. Yes.
  • a clockwise upstream end is referred to as an upstream end
  • a clockwise downstream end is referred to as a downstream end.
  • the line portions 22a, 22b, and 22c are linear conductor layers provided on the insulator layers 16f, 16e, and 16d, respectively.
  • the line portion 22d is a linear conductor layer provided on the insulator layer 16c, and its upstream end is connected to the external electrode 14c.
  • the via-hole conductor b18 passes through the insulator layer 16f in the z-axis direction, and connects the downstream end of the line portion 22a and the planar conductor layer 24d.
  • the via-hole conductor b19 penetrates the insulator layer 16e in the z-axis direction, and connects the upstream end of the line portion 22a and the downstream end of the line portion 22b.
  • the via-hole conductor b20 passes through the insulator layer 16d in the z-axis direction, and connects the upstream end of the line portion 22b and the downstream end of the line portion 22c.
  • the via-hole conductor b21 penetrates the insulator layer 16c in the z-axis direction, and connects the upstream end of the line portion 22c and the downstream end of the line portion 22d.
  • the coil L1 is connected between the capacitor C1 and the sub line S and the external electrode 14c.
  • the low pass filter LPF2 includes a coil L2 and a capacitor C2.
  • the capacitor C2 includes a planar conductor layer 34 (34a to 34d) and via-hole conductors b7 and b8.
  • the planar conductor layers 34a and 34c are rectangular conductor layers provided on the insulator layers 16j and 16h, respectively, and connected to the external electrode 14f.
  • the planar conductor layers 34b and 34d are provided on the insulator layers 16i and 16g.
  • the planar conductor layers 34b and 34d have a rectangular shape and overlap the planar conductor layers 34a and 34c when viewed in plan from the z-axis direction.
  • the via-hole conductors b7 and b8 respectively penetrate the insulator layers 16h and 16g in the z-axis direction and are connected to each other.
  • the via-hole conductors b7 and b8 connect the planar conductor layers 34b and 34d.
  • a via hole conductor b6 is connected to the planar conductor layer 34b.
  • the capacitor C2 is connected to the downstream end of the sub line S.
  • the coil L2 is composed of the line portion 32 (32a to 32d) and the via-hole conductors b9 to b12, and has a spiral shape that rotates counterclockwise from the positive direction side to the negative direction side in the z-axis direction. ing.
  • a counterclockwise upstream end is referred to as an upstream end
  • a counterclockwise downstream end is referred to as a downstream end.
  • the line portions 32a, 32b, and 32c are linear conductor layers provided on the insulator layers 16f, 16e, and 16d, respectively.
  • the line portion 32d is a linear conductor layer provided on the insulator layer 16c, and its upstream end is connected to the external electrode 14d.
  • the via-hole conductor b9 passes through the insulator layer 16f in the z-axis direction, and connects the downstream end of the line portion 32a and the planar conductor layer 34d.
  • the via-hole conductor b10 passes through the insulator layer 16e in the z-axis direction, and connects the upstream end of the line portion 32a and the downstream end of the line portion 32b.
  • the via-hole conductor b11 penetrates the insulator layer 16d in the z-axis direction, and connects the upstream end of the line portion 32b and the downstream end of the line portion 32c.
  • the via-hole conductor b12 penetrates the insulator layer 16c in the z-axis direction, and connects the upstream end of the line portion 32c and the downstream end of the line portion 32d. As a result, the coil L2 is connected between the capacitor C2, the sub line S, and the external electrode 14c.
  • the shield conductor layer 26a is provided so as to cover substantially the entire surface of the insulating layer 16k, and is connected to the external electrodes 14g and 14h. That is, a ground potential is applied to the shield conductor layer 26a.
  • the shield conductor layer 26a is provided between the sub line S and the capacitors C1 and C2, and suppresses the electromagnetic coupling between the sub line S and the capacitors C1 and C2.
  • the shield conductor layers 26b and 26c are provided so as to cover substantially the entire surfaces of the insulator layers 16p and 16b, respectively, and are connected to the external electrodes 14g and 14h. That is, a ground potential is applied to the shield conductor layers 26b and 26c.
  • the shield conductor layer 26b is provided on the negative direction side in the z-axis direction from the main line M and the sub line S.
  • the shield conductor layer 26c is provided on the positive direction side in the z-axis direction from the coils L1 and L2. Thereby, the shield conductor layers 26b and 26c prevent the magnetic field generated in the main line M, the sub line S, and the coils L1 and L2 from leaking to the outside of the multilayer body 12f.
  • the coils L1 and L2 are each formed in a spiral shape that pivots in the opposite direction, the magnetic field generated between the two coils is reversed and the magnetic field coupling between the coils can be suppressed. Thereby, the coupling between the coupling port and the termination port can be suppressed, and the isolation characteristics can be improved.
  • FIG. 14 is an exploded perspective view of the laminated body 12g of the directional coupler 10g according to the seventh embodiment.
  • the external electrodes 14e and 14f are provided between the external electrodes 14e and 14h and between the external electrodes 14f and 14h. Is connected to a terminating resistor R3.
  • the capacitor C1 is connected between the external electrode 14c and the sub line S (more precisely, between the coil L1 and the sub line S) and between the termination resistor R3.
  • the capacitor C2 is connected between the external electrode 14d and the sub line S (more precisely, between the coil L2 and the sub line S) and between the termination resistor R3. Further, a potential such as a ground potential is not applied to the external electrodes 14e and 14f.
  • the external electrode 14h is used as a ground terminal to which a ground potential is applied.
  • the directional coupler 10g is provided with an insulator layer 16q provided with a resistance conductor layer 28b as a termination resistor R3 as shown in FIG.
  • the resistance conductor layer 28b is provided so as to connect between the external electrodes 14e and 14h and between the external electrodes 14f and 14h, and is a meandering linear conductor layer. It is.
  • the resistance conductor layer 28b has an impedance of 50 ⁇ , for example.
  • the capacitors C1 and C2 are terminated by the resistance conductor layer 28b.
  • the directional coupler 10g can also incorporate the termination resistor R3. In this case, the substrate on which the directional coupler 10g is mounted can be reduced in size by the space of the termination resistor R3, compared with the case where the termination resistor is provided outside.
  • FIG. 15 is an equivalent circuit diagram of the directional couplers 10h and 10i according to the eighth embodiment and the ninth embodiment.
  • FIG. 16 is an exploded perspective view of the laminated body 12h of the directional coupler 10h according to the seventh embodiment.
  • the directional coupler 10h has a circuit configuration in which the coil L1 is not provided in the directional coupler 10a shown in FIGS. Therefore, as shown in FIG. 16, the directional coupler 10h does not include the insulator layers 16f to 16j, the line portions 22a to 22d, the shield conductor layer 26a, and the via-hole conductors b3 to b7.
  • the line portion 20b is connected to the external electrode 14c.
  • FIG. 17 is a graph showing the coupling degree characteristic and isolation characteristic of a conventional directional coupler that does not have the low-pass filter LPF1.
  • FIG. 18 is a graph showing the coupling degree characteristic and the isolation characteristic of the directional coupler 10h.
  • shaft showed attenuation amount and the horizontal axis has shown the frequency.
  • the degree of coupling between the main line and the sub line increases as the signal frequency increases. Therefore, as shown in FIG. 17, in the coupling degree characteristic of the conventional directional coupler, the ratio of the power input from the input port and output to the coupling port increases as the frequency increases.
  • a low-pass filter LPF1 is connected between the external electrode 14c and the sub line S.
  • the low-pass filter LPF1 has an insertion loss characteristic in which the amount of attenuation increases as the frequency increases. Therefore, even if the power of the signal output from the sub line S to the external electrode 14c increases due to the increase in the frequency of the signal, the power of the signal is reduced by the low-pass filter LPF1. As a result, as shown in FIG. 18, in the directional coupler 10h, the coupling degree characteristic can be made closer to flat.
  • the directional coupler 10h shown in FIG. 18 is provided with a low-pass filter LPF1. As a result, the attenuation of the isolation characteristic does not increase.
  • FIG. 19 is an exploded perspective view of the multilayer body 12i of the directional coupler 10i according to the ninth embodiment.
  • the circuit configuration of the directional coupler 10i is the same as that of the directional coupler 10h, description thereof is omitted.
  • the difference between the directional coupler 10i and the directional coupler 10h is that, as shown in FIG. 19, the insulator layer 16n provided with the shield conductor layer 26b is provided between the insulator layers 16a and 16b. Is a point.
  • the shield conductor layer 26b is provided so as to cover substantially the entire surface of the insulator layer 16n, and is connected to the external electrodes 14e and 14f. That is, a ground potential is applied to the shield conductor layer 26b.
  • the shield conductor layer 26b is provided on the positive side of the main line M in the z-axis direction.
  • the shield conductive layer 26b is configured to sandwich the main line M and the sub line S from the z-axis direction together with the planar conductor layers 24a and 24c. For this reason, the shield conductor layer 26b and the planar conductor layers 24a and 24c prevent the magnetic fields generated in the main line M and the sub line S from leaking to the outside of the multilayer body 12i.
  • FIG. 20 is an exploded perspective view of the multilayer body 12j of the directional coupler 10j according to the tenth embodiment.
  • the circuit configuration of the directional coupler 10j is the same as that of the directional couplers 10h and 10i, description thereof is omitted.
  • the difference between the directional coupler 10j and the directional coupler 10i is that the stacking order of the main line M, the sub line S, the low-pass filter LPF1 (capacitor C1), and the shield conductor layer 26b is different.
  • the shield conductor layer 26b, the main line M, the sub line S, and the capacitor C1 are arranged in this order. Are lined up.
  • the capacitor C1, the sub line S, the main line M, and the shield conductor layer 26b are arranged in this order from the positive direction side to the negative direction side in the z-axis direction. .
  • the coupling characteristic is flattened while preventing the magnetic fields generated in the main line M and the sub-line S from leaking to the outside, similarly to the directional coupler 10i. You can get closer.
  • FIG. 21 is an equivalent circuit diagram of the directional coupler 10k according to the eleventh embodiment.
  • the circuit configuration of the directional coupler 10k will be described.
  • the directional coupler 10k includes external electrodes (terminals) 14a to 14h, a main line M, sub-lines S1 and S2, and low-pass filters LPF1 and LPF3 as circuit configurations.
  • the main line M is connected between the external electrodes 14g and 14h.
  • the sub line S1 is connected between the external electrodes 14c and 14a and is electromagnetically coupled to the main line M.
  • the sub line S2 is connected between the external electrodes 14d and 14b and is electromagnetically coupled to the main line M.
  • the low-pass filter LPF1 is connected between the external electrode 14c and the sub line S1, and has a characteristic that the amount of attenuation increases as the frequency increases in a predetermined frequency band.
  • the low-pass filter LPF1 includes a capacitor C1 and a coil L1.
  • the coil L1 is connected in series between the external electrode 14c and the sub line S1.
  • the capacitor C1 is connected between the sub line S1 and the external electrode 14c (more precisely, between the coil L1 and the external electrode 14c) and between the external electrodes 14e and 14f.
  • the low-pass filter LPF3 is connected between the external electrode 14b and the sub line S2, and has a characteristic that the amount of attenuation increases as the frequency increases in a predetermined frequency band.
  • the low-pass filter LPF3 includes a capacitor C3 and a coil L3.
  • the coil L3 is connected in series between the external electrode 14b and the sub line S2.
  • the capacitor C3 is connected between the sub line S2 and the external electrode 14b (more precisely, between the coil L3 and the external electrode 14b) and between the external electrodes 14e and 14f.
  • the external electrode 14g is used as an input port, and the external electrode 14h is used as an output port.
  • the external electrode 14c is used as a first coupling port, and the external electrode 14a is used as a terminate port terminated at 50 ⁇ .
  • the external electrode 14b is used as a second coupling port, and the external electrode 14d is used as a terminate port terminated at 50 ⁇ .
  • the external electrodes 14e and 14f are used as ground ports that are grounded.
  • FIG. 22 is an exploded perspective view of the multilayer body 12k of the directional coupler 10k according to the eleventh embodiment.
  • FIG. 12 is used for an external perspective view of the directional coupler 10k.
  • the directional coupler 10k includes a laminated body 12k, external electrodes 14 (14a to 14h), a main line M, sub-lines S1, S2, low-pass filters LPF1, LPF3, and a shield conductor layer 26a. , 26b.
  • the laminated body 12k has a rectangular parallelepiped shape as shown in FIG. 12, and as shown in FIG. 22, the insulator layer 16 (16a to 16l) is moved from the positive side to the negative side in the z-axis direction. It is configured by stacking them in order.
  • the insulator layer 16 is a dielectric ceramic and has a rectangular shape.
  • the external electrodes 14a, 14h, and 14b are provided on the side surface of the laminate 12k on the positive direction side in the y-axis direction so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction.
  • the external electrodes 14c, 14g, and 14d are provided on the side surface on the negative direction side in the y-axis direction of the multilayer body 12k so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the main line M includes a line portion 18a.
  • the line portion 18a is a linear conductor layer provided on the insulator layer 16d.
  • the line portion 18a extends in the y-axis direction and is connected to the external electrodes 14g and 14h. Thereby, the main line M is connected between the external electrodes 14g and 14h.
  • the sub line S1 includes a line portion 20a and via-hole conductors b1 to b4.
  • the line part 20a is a linear conductor layer provided on the negative side in the x-axis direction with respect to the line part 18a on the insulator layer 16c when viewed in plan from the positive direction side in the z-axis direction.
  • the line portion 20a extends in the y-axis direction in parallel with the line portion 18a, and is connected to the external electrode 14a.
  • the via-hole conductors b1 to b4 pass through the insulating layers 16c to 16f in the z-axis direction and are connected to each other.
  • the via-hole conductor b1 is connected to the end portion on the negative direction side in the y-axis direction of the line portion 20a.
  • the low pass filter LPF1 includes a coil L1 and a capacitor C1.
  • the coil L1 is composed of the line portion 22 (22a to 22d) and the via-hole conductors b5 to b7, and has a spiral shape that rotates counterclockwise as it goes from the positive direction side to the negative direction side in the z-axis direction. ing.
  • a counterclockwise upstream end is called an upstream end
  • a counterclockwise downstream end is called a downstream end.
  • the line portion 22a is a linear conductor layer provided on the insulator layer 16g, and its upstream end is connected to the via-hole conductor b4.
  • the line portions 22b and 22c are linear conductor layers provided on the insulator layers 16h and 16i, respectively.
  • the line portion 22d is a linear conductor layer provided on the insulator layer 16j, and its downstream end is connected to the external electrode 14c.
  • the via-hole conductor b5 penetrates the insulator layer 16g in the z-axis direction, and connects the downstream end of the line portion 22a and the upstream end of the line portion 22b.
  • the via-hole conductor b6 penetrates the insulator layer 16h in the z-axis direction, and connects the downstream end of the line portion 22b and the upstream end of the line portion 22c.
  • the via-hole conductor b7 penetrates the insulator layer 16i in the z-axis direction, and connects the downstream end of the line portion 22c and the upstream end of the line portion 22d.
  • the coil L1 is connected between the sub line S1 and the external electrode 14c.
  • the capacitor C1 is composed of a planar conductor layer 24 (24b, 24c).
  • the planar conductor layer 24c is provided so as to cover substantially the entire surface of the insulating layer 16l, and is connected to the external electrodes 14e and 14f.
  • the planar conductor layer 24b is provided on the insulator layer 16k and is connected to the external electrode 14c.
  • the planar conductor layer 24b has a rectangular shape and overlaps the planar conductor layer 24c when viewed in plan from the z-axis direction. Thereby, a capacitance is generated between the planar conductor layer 24c and the planar conductor layer 24b.
  • the capacitor C1 is connected between the external electrode 14c and the external electrodes 14e and 14f. That is, the capacitor C1 is connected between the coil L1 and the external electrode 14c and between the external electrodes 14e and 14f.
  • the sub-line S2 includes a line portion 40a and via-hole conductors b8 and b9.
  • the line portion 40a is a linear conductor layer provided on the positive side in the x-axis direction with respect to the line portion 18a on the insulator layer 16e when viewed in plan from the positive direction side in the z-axis direction.
  • the line portion 40a extends in the y-axis direction in parallel with the line portion 18a, and is connected to the external electrode 14d.
  • the via-hole conductors b8 and b9 pass through the insulator layers 16e and 16f in the z-axis direction and are connected to each other.
  • the via-hole conductor b8 is connected to the end of the line portion 40a on the positive side in the y-axis direction.
  • the low pass filter LPF3 includes a coil L3 and a capacitor C3.
  • the coil L3 is composed of the line portion 42 (42a to 42d) and the via-hole conductors b10 to b12, and has a spiral shape that rotates counterclockwise from the positive direction side to the negative direction side in the z-axis direction. ing.
  • the end portion on the upstream side in the counterclockwise direction is referred to as the upstream end
  • the end portion on the downstream side in the counterclockwise direction is referred to as the downstream end.
  • the line portion 42a is a linear conductor layer provided on the insulator layer 16g, and its upstream end is connected to the via-hole conductor b9.
  • the line portions 42b and 42c are linear conductor layers provided on the insulator layers 16h and 16i, respectively.
  • the line portion 42d is a linear conductor layer provided on the insulator layer 16j, and its downstream end is connected to the external electrode 14b.
  • the via-hole conductor b10 passes through the insulator layer 16g in the z-axis direction, and connects the downstream end of the line portion 42a and the upstream end of the line portion 42b.
  • the via-hole conductor b11 passes through the insulator layer 16h in the z-axis direction, and connects the downstream end of the line portion 42b and the upstream end of the line portion 42c.
  • the via-hole conductor b12 penetrates the insulator layer 16i in the z-axis direction, and connects the downstream end of the line portion 42c and the upstream end of the line portion 42d.
  • the coil L3 is connected between the sub line S2 and the external electrode 14d.
  • the capacitor C3 is composed of planar conductor layers 44b and 24c.
  • the planar conductor layer 24c is provided so as to cover substantially the entire surface of the insulating layer 16l, and is connected to the external electrodes 14e and 14f.
  • the planar conductor layer 44b is provided on the insulator layer 16k and is connected to the external electrode 14b.
  • the planar conductor layer 44b has a rectangular shape and overlaps the planar conductor layer 24c when viewed in plan from the z-axis direction. As a result, a capacitance is generated between the planar conductor layer 24c and the planar conductor layer 44b.
  • the capacitor C3 is connected between the external electrode 14b and the external electrodes 14e and 14f. That is, the capacitor C3 is connected between the coil L3 and the external electrode 14b and between the external electrodes 14e and 14f.
  • the shield conductor layers 26a and 26b are provided so as to cover substantially the entire surface of the insulator layers 16f and 16b, and are connected to the external electrodes 14e and 14f. That is, a ground potential is applied to the shield conductor layers 26a and 26b.
  • the shield conductor layer 26a is provided between the main line M and the sub lines S1, S2 and the coils L1, L3 in the z-axis direction, so that the sub lines S1, S2 and the coils L1, L3 are electromagnetically coupled. To suppress.
  • FIG. 23 is an equivalent circuit diagram of the directional coupler 101 according to the twelfth embodiment.
  • the circuit configuration of the directional coupler 10l will be described.
  • the directional coupler 10l includes external electrodes (terminals) 14a to 14h, a main line M, sub-lines S1 and S2, and low-pass filters LPF1 and LPF3 as circuit configurations. Since the configurations of the main line M, the sub-line S1, and the low-pass filter LPF1 of the directional coupler 101 are the same as the configurations of the main line M, the sub-line S1, and the low-pass filter LPF1 of the directional coupler 10k, the description thereof is omitted.
  • the low-pass filter LPF3 is connected between the external electrode 14d and the sub line S2, and has a characteristic that the amount of attenuation increases as the frequency increases in a predetermined frequency band.
  • the low-pass filter LPF3 includes a capacitor C3 and a coil L3.
  • the coil L3 is connected in series between the external electrode 14d and the sub line S2.
  • the capacitor C3 is connected between the sub line S2 and the external electrode 14d (more precisely, between the coil L3 and the external electrode 14d) and between the external electrodes 14e and 14f.
  • the external electrode 14g is used as an input port, and the external electrode 14h is used as an output port.
  • the external electrode 14c is used as a first coupling port, and the external electrode 14a is used as a terminate port terminated at 50 ⁇ .
  • the external electrode 14d is used as a second coupling port, and the external electrode 14b is used as a terminate port terminated at 50 ⁇ .
  • the external electrodes 14e and 14f are used as ground ports that are grounded.
  • the signal output from the external electrode 14h is partially reflected by an antenna or the like connected to the external electrode 14h.
  • a reflection signal is input to the main line M from the external electrode 14h. Since the main line M and the sub line S2 are electromagnetically coupled, a signal having power proportional to the power of the reflected signal input from the external electrode 14d is output from the external electrode 14d.
  • FIG. 24 is an exploded perspective view of the laminate 12l of the directional coupler 10l according to the twelfth embodiment.
  • FIG. 12 is used for an external perspective view of the directional coupler 10l.
  • the directional coupler 10l includes a laminate 12l, external electrodes 14 (14a to 14h), a main line M, sub-lines S1, S2, low-pass filters LPF1, LPF3, and a shield conductor layer 26a. , 26b.
  • the laminated body 12l has a rectangular parallelepiped shape as shown in FIG. 12, and as shown in FIG. 24, the insulator layer 16 (16a to 16l) is moved from the positive direction side to the negative direction side in the z-axis direction. It is configured by stacking them in order.
  • the insulator layer 16 is a dielectric ceramic and has a rectangular shape.
  • the external electrodes 14a, 14h, and 14b are provided so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction on the side surface on the positive direction side in the y-axis direction of the laminate 12l.
  • the external electrodes 14c, 14g, and 14d are provided on the side surface on the negative direction side in the y-axis direction of the multilayer body 12l so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the main line M is composed of a line portion 18a.
  • the line portion 18a is a linear conductor layer provided on the insulator layer 16d.
  • the line portion 18a extends in the y-axis direction and is connected to the external electrodes 14g and 14h. Thereby, the main line M is connected between the external electrodes 14g and 14h.
  • the configurations of the main line M, the sub-line S1, and the low-pass filter LPF1 of the directional coupler 101 are the same as the configurations of the main line M, the sub-line S1, and the low-pass filter LPF1 of the directional coupler 10k, description thereof is omitted.
  • the sub-line S2 includes a line portion 40a and via-hole conductors b8 and b9.
  • the line portion 40a is a linear conductor layer provided on the positive side in the x-axis direction with respect to the line portion 18a on the insulator layer 16e when viewed in plan from the positive direction side in the z-axis direction.
  • the line portion 40a extends in the y-axis direction in parallel with the line portion 18a and is connected to the external electrode 14b.
  • the via-hole conductors b8 and b9 pass through the insulator layers 16e and 16f in the z-axis direction and are connected to each other.
  • the via-hole conductor b8 is connected to the end portion on the negative direction side in the y-axis direction of the line portion 40a.
  • the low pass filter LPF3 includes a coil L3 and a capacitor C3.
  • the coil L3 is composed of the line portion 42 (42a to 42d) and the via-hole conductors b10 to b12, and has a spiral shape that rotates clockwise from the positive direction side to the negative direction side in the z-axis direction. Yes.
  • an end portion on the upstream side in the clockwise direction is called an upstream end
  • an end portion on the downstream side in the clockwise direction is called a downstream end.
  • the line portion 42a is a linear conductor layer provided on the insulator layer 16g, and its upstream end is connected to the via-hole conductor b9.
  • the line portions 42b and 42c are linear conductor layers provided on the insulator layers 16h and 16i, respectively.
  • the line portion 42d is a linear conductor layer provided on the insulator layer 16j, and its downstream end is connected to the external electrode 14d.
  • the via-hole conductor b10 passes through the insulator layer 16g in the z-axis direction, and connects the downstream end of the line portion 42a and the upstream end of the line portion 42b.
  • the via-hole conductor b11 passes through the insulator layer 16h in the z-axis direction, and connects the downstream end of the line portion 42b and the upstream end of the line portion 42c.
  • the via-hole conductor b12 penetrates the insulator layer 16i in the z-axis direction, and connects the downstream end of the line portion 42c and the upstream end of the line portion 42d.
  • the coil L3 is connected between the sub line S2 and the external electrode 14d.
  • the capacitor C3 is composed of planar conductor layers 44b and 24c.
  • the planar conductor layer 24c is provided so as to cover substantially the entire surface of the insulating layer 16l, and is connected to the external electrodes 14e and 14f.
  • the planar conductor layer 44b is provided on the insulator layer 16k and is connected to the external electrode 14b.
  • the planar conductor layer 44b has a rectangular shape and overlaps the planar conductor layer 24c when viewed in plan from the z-axis direction. As a result, a capacitance is generated between the planar conductor layer 24c and the planar conductor layer 44b.
  • the capacitor C3 is connected between the external electrode 14b and the external electrodes 14e and 14f. That is, the capacitor C3 is connected between the coil L3 and the external electrode 14b and between the external electrodes 14e and 14f.
  • the shield conductor layer 26a is provided so as to cover substantially the entire surface of the insulator layer 16f, and is connected to the external electrodes 14e and 14f. That is, a ground potential is applied to the shield conductor layer 26a.
  • the shield conductor layer 26a is provided between the main line M and the sub lines S1, S2 and the coils L1, L3 in the z-axis direction, so that the sub lines S1, S2 and the coils L1, L3 are electromagnetically coupled. To suppress.
  • the main line M or the sub-lines S, S1, S2 and the low-pass filters LPF1, LPF2, LPF3 are arranged in the z-axis direction.
  • the positional relationship between the main line M or the sub lines S, S1, S2 and the low-pass filters LPF1, LPF2, LPF3 is not limited to this.
  • the main line M or the sub lines S, S1, S2 and the low-pass filters LPF1, LPF2, LPF3 may be arranged so as to be aligned in the x-axis direction or the y-axis direction.
  • the directional couplers 10a to 10l are assumed to be multilayer electronic components in which an insulating layer 16 made of a dielectric ceramic is laminated. However, the directional couplers 10a to 10l may not be laminated electronic components.
  • the directional couplers 10a to 10l may be constituted by, for example, a semiconductor chip. The number of stacked semiconductor chips is smaller than the number of stacked electronic components. Therefore, it is difficult to arrange the main line M, the sub lines S, S1, S2, and the low-pass filters LPF1, LPF2, LPF3 in the z-axis direction.
  • the main line M, the sub lines S, S1, S2 and the low-pass filters LPF1, LPF2, LPF3 so as to be aligned in the x-axis direction or the y-axis direction.
  • the predetermined frequency band is set to 824 MHz to 1910 MHz.
  • the predetermined frequency band is not limited to this.
  • the frequency bands of signals that can be input to the directional couplers 10a to 10l include, for example, the following six types in the case of WCDMA.
  • Band5 824MHz to 849MHz
  • Band8 880MHz to 915MHz
  • Band3 1710MHz to 1785MHz
  • Band 2 1850 MHz to 1910 MHz
  • Band7 2500MHz-2570MHz
  • the predetermined frequency band is a frequency band obtained by arbitrarily combining the above six types of frequency bands.
  • frequency bands obtained by combining Band1, Band2, Band3, Band5, and Band8 are 824 MHz to 915 MHz and 1710 MHz to 1980 MHz. Therefore, the predetermined frequency band in this case is 824 MHz to 1980 MHz.
  • the present invention is useful for directional couplers, and is particularly excellent in that the degree of coupling characteristic can be made flat.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 方向性結合器における結合度特性を平坦に近づけることである。 所定の周波数帯域において用いられる方向性結合器(10a)。主線路(M)は、外部電極(14a)と外部電極(14b)との間に設けられている。副線路(S)は、外部電極(14c)と外部電極(14d)との間に設けられ、かつ、主線路(M)と電磁気的に結合している。ローパスフィルタ(LPF1)は、外部電極(14c)と副線路(S)との間に設けられ、所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している。

Description

方向性結合器
 本発明は、方向性結合器に関し、より特定的には、高周波信号により通信を行う無線通信機器等に用いられる方向性結合器に関する。
 従来の方向性結合器としては、例えば、特許文献1に記載の方向性結合器が知られている。該方向性結合器は、コイル状導体及び地導体が形成された複数の誘電体層が積層されて構成されている。コイル状導体は、2本設けられている。一方のコイル状導体は、主線路を構成しており、他方のコイル状導体は副線路を構成している。主線路と副線路とは、互いに電磁気的に結合している。また、地導体は、積層方向からコイル状導体を挟んでいる。地導体には、接地電位が印加される。以上のような方向性結合器では、主線路に信号を入力すると、副線路からは、該信号の電力に比例する電力を有する信号が出力される。
 しかしながら、特許文献1に記載の方向性結合器では、主線路と副線路との結合度が、主線路に入力してくる信号の周波数が高くなるにしたがって高くなってしまう(すなわち、結合度特性が平坦ではない)という問題を有している。そのため、同じ電力の信号が主線路に入力したとしても、信号の周波数が変動すると、副線路から出力されてくる信号の電力が変動してしまう。よって、副線路に接続されているICでは、信号の周波数に基づいて、信号の電力を補正する機能を有している必要がある。
特開平8-237012号公報
 そこで、本発明の目的は、方向性結合器における結合度特性を平坦に近づけることである。
 本発明の一形態に係る方向性結合器は、所定の周波数帯域において用いられる方向性結合器であって、第1の端子ないし第4の端子と、前記第1の端子と前記第2の端子との間に接続されている主線路と、前記第3の端子と前記第4の端子との間に接続され、かつ、前記主線路と電磁気的に結合している第1の副線路と、前記第3の端子と前記第1の副線路との間に接続されている第1のローパスフィルタであって、前記所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している第1のローパスフィルタと、を備えていること、を特徴とする。
 本発明によれば、方向性結合器における結合度特性を平坦に近づけることができる。
第1の実施形態ないし第4の実施形態に係る方向性結合器の等価回路図である。 ローパスフィルタを有さない従来の方向性結合器の結合度特性及びアイソレーション特性を示したグラフである。 ローパスフィルタを有さない従来の方向性結合器の結合度特性、及び、ローパスフィルタの挿入損失特性を示したグラフである。 第1の実施形態に係る方向性結合器の結合度特性及びアイソレーション特性を示したグラフである。 第1の実施形態ないし第5の実施形態に係る方向性結合器の外観斜視図である。 第1の実施形態に係る方向性結合器の積層体の分解斜視図である。 第2の実施形態に係る方向性結合器の積層体の分解斜視図である。 第3の実施形態に係る方向性結合器の積層体の分解斜視図である。 第4の実施形態に係る方向性結合器の積層体の分解斜視図である。 第5の実施形態に係る方向性結合器の積層体の分解斜視図である。 第6の実施形態に係る方向性結合器の等価回路図である。 第6の実施形態及び第7の実施形態に係る方向性結合器の外観斜視図である。 第6の実施形態に係る方向性結合器の積層体の分解斜視図である。 第7の実施形態に係る方向性結合器の積層体の分解斜視図である。 第8の実施形態及び第9の実施形態に係る方向性結合器の等価回路図である。 第7の実施形態に係る方向性結合器の積層体の分解斜視図である。 ローパスフィルタを有さない従来の方向性結合器の結合度特性及びアイソレーション特性を示したグラフである。 図18は、方向性結合器の結合度特性及びアイソレーション特性を示したグラフである。 第9の実施形態に係る方向性結合器の積層体の分解斜視図である。 第10の実施形態に係る方向性結合器の積層体の分解斜視図である。 第11の実施形態に係る方向性結合器の等価回路図である。 第11の実施形態に係る方向性結合器の積層体の分解斜視図である。 第12の実施形態に係る方向性結合器の等価回路図である。 第12の実施形態に係る方向性結合器の積層体の分解斜視図である。
 以下に、本発明の実施形態に係る方向性結合器について説明する。
(第1の実施形態)
 以下に、第1の実施形態に係る方向性結合器について図面を参照しながら説明する。図1は、第1の実施形態ないし第4の実施形態に係る方向性結合器10a~10dの等価回路図である。
 方向性結合器10aの回路構成について説明する。方向性結合器10aは、所定の周波数帯域において用いられる。所定の周波数帯域とは、例えば、824MHz~915MHz(GSM800/900)の周波数を有する信号及び1710MHz~1910MHz(GSM1800/1900)の周波数を有する信号が方向性結合器10aに入力される場合には、824MHz~1910MHzである。
 方向性結合器10aは、外部電極(端子)14a~14f、主線路M、副線路S及びローパスフィルタLPF1を回路構成として備えている。主線路Mは、外部電極14a,14b間に接続されている。副線路Sは、外部電極14c,14d間に接続され、かつ、主線路Mと電磁気的に結合している。
 また、ローパスフィルタLPF1は、外部電極14cと副線路Sとの間に接続され、所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している。ローパスフィルタLPF1は、コンデンサC1及びコイルL1を含んでいる。コイルL1は、外部電極14cと副線路Sとの間に直列に接続されている。コンデンサC1は、副線路Sと外部電極14cとの間(より正確には、コイルL1と外部電極14cの間)と、外部電極14e,14fとの間に接続されている。
 以上のような方向性結合器10aでは、外部電極14aが入力ポートとして用いられ、外部電極14bが出力ポートとして用いられる。また、外部電極14cは、カップリングポートとして用いられ、外部電極14dは、50Ωで終端化されるターミネートポートとして用いられる。また、外部電極14e,14fは、接地される接地ポートとして用いられる。そして、外部電極14aに対して信号を入力すると、該信号が外部電極14bから出力される。更に、主線路Mと副線路Sとが電磁気的に結合しているので、信号の電力に比例する電力を有する信号が外部電極14cから出力する。
 以上のような回路構成を有する方向性結合器10aによれば、以下に説明するように、結合度特性を平坦に近づけることができる。図2は、ローパスフィルタLPF1を有さない従来の方向性結合器の結合度特性及びアイソレーション特性を示したグラフである。図3は、ローパスフィルタLPF1を有さない従来の方向性結合器の結合度特性、及び、ローパスフィルタLPF1の挿入損失特性を示したグラフである。図4は、方向性結合器10aの結合度特性及びアイソレーション特性を示したグラフである。図2ないし図4は、シミュレーション結果を示している。なお、結合度特性とは、外部電極14a(入力ポート)に入力される信号と外部電極14c(カップリングポート)から出力される信号との間の電力の比(すなわち、減衰量)、及び、周波数の関係であり、アイソレーション特性とは、外部電極14b(出力ポート)から入力される信号と外部電極14c(カップリングポート)から出力される信号との間の電力の比(すなわち、減衰量)、及び、周波数の関係である。また、挿入損失特性とは、ローパスフィルタの減衰量と周波数との関係である。図2ないし図4において、縦軸は減衰量を示し、横軸は周波数を示している。
 従来の方向性結合器では、主線路と副線路との結合度は、信号の周波数が高くなるにしたがって、高くなる。よって、図2に示すように、従来の方向性結合器の結合度特性では、周波数が高くなるにしたがって、入力ポートから入力され、カップリングポートへ出力される電力の比が増加する。
 そこで、方向性結合器10aでは、外部電極14cと副線路Sとの間にローパスフィルタLPF1が接続されている。ローパスフィルタLPF1は、図3に示すように、周波数が高くなるにしたがって、減衰量が増加する挿入損失特性を有している。そのため、信号の周波数が高くなることにより、副線路Sから外部電極14cに出力される信号の電力が大きくなったとしても、ローパスフィルタLPF1により該信号の電力が低減される。その結果、図4に示すように、方向性結合器10aにおいて、結合度特性を平坦に近づけることができる。
 なお、所定の周波数帯域において、方向性結合器10aのローパスフィルタLPF1を除く部分(すなわち、主線路Mと副線路S)の結合度特性の傾きの平均値とローパスフィルタLPF1の挿入損失特性の傾きの平均値とが、互いに逆の符号を有し、かつ、略等しい絶対値を有していることが望ましい。これにより、方向性結合器10aの結合度特性をより平坦に近づけることが可能となる。
 また、図3に示された方向性結合器10aと図2に示された従来の方向性結合器のアイソレーション特性とを比較して、方向性結合器10aにおいては、ローパスフィルタLPF1が設けられることにより、アイソレーション特性の減衰量が増えることがない。
 次に、方向性結合器10aの具体的構成について図面を参照しながら説明する。図5は、第1の実施形態ないし第5の実施形態に係る方向性結合器10a~10eの外観斜視図である。図6は、第1の実施形態に係る方向性結合器10aの積層体12aの分解斜視図である。以下では、積層方向をz軸方向と定義し、z軸方向から平面視したときの方向性結合器10aの長辺方向をx軸方向と定義し、z軸方向から平面視したときの方向性結合器10aの短辺方向をy軸方向と定義する。なお、x軸、y軸、z軸は、互いに直交している。
 方向性結合器10aは、図5及び図6に示すように、積層体12a、外部電極14(14a~14f)、主線路M、副線路S、ローパスフィルタLPF1及びシールド導体層26aを備えている。積層体12aは、図5に示すように、直方体状をなしており、図6に示すように、絶縁体層16(16a~16m)がz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されている。絶縁体層16は、誘電体セラミックであり、長方形状をなしている。
 外部電極14a,14e,14bは、積層体12aのy軸方向の正方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。外部電極14c,14f,14dは、積層体12aのy軸方向の負方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。
 主線路Mは、図6に示すように、線路部18(18a,18b)及びビアホール導体b1により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、時計回りに旋廻する螺線状をなしている。ここで、主線路Mにおいて、時計回りの上流側の端部を上流端と呼び、時計回りの下流側の端部を下流端と呼ぶ。線路部18aは、絶縁体層16b上に設けられている線状の導体層であり、その上流端は、外部電極14aに接続されている。線路部18bは、絶縁体層16c上に設けられている線状の導体層であり、その下流端は、外部電極14bに接続されている。ビアホール導体b1は、絶縁体層16bをz軸方向に貫通しており、線路部18aの下流端と線路部18bの上流端とを接続している。これにより、主線路Mは、外部電極14a,14b間に接続されている。
 副線路Sは、図6に示すように、線路部20(20a,20b)及びビアホール導体b2~b4により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺線状をなしている。すなわち、副線路Sは、主線路Mと逆方向に旋廻している。更に、副線路Sにより囲まれている領域は、z軸方向から平面視したときに、主線路Mにより囲まれている領域と重なっている。すなわち、主線路Mと副線路Sとは、絶縁体層16cを挟んで対向している。これにより、主線路Mと副線路Sとが電磁気的に結合している。ここで、副線路Sにおいて、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。線路部20aは、絶縁体層16d上に設けられている線状の導体層であり、その上流端は、外部電極14dに接続されている。線路部20bは、絶縁体層16e上に設けられている線状の導体層である。ビアホール導体b2は、絶縁体層16dをz軸方向に貫通しており、線路部20aの下流端と線路部20bの上流端とを接続している。また、ビアホール導体b3,b4は、絶縁体層16e,16fをz軸方向に貫通しており、互いに接続されている。そして、ビアホール導体b3は、線路部20bの下流端に接続されている。
 ローパスフィルタLPF1は、コイルL1及びコンデンサC1により構成されている。コイルL1は、線路部22(22a~22d)及びビアホール導体b5~b7により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺旋状をなしている。ここで、コイルL1において、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。線路部22aは、絶縁体層16g上に設けられている線状の導体層であり、その上流端は、ビアホール導体b4に接続されている。線路部22b,22cはそれぞれ、絶縁体層16h,16i上に設けられている線状の導体層である。線路部22dは、絶縁体層16j上に設けられている線状の導体層であり、その下流端は、外部電極14cに接続されている。ビアホール導体b5は、絶縁体層16gをz軸方向に貫通しており、線路部22aの下流端と線路部22bの上流端とを接続している。ビアホール導体b6は、絶縁体層16hをz軸方向に貫通しており、線路部22bの下流端と線路部22cの上流端とを接続している。ビアホール導体b7は、絶縁体層16iをz軸方向に貫通しており、線路部22cの下流端と線路部22dの上流端とを接続している。これにより、コイルL1は、副線路Sと外部電極14cとの間に接続されている。
 コンデンサC1は、面状導体層24(24a~24c)により構成されている。面状導体層24a,24cはそれぞれ、絶縁体層16k,16mの略全面を覆うように設けられており、外部電極14e,14fに接続されている。面状導体層24bは、絶縁体層16lに設けられており、外部電極14cに接続されている。面状導体層24bは、長方形状をなしており、z軸方向から平面視したときに、面状導体層24a,24cに重なっている。これにより、面状導体層24a,24cと面状導体層24bとの間には容量が発生している。そして、コンデンサC1は、外部電極14cと外部電極14e,14fとの間に接続されている。すなわち、コンデンサC1は、コイルL1と外部電極14cの間と、外部電極14e,14fとの間に接続されている。
 シールド導体層26aは、絶縁体層16fの略全面を覆うように設けられており、外部電極14e,14fに接続されている。すなわち、シールド導体層26aには、接地電位が印加されている。シールド導体層26aは、z軸方向において、主線路M及び副線路SとコイルL1との間に設けられることにより、副線路SとコイルL1とが電磁気的に結合することを抑制している。
(第2の実施形態)
 以下に、第2の実施形態に係る方向性結合器10bの構成について図面を参照しながら説明する。図7は、第2の実施形態に係る方向性結合器10bの積層体12bの分解斜視図である。
 方向性結合器10bの回路構成は、方向性結合器10aと同じであるので説明を省略する。方向性結合器10bと方向性結合器10aとの相違点は、図7に示すように、シールド導体層26bが設けられた絶縁体層16nが、絶縁体層16a,16b間に設けられている点である。
 より詳細には、シールド導体層26bは、絶縁体層16nの略全面を覆うように設けられており、外部電極14e,14fに接続されている。すなわち、シールド導体層26bには、接地電位が印加されている。シールド導体層26bは、主線路Mのz軸方向の正方向側に設けられている。これにより、シールド導電層26bは面状導体層24a、24cと共に、主線路M、副線路S及びコイルL1をz軸方向から挟むように構成される。このため、主線路M、副線路S及びコイルL1で発生した磁界が積層体12bの外部へと漏れることが、シールド導体層26b及び面状導体層24a、24cにより防止される。
(第3の実施形態)
 以下に、第3の実施形態に係る方向性結合器10cの構成について図面を参照しながら説明する。図8は、第3の実施形態に係る方向性結合器10cの積層体12cの分解斜視図である。
 方向性結合器10cの回路構成は、方向性結合器10a,10bと同じであるので説明を省略する。方向性結合器10cと方向性結合器10bとの相違点は、主線路M、副線路S、ローパスフィルタLPF1(コイルL1及びコンデンサC1)、シールド導体層26a,26bの積層順が異なっている点である。
 より詳細には、方向性結合器10bでは、図7に示すように、z軸方向の正方向側から負方向側へと、シールド導体層26b、主線路M、副線路S、シールド導体層26a、コイルL1、コンデンサC1の順に並んでいる。一方、方向性結合器10cでは、図8に示すように、z軸方向の正方向側から負方向側へと、コンデンサC1、コイルL1、シールド導体層26a、副線路S,主線路M、シールド導体層26bの順に並んでいる。
 以上のような構成を有する方向性結合器10cによっても、方向性結合器10bと同様に、主線路M、副線路S及びコイルL1で発生した磁界が外部へ漏れることを防ぎながら、結合度特性を平坦に近づけることができる。
(第4の実施形態)
 以下に、第4の実施形態に係る方向性結合器10dの構成について図面を参照しながら説明する。図9は、第4の実施形態に係る方向性結合器10dの積層体12dの分解斜視図である。
 方向性結合器10dの回路構成は、方向性結合器10a,10bと同じであるので説明を省略する。方向性結合器10dと方向性結合器10aとの相違点は、主線路M、副線路S、ローパスフィルタLPF1(コイルL1及びコンデンサC1)、シールド導体層26aの積層順が異なっている点である。
 より詳細には、方向性結合器10aでは、図6に示すように、z軸方向の正方向側から負方向側へと、主線路M、副線路S、シールド導体層26a、コイルL1、コンデンサC1の順に並んでいる。一方、方向性結合器10dでは、図9に示すように、z軸方向の正方向側から負方向側へと、コイルL1、シールド導体層26a、副線路S、主線路M、コンデンサC1の順に並んでいる。
 以上のような構成を有する方向性結合器10dによっても、方向性結合器10aと同様に、結合度特性を平坦に近づけることができる。
 更に、方向性結合器10dでは、主線路M及び副線路Sのz軸方向の負方向側にコンデンサC1が設けられている。これにより、面状導体層24a,24cは、シールド導体層26aと共に、主線路M及び副線路Sをz軸方向から挟むようになる。よって、主線路M及び副線路Sで発生した磁界が積層体12dの外部へと漏れることが、面状導体層24a,24c及びシールド導体層26aにより防止される。すなわち、方向性結合器10dでは、主線路M及び副線路Sが発生した電界が積層体12dの外部に漏れることを防止するための新たなシールド導体層26を追加する必要がない。
(第5の実施形態)
 以下に、第5の実施形態に係る方向性結合器10eの構成について図面を参照しながら説明する。図10は、第5の実施形態に係る方向性結合器10eの積層体12eの分解斜視図である。
 方向性結合器10eは、図1に示す方向性結合器10aの回路構成において、外部電極14dと外部電極14eとの間に、外部電極14dを終端化するための終端抵抗Rが追加された回路構成を有している。そして、方向性結合器10eでは、図10に示すように、終端抵抗Rとしての抵抗導体層28aが絶縁体層16jに設けられている。
 より詳細には、抵抗導体層28aは、図10に示すように、外部電極14dと外部電極14eとの間に接続されており、蛇行している線状の導体層である。抵抗導体層28aは、例えば、50Ωのインピーダンスを有している。このように、方向性結合器10eは、終端抵抗Rを内蔵することもできる。この場合、外部に終端抵抗を設けた時と比較して、この方向性結合器が搭載される基板を終端抵抗のスペース分だけ小型化できる。
(第6の実施形態)
 以下に、第6の実施形態に係る方向性結合器について図面を参照しながら説明する。図11は、第6の実施形態に係る方向性結合器10fの等価回路図である。
 方向性結合器10fの回路構成について説明する。方向性結合器10fにおけるローパスフィルタLPF1の構成は、方向性結合器10aにおけるローパスフィルタLPF1の構成と異なっている。具体的には、方向性結合器10aにおけるローパスフィルタLPF1では、コンデンサC1は、図1に示すように、外部電極14cとコイルL1との間と、外部電極14e,14fとの間に接続されていた。これに対して、方向性結合器10fにおけるローパスフィルタLPF1では、コンデンサC1は、図11に示すように、副線路SとコイルL1との間と、外部電極14eとの間に接続されている。これにより、副線路Sから外部電極14c側へと出力される信号の内、不要な信号は、コイルL1を通過することなく、コンデンサC1及び外部電極14eを経由して、方向性結合器10f外へと出力されるようになる。そのため、不要な信号が、コイルL1にて反射して副線路S側へと戻ることが抑制されるようになる。
 また、方向性結合器10fでは、方向性結合器10aに対して、ローパスフィルタLPF2が追加されている。具体的には、ローパスフィルタLPF2は、外部電極14dと副線路Sとの間に接続され、所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している。ローパスフィルタLPF2は、コンデンサC2及びコイルL2を含んでいる。コイルL2は、外部電極14dと副線路Sとの間に直列に接続されている。コンデンサC2は、副線路Sと外部電極14dとの間(より正確には、コイルL2と副線路Sの間)と、外部電極14fとの間に接続されている。
 以上のような方向性結合器10fは、外部電極14c,14dの双方をカップリングポートとして用いることができる。より詳細には、方向性結合器10fでは、第1の使用方法として、方向性結合器10aと同様に、外部電極14aが入力ポートとして用いられ、外部電極14bが出力ポートとして用いられる。外部電極14cは、カップリングポートとして用いられ、外部電極14dは、ターミネートポートとして用いられる。外部電極14e,14fは、ターミネートポートとして用いられる。この場合には、外部電極14aに対して信号が入力すると、該信号が外部電極14bから出力する。更に、主線路Mと副線路Sとが電磁気的に結合しているので、信号の電力に比例する電力を有する信号が外部電極14cから出力する。
 更に、方向性結合器10fでは、第2の使用方法として、外部電極14bが入力ポートとして用いられ、外部電極14aが出力ポートとして用いられる。外部電極14dは、カップリングポートとして用いられ、外部電極14cは、ターミネートポートとして用いられる。外部電極14e,14fは、ターミネートポートとして用いられる。この場合には、外部電極14bに対して信号が入力すると、該信号が外部電極14aから出力する。更に、主線路Mと副線路Sとが電磁気的に結合しているので、信号の電力に比例する電力を有する信号が外部電極14dから出力する。
 以上のような方向性結合器10fは、例えば、携帯電話等の無線通信端末の送受信回路に適用可能である。すなわち、送信信号の電力の検出時には14aを入力ポートとして用い、アンテナからの反射電力の検出時には外部電極14bを入力ポートとして用いればよい。そして、方向性結合器10fでは、外部電極14a,14bのいずれが入力ポートとして用いられたとしても、ローパスフィルタLPF1,LPF2が設けられているので、結合度特性を平坦に近づけることができる。
 また、方向性結合器10fでは、外部電極14g,14hと接地電位との間に終端抵抗R1,R2が接続されている。これにより、外部電極14g,14hからローパスフィルタLPF1,LPF2を介して外部電極14c,14dへと信号が反射することが抑制される。
 次に、方向性結合器10fの具体的構成について図面を参照しながら説明する。図12は、第6の実施形態及び第7の実施形態に係る方向性結合器10f,10gの外観斜視図である。図13は、第6の実施形態に係る方向性結合器10fの積層体12fの分解斜視図である。以下では、積層方向をz軸方向と定義し、z軸方向から平面視したときの方向性結合器10fの長辺方向をx軸方向と定義し、z軸方向から平面視したときの方向性結合器10fの短辺方向をy軸方向と定義する。なお、x軸、y軸、z軸は、互いに直交している。
 方向性結合器10fは、図12及び図13に示すように、積層体12f、外部電極14(14a~14h)、主線路M、副線路S、ローパスフィルタLPF1,LPF2及びシールド導体層26(26a~26c)を備えている。積層体12fは、図12に示すように、直方体状をなしており、図13に示すように、絶縁体層16(16a~16p)がz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されている。絶縁体層16は、誘電体セラミックであり、長方形状をなしている。
 外部電極14a,14h,14bは、積層体12fのy軸方向の正方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。外部電極14c,14g,14dは、積層体12fのy軸方向の負方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。外部電極14eは、積層体12fのx軸方向の負方向側の側面に設けられている。外部電極14fは、積層体12fのx軸方向の正方向側の側面に設けられている。
 主線路Mは、図13に示すように、線路部18(18a,18b)及びビアホール導体b1により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺線状をなしている。ここで、主線路Mにおいて、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。線路部18aは、絶縁体層16o上に設けられている線状の導体層であり、その下流端は、外部電極14aに接続されている。線路部18bは、絶縁体層16n上に設けられている線状の導体層であり、その上流端は、外部電極14bに接続されている。ビアホール導体b1は、絶縁体層16nをz軸方向に貫通しており、線路部18aの上流端と線路部18bの下流端とを接続している。これにより、主線路Mは、外部電極14a,14b間に接続されている。
 副線路Sは、図13に示すように、線路部20(20a,20b)及びビアホール導体b2~b6,b13~b15により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、時計回りに旋廻する螺線状をなしている。すなわち、副線路Sは、主線路Mと逆方向に旋廻している。更に、副線路Sにより囲まれている領域は、z軸方向から平面視したときに、主線路Mにより囲まれている領域と重なっている。すなわち、主線路Mと副線路Sとは、絶縁体層16mを挟んで対向している。これにより、主線路Mと副線路Sとが電磁気的に結合している。ここで、副線路Sにおいて、時計回りの上流側の端部を上流端と呼び、時計回りの下流側の端部を下流端と呼ぶ。線路部20aは、絶縁体層16m上に設けられている線状の導体層である。線路部20bは、絶縁体層16l上に設けられている線状の導体層である。ビアホール導体b2は、絶縁体層16lをz軸方向に貫通しており、線路部20aの上流端と線路部20bの下流端とを接続している。また、ビアホール導体b3,b4,b5,b6はそれぞれ、絶縁体層16l,16k,16j,16iをz軸方向に貫通しており、互いに接続されている。そして、ビアホール導体b3は、線路部20aの下流端に接続されている。また、ビアホール導体b13,b14,b15はそれぞれ、絶縁体層16k,16j,16iをz軸方向に貫通しており、互いに接続されている。そして、ビアホール導体b13は、線路部20bの上流端に接続されている。
 ローパスフィルタLPF1は、コイルL1及びコンデンサC1により構成されている。コンデンサC1は、面状導体層24(24a~24d)及びビアホール導体b16,b17により構成されている。面状導体層24a,24cはそれぞれ、絶縁体層16j,16hに設けられており、外部電極14eに接続されている長方形状の導体層である。面状導体層24b,24dは、絶縁体層16i,16gに設けられている。面状導体層24b,24dは、長方形状をなしており、z軸方向から平面視したときに、面状導体層24a,24cに重なっている。これにより、面状導体層24a,24cと面状導体層24b,24dとの間には容量が発生している。ビアホール導体b16,b17はそれぞれ、絶縁体層16h,16gをz軸方向に貫通しており、互いに接続されている。そして、ビアホール導体b16,b17は、面状導体層24b,24dを接続している。また、面状導体層24bには、ビアホール導体b15が接続されている。これにより、コンデンサC1は、副線路Sの上流端に接続されている。
 コイルL1は、線路部22(22a~22d)及びビアホール導体b18~b21により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、時計回りに旋廻する螺旋状をなしている。ここで、コイルL1において、時計回りの上流側の端部を上流端と呼び、時計回りの下流側の端部を下流端と呼ぶ。線路部22a,22b,22cはそれぞれ、絶縁体層16f,16e,16d上に設けられている線状の導体層である。線路部22dは、絶縁体層16c上に設けられている線状の導体層であり、その上流端は、外部電極14cに接続されている。ビアホール導体b18は、絶縁体層16fをz軸方向に貫通しており、線路部22aの下流端と面状導体層24dとを接続している。ビアホール導体b19は、絶縁体層16eをz軸方向に貫通しており、線路部22aの上流端と線路部22bの下流端とを接続している。ビアホール導体b20は、絶縁体層16dをz軸方向に貫通しており、線路部22bの上流端と線路部22cの下流端とを接続している。ビアホール導体b21は、絶縁体層16cをz軸方向に貫通しており、線路部22cの上流端と線路部22dの下流端とを接続している。これにより、コイルL1は、コンデンサC1及び副線路Sと外部電極14cとの間に接続されている。
 ローパスフィルタLPF2は、コイルL2及びコンデンサC2により構成されている。コンデンサC2は、面状導体層34(34a~34d)及びビアホール導体b7,b8により構成されている。面状導体層34a,34cはそれぞれ、絶縁体層16j,16hに設けられており、外部電極14fに接続されている長方形状の導体層である。面状導体層34b,34dは、絶縁体層16i,16gに設けられている。面状導体層34b,34dは、長方形状をなしており、z軸方向から平面視したときに、面状導体層34a,34cに重なっている。これにより、面状導体層34a,34cと面状導体層34b,34dとの間には容量が発生している。ビアホール導体b7,b8はそれぞれ、絶縁体層16h,16gをz軸方向に貫通しており、互いに接続されている。そして、ビアホール導体b7,b8は、面状導体層34b,34dを接続している。また、面状導体層34bには、ビアホール導体b6が接続されている。これにより、コンデンサC2は、副線路Sの下流端に接続されている。
 コイルL2は、線路部32(32a~32d)及びビアホール導体b9~b12により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺旋状をなしている。ここで、コイルL2において、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。線路部32a,32b,32cはそれぞれ、絶縁体層16f,16e,16d上に設けられている線状の導体層である。線路部32dは、絶縁体層16c上に設けられている線状の導体層であり、その上流端は、外部電極14dに接続されている。ビアホール導体b9は、絶縁体層16fをz軸方向に貫通しており、線路部32aの下流端と面状導体層34dとを接続している。ビアホール導体b10は、絶縁体層16eをz軸方向に貫通しており、線路部32aの上流端と線路部32bの下流端とを接続している。ビアホール導体b11は、絶縁体層16dをz軸方向に貫通しており、線路部32bの上流端と線路部32cの下流端とを接続している。ビアホール導体b12は、絶縁体層16cをz軸方向に貫通しており、線路部32cの上流端と線路部32dの下流端とを接続している。これにより、コイルL2は、コンデンサC2及び副線路Sと外部電極14cとの間に接続されている。
 シールド導体層26aは、絶縁体層16kの略全面を覆うように設けられており、外部電極14g,14hに接続されている。すなわち、シールド導体層26aには、接地電位が印加されている。シールド導体層26aは、副線路SとコンデンサC1,C2との間に設けられており、副線路SとコンデンサC1,C2とが電磁気的に結合することを抑制している。
 シールド導体層26b,26cはそれぞれ、絶縁体層16p,16bの略全面を覆うように設けられており、外部電極14g,14hに接続されている。すなわち、シールド導体層26b,26cには、接地電位が印加されている。シールド導体層26bは、主線路M、副線路Sよりもz軸方向の負方向側に設けられている。また、シールド導体層26cは、コイルL1,L2よりもz軸方向の正方向側に設けられている。これにより、シールド導体層26b、26cは主線路M、副線路S及びコイルL1、L2で発生した磁界が積層体12fの外部へと漏れることが、シールド導体層26bにより防止される。さらに、コイルL1とL2とがそれぞれ逆方向に旋回する螺旋状に形成されているため、2つのコイル間で発生する磁界が逆向きになり、コイル間の磁界結合を抑えることができる。これにより、カップリングポートとターミネートポート間の結合を抑えることができ、アイソレーション特性を向上することができる。
(第7の実施形態)
 以下に、第7の実施形態に係る方向性結合器10gの構成について図面を参照しながら説明する。図14は、第7の実施形態に係る方向性結合器10gの積層体12gの分解斜視図である。
 方向性結合器10gでは、図11に示す方向性結合器10fの回路構成において、終端抵抗R1,R2の代わりに、外部電極14e,14h間及び外部電極14f,14h間に、外部電極14e,14fを終端化するための終端抵抗R3が接続されている。これにより、コンデンサC1は、外部電極14cと副線路Sとの間(より正確には、コイルL1と副線路Sとの間)と、終端抵抗R3との間に接続されている。また、コンデンサC2は、外部電極14dと副線路Sとの間(より正確には、コイルL2と副線路Sとの間)と、終端抵抗R3との間に接続されている。そして、外部電極14e,14fには、接地電位など電位が印加されない。一方、外部電極14hは、接地電位が印加される接地端子として用いられる。以上のような構成を満たすために、方向性結合器10gでは、図14に示すように、終端抵抗R3としての抵抗導体層28bが設けられた絶縁体層16qが設けられている。
 より詳細には、抵抗導体層28bは、図14に示すように、外部電極14e,14h間及び外部電極14f,14h間を接続するように設けられており、蛇行している線状の導体層である。抵抗導体層28bは、例えば、50Ωのインピーダンスを有している。これにより、コンデンサC1,C2は、抵抗導体層28bにより終端化されている。このように、方向性結合器10gは終端抵抗R3を内蔵することもできる。この場合、外部に終端抵抗を設けた時と比較して、この方向性結合器10gが搭載される基板を終端抵抗R3のスペース分だけ小型化できる。
(第8の実施形態)
 以下に、第8の実施形態に係る方向性結合器10hの構成について図面を参照しながら説明する。図15は、第8の実施形態及び第9の実施形態に係る方向性結合器10h,10iの等価回路図である。図16は、第7の実施形態に係る方向性結合器10hの積層体12hの分解斜視図である。
 方向性結合器10hは、図15に示すように、図1及び図6に示す方向性結合器10aにおいて、コイルL1が設けられていない回路構成を有している。よって、方向性結合器10hは、図16に示すように、絶縁体層16f~16j、線路部22a~22d、シールド導体層26a及びビアホール導体b3~b7を有していない。そして、線路部20bは、外部電極14cに接続されている。
 以上のように、方向性結合器10hのように、コイルL1を用いることなく、コンデンサC1のみでローパスフィルタLPF1を構成しても、結合度特性を平坦に近づけることができる。図17は、ローパスフィルタLPF1を有さない従来の方向性結合器の結合度特性及びアイソレーション特性を示したグラフである。図18は、方向性結合器10hの結合度特性及びアイソレーション特性を示したグラフである。図17及び図18において、縦軸は減衰量を示し、横軸は周波数を示している。
 従来の方向性結合器では、主線路と副線路との結合度は、信号の周波数が高くなるにしたがって、高くなる。よって、図17に示すように、従来の方向性結合器の結合度特性では、周波数が高くなるにしたがって、入力ポートから入力され、カップリングポートへ出力される電力の比が増加する。
 そこで、方向性結合器10hでは、外部電極14cと副線路Sとの間にローパスフィルタLPF1が接続されている。ローパスフィルタLPF1は、周波数が高くなるにしたがって、減衰量が増加する挿入損失特性を有している。そのため、信号の周波数が高くなることにより、副線路Sから外部電極14cに出力される信号の電力が大きくなったとしても、ローパスフィルタLPF1により該信号の電力が低減される。その結果、図18に示すように、方向性結合器10hにおいて、結合度特性を平坦に近づけることができる。
 また、図18に示された方向性結合器10hと図17に示された従来の方向性結合器のアイソレーション特性とを比較して、方向性結合器10hにおいては、ローパスフィルタLPF1が設けられることにより、アイソレーション特性の減衰量が増えることがない。
(第9の実施形態)
 以下に、第9の実施形態に係る方向性結合器10iの構成について図面を参照しながら説明する。図19は、第9の実施形態に係る方向性結合器10iの積層体12iの分解斜視図である。
 方向性結合器10iの回路構成は、方向性結合器10hと同じであるので説明を省略する。方向性結合器10iと方向性結合器10hとの相違点は、図19に示すように、シールド導体層26bが設けられた絶縁体層16nが、絶縁体層16a,16b間に設けられている点である。
 より詳細には、シールド導体層26bは、絶縁体層16nの略全面を覆うように設けられており、外部電極14e,14fに接続されている。すなわち、シールド導体層26bには、接地電位が印加されている。シールド導体層26bは、主線路Mのz軸方向の正方向側に設けられている。これにより、シールド導電層26bは面状導体層24a、24cと共に、主線路M、副線路Sをz軸方向から挟むように構成される。このため、主線路M、副線路Sで発生した磁界が積層体12iの外部へと漏れることが、シールド導体層26b及び面状導体層24a、24cにより防止される。
(第10の実施形態)
 以下に、第10の実施形態に係る方向性結合器10jの構成について図面を参照しながら説明する。図20は、第10の実施形態に係る方向性結合器10jの積層体12jの分解斜視図である。
 方向性結合器10jの回路構成は、方向性結合器10h,10iと同じであるので説明を省略する。方向性結合器10jと方向性結合器10iとの相違点は、主線路M、副線路S、ローパスフィルタLPF1(コンデンサC1)、シールド導体層26bの積層順が異なっている点である。
 より詳細には、方向性結合器10iでは、図19に示すように、z軸方向の正方向側から負方向側へと、シールド導体層26b、主線路M、副線路S、コンデンサC1の順に並んでいる。一方、方向性結合器10jでは、図20に示すように、z軸方向の正方向側から負方向側へと、コンデンサC1、副線路S,主線路M、シールド導体層26bの順に並んでいる。
 以上のような構成を有する方向性結合器10jによっても、方向性結合器10iと同様に、主線路M、副線路Sで発生した磁界が外部へ漏れることを防ぎながら、結合度特性を平坦に近づけることができる。
(第11の実施形態)
 以下に、第11の実施形態に係る方向性結合器10kの構成について図面を参照しながら説明する。図21は、第11の実施形態に係る方向性結合器10kの等価回路図である。
 方向性結合器10kの回路構成について説明する。方向性結合器10kは、外部電極(端子)14a~14h、主線路M、副線路S1,S2及びローパスフィルタLPF1,LPF3を回路構成として備えている。主線路Mは、外部電極14g,14h間に接続されている。副線路S1は、外部電極14c,14a間に接続され、かつ、主線路Mと電磁気的に結合している。副線路S2は、外部電極14d,14b間に接続され、かつ、主線路Mと電磁気的に結合している。
 また、ローパスフィルタLPF1は、外部電極14cと副線路S1との間に接続され、所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している。ローパスフィルタLPF1は、コンデンサC1及びコイルL1を含んでいる。コイルL1は、外部電極14cと副線路S1との間に直列に接続されている。コンデンサC1は、副線路S1と外部電極14cとの間(より正確には、コイルL1と外部電極14cの間)と、外部電極14e,14fとの間に接続されている。
 また、ローパスフィルタLPF3は、外部電極14bと副線路S2との間に接続され、所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している。ローパスフィルタLPF3は、コンデンサC3及びコイルL3を含んでいる。コイルL3は、外部電極14bと副線路S2との間に直列に接続されている。コンデンサC3は、副線路S2と外部電極14bとの間(より正確には、コイルL3と外部電極14bの間)と、外部電極14e,14fとの間に接続されている。
 以上のような方向性結合器10kでは、外部電極14gが入力ポートとして用いられ、外部電極14hが出力ポートとして用いられる。また、外部電極14cは、第1のカップリングポートとして用いられ、外部電極14aは、50Ωで終端化されるターミネートポートとして用いられる。また、外部電極14bは、第2のカップリングポートとして用いられ、外部電極14dは、50Ωで終端化されるターミネートポートとして用いられる。また、外部電極14e,14fは、接地される接地ポートとして用いられる。そして、外部電極14gに対して信号を入力すると、該信号が外部電極14hから出力される。更に、主線路Mと副線路S1,S2とが電磁気的に結合しているので、信号の電力に比例する電力を有する信号が外部電極14b,14cから出力する。
 次に、方向性結合器10kの具体的構成について図面を参照しながら説明する。図22は、第11の実施形態に係る方向性結合器10kの積層体12kの分解斜視図である。方向性結合器10kの外観斜視図については、図12を援用する。
 方向性結合器10kは、図12及び図22に示すように、積層体12k、外部電極14(14a~14h)、主線路M、副線路S1,S2、ローパスフィルタLPF1,LPF3及びシールド導体層26a,26bを備えている。積層体12kは、図12に示すように、直方体状をなしており、図22に示すように、絶縁体層16(16a~16l)がz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されている。絶縁体層16は、誘電体セラミックであり、長方形状をなしている。
 外部電極14a,14h,14bは、積層体12kのy軸方向の正方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。外部電極14c,14g,14dは、積層体12kのy軸方向の負方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。
 主線路Mは、図22に示すように、線路部18aにより構成されている。線路部18aは、絶縁体層16d上に設けられている線状の導体層である。線路部18aは、y軸方向に延在しており、外部電極14g,14hに接続されている。これにより、主線路Mは、外部電極14g,14h間に接続されている。
 副線路S1は、図22に示すように、線路部20a及びビアホール導体b1~b4により構成されている。線路部20aは、z軸方向の正方向側から平面視したときに、絶縁体層16c上において線路部18aよりもx軸方向の負方向側に設けられている線状の導体層である。線路部20aは、線路部18aと平行にy軸方向に延在しており、外部電極14aに接続されている。これにより、主線路Mと副線路S1とが電磁気的に結合している。ビアホール導体b1~b4は、絶縁体層16c~16fをz軸方向に貫通しており互いに接続されている。また、ビアホール導体b1は、線路部20aのy軸方向の負方向側の端部に接続されている。
 ローパスフィルタLPF1は、コイルL1及びコンデンサC1により構成されている。コイルL1は、線路部22(22a~22d)及びビアホール導体b5~b7により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺旋状をなしている。ここで、コイルL1において、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。線路部22aは、絶縁体層16g上に設けられている線状の導体層であり、その上流端は、ビアホール導体b4に接続されている。線路部22b,22cはそれぞれ、絶縁体層16h,16i上に設けられている線状の導体層である。線路部22dは、絶縁体層16j上に設けられている線状の導体層であり、その下流端は、外部電極14cに接続されている。ビアホール導体b5は、絶縁体層16gをz軸方向に貫通しており、線路部22aの下流端と線路部22bの上流端とを接続している。ビアホール導体b6は、絶縁体層16hをz軸方向に貫通しており、線路部22bの下流端と線路部22cの上流端とを接続している。ビアホール導体b7は、絶縁体層16iをz軸方向に貫通しており、線路部22cの下流端と線路部22dの上流端とを接続している。これにより、コイルL1は、副線路S1と外部電極14cとの間に接続されている。
 コンデンサC1は、面状導体層24(24b,24c)により構成されている。面状導体層24cは、絶縁体層16lの略全面を覆うように設けられており、外部電極14e,14fに接続されている。面状導体層24bは、絶縁体層16kに設けられており、外部電極14cに接続されている。面状導体層24bは、長方形状をなしており、z軸方向から平面視したときに、面状導体層24cに重なっている。これにより、面状導体層24cと面状導体層24bとの間には容量が発生している。そして、コンデンサC1は、外部電極14cと外部電極14e,14fとの間に接続されている。すなわち、コンデンサC1は、コイルL1と外部電極14cの間と、外部電極14e,14fとの間に接続されている。
 副線路S2は、図22に示すように、線路部40a及びビアホール導体b8,b9により構成されている。線路部40aは、z軸方向の正方向側から平面視したときに、絶縁体層16e上において線路部18aよりもx軸方向の正方向側に設けられている線状の導体層である。線路部40aは、線路部18aと平行にy軸方向に延在しており、外部電極14dに接続されている。これにより、主線路Mと副線路S2とが電磁気的に結合している。ビアホール導体b8,b9は、絶縁体層16e,16fをz軸方向に貫通しており互いに接続されている。また、ビアホール導体b8は、線路部40aのy軸方向の正方向側の端部に接続されている。
 ローパスフィルタLPF3は、コイルL3及びコンデンサC3により構成されている。コイルL3は、線路部42(42a~42d)及びビアホール導体b10~b12により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺旋状をなしている。ここで、コイルL3において、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。線路部42aは、絶縁体層16g上に設けられている線状の導体層であり、その上流端は、ビアホール導体b9に接続されている。線路部42b,42cはそれぞれ、絶縁体層16h,16i上に設けられている線状の導体層である。線路部42dは、絶縁体層16j上に設けられている線状の導体層であり、その下流端は、外部電極14bに接続されている。ビアホール導体b10は、絶縁体層16gをz軸方向に貫通しており、線路部42aの下流端と線路部42bの上流端とを接続している。ビアホール導体b11は、絶縁体層16hをz軸方向に貫通しており、線路部42bの下流端と線路部42cの上流端とを接続している。ビアホール導体b12は、絶縁体層16iをz軸方向に貫通しており、線路部42cの下流端と線路部42dの上流端とを接続している。これにより、コイルL3は、副線路S2と外部電極14dとの間に接続されている。
 コンデンサC3は、面状導体層44b,24cにより構成されている。面状導体層24cは、絶縁体層16lの略全面を覆うように設けられており、外部電極14e,14fに接続されている。面状導体層44bは、絶縁体層16kに設けられており、外部電極14bに接続されている。面状導体層44bは、長方形状をなしており、z軸方向から平面視したときに、面状導体層24cに重なっている。これにより、面状導体層24cと面状導体層44bとの間には容量が発生している。そして、コンデンサC3は、外部電極14bと外部電極14e,14fとの間に接続されている。すなわち、コンデンサC3は、コイルL3と外部電極14bの間と、外部電極14e,14fとの間に接続されている。
 シールド導体層26a,26bは、絶縁体層16f,16bの略全面を覆うように設けられており、外部電極14e,14fに接続されている。すなわち、シールド導体層26a,26bには、接地電位が印加されている。シールド導体層26aは、z軸方向において、主線路M及び副線路S1,S2とコイルL1,L3との間に設けられることにより、副線路S1,S2とコイルL1,L3とが電磁気的に結合することを抑制している。
(第12の実施形態)
 以下に、第12の実施形態に係る方向性結合器10lの構成について図面を参照しながら説明する。図23は、第12の実施形態に係る方向性結合器10lの等価回路図である。
 方向性結合器10lの回路構成について説明する。方向性結合器10lは、外部電極(端子)14a~14h、主線路M、副線路S1,S2及びローパスフィルタLPF1,LPF3を回路構成として備えている。方向性結合器10lの主線路M、副線路S1及びローパスフィルタLPF1の構成は、方向性結合器10kの主線路M、副線路S1及びローパスフィルタLPF1の構成と同じであるので説明を省略する。
 また、ローパスフィルタLPF3は、外部電極14dと副線路S2との間に接続され、所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している。ローパスフィルタLPF3は、コンデンサC3及びコイルL3を含んでいる。コイルL3は、外部電極14dと副線路S2との間に直列に接続されている。コンデンサC3は、副線路S2と外部電極14dとの間(より正確には、コイルL3と外部電極14dの間)と、外部電極14e,14fとの間に接続されている。
 以上のような方向性結合器10lでは、外部電極14gが入力ポートとして用いられ、外部電極14hが出力ポートとして用いられる。また、外部電極14cは、第1のカップリングポートとして用いられ、外部電極14aは、50Ωで終端化されるターミネートポートとして用いられる。また、外部電極14dは、第2のカップリングポートとして用いられ、外部電極14bは、50Ωで終端化されるターミネートポートとして用いられる。また、外部電極14e,14fは、接地される接地ポートとして用いられる。そして、外部電極14gに対して信号を入力すると、該信号が外部電極14hから出力される。更に、主線路Mと副線路S1とが電磁気的に結合しているので、信号の電力に比例する電力を有する信号が外部電極14cから出力する。
 ここで、外部電極14hから出力した信号は、外部電極14hに接続されたアンテナ等において一部反射する。このような反射信号は、外部電極14hから主線路Mに入力する。主線路Mと副線路S2とが電磁気的に結合しているので、外部電極14dから入力してくる反射信号の電力に比例する電力を有する信号が外部電極14dから出力する。
 次に、方向性結合器10lの具体的構成について図面を参照しながら説明する。図24は、第12の実施形態に係る方向性結合器10lの積層体12lの分解斜視図である。方向性結合器10lの外観斜視図については、図12を援用する。
 方向性結合器10lは、図12及び図24に示すように、積層体12l、外部電極14(14a~14h)、主線路M、副線路S1,S2、ローパスフィルタLPF1,LPF3及びシールド導体層26a,26bを備えている。積層体12lは、図12に示すように、直方体状をなしており、図24に示すように、絶縁体層16(16a~16l)がz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されている。絶縁体層16は、誘電体セラミックであり、長方形状をなしている。
 外部電極14a,14h,14bは、積層体12lのy軸方向の正方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。外部電極14c,14g,14dは、積層体12lのy軸方向の負方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられている。
 主線路Mは、図6に示すように、線路部18aにより構成されている。線路部18aは、絶縁体層16d上に設けられている線状の導体層である。線路部18aは、y軸方向に延在しており、外部電極14g,14hに接続されている。これにより、主線路Mは、外部電極14g,14h間に接続されている。
 方向性結合器10lの主線路M、副線路S1及びローパスフィルタLPF1の構成は、方向性結合器10kの主線路M、副線路S1及びローパスフィルタLPF1の構成と同じであるので説明を省略する。
 副線路S2は、図24に示すように、線路部40a及びビアホール導体b8,b9により構成されている。線路部40aは、z軸方向の正方向側から平面視したときに、絶縁体層16e上において線路部18aよりもx軸方向の正方向側に設けられている線状の導体層である。線路部40aは、線路部18aと平行にy軸方向に延在しており、外部電極14bに接続されている。これにより、主線路Mと副線路S2とが電磁気的に結合している。ビアホール導体b8,b9は、絶縁体層16e,16fをz軸方向に貫通しており互いに接続されている。また、ビアホール導体b8は、線路部40aのy軸方向の負方向側の端部に接続されている。
 ローパスフィルタLPF3は、コイルL3及びコンデンサC3により構成されている。コイルL3は、線路部42(42a~42d)及びビアホール導体b10~b12により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、時計回りに旋廻する螺旋状をなしている。ここで、コイルL3において、時計回りの上流側の端部を上流端と呼び、時計回りの下流側の端部を下流端と呼ぶ。線路部42aは、絶縁体層16g上に設けられている線状の導体層であり、その上流端は、ビアホール導体b9に接続されている。線路部42b,42cはそれぞれ、絶縁体層16h,16i上に設けられている線状の導体層である。線路部42dは、絶縁体層16j上に設けられている線状の導体層であり、その下流端は、外部電極14dに接続されている。ビアホール導体b10は、絶縁体層16gをz軸方向に貫通しており、線路部42aの下流端と線路部42bの上流端とを接続している。ビアホール導体b11は、絶縁体層16hをz軸方向に貫通しており、線路部42bの下流端と線路部42cの上流端とを接続している。ビアホール導体b12は、絶縁体層16iをz軸方向に貫通しており、線路部42cの下流端と線路部42dの上流端とを接続している。これにより、コイルL3は、副線路S2と外部電極14dとの間に接続されている。
 コンデンサC3は、面状導体層44b,24cにより構成されている。面状導体層24cは、絶縁体層16lの略全面を覆うように設けられており、外部電極14e,14fに接続されている。面状導体層44bは、絶縁体層16kに設けられており、外部電極14bに接続されている。面状導体層44bは、長方形状をなしており、z軸方向から平面視したときに、面状導体層24cに重なっている。これにより、面状導体層24cと面状導体層44bとの間には容量が発生している。そして、コンデンサC3は、外部電極14bと外部電極14e,14fとの間に接続されている。すなわち、コンデンサC3は、コイルL3と外部電極14bの間と、外部電極14e,14fとの間に接続されている。
 シールド導体層26aは、絶縁体層16fの略全面を覆うように設けられており、外部電極14e,14fに接続されている。すなわち、シールド導体層26aには、接地電位が印加されている。シールド導体層26aは、z軸方向において、主線路M及び副線路S1,S2とコイルL1,L3との間に設けられることにより、副線路S1,S2とコイルL1,L3とが電磁気的に結合することを抑制している。
 なお、方向性結合器10a~10lでは、主線路M又は副線路S,S1,S2とローパスフィルタLPF1,LPF2,LPF3とは、z軸方向に並ぶように配置されている。しかしながら、主線路M又は副線路S,S1,S2とローパスフィルタLPF1,LPF2,LPF3との位置関係はこれに限らない。例えば、主線路M又は副線路S,S1,S2とローパスフィルタLPF1,LPF2,LPF3とは、x軸方向又はy軸方向に並ぶように配置されていてもよい。
 なお、方向性結合器10a~10lは、誘電体セラミックからなる絶縁体層16が積層された積層型電子部品であるとした。しかしながら、方向性結合器10a~10lは、積層型電子部品でなくてもよい。方向性結合器10a~10lは、例えば、半導体チップにより構成されていてもよい。半導体チップの積層数は、積層型電子部品の積層数に比べて少ない。そのため、主線路M、副線路S,S1,S2及びローパスフィルタLPF1,LPF2,LPF3をz軸方向に並べることは困難である。よって、この場合には、主線路M、副線路S,S1,S2及びローパスフィルタLPF1,LPF2,LPF3をx軸方向又はy軸方向に並ぶように配置することが望ましい。
 また、方向性結合器10a~10lでは、所定の周波数帯域として、824MHz~1910MHzとした。しかしながら、所定の周波数帯域はこれに限らない。方向性結合器10a~10lに入力しうる信号の周波数帯域としては、例えば、WCDMAの場合、以下の6種類があげられる。
Band5:824MHz~849MHz
Band8:880MHz~915MHz
Band3:1710MHz~1785MHz
Band2:1850MHz~1910MHz
Band1:1920MHz~1980MHz
Band7:2500MHz~2570MHz
 よって、所定の周波数帯域とは、上記6種類の周波数帯域を任意に組み合わせて得られる周波数帯域である。例えば、Band1,Band2,Band3,Band5,Band8を組み合わせた周波数帯域は、824MHz~915MHz及び1710MHz~1980MHzとなる。よって、この場合の所定の周波数帯域は、824MHz~1980MHzである。
 以上のように、本発明は、方向性結合器に有用であり、特に、結合度特性を平坦に近づけることができる点において優れている。
 C1,C2,C3 コンデンサ
 L1,L2,L3 コイル
 LPF1,LPF2,LPF3 ローパスフィルタ
 M 主線路
 R,R1~R3 終端抵抗
 S 副線路
 b1~b21 ビアホール導体
 10a~10l 方向性結合器
 12a~12l 積層体
 14a~14h 外部電極
 16a~16q 絶縁体層
 18a,18b,20a,20b,24a~24d,32a~32d 線路部
 26a~26c シールド導体層
 28a,28b 抵抗導体層
 34a~34d 面状導体層

Claims (18)

  1.  所定の周波数帯域において用いられる方向性結合器であって、
     第1の端子ないし第4の端子と、
     前記第1の端子と前記第2の端子との間に接続されている主線路と、
     前記第3の端子と前記第4の端子との間に接続され、かつ、前記主線路と電磁気的に結合している第1の副線路と、
     前記第3の端子と前記第1の副線路との間に接続されている第1のローパスフィルタであって、前記所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している第1のローパスフィルタと、
     を備えていること、
     を特徴とする方向性結合器。
  2.  前記第1の端子は、信号が入力する入力端子であり、
     前記第2の端子は、前記信号が出力する第1の出力端子であり、
     前記第3の端子は、前記信号の電力に比例する電力を有する信号が出力する第2の出力端子であり、
     前記第4の端子は、終端化される終端端子であること、
     を特徴とする請求項1に記載の方向性結合器。
  3.  前記方向性結合器は、
     接地端子である第5の端子を、
     更に備えており、
     前記第1のローパスフィルタは、前記第3の端子と前記第1の副線路との間と、前記第5の端子との間に接続されている第1のコンデンサと、
     を含んでいること、
     を特徴とする請求項1又は請求項2のいずれかに記載の方向性結合器。
  4.  前記第1のローパスフィルタは、
      前記第3の端子と前記第1の副線路との間に直列に接続されている第1のコイルを、
     更に含んでいること、
     を特徴とする請求項3に記載の方向性結合器。
  5.  前記第1のコンデンサは、前記第1のコイルと前記第1の副線路との間と、前記第5の端子との間に接続されていること、
     を特徴とする請求項4に記載の方向性結合器。
  6.  前記方向性結合器は、
     前記第4の端子と前記第1の副線路との間に接続されている第2のローパスフィルタであって、前記所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している第2のローパスフィルタを、
     更に備えていること、
     を特徴とする請求項1に記載の方向性結合器。
  7.  前記方向性結合器は、
     終端化される終端端子である第5の端子及び第6の端子を、
     更に備えており、
     前記第1のローパスフィルタは、
      前記第3の端子と前記第1の副線路との間に直列に接続されている第1のコイルと、
      前記第3の端子と前記第1の副線路との間と、前記第5の端子との間に接続されている第1のコンデンサと、
     を含み、
     前記第2のローパスフィルタは、
      前記第4の端子と前記第1の副線路との間に直列に接続されている第2のコイルと、
      前記第4の端子と前記第1の副線路との間と、前記第6の端子との間に接続されている第2のコンデンサと、
     を含んでいること、
     を特徴とする請求項6に記載の方向性結合器。
  8.  前記第1のコンデンサは、前記第1のコイルと前記第1の副線路との間と、前記第5の端子との間に接続され、
     前記第2のコンデンサは、前記第2のコイルと前記第1の副線路との間と、前記第6の端子との間に接続されていること、
     を特徴とする請求項7に記載の方向性結合器。
  9.  前記方向性結合器は、
     接地端子である第7の端子と、
     前記接地端子に接続されている終端抵抗と、
     を更に備えており、
     前記第1のローパスフィルタは、
      前記第3の端子と前記第1の副線路との間に直列に接続されている第1のコイルと、
      前記第3の端子と前記第1の副線路との間と、前記終端抵抗との間に接続されている第1のコンデンサと、
     を含み、
     前記第2のローパスフィルタは、
      前記第4の端子と前記第1の副線路との間に直列に接続されている第2のコイルと、
      前記第4の端子と前記第1の副線路との間と、前記終端抵抗との間に接続されている第2のコンデンサと、
     を含むこと、
     を特徴とする請求項6に記載の方向性結合器。
  10.  前記第1のコンデンサは、前記第1のコイルと前記第1の副線路との間と、前記終端抵抗との間に接続され、
     前記第2のコンデンサは、前記第2のコイルと前記第1の副線路との間と、前記終端抵抗との間に接続されていること、
     を特徴とする請求項9に記載の方向性結合器。
  11.  前記方向性結合器は、
     複数の絶縁体層が積層されて構成されている積層体を、
     更に備えており、
     前記主線路、前記第1の副線路及び前記第1のローパスフィルタは、前記絶縁体層上に設けられている導体層により構成されていること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の方向性結合器。
  12.  前記主線路と前記第1の副線路とは、前記絶縁体層を介して対向していること、
     を特徴とする請求項11に記載の方向性結合器。
  13.  前記方向性結合器は、
     接地端子である第5の端子を、
     更に備えており、
     前記第1のローパスフィルタは、
      前記第3の端子と前記第1の副線路との間に直列に接続されている第1のコイルと、
      前記第3の端子と前記第1の副線路との間と、前記第5の端子との間に接続されている第1のコンデンサと、
     を含み、
     前記方向性結合器は、
     積層方向において、前記主線路及び前記第1の副線路と前記第1のコイルとの間に設けられているシールド導体層であって、接地電位が印加されるシールド導体層を、
     更に備えていること、
     を特徴とする請求項11又は請求項12のいずれかに記載の方向性結合器。
  14.  前記第1のコンデンサは、
      前記シールド導体層と共に、前記主線路及び前記第1の副線路を積層方向から挟んでいる面状導体層であって、接地電位が印加される面状導体層を、
     更に有していること、
     を特徴とする請求項13に記載の方向性結合器。
  15.  前記第1のコンデンサは、
      前記シールド導体層と共に、前記第1のコイルを積層方向から挟んでいる面状導体層であって、接地電位が印加される面状導体層を、
     更に有していること、
     を特徴とする請求項13に記載の方向性結合器。
  16.  前記主線路又は前記第1の副線路と前記第1のローパスフィルタとは、積層方向に直交する方向に並ぶように設けられていること、
     を特徴とする請求項11ないし請求項15のいずれかに記載の方向性結合器。
  17.  前記方向性結合器は、
     第8の端子及び第9の端子と、
     前記第8の端子と前記第9の端子との間に接続され、かつ、前記主線路と電磁気的に結合している第2の副線路と、
     前記第9の端子と前記第2の副線路との間に接続されている第3のローパスフィルタであって、前記所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している第3のローパスフィルタと、
     を備えていること、
     を特徴とする請求項1に記載の方向性結合器。
  18.  前記方向性結合器は、
     第8の端子及び第9の端子と、
     前記第8の端子と前記第9の端子との間に接続され、かつ、前記主線路と電磁気的に結合している第2の副線路と、
     前記第8の端子と前記第2の副線路との間に接続されている第3のローパスフィルタであって、前記所定の周波数帯域において、周波数が高くなるにしたがって減衰量が増加する特性を有している第3のローパスフィルタと、
     を備えていること、
     を特徴とする請求項1に記載の方向性結合器。
PCT/JP2010/070537 2009-12-18 2010-11-18 方向性結合器 WO2011074370A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10837399.4A EP2439812B1 (en) 2009-12-18 2010-11-18 Directional coupler
JP2011522323A JP5327324B2 (ja) 2009-12-18 2010-11-18 方向性結合器
CN201080037283.7A CN102484305B (zh) 2009-12-18 2010-11-18 定向耦合器
TW099143698A TWI482354B (zh) 2009-12-18 2010-12-14 Directional coupler
US13/411,858 US8314663B2 (en) 2009-12-18 2012-03-05 Directional coupler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009287061 2009-12-18
JP2009-287061 2009-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/411,858 Continuation US8314663B2 (en) 2009-12-18 2012-03-05 Directional coupler

Publications (1)

Publication Number Publication Date
WO2011074370A1 true WO2011074370A1 (ja) 2011-06-23

Family

ID=44167134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070537 WO2011074370A1 (ja) 2009-12-18 2010-11-18 方向性結合器

Country Status (6)

Country Link
US (1) US8314663B2 (ja)
EP (1) EP2439812B1 (ja)
JP (1) JP5327324B2 (ja)
CN (1) CN102484305B (ja)
TW (1) TWI482354B (ja)
WO (1) WO2011074370A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124374A1 (ja) * 2011-03-14 2012-09-20 株式会社村田製作所 方向性結合器
CN102903994A (zh) * 2011-07-27 2013-01-30 Tdk株式会社 方向性耦合器和无线通信装置
JP2013030904A (ja) * 2011-07-27 2013-02-07 Tdk Corp 方向性結合器および無線通信装置
JP2013046305A (ja) * 2011-08-25 2013-03-04 Tdk Corp 方向性結合器および無線通信装置
WO2014050623A1 (ja) * 2012-09-26 2014-04-03 太陽誘電株式会社 方向性結合回路装置
JP2015173409A (ja) * 2014-03-12 2015-10-01 Tdk株式会社 方向性結合器
JP2016171554A (ja) * 2014-06-13 2016-09-23 住友電気工業株式会社 電子装置
JP2016220068A (ja) * 2015-05-21 2016-12-22 京セラ株式会社 フィルタ一体型カプラおよびカプラモジュール
WO2017010238A1 (ja) * 2015-07-14 2017-01-19 株式会社村田製作所 方向性結合器
JP2017112467A (ja) * 2015-12-15 2017-06-22 日立金属株式会社 方向性結合器
WO2018079614A1 (ja) * 2016-10-27 2018-05-03 株式会社村田製作所 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置
TWI641182B (zh) * 2016-03-18 2018-11-11 村田製作所股份有限公司 Directional coupler
WO2019054285A1 (ja) * 2017-09-13 2019-03-21 株式会社村田製作所 高周波モジュール
WO2021229957A1 (ja) * 2020-05-09 2021-11-18 株式会社村田製作所 方向性結合器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488721B2 (ja) * 2011-01-12 2014-05-14 株式会社村田製作所 方向性結合器
JP5660087B2 (ja) * 2012-08-09 2015-01-28 株式会社村田製作所 バラントランス
CN102903992B (zh) * 2012-10-09 2015-05-20 中国联合网络通信集团有限公司 耦合装置
JP5786902B2 (ja) * 2013-06-26 2015-09-30 株式会社村田製作所 方向性結合器
JP6217544B2 (ja) * 2013-10-22 2017-10-25 株式会社村田製作所 方向性結合器
JP6112075B2 (ja) * 2014-06-27 2017-04-12 株式会社村田製作所 電子部品
JP6210029B2 (ja) * 2014-07-23 2017-10-11 株式会社村田製作所 方向性結合器
JP6098842B2 (ja) * 2015-03-11 2017-03-22 Tdk株式会社 方向性結合器および無線通信装置
EP3327859B1 (en) 2015-07-22 2020-02-26 Kyocera Corporation Directional coupler and communication module
JP2019057687A (ja) * 2017-09-22 2019-04-11 株式会社村田製作所 電子部品
WO2019208657A1 (ja) * 2018-04-25 2019-10-31 株式会社村田製作所 方向性結合器および方向性結合器モジュール
US11276913B1 (en) * 2019-06-17 2022-03-15 Harmonic, Inc. Frequency selective RF directional coupler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110327Y2 (ja) * 1980-01-10 1986-04-03
US5424694A (en) * 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH08237012A (ja) 1995-02-27 1996-09-13 Hitachi Metals Ltd 方向性結合器
JP2001094315A (ja) * 1999-09-20 2001-04-06 Hitachi Metals Ltd 方向性結合器
JP2005184631A (ja) * 2003-12-22 2005-07-07 Renesas Technology Corp 高周波電力増幅用電子部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273502A (ja) * 1994-03-29 1995-10-20 Murata Mfg Co Ltd ローパスフィルタ
ATE513368T1 (de) * 2000-08-22 2011-07-15 Hitachi Metals Ltd Laminiertes hochfrequenz-schaltmodul
WO2002039582A2 (en) * 2000-11-09 2002-05-16 Broadcom Corporation A constant impedance filter
ATE358340T1 (de) * 2000-11-22 2007-04-15 Ericsson Telefon Ab L M Rf-antennenschalter
JP2002368553A (ja) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp 高周波増幅器およびそれを用いた無線送信装置
US20070004356A1 (en) * 2002-12-16 2007-01-04 Koninklijke Philips Electronics N.V. Noise suppression in an fm receiver
US7218186B2 (en) * 2004-01-02 2007-05-15 Scientific Components Corporation Directional coupler
FR2901919A1 (fr) * 2006-05-30 2007-12-07 St Microelectronics Sa Coupleur directif large bande
JP2009027617A (ja) * 2007-07-23 2009-02-05 Hitachi Metals Ltd 方向性結合器及びこれを用いた高周波回路
JP2009044303A (ja) * 2007-08-07 2009-02-26 Panasonic Corp アッテネータ複合カプラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110327Y2 (ja) * 1980-01-10 1986-04-03
US5424694A (en) * 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH08237012A (ja) 1995-02-27 1996-09-13 Hitachi Metals Ltd 方向性結合器
JP2001094315A (ja) * 1999-09-20 2001-04-06 Hitachi Metals Ltd 方向性結合器
JP2005184631A (ja) * 2003-12-22 2005-07-07 Renesas Technology Corp 高周波電力増幅用電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2439812A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629736B2 (en) 2011-03-14 2014-01-14 Murata Manufacturing Co., Ltd. Directional coupler
WO2012124374A1 (ja) * 2011-03-14 2012-09-20 株式会社村田製作所 方向性結合器
US9178264B2 (en) 2011-07-27 2015-11-03 Tdk Corporation Directional coupler and wireless communication device
EP2551952A3 (en) * 2011-07-27 2013-04-17 TDK Corporation Directional coupler and wireless communication device
JP2013030904A (ja) * 2011-07-27 2013-02-07 Tdk Corp 方向性結合器および無線通信装置
CN102903994B (zh) * 2011-07-27 2015-07-01 Tdk株式会社 方向性耦合器和无线通信装置
CN102903994A (zh) * 2011-07-27 2013-01-30 Tdk株式会社 方向性耦合器和无线通信装置
JP2013046305A (ja) * 2011-08-25 2013-03-04 Tdk Corp 方向性結合器および無線通信装置
WO2014050623A1 (ja) * 2012-09-26 2014-04-03 太陽誘電株式会社 方向性結合回路装置
JP2014068211A (ja) * 2012-09-26 2014-04-17 Taiyo Yuden Co Ltd 方向性結合回路装置
JP2015173409A (ja) * 2014-03-12 2015-10-01 Tdk株式会社 方向性結合器
JP2016171554A (ja) * 2014-06-13 2016-09-23 住友電気工業株式会社 電子装置
JP2016220068A (ja) * 2015-05-21 2016-12-22 京セラ株式会社 フィルタ一体型カプラおよびカプラモジュール
WO2017010238A1 (ja) * 2015-07-14 2017-01-19 株式会社村田製作所 方向性結合器
JPWO2017010238A1 (ja) * 2015-07-14 2018-06-21 株式会社村田製作所 方向性結合器
US10340575B2 (en) 2015-07-14 2019-07-02 Murata Manufacturing Co., Ltd. Directional coupler
JP2017112467A (ja) * 2015-12-15 2017-06-22 日立金属株式会社 方向性結合器
TWI641182B (zh) * 2016-03-18 2018-11-11 村田製作所股份有限公司 Directional coupler
WO2018079614A1 (ja) * 2016-10-27 2018-05-03 株式会社村田製作所 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置
US10892538B2 (en) 2016-10-27 2021-01-12 Murata Manufacturing Co., Ltd. Directional coupler-integrated board, radio-frequency front-end circuit, and communication device
WO2019054285A1 (ja) * 2017-09-13 2019-03-21 株式会社村田製作所 高周波モジュール
US11588217B2 (en) 2017-09-13 2023-02-21 Murata Manufacturing Co., Ltd. High-frequency module
WO2021229957A1 (ja) * 2020-05-09 2021-11-18 株式会社村田製作所 方向性結合器

Also Published As

Publication number Publication date
JP5327324B2 (ja) 2013-10-30
TWI482354B (zh) 2015-04-21
TW201145666A (en) 2011-12-16
EP2439812B1 (en) 2016-07-13
US8314663B2 (en) 2012-11-20
CN102484305A (zh) 2012-05-30
EP2439812A1 (en) 2012-04-11
CN102484305B (zh) 2015-01-28
US20120161897A1 (en) 2012-06-28
EP2439812A4 (en) 2012-12-26
JPWO2011074370A1 (ja) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5327324B2 (ja) 方向性結合器
TWI500213B (zh) Directional coupler
US9077061B2 (en) Directional coupler
JP4579198B2 (ja) 多層帯域通過フィルタ
TWI518980B (zh) 方向性耦合器
JP5482901B2 (ja) 方向性結合器
US20180145384A1 (en) Electronic apparatus
WO2018079614A1 (ja) 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置
US6850127B2 (en) Laminated electronic component
US7439842B2 (en) Laminated balun transformer
TWI517570B (zh) LC filter circuit and high frequency module
US8324981B2 (en) Composite balun
JP6315347B2 (ja) 方向性結合器およびそれを用いたモジュール
JPH09153708A (ja) 方向性結合器
WO2016072403A1 (ja) コネクタモジュール
JP2001185972A (ja) 積層フィルタ
JP4195568B2 (ja) 積層型電子部品
US8279017B2 (en) Magnetic resonance type isolator
JP5136322B2 (ja) 非可逆回路素子
US20150070103A1 (en) Non-reciprocal circuit element
JP2006148495A (ja) 非可逆回路素子および通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037283.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011522323

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837399

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837399

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010837399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010837399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE