WO2017010238A1 - 方向性結合器 - Google Patents

方向性結合器 Download PDF

Info

Publication number
WO2017010238A1
WO2017010238A1 PCT/JP2016/068275 JP2016068275W WO2017010238A1 WO 2017010238 A1 WO2017010238 A1 WO 2017010238A1 JP 2016068275 W JP2016068275 W JP 2016068275W WO 2017010238 A1 WO2017010238 A1 WO 2017010238A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
pass filter
terminal
electrode
capacitor
Prior art date
Application number
PCT/JP2016/068275
Other languages
English (en)
French (fr)
Inventor
陽 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680037225.1A priority Critical patent/CN107710502B/zh
Priority to JP2017528347A priority patent/JP6394805B2/ja
Publication of WO2017010238A1 publication Critical patent/WO2017010238A1/ja
Priority to US15/835,491 priority patent/US10340575B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output

Definitions

  • the present invention relates to a directional coupler, and more particularly to a directional coupler in which the degree of coupling is flattened over a wide band and coupling in an unnecessary frequency band is suppressed.
  • a directional coupler that extracts a part of the high-frequency signal is used to measure the characteristics of the high-frequency signal.
  • the directional coupling of a general structure is such that a main line connected between an input terminal and an output terminal and a sub line connected between a coupling terminal and a termination terminal are arranged in parallel. A part of the high-frequency signal flowing through the sub-line is taken out.
  • the coupling degree is flat over a wide band and that coupling in an unnecessary frequency band (for example, a frequency band on a higher frequency side than the frequency band used for coupling) is suppressed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-46305
  • a low-pass filter is inserted between the coupling terminal and the sub line so that an unnecessary frequency band on the high frequency side can be obtained.
  • the degree of coupling is flattened over a wide band.
  • the sub-line is divided into a first sub-line and a second sub-line, and the first sub-line and the second sub-line are divided.
  • a low-pass filter By inserting a low-pass filter between them, coupling in an unnecessary frequency band on the high frequency side is suppressed, and the degree of coupling is flattened over a wide band.
  • Patent Document 1 and Patent Document 2 have certain effects for suppressing coupling in an unnecessary frequency band on the high frequency side and flattening the coupling degree over a wide band.
  • manufacturers and distributors of electronic devices using directional couplers are required to further suppress the coupling in unnecessary frequency bands and flatten the coupling degree over a wide band.
  • a low-pass filter inserted between the coupling terminal and the sub-line and a low-pass filter inserted between the first sub-line and the second sub-line are multistaged.
  • a way to do this is considered.
  • the method disclosed in Patent Document 1 and the method disclosed in Patent Document 2 are combined, both between the coupling terminal and the sub-line, and between the first sub-line and the second sub-line. It is conceivable to insert a low-pass filter in
  • the directional coupler of the present invention includes an input terminal, an output terminal, a coupling terminal, a termination terminal, and a ground.
  • the sub-line is divided into a plurality of sub-lines connected to each other, and includes at least a first sub-line and a second sub-line, and a first low-pass filter is inserted between the coupling terminal and the sub-line.
  • a plurality of at least a first ground terminal and a second ground terminal wherein the second low-pass filter is inserted between the first sub line and the second sub line, and the ground terminals are separated from each other.
  • the first low-pass fill Is connected to the first ground terminal
  • a second low-pass filter has to be connected to the second ground terminal.
  • the first low-pass filter includes at least a first inductor, a second inductor, a first capacitor, a second capacitor, and a third capacitor, and a coupling terminal.
  • One end of the first inductor is connected, the other end of the first inductor and one end of the second inductor are connected, the other end of the second inductor and the sub line are connected, and the first capacitor is connected in parallel with the first inductor.
  • a second capacitor is connected in parallel with the second inductor
  • a third capacitor is connected between a connection point between the first inductor and the second inductor and the first ground terminal, and a second low-pass filter is connected.
  • a third inductor Includes at least a third inductor, a fourth inductor, a fourth capacitor, a fifth capacitor, and a sixth capacitor, and includes a first sub-line and a third inductor.
  • One end of the third inductor and one end of the fourth inductor are connected, the other end of the fourth inductor and the second subline are connected, and the first subline and the third inductor are connected to each other.
  • a fourth capacitor is connected between the connection point of the second inductor and the second ground terminal, and a fifth capacitor is connected between the connection point of the third inductor and the fourth inductor and the second ground terminal.
  • a sixth capacitor may be connected between the connection point between the fourth inductor and the second sub line and the second ground terminal.
  • an attenuation pole is formed on the higher frequency side than the frequency band used for coupling by the first low-pass filter to increase attenuation on the high-frequency side, and the degree of coupling is flattened over a wide band by the second low-pass filter. Can do.
  • the directional coupler of the present invention in the first low-pass filter, one additional inductor or a plurality of additional inductors connected in series with each other is inserted between the second inductor and the sub line, An additional capacitor is connected in parallel with each additional inductor. When there is one additional inductor, an additional capacitor is inserted between the connection point between the second inductor and the additional inductor and the first ground terminal. When there are a plurality of inductors, between the connection point of the second inductor and the additional inductor and the first ground terminal, and between the connection point of the additional inductor and the additional inductor and the first ground terminal, respectively. , An additional capacitor may be inserted. In this case, the number of stages of the first low-pass filter can be increased, and the characteristics of the directional coupler can be further improved.
  • one additional inductor or a plurality of additional inductors connected in series are inserted between the fourth inductor and the second sub line.
  • an additional capacitor is inserted between the connection point of the additional inductor and the second sub line and the second ground terminal.
  • the additional inductor and the additional inductor are added. It is assumed that an additional capacitor is inserted between the connection point of the inductor and the second ground terminal, and between the connection point of the additional inductor and the second sub-line and the second ground terminal. be able to. In this case, the number of stages of the second low-pass filter can be increased, and the characteristics of the directional coupler can be further improved.
  • the cutoff frequency of the first low-pass filter is different from the cutoff frequency of the first low-pass filter, and the cutoff frequency of the first low-pass filter is different from that of the second low-pass filter. It can be on the higher frequency side than the cutoff frequency.
  • the cutoff frequency of the first low-pass filter and the cutoff frequency of the second low-pass filter are different, the degree of coupling is flattened over a wide band, and at the same time, higher than the frequency band used for coupling. Can increase the attenuation.
  • an additional inductor may be further inserted in the connection path between the first low-pass filter and the first ground terminal.
  • the attenuation pole can be formed at a frequency slightly separated from the frequency band used for coupling on the high frequency side, and the characteristics of the directional coupler can be further improved.
  • the directional coupler of the present invention described above can be configured in a stacked body in which a plurality of insulator layers are stacked, and a first ground electrode is formed between predetermined layers of the insulator layers, A second ground electrode is formed between the predetermined layers, the first ground electrode and the second ground electrode are isolated from each other in the stacked body, the first low-pass filter is connected to the first ground electrode, and the second low-pass filter is connected.
  • the filter may be connected to the second ground electrode, the first ground electrode may be connected to the first ground terminal, and the second ground electrode may be connected to the second ground terminal. In this case, since the first ground electrode and the second ground electrode are isolated from each other, it is possible to prevent unnecessary signal wraparound through the ground electrode, and to improve the characteristics of the directional coupler. Can be further improved.
  • the second ground electrode is divided and disposed between two or more layers of the insulator layer in the laminate,
  • the main line and the sub-line are respectively disposed between the upper and lower second ground electrodes divided between the two or more layers, and when the stacked body is seen through in the stacking direction,
  • the second ground electrode divided between two or more layers, the main line, and the sub line may be at least partially overlapped. In this case, it is possible to prevent the main line and the sub-line from being affected by an external noise signal.
  • the first low-pass filter and the first ground electrode are: Although at least partially overlapping, the first low pass filter may not overlap the second ground electrode. In this case, it is possible to reduce the number of ground electrodes that obstruct the magnetic field generated by the inductor that constitutes the first low-pass filter. Therefore, it is possible to increase the attenuation on the higher frequency side than the frequency band used for coupling, and the directionality The characteristics of the coupler can be further improved.
  • FIG. 3 is an equivalent circuit diagram of the directional coupler 100.
  • FIG. 3 is a graph showing coupling characteristics of the directional coupler 100.
  • 4 is a graph showing frequency characteristics of a first low-pass filter LPF1 and a second low-pass filter LPF2 included in the directional coupler 100.
  • 4 is a graph showing insertion loss characteristics and reflection loss characteristics of the directional coupler 100, respectively.
  • 4 is a graph showing the isolation characteristics of the directional coupler 100. It is a graph which shows the coupling characteristic of the directional coupler concerning a comparative example. It is a principal part disassembled perspective view which shows the directional coupler 200 concerning 2nd Embodiment.
  • FIG. 3 is an equivalent circuit diagram of the directional coupler 200.
  • FIG. 4 is a graph showing a comparison between the coupling characteristics of the directional coupler 100 and the coupling characteristics of the directional coupler 200. It is an equivalent circuit schematic of the directional coupler 300 concerning 3rd Embodiment.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIG. 1 and 2 show a directional coupler 100 according to a first embodiment of the present invention.
  • FIG. 1 is an exploded perspective view in the case where the directional coupler 100 is configured using a laminated body in which a plurality of insulator layers are laminated.
  • FIG. 2 is obtained by replacing the configuration of the exploded perspective view of FIG. 1 with an equivalent circuit.
  • a directional coupler 100 includes a laminated body 1 in which 16 insulating layers 1a to 1p are laminated.
  • the laminated body 1 has a rectangular parallelepiped shape.
  • a predetermined terminal is formed on each of the four side surfaces of the laminate 1.
  • the terminal formed in the laminated body 1 is demonstrated, the terminal formed in each side surface is demonstrated clockwise from the near side surface in FIG. 1 for convenience of explanation.
  • the near side, the left side, the back side, and the right side respectively indicate directions in FIG.
  • the upper side and the lower side also point in the direction in FIG.
  • a termination terminal 3, a coupling terminal 2, and a first ground terminal 4 are formed in this order on the right side surface on the near side of the laminate 1 in this order.
  • a second ground terminal 5 a is formed on the left side surface of the laminate 1.
  • An input terminal 6, a second ground terminal 5 b, and an output terminal 7 are formed in this order on the left side surface on the back side of the laminate 1.
  • a second ground terminal 5 c is formed on the right side surface of the laminate 1.
  • the coupling terminal 2, termination terminal 3, first ground terminal 4, second ground terminals 5 a, 5 b, 5 c, input terminal 6, and output terminal 7 formed on the four side surfaces of the laminate 1 are respectively laminated bodies. 1 (insulator layer 1a) on the lower main surface and laminated body 1 (insulator layer 1p) on the upper main surface.
  • the coupling terminal 2, the termination terminal 3, the first ground terminal 4, the second ground terminals 5a, 5b, 5c, the input terminal 6, and the output terminal 7 are mainly composed of, for example, Ag, Cu, or an alloy thereof.
  • the plating layer which consists of a metal and has Ni, Sn, Au etc. as a main component is formed in the surface as needed in one layer or multiple layers as needed.
  • Ceramics are used for the material of the insulator layers 1a to 1p constituting the laminated body 1.
  • Each of the insulator layers 1a to 1p can also be understood as a dielectric layer having a dielectric constant.
  • a first ground electrode 8 and a second ground electrode 9a are formed on the upper main surface of the insulator layer 1a.
  • the first ground electrode 8 is connected to the first ground terminal 4.
  • the second ground electrode 9a is connected to the second ground terminals 5a, 5b, and 5c.
  • a capacitor electrode 10a is formed on the upper main surface of the insulator layer 1b.
  • a via electrode 11a is formed so as to penetrate between both main surfaces of the insulator layer 1b.
  • the via electrode 11a has one end connected to the capacitor electrode 10a and the other end connected to the first ground electrode 8 formed on the insulator layer 1a.
  • a capacitor electrode 10b is formed on the upper main surface of the insulator layer 1c.
  • Capacitor electrodes 10c and 10d are formed on the upper main surface of the insulator layer 1d.
  • a via electrode 11b is formed so as to penetrate between both main surfaces of the insulator layer 1d.
  • the capacitor electrode 10 c is connected to the coupling terminal 2.
  • One end of the via electrode 11b is exposed on the upper main surface of the insulator layer 1d, and the other end is connected to the capacitor electrode 10b formed on the insulator layer 1c.
  • a main line 12 is formed on the upper main surface of the insulator layer 1e. Further, via electrodes 11c and 11d are formed through both main surfaces of the insulator layer 1e.
  • the main line 12 has one end connected to the input terminal 6 and the other end connected to the output terminal 7.
  • One end of the via electrode 11c is exposed on the upper main surface of the insulator layer 1e, and the other end is connected to the via electrode 11b formed on the insulator layer 1d.
  • One end of the via electrode 11d is exposed on the upper main surface of the insulator layer 1e, and the other end is connected to the capacitor electrode 10d formed on the insulator layer 1d.
  • a first sub-line 13a is formed on the upper main surface of the insulator layer 1f.
  • via electrodes 11e and 11f are formed through both main surfaces of the insulator layer 1f.
  • One end of the via electrode 11e is connected to one end of the first sub-line 13a, and the other end is connected to the via electrode 11d formed in the insulator layer 1e.
  • One end of the via electrode 11f is exposed on the upper main surface of the insulator layer 1f, and the other end is connected to the via electrode 11c formed on the insulator layer 1e.
  • a second sub-line 13b is formed on the upper main surface of the insulator layer 1g.
  • via electrodes 11g, 11h, and 11i are formed so as to penetrate between both main surfaces of the insulator layer 1g.
  • One end of the second sub-line 13 b is connected to the termination terminal 3.
  • One end of the via electrode 11g is exposed on the upper main surface of the insulator layer 1g, and the other end is connected to the via electrode 11f formed on the insulator layer 1f.
  • One end of the via electrode 11h is exposed on the upper main surface of the insulator layer 1g, and the other end is connected to the other end of the first sub-line 13a formed on the insulator layer 1f.
  • One end of the via electrode 11i is exposed to the upper main surface of the insulator layer 1g, and the other end is connected to one end of the first sub line 13a formed in the insulator layer 1f.
  • a second ground electrode 9b is formed on the upper main surface of the insulator layer 1h. Further, via electrodes 11j, 11k, 11l, and 11m are formed so as to penetrate between both main surfaces of the insulator layer 1h. The second ground electrode 9b is connected to the second ground terminals 5a, 5b, and 5c. One end of the via electrode 11j is exposed on the upper main surface of the insulator layer 1h, and the other end is connected to the other end of the second sub-line 13b formed in the insulator layer 1g. One end of the via electrode 11k is exposed on the upper main surface of the insulator layer 1h, and the other end is connected to the via electrode 11g formed on the insulator layer 1g.
  • One end of the via electrode 11l is exposed on the upper main surface of the insulator layer 1h, and the other end is connected to the via electrode 11h formed on the insulator layer 1g.
  • One end of the via electrode 11m is exposed on the upper main surface of the insulator layer 1h, and the other end is connected to the via electrode 11i formed on the insulator layer 1g.
  • Capacitor electrodes 10e and 10f are formed on the upper main surface of the insulator layer 1i.
  • via electrodes 11n, 11o, 11p, and 11q are formed through both main surfaces of the insulator layer 1i.
  • the via electrode 11n has one end connected to the capacitor electrode 10e and the other end connected to the via electrode 11j formed in the insulator layer 1h.
  • the via electrode 11o has one end connected to the capacitor electrode 10f and the other end connected to the via electrode 11l formed in the insulator layer 1h.
  • One end of the via electrode 11p is exposed on the upper main surface of the insulator layer 1i, and the other end is connected to the via electrode 11k formed on the insulator layer 1h.
  • One end of the via electrode 11q is exposed on the upper main surface of the insulator layer 1i, and the other end is connected to the via electrode 11m formed on the insulator layer 1h.
  • Line electrodes 15a and 15b are formed on the upper main surface of the insulator layer 1j. Further, via electrodes 11r, 11s, 11t, and 11u are formed so as to penetrate between both main surfaces of the insulator layer 1j.
  • the via electrode 11r has one end connected to one end of the line electrode 15a and the other end connected to the capacitor electrode 10e formed on the insulator layer 1i.
  • One end of the via electrode 11s is connected to one end of the line electrode 15b, and the other end is connected to the capacitor electrode 10f formed in the insulator layer 1i.
  • One end of the via electrode 11t is exposed on the upper main surface of the insulator layer 1j, and the other end is connected to the via electrode 11p formed on the insulator layer 1i.
  • One end of the via electrode 11u is exposed to the upper main surface of the insulator layer 1j, and the other end is connected to the via electrode 11q formed on the insulator layer 1i.
  • Line electrodes 15c, 15d, and 15e are formed on the upper main surface of the insulator layer 1k.
  • via electrodes 11v, 11w, 11x, and 11y are formed through both main surfaces of the insulator layer 1k.
  • the via electrode 11v has one end connected to one end of the line electrode 15c and the other end connected to the other end of the line electrode 15a formed in the insulator layer 1j.
  • the via electrode 11w has one end connected to one end of the line electrode 15d and the other end connected to the other end of the line electrode 15b formed on the insulator layer 1j.
  • the via electrode 11x has one end connected to the middle portion of the line electrode 15e and the other end connected to the via electrode 11t formed in the insulator layer 1j.
  • One end of the via electrode 11y is exposed on the upper main surface of the insulator layer 1k, and the other end is connected to the via electrode 11u formed on the insulator layer 1j.
  • Line electrodes 15f, 15g, 15h, and 15i are formed on the upper main surface of the insulator layer 1l. Further, via electrodes 11z, 11A, 11B, 11C, and 11D are formed so as to penetrate between both main surfaces of the insulator layer 1l.
  • the via electrode 11z has one end connected to one end of the line electrode 15f and the other end connected to the other end of the line electrode 15c formed on the insulator layer 1k.
  • the via electrode 11A has one end connected to one end of the line electrode 15g and the other end connected to the other end of the line electrode 15d formed in the insulator layer 1k.
  • the via electrode 11B has one end connected to one end of the line electrode 15h and the other end connected to one end of the line electrode 15e formed on the insulator layer 1k.
  • the via electrode 11C has one end connected to one end of the line electrode 15i and the other end connected to the other end of the line electrode 15e formed on the insulator layer 1k.
  • the via electrode 11D has one end exposed at the upper main surface of the insulator layer 11 and the other end connected to the via electrode 11y formed on the insulator layer 1k.
  • Line electrodes 15j, 15k, 15l are formed on the upper main surface of the insulator layer 1m. Further, via electrodes 11E, 11F, 11G, 11H, and 11I are formed through both main surfaces of the insulator layer 1m. One end of the line electrode 15 k is connected to the coupling terminal 2.
  • the via electrode 11E has one end connected to one end of the line electrode 15j and the other end connected to the other end of the line electrode 15f formed in the insulator layer 11.
  • the via electrode 11F has one end connected to the other end of the line electrode 15j and the other end connected to the other end of the line electrode 15g formed in the insulator layer 11.
  • the via electrode 11G has one end connected to the other end of the line electrode 15k and the other end connected to the other end of the line electrode 15h formed in the insulator layer 11.
  • the via electrode 11H has one end connected to one end of the line electrode 151 and the other end connected to the other end of the line electrode 15i formed in the insulator layer 11.
  • One end of the via electrode 11I is exposed on the upper main surface of the insulator layer 1m, and the other end is connected to the via electrode 11D formed on the insulator layer 11.
  • a second ground electrode 9c and a line electrode 15m are formed on the upper main surface of the insulator layer 1n. Further, via electrodes 11J, 11K, and 11L are formed through both main surfaces of the insulator layer 1n.
  • the second ground electrode 9c is connected to the second ground terminals 5a, 5b, and 5c.
  • the via electrode 11J has one end connected to one end of the line electrode 15m and the other end connected to the other end of the line electrode 15l formed in the insulator layer 1m.
  • the via electrode 11K has one end connected to the other end of the line electrode 15m and the other end connected to the via electrode 11I formed in the insulator layer 1m.
  • One end of the via electrode 11L is exposed on the upper main surface of the insulator layer 1n, and the other end is connected to an intermediate portion of the line electrode 15j formed on the insulator layer 1m.
  • a capacitor electrode 10g is formed on the upper main surface of the insulator layer 1o.
  • a via electrode 11M is formed so as to penetrate between both main surfaces of the insulator layer 1o.
  • the via electrode 11M has one end connected to the capacitor electrode 10g and the other end connected to the via electrode 11L formed in the insulator layer 1n.
  • the coupling terminal 2 On the upper main surface of the insulator layer 1p, as described above, the coupling terminal 2, the terminal terminal 3, the first ground terminal 4, and the first terminal extended from the four side surfaces of the multilayer body 1 (insulator layer 1p).
  • Two ground terminals 5a, 5b, and 5c, an input terminal 6, and an output terminal 7 are formed.
  • the first ground electrode 8, the second ground electrodes 9a to 9c, the capacitor electrodes 10a to 10g, the via electrodes 11a to 11M, the main line 12, the first sub line 13a, the second sub line 13b, and the line electrodes 15a to 15m For example, Ag, Cu, or a metal mainly composed of an alloy thereof is used as the material.
  • the directional coupler 100 according to the first embodiment having the above-described structure is conventionally used to manufacture a directional coupler configured using a laminate in which insulator layers are laminated. It can be manufactured by a general manufacturing method.
  • FIG. 2 shows an equivalent circuit of the directional coupler 100 according to the first embodiment.
  • the directional coupler 100 includes a first ground terminal 4, second ground terminals 5 a, 5 b, 5 c, an input terminal 6, an output terminal 7, a coupling terminal 2, a termination terminal 3, a main line 12, and the like.
  • the reference numerals indicating the second ground terminals are three, that is, 5a, 5b, and 5c.
  • the stacked directional coupler 100 shown in FIG. 1 has three second ground terminals 5a and 5b. 5c.
  • the number of second ground terminals is not limited to three, and may be less than three or more than three.
  • the main line 12 is connected between the input terminal 6 and the output terminal 7.
  • the first low-pass filter LPF1, the first sub line 13a, the second low-pass filter LPF2, and the second sub line 13b are connected in order between the coupling terminal 2 and the termination terminal 3.
  • the main line 12 and the sub line including the first sub line 13a and the second sub line 13b are electromagnetically coupled.
  • the first low-pass filter LPF1 includes a first inductor L1, a second inductor L2, a first capacitor C1, a second capacitor C2, a third capacitor C3, and an additional inductor L11.
  • the coupling terminal 2 and one end of the first inductor L1 are connected, the other end of the first inductor L1 and one end of the second inductor L2 are connected, and the other end of the second inductor L2.
  • the first sub line 13a are connected, the first capacitor C1 is connected in parallel with the first inductor L1, the second capacitor C2 is connected in parallel with the second inductor L2, and the first inductor L1 and the second inductor L2 are connected.
  • a third capacitor C3 and an additional inductor L11 are connected between the connection point between the first capacitor and the first ground terminal 4.
  • the second low-pass filter LPF2 includes a third inductor L3, a fourth inductor L4, a fourth capacitor C4, a fifth capacitor C5, and a sixth capacitor C6.
  • the first sub-line 13a and one end of the third inductor L3 are connected, the other end of the third inductor L3 and one end of the fourth inductor L4 are connected, and other than the fourth inductor L4.
  • a fourth capacitor C4 is connected between the connection point of the first sub-line 13a and the third inductor L3 and the second ground terminals 5a, 5b, 5c
  • a fifth capacitor C5 is connected between a connection point between the third inductor L3 and the fourth inductor L4 and the second ground terminals 5a, 5b, and 5c, and a connection between the fourth inductor L4 and the second sub line 13b.
  • a sixth capacitor C6 is connected between the point and the second ground terminals 5a, 5b, and 5c.
  • the main line 12 shown in FIG. 1 is formed on the insulator layer 1e shown in FIG. 1, and is connected between the input terminal 6 and the output terminal 7.
  • the first sub line 13a shown in FIG. 2 is formed on the insulator layer 1f shown in FIG.
  • the second sub-line 13b shown in FIG. 1 is formed in the insulator layer 1g shown in FIG. 1, and one end thereof is connected to the termination terminal 3.
  • the first inductor L1 constituting the first low-pass filter LPF1 is intermediate between the line electrode 15e from the coupling terminal 2 shown in FIG. 1 via the line electrode 15k, via electrode 11G, line electrode 15h, and via electrode 11B. It is formed by a path connecting the parts.
  • the intermediate portion of the line electrode 15e is a connection point between the first inductor L1 and the second inductor L2.
  • the second inductor L2 constituting the first low-pass filter LPF1 is connected to the via electrode 11C, the line electrode 15i, the via electrode 11H, the line electrode 151, the via electrode 11J, and the line electrode 15m from the middle portion of the line electrode 15e shown in FIG. , Via electrode 11K, via electrode 11I, via electrode 11D, via electrode 11y, via electrode 11u, via electrode 11q, via electrode 11m, and via electrode 11i.
  • the via electrode 11i is connected to one end of the first sub line 13a.
  • the first capacitor C1 constituting the first low-pass filter LPF1 is formed by a capacitance generated between the capacitor electrode 10c connected to the coupling terminal 2 and the opposing capacitor electrode 10b.
  • the capacitor electrode 10b is connected to the first inductor L1 and the second inductor via the via electrode 11b, the via electrode 11c, the via electrode 11f, the via electrode 11g, the via electrode 11k, the via electrode 11p, the via electrode 11t, and the via electrode 11x. It is connected to an intermediate portion of the line electrode 15e that is a connection point with the inductor L2.
  • the second capacitor C2 constituting the first low-pass filter LPF1 is formed by a capacitance generated between the capacitor electrode 10d and the opposing capacitor electrode 10b.
  • the capacitor electrode 10d is connected to one end of the first sub line 13a via the via electrode 11d and the via electrode 11e.
  • the third capacitor C3 constituting the first low-pass filter LPF1 is formed by a capacitance generated between the capacitor electrode 10b and the opposing capacitor electrode 10a.
  • the capacitor electrode 10 a is connected to the first ground terminal 4 via the via electrode 11 a and the first ground electrode 8.
  • An additional inductor L11 is formed by an inductance component generated by a part of the capacitor electrode 10, the via electrode 11a, and the first ground electrode 8.
  • the second low-pass filter LPF2 is connected between the first sub line 13a and the second sub line 13b.
  • a specific connection relationship between the second low-pass filter LPF2 and the first sub-line 13a and the second sub-line 13b will be described later.
  • the third inductor L3 constituting the second low-pass filter LPF2 connects an intermediate portion of the via electrode 11s, the line electrode 15b, the via electrode 11w, the line electrode 15d, the via electrode 11A, the line electrode 15g, the via electrode 11F, and the line electrode 15j. It is formed by a route.
  • the intermediate portion of the line electrode 15j is a connection point between the third inductor L3 and the fourth inductor L4.
  • the fourth inductor L4 constituting the second low-pass filter LPF2 includes the via electrode 11E, the line electrode 15f, the via electrode 11z, the line electrode 15c, the via electrode 11v, the line electrode 15a, and the via electrode 11r from the middle part of the line electrode 15j. It is formed by a connecting path.
  • the fourth capacitor C4 constituting the second low-pass filter LPF2 is formed by a capacitance generated between the capacitor electrode 10f and the opposing second ground electrode 9b.
  • the capacitor electrode 10f is connected to the via electrode 11s that is one end of the third inductor L3.
  • the fifth capacitor C5 constituting the second low-pass filter LPF2 is formed by a capacitance generated between the capacitor electrode 10g and the opposing second ground electrode 9c.
  • the capacitor electrode 10g is connected to an intermediate portion of the line electrode 15j that is a connection point between the third inductor L3 and the fourth inductor L4 via the via electrode 11M and the via electrode 11L.
  • the sixth capacitor C6 constituting the second low-pass filter LPF2 is formed by a capacitance generated between the capacitor electrode 10e and the opposing second ground electrode 9b.
  • the capacitor electrode 10e is connected to the via electrode 11r that is the other end of the fourth inductor L4.
  • One end of the second low-pass filter LPF2 (the via electrode 11s that is one end of the third inductor L3 and the capacitor electrode 10f that is one capacitor electrode of the fourth capacitor C4) passes through a wiring that connects the via electrodes 11o, 11l, and 11h. And connected to the other end of the first sub-line 13a.
  • the other end of the second low-pass filter LPF2 (the via electrode 11r that is the other end of the fourth inductor L4 and the capacitor electrode 10e that is one capacitor electrode of the sixth capacitor C6) passes through a wiring that connects the via electrodes 11n and 11j. And connected to the other end of the second sub-line 13b.
  • the ground terminals 5a, 5b, and 5c are connected.
  • the second ground electrode 9a that is a floating electrode in the multilayer body 1 is also connected to the three second ground terminals 5a, 5b, and 5c.
  • the directional coupler 100 of the present embodiment it is important that the first ground terminal 4 and the second ground terminals 5a, 5b, and 5c are provided separately. That is, in the directional coupler 100, since the first ground terminal 4 and the second ground terminals 5a, 5b, and 5c are provided separately from each other, unnecessary wraparound of signals is suppressed.
  • the second ground electrode is divided into the second ground electrode 9a and the second ground electrode 9b formed in different layers in the stacked body 1.
  • the second ground electrode 9a and the second ground electrode 9b sandwich the main line 12 and the sub lines (first sub line 13a and second sub line 13b) from above and below.
  • the main line 12 and the sub-lines are prevented from being affected by an external noise signal.
  • the first low-pass filter LPF1 and the first ground electrode 8 overlap at least partially.
  • the first low-pass filter LPF1 is configured not to overlap with the second ground electrodes 9a, 9b, 9c.
  • the first low-pass filter LPF1 is formed in the area on the front half of the multilayer body 1 in FIG.
  • the directional coupler 100 has few ground electrodes that obstruct the magnetic field generated by the inductor constituting the first low-pass filter LPF1, and has higher attenuation on the high frequency side than the frequency band used for coupling. Ring characteristics have been improved.
  • the laminated directional coupler 100 shown in FIG. 1 constitutes an equivalent circuit shown in FIG.
  • FIG. 3 shows the coupling characteristics of the directional coupler 100.
  • the coupling characteristic indicates the amount of signal flowing from the input terminal 6 to the coupling terminal 2 shown in FIGS.
  • FIG. 4 shows the frequency characteristics of the first low-pass filter LPF1 and the second low-pass filter LPF2 of the directional coupler 100, respectively.
  • FIG. 4 also shows the coupling characteristics of the directional coupler 100.
  • FIG. 5 shows insertion loss characteristics and reflection loss characteristics of the directional coupler 100, respectively.
  • the insertion loss characteristic here is a characteristic obtained by looking at the loss of the signal path from the input terminal 6 to the output terminal 7, and the reflection loss characteristic is a signal ratio at which the signal input from the input terminal 6 returns to the input terminal 6. is there.
  • FIG. 6 shows the isolation characteristics of the directional coupler 100.
  • FIG. 6 also shows the coupling characteristics of the directional coupler 100.
  • the isolation characteristic is a signal ratio output from the output terminal 7 to the coupling terminal 2.
  • the ground electrode is not divided (isolated) into the first ground electrode 8 and the second ground electrodes 9a, 9b, and 9c, and the ground terminal is separated from the first ground terminal 4 and the second ground electrode.
  • the coupling characteristics when not divided (isolated) into two ground terminals 5a, 5b, and 5c are shown. For example, this is a case where the first ground electrode 8 and the second ground electrode 9a formed on the upper main surface of the insulator layer 1a are integrated without being separated (see FIG. 1).
  • the directional coupler 100 has a coupling characteristic flattened to an attenuation of 23 dB to 28 dB over a wide bandwidth of 0.7 GHz to 2.7 GHz. Further, in the frequency band of 5.1 GHz to 6.0 GHz on the high frequency side, attenuation of 35 dB or more is obtained, and unnecessary coupling is suppressed.
  • Fig. 3 shows the 0.7 GHz to 2.7 GHz region flattened to 23 dB to 28 dB attenuation as X, and the 5.1 GHz to 6.0 GHz region where 35 dB or more attenuation is obtained as Y.
  • the attenuation by the second low-pass filter LPF2 is formed in the region indicated by A in FIG. 3, which contributes to the formation of excellent coupling characteristics.
  • the second low-pass filter LPF2 has a cutoff frequency in the vicinity of 2.3 GHz.
  • the first low-pass filter LPF1 has a cutoff frequency in the vicinity of 4.4 GHz.
  • the ground electrode is divided (isolated) into the first ground electrode 8 and the second ground electrodes 9a, 9b, 9c, and the ground terminal is connected to the first ground terminal 4. It is important that the second ground terminals 5a, 5b, and 5c are divided (isolated). This is because if they are not divided (isolated), as will be described later, signal wraparound occurs and desired attenuation cannot be obtained.
  • Attenuation by the additional inductor 11 added to the first low-pass filter LPF1 is formed in a region indicated by C in FIG. 3, and it is possible to suppress unnecessary coupling in the frequency band.
  • the ground electrode is not divided (isolated) into the first ground electrode 8 and the second ground electrodes 9a, 9b, and 9c, and the ground terminal is connected to the first ground terminal 4 and the second ground electrode.
  • the necessary attenuation is not obtained in the region indicated by Z due to the signal wraparound.
  • an attenuation of 35 dB or more is not obtained, and the standard required as a product is not satisfied.
  • the directional coupler 100 according to the first embodiment has a flat coupling degree over a wide band and suppresses coupling in an unnecessary frequency band.
  • FIG. 8 and 9 show a directional coupler 200 according to the second embodiment.
  • FIG. 8 is an essential part exploded perspective view in the case where the directional coupler 200 is configured using a laminated body in which a plurality of insulator layers are laminated.
  • FIG. 9 is obtained by replacing the configuration of the main part exploded perspective view of FIG. 8 with an equivalent circuit.
  • the insulator layer 1b is deleted as shown in FIG. 8, and the additional inductor L11 is deleted as shown in FIG.
  • the third capacitor C3 shown in FIG. 9 is formed by a capacitance generated between the capacitor electrode 10b and the first ground electrode 8, as shown in FIG.
  • FIG. 10 shows the coupling characteristics of the directional coupler 200. In FIG. 10, the coupling characteristics of the directional coupler 100 are also shown.
  • the attenuation pole formed in the vicinity of 8 GHz shown in the region C disappears in the coupling characteristic of the directional coupler 100, which is higher than 6 GHz.
  • the characteristics on the high frequency side are jumping up.
  • the required attenuation of 35 dB or more is obtained in the frequency band of 5.1 GHz to 6.0 GHz.
  • the additional inductor L11 is inserted between the third capacitor C3 of the first low-pass filter LPF1 and the first ground terminal 4 as in the directional coupler 100 according to the first embodiment, 8 GHz. It has been found that a pole is formed in the vicinity, and a large attenuation can be obtained on the high frequency side than 6 GHz.
  • the directional coupler 200 when large attenuation is not required on the high frequency side than 6 GHz, it is possible to delete the additional inductor L11 as in the directional coupler 200 according to the second embodiment. In this case, Since one insulating layer (insulating layer 1b) stacked in the stacked body 1 is eliminated, the directional coupler can be reduced in height.
  • FIG. 11 shows an equivalent circuit of the directional coupler 300 according to the third embodiment.
  • the first low-pass filter LPF1 and the second low-pass filter LPF2 are each configured in two stages.
  • an additional inductor L21 and additional capacitors C21 and C22 are added to the first low-pass filter LPF1 to form three stages. Further, in the directional coupler 300, as shown in FIG. 11, an additional inductor L31 and an additional capacitor C31 are added to the second low-pass filter LPF2 to form a three-stage configuration.
  • the number of stages of the first low-pass filter LPF1 and the second low-pass filter LPF2 is increased to 3 stages, so that the coupling characteristics are flattened in a wide bandwidth and an unnecessary frequency. Bonding at the band is further suppressed.
  • the directional coupler of the present invention does not necessarily have to be configured using a laminate in which insulator layers are laminated, and may be configured by mounting so-called discrete electronic components on a substrate. .
  • the number of stages of the first low-pass filter LPF1 and the second low-pass filter LPF2 is configured to be two stages, respectively, and the directionality according to the third embodiment.
  • the number of stages of the first low-pass filter LPF1 and the second low-pass filter LPF2 is three, respectively, but the number of stages of the first low-pass filter LPF1 and the second low-pass filter LPF2 is arbitrary, It may be more or less than these.
  • the number of stages of the first low-pass filter LPF1 and the number of stages of the second low-pass filter LPF2 do not need to match, and the number of stages of the first low-pass filter LPF1 and the number of stages of the second low-pass filter LPF2 may be different.
  • both the number of stages of the first low-pass filter LPF1 and the number of stages of the second low-pass filter LPF2 are increased to 3, but only one of the stages is increased. You may do it.

Abstract

結合度が広帯域にわたって平坦であり、かつ不要な周波数帯での結合が抑制された方向性結合器を提供する。 入力端子6と、出力端子7と、カップリング端子2と、終端端子3と、第1グランド端子4と、第2グランド端子5a~5cと、主線路12と、第1副線路13aと、第2副線路13bとを備え、カップリング端子2と第1の副線路13aとの間に第1ローパスフィルタLPF1が挿入され、第1の副線路13aと第2の副線路13bとの間に第2ローパスフィルタLPF2が挿入され、第1ローパスフィルタLPF1が第1グランド端子4に接続され、第2ローパスフィルタLPF2が第2グランド端子5a~5cに接続されるようにした。

Description

方向性結合器
 本発明は方向性結合器に関し、さらに詳しくは、結合度が広帯域にわたって平坦化され、かつ、不要な周波数帯での結合が抑制された方向性結合器に関する。
 高周波機器において、高周波信号の特性を測定するために、高周波信号の一部を取り出す方向性結合器が使用されている。一般的な構造の方向性結合は、入力端子と出力端子との間に接続された主線路と、カップリング端子と終端端子との間に接続された副線路とを平行に配置し、主線路に流れる高周波信号の一部を副線路から取り出すようにしている。
 方向性結合器においては、結合度が広帯域にわたって平坦であることや、不要な周波数帯(たとえば結合に用いる周波数帯よりも高周波側の周波数帯)での結合が抑制されていることが求められる。
 たとえば、特許文献1(特開2013-46305号公報)に開示された方向性結合器では、カップリング端子と副線路との間にローパスフィルタを挿入することにより、高周波側の不要な周波数帯での結合を抑制し、結合度を広帯域にわたって平坦化している。
 また、特許文献2(特開2013-5076号公報)に開示された方向性結合器では、副線路を第1副線路と第2副線路とに分割し、第1副線路と第2副線路との間にローパスフィルタを挿入することにより、高周波側の不要な周波数帯での結合を抑制し、結合度を広帯域にわたって平坦化している。
特開2013-46305号公報 特開2013-5076号公報
 特許文献1や特許文献2に開示された方向性結合器は、高周波側の不要な周波数帯での結合の抑制や、広帯域にわたる結合度の平坦化に対して、一定の効果を奏している。しかしながら、方向性結合器を使用する電子機器の製造者・販売者からは、不要な周波数帯での結合の抑制や、広帯域にわたる結合度の平坦化を、更に進めることが要求されている。
 このような要求に応える方法としては、まず、カップリング端子と副線路との間に挿入されるローパスフィルタや、第1副線路と第2副線路との間に挿入されるローパスフィルタを多段化する方法が考えられる。また別の方法として、特許文献1に開示された方法と特許文献2に開示された方法とを組み合わせ、カップリング端子と副線路の間と、第1副線路と第2副線路の間の両方にローパスフィルタを挿入する方法が考えられる。
 しかしながら、ローパスフィルタを多段化しても、方向性結合器の大きさが格段に大きくなる一方、期待するような特性の改善はみられなかった。また、単純に、カップリング端子と副線路の間と、第1副線路と第2副線路の間の両方にローパスフィルタを挿入しても、方向性結合器内で信号の不要な回り込みが発生し、期待するような特性の改善は見られなかった。
 本発明は、上述した従来の問題を解決するためになされたものであり、その手段として本発明の方向性結合器は、入力端子と、出力端子と、カップリング端子と、終端端子と、グランド端子と、入力端子と出力端子との間に接続された主線路と、カップリング端子と終端端子との間に接続された副線路とを備え、主線路と副線路とが間隔を設けて配置され、副線路は、相互に接続された複数の副線路に分割され、少なくとも第1副線路と第2副線路とを備え、カップリング端子と副線路との間に、第1ローパスフィルタが挿入され、第1の副線路と第2の副線路との間に、第2ローパスフィルタが挿入され、グランド端子は、相互に隔離された、少なくとも第1グランド端子と第2グランド端子とを含む複数からなり、第1ローパスフィルタが第1グランド端子に接続され、第2ローパスフィルタが第2グランド端子に接続されるようにした。
 本発明の方向性結合器は、たとえば、第1ローパスフィルタは、少なくとも、第1インダクタと、第2インダクタと、第1キャパシタと、第2キャパシタと、第3キャパシタとを備え、カップリング端子と第1インダクタの一端とが接続され、第1インダクタの他端と第2インダクタの一端とが接続され、第2インダクタの他端と副線路とが接続され、第1インダクタと並列に第1キャパシタが接続され、第2インダクタと並列に第2キャパシタが接続され、第1インダクタと第2インダクタとの接続点と、第1グランド端子との間に、第3キャパシタが接続され、第2ローパスフィルタは、少なくとも、第3インダクタと、第4インダクタと、第4キャパシタと、第5キャパシタと、第6キャパシタとを備え、第1副線路と第3インダクタの一端とが接続され、第3インダクタの他端と第4インダクタの一端とが接続され、第4インダクタの他端と前記第2副線路とが接続され、第1副線路と第3インダクタとの接続点と、第2グランド端子との間に、第4キャパシタが接続され、第3インダクタと第4インダクタとの接続点と、第2グランド端子との間に、第5キャパシタが接続され、第4インダクタと第2副線路との接続点と、第2グランド端子との間に、第6キャパシタが接続されたものとして構成することができる。この場合には、第1ローパスフィルタによって、結合に用いる周波数帯よりも高周波側に減衰極を形成し、高周波側の減衰を高め、第2ローパスフィルタにより、広帯域にわたって結合度の平坦化をはかることができる。
 また、本発明の方向性結合器は、第1ローパスフィルタにおいて、第2インダクタと副線路との間に、1つの追加インダクタ、または、相互に直列に接続された複数の追加インダクタが挿入され、追加インダクタそれぞれと並列に追加キャパシタが接続されるとともに、追加インダクタが1つの場合は、第2インダクタと追加インダクタとの接続点と、第1グランド端子との間に、追加キャパシタが挿入され、追加インダクタが複数の場合は、第2インダクタと追加インダクタとの接続点と、第1グランド端子との間、および、追加インダクタと追加インダクタとの接続点と、第1グランド端子との間に、それぞれ、追加キャパシタが挿入されたものとすることができる。この場合には、第1ローパスフィルタの段数を増やすことができ、方向性結合器の特性を更に改善することができる。
 また、本発明の方向性結合器は、第2ローパスフィルタにおいて、第4インダクタと第2副線路との間に、1つの追加インダクタ、または、相互に直列に接続された複数の追加インダクタが挿入され、追加インダクタが1つの場合は、追加インダクタと第2副線路との接続点と、第2グランド端子との間に、追加キャパシタが挿入され、追加インダクタが複数の場合は、追加インダクタと追加インダクタとの接続点と、第2グランド端子との間、および、追加インダクタと第2副線路との接続点と、第2グランド端子との間に、それぞれ、追加キャパシタが挿入されたものとすることができる。この場合には、第2ローパスフィルタの段数を増やすことができ、方向性結合器の特性を更に改善することができる。
 また、本発明の方向性結合器において、第1ローパスフィルタのカットオフ周波数と、第2ローパスフィルタのカットオフ周波数とが異なっており、第1ローパスフィルタのカットオフ周波数が、第2ローパスフィルタのカットオフ周波数よりも高周波側にあるものとすることができる。この場合には、第1ローパスフィルタのカットオフ周波数と、第2ローパスフィルタのカットオフ周波数とが異なることにより、広帯域にわたって結合度の平坦化をはかると同時に、結合に用いる周波数帯よりも高周波側の減衰を高めることができる。
 また、本発明の方向性結合器において、第1ローパスフィルタと第1グランド端子との接続経路に、さらに、追加インダクタを挿入させても良い。この場合には、結合に用いる周波数帯から高周波側にやや大きく離れた周波数に減衰極を形成することができ、方向性結合器の特性を更に改善することができる。
 上述した本発明の方向性結合器は、複数の絶縁体層が積層された積層体内に構成することができ、絶縁体層の所定の層間に、第1グランド電極が形成され、絶縁体層の所定の層間に、第2グランド電極が形成され、積層体内において、第1グランド電極と第2グランド電極は相互に隔離されており、第1ローパスフィルタが第1グランド電極に接続され、第2ローパスフィルタが第2グランド電極に接続され、第1グランド電極が第1グランド端子に接続され、第2グランド電極が第2グランド端子に接続されたものとすることができる。この場合には、第1グランド電極と第2グランド電極が相互に隔離されたことにより、グランド電極を介して信号の不要な回り込みが発生するのを防止することができ、方向性結合器の特性を更に改善することができる。
 本発明の方向性結合器を複数の絶縁体層が積層された積層体内に構成するにあたり、積層体内において、第2グランド電極が、絶縁体層の2つ以上の層間に分割して配置され、積層体内において、主線路および副線路が、それぞれ、それらの2つ以上の層間に分割された第2グランド電極に上下から挟まれて配置され、積層体を積層方向に透視した場合に、それらの2つ以上の層間に分割された第2グランド電極と、主線路および副線路とが、少なくとも部分的に重なっているようにすることができる。この場合には、外部からのノイズ信号により、主線路および副線路が影響を受けることを防止することができる。
 また、本発明の方向性結合器を複数の絶縁体層が積層された積層体内に構成するにあたり、積層体を積層方向に透視した場合に、第1ローパスフィルタと、第1グランド電極とは、少なくとも部分的に重なっているが、第1ローパスフィルタは、第2グランド電極とは重なっていないようにすることができる。この場合には、第1ローパスフィルタを構成するインダクタが発生させる磁界の障害となるグランド電極を少なくすることができるため、結合に用いる周波数帯よりも高周波側の減衰を高めることができ、方向性結合器の特性を更に改善することができる。
 本発明によれば、信号の不要な回り込みが発生せず、結合度が広帯域にわたって平坦化され、不要な周波数帯での結合が抑制された方向性結合器を得ることができる。
第1実施形態にかかる方向性結合器100を示す分解斜視図である。 方向性結合器100の等価回路図である。 方向性結合器100のカップリング特性を示すグラフである。 方向性結合器100に含まれる第1ローパスフィルタLPF1と第2ローパスフィルタLPF2の周波数特性をそれぞれ示すグラフである。 方向性結合器100の挿入損失特性と反射損失特性をそれぞれ示すグラフである。 方向性結合器100のアイソレーション特性を示すグラフである。 比較例にかかる方向性結合器のカップリング特性を示すグラフである。 第2実施形態にかかる方向性結合器200を示す要部分解斜視図である。 方向性結合器200の等価回路図である。 方向性結合器100のカップリング特性と、方向性結合器200のカップリング特性とを、比較して示したグラフである。 第3実施形態にかかる方向性結合器300の等価回路図である。
 以下、図面とともに、本発明を実施するための形態について説明する。
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。
 [第1実施形態]
 図1および図2に、本発明の第1実施形態にかかる方向性結合器100を示す。ただし、図1は、方向性結合器100を、複数の絶縁体層が積層された積層体を用いて構成した場合における分解斜視図である。図2は、図1の分解斜視図の構成を等価回路に置き換えたものである。
 図1に示すように、方向性結合器100は、16層の絶縁体層1a~1pが積層された積層体1を備える。積層体1は、直方体形状からなる。
 積層体1の4つの側面には、それぞれ、所定の端子が形成されている。以下、積層体1に形成された端子について説明するが、説明の便宜上、図1における手前側の側面から、順番に、時計回りに、各側面に形成された端子について説明する。なお、以下の説明中において、手前側、左側、奥側、右側は、それぞれ、図1の中での方向を指している。また、上側および下側も、図1の中での方向を指している。
 積層体1の手前側の右側の側面には、順に、終端端子3、カップリング端子2、第1グランド端子4が、それぞれ形成されている。
 積層体1の左側の側面には、第2グランド端子5aが形成されている。
 積層体1の奥側の左側の側面には、順に、入力端子6、第2グランド端子5b、出力端子7が、それぞれ形成されている。
 積層体1の右側の側面には、第2グランド端子5cが形成されている。
 積層体1の4つの側面に形成された、カップリング端子2、終端端子3、第1グランド端子4、第2グランド端子5a、5b、5c、入力端子6、出力端子7は、それぞれ、積層体1(絶縁体層1a)の下側の主面、および、積層体1(絶縁体層1p)の上側の主面に延出して形成されている。
 カップリング端子2、終端端子3、第1グランド端子4、第2グランド端子5a、5b、5c、入力端子6、出力端子7は、たとえば、Ag、Cuや、これらの合金などを主成分とする金属からなり、必要に応じて表面に、Ni、Sn、Auなどを主成分にするめっき層が、1層または複数層にわたって形成されている。
 積層体1を構成する絶縁体層1a~1pの材質には、セラミックスが使用されている。絶縁体層1a~1pは、それぞれ、誘電率を有する誘電体層と理解することもできる。
 絶縁体層1aの上側主面には、第1グランド電極8、第2グランド電極9aが形成されている。第1グランド電極8は、第1グランド端子4に接続されている。第2グランド電極9aは、第2グランド端子5a、5b、5cに接続されている。
 絶縁体層1bの上側主面には、キャパシタ電極10aが形成されている。また、絶縁体層1bの両主面間を貫通してビア電極11aが形成されている。ビア電極11aは、一端がキャパシタ電極10aに接続され、他端が絶縁体層1aに形成された第1グランド電極8に接続されている。
 絶縁体層1cの上側主面には、キャパシタ電極10bが形成されている。
 絶縁体層1dの上側主面には、キャパシタ電極10c、10dが形成されている。また、絶縁体層1dの両主面間を貫通してビア電極11bが形成されている。キャパシタ電極10cは、カップリング端子2に接続されている。ビア電極11bは、一端が絶縁体層1dの上側主面に露出され、他端が絶縁体層1cに形成されたキャパシタ電極10bに接続されている。
 絶縁体層1eの上側主面には、主線路12が形成されている。また、絶縁体層1eの両主面間を貫通してビア電極11c、11dが形成されている。主線路12は、一端が入力端子6に接続され、他端が出力端子7に接続されている。ビア電極11cは、一端が絶縁体層1eの上側主面に露出され、他端が絶縁体層1dに形成されたビア電極11bに接続されている。ビア電極11dは、一端が絶縁体層1eの上側主面に露出され、他端が絶縁体層1dに形成されたキャパシタ電極10dに接続されている。
 絶縁体層1fの上側主面には、第1副線路13aが形成されている。また、絶縁体層1fの両主面間を貫通してビア電極11e、11fが形成されている。ビア電極11eは、一端が第1副線路13aの一端に接続され、他端が絶縁体層1eに形成されたビア電極11dに接続されている。ビア電極11fは、一端が絶縁体層1fの上側主面に露出され、他端が絶縁体層1eに形成されたビア電極11cに接続されている。
 絶縁体層1gの上側主面には、第2副線路13bが形成されている。また、絶縁体層1gの両主面間を貫通してビア電極11g、11h、11iが形成されている。第2副線路13bは、一端が終端端子3に接続されている。ビア電極11gは、一端が絶縁体層1gの上側主面に露出され、他端が絶縁体層1fに形成されたビア電極11fに接続されている。ビア電極11hは、一端が絶縁体層1gの上側主面に露出され、他端が絶縁体層1fに形成された第1副線路13aの他端に接続されている。ビア電極11iは、一端が絶縁体層1gの上側主面に露出され、他端が絶縁体層1fに形成された第1副線路13aの一端に接続されている。
 絶縁体層1hの上側主面には、第2グランド電極9bが形成されている。また、絶縁体層1hの両主面間を貫通してビア電極11j、11k、11l、11mが形成されている。第2グランド電極9bは、第2グランド端子5a、5b、5cに接続されている。ビア電極11jは、一端が絶縁体層1hの上側主面に露出され、他端が絶縁体層1gに形成された第2副線路13bの他端に接続されている。ビア電極11kは、一端が絶縁体層1hの上側主面に露出され、他端が絶縁体層1gに形成されたビア電極11gに接続されている。ビア電極11lは、一端が絶縁体層1hの上側主面に露出され、他端が絶縁体層1gに形成されたビア電極11hに接続されている。ビア電極11mは、一端が絶縁体層1hの上側主面に露出され、他端が絶縁体層1gに形成されたビア電極11iに接続されている。
 絶縁体層1iの上側主面には、キャパシタ電極10e、10fが形成されている。また、絶縁体層1iの両主面間を貫通してビア電極11n、11o、11p、11qが形成されている。ビア電極11nは、一端がキャパシタ電極10eに接続され、他端が絶縁体層1hに形成されたビア電極11jに接続されている。ビア電極11oは、一端がキャパシタ電極10fに接続され、他端が絶縁体層1hに形成されたビア電極11lに接続されている。ビア電極11pは、一端が絶縁体層1iの上側主面に露出され、他端が絶縁体層1hに形成されたビア電極11kに接続されている。ビア電極11qは、一端が絶縁体層1iの上側主面に露出され、他端が絶縁体層1hに形成されたビア電極11mに接続されている。
 絶縁体層1jの上側主面には、線路電極15a、15bが形成されている。また、絶縁体層1jの両主面間を貫通してビア電極11r、11s、11t、11uが形成されている。ビア電極11rは、一端が線路電極15aの一端に接続され、他端が絶縁体層1iに形成されたキャパシタ電極10eに接続されている。ビア電極11sは、一端が線路電極15bの一端に接続され、他端が絶縁体層1iに形成されたキャパシタ電極10fに接続されている。ビア電極11tは、一端が絶縁体層1jの上側主面に露出され、他端が絶縁体層1iに形成されたビア電極11pに接続されている。ビア電極11uは、一端が絶縁体層1jの上側主面に露出され、他端が絶縁体層1iに形成されたビア電極11qに接続されている。
 絶縁体層1kの上側主面には、線路電極15c、15d、15eが形成されている。また、絶縁体層1kの両主面間を貫通してビア電極11v、11w、11x、11yが形成されている。ビア電極11vは、一端が線路電極15cの一端に接続され、他端が絶縁体層1jに形成された線路電極15aの他端に接続されている。ビア電極11wは、一端が線路電極15dの一端に接続され、他端が絶縁体層1jに形成された線路電極15bの他端に接続されている。ビア電極11xは、一端が線路電極15eの中間部分に接続され、他端が絶縁体層1jに形成されたビア電極11tに接続されている。ビア電極11yは、一端が絶縁体層1kの上側主面に露出され、他端が絶縁体層1jに形成されたビア電極11uに接続されている。
 絶縁体層1lの上側主面には、線路電極15f、15g、15h、15iが形成されている。また、絶縁体層1lの両主面間を貫通してビア電極11z、11A、11B、11C、11Dが形成されている。ビア電極11zは、一端が線路電極15fの一端に接続され、他端が絶縁体層1kに形成された線路電極15cの他端に接続されている。ビア電極11Aは、一端が線路電極15gの一端に接続され、他端が絶縁体層1kに形成された線路電極15dの他端に接続されている。ビア電極11Bは、一端が線路電極15hの一端に接続され、他端が絶縁体層1kに形成された線路電極15eの一端に接続されている。ビア電極11Cは、一端が線路電極15iの一端に接続され、他端が絶縁体層1kに形成された線路電極15eの他端に接続されている。ビア電極11Dは、一端が絶縁体層1lの上側主面に露出され、他端が絶縁体層1kに形成されたビア電極11yに接続されている。
 絶縁体層1mの上側主面には、線路電極15j、15k、15lが形成されている。また、絶縁体層1mの両主面間を貫通してビア電極11E、11F、11G、11H、11Iが形成されている。線路電極15kは、一端がカップリング端子2に接続されている。ビア電極11Eは、一端が線路電極15jの一端に接続され、他端が絶縁体層1lに形成された線路電極15fの他端に接続されている。ビア電極11Fは、一端が線路電極15jの他端に接続され、他端が絶縁体層1lに形成された線路電極15gの他端に接続されている。ビア電極11Gは、一端が線路電極15kの他端に接続され、他端が絶縁体層1lに形成された線路電極15hの他端に接続されている。ビア電極11Hは、一端が線路電極15lの一端に接続され、他端が絶縁体層1lに形成された線路電極15iの他端に接続されている。ビア電極11Iは、一端が絶縁体層1mの上側主面に露出され、他端が絶縁体層1lに形成されたビア電極11Dに接続されている。
 絶縁体層1nの上側主面には、第2グランド電極9c、線路電極15mが形成されている。また、絶縁体層1nの両主面間を貫通してビア電極11J、11K、11Lが形成されている。第2グランド電極9cは、第2グランド端子5a、5b、5cに接続されている。ビア電極11Jは、一端が線路電極15mの一端に接続され、他端が絶縁体層1mに形成された線路電極15lの他端に接続されている。ビア電極11Kは、一端が線路電極15mの他端に接続され、他端が絶縁体層1mに形成されたビア電極11Iに接続されている。ビア電極11Lは、一端が絶縁体層1nの上側主面に露出され、他端が絶縁体層1mに形成された線路電極15jの中間部分に接続されている。
 絶縁体層1oの上側主面には、キャパシタ電極10gが形成されている。また、絶縁体層1oの両主面間を貫通してビア電極11Mが形成されている。ビア電極11Mは、一端がキャパシタ電極10gに接続され、他端が絶縁体層1nに形成されたビア電極11Lに接続されている。
 絶縁体層1pの上側主面には、上述したとおり、積層体1(絶縁体層1p)の4つの側面から延出された、カップリング端子2、終端端子3、第1グランド端子4、第2グランド端子5a、5b、5c、入力端子6、出力端子7が、それぞれ形成されている。
 以上において、第1グランド電極8、第2グランド電極9a~9c、キャパシタ電極10a~10g、ビア電極11a~11M、主線路12、第1副線路13a、第2副線路13b、線路電極15a~15mの材質には、たとえば、Ag、Cuや、これらの合金を主成分とする金属が使用されている。
 以上のような構造からなる第1実施形態にかかる方向性結合器100は、従来から、絶縁体層が積層された積層体を用いて構成した方向性結合器を製造するのに使用されている一般的な製造方法により、製造することができる。
 図2に、第1実施形態にかかる方向性結合器100の等価回路を示す。
 方向性結合器100は、第1グランド端子4と、第2グランド端子5a、5b、5cと、入力端子6と、出力端子7と、カップリング端子2と、終端端子3と、主線路12と、第1副線路13aと第2副線路13bとを備えた副線路と、第1ローパスフィルタLPF1と、第2ローパスフィルタLPF2とを備える。なお、上記において、第2グランド端子を表す符号が5a、5b、5cの3つからなるのは、図1に示した積層型の方向性結合器100が、3つの第2グランド端子5a、5b、5cを備えていることによる。第2グランド端子の数は3つには限定されず、3つより少なくても良く、また、3つより多くても良い。
 入力端子6と出力端子7との間に、主線路12が接続されている。
 カップリング端子2と終端端子3との間に、順に、第1ローパスフィルタLPF1、第1副線路13a、第2ローパスフィルタLPF2、第2副線路13bが接続されている。主線路12と、第1副線路13aと第2副線路13bとを備えた副線路とは、電磁気的に結合している。
 第1ローパスフィルタLPF1は、第1インダクタL1と、第2インダクタL2と、第1キャパシタC1と、第2キャパシタC2と、第3キャパシタC3と、追加のインダクタL11とを備える。第1ローパスフィルタLPF1においては、カップリング端子2と第1インダクタL1の一端とが接続され、第1インダクタL1の他端と第2インダクタL2の一端とが接続され、第2インダクタL2の他端と第1副線路13aとが接続され、第1インダクタL1と並列に第1キャパシタC1が接続され、第2インダクタL2と並列に第2キャパシタC2が接続され、第1インダクタL1と第2インダクタL2との接続点と、第1グランド端子4との間に、第3キャパシタC3と、追加のインダクタL11とが接続されている。
 第2ローパスフィルタLPF2は、第3インダクタL3と、第4インダクタL4と、第4キャパシタC4と、第5キャパシタC5と、第6キャパシタC6とを備える。第2ローパスフィルタLPF2においては、第1副線路13aと第3インダクタL3の一端とが接続され、第3インダクタL3の他端と第4インダクタL4の一端とが接続され、第4インダクタL4の他端と第2副線路13bとが接続され、第1副線路13aと第3インダクタL3との接続点と、第2グランド端子5a、5b、5cとの間に、第4キャパシタC4が接続され、第3インダクタL3と第4インダクタL4との接続点と、第2グランド端子5a、5b、5cとの間に、第5キャパシタC5が接続され、第4インダクタL4と第2副線路13bとの接続点と、第2グランド端子5a、5b、5cとの間に、第6キャパシタC6が接続されている。
 次に、図1と図2とを参照しながら、積層型の方向性結合器100の構造と、等価回路との関係について説明する。
 図2に示す主線路12は、図1に示す絶縁体層1eに形成され、入力端子6と出力端子7との間に接続されている。
 図2に示す第1副線路13aは、図1に示す絶縁体層1fに形成されている。
 図2に示す第2副線路13bは、図1に示す絶縁体層1gに形成され、一端が終端端子3に接続されている。
 次に、図2に示す、第1ローパスフィルタLPF1について説明する。
 第1ローパスフィルタLPF1を構成する第1インダクタL1は、図1に示す、カップリング端子2から、線路電極15k、ビア電極11G、線路電極15h、ビア電極11Bを経由して、線路電極15eの中間部分を繋ぐ経路により形成されている。なお、線路電極15eの中間部分は、第1インダクタL1と第2インダクタL2との接続点である。
 第1ローパスフィルタLPF1を構成する第2インダクタL2は、図1に示す、線路電極15eの中間部分から、ビア電極11C、線路電極15i、ビア電極11H、線路電極15l、ビア電極11J、線路電極15m、ビア電極11K、ビア電極11I、ビア電極11D、ビア電極11y、ビア電極11u、ビア電極11q、ビア電極11m、ビア電極11iを繋ぐ経路により形成されている。なお、ビア電極11iは、第1副線路13aの一端に接続されている。
 第1ローパスフィルタLPF1を構成する第1キャパシタC1は、カップリング端子2に接続されたキャパシタ電極10cと、対向するキャパシタ電極10bとの間に発生する容量により形成されている。なお、キャパシタ電極10bは、ビア電極11b、ビア電極11c、ビア電極11f、ビア電極11g、ビア電極11k、ビア電極11p、ビア電極11t、ビア電極11xを経由して、第1インダクタL1と第2インダクタL2との接続点である線路電極15eの中間部分に接続されている。
 第1ローパスフィルタLPF1を構成する第2キャパシタC2は、キャパシタ電極10dと、対向するキャパシタ電極10bとの間に発生する容量により形成されている。なお、キャパシタ電極10dは、ビア電極11d、ビア電極11eを経由して、第1副線路13aの一端に接続されている。
 第1ローパスフィルタLPF1を構成する第3キャパシタC3は、キャパシタ電極10bと、対向するキャパシタ電極10aとの間に発生する容量により形成されている。なお、キャパシタ電極10aは、ビア電極11a、第1グランド電極8を経由して、第1グランド端子4に接続されている。そして、キャパシタ電極10の一部、ビア電極11a、第1グランド電極8により発生するインダクタンス成分により、追加のインダクタL11が形成されている。
 次に、図2に示す、第2ローパスフィルタLPF2について説明する。
 第2ローパスフィルタLPF2は、上述したとおり、第1副線路13aと、第2副線路13bとの間に接続されている。第2ローパスフィルタLPF2と、第1副線路13aおよび第2副線路13bとの具体的な接続関係については後述する。
 第2ローパスフィルタLPF2を構成する第3インダクタL3は、ビア電極11s、線路電極15b、ビア電極11w、線路電極15d、ビア電極11A、線路電極15g、ビア電極11F、線路電極15jの中間部分を繋ぐ経路により形成されている。なお、線路電極15jの中間部分は、第3インダクタL3と第4インダクタL4との接続点である。
 第2ローパスフィルタLPF2を構成する第4インダクタL4は、線路電極15jの中間部分から、ビア電極11E、線路電極15f、ビア電極11z、線路電極15c、ビア電極11v、線路電極15a、ビア電極11rを繋ぐ経路により形成されている。
 第2ローパスフィルタLPF2を構成する第4キャパシタC4は、キャパシタ電極10fと、対向する第2グランド電極9bとの間に発生する容量により形成されている。なお、キャパシタ電極10fは、第3インダクタL3の一端であるビア電極11sに接続されている。
 第2ローパスフィルタLPF2を構成する第5キャパシタC5は、キャパシタ電極10gと、対向する第2グランド電極9cとの間に発生する容量により形成されている。なお、キャパシタ電極10gは、ビア電極11M、ビア電極11Lを経由して、第3インダクタL3と第4インダクタL4との接続点である線路電極15jの中間部分に接続されている。
 第2ローパスフィルタLPF2を構成する第6キャパシタC6は、キャパシタ電極10eと、対向する第2グランド電極9bとの間に発生する容量により形成されている。なお、キャパシタ電極10eは、第4インダクタL4の他端であるビア電極11rに接続されている。
 第2ローパスフィルタLPF2の一端(第3インダクタL3の一端であるビア電極11sおよび第4キャパシタC4の一方のキャパシタ電極であるキャパシタ電極10f)は、ビア電極11o、11l、11hを繋ぐ配線を経由して、第1副線路13aの他端に接続されている。
 第2ローパスフィルタLPF2の他端(第4インダクタL4の他端であるビア電極11rおよび第6キャパシタC6の一方のキャパシタ電極であるキャパシタ電極10e)は、ビア電極11n、11jを繋ぐ配線を経由して、第2副線路13bの他端に接続されている。
 第4キャパシタC4、第6キャパシタC6、それぞれの他方のキャパシタ電極を構成する第2グランド電極9b、および、キャパシタ5の他方のキャパシタ電極を構成する第2グランド電極9bは、それぞれ、3つの第2グランド端子5a、5b、5cに接続されている。
 なお、積層体1の内部において浮き電極となっている第2グランド電極9aも、3つの第2グランド端子5a、5b、5cに接続されている。
 本実施形態の方向性結合器100においては、第1グランド端子4と、第2グランド端子5a、5b、5cとが、隔離されて設けられていることが重要である。すなわち、方向性結合器100では、第1グランド端子4と、第2グランド端子5a、5b、5cとが隔離されて設けられていることにより、信号の不要な回り込みが抑制されている。
 また、本実施形態の方向性結合器100においては、第2グランド電極が、積層体1内において、異なる層に形成された第2グランド電極9aと第2グランド電極9bとに分割して形成され、第2グランド電極9aと第2グランド電極9bとで、主線路12と副線路(第1副線路13a、第2副線路13b)とを上下から挟んでいる。この結果、方向性結合器100では、外部からのノイズ信号により、主線路12および副線路(第1副線路13a、第2副線路13b)が影響を受けることが防止されている。
 また、本実施形態の方向性結合器100においては、積層体1を積層方向に透視した場合に、第1ローパスフィルタLPF1と、第1グランド電極8とは、少なくとも部分的に重なっているが、第1ローパスフィルタLPF1は、第2グランド電極9a、9b、9cとは重ならないように構成されている。なお、第1ローパスフィルタLPF1は、図1において、積層体1の手前側半分の領域内に形成されている。この結果、方向性結合器100は、第1ローパスフィルタLPF1を構成するインダクタが発生させる磁界の障害となるグランド電極が少なく、結合に用いる周波数帯よりも高周波側の減衰が高められており、カップリング特性が改善されている。
 以上に説明した接続関係により、図1に示す積層型の方向性結合器100は、図2に示す等価回路を構成している。
 次に、第1実施形態にかかる方向性結合器100の特性について説明する。
 図3に、方向性結合器100のカップリング特性を示す。カップリング特性は、図1、2に示す入力端子6からカップリング端子2に流れる信号の量を示したものである。
 図4に、方向性結合器100の第1ローパスフィルタLPF1と第2ローパスフィルタLPF2の周波数特性をそれぞれ示す。なお、図4には、方向性結合器100のカップリング特性を併せて示している。
 図5に、方向性結合器100の挿入損失特性、反射損失特性をそれぞれ示す。ここでの挿入損失特性は、入力端子6から出力端子7の信号経路の損失を見た特性であり、反射損失特性は、入力端子6から入力した信号が入力端子6に戻ってくる信号比である。
 図6に、方向性結合器100のアイソレーション特性を示す。なお、図6には、方向性結合器100のカップリング特性を併せて示している。アイソレーション特性は、出力端子7からカップリング端子2に出力する信号比である。
 また、比較のために、図7に、グランド電極を第1グランド電極8と第2グランド電極9a、9b、9cとに分割(隔離)せず、また、グランド端子を第1グランド端子4と第2グランド端子5a、5b、5cとに分割(隔離)しなかった場合のカップリング特性を示す。たとえば、絶縁体層1aの上側主面に形成された第1グランド電極8と第2グランド電極9aとを隔離せず、一体化させたような場合である(図1参照)。
 図3に示すように、方向性結合器100は、カップリング特性が、0.7GHz~2.7GHzの広い帯域幅にわたって、23dB~28dBの減衰に平坦化されている。また、高周波側の5.1GHz~6.0GHzの周波数帯において、35dB以上の減衰が得られており、不要な結合が抑制されている。
 図3に、23dB~28dBの減衰に平坦化されている0.7GHz~2.7GHzの領域をX、35dB以上の減衰が得られている5.1GHz~6.0GHzの領域をYで示す。
 このような優れたカップリング特性を得られたのは、次の理由による。
 まず、第2ローパスフィルタLPF2による減衰が、図3においてAで示す領域に形成されており、優れたカップリング特性の形成に寄与している。図4に示すように、第2ローパスフィルタLPF2は、カットオフ周波数が2.3GHz付近に存在している。
 また、第1ローパスフィルタLPF1による減衰が、図3においてBで示す領域に形成されており、優れたカップリング特性の形成に寄与している。図4に示すように、第1ローパスフィルタLPF1は、カットオフ周波数が4.4GHz付近に存在している。なお、領域Bの減衰を形成するためには、グランド電極が第1グランド電極8と第2グランド電極9a、9b、9cとに分割(隔離)され、また、グランド端子が第1グランド端子4と第2グランド端子5a、5b、5cとに分割(隔離)されていることが重要である。これらが分割(隔離)されていないと、後述するように、信号の回り込みが発生してしまい、所望の減衰を得ることができないからである。
 また、第1ローパスフィルタLPF1に付加された付加インダクタ11による減衰が、図3においてCで示す領域に形成されており、必要としない周波数帯域の結合を抑制することができる。
 これに対し、図7に示すように、グランド電極を第1グランド電極8と第2グランド電極9a、9b、9cとに分割(隔離)せず、また、グランド端子を第1グランド端子4と第2グランド端子5a、5b、5cとに分割(隔離)しなかった方向性結合器では、Zで示す領域において、信号の回り込みが原因により、必要な減衰が得られていない。特に、5.1GHz~6.0GHzの周波数帯において、35dB以上の減衰が得られておらず、製品として求められる規格を満たしていない。
 以上より、第1実施形態にかかる方向性結合器100は、結合度が広帯域にわたって平坦化され、かつ、不要な周波数帯での結合が抑制されていることが確認できた。
 [第2実施形態]
 図8および図9に、第2実施形態にかかる方向性結合器200を示す。ただし、図8は、方向性結合器200を、複数の絶縁体層が積層された積層体を用いて構成した場合における要部分解斜視図である。図9は、図8の要部分解斜視図の構成を等価回路に置き換えたものである。
 図1および図2に示した第1実施形態にかかる方向性結合器100では、図1に示す、絶縁体層1bに形成されたキャパシタ電極10の一部と、ビア電極11aと、絶縁体層1aに形成された第1グランド電極8とにより発生するインダクタンス成分により、図2に示すように、第3キャパシタC3と第1グランド端子4との間に、追加のインダクタL11が形成されている。
 第2実施形態にかかる方向性結合器200では、図8に示すように、絶縁体層1bを削除し、図9に示すように、追加のインダクタL11を削除した。なお、図9に示す第3キャパシタC3は、図8に示すように、キャパシタ電極10bと第1グランド電極8との間に発生する容量により形成される。
 図10に、方向性結合器200のカップリング特性を示す。なお、図10には、方向性結合器100のカップリング特性も併せて示している。
 図10から分かるように、方向性結合器200のカップリング特性においては、方向性結合器100のカップリング特性において、領域Cで示す8GHz付近に形成されていた減衰極が消失し、6GHzよりも高周波側の特性が跳ね上がっている。ただし、5.1GHz~6.0GHzの周波数帯において、必要とされる35dB以上の減衰は得られている。
 以上より、第1実施形態にかかる方向性結合器100のように、第1ローパスフィルタLPF1の第3キャパシタC3と、第1グランド端子4との間に、追加のインダクタL11を挿入すれば、8GHz付近に極が形成され、6GHzよりも高周波側において大きな減衰を得られることが分かった。
 しかしながら、6GHzよりも高周波側において大きな減衰を必要としない場合には、第2実施形態にかかる方向性結合器200のように、追加のインダクタL11を削除することも可能であり、この場合には、積層体1内に積層される絶縁体層(絶縁体層1b)が1層削除されるため、方向性結合器の低背化をはかることができる。
 [第3実施形態]
 図11に、第3実施形態にかかる方向性結合器300の等価回路を示す。
 図1および図2に示した方向性結合器100では、第1ローパスフィルタLPF1および第2ローパスフィルタLPF2が、それぞれ2段に構成されていた。
 これに対し、方向性結合器300では、図11に示すように、第1ローパスフィルタLPF1に、追加のインダクタL21、追加のキャパシタC21、C22を追加し、3段に構成した。また、方向性結合器300では、同じく図11に示すように、第2ローパスフィルタLPF2に、追加のインダクタL31、追加のキャパシタC31を追加し、3段に構成した。
 方向性結合器300は、第1ローパスフィルタLPF1および第2ローパスフィルタLPF2の段数が、それぞれ3段に増やされたことにより、カップリング特性が広い帯域幅においてより平坦化され、かつ、不要な周波数帯での結合がより抑制されている。
 以上、第1~第3実施形にかかる方向性結合器100~300について説明した。しかしながら、本発明がこれらの内容に限定されることはなく、発明の趣旨に沿って、種々の変形をなすことができる。
 たとえば、本発明の方向性結合器は、必ずしも絶縁体層が積層された積層体を用いて構成する必要はなく、基板上にいわゆるディスクリート型の電子部品を実装して構成するようにしても良い。
 また、第1、第2実施形態にかかる方向性結合器100、200では、第1ローパスフィルタLPF1、第2ローパスフィルタLPF2の段数を、それぞれ2段に構成し、第3実施形態にかかる方向性結合器300では、第1ローパスフィルタLPF1、第2ローパスフィルタLPF2の段数を、それぞれ3段に構成しているが、第1ローパスフィルタLPF1、第2ローパスフィルタLPF2の段数は、それぞれ任意であり、これらより多くても良く、少なくても良い。また、第1ローパスフィルタLPF1の段数と、第2ローパスフィルタLPF2の段数とを一致させる必要はなく、第1ローパスフィルタLPF1の段数と、第2ローパスフィルタLPF2の段数とが異なっていても良い。たとえば、第3実施形態にかかる方向性結合器300では、第1ローパスフィルタLPF1の段数と、第2ローパスフィルタLPF2の段数の両方を3段に増やしているが、いずれか一方の段数のみを増やすようにしても良い。
1・・・積層体
1a~1p・・・絶縁体層
2・・・カップリング端子
3・・・終端端子
4・・・第1グランド端子
5a、5b、5c・・・第2グランド端子
6・・・入力端子
7・・・出力端子
8・・・第1グランド電極
9a、9b、9c・・・第2グランド電極
10a~10g・・・キャパシタ電極
11a~11M・・・ビア電極
12・・・主線路
13a・・・第1副線路
13b・・・第2副線路
15a~15m・・・線路電極
LPF1・・・第1ローパスフィルタ
LPF2・・・第2ローパスフィルタ
100、200、300・・・方向性結合器

Claims (9)

  1.  入力端子と、
     出力端子と、
     カップリング端子と、
     終端端子と、
     グランド端子と、
     前記入力端子と前記出力端子との間に接続された主線路と、
     前記カップリング端子と前記終端端子との間に接続された副線路とを備え、
     前記主線路と前記副線路とが間隔を設けて配置された方向性結合器であって、
     前記副線路は、相互に接続された複数の副線路に分割され、少なくとも第1副線路と第2副線路とを備え、
     前記カップリング端子と前記副線路との間に、第1ローパスフィルタが挿入され、
     前記第1の副線路と前記第2の副線路との間に、第2ローパスフィルタが挿入され、
     前記グランド端子は、相互に隔離された、少なくとも第1グランド端子と第2グランド端子とを含む複数からなり、
     前記第1ローパスフィルタが前記第1グランド端子に接続され、前記第2ローパスフィルタが前記第2グランド端子に接続された方向性結合器。
  2.  前記第1ローパスフィルタは、少なくとも、第1インダクタと、第2インダクタと、第1キャパシタと、第2キャパシタと、第3キャパシタとを備え、
     前記カップリング端子と前記第1インダクタの一端とが接続され、
     前記第1インダクタの他端と前記第2インダクタの一端とが接続され、
     前記第2インダクタの他端と前記副線路とが接続され、
     前記第1インダクタと並列に第1キャパシタが接続され、
     前記第2インダクタと並列に第2キャパシタが接続され、
     前記第1インダクタと前記第2インダクタとの接続点と、前記第1グランド端子との間に、前記第3キャパシタが接続され、
     前記第2ローパスフィルタは、少なくとも、第3インダクタと、第4インダクタと、第4キャパシタと、第5キャパシタと、第6キャパシタとを備え、
     前記第1副線路と前記第3インダクタの一端とが接続され、
     前記第3インダクタの他端と前記第4インダクタの一端とが接続され、
     前記第4インダクタの他端と前記第2副線路とが接続され、
     前記第1副線路と前記第3インダクタとの接続点と、前記第2グランド端子との間に、前記第4キャパシタが接続され、
     前記第3インダクタと前記第4インダクタとの接続点と、前記第2グランド端子との間に、前記第5キャパシタが接続され、
     前記第4インダクタと前記第2副線路との接続点と、前記第2グランド端子との間に、前記第6キャパシタが接続された、請求項1に記載された方向性結合器。
  3.  前記第1ローパスフィルタにおいて、
     前記第2インダクタと前記副線路との間に、1つの追加インダクタ、または、相互に直列に接続された複数の追加インダクタが挿入され、
     前記追加インダクタそれぞれと並列に追加キャパシタが接続されるとともに、
     前記追加インダクタが1つの場合は、前記第2インダクタと前記追加インダクタとの接続点と、前記第1グランド端子との間に、追加キャパシタが挿入され、
     前記追加インダクタが複数の場合は、前記第2インダクタと前記追加インダクタとの接続点と、前記第1グランド端子との間、および、前記追加インダクタと前記追加インダクタとの接続点と、前記第1グランド端子との間に、それぞれ、追加キャパシタが挿入された、請求項1または2に記載された方向性結合器。
  4.  前記第2ローパスフィルタにおいて、
     前記第4インダクタと前記第2副線路との間に、1つの追加インダクタ、または、相互に直列に接続された複数の追加インダクタが挿入され、
     前記追加インダクタが1つの場合は、前記追加インダクタと前記2副線路との接続点と、前記第2グランド端子との間に、追加キャパシタが挿入され、
     前記追加インダクタが複数の場合は、前記追加インダクタと前記追加インダクタとの接続点と、前記第2グランド端子との間、および、前記追加インダクタと前記第2副線路との接続点と、前記第2グランド端子との間に、それぞれ、追加キャパシタが挿入された、請求項1または2に記載された方向性結合器。
  5.  前記第1ローパスフィルタのカットオフ周波数と、前記第2ローパスフィルタのカットオフ周波数とが異なっており、
     前記第1ローパスフィルタのカットオフ周波数が、前記第2ローパスフィルタのカットオフ周波数よりも高周波側にある、請求項1ないし4のいずれか1項に記載された方向性結合器。
  6.  前記第1ローパスフィルタと前記第1グランド端子との接続経路に、さらに、追加インダクタが挿入されている、請求項1ないし5のいずれか1項に記載された方向性結合器。
  7.  請求項1ないし6のいずれか1項に記載された方向性結合器であって、
     複数の絶縁体層が積層された積層体を備え、
     前記絶縁体層の所定の層間に、第1グランド電極が形成され、
     前記絶縁体層の所定の層間に、第2グランド電極が形成され、
     前記積層体内において、前記第1グランド電極と前記第2グランド電極は相互に隔離されており、
     前記第1ローパスフィルタが前記第1グランド電極に接続され、
     前記第2ローパスフィルタが前記第2グランド電極に接続され、
     前記第1グランド電極が前記第1グランド端子に接続され、
     前記第2グランド電極が前記第2グランド端子に接続された方向性結合器。
  8.  前記積層体内において、前記第2グランド電極が、前記絶縁体層の2つ以上の層間に分割して配置され、
     前記積層体内において、前記主線路および前記副線路が、それぞれ、前記2つ以上の層間に分割された前記第2グランド電極に上下から挟まれて配置され、
     前記積層体を積層方向に透視した場合に、前記2つ以上の層間に分割された前記第2グランド電極と、前記主線路および前記副線路とが、少なくとも部分的に重なっている、請求項7に記載された方向性結合器。
  9.  前記積層体を積層方向に透視した場合に、前記第1ローパスフィルタと、前記第1グランド電極とが、少なくとも部分的に重なっているが、前記第1ローパスフィルタは、前記第2グランド電極とは重なっていない、請求項7または8に記載された方向性結合器。 
PCT/JP2016/068275 2015-07-14 2016-06-20 方向性結合器 WO2017010238A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680037225.1A CN107710502B (zh) 2015-07-14 2016-06-20 定向耦合器
JP2017528347A JP6394805B2 (ja) 2015-07-14 2016-06-20 方向性結合器
US15/835,491 US10340575B2 (en) 2015-07-14 2017-12-08 Directional coupler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140110 2015-07-14
JP2015140110 2015-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/835,491 Continuation US10340575B2 (en) 2015-07-14 2017-12-08 Directional coupler

Publications (1)

Publication Number Publication Date
WO2017010238A1 true WO2017010238A1 (ja) 2017-01-19

Family

ID=57757880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068275 WO2017010238A1 (ja) 2015-07-14 2016-06-20 方向性結合器

Country Status (5)

Country Link
US (1) US10340575B2 (ja)
JP (1) JP6394805B2 (ja)
CN (1) CN107710502B (ja)
TW (1) TWI614939B (ja)
WO (1) WO2017010238A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229957A1 (ja) * 2020-05-09 2021-11-18 株式会社村田製作所 方向性結合器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142520B1 (ko) * 2018-05-11 2020-08-07 삼성전기주식회사 위상보상 기능을 갖는 커플러 회로
US11563261B2 (en) * 2020-02-28 2023-01-24 Viettel Group Four-port directional coupler having a main line and two secondary lines, where the two secondary lines are coupled to compensation circuits with attenuation regulator circuits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290108A (ja) * 1997-04-11 1998-10-27 Murata Mfg Co Ltd 方向性結合器
WO2011074370A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 方向性結合器
JP2013005076A (ja) * 2011-06-14 2013-01-07 Murata Mfg Co Ltd 方向性結合器
JP2016012770A (ja) * 2014-06-27 2016-01-21 株式会社村田製作所 電子部品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832447B2 (ja) * 2003-04-16 2006-10-11 松下電器産業株式会社 分配器とこれを用いた高周波信号送受信装置
CN200987146Y (zh) * 2006-12-25 2007-12-05 深圳市同洲电子股份有限公司 双工滤波器和具有此双工滤波器的印刷电路板
KR101067670B1 (ko) * 2009-06-22 2011-09-27 전자부품연구원 저역 통과 필터 및 그의 배치구조
CN103370832B (zh) * 2011-03-14 2015-04-01 株式会社村田制作所 方向性耦合器
JP5435309B2 (ja) 2011-08-25 2014-03-05 Tdk株式会社 方向性結合器および無線通信装置
JP5786902B2 (ja) * 2013-06-26 2015-09-30 株式会社村田製作所 方向性結合器
JP5946024B2 (ja) * 2014-02-18 2016-07-05 Tdk株式会社 方向性結合器
JP5946026B2 (ja) * 2014-03-12 2016-07-05 Tdk株式会社 方向性結合器
JP6172479B2 (ja) * 2015-07-29 2017-08-02 Tdk株式会社 方向性結合器
JP2017038115A (ja) * 2015-08-07 2017-02-16 Tdk株式会社 方向性結合器
JP6593192B2 (ja) * 2016-01-26 2019-10-23 Tdk株式会社 方向性結合器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290108A (ja) * 1997-04-11 1998-10-27 Murata Mfg Co Ltd 方向性結合器
WO2011074370A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 方向性結合器
JP2013005076A (ja) * 2011-06-14 2013-01-07 Murata Mfg Co Ltd 方向性結合器
JP2016012770A (ja) * 2014-06-27 2016-01-21 株式会社村田製作所 電子部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229957A1 (ja) * 2020-05-09 2021-11-18 株式会社村田製作所 方向性結合器

Also Published As

Publication number Publication date
US10340575B2 (en) 2019-07-02
CN107710502B (zh) 2020-08-28
TW201712938A (zh) 2017-04-01
JP6394805B2 (ja) 2018-09-26
JPWO2017010238A1 (ja) 2018-06-21
US20180102582A1 (en) 2018-04-12
TWI614939B (zh) 2018-02-11
CN107710502A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN104348442B (zh) 高频模块
JP5946024B2 (ja) 方向性結合器
EP2535979B1 (en) Directional coupler
US10236856B2 (en) Diplexer
WO2015087794A1 (ja) コモンモードフィルタおよびesd保護回路付きコモンモードフィルタ
JPWO2010018798A1 (ja) バンドパスフィルタ、高周波部品及び通信装置
JP2015173409A (ja) 方向性結合器
JP6394805B2 (ja) 方向性結合器
CN107005213B (zh) 电子部件
US11811125B2 (en) Power distribution/coupling circuit and power distribution/coupling component
JP6658765B2 (ja) バランスフィルタ
JP2003008385A (ja) 複合型lcフィルタ回路及び複合型lcフィルタ部品
JP7029254B2 (ja) 方向性結合器
CN107710606B (zh) Lc滤波器
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
CN107431468B (zh) 电子部件
JP6315347B2 (ja) 方向性結合器およびそれを用いたモジュール
JP7017377B2 (ja) マルチプレクサ
US10276912B2 (en) Directional coupler
TWI712261B (zh) 積層平衡-不平衡轉換器
JP2021150840A (ja) フィルタおよびマルチプレクサ
JP3207413U (ja) 阻止帯域ノイズ抑制付き低域通過フィルタ
JP2008294797A (ja) 積層型バンドパスフィルタ
US20240146277A1 (en) Multilayer electronic component
JP7331930B2 (ja) 積層型lcフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824218

Country of ref document: EP

Kind code of ref document: A1