WO2021229957A1 - 方向性結合器 - Google Patents

方向性結合器 Download PDF

Info

Publication number
WO2021229957A1
WO2021229957A1 PCT/JP2021/014683 JP2021014683W WO2021229957A1 WO 2021229957 A1 WO2021229957 A1 WO 2021229957A1 JP 2021014683 W JP2021014683 W JP 2021014683W WO 2021229957 A1 WO2021229957 A1 WO 2021229957A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
line
electrode
directional coupler
sub
Prior art date
Application number
PCT/JP2021/014683
Other languages
English (en)
French (fr)
Inventor
育生 田丸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180030167.0A priority Critical patent/CN115428256A/zh
Priority to JP2022522558A priority patent/JP7334858B2/ja
Publication of WO2021229957A1 publication Critical patent/WO2021229957A1/ja
Priority to US17/931,974 priority patent/US20230006328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators

Definitions

  • the present invention relates to a directional coupler.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 8-237012
  • a main line is provided between an input terminal and an output terminal
  • a sub line is provided between a coupling terminal and a terminal terminal
  • a main line and a sub line are provided.
  • a directional coupler that is electromagnetically coupled to and.
  • a coupling signal having a constant ratio of electric power with respect to the electric power of the signal is output from the coupling terminal.
  • the directional coupler of Patent Document 1 has a problem that the degree of coupling between the main line and the sub line increases as the frequency of the signal input from the input terminal increases. That is, the directional coupler of Patent Document 1 has a problem that the amplitude characteristic (coupling characteristic) of the coupling signal is not flat.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2013-5076.
  • the sub line is divided into a first sub line and a second sub line, and a low-pass filter is connected between the first sub line and the second sub line as a phase conversion unit.
  • the low-pass filter passes through a phase shift having an absolute value that monotonically increases in the range of 0 degree or more and 180 degrees or less as the frequency increases in the frequency band used. Designed to generate for a signal.
  • the directional coupler of Patent Document 2 shows good coupling characteristics when the frequency band used is relatively narrow, but when the frequency band used is wide, the swell becomes large and the coupling becomes large. There is a problem that an error occurs in the coupling signal output from the terminal.
  • an object of the present invention is to provide a directional coupler having flat coupling characteristics.
  • the irreversible circuit element has an input terminal, an output terminal, a coupling terminal, a terminal terminal, a ground terminal, an input terminal, and an output in order to solve the above-mentioned conventional problems.
  • the main line connected between the terminals and the sub line connected between the coupling terminal and the terminal terminal are provided, and the main line and the sub line are electromagnetically coupled, and the sub lines are mutually connected.
  • a phase conversion unit is connected between the first sub-line and the second sub-line, including at least the first sub-line and the second sub-line connected to the above, and between the coupling terminal and the terminal terminal.
  • the directional coupler of the present invention has a flat coupling characteristic due to the provision of a resonant circuit in which an inductor, a capacitor, and a resistor are connected in series.
  • each embodiment is an example of an embodiment of the present invention, and the present invention is not limited to the contents of the embodiment. Further, it is also possible to carry out a combination of the contents described in different embodiments, and the contents of the embodiment in that case are also included in the present invention.
  • the drawings are for the purpose of assisting the understanding of the specification, and may be drawn schematically, and the drawn components or the ratio of the dimensions between the components are described in the specification. It may not match the ratio of those dimensions.
  • the components described in the specification may be omitted in the drawings, or may be drawn by omitting the number of components.
  • FIG. 1 to 3 show the directional coupler 100 of the first embodiment of the present invention.
  • FIG. 1 is an equivalent circuit diagram of the directional coupler 100.
  • FIG. 2 is an exploded perspective view of the directional coupler 100.
  • FIG. 3 is an explanatory diagram of the directional coupler 100.
  • the directional coupler 100 includes an input terminal T1, an output terminal T2, a coupling terminal T3, a terminal terminal T4, and ground terminals T5 and T6.
  • the main line M is connected between the input terminal T1 and the output terminal T2.
  • the first sub-line S1, the low-pass filter 10 which is a phase conversion unit, and the second sub-line S2 are connected between the coupling terminal T3 and the terminal terminal T4 in this order.
  • the main line M and the first sub line S1 and the second sub line S2 are electromagnetically coupled.
  • the low-pass filter 10 is an LC ⁇ -type filter. Specifically, in the low-pass filter 10, the inductor L1 and the inductor L2 are connected in this order between the first sub-line S1 and the second sub-line S2.
  • the capacitor C1 is connected between the connection point between the first sub line S1 and the inductor L1 and the ground terminals T5 and T6.
  • the capacitor C2 is connected between the connection point between the inductor L1 and the inductor L2 and the ground terminals T5 and T6.
  • the capacitor C3 is connected between the connection point between the inductor L2 and the second sub line S2 and the ground terminals T5 and T6.
  • the resonance circuit 20 is connected between the connection point between the first sub line S1 and the inductor L1 and the ground terminals T5 and T6.
  • the resonance circuit 20 is a resonance circuit in which the inductor L11, the capacitor C11, and the resistor R11 are connected in series.
  • the order in which the inductor L11, the capacitor C11, and the resistor R11 are connected is arbitrary, and is not limited to the order shown in FIG. 1, and can be arbitrarily changed.
  • the resistor R11 of the resonance circuit 20 is connected in order to moderate the attenuation of the signal passing through the sub line due to the series resonance.
  • the directional coupler 100 is configured as a laminated body 1 in which the insulator layers 1a to 1t are laminated.
  • the laminated body 1 has a rectangular parallelepiped shape.
  • Ceramics are used as the material of the insulator layers 1a to 1t constituting the laminated body 1.
  • the insulator layers 1a to 1t are dielectric layers having a dielectric constant, respectively.
  • the material of the insulator layers 1a to 1t (laminated body 1) is arbitrary, and a resin or the like may be used instead of the ceramics.
  • An input terminal T1, an output terminal T2, a coupling terminal T3, a terminal terminal T4, and ground terminals T5 and T6 are provided on the bottom surface of the insulator layer 1a (laminated body 1).
  • the input terminal T1, the output terminal T2, the coupling terminal T3, the terminal terminal T4, the ground terminal T5, and T6 are made of, for example, Ag, Cu, or a metal containing an alloy thereof as a main component, and may be surfaced as needed. , Ni, Sn, Au and the like as main components of the plating layer are provided over one layer or a plurality of layers.
  • Via electrodes 2a to 2f are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1a.
  • a ground electrode 3a and relay electrodes 4a to 4d are provided on the upper main surface of the insulator layer 1a.
  • Via electrodes 2g to 2l are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1b.
  • Line electrodes 5a and 5b are provided on the upper main surface of the insulator layer 1b.
  • the via electrodes 2i to 2l and the via electrodes 2m and 2n described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1c.
  • a line electrode 5c is provided on the upper main surface of the insulator layer 1c.
  • the via electrodes 2i to 2l described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1d.
  • a line electrode 5d is provided on the upper main surface of the insulator layer 1d.
  • the via electrodes 2i, 2k, 2l and the via electrodes 2o described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1e.
  • a line electrode 5e is provided on the upper main surface of the insulator layer 1e.
  • the via electrodes 2k, 2l, and 2o described above and the via electrodes 2p are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1f.
  • a ground electrode 3b is provided on the upper main surface of the insulator layer 1f.
  • the via electrodes 2o and 2p and the via electrodes 2q and 2r described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1 g.
  • Capacitor electrodes 6a and 6b are provided on the upper main surface of the insulator layer 1 g.
  • the via electrodes 2q and 2r and the via electrodes 2s and 2t described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1h.
  • a ground electrode 3c is provided on the upper main surface of the insulator layer 1h.
  • the via electrodes 2s and 2t and the via electrodes 2u described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1i.
  • a line electrode 5f is provided on the upper main surface of the insulator layer 1i.
  • the via electrodes 2t and 2u and the via electrodes 2v and 2w described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1j.
  • Line electrodes 5g to 5i are provided on the upper main surface of the insulator layer 1j.
  • the above-mentioned via electrode 2u and via electrodes 2x to 2z are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1k.
  • Line electrodes 5j to 5l are provided on the upper main surface of the insulator layer 1k.
  • the above-mentioned via electrode 2u and via electrodes 2aa to 2ac are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1l.
  • Line electrodes 5m and 5n are provided on the upper main surface of the insulator layer 1l.
  • the via electrodes 2u and 2ac and the via electrodes 2ad and 2ae described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1 m.
  • a line electrode 5o, 5p and a capacitor electrode 6c are provided on the upper main surface of the insulator layer 1 m.
  • the via electrode 2u and the via electrodes 2af and 2ag described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1n.
  • a capacitor electrode 6d is provided on the upper main surface of the insulator layer 1n.
  • the via electrodes 2u, 2af, and 2ag described above and the via electrodes 2ah are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1o.
  • Capacitor electrodes 6e and 6f are provided on the upper main surface of the insulator layer 1o.
  • the via electrodes 2u and 2ah and the via electrodes 2ai described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1p.
  • a capacitor electrode 6g is provided on the upper main surface of the insulator layer 1p.
  • the via electrodes 2u and 2ai and the via electrodes 2aj described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1q.
  • a ground electrode 3d and a capacitor electrode 6h are provided on the upper main surface of the insulator layer 1q.
  • the via electrode 2aj and the via electrode 2ak described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1r.
  • a capacitor electrode 6i is provided on the upper main surface of the insulator layer 1r.
  • the via electrode 2ak and the via electrode 2al described above are provided so as to penetrate between the upper and lower main surfaces of the insulator layer 1s.
  • a resistor 7 is provided on the upper main surface of the insulator layer 1s.
  • the insulator layer 1t is a protective layer.
  • the materials of the via electrodes 2a to 2al, the ground electrodes 3a to 3d, the relay electrodes 4a to 4d, the line electrodes 5a to 5p, and the capacitor electrodes 6a to 6i include, for example, Ag, Cu, and a metal containing an alloy thereof as a main component. Can be used. Further, as the material of the resistor 7, for example, a base metal resistor such as a nichrome alloy or ruthenium oxide can be used.
  • the connection relationship between the capacitor electrodes 6a to 6i and the resistor 7 will be described.
  • the input terminal T1 and the relay electrode 4a are connected by the via electrode 2a.
  • the output terminal T2 and the relay electrode 4b are connected by the via electrode 2b.
  • the coupling terminal T3 and the relay electrode 4c are connected by the via electrode 2c.
  • the terminal terminal T4 and the relay electrode 4d are connected by the via electrode 2d.
  • the ground terminal T5 and the ground electrode 3a are connected by the via electrode 2e.
  • the ground terminal T6 and the ground electrode 3a are connected by the via electrode 2f.
  • One end of the relay electrode 4a and the line electrode 5a is connected by the via electrode 2g.
  • One end of the relay electrode 4b and the line electrode 5b is connected by the via electrode 2h.
  • One end of the relay electrode 4c and the line electrode 5e is connected by the via electrode 2i.
  • One end of the relay electrode 4d and the line electrode 5d is connected by the via electrode 2j.
  • the ground electrode 3a and the ground electrode 3b are connected by the via electrodes 2k and 2l.
  • the other end of the line electrode 5a and one end of the line electrode 5c are connected by the via electrode 2m.
  • the other end of the line electrode 5b and the other end of the line electrode 5c are connected by the via electrode 2n.
  • the other end of the line electrode 5d and the capacitor electrode 6b are connected by the via electrode 2o.
  • the other end of the line electrode 5e and the capacitor electrode 6a are connected by the via electrode 2p.
  • ground electrode 3b and the ground electrode 3c are connected by the via electrodes 2q and 2r.
  • One end of the capacitor electrode 6a and the line electrode 5f is connected by the via electrode 2s.
  • One end of the capacitor electrode 6b and the line electrode 5h is connected by the via electrode 2t.
  • the ground electrode 3c and the ground electrode 3d are connected by the via electrode 2u.
  • One end of the line electrode 5f and one end of the line electrode 5g are connected by the via electrode 2v.
  • the other end of the line electrode 5f and one end of the line electrode 5i are connected by the via electrode 2w.
  • the other end of the line electrode 5g and one end of the line electrode 5j are connected by the via electrode 2x.
  • the other end of the line electrode 5h and one end of the line electrode 5k are connected by the via electrode 2y.
  • the other end of the line electrode 5i and one end of the line electrode 5l are connected by the via electrode 2z.
  • the other end of the line electrode 5j and one end of the line electrode 5m are connected by the via electrode 2aa.
  • the other end of the line electrode 5k and one end of the line electrode 5n are connected by the via electrode 2ab.
  • the other end of the line electrode 5l and the capacitor electrode 6c are connected by the via electrode 2ac.
  • the other end of the line electrode 5m and one end of the line electrode 5o are connected by the via electrode 2ad.
  • the other end of the line electrode 5n and one end of the line electrode 5p are connected by the via electrode 2ae.
  • the capacitor electrode 6c and the capacitor electrode 6f are connected by the via electrode 2ag.
  • the capacitor electrode 6d and the capacitor electrode 6g are connected by the via electrode 2ah.
  • the capacitor electrode 6f and the capacitor electrode 6h are connected by the via electrode 2ai.
  • the capacitor electrode 6g and the capacitor electrode 6i are connected by the via electrode 2aj.
  • the ground electrode 3d and one end of the resistor 7 are connected by the via electrode 2ak.
  • the other end of the resistor 7 is connected to the capacitor electrode 6i by the via electrode 2al.
  • the main line M starts from the input terminal T1, and has a via electrode 2a, a relay electrode 4a, a via electrode 2g, a line electrode 5a, a via electrode 2m, a line electrode 5c, a via electrode 2n, a line electrode 5b, a via electrode 2h, and a relay electrode. It is configured by a conductive path having an output terminal T2 as an end point via 4b and a via electrode 2b.
  • the first sub-line S1 is configured by a conductive path starting from the coupling terminal T3, passing through the via electrode 2c, the relay electrode 4c, the via electrode 2i, and the line electrode 5e, and ending at the other end of the line electrode 5e. Has been done.
  • the second sub-line S2 is configured by a conductive path starting from the other end of the line electrode 5d, passing through the line electrode 5d, the via electrode 2j, the relay electrode 4d, and the via electrode 2d, and ending at the terminal terminal T4. ing.
  • the inductor L1 of the low pass filter 10 starts from the other end of the line electrode 5e, and has via electrodes 2p, 2s, 2v, line electrodes 5g, via electrodes 2x, line electrodes 5j, via electrodes 2aa, line electrodes 5m, and via electrodes 2ad. It is composed of a conductive path having a connection point between the line electrode 5o and the line electrode 5p as an end point via the line electrode 5o.
  • the inductor L2 of the low pass filter 10 starts from the connection point between the line electrode 5o and the line electrode 5p, and has a line electrode 5p, a via electrode 2ae, a line electrode 5n, a via electrode 2ab, a line electrode 5k, a via electrode 2y, and a line electrode 5h. , Via the via electrodes 2t and 2o, and configured by a conductive path having the other end of the line electrode 5d as an end point.
  • the capacitor C1 of the low-pass filter 10 is composed of a capacitance between the capacitor electrode 6a and the ground electrodes 3b and 3c.
  • the capacitor C2 of the low-pass filter 10 is composed of a capacitance between the capacitor electrode 6e and the ground electrode 3d.
  • the capacitor C3 of the low-pass filter 10 is composed of a capacitance between the capacitor electrode 6b and the ground electrodes 3b and 3c.
  • the inductor L11 of the resonance circuit 20 starts from one end of the line electrode 5f and passes through the line electrode 5f, the via electrode 2w, the line electrode 5i, the via electrode 2z, the line electrode 5l, and the via electrode 2ac, and the capacitor electrode 6c. It is composed of a conductive path as the end point.
  • the capacitor C11 of the resonance circuit 20 is composed of a capacitance between the capacitor electrodes 6c, 6f, 6h and the capacitor electrodes 6d, 6g, 6i.
  • the resistor R11 of the resonance circuit 20 is composed of the resistor 7.
  • the directional coupler 100 having the above structure can be manufactured by a general manufacturing method for manufacturing a directional coupler including a laminate in which an insulator layer is laminated.
  • the directional coupler 100 includes a coupler portion including a main line M and a plurality of sub lines (first sub line S1, second sub line S2) in the lower portion 8 of the laminated body 1. Is arranged, and a phase conversion unit (low-pass filter 10) and a resonance circuit 20 are arranged in the upper portion 9 of the laminated body 1.
  • the directional coupler 100 efficiently arranges the electronic component elements inside the laminated body 1.
  • a ground electrode 3c is provided between the layers of the laminated body 1 between the lower portion 8 and the upper portion 9. Therefore, in the directional coupler 100, the ground electrode 3c suppresses the interference between the coupler unit, the phase conversion unit (low-pass filter 10), and the resonance circuit 20.
  • FIG. 4 (A) The coupling characteristics of S (3, 2) of the directional coupler 100 are shown in FIG. 4 (A). Further, for comparison, the coupling characteristics of S (3, 2) of the comparative example in which the resonance circuit 20 is removed from the directional coupler 100 are shown in FIG. 4 (B).
  • phase characteristics of S (3, 4) of the directional coupler 100 are shown in FIG. 5 (A).
  • FIG. 5B shows the phase characteristics of S (3, 4) in the comparative example in which the resonance circuit 20 is removed from the directional coupler 100.
  • FIG. 5 (C) shows the passage characteristics of S (3, 4) of the directional coupler 100 in the comparative example in which the resonance circuit 20 is removed from the directional coupler 100.
  • the phase changes linearly, and at about 4.3 GHz, the phase peaks at 180 degrees and returns to the original. Therefore, in the comparative example, it is difficult to realize a flat coupling characteristic when the frequency band used by the directional coupler is wide.
  • the phase of the directional coupler 100 does not return to its original phase even at 5.0 GHz.
  • the passage characteristics of S (3, 4) are flat in the comparative example, but as can be seen from FIG. 5 (C), S (3) of the directional coupler 100 , 4) The passage characteristics are curved. It is considered that this is because in the directional coupler 100, the frequency characteristic of the low-pass filter 10 which is the phase conversion unit is added to the attenuation characteristic due to the series resonance of the resonance circuit 20.
  • the coupling characteristics of the directional coupler 100 are flatter than the coupling characteristics of the comparative example.
  • the directional coupler 100 has a flatter coupling characteristic because the frequency characteristic of the low-pass filter 10 which is the phase conversion unit is added to the attenuation characteristic due to the series resonance of the resonance circuit 20.
  • FIG. 6 shows the directional coupler 200 of the second embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram of the directional coupler 200.
  • the directional coupler 200 of the second embodiment is partially different from the directional coupler 100 of the first embodiment. Specifically, in the directional coupler 100, the resonance circuit 20 is connected between the connection point between the first sub-line S1 and the phase conversion unit (low-pass filter 10) and the ground terminals T5 and T6. In the directional coupler 200, the resonance circuit 20 is connected between the connection point between the coupling terminal T3 and the first sub-line S1 and the ground terminals T5 and T6. Other configurations of the directional coupler 200 were the same as those of the directional coupler 100.
  • the coupling characteristics are further flattened by the provision of the resonance circuit 20.
  • FIG. 7 shows the directional coupler 300 of the third embodiment of the present invention.
  • FIG. 7 is an equivalent circuit diagram of the directional coupler 300.
  • the directional coupler 300 of the third embodiment is partially different from the directional coupler 100 of the first embodiment. Specifically, in the directional coupler 100, the resonance circuit 20 is connected between the connection point between the first sub-line S1 and the phase conversion unit (low-pass filter 10) and the ground terminals T5 and T6. In the directional coupler 300, the resonance circuit 20 is connected between the connection point between the phase conversion unit (low-pass filter 10) and the second sub-line S2 and the ground terminals T5 and T6. Other configurations of the directional coupler 300 were the same as those of the directional coupler 100.
  • the coupling characteristics are further flattened by the provision of the resonance circuit 20.
  • FIG. 8 shows the directional coupler 400 according to the fourth embodiment of the present invention.
  • FIG. 8 is an equivalent circuit diagram of the directional coupler 400.
  • the directional coupler 400 of the fourth embodiment is partially different from the directional coupler 100 of the first embodiment. Specifically, in the directional coupler 100, the resonance circuit 20 is connected between the connection point between the first sub-line S1 and the phase conversion unit (low-pass filter 10) and the ground terminals T5 and T6. In the directional coupler 400, the resonance circuit 20 is connected between the connection point between the second sub-line S2 and the terminal terminal T4 and the ground terminals T5 and T6. Other configurations of the directional coupler 400 were the same as those of the directional coupler 100.
  • the coupling characteristics are further flattened by the provision of the resonance circuit 20.
  • FIG. 9 shows the directional coupler 500 according to the fifth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of the directional coupler 500.
  • the directional coupler 500 of the fifth embodiment is partially different from the directional coupler 100 of the first embodiment.
  • the lower portion 8 of the laminated body 1 has a main line M and a plurality of sub lines (first sub line S1, second sub line S2).
  • a coupler unit including the above is arranged, and a phase conversion unit (low-pass filter 10) and a resonance circuit 20 are arranged on the upper portion 9 of the laminated body 1.
  • the first portion 58 which is a coupler unit including (first sub-line S1 and second sub-line S2), and the phase conversion unit (low-pass filter 10) and the second portion 59, which is a resonance circuit 20, are formed by a laminated body 51. They are arranged side by side in the horizontal direction.
  • the directional coupler 500 has a lower profile than the directional coupler 100.
  • the directional couplers 100, 200, 300, 400, and 500 of the first to fifth embodiments have been described above.
  • the present invention is not limited to these contents, and various modifications can be made according to the gist of the invention.
  • the directional couplers 100, 200, 300, 400, and 500 include a low-pass filter 10 as a phase conversion unit, but the phase conversion unit is not limited to the low-pass filter.
  • the phase conversion unit is not limited to the low-pass filter.
  • an open stub provided between the sub line and the ground may be used as the phase conversion unit.
  • the directional coupler according to one embodiment of the present invention is as described in the column of "Means for solving the problem".
  • the phase conversion unit is a low-pass filter. It is also preferable that the low-pass filter is a ⁇ -type filter. In this case, it is possible to satisfactorily cause a phase shift in the signal passing through the sub-line.
  • a resonance circuit is connected between the connection point between the first sub line and the phase conversion unit and the ground terminal.
  • a resonance circuit is connected between the connection point between the coupling terminal and the first sub line and the ground terminal.
  • a resonance circuit is connected between the connection point between the phase conversion unit and the second sub line and the ground terminal.
  • a resonance circuit is connected between the connection point between the second sub line and the terminal terminal and the ground terminal. In these cases, the resonant circuit can further flatten the coupling characteristics.
  • a laminate in which a plurality of insulator layers are laminated, a ground electrode provided in the insulator layer, a line electrode provided in the insulator layer, a capacitor electrode provided in the insulator layer, and an insulator It is also preferable to have a resistor provided on the layer. In this case, the directional coupler of the present invention can be easily constructed.
  • an input terminal, an output terminal, a coupling terminal, a terminal terminal, and a ground terminal are provided on one surface of the laminated body, and a coupler portion including a main line and a sub line is mainly provided.
  • the phase conversion unit and the resonance circuit are mainly arranged on the other side portion of the laminated body in the stacking direction.
  • the electronic component elements can be efficiently arranged inside the laminated body.
  • a ground electrode is provided between the layers of the laminated body between the one-side portion of the laminated body in the stacking direction and the other-side portion of the laminated body in the stacking direction. In this case, the ground electrode can suppress the interference between the coupler unit, the phase conversion unit, and the resonant circuit.
  • an input terminal, an output terminal, a coupling terminal, a terminal terminal, and a ground terminal are provided on one surface of the laminated body, and a coupler unit including a main line and a sub line and a phase conversion unit are provided. It is also preferable that the resonance circuit and the resonance circuit are arranged side by side in the laminated body. In this case, it is possible to reduce the height of the directional coupler.

Landscapes

  • Filters And Equalizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

カップリング特性が更に平坦化された方向性結合器を提供する。 入力端子T1と、出力端子T2と、カップリング端子T3と、終端端子T4と、グランド端子T5、T6と、主線路Mと、第1副線路S1と第2副線路S2とを備え、主線路Mと副線路(第1副線路S1、第2副線路S2)とが電磁気的に結合され、第1副線路S1と第2副線路S2との間に、位相変換部(ローパスフィルタ10)が接続され、カップリング端子T3と終端端子T4との間の点と、グランド端子T5、T6との間に、インダクタL11とキャパシタC11と抵抗R11とが直列に接続された共振回路20が接続されたものとする。

Description

方向性結合器
 本発明は、方向性結合器に関する。
 特許文献1(特開平8-237012号公報)に、入力端子と出力端子との間に主線路が設けられ、カップリング端子と終端端子との間に副線路が設けられ、主線路と副線路とが電磁気的に結合した方向性結合器が開示されている。特許文献1の方向性結合器は、入力端子に信号が入力されると、カップリング端子から、該信号の電力に対して一定の割合の電力を有するカップリング信号が出力される。
 特許文献1の方向性結合器には、入力端子から入力される信号の周波数が高くなるにしたがって、主線路と副線路との結合度が高くなってしまうという問題があった。すなわち、特許文献1の方向性結合器には、カップリング信号の振幅特性(カップリング特性)が平坦でないという問題があった。
 この問題を緩和させた方向性結合器が、特許文献2(特開2013-5076号公報)に開示されている。特許文献2の方向性結合器は、副線路が第1副線路と第2副線路とに分割され、第1副線路と第2副線路との間に位相変換部としてローパスフィルタが接続されている。特許文献2の方向性結合器においては、ローパスフィルタが、使用する周波数帯域において、周波数が高くなるにしたがって、0度以上、180度以下の範囲で単調増加する絶対値を有する位相のずれを通過信号に対して生じさせるように設計されている。
 そのため、特許文献2の方向性結合器では、カップリング特性がある程度平坦である。
特開平8-237012号公報 特開2013-5076号公報
 特許文献2の方向性結合器は、位相変換部(ローパスフィルタ)が周波数特性を有しているため、カップリング特性が完全に平坦ではなく、うねりがある。
 そのため、特許文献2の方向性結合器は、使用する周波数帯域が、比較的、狭い場合は、良好なカップリング特性を示すが、使用する周波数帯域が広い場合は、うねりが大きくなり、カップリング端子から出力されるカップリング信号に誤差が発生するという問題があった。
 そこで本発明は、カップリング特性が平坦な方向性結合器を提供することを目的とする。
 本発明の一実施態様にかかる非可逆回路素子は、上述した従来の課題を解決するために、入力端子と、出力端子と、カップリング端子と、終端端子と、グランド端子と、入力端子と出力端子との間に接続された主線路と、カップリング端子と終端端子との間に接続された副線路と、を備え、主線路と副線路とが電磁気的に結合され、副線路が、相互に接続された、少なくとも第1副線路と第2副線路とを含み、第1副線路と第2副線路との間に、位相変換部が接続され、カップリング端子と終端端子との間の点と、グランド端子との間に、インダクタとキャパシタと抵抗とが直列に接続された共振回路が接続されたものとする。なお、共振回路におけるインダクタとキャパシタと抵抗とが接続される順番は、任意に選定することができる。
 本発明の方向性結合器は、インダクタとキャパシタと抵抗とが直列に接続された共振回路が設けられていることにより、カップリング特性が平坦である。
本発明の第1実施形態の方向性結合器の等価回路図である。 本発明の第1実施形態の方向性結合器の分解斜視図である。 本発明の第1実施形態の方向性結合器の説明図である。 本発明の第1実施形態の方向性結合器と比較例とのカップリング特性を示すグラフである。 本発明の第1実施形態の方向性結合器と比較例との副線路の位相特性、通過特性を示すグラフである。 本発明の第2実施形態の方向性結合器の等価回路図である。 本発明の第3実施形態の方向性結合器の等価回路図である。 本発明の第4実施形態の方向性結合器の等価回路図である。 本発明の第5実施形態の方向性結合器の説明図である。
 以下、図面とともに、本発明を実施するための形態について説明する。
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、明細書の理解を助けるためのものであって、模式的に描画されている場合があり、描画された構成要素または構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。
 [第1実施形態]
 図1~図3に、本発明の第1実施形態の方向性結合器100を示す。ただし、図1は、方向性結合器100の等価回路図である。図2は、方向性結合器100の分解斜視図である。図3は、方向性結合器100の説明図である。
 方向性結合器100は、図1に示すように、入力端子T1と、出力端子T2と、カップリング端子T3と、終端端子T4と、グランド端子T5、T6を備えている。
 入力端子T1と出力端子T2との間に、主線路Mが接続されている。
 カップリング端子T3と終端端子T4との間に、第1副線路S1と、位相変換部であるローパスフィルタ10と、第2副線路S2とが、この順番に接続されている。
 方向性結合器100は、入力端子T1に信号が入力されたとき、主線路Mと、第1副線路S1および第2副線路S2とが、電磁気的に結合する。
 ローパスフィルタ10は、LCのπ型フィルタである。具体的には、ローパスフィルタ10は、第1副線路S1と第2副線路S2との間に、インダクタL1とインダクタL2とが、この順番に接続されている。第1副線路S1とインダクタL1との接続点と、グランド端子T5、T6との間に、キャパシタC1が接続されている。インダクタL1とインダクタL2との接続点と、グランド端子T5、T6との間に、キャパシタC2が接続されている。インダクタL2と第2副線路S2との接続点と、グランド端子T5、T6との間に、キャパシタC3が接続されている。
 方向性結合器100は、第1副線路S1とインダクタL1との接続点と、グランド端子T5、T6との間に、共振回路20が接続されている。共振回路20は、インダクタL11と、キャパシタC11と、抵抗R11とが、直列に接続された共振回路である。なお、共振回路20においては、インダクタL11、キャパシタC11、抵抗R11の接続される順番は任意であり、図1に示した順番には限られず、任意に変更することができる。
 なお、共振回路20の抵抗R11は、直列共振による、副線路を通過する信号の減衰を、緩やかにするために接続されている。
 本実施形態においては、方向性結合器100は、図2に示すように、絶縁体層1a~1tが積層された積層体1に構成されている。積層体1は、直方体形状からなる。
 積層体1を構成する絶縁体層1a~1tの材質には、セラミックスが使用されている。絶縁体層1a~1tは、それぞれ、誘電率を有する誘電体層である。ただし、絶縁体層1a~1t(積層体1)の材質は任意であり、セラミックスに代えて、樹脂などを使用してもよい。
 絶縁体層1a(積層体1)の底面に、入力端子T1と、出力端子T2と、カップリング端子T3と、終端端子T4と、グランド端子T5、T6とが設けられている。入力端子T1、出力端子T2、カップリング端子T3、終端端子T4、グランド端子T5、T6は、たとえば、Ag、Cuや、これらの合金などを主成分とする金属からなり、必要に応じて表面に、Ni、Sn、Auなどを主成分にするめっき層が、1層または複数層にわたって設けられている。
 絶縁体層1aの上下主面間を貫通して、ビア電極2a~2fが設けられている。
 絶縁体層1aの上側主面に、グランド電極3aと、中継電極4a~4dが設けられている。
 絶縁体層1bの上下主面間を貫通して、ビア電極2g~2lが設けられている。
 絶縁体層1bの上側主面に、線路電極5a、5bが設けられている。
 絶縁体層1cの上下主面間を貫通して、上述したビア電極2i~2lと、ビア電極2m、2nが設けられている。
 絶縁体層1cの上側主面に、線路電極5cが設けられている。
 絶縁体層1dの上下主面間を貫通して、上述したビア電極2i~2lが設けられている。
 絶縁体層1dの上側主面に、線路電極5dが設けられている。
 絶縁体層1eの上下主面間を貫通して、上述したビア電極2i、2k、2lと、ビア電極2oが設けられている。
 絶縁体層1eの上側主面に、線路電極5eが設けられている。
 絶縁体層1fの上下主面間を貫通して、上述したビア電極2k、2l、2oと、ビア電極2pが設けられている。
 絶縁体層1fの上側主面に、グランド電極3bが設けられている。
 絶縁体層1gの上下主面間を貫通して、上述したビア電極2o、2pと、ビア電極2q、2rが設けられている。
 絶縁体層1gの上側主面に、キャパシタ電極6a、6bが設けられている。
 絶縁体層1hの上下主面間を貫通して、上述したビア電極2q、2rと、ビア電極2s、2tが設けられている。
 絶縁体層1hの上側主面に、グランド電極3cが設けられている。
 絶縁体層1iの上下主面間を貫通して、上述したビア電極2s、2tと、ビア電極2uが設けられている。
 絶縁体層1iの上側主面に、線路電極5fが設けられている。
 絶縁体層1jの上下主面間を貫通して、上述したビア電極2t、2uと、ビア電極2v、2wが設けられている。
 絶縁体層1jの上側主面に、線路電極5g~5iが設けられている。
 絶縁体層1kの上下主面間を貫通して、上述したビア電極2uと、ビア電極2x~2zが設けられている。
 絶縁体層1kの上側主面に、線路電極5j~5lが設けられている。
 絶縁体層1lの上下主面間を貫通して、上述したビア電極2uと、ビア電極2aa~2acが設けられている。
 絶縁体層1lの上側主面に、線路電極5m、5nが設けられている。
 絶縁体層1mの上下主面間を貫通して、上述したビア電極2u、2acと、ビア電極2ad、2aeが設けられている。
 絶縁体層1mの上側主面に、線路電極5o、5pと、キャパシタ電極6cが設けられている。
 絶縁体層1nの上下主面間を貫通して、上述したビア電極2uと、ビア電極2af、2agが設けられている。
 絶縁体層1nの上側主面に、キャパシタ電極6dが設けられている。
 絶縁体層1oの上下主面間を貫通して、上述したビア電極2u、2af、2agと、ビア電極2ahが設けられている。
 絶縁体層1oの上側主面に、キャパシタ電極6e、6fが設けられている。
 絶縁体層1pの上下主面間を貫通して、上述したビア電極2u、2ahと、ビア電極2aiが設けられている。
 絶縁体層1pの上側主面に、キャパシタ電極6gが設けられている。
 絶縁体層1qの上下主面間を貫通して、上述したビア電極2u、2aiと、ビア電極2ajが設けられている。
 絶縁体層1qの上側主面に、グランド電極3dと、キャパシタ電極6hが設けられている。
 絶縁体層1rの上下主面間を貫通して、上述したビア電極2ajと、ビア電極2akが設けられている。
 絶縁体層1rの上側主面に、キャパシタ電極6iが設けられている。
 絶縁体層1sの上下主面間を貫通して、上述したビア電極2akと、ビア電極2alが設けられている。
 絶縁体層1sの上側主面に、抵抗7が設けられている。
 絶縁体層1tは保護層である。
 ビア電極2a~2al、グランド電極3a~3d、中継電極4a~4d、線路電極5a~5p、キャパシタ電極6a~6iの材質には、たとえば、Ag、Cuや、これらの合金を主成分とする金属を使用することができる。また、抵抗7の材質には、たとえば、ニクロム合金や酸化ルテニウムといった卑金属抵抗体を使用することができる。
 次に、入力端子T1と、出力端子T2と、カップリング端子T3と、終端端子T4と、ビア電極2a~2alと、グランド電極3a~3dと、中継電極4a~4dと、線路電極5a~5pと、キャパシタ電極6a~6iと、抵抗7との接続関係について説明する。
 ビア電極2aによって、入力端子T1と中継電極4aが接続されている。ビア電極2bによって、出力端子T2と中継電極4bが接続されている。ビア電極2cによって、カップリング端子T3と中継電極4cが接続されている。ビア電極2dによって、終端端子T4と中継電極4dが接続されている。ビア電極2eによって、グランド端子T5とグランド電極3aが接続されている。ビア電極2fによって、グランド端子T6とグランド電極3aが接続されている。
 ビア電極2gによって、中継電極4aと線路電極5aの一端が接続されている。ビア電極2hによって、中継電極4bと線路電極5bの一端が接続されている。ビア電極2iによって、中継電極4cと線路電極5eの一端が接続されている。ビア電極2jによって、中継電極4dと線路電極5dの一端が接続されている。ビア電極2k、2lによって、グランド電極3aとグランド電極3bが接続されている。
 ビア電極2mによって、線路電極5aの他端と、線路電極5cの一端が接続されている。ビア電極2nによって、線路電極5bの他端と、線路電極5cの他端が接続されている。
 ビア電極2oによって、線路電極5dの他端と、キャパシタ電極6bが接続されている。
 ビア電極2pによって、線路電極5eの他端と、キャパシタ電極6aが接続されている。
 ビア電極2q、2rによって、グランド電極3bとグランド電極3cが接続されている。
 ビア電極2sによって、キャパシタ電極6aと、線路電極5fの一端が接続されている。
 ビア電極2tによって、キャパシタ電極6bと、線路電極5hの一端が接続されている。
 ビア電極2uによって、グランド電極3cとグランド電極3dが接続されている。
 ビア電極2vによって、線路電極5fの一端と、線路電極5gの一端が接続されている。
 ビア電極2wによって、線路電極5fの他端と、線路電極5iの一端が接続されている。
 ビア電極2xによって、線路電極5gの他端と、線路電極5jの一端が接続されている。
 ビア電極2yによって、線路電極5hの他端と、線路電極5kの一端が接続されている。
 ビア電極2zによって、線路電極5iの他端と、線路電極5lの一端が接続されている。
 ビア電極2aaによって、線路電極5jの他端と、線路電極5mの一端が接続されている。
 ビア電極2abによって、線路電極5kの他端と、線路電極5nの一端が接続されている。
 ビア電極2acによって、線路電極5lの他端と、キャパシタ電極6cが接続されている。
 ビア電極2adによって、線路電極5mの他端と、線路電極5oの一端が接続されている。
 ビア電極2aeによって、線路電極5nの他端と、線路電極5pの一端が接続されている。
 線路電極5oの他端と、線路電極5pの他端が接続されている。そして、ビア電極2afによって、線路電極5oと線路電極5pの接続点と、キャパシタ電極6eが接続されている。
 ビア電極2agによって、キャパシタ電極6cと、キャパシタ電極6fが接続されている。
 ビア電極2ahによって、キャパシタ電極6dと、キャパシタ電極6gが接続されている。
 ビア電極2aiによって、キャパシタ電極6fと、キャパシタ電極6hが接続されている。
 ビア電極2ajによって、キャパシタ電極6gと、キャパシタ電極6iが接続されている。
 ビア電極2akによって、グランド電極3dと、抵抗7の一端が接続されている。
 ビア電極2alによって、キャパシタ電極6iと、抵抗7の他端が接続されている。
 次に、図1に示した方向性結合器100の等価回路と、上述した入力端子T1と、出力端子T2と、カップリング端子T3と、終端端子T4と、ビア電極2a~2alと、グランド電極3a~3dと、中継電極4a~4dと、線路電極5a~5pと、キャパシタ電極6a~6iと、抵抗7との関係について説明する。
 主線路Mは、入力端子T1を起点にし、ビア電極2a、中継電極4a、ビア電極2g、線路電極5a、ビア電極2m、線路電極5c、ビア電極2n、線路電極5b、ビア電極2h、中継電極4b、ビア電極2bを経由して、出力端子T2を終点とする導電経路によって構成されている。
 第1副線路S1は、カップリング端子T3を起点にして、ビア電極2c、中継電極4c、ビア電極2i、線路電極5eを経由して、線路電極5eの他端を終点とする導電経路によって構成されている。
 第2副線路S2は、線路電極5dの他端を起点にして、線路電極5d、ビア電極2j、中継電極4d、ビア電極2dを経由して、終端端子T4を終点とする導電経路によって構成されている。
 ローパスフィルタ10のインダクタL1は、線路電極5eの他端を起点にして、ビア電極2p、2s、2v、線路電極5g、ビア電極2x、線路電極5j、ビア電極2aa、線路電極5m、ビア電極2ad、線路電極5oを経由して、線路電極5oと線路電極5pの接続点を終点とする導電経路によって構成されている。
 ローパスフィルタ10のインダクタL2は、線路電極5oと線路電極5pの接続点を起点にして、線路電極5p、ビア電極2ae、線路電極5n、ビア電極2ab、線路電極5k、ビア電極2y、線路電極5h、ビア電極2t、2oを経由して、線路電極5dの他端を終点とする導電経路によって構成されている。
 ローパスフィルタ10のキャパシタC1は、キャパシタ電極6aと、グランド電極3b、3cの間の容量によって構成されている。
 ローパスフィルタ10のキャパシタC2は、キャパシタ電極6eと、グランド電極3dの間の容量によって構成されている。
 ローパスフィルタ10のキャパシタC3は、キャパシタ電極6bと、グランド電極3b、3cの間の容量によって構成されている。
 共振回路20のインダクタL11は、線路電極5fの一端を起点にして、線路電極5f、ビア電極2w、線路電極5i、ビア電極2z、線路電極5l、ビア電極2acを経由して、キャパシタ電極6cを終点とする導電経路によって構成されている。
 共振回路20のキャパシタC11は、キャパシタ電極6c、6f、6hと、キャパシタ電極6d、6g、6iの間の容量によって構成されている。
 共振回路20の抵抗R11は、抵抗7によって構成されている。
 以上のような構造からなる方向性結合器100は、絶縁体層が積層された積層体を備える方向性結合器を製造する一般的な製造方法により、製造することができる。
 方向性結合器100は、図3に示すように、積層体1の下側部分8に、主線路Mと複数の副線路(第1副線路S1、第2副線路S2)とを含むカプラ部が配置され、積層体1の上側部分9に、位相変換部(ローパスフィルタ10)および共振回路20が配置されている。方向性結合器100は、このような配置構造を採ることにより、積層体1の内部に電子部品要素が効率的に配置されている。
 また、方向性結合器100は、下側部分8と上側部分9との間の積層体1の層間に、グランド電極3cが設けられている。そのため、方向性結合器100では、グランド電極3cによって、カプラ部と、位相変換部(ローパスフィルタ10)および共振回路20との間の干渉が抑制されている。
 方向性結合器100のS(3,2)のカップリング特性を、図4(A)に示す。また、比較のために、方向性結合器100から共振回路20を取り
除いた比較例のS(3,2)のカップリング特性を、図4(B)に示す。
 また、方向性結合器100のS(3,4)の位相特性を、図5(A)に示す。比較のために、方向性結合器100から共振回路20を取り除いた比較例のS(3,4)の位相特性を、図5(B)に示す。
 また、方向性結合器100のS(3,4)の通過特性を、図5(C)に示す。比較のために、方向性結合器100から共振回路20を取り除いた比較例のS(3,4)の通過特性を、図5(D)に示す。
 なお、これらの特性は、出力端子T2を第1端子、入力端子T1を第2端子、カップリング端子T3を第3端子、終端端子T4を第4端子として測定した。
 図5(B)から分かるように、比較例では、位相が一次関数的に変化しており、約4.3GHzにおいて、位相が180度をピークにして元に戻っている。このため、比較例では、方向性結合器が使用する周波数帯域が広い場合には、平坦なカップリング特性を実現することが難しい。これに対し、方向性結合器100は、図5(A)から分かるように、5.0GHzにおいても、位相は元に戻っていない。
 また、図5(D)から分かるように、比較例においてはS(3,4)の通過特性が平坦であるが、図5(C)から分かるように、方向性結合器100のS(3,4)の通過特性は曲線になっている。これは、方向性結合器100では、位相変換部であるローパスフィルタ10の周波数特性に、共振回路20の直列共振による減衰特性が足し合わされたからであると考えられる。
 この結果、図4(A)、(B)に示すように、方向性結合器100のカップリング特性は、比較例のカップリング特性に比べてより平坦である。方向性結合器100は、位相変換部であるローパスフィルタ10の周波数特性に、共振回路20の直列共振による減衰特性が足し合わされため、カップリング特性がより平坦になっている。
 以上より、方向性結合器100においては、共振回路20が設けられていることにより、カップリング特性が更に平坦になっていることが確認できた。
 [第2実施形態]
 図6に、本発明の第2実施形態の方向性結合器200を示す。ただし、図6は、方向性結合器200の等価回路図である。
 第2実施形態の方向性結合器200は、第1実施形態の方向性結合器100と構成の一部が異なる。具体的には、方向性結合器100では、第1副線路S1と位相変換部(ローパスフィルタ10)との接続点と、グランド端子T5、T6との間に共振回路20が接続されているが、方向性結合器200では、カップリング端子T3と第1副線路S1との接続点と、グランド端子T5、T6との間に、共振回路20が接続されている。方向性結合器200の他の構成は、方向性結合器100と同じにした。
 方向性結合器200においても、共振回路20が設けられていることにより、カップリング特性が更に平坦になっている。
 [第3実施形態]
 図7に、本発明の第3実施形態の方向性結合器300を示す。ただし、図7は、方向性結合器300の等価回路図である。
 第3実施形態の方向性結合器300は、第1実施形態の方向性結合器100と構成の一部が異なる。具体的には、方向性結合器100では、第1副線路S1と位相変換部(ローパスフィルタ10)との接続点と、グランド端子T5、T6との間に共振回路20が接続されているが、方向性結合器300では、位相変換部(ローパスフィルタ10)と第2副線路S2との接続点と、グランド端子T5、T6との間に、共振回路20が接続されている。方向性結合器300の他の構成は、方向性結合器100と同じにした。
 方向性結合器300においても、共振回路20が設けられていることにより、カップリング特性が更に平坦になっている。
 [第4実施形態]
 図8に、本発明の第4実施形態の方向性結合器400を示す。ただし、図8は、方向性結合器400の等価回路図である。
 第4実施形態の方向性結合器400は、第1実施形態の方向性結合器100と構成の一部が異なる。具体的には、方向性結合器100では、第1副線路S1と位相変換部(ローパスフィルタ10)との接続点と、グランド端子T5、T6との間に共振回路20が接続されているが、方向性結合器400では、第2副線路S2と終端端子T4との接続点と、グランド端子T5、T6との間に、共振回路20が接続されている。方向性結合器400の他の構成は、方向性結合器100と同じにした。
 方向性結合器400においても、共振回路20が設けられていることにより、カップリング特性が更に平坦になっている。
 [第5実施形態]
 図9に、本発明の第5実施形態の方向性結合器500を示す。ただし、図9は、方向性結合器500の説明図である。
 第5実施形態の方向性結合器500は、第1実施形態の方向性結合器100と構成の一部が異なる。具体的には、方向性結合器100では、図3に示すように、積層体1の下側部分8に主線路Mと複数の副線路(第1副線路S1、第2副線路S2)とを含むカプラ部が配置され、積層体1の上側部分9に位相変換部(ローパスフィルタ10)および共振回路20が配置されているが、方向性結合器500では、主線路Mと複数の副線路(第1副線路S1、第2副線路S2)とを含むカプラ部である第1部分58と、位相変換部(ローパスフィルタ10)および共振回路20である第2部分59とが、積層体51において横方向に並べて配置されている。
 方向性結合器500は、方向性結合器100に比べて、低背化されている。
 以上、第1実施形態~第5実施形の方向性結合器100、200、300、400、500について説明した。しかしながら、本発明がこれらの内容に限定されることはなく、発明の趣旨に沿って、種々の変形をなすことができる。
 たとえば、方向性結合器100、200、300、400、500では、位相変換部としてローパスフィルタ10を備えているが、位相変換部はローパスフィルタには限られない。たとえば、ローパスフィルタに代えて、副線路とグランドとの間に設けられたオープンスタブを位相変換部としてもよい。
 本発明の一実施態様にかかる方向性結合器は、「課題を解決するための手段」の欄に記載したとおりである。
 この方向性結合器において、位相変換部がローパスフィルタであることも好ましい。また、ローパスフィルタがπ型フィルタであることも好ましい。この場合には、良好に、副線路を通過する信号に位相のずれを生じさせることができる。
 また、第1副線路と位相変換部との接続点と、グランド端子との間に、共振回路が接続されることも好ましい。あるいは、カップリング端子と第1副線路との接続点と、グランド端子との間に、共振回路が接続されることも好ましい。あるいは、位相変換部と第2副線路との接続点と、グランド端子との間に、共振回路が接続されることも好ましい。あるいは、第2副線路と終端端子との接続点と、グランド端子との間に、共振回路が接続されることも好ましい。これらの場合には、共振回路によって、カップリング特性が更に平坦化させることができる。
 また、複数の絶縁体層が積層された積層体と、絶縁体層に設けられたグランド電極と、絶縁体層に設けられた線路電極と、絶縁体層に設けられたキャパシタ電極と、絶縁体層に設けられた抵抗とを備えることも好ましい。この場合には、容易に、本発明の方向性結合器を構成することができる。
 また、積層体の1つの面に、入力端子と、出力端子と、カップリング端子と、終端端子と、グランド端子と、が設けられ、主線路と副線路とを含むカプラ部が、主に、積層体の積層方向の一方側の部分に配置され、位相変換部および共振回路が、主に、積層体の積層方向の他方側の部分に配置されることも好ましい。この場合には、積層体の内部に電子部品要素を効率的に配置することができる。また、この場合において、積層体の積層方向の一方側の部分と積層体の積層方向の他方側の部分との間の積層体の層間に、グランド電極が設けられことも好ましい。この場合には、グランド電極によって、カプラ部と、位相変換部および共振回路との間の干渉を抑制することができる。
 あるいは、積層体の1つの面に、入力端子と、出力端子と、カップリング端子と、終端端子と、グランド端子と、が設けられ、主線路と副線路とを含むカプラ部と、位相変換部および共振回路とが、積層体において横並びに配置されることも好ましい。この場合には、方向性結合器の低背化をはかることができる。
1・・・積層体
1a~1t・・・絶縁体層
2a~2al・・・ビア電極
3a~3d・・・グランド電極
4a~4d・・・中継電極
5a~5p・・・線路電極
6a~6i・・・キャパシタ電極
7・・・抵抗
10・・・ローパスフィルタ(位相変換部)
20・・・共振回路
T1・・・入力端子
T2・・・出力端子
T3・・・カップリング端子
T4・・・終端端子
T5、T6・・・グランド端子(グランド)
M・・・主線路
S1・・・第1副線路
S2・・・第2副線路

Claims (11)

  1.  入力端子と、
     出力端子と、
     カップリング端子と、
     終端端子と、
     グランド端子と、
     前記入力端子と前記出力端子との間に接続された主線路と、
     前記カップリング端子と前記終端端子との間に接続された副線路と、を備え、
     前記主線路と前記副線路とが電磁気的に結合され、 
     前記副線路が、相互に接続された、少なくとも第1副線路と第2副線路とを含み、
     前記第1副線路と前記第2副線路との間に、位相変換部が接続され、
     前記カップリング端子と前記終端端子との間の点と、前記グランド端子との間に、インダクタとキャパシタと抵抗とが直列に接続された共振回路が接続された、
     方向性結合器。
  2.  前記位相変換部がローパスフィルタである、
     請求項1に記載された方向性結合器。
  3.  前記ローパスフィルタがπ型フィルタである、
     請求項2に記載された方向性結合器。
  4.  前記第1副線路と前記位相変換部との接続点と、前記グランド端子との間に、前記共振回路が接続された、
     請求項1ないし3のいずれか1項に記載された方向性結合器。
  5.  前記カップリング端子と前記第1副線路との接続点と、前記グランド端子との間に、前記共振回路が接続された、
     請求項1ないし3のいずれか1項に記載された方向性結合器。
  6.  前記位相変換部と前記第2副線路との接続点と、前記グランド端子との間に、前記共振回路が接続された、
     請求項1ないし3のいずれか1項に記載された方向性結合器。
  7.  前記第2副線路と前記終端端子との接続点と、前記グランド端子との間に、前記共振回路が接続された、
     請求項1ないし3のいずれか1項に記載された方向性結合器。
  8.  複数の絶縁体層が積層された積層体と、
     前記絶縁体層に設けられたグランド電極と、
     前記絶縁体層に設けられた線路電極と、
     前記絶縁体層に設けられたキャパシタ電極と、
     前記絶縁体層に設けられた抵抗とを備える、
     請求項1ないし7のいずれか1項に記載された方向性結合器。
  9.  前記積層体の1つの面に、前記入力端子と、前記出力端子と、前記カップリング端子と、前記終端端子と、前記グランド端子と、が設けられ、
     前記主線路と前記副線路とを含むカプラ部が、主に、前記積層体の積層方向の一方側の部分に配置され、
     前記位相変換部および前記共振回路が、主に、前記積層体の積層方向の他方側の部分に配置された、
     請求項8に記載された方向性結合器。
  10.  前記積層体の積層方向の一方側の部分と前記積層体の積層方向の他方側の部分との間に、前記グランド電極が設けられた、
     請求項9に記載された方向性結合器。
  11.  前記積層体の1つの面に、前記入力端子と、前記出力端子と、前記カップリング端子と、前記終端端子と、前記グランド端子と、が設けられ、
     前記主線路と前記副線路とを含むカプラ部と、
     前記位相変換部および前記共振回路が、
     前記積層体において横並びに配置された、
     請求項8に記載された方向性結合器。
PCT/JP2021/014683 2020-05-09 2021-04-06 方向性結合器 WO2021229957A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180030167.0A CN115428256A (zh) 2020-05-09 2021-04-06 定向耦合器
JP2022522558A JP7334858B2 (ja) 2020-05-09 2021-04-06 方向性結合器
US17/931,974 US20230006328A1 (en) 2020-05-09 2022-09-14 Directional coupler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-082906 2020-05-09
JP2020082906 2020-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/931,974 Continuation US20230006328A1 (en) 2020-05-09 2022-09-14 Directional coupler

Publications (1)

Publication Number Publication Date
WO2021229957A1 true WO2021229957A1 (ja) 2021-11-18

Family

ID=78525741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014683 WO2021229957A1 (ja) 2020-05-09 2021-04-06 方向性結合器

Country Status (4)

Country Link
US (1) US20230006328A1 (ja)
JP (1) JP7334858B2 (ja)
CN (1) CN115428256A (ja)
WO (1) WO2021229957A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865265A (zh) * 2022-06-14 2022-08-05 江南大学 宽频带低损耗定向耦合器及调频发射机系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290108A (ja) * 1997-04-11 1998-10-27 Murata Mfg Co Ltd 方向性結合器
JP2007194870A (ja) * 2006-01-18 2007-08-02 Kenwood Corp 方向性結合器
WO2011074370A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 方向性結合器
JP2013183351A (ja) * 2012-03-02 2013-09-12 Murata Mfg Co Ltd 方向性結合器
WO2017010238A1 (ja) * 2015-07-14 2017-01-19 株式会社村田製作所 方向性結合器
US20170077967A1 (en) * 2015-09-10 2017-03-16 Skyworks Solutions, Inc. Electromagnetic couplers for multi-frequency power detection
US20170324392A1 (en) * 2016-05-09 2017-11-09 Skyworks Solutions, Inc. Self-adjusting electromagnetic coupler with automatic frequency detection
JP2017537555A (ja) * 2014-12-10 2017-12-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 調整可能rf結合器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246301B2 (ja) 2011-06-14 2013-07-24 株式会社村田製作所 方向性結合器
US20130027273A1 (en) * 2011-07-27 2013-01-31 Tdk Corporation Directional coupler and wireless communication device
JP5814895B2 (ja) * 2012-09-26 2015-11-17 太陽誘電株式会社 方向性結合回路装置
JP5946024B2 (ja) 2014-02-18 2016-07-05 Tdk株式会社 方向性結合器
JP6224484B2 (ja) * 2014-02-26 2017-11-01 京セラ株式会社 方向性結合器および高周波モジュール
JP5946026B2 (ja) * 2014-03-12 2016-07-05 Tdk株式会社 方向性結合器
JP6337879B2 (ja) * 2015-12-15 2018-06-06 日立金属株式会社 方向性結合器及び高周波回路
CN109845029B (zh) * 2016-10-27 2021-03-09 株式会社村田制作所 定向耦合器内置基板、高频前端电路以及通信装置
JP6881406B2 (ja) * 2018-08-31 2021-06-02 株式会社村田製作所 方向性結合器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290108A (ja) * 1997-04-11 1998-10-27 Murata Mfg Co Ltd 方向性結合器
JP2007194870A (ja) * 2006-01-18 2007-08-02 Kenwood Corp 方向性結合器
WO2011074370A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 方向性結合器
JP2013183351A (ja) * 2012-03-02 2013-09-12 Murata Mfg Co Ltd 方向性結合器
JP2017537555A (ja) * 2014-12-10 2017-12-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 調整可能rf結合器
WO2017010238A1 (ja) * 2015-07-14 2017-01-19 株式会社村田製作所 方向性結合器
US20170077967A1 (en) * 2015-09-10 2017-03-16 Skyworks Solutions, Inc. Electromagnetic couplers for multi-frequency power detection
US20170324392A1 (en) * 2016-05-09 2017-11-09 Skyworks Solutions, Inc. Self-adjusting electromagnetic coupler with automatic frequency detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865265A (zh) * 2022-06-14 2022-08-05 江南大学 宽频带低损耗定向耦合器及调频发射机系统
CN114865265B (zh) * 2022-06-14 2023-02-21 江南大学 宽频带低损耗定向耦合器及调频发射机系统

Also Published As

Publication number Publication date
JPWO2021229957A1 (ja) 2021-11-18
JP7334858B2 (ja) 2023-08-29
US20230006328A1 (en) 2023-01-05
CN115428256A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
JP4135928B2 (ja) バラン
JP5012883B2 (ja) 積層バランスフィルタ
US6954116B2 (en) Balanced-unbalanced converting circuit and laminated balanced-unbalanced converter
JP5907124B2 (ja) 高周波部品およびフィルタ部品
JP4569571B2 (ja) Lc複合部品
US7542264B2 (en) Capacitor block and laminated board
JPWO2017221794A1 (ja) コモンモードノイズフィルタ
WO2021229957A1 (ja) 方向性結合器
CN108063606B (zh) 层叠型滤波器
JP2009218756A (ja) 積層型バンドパスフィルタ
JP5861693B2 (ja) 積層バンドパスフィルタ
JP6511962B2 (ja) 積層型電子部品
JP4784017B2 (ja) 積層型ローパスフィルタ
JP4780476B2 (ja) 電子部品
JP4415279B2 (ja) 電子部品
TWI599170B (zh) Balanced unbalanced converter
JP4169757B2 (ja) 高周波フィルタ
JP4339819B2 (ja) ハイパスフィルタ
JP4525223B2 (ja) Lc複合フィルタ部品
JP4169760B2 (ja) 高周波フィルタ
JP2008294797A (ja) 積層型バンドパスフィルタ
JP3766262B2 (ja) バラントランス
JP4505827B2 (ja) 電子部品
JP4505440B2 (ja) 積層型ハイパスフィルタ
JP4457363B2 (ja) バンドパスフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803881

Country of ref document: EP

Kind code of ref document: A1