WO2018079614A1 - 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置 - Google Patents

方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018079614A1
WO2018079614A1 PCT/JP2017/038538 JP2017038538W WO2018079614A1 WO 2018079614 A1 WO2018079614 A1 WO 2018079614A1 JP 2017038538 W JP2017038538 W JP 2017038538W WO 2018079614 A1 WO2018079614 A1 WO 2018079614A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
line
capacitor
sub
built
Prior art date
Application number
PCT/JP2017/038538
Other languages
English (en)
French (fr)
Inventor
邦俊 花岡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780064993.0A priority Critical patent/CN109845029B/zh
Publication of WO2018079614A1 publication Critical patent/WO2018079614A1/ja
Priority to US16/375,864 priority patent/US10892538B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers

Definitions

  • the present invention relates to a directional coupler built-in board having a built-in directional coupler, and a high-frequency front-end circuit and a communication device including the directional coupler built-in board.
  • the conventional directional coupler in the substrate from the following points. That is, in the above conventional directional coupler, the directivity is improved only by the capacitor provided in parallel with the sub-line, and when the element value is adjusted to improve the characteristic, the element value is improved. May exceed the upper limit that can be built into the substrate. On the other hand, if the element value of this capacitor is kept below the upper limit value in order to reduce the size, there may be a case where sufficient characteristics cannot be improved.
  • an object of the present invention is to provide a directional coupler built-in substrate, a high-frequency front-end circuit, and a communication device that can achieve both improvement in characteristics and miniaturization.
  • a directional coupler-embedded substrate includes an input port, an output port, and a coupling port, one end connected to the input port, and the other end connected to the output port.
  • a directional coupler having a main line connected to the main line, an electromagnetically coupled to the main line, and one end connected to the coupling port; and a directional coupler connected in parallel to the sub line.
  • a matching circuit for matching the Nsu a plurality of insulating layers is formed by being stacked, and a multilayer substrate having a built-in the directional coupler, a.
  • the second capacitor it is possible to suppress the element value of the first capacitor while improving the characteristics (particularly the directivity characteristics). Further, by providing an impedance element having an impedance less than the standardized impedance at a predetermined frequency, the directivity characteristic can be improved.
  • the impedance viewed from the coupling port side becomes lower than the standardized impedance.
  • the impedance is capacitive due to the provision of the second capacitor. Therefore, by providing a matching circuit that matches the impedance of the coupling port to the standardized impedance, return loss (reflection loss) due to impedance mismatch at the coupling port can be improved.
  • the first capacitor, the second capacitor, the impedance element, the matching circuit, and the directional coupler built in the multi-layer substrate are provided.
  • the element values of the capacitor, the second capacitor, the impedance element, and the elements constituting the matching circuit can be suppressed to element values that can be built in the multilayer substrate, and the characteristics can be improved. That is, it is possible to realize a directional coupler built-in substrate that can achieve both improvement in characteristics and downsizing.
  • the multilayer substrate may further include the first capacitor, the second capacitor, and the matching circuit.
  • Each of the main line and the sub-line is configured by a pattern conductor disposed in parallel with the main surface of the multilayer substrate, and the pattern conductor configuring the main line and the pattern conductor configuring the sub-line are
  • the insulating layers may be arranged to face each other with at least some of the insulating layers among the plurality of insulating layers.
  • the main line and the sub line are electromagnetically coupled through the at least part of the insulator layer. Therefore, the degree of electromagnetic coupling can be adjusted by the thickness, the number of layers, the material, or the like of at least a part of the insulating layers sandwiched between the main line and the sub line. Therefore, further improvement can be expected with respect to the characteristics of the substrate with a built-in directional coupler by appropriately adjusting these.
  • both the pattern conductor constituting the main line and the pattern conductor constituting the sub line may be arranged in the inner layer of the multilayer substrate.
  • Each of the main line and the sub line is configured by a pattern conductor arranged in parallel with the main surface of the multilayer substrate in an inner layer of the multilayer substrate, and the pattern conductor and the sub line constituting the main line are arranged.
  • the pattern conductor to be configured may be arranged in the same layer of the plurality of insulator layers.
  • the multilayer substrate can be thinned. Accordingly, the entire substrate with a built-in directional coupler can be further reduced in size (in particular, reduced in height).
  • the matching circuit may include an inductor that connects the one end of the sub-line and the coupling port, and a third capacitor that connects one end of the inductor and the ground.
  • the number of elements can be suppressed while suppressing the elements constituting the matching circuit below the upper limit of the element values that can be built in the multilayer substrate. Therefore, the directional coupler built-in substrate can be further reduced in size.
  • the third capacitor may connect the one end on the coupling port side of the inductor and the ground.
  • the third capacitor may connect the one end of the inductor on the sub line side and the ground.
  • the first capacitor may be connected in parallel to a series connection circuit of the sub line and the inductor.
  • the directional coupler built-in substrate can be further reduced in size.
  • a high-frequency front-end circuit is selectively connected to any one of the above-described directional coupler-embedded substrates, a common terminal connected to the input port, and the common terminal.
  • a switch circuit having a plurality of selection terminals; and a plurality of filters individually connected to the plurality of selection terminals.
  • a communication device includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal transmitted between the antenna element and the RF signal processing circuit. And a high-frequency front-end circuit.
  • the directional coupler built-in substrate, the high-frequency front-end circuit, and the communication device according to the present invention it is possible to achieve both improvement in characteristics and miniaturization.
  • FIG. 1 is a configuration diagram of a high-frequency front-end circuit and its peripheral circuits according to the embodiment.
  • FIG. 2 is a circuit configuration diagram of the coupler-embedded substrate according to the embodiment.
  • FIG. 3 is a diagram conceptually showing a cross-sectional structure of the coupler-embedded substrate according to the embodiment.
  • FIG. 4A is a graph showing insertion loss characteristics of the coupler-embedded substrate according to the example.
  • FIG. 4B is a graph illustrating coupling characteristics and isolation characteristics of the coupler-embedded substrate according to the example.
  • FIG. 4C is a graph illustrating directivity characteristics of the coupler-embedded substrate according to the example.
  • FIG. 4D is a Smith chart illustrating impedance characteristics of the main line of the coupler-embedded substrate according to the embodiment.
  • FIG. 4E is a Smith chart illustrating the impedance characteristic of the sub line of the coupler-embedded substrate according to the embodiment.
  • FIG. 4F is a graph illustrating the reflection characteristic of the sub line of the coupler-embedded substrate according to the example.
  • FIG. 5 is a circuit configuration diagram of the coupler-embedded substrate according to the first modification.
  • FIG. 6 is a circuit configuration diagram of a substrate with a built-in coupler according to the second modification.
  • the substrate with a built-in directional coupler according to the present embodiment is disposed in a front end portion of a communication device such as a mobile phone, and is disposed, for example, in a high frequency front end circuit of a multiband communication device.
  • the directional coupler is also referred to as “coupler”. Therefore, in the following description, the directional coupler is referred to as “coupler”, and the directional coupler built-in substrate in which the directional coupler is built is referred to as “coupler built-in substrate”.
  • FIG. 1 is a configuration diagram of a high-frequency front-end circuit 1 and its peripheral circuits according to the embodiment.
  • the figure shows an antenna element 2 and an RFIC 3 that constitute a communication device 4 together with the high-frequency front-end circuit 1.
  • the communication device 4 communicates with other communication devices using, for example, a band (frequency band) high-frequency signal defined by 3GPP (Third Generation Partnership Project), and in this embodiment, a low band (eg, 704-960 MHz). ) And a high-frequency signal (cellular signal) of a high band (for example, 1710 MHz-2170 MHz).
  • the communication device 4 includes the antenna element 2 in the present embodiment, but may not include the antenna device 2.
  • the antenna element 2 is, for example, a multiband antenna that transmits and receives high-frequency signals.
  • RFIC 3 is an RF signal processing circuit that processes high-frequency signals transmitted and received by the antenna element 2. Specifically, the RFIC 3 processes a transmission signal input from a baseband signal processing circuit (not shown) by up-conversion and the like, and generates a high-frequency signal (here, a high-frequency transmission signal) generated by the signal processing. Is output to the transmission-side signal path of the high-frequency front-end circuit 1. The RFIC 3 processes a high-frequency signal (here, a high-frequency reception signal) input from the antenna element 2 via a reception-side signal path (not shown) of the high-frequency front-end circuit 1 by down-conversion, etc. The received signal generated by the signal processing is output to the baseband signal processing circuit.
  • a high-frequency signal here, a high-frequency reception signal
  • the received signal generated by the signal processing is output to the baseband signal processing circuit.
  • the high frequency front end circuit 1 is a circuit that transmits a high frequency signal between the antenna element 2 and the RFIC 3. Specifically, the high-frequency front end circuit 1 transmits a high-frequency signal (here, a high-frequency transmission signal) output from the RFIC 3 to the antenna element 2 via the transmission-side signal path. The high-frequency front end circuit 1 transmits a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 2 to the RFIC 3 via a reception-side signal path (not shown).
  • a high-frequency signal here, a high-frequency transmission signal
  • the high-frequency front end circuit 1 transmits a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 2 to the RFIC 3 via a reception-side signal path (not shown).
  • the high-frequency front end circuit 1 includes a substrate 10 with a built-in coupler, a transmission amplifier circuit group 20, a filter group 30, and a switch circuit 40.
  • the coupler-embedded substrate 10 is a substrate in which the coupler 11 is built, and transmits a high-frequency signal input to the input port to the output port, and has a high frequency having power proportional to the power of the high-frequency signal transmitted from the input port to the output port. Output the signal from the coupling port.
  • the input port is a switch port P SW is a terminal connected to the switch circuit 40
  • the output port is an antenna port P ANT is a terminal connected to the antenna element 2
  • the coupled port RFIC3 This is a coupling port PCPL which is a terminal connected to. Details of the coupler-embedded substrate 10 will be described later.
  • the transmission amplifier circuit group 20 includes amplifier circuits individually corresponding to a plurality of bands.
  • the amplifier circuit is composed of one or more power amplifiers that amplify the power of the high-frequency transmission signal output from the RFIC 3, and in this embodiment, the amplifier circuit is composed of two-stage power amplifiers that are connected in multiple stages (cascade connection). Composed.
  • the filter group 30 includes filters individually corresponding to a plurality of bands, and filters the high-frequency signal amplified by the transmission amplifier circuit group 20 in the frequency band of the corresponding band.
  • the filter group 30 includes a filter having a low-band frequency band (low-band cellular band) as a pass band and a filter having a high-band frequency band (high-band cellular band) as a pass band. .
  • the switch circuit 40 includes a common terminal connected to the switch port P SW (input port) of the substrate 10 with a built-in coupler, and a plurality of selection terminals (two selection terminals in the present embodiment) that are selectively connected to the terminal. ).
  • the plurality of selection terminals are individually connected to the plurality of filters constituting the filter group 30.
  • the switch circuit 40 connects any of the plurality of selection terminals and the common terminal in accordance with a control signal from a control unit such as the RFIC 3. Note that the number of selection terminals connected to the common terminal is not limited to one and may be plural.
  • the high-frequency front-end circuit 1 configured as described above amplifies a high-frequency signal (here, a high-frequency transmission signal) input from the RFIC 3 with a predetermined power amplifier and filters it with a predetermined filter to perform the antenna element 2. Output to.
  • a high-frequency signal here, a high-frequency transmission signal
  • Such high-frequency front-end circuit 1, the communication device 4 and an antenna element 2 and RFIC3 by detecting the power of the high frequency transmission signal with the power of the output high frequency signal from the coupling port P CPL, For example, the output power of the power amplifier can be controlled based on the detected power.
  • Coupler built-in board Next, details of the coupler-embedded substrate 10 according to the present embodiment will be described.
  • FIG. 2 is a circuit configuration diagram of the substrate 10 with a built-in coupler.
  • the coupler-embedded substrate 10 includes a coupler 11 having a main line 111 and a sub line 112, a capacitor C11, a capacitor C12, a resistance element R12, a matching circuit M1 having a capacitor C13 and an inductor L13. .
  • the main line 111 is a transmission line having one end 111a connected to the switch port P SW (input port) and the other end 111b connected to the antenna port P ANT (output port).
  • the sub line 112 is a transmission line that is electromagnetically coupled to the main line 111 and has one end 112a connected to the coupling port P CPL (coupling port).
  • electromagnetically coupled means capacitive coupling and magnetic coupling. That is, the main line 111 and the sub line 112 are capacitively coupled by a capacitance generated between them, and are magnetically coupled by a mutual inductance acting between each other.
  • a high frequency signal having power proportional to the power of the high frequency signal flowing from the one end 111 a to the other end 111 b of the main line 111 is transmitted to the other end of the sub line 112. It flows from 112b to one end 112a and is output.
  • the capacitor C11 is a first capacitor connected in parallel to the sub line 112, and in the present embodiment, connects one end 112a and the other end 112b of the sub line 112 (bridge connection).
  • Such a capacitor C11 constitutes an LC resonance circuit together with an inductance component of the main line 111 and an inductance component of the sub line 112.
  • This LC resonance circuit resonates with a high-frequency signal transmitted from the switch port PSW to the antenna port PANT .
  • the capacitor C12 is a second capacitor that connects the other end 112b of the sub line 112 and the ground.
  • the resistance element R12 is an impedance element that connects the other end 112b of the sub line 112 and the ground.
  • the resistance element R12 is a termination resistance of the coupler 11, specifically, a termination resistance of the other end 112b of the sub line 112.
  • the parallel connection circuit of the resistor element R12 and the capacitor C12 is connected to a node on the path connecting the other end 112b of the sub line 112 and the capacitor C11.
  • the resistance element R12 is an impedance element having an impedance lower than the standardized impedance at the operating frequency (predetermined frequency) of the coupler 11.
  • the operating frequency of the coupler 11 is a frequency band including the pass band of the filter group 30, and the standardized impedance is 50 ⁇ .
  • the operating frequency and standardized impedance of the coupler 11 are not limited thereto.
  • the impedance element that connects the other end 112b of the sub line 112 and the ground is not limited to the resistance element R12, and any impedance element that has an impedance lower than the standardized impedance at the operating frequency of the coupler 11 may be used. It does not matter.
  • the matching circuit M1 is connected between the one end 112a of the sub-line 112 and the coupling port P CPL (coupling port), and matches the impedance of the coupling port P CPL to the reference impedance at the operating frequency of the coupler 11. Circuit. That is, in the coupler-embedded substrate 10, the matching circuit M1 is connected to a node on a path connecting the one end 112a of the sub line and the capacitor C11.
  • “matching to the standardized impedance” includes not only to perfectly match the standardized impedance but also to match near the standardized impedance. For example, to match the reflection loss to a range of 15 dB or less. Including.
  • the matching circuit M1 includes an inductor L13 that connects one end 112a of the sub-line 112 and the coupling port PCPL (coupling port), and a capacitor C13 that connects one end of the inductor L13 and the ground (third capacitor). And).
  • the capacitor C13 connects one end of the inductor L13 on the coupling port PCPL side and the ground.
  • the coupler built-in substrate 10 having such a circuit configuration includes a multilayer substrate in which the coupler 11 is built. This will be further described with reference to FIG.
  • FIG. 3 is a diagram conceptually showing a cross-sectional structure of the coupler-embedded substrate 10 according to the embodiment.
  • the resistance element R12 formed of a mounting component (chip component) is shown in a side view.
  • the boundary of the base material layer mentioned later is shown with the broken line for convenience.
  • the coupler built-in substrate 10 is formed of a multilayer substrate 12 incorporating the coupler 11 and a resistance element R12 formed of a mounting component mounted on the multilayer substrate 12.
  • the multilayer substrate 12 further includes a capacitor C11 (first capacitor), a capacitor C12 (second capacitor), and a matching circuit M1 (that is, the capacitor C13 and the inductor L13).
  • the multilayer substrate 12 is formed by laminating a plurality of insulator layers (here, 27 base material layers 121a), and incorporates the coupler 11.
  • the multilayer substrate 12 includes a laminated element body 121 formed by a plurality of laminated base material layers 121 a and various conductors for realizing the circuit configuration of the coupler-embedded substrate 10.
  • the various conductors include, for example, a pattern conductor 122 that is an in-plane conductor provided in the multilayer substrate along the main surface of the multilayer substrate 12, and a via that is an interlayer connection conductor provided in a direction perpendicular to the main surface.
  • the conductor 123 and inner ground conductors 124 a and 124 b provided along substantially the entire insulator layer in the multilayer substrate along the main surface of the multilayer substrate 12 are included.
  • the multilayer substrate 12 has a surface electrode 125 for mounting the multilayer substrate 12 on a mother substrate or the like on the bottom surface, for example, and a surface electrode for mounting a mounting component such as the resistance element R12 on the top surface, for example. 126.
  • the base material layer 121a a nonmagnetic ferrite ceramic or an insulating glass ceramic mainly composed of alumina and glass is used.
  • a magnetic ferrite ceramic may be used as the base material layer 121a.
  • the ferrite contains iron oxide as a main component and contains at least one of zinc, nickel, and copper.
  • LTCC ceramics Low Temperature Co-fired Ceramics
  • the multilayer substrate 12 can be baked in an oxidizing atmosphere such as air.
  • a metal or alloy mainly containing silver is used as the various conductors.
  • the base material layer 121a not only the said material but thermoplastic resins, such as a polyimide, may be used, for example.
  • thermoplastic resins such as a polyimide
  • the various conductors are not limited to the above materials, and for example, a metal or an alloy mainly composed of copper may be used.
  • the coupler 11, the capacitors C11 to C13, the inductor L13, and the wiring connecting them are formed by the pattern conductor 122 and the via conductor 123.
  • the coupler 11 is composed of a pair of long opposing pattern conductors 122
  • the capacitors C11 to C13 are composed of a pair of opposing rectangular pattern conductors 122
  • the inductor L13 is a plurality of coil-shaped pattern conductors.
  • the end portion 122 is connected by a via conductor 123.
  • the antenna electrode P ANT (output terminal), the coupling port P CPL (coupling terminal), and the ground terminal P GND are formed by the surface electrode 125 on the bottom surface side, and the switch port P SW is formed by the surface electrode 126 on the top surface side. (input terminal), and, mounting terminals P R_h and P R_GND for mounting a resistance element R12 are formed.
  • each of the main line 111 and the sub line 112 constituting the coupler 11 is configured by the pattern conductor 122 arranged in parallel with the main surface of the multilayer substrate 12.
  • the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 are at least a part of the plurality of insulator layers (here, among the plurality of base material layers 121a). They are arranged opposite to each other via a single base material layer 121a). Therefore, the main line 111 and the sub line 112 are electromagnetically coupled within the multilayer substrate 12. Specifically, the main line 111 and the sub line 112 are extended in parallel and overlapped when viewed from the stacking direction of the multilayer substrate 12.
  • both the main line 111 and the sub line 112 are formed in the inner layer of the multilayer substrate 12. That is, both the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 are sandwiched between one or more base material layers 121a from both sides in the stacking direction.
  • the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 are sandwiched between ground conductors 124a and 124b from both sides in the stacking direction.
  • the line widths and lengths of the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 are the required specifications for the coupler 11 such as the degree of coupling, the dielectric constant of the base material layer 121a, etc. Can be determined as appropriate.
  • the configuration of the coupler-embedded substrate 10 has been described so far, the configuration of the coupler-embedded substrate 10 is not limited to the above configuration.
  • the number of base material layers 121a between the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 is not limited to the above, for example, required specifications for the coupler 11 such as the degree of coupling, And according to the dielectric constant etc. of the base material layer 121a, it can determine suitably.
  • one of the main line 111 and the sub line 112 may be formed on the main surface of the multilayer substrate 12. That is, the one line may not be built in the multilayer substrate 12, and only the other line may be built in the multilayer substrate 12.
  • the element value that can be built in the multilayer substrate 12 has an upper limit depending on the material constituting the multilayer substrate 12. For this reason, in the present embodiment, the resistance element R12 (impedance element) is formed of a mounted component. However, when the resistor having the element value of the resistance element R12 can be built in the multilayer substrate 12, the resistance element R12 may be built in the multilayer substrate 12. That is, the resistance element R12 may be formed by the pattern conductor 122, the via conductor 123, and the like.
  • the capacitors C11 to C13 and the inductor L13 are preferably built in the multilayer substrate 12.
  • at least one of the capacitors C11 to C13 and the inductor L13 is not built in the multilayer substrate 12, but is mounted components. It may be formed by.
  • the substrate with a built-in coupler according to this example has the configuration of the substrate with a built-in coupler 10 according to the embodiment, and transmits a high-band cellular signal.
  • the element values of the coupler-embedded substrate 10 are as follows.
  • Capacitor C11 (first capacitor)... 0.7 pF Capacitor C12 (second capacitor) ... 2.2pF Resistance element R12 (impedance element) 30 ⁇ Capacitor C13 (third capacitor) ... 2.3 pF Inductor L13 ... 1.3nH
  • FIG. 4A to 4F are graphs showing the characteristics of the coupler-embedded substrate according to the example.
  • FIG. 4A is a graph showing insertion loss characteristics of the coupler-embedded substrate according to the example.
  • FIG. 4B is a graph illustrating a coupling characteristic and an isolation characteristic of the coupler-embedded substrate according to the example.
  • FIG. 4C is a graph illustrating the directivity characteristics of the coupler-embedded substrate according to the example.
  • FIG. 4D is a Smith chart showing the impedance characteristic of the main line 111 of the substrate with a built-in coupler according to the embodiment.
  • the impedance characteristic of the switch port P SW (input port) is indicated by a broken line, and the antenna port P ANT (output port).
  • the impedance characteristics are indicated by a solid line.
  • FIG. 4E is a Smith chart showing the impedance characteristic of the sub line 112 of the substrate with a built-in coupler according to the embodiment, and shows the impedance characteristic of the coupling port PCPL .
  • FIG. 4F is a graph showing the reflection characteristic of the sub line 112 of the substrate with a built-in coupler according to the example, and shows the reflection characteristic at the coupling port PCPL .
  • the insertion loss characteristic indicates a frequency characteristic of a pass characteristic (insertion loss) between the switch port P SW (input port) and the antenna port P ANT (output port).
  • the coupling characteristic refers to a frequency characteristic of a coupling amount (coupling degree) between the switch port P SW (input port) and the coupling port P CPL .
  • the isolation characteristic refers to a frequency characteristic of a coupling amount (isolation) between the antenna port P ANT (output port) and the coupling port P CPL .
  • Directional characteristics refer to frequency characteristics corresponding to the difference obtained by subtracting the coupling characteristics from the isolation characteristics.
  • the impedance characteristic refers to the frequency characteristic of the impedance at each port (switch port P SW and antenna port P ANT in FIG. 4D, coupling port P CPL in FIG. 4E).
  • the reflection characteristic refers to the frequency characteristic of the input / output reflection characteristic (reflection loss) at each port (the coupling port P CPL in FIG. 4F).
  • a marker is added to at least one of the passband low band end (here, 1710 MHz) and the passband high band end (here, 2170 MHz). Further, on the right side of the graph, the frequency at the marker m * in the graph (where * is a numerical value following m in the graph) and the numerical value at this time are shown.
  • the insertion loss is 0.14 dB or less in the passband.
  • the change in the coupling degree is suppressed to 4 dB or less in the passband.
  • the degree of coupling is smoothed within a range of 25.5 ⁇ 2.0 dB.
  • Isolation of 45 dB or more is secured in the pass band. From this degree of coupling and Isolation, as shown in FIG. 4C, Directivity of 20 dB or more is secured.
  • FIG. 4A the insertion loss is 0.14 dB or less in the passband.
  • the change in the coupling degree is suppressed to 4 dB or less in the passband.
  • the degree of coupling is smoothed within a range of 25.5 ⁇ 2.0 dB.
  • Isolation of 45 dB or more is secured in the pass band. From this degree of coupling and Isolation, as shown in FIG. 4C, Directivity of 20 dB or more is secured.
  • FIG. 4C Directivity of 20 dB or
  • the main line 111 is matched to the standardized impedance (here, 50 ⁇ ) in both the switch port PSW and the antenna port P ANT within the pass band.
  • the sub-line 112 is also matched with the standardized impedance (here, 50 ⁇ ) in the coupling port PCPL within the pass band. For this reason, as shown in FIG. 4F, in the coupling port PCPL , the reflection loss in the pass band is 15 dB or less.
  • the substrate with a built-in coupler according to the present embodiment is miniaturized by incorporating the coupler 11, the capacitors C11 to C13, and the inductor L13 into the multilayer substrate 12, and exhibits good characteristics.
  • the substrate with a built-in coupler 10 includes the capacitor C11 (first capacitor) connected in parallel with the sub line 112.
  • the multilayer circuit board 12 includes the capacitor C12 (second capacitor) and the resistor element R12 (impedance element) that connect the other end 112b of the sub line 112 and the ground, and the coupler 11.
  • a matching circuit M1 connected between one end 112a of the sub line 112 and the coupling port PCPL is provided.
  • the capacitor C12 second capacitor
  • the element value of the capacitor C11 first capacitor
  • the characteristics can be improved as in the present embodiment.
  • the degree of freedom in design is low. Accordingly, it may be difficult to incorporate the capacitor C11 in the multilayer substrate 12, which may hinder downsizing.
  • the capacitor C12 by providing the capacitor C12, it is possible to secure the degree of freedom in design and incorporate the capacitors C11 and C12 into the multilayer substrate 12.
  • the mechanism for improving the characteristics by providing the capacitor C12 is considered as follows. That is, the impedance added to the other end 112b of the sub line 112 depends on the constant of the capacitor C12. For this reason, by appropriately adjusting the constant of the capacitor C12, a high-frequency signal having a specific frequency can easily flow through the terminating resistor (the resistance element R12 in the present embodiment). As a result, a high-frequency signal transmitted from the antenna port P ANT (output port) to the coupling port P CPL can be suppressed, so that isolation can be enhanced (isolation characteristics can be improved). That is, the directional characteristics can be improved.
  • the directional characteristic is provided by including the resistance element R12 (impedance element) having an impedance less than the standardized impedance at the predetermined frequency (in the present embodiment, less than 50 ⁇ at the operating frequency of the coupler 11). Can be improved.
  • R12 impedance element
  • the other end 112b of the sub line 112 is connected to another port such as an isolation port, the other end 112b of the sub line is connected between the other port in order to achieve matching at the other port. Is designed with a normalized impedance system. For this reason, when another port is not used, the other port is terminated by an impedance element such as a termination resistor having an impedance equivalent to the standardized impedance at the predetermined frequency.
  • the impedance element when the other port is not used, that is, in the case of the configuration of 3 ports (input port, output port, and coupling port) instead of 4 ports including other ports, the impedance element It has been found that the directivity characteristics can be improved by making the impedance of the signal less than the standardized impedance at the predetermined frequency.
  • the impedance viewed from the coupling port PCPL side is lower than the standardized impedance. Furthermore, the impedance is capacitive due to the provision of the capacitor C12. Therefore, in the present embodiment, by providing the matching circuit M1 that matches the impedance of the coupling port P CPL with the standardized impedance between the one end 112a of the sub line 112 and the coupling port P CPL (coupling port), Return loss (reflection loss) due to impedance mismatch at the coupling port P CPL can be improved (suppressed).
  • an inductor connecting the one end 112a of the sub-line 112 and the coupling port PCPL (coupling port), and the inductor and the coupling port PCPL are connected.
  • a configuration in which a low-pass filter including a node for connecting a path and a capacitor for connecting the ground is provided can be considered.
  • the element values of the elements constituting the low-pass filter are likely to be large, and it may be difficult to incorporate them in the multilayer substrate 12.
  • an element constituting the matching circuit M1 for improving (suppressing) the return loss is provided between the one end 112a of the sub line 112 and the coupling port P CPL (coupling port). Provide. For this reason, the element value of the element can be suppressed, and the element can be embedded in the multilayer substrate 12.
  • the substrate 10 with a built-in coupler includes the capacitors C11 and C12, the resistor R12, the matching circuit M1, and the coupler 11 built in the multilayer substrate 12, so that the capacitors C11 and C12 and the resistor
  • the element values of the elements forming the matching circuit M1 with the element R12 can be suppressed to the element values that can be built in the multilayer substrate 12, and the characteristics can be improved. That is, the coupler built-in substrate 10 that can achieve both improvement in characteristics and downsizing can be realized.
  • the multilayer substrate 12 includes a capacitor C11 (first capacitor), a capacitor C12 (second capacitor), and a matching circuit M1.
  • substrate 10 with a built-in coupler can be further reduced in size.
  • the pattern conductor 122 that constitutes the main line 111 and the pattern conductor 122 that constitutes the sub line 112 include at least a part of the base material layer 121a (insulator layer) that constitutes the multilayer substrate 12. Are arranged opposite to each other. As a result, the main line 111 and the sub line 112 are electromagnetically coupled via the at least part of the base material layer 121a.
  • a method of adjusting the degree of electromagnetic coupling a method of adjusting a distance between the main line 111 and the sub line 112, a length or a width of the main line 111 and the sub line 112, etc. There is a method of adjusting the inductance value by adjustment.
  • the degree of electromagnetic coupling is adjusted by the thickness, the number of layers, or the material of at least a part of the base material layer 121a sandwiched between the main line 111 and the sub line 112. can do. Therefore, further improvements are expected in the characteristics of the coupler-embedded substrate 10 by appropriately adjusting these.
  • the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 are both disposed in the inner layer of the multilayer substrate 12. That is, these pattern conductors 122 are arranged without being exposed from the multilayer substrate 12. Thereby, about the electromagnetic coupling of the main line 111 and the subline 112, the influence by an external board
  • the matching circuit M1 has a first end 112a and a coupling port P inductor L13 for connecting the CPL of the sub-line 112, a capacitor C13 which connects the one end of the inductor L13 and the ground (third capacitor) With.
  • the capacitor C13 (third capacitor) connects one end of the inductor L13 on the coupling port P CPL (coupling port) side and the ground.
  • the capacitor C13 only has to connect one end of the inductor L13 and the ground, and is not limited to the above connection relationship.
  • FIG. 5 is a circuit configuration diagram of the coupler-embedded substrate 10A according to the first modification.
  • the coupler-embedded substrate 10A shown in the figure is replaced with the matching circuit M1, and the capacitor C13 connects one end of the inductor L13 on the sub-line 112 side to the ground. Is provided. That is, the capacitor C13 connects the node on the path connecting the inductor L13 and the one end 112a of the sub line 112 to the ground.
  • the capacitor C11 (first capacitor) connects the one end 112a and the other end 112b of the sub line 112.
  • the capacitor C11 only needs to be connected in parallel with the sub-line 112, and is not limited to the above connection relationship.
  • FIG. 6 is a circuit configuration diagram of the coupler-embedded substrate 10B according to the second modification.
  • the coupler-embedded substrate 10B shown in the figure is different from the coupler-embedded substrate 10 according to the embodiment in that the capacitor C11 is connected in parallel to the series connection circuit of the sub line 112 and the inductor L13.
  • One end of the capacitor C11 is specifically connected to a node on a path connecting the coupling port PCPL and the inductor L13, and more specifically than a node to which the capacitor C13 on the path is connected. It is connected to a node on the inductor L13 side. Note that one end of the capacitor C11 may be connected to a node closer to the coupling port PCPL than the node to which the capacitor C13 on the path is connected.
  • the capacitor C11 is connected in parallel to the series connection circuit of the sub line 112 and the inductor L13, so that the capacitor C11 is connected in parallel to only the sub line 112.
  • at least one of the element value (capacitance value) of the capacitor C11 and the element value (inductance value) of the inductor L13 can be made smaller. Therefore, the coupler built-in substrate 10B can be further reduced in size.
  • the coupler built-in substrate (directional coupler built-in substrate) according to the embodiment of the present invention has been described with reference to the embodiment and the modifications thereof.
  • the present invention is not limited to the embodiment and the modifications thereof. It is not limited.
  • a person skilled in the art can conceive of another embodiment realized by combining arbitrary constituent elements in the above-described embodiment and its modification, and the above-described embodiment and its modification without departing from the gist of the present invention. Variations obtained by various modifications and various devices incorporating the coupler-embedded substrate according to the present invention are also included in the present invention.
  • a high-frequency front-end circuit and a communication device including the above-described coupler-embedded substrate are also included in the present invention. According to such a high-frequency front-end circuit and communication device, it is possible to achieve both improvement in characteristics and miniaturization by providing the above-described coupler-embedded substrate.
  • the pattern conductor 122 that forms the capacitor C12 side electrode of the capacitor C11 and the pattern conductor 122 that forms the capacitor C11 side electrode of the capacitor C12 may be shared. Absent. That is, these two electrodes may be formed by one pattern conductor 122. With such a configuration, the coupler-embedded substrate can be further reduced in size (in particular, reduced in height).
  • the pattern conductor 122 that forms the electrode on the capacitor C13 side of the capacitor C11 and the pattern conductor 122 that forms the electrode on the capacitor C11 side of the capacitor C13 may be shared.
  • the main line 111 and the sub line 112 may be arranged in the same layer of the multilayer substrate 12. That is, each of the main line 111 and the sub-line 112 is configured by the pattern conductor 122 arranged in parallel with the main surface of the multilayer substrate 12 in the inner layer of the multilayer substrate 12, and the pattern conductor 122 configuring the main line 111. And the pattern conductor 122 which comprises the subline 112 may be arrange
  • the pattern conductor 122 constituting the main line 111 and the pattern conductor 122 constituting the sub line 112 are arranged side by side in the stacking direction of the multilayer substrate 12 in the above embodiment, but are perpendicular to the stacking direction. May be arranged side by side in any direction (that is, a direction parallel to the main surface of the multilayer substrate 12).
  • the main line 111 and the sub-line 112 are configured by the pattern conductor 122 on the inner layer of the multilayer substrate 12, so that the same effect as in the above embodiment can be obtained. That is, it is possible to realize a coupler-embedded substrate with high reliability in characteristics. In addition, it is possible to increase the degree of freedom in the layout of the surface electrodes for connecting the multilayer substrate 12 to the mother substrate or the antenna element.
  • the main line 111 and the sub line 112 are arranged in the same layer of the multilayer substrate 12, thereby making it possible to reduce the thickness of the multilayer substrate 12 compared to the above embodiment. it can. Therefore, the entire substrate with a built-in coupler can be further reduced in size (in particular, reduced in height).
  • the coupler 11 may be used for detecting the reflected power of the high-frequency transmission signal at the antenna element 2, for example.
  • the above-described switch port P SW input port
  • the above-described antenna port P ANT output port
  • the input port and the output port can be appropriately connected to peripheral circuit components of the substrate with a built-in coupler such as the antenna element 2 and the switch circuit 40 in accordance with a high frequency signal to be detected.
  • the coupler 11 may be used, for example, to detect the power of a high frequency received signal. That is, the coupler 11 is not limited to the transmission-system high-frequency front-end circuit 1 including a power amplifier, and may be used in a reception-system high-frequency front-end circuit including a low-noise amplifier.
  • an inductor or a capacitor may be connected between each component.
  • the inductor may include a wiring inductor formed by wiring that connects the components.
  • the present invention can be widely used in communication equipment such as a mobile phone as a small-sized module with a good built-in coupler, a high-frequency front-end circuit, and a communication device.

Landscapes

  • Transceivers (AREA)

Abstract

本発明に係るカプラ内蔵基板(10)は、主線路(111)と副線路(112)とを有するカプラ(11)と、副線路(112)と並列接続されたキャパシタ(C11)と、副線路(112)の他端(112b)とグランドとを接続するキャパシタ(C12)と、副線路(112)の他端(112b)とグランドとを接続し、かつ、所定の周波数において基準化インピーダンス未満のインピーダンスを有する抵抗素子(R12)と、副線路(112)の一端(112a)とカップリングポート(PCPL)との間に接続され、かつ、所定の周波数においてカップリングポート(PCPL)のインピーダンスを基準化インピーダンスに整合させる整合回路(M1)と、複数の基材層(121a)が積層されることで構成され、かつ、カプラ(11)を内蔵する多層基板(12)と、を備える。

Description

方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置
 本発明は、方向性結合器を内蔵する方向性結合器内蔵基板、ならびに、この方向性結合器内蔵基板を含む高周波フロントエンド回路及び通信装置に関する。
 従来、方向性結合器(カプラ)の構成として、副線路に対して並列にキャパシタを設ける構成が提案されている(例えば、特許文献1参照)。この構成によれば、主線路及び副線路が持つインダクタンスとキャパシタが持つキャパシタンスによってLC共振回路が構成されることにより、大きな結合度と良好な方向性(Directivity)を実現することができる。
特開2012-105193号公報
 近年、通信機器に対する小型化の要求の高まりに伴って、当該通信機器に搭載される方向性結合器に対しても小型化の要求が高まっている。これに関し、実装部品で構成される方向性結合器に代わり、基板に方向性結合器を内蔵することにより小型化を図る構成が考えられる。
 しかしながら、上記従来の方向性結合器を基板に内蔵することは次の点から難しい。すなわち、上記従来の方向性結合器では、方向性の改善を行うのは、副線路に対して並列に設けられたキャパシタのみであり、特性改善のためにこれの素子値を調整すると当該素子値が基板に内蔵できる上限値を超えてしまう場合がある。一方、小型化を図るために、このキャパシタの素子値を当該上限値以下に抑えると、十分な特性改善ができない場合がある。
 そこで、本発明は、特性の改善と小型化とを両立できる方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る方向性結合器内蔵基板は、入力ポート、出力ポート及び結合ポートと、一端が前記入力ポートに接続され、かつ、他端が前記出力ポートに接続された主線路と、前記主線路と電磁気的に結合し、かつ、一端が前記結合ポートに接続された副線路と、を有する方向性結合器と、前記副線路と並列接続された第1キャパシタと、前記副線路の他端とグランドとを接続する第2キャパシタと、前記副線路の前記他端とグランドとを接続し、かつ、所定の周波数において基準化インピーダンス未満のインピーダンスを有するインピーダンス素子と、前記副線路の前記一端と前記結合ポートとの間に接続され、かつ、前記所定の周波数において前記結合ポートのインピーダンスを前記基準化インピーダンスに整合させる整合回路と、複数の絶縁体層が積層されることで構成され、かつ、前記方向性結合器を内蔵する多層基板と、を備える。
 このように、第2キャパシタを設けることにより、特性(特に方向性特性)の改善を図りつつ、第1キャパシタの素子値を抑制することができる。また、所定の周波数において基準化インピーダンス未満のインピーダンスを有するインピーダンス素子を備えることにより、方向性特性を改善することができる。ただし、このような基準化インピーダンス未満のインピーダンス素子を設けた構成では、結合ポート側から見たインピーダンスが基準化インピーダンスより低くなってしまう。さらに、当該インピーダンスは、第2キャパシタを設けたことにより容量性を持つ。そこで、結合ポートのインピーダンスを基準化インピーダンスに整合させる整合回路を設けることにより、結合ポートでのインピーダンス不整合によるリターンロス(反射損失)を改善することができる。したがって、本態様に係る方向性結合器内蔵基板によれば、第1キャパシタ、第2キャパシタ、インピーダンス素子、整合回路、及び、多層基板に内蔵された方向性結合器、を備えることにより、第1キャパシタ、第2キャパシタ、インピーダンス素子、及び、整合回路を構成する素子それぞれの素子値を多層基板に内蔵できる素子値に抑え、かつ、特性の改善を図ることができる。つまり、特性の改善と小型化とを両立できる方向性結合器内蔵基板を実現することができる。
 また、前記多層基板は、さらに、前記第1キャパシタ、前記第2キャパシタ及び前記整合回路を内蔵することにしてもよい。
 これにより、これらの素子が実装部品で構成される場合に比べて、方向性結合器内蔵基板をさらに小型化することができる。
 また、前記主線路及び前記副線路の各々は、前記多層基板の主面と平行に配置されたパターン導体により構成され、前記主線路を構成するパターン導体と前記副線路を構成するパターン導体とは、前記複数の絶縁体層のうち少なくとも一部の絶縁体層を介して、対向して配置されていることにしてもよい。
 これにより、主線路と副線路とは、当該少なくとも一部の絶縁体層を介して電磁気的に結合することになる。よって、当該電磁気的な結合度の度合いを、主線路と副線路とで挟まれる少なくとも一部の絶縁体層の厚み、層数あるいは材質等によって調整することができる。したがって、これらを適宜調整することにより、方向性結合器内蔵基板の特性について、一層の改善が見込まれる。
 また、前記主線路を構成するパターン導体及び前記副線路を構成するパターン導体はいずれも、前記多層基板の内層に配置されていることにしてもよい。
 これにより、主線路と副線路との電磁気的な結合について、外部の基板または素子による影響を抑制し、安定化させることができる。したがって、特性について信頼性の高い方向性結合器内蔵基板を実現することができる。また、多層基板をマザー基板またはアンテナ素子等と接続するための表面電極について、配置レイアウトの自由度を高めることができる。
 また、前記主線路及び前記副線路の各々は、前記多層基板の内層において当該多層基板の主面と平行に配置されたパターン導体により構成され、前記主線路を構成するパターン導体と前記副線路を構成するパターン導体とは、前記複数の絶縁体層の同層に配置されていることにしてもよい。
 これにより、多層基板の薄型化を図ることができる。よって、方向性結合器内蔵基板全体について、さらなる小型化(特には低背化)を図ることができる。
 また、前記整合回路は、前記副線路の前記一端と前記結合ポートとを接続するインダクタと、前記インダクタの一端とグランドとを接続する第3キャパシタと、を有することにしてもよい。
 これにより、整合回路を構成する素子について、多層基板に内蔵可能な素子値の上限値以下に抑制しつつ、素子数を抑制することができる。したがって、方向性結合器内蔵基板をさらに小型化することができる。
 また、前記第3キャパシタは、前記インダクタの前記結合ポート側の前記一端とグランドとを接続することにしてもよい。
 また、前記第3キャパシタは、前記インダクタの前記副線路側の前記一端とグランドとを接続することにしてもよい。
 また、前記第1キャパシタは、前記副線路と前記インダクタとの直列接続回路に対して並列接続されていることにしてもよい。
 これにより、第1キャパシタが副線路のみと並列接続されている構成に比べて、第1キャパシタの素子値(キャパシタンス値)及びインダクタの素子値(インダクタンス値)の少なくとも一方をより小さくすることができる。したがって、方向性結合器内蔵基板をさらに小型化することができる。
 また、本発明の一態様に係る高周波フロントエンド回路は、上記のいずれかの方向性結合器内蔵基板と、前記入力ポートに接続された共通端子、及び、前記共通端子と選択的に接続される複数の選択端子を有するスイッチ回路と、前記複数の選択端子に個別に接続された複数のフィルタと、を備える。
 これにより、特性の改善と小型化とを両立できる高周波フロントエンド回路を実現することができる。
 また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記の高周波フロントエンド回路と、を備える。
 これにより、特性の改善と小型化とを両立できる通信装置を実現することができる。
 本発明に係る方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置によれば、特性の改善と小型化とを両立することができる。
図1は、実施の形態に係る高周波フロントエンド回路及びその周辺回路の構成図である。 図2は、実施の形態に係るカプラ内蔵基板の回路構成図である。 図3は、実施の形態に係るカプラ内蔵基板の断面構造を概念的に示す図である。 図4Aは、実施例に係るカプラ内蔵基板の挿入損失特性を示すグラフである。 図4Bは、実施例に係るカプラ内蔵基板の結合特性及びアイソレーション特性を示すグラフである。 図4Cは、実施例に係るカプラ内蔵基板の方向性特性を示すグラフである。 図4Dは、実施例に係るカプラ内蔵基板の主線路のインピーダンス特性を示すスミスチャートである。 図4Eは、実施例に係るカプラ内蔵基板の副線路のインピーダンス特性を示すスミスチャートである。 図4Fは、実施例に係るカプラ内蔵基板の副線路の反射特性を示すグラフである。 図5は、変形例1に係るカプラ内蔵基板の回路構成図である。 図6は、変形例2に係るカプラ内蔵基板の回路構成図である。
 以下、本発明の実施の形態について、実施例及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。
 (実施の形態)
 [1.高周波フロントエンド回路の構成]
 本実施の形態に係る方向性結合器内蔵基板は、携帯電話等の通信装置のフロントエンド部に配置され、例えば、マルチバンド対応の通信装置の高周波フロントエンド回路に配置される。なお、方向性結合器は「カプラ」とも称される。このため、以下では、方向性結合器を「カプラ」と称し、これを内蔵する方向性結合器内蔵基板を「カプラ内蔵基板」と称して説明する。
 図1は、実施の形態に係る高周波フロントエンド回路1及びその周辺回路の構成図である。同図には、高周波フロントエンド回路1とともに通信装置4を構成する、アンテナ素子2及びRFIC3とが示されている。通信装置4は、例えば、3GPP(Third Generation Partnership Project)にて規定されたBand(周波数帯域)の高周波信号を用いて他の通信装置と通信し、本実施の形態では、ローバンド(例えば704-960MHz)及びハイバンド(例えば1710MHz-2170MHz)の高周波信号(セルラー信号)を用いて通信する。なお、通信装置4は、本実施の形態ではアンテナ素子2を内蔵しているが、内蔵していなくてもかまわない。
 アンテナ素子2は、高周波信号を送受信する、例えばマルチバンド対応のアンテナである。
 RFIC3は、アンテナ素子2で送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC3は、ベースバンド信号処理回路(図示せず)から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を高周波フロントエンド回路1の送信側信号経路に出力する。また、RFIC3は、アンテナ素子2から高周波フロントエンド回路1の受信側信号経路(図示せず)を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路へ出力する。
 高周波フロントエンド回路1は、アンテナ素子2とRFIC3との間で高周波信号を伝達する回路である。具体的には、高周波フロントエンド回路1は、RFIC3から出力された高周波信号(ここでは高周波送信信号)を、送信側信号経路を介してアンテナ素子2に伝達する。また、高周波フロントエンド回路1は、アンテナ素子2で受信された高周波信号(ここでは高周波受信信号)を、受信側信号経路(図示せず)を介してRFIC3に伝達する。
 本実施の形態では、高周波フロントエンド回路1は、カプラ内蔵基板10と、送信増幅回路群20と、フィルタ群30と、スイッチ回路40と、を備える。
 カプラ内蔵基板10は、カプラ11を内蔵する基板であり、入力ポートに入力された高周波信号を出力ポートに伝達するとともに、入力ポートから出力ポートに伝達する高周波信号の電力に比例する電力を有する高周波信号を結合ポートから出力する。本実施の形態では、入力ポートはスイッチ回路40に接続された端子であるスイッチポートPSWであり、出力ポートはアンテナ素子2に接続された端子であるアンテナポートPANTであり、結合ポートはRFIC3に接続された端子であるカップリングポートPCPLである。このカプラ内蔵基板10の詳細については、後述する。
 送信増幅回路群20は、複数のバンドに個別に対応する増幅回路を含む。具体的には、増幅回路は、RFIC3から出力された高周波送信信号を電力増幅する1以上のパワーアンプによって構成され、本実施の形態では、多段接続(縦続接続)された2段のパワーアンプによって構成される。
 フィルタ群30は、複数のバンドに個別に対応するフィルタを含み、送信増幅回路群20で増幅された高周波信号を対応するバンドの周波数帯域でフィルタリングする。本実施の形態では、フィルタ群30は、ローバンドの周波数帯域(ローバンドのセルラー帯域)を通過帯域とするフィルタと、ハイバンドの周波数帯域(ハイバンドのセルラー帯域)を通過帯域とするフィルタとを有する。
 スイッチ回路40は、カプラ内蔵基板10のスイッチポートPSW(入力ポート)に接続された共通端子、及び、当該端子と選択的に接続される複数の選択端子(本実施の形態では2つの選択端子)を有する。ここで、複数の選択端子は、フィルタ群30を構成する複数のフィルタに個別に接続されている。スイッチ回路40は、RFIC3等の制御部からの制御信号にしたがって、複数の選択端子のいずれかと共通端子とを接続する。なお、共通端子と接続される選択端子は1つに限らず、複数であってもかまわない。
 このように構成された高周波フロントエンド回路1は、RFIC3から入力された高周波信号(ここでは高周波送信信号)を、所定のパワーアンプで増幅して、かつ、所定のフィルタでフィルタリングしてアンテナ素子2に出力する。このような高周波フロントエンド回路1、アンテナ素子2及びRFIC3で構成される通信装置4は、カップリングポートPCPLから出力された高周波信号の電力を用いて高周波送信信号の電力を検出することにより、例えば、検出した電力に基づいてパワーアンプの出力電力を制御することができる。
 [2.カプラ内蔵基板]
 次に、本実施の形態に係るカプラ内蔵基板10の詳細について説明する。
 [2-1.構成]
 図2は、カプラ内蔵基板10の回路構成図である。
 同図に示すように、カプラ内蔵基板10は、主線路111及び副線路112を有するカプラ11と、キャパシタC11と、キャパシタC12と、抵抗素子R12と、キャパシタC13及びインダクタL13を有する整合回路M1と、を備える。
 主線路111は、一端111aがスイッチポートPSW(入力ポート)に接続され、かつ、他端111bがアンテナポートPANT(出力ポート)に接続された伝送線路である。
 副線路112は、主線路111と電磁気的に結合し、かつ、一端112aがカップリングポートPCPL(結合ポート)に接続された伝送線路である。ここで、「電磁気的に結合する」とは、容量結合及び磁気結合していることである。つまり、主線路111と副線路112とは、互いの間に生じる容量により容量結合し、かつ、互いの間に作用する相互インダクタンスにより磁気結合している。
 このような主線路111及び副線路112により構成されるカプラ11では、主線路111の一端111aから他端111bに流れる高周波信号の電力に比例する電力を有する高周波信号が、副線路112の他端112bから一端112aに流れて出力される。
 キャパシタC11は、副線路112と並列接続された第1キャパシタであり、本実施の形態では副線路112の一端112aと他端112bとを接続(橋絡接続)する。このようなキャパシタC11は、主線路111が有するインダクタンス成分及び副線路112が有するインダクタンス成分とともに、LC共振回路を構成する。このLC共振回路は、スイッチポートPSWからアンテナポートPANTに伝送される高周波信号に対して共振する。ここで、例えば、当該高周波信号の周波数(すなわちカプラ11の動作周波数等の所定の周波数)をfとし、主線路111及び副線路112の合成インダクタンス成分をLとすると、キャパシタC11の素子値(キャパシタンス値)C11は、f=1/(2π√(LC11))を満たす素子値より小さく設定されている。
 キャパシタC12は、副線路112の他端112bとグランドとを接続する第2キャパシタである。
 抵抗素子R12は、副線路112の他端112bとグランドとを接続するインピーダンス素子である。言い換えると、抵抗素子R12(インピーダンス素子)は、カプラ11の終端抵抗であり、具体的には副線路112の他端112bの終端抵抗である。カプラ内蔵基板10では、抵抗素子R12とキャパシタC12との並列接続回路が、副線路112の他端112bとキャパシタC11とを結ぶ経路上のノードに接続されている。
 ここで、抵抗素子R12は、カプラ11の動作周波数(所定の周波数)において基準化インピーダンス未満のインピーダンスとなるインピーダンス素子である。本実施の形態では、カプラ11の動作周波数は、フィルタ群30の通過帯域を含む周波数帯域であり、基準化インピーダンスは50Ωである。
 なお、カプラ11の動作周波数及び基準化インピーダンスは、これに限らない。また、副線路112の他端112bとグランドとを接続するインピーダンス素子は、抵抗素子R12に限らず、カプラ11の動作周波数において基準化インピーダンス未満のインピーダンスとなるインピーダンス素子であればよく、例えばインダクタであってもかまわない。
 整合回路M1は、副線路112の一端112aとカップリングポートPCPL(結合ポート)との間に接続され、かつ、カプラ11の動作周波数においてカップリングポートPCPLのインピーダンスを基準化インピーダンスに整合させる回路である。つまり、カプラ内蔵基板10では、整合回路M1が、副線路の一端112aとキャパシタC11とを結ぶ経路上のノードに接続されている。ここで、「基準化インピーダンスに整合させる」とは、基準化インピーダンスに完全に整合させることだけでなく基準化インピーダンス付近に整合させることも含み、例えば反射損失を15dB以下の範囲に整合させることも含む。
 具体的には、整合回路M1は、副線路112の一端112aとカップリングポートPCPL(結合ポート)とを接続するインダクタL13と、インダクタL13の一端とグランドとを接続するキャパシタC13(第3キャパシタ)と、を有する。本実施の形態では、キャパシタC13は、インダクタL13のカップリングポートPCPL側の一端とグランドとを接続する。
 このような回路構成を有するカプラ内蔵基板10は、カプラ11を内蔵する多層基板を備える。このことについて、さらに図3を用いて説明する。
 図3は、実施の形態に係るカプラ内蔵基板10の断面構造を概念的に示す図である。なお、同図では、簡明のため、厳密には別断面にある構成要素を同一図面内に示して説明している場合がある。また、本実施の形態において実装部品(チップ部品)で形成された抵抗素子R12については、側面視で示している。また、同図では、便宜上、後述する基材層の境界を破線で示している。
 同図に示すように、カプラ内蔵基板10は、カプラ11を内蔵する多層基板12と、多層基板12に実装された実装部品で形成された抵抗素子R12と、で形成されている。本実施の形態では、多層基板12は、さらに、キャパシタC11(第1キャパシタ)、キャパシタC12(第2キャパシタ)、及び、整合回路M1(すなわちキャパシタC13及びインダクタL13)を内蔵する。
 多層基板12は、複数の絶縁体層(ここでは27層の基材層121a)が積層されることにより形成され、かつ、カプラ11を内蔵する。具体的には、多層基板12は、積層された複数の基材層121aにより形成された積層素体121と、カプラ内蔵基板10の回路構成を実現するための各種導体と、で構成される。各種導体には、例えば、多層基板12の主面に沿って多層基板内に設けられた面内導体であるパターン導体122と、当該主面に垂直な方向に設けられた層間接続導体であるビア導体123と、多層基板12の主面に沿って多層基板内の絶縁体層の略全体に設けられた内層のグランド導体124a及び124bと、が含まれる。また、多層基板12は、例えば底面に、多層基板12をマザー基板等に実装するための表面電極125を有し、例えば天面に、抵抗素子R12等の実装部品を実装するため等の表面電極126を有する。
 例えば、基材層121aとしては、非磁性フェライトセラミックやアルミナ及びガラスを主成分とする絶縁性ガラスセラミックが用いられる。なお、基材層121aとしては、磁性フェライトセラミックが用いられてもよい。例えば、フェライトとしては、酸化鉄を主成分とし、亜鉛、ニッケル及び銅のうち少なくとも1以上が含まれる。また、例えば、セラミックとしては、焼成温度が銀の融点以下であるLTCCセラミックス(Low Temperature Co-fired Ceramics)を用いてもよい。これにより、銀を主成分とする金属または合金が用いて各種導体を構成することが可能になる。よって、例えば大気などの酸化性雰囲気下で多層基板12を焼成できる。また、例えば、各種導体としては、銀を主成分とする金属または合金が用いられる。
 なお、基材層121aとしては、上記材料に限らず、例えばポリイミド等の熱可塑性樹脂が用いられてもかまわない。また、各種導体としては、上記材料に限らず、例えば銅を主成分とする金属または合金が用いられてもかまわない。
 本実施の形態では、パターン導体122及びビア導体123によって、カプラ11、キャパシタC11~C13及びインダクタL13と、これらを接続する配線と、が形成されている。例えば、カプラ11は長尺状の対向する一対のパターン導体122によって構成され、キャパシタC11~C13は矩形状の対向する一対のパターン導体122によって構成され、インダクタL13は、コイル状の複数のパターン導体122の端部がビア導体123によって接続されることで構成されている。また、底面側の表面電極125によって、アンテナポートPANT(出力端子)、カップリングポートPCPL(結合端子)及びグランド端子PGNDが形成され、天面側の表面電極126によって、スイッチポートPSW(入力端子)、及び、抵抗素子R12を実装するための実装用端子PR_H及びPR_GNDが形成されている。
 つまり、本実施の形態では、カプラ11を構成する主線路111及び副線路112の各々は、多層基板12の主面と平行に配置されたパターン導体122により構成されている。また、主線路111を構成するパターン導体122と副線路112を構成するパターン導体122とは、複数の絶縁体層のうち少なくとも一部の絶縁体層(ここでは、複数の基材層121aのうち1層の基材層121a)を介して、対向して配置されている。したがって、主線路111と副線路112とは、多層基板12内で電磁気的に結合している。具体的には、主線路111と副線路112とは、平行に延設され、かつ、多層基板12の積層方向から見て重なって配置されている。
 また、本実施の形態では、主線路111及び副線路112はいずれも、多層基板12の内層に形成されている。つまり、主線路111を構成するパターン導体122及び副線路112を構成するパターン導体122はいずれも、積層方向両側から1以上の基材層121aで挟み込まれている。
 また、本実施の形態では、主線路111を構成するパターン導体122と副線路112を構成するパターン導体122とは、積層方向両側からグランド導体124a及び124bで挟み込まれている。この構成により、主線路111または副線路112と他の伝送線路または素子とのアイソレーションが向上し、これらの間の不要な電磁気的な結合を抑制することができる。
 これら主線路111を構成するパターン導体122と副線路112を構成するパターン導体122の線幅及び長さ等は、結合度等のカプラ11への要求仕様、及び、基材層121aの誘電率等に応じて、適宜決定され得る。
 ここまでカプラ内蔵基板10の構成について説明したが、カプラ内蔵基板10の構成は上記構成に限定されない。
 例えば、主線路111を構成するパターン導体122と副線路112を構成するパターン導体122との間の基材層121aの数は上記に限らず、例えば、結合度等のカプラ11への要求仕様、及び、基材層121aの誘電率等に応じて、適宜決定され得る。
 また、例えば、主線路111及び副線路112の一方の線路は、多層基板12の主面に形成されていてもよい。つまり、当該一方の線路は多層基板12に内蔵されず、他方の線路のみ多層基板12に内蔵されていてもよい。
 また、多層基板12に内蔵できる素子値には、多層基板12を構成する材料等によって上限がある。このため、本実施の形態では、抵抗素子R12(インピーダンス素子)は、実装部品で形成されていたが、抵抗素子R12の素子値を有する抵抗を多層基板12に内蔵可能な場合には、抵抗素子R12は多層基板12に内蔵されてもかまわない。つまり、抵抗素子R12はパターン導体122及びビア導体123等により形成されてもかまわない。
 また、小型化の観点からはキャパシタC11~C13及びインダクタL13は多層基板12に内蔵されていることが好ましいが、キャパシタC11~C13及びインダクタL13の少なくとも1つは多層基板12に内蔵されず実装部品により形成されていてもかまわない。
 [2-2.特性]
 次に、本実施の形態に係るカプラ内蔵基板10の特性について、実施例を用いて説明する。
 本実施例に係るカプラ内蔵基板は、実施の形態に係るカプラ内蔵基板10の構成を有し、ハイバンドのセルラー信号を伝達する。カプラ内蔵基板10の各素子値は以下のとおりである。
   キャパシタC11(第1キャパシタ)・・・0.7pF
   キャパシタC12(第2キャパシタ)・・・2.2pF
   抵抗素子R12(インピーダンス素子)・・・30Ω
   キャパシタC13(第3キャパシタ)・・・2.3pF
   インダクタL13         ・・・1.3nH
 図4A~図4Fは、実施例に係るカプラ内蔵基板の特性を示すグラフである。具体的には、図4Aは、実施例に係るカプラ内蔵基板の挿入損失特性を示すグラフである。図4Bは、実施例に係るカプラ内蔵基板の結合特性及びアイソレーション(Isolation)特性を示すグラフである。図4Cは、実施例に係るカプラ内蔵基板の方向性(Directivity)特性を示すグラフである。図4Dは、実施例に係るカプラ内蔵基板の主線路111のインピーダンス特性を示すスミスチャートであり、スイッチポートPSW(入力ポート)のインピーダンス特性が破線で示され、アンテナポートPANT(出力ポート)のインピーダンス特性が実線で示されている。図4Eは、実施例に係るカプラ内蔵基板の副線路112のインピーダンス特性を示すスミスチャートであり、カップリングポートPCPLのインピーダンス特性が示されている。図4Fは、実施例に係るカプラ内蔵基板の副線路112の反射特性を示すグラフであり、カップリングポートPCPLでの反射特性が示されている。
 ここで、挿入損失特性とは、スイッチポートPSW(入力ポート)とアンテナポートPANT(出力ポート)との間での通過特性(挿入損失)の周波数特性を指す。結合特性とは、スイッチポートPSW(入力ポート)とカップリングポートPCPLとの間での結合量(結合度)の周波数特性を指す。アイソレーション特性とは、アンテナポートPANT(出力ポート)とカップリングポートPCPLとの間での結合量(アイソレーション)の周波数特性を指す。方向性特性とは、アイソレーション特性から結合特性を差し引いた差分にあたる周波数特性を指す。インピーダンス特性とは、各ポート(図4DではスイッチポートPSW及びアンテナポートPANT、図4EではカップリングポートPCPL)におけるインピーダンスの周波数特性を指す。反射特性とは、各ポート(図4FではカップリングポートPCPL)における入出力の反射特性(反射損失)の周波数特性を指す。
 なお、図4A~図4Cでは、通過帯域低域端(ここでは1710MHz)及び通過帯域高域端(ここでは2170MHz)の少なくとも一方にマーカーを付加している。また、グラフの右には、グラフ中のマーカーm*(ここで、*はグラフ中のmに続く数値)における周波数及びこのときの数値が示されている。
 本実施例では、図4Aに示すように、通過帯域内で挿入損失が0.14dB以下である。また、図4Bに示すように、通過帯域内で結合度の変化が4dB以下に抑制されている。具体的には、当該結合度は25.5±2.0dBの範囲に収められて平滑化されている。また、図4Bに示すように、通過帯域内でIsolationが45dB以上確保されている。この結合度及びIsolationから、図4Cに示すように、Directivityが20dB以上確保されている。また、図4Dに示すように、主線路111に関しては、通過帯域内でスイッチポートPSW及びアンテナポートPANTのいずれにおいても、基準化インピーダンス(ここでは50Ω)に整合されている。また、図4Eに示すように、副線路112に関しても、通過帯域内でカップリングポートPCPLにおいて、基準化インピーダンス(ここでは50Ω)に整合されている。このため、図4Fに示すように、カップリングポートPCPLにおいて、通過帯域内の反射損失が15dB以下である。
 このように、本実施例に係るカプラ内蔵基板は、カプラ11、キャパシタC11~C13及びインダクタL13を多層基板12に内蔵することにより小型化を図るとともに、良好な特性を示すことがわかる。
 [まとめ]
 以上説明したように、本実施の形態に係るカプラ内蔵基板10は、副線路112と並列接続されたキャパシタC11(第1キャパシタ)を備える。また、副線路112の他端112bとグランドとを接続する、キャパシタC12(第2キャパシタ)及び抵抗素子R12(インピーダンス素子)と、カプラ11を内蔵する多層基板12を備える。また、副線路112の一端112aとカップリングポートPCPLとの間に接続された整合回路M1を備える。
 このように、本実施の形態では、キャパシタC12(第2キャパシタ)を設けることにより、特性(特に方向性特性)の改善を図りつつ、キャパシタC11(第1キャパシタ)の素子値を抑制することができる。具体的には、キャパシタC11及びC12のうちキャパシタC11のみを設ける構成であっても、本実施の形態と同様に特性の改善を図ることはできる。ただし、この場合、特性の改善を1つのキャパシタのみで行う必要があるため、設計自由度が低い。よって、多層基板12へのキャパシタC11の内蔵が困難となり得るため、小型化の妨げとなり得る。これに対して、本実施の形態では、キャパシタC12を設けることにより、設計自由度を確保して、多層基板12へのキャパシタC11及びC12の内蔵を図ることができる。
 ここで、キャパシタC12を設けることにより特性の改善が図られるメカニズムについては、例えば次のように考えられる。すなわち、副線路112の他端112bに付加されるインピーダンスは、キャパシタC12の定数に依存する。このため、キャパシタC12の定数を適宜調整することにより、特定の周波数の高周波信号を終端抵抗(本実施の形態では抵抗素子R12)に流しやすくなる。その結果、アンテナポートPANT(出力ポート)からカップリングポートPCPLに伝送される高周波信号を抑制することができるので、アイソレーションを高める(アイソレーション特性を改善する)ことができる。つまり、方向性特性の改善を図ることができる。
 また、本実施の形態では、所定の周波数において基準化インピーダンス未満(本実施の形態ではカプラ11の動作周波数において50Ω未満)のインピーダンスを有する抵抗素子R12(インピーダンス素子)を備えることにより、方向性特性を改善することができる。一般的に、副線路112の他端112bがアイソレーションポート等の他のポートに接続される場合、当該他のポートでの整合をとるために副線路の他端112bと他のポートとの間は基準化インピーダンス系で設計される。このため、他のポートが使用されない場合、当該他のポートは、上記所定の周波数において基準化インピーダンスと同等のインピーダンスを有する終端抵抗等のインピーダンス素子によって終端される。このことに関し、本願発明者は、当該他のポートが使用されない場合、つまり他のポートを含む4ポートではなく3ポート(入力ポート、出力ポート及び結合ポート)の構成の場合には、当該インピーダンス素子のインピーダンスを上記所定の周波数において基準化インピーダンス未満とすることにより、方向性特性を改善することができることを見出した。
 ただし、このような基準化インピーダンス未満のインピーダンス素子を設けた構成では、カップリングポートPCPL側から見たインピーダンスが基準化インピーダンスより低くなってしまう。さらに、当該インピーダンスは、キャパシタC12を設けたことにより容量性を持つ。そこで、本実施の形態では、副線路112の一端112aとカップリングポートPCPL(結合ポート)との間にカップリングポートPCPLのインピーダンスを基準化インピーダンスに整合させる整合回路M1を設けることにより、カップリングポートPCPLでのインピーダンス不整合によるリターンロス(反射損失)を改善(抑制)することができる。
 このことに関し、例えば、広帯域における結合度の平滑化を目的として、副線路112の一端112aとカップリングポートPCPL(結合ポート)とを接続するインダクタと、当該インダクタとカップリングポートPCPLとを接続する経路のノードとグランドとを接続するキャパシタとで構成されるローパスフィルタを設ける構成が考えられる。しかしながら、このような構成では、ローパスフィルタを構成する素子の素子値が大きくなりやすく、多層基板12への内蔵が困難となり得る。
 これに対して、本実施の形態では、副線路112の一端112aとカップリングポートPCPL(結合ポート)との間にはリターンロスを改善(抑制)するための整合回路M1を構成する素子を設ける。このため、当該素子の素子値を抑制し、多層基板12への素子の内蔵を図ることができる。
 したがって、本実施の形態に係るカプラ内蔵基板10は、上述のキャパシタC11及びC12と抵抗素子R12と整合回路M1と多層基板12に内蔵されたカプラ11とを備えることにより、キャパシタC11及びC12と抵抗素子R12と整合回路M1を構成する素子の素子値を多層基板12に内蔵できる素子値に抑え、かつ、特性の改善を図ることができる。つまり、特性の改善と小型化とを両立できるカプラ内蔵基板10を実現することができる。
 具体的には、本実施の形態では、多層基板12は、キャパシタC11(第1キャパシタ)、キャパシタC12(第2キャパシタ)及び整合回路M1を内蔵する。これにより、これらの素子が実装部品で構成される場合に比べて、カプラ内蔵基板10をさらに小型化することができる。
 また、本実施の形態では、主線路111を構成するパターン導体122と副線路112を構成するパターン導体122とは、多層基板12を構成する少なくとも一部の基材層121a(絶縁体層)を介して、対向して配置されている。これにより、主線路111と副線路112とは、当該少なくとも一部の基材層121aを介して電磁気的に結合することになる。ここで、当該電磁気的な結合度の度合いを調整する手法としては、主線路111と副線路112との距離を調整する手法と、主線路111及び副線路112の線路の長さまたは幅等の調整によりインダクタンス値を調整する手法とがある。これに関し、本実施の形態では、当該電磁気的な結合度の度合いを、主線路111と副線路112とで挟まれる少なくとも一部の基材層121aの層の厚み、層数あるいは材質等によって調整することができる。したがって、これらを適宜調整することにより、カプラ内蔵基板10の特性について、一層の改善が見込まれる。
 また、本実施の形態では、主線路111を構成するパターン導体122及び副線路112を構成するパターン導体122は、いずれも多層基板12の内層に配置されている。つまり、これらのパターン導体122は、多層基板12から露出せずに配置されている。これにより、主線路111と副線路112との電磁気的な結合について、外部の基板または素子による影響を抑制し、安定化させることができる。したがって、特性について信頼性の高いカプラ内蔵基板10を実現することができる。また、多層基板12をマザー基板またはアンテナ素子2等と接続するための表面電極125及び126について、配置レイアウトの自由度を高めることができる。
 また、本実施の形態では、整合回路M1は、副線路112の一端112aとカップリングポートPCPLとを接続するインダクタL13と、インダクタL13の一端とグランドとを接続するキャパシタC13(第3キャパシタ)とを備える。これにより、整合回路M1を構成する素子について、多層基板12に内蔵可能な素子値の上限値以下に抑制しつつ、素子数を抑制することができる。したがって、カプラ内蔵基板10をさらに小型化することができる。
 (変形例1)
 上記実施の形態では、キャパシタC13(第3キャパシタ)は、インダクタL13のカップリングポートPCPL(結合ポート)側の一端とグランドとを接続した。しかし、キャパシタC13は、インダクタL13の一端とグランドとを接続すればよく、上記の接続関係に限らない。
 図5は、変形例1に係るカプラ内蔵基板10Aの回路構成図である。
 同図に示すカプラ内蔵基板10Aは、実施の形態に係るカプラ内蔵基板10に比べて、整合回路M1に代わり、キャパシタC13がインダクタL13の副線路112側の一端とグランドとを接続する整合回路M2を備える。つまり、キャパシタC13は、インダクタL13と副線路112の一端112aとを接続する経路上のノードとグランドとを接続する。
 このように構成された本変形例に係るカプラ内蔵基板10Aであっても、実施の形態と同様の効果を奏することができる。
 (変形例2)
 上記実施の形態では、キャパシタC11(第1キャパシタ)は、副線路112の一端112aと他端112bとを接続した。しかし、キャパシタC11は、副線路112と並列接続されていればよく、上記の接続関係に限らない。
 図6は、変形例2に係るカプラ内蔵基板10Bの回路構成図である。
 同図に示すカプラ内蔵基板10Bは、実施の形態に係るカプラ内蔵基板10に比べて、キャパシタC11が副線路112とインダクタL13との直列接続回路に対して並列接続されている点が異なる。キャパシタC11の一端は、具体的には、カップリングポートPCPLとインダクタL13とを接続する経路上のノードに接続され、より具体的には、当該経路上のキャパシタC13が接続されたノードよりもインダクタL13側のノードに接続されている。なお、キャパシタC11の一端は、当該経路上のキャパシタC13が接続されたノードよりもカップリングポートPCPL側のノードに接続されていてもかまわない。
 このように構成された本変形例に係るカプラ内蔵基板10Bであっても、実施の形態及び変形例1と同様の効果を奏することができる。
 また、本変形例によれば、キャパシタC11が副線路112とインダクタL13との直列接続回路に対して並列接続されていることにより、キャパシタC11が副線路112のみと並列接続されている構成に比べて、キャパシタC11の素子値(キャパシタンス値)及びインダクタL13の素子値(インダクタンス値)の少なくとも一方をより小さくすることができる。したがって、カプラ内蔵基板10Bをさらに小型化することができる。
 (その他の変形例)
 以上、本発明の実施の形態に係るカプラ内蔵基板(方向性結合器内蔵基板)について、実施の形態及びその変形例を挙げて説明したが、本発明は、上記実施の形態及びその変形例に限定されるものではない。上記実施の形態及びその変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態及びその変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係るカプラ内蔵基板を内蔵した各種機器も本発明に含まれる。
 例えば、上述したカプラ内蔵基板を備える高周波フロントエンド回路及び通信装置も本発明に含まれる。このような高周波フロントエンド回路及び通信装置によれば、上述したカプラ内蔵基板を備えることにより、特性の改善と小型化とを両立することができる。
 また、例えば、多層基板12内において、キャパシタC11のキャパシタC12側の電極を形成するパターン導体122と、キャパシタC12のキャパシタC11側の電極を形成するパターン導体122とは、共通化されていてもかまわない。つまり、これら2つの電極は、1つのパターン導体122によって形成されていてもかまわない。このような構成により、カプラ内蔵基板のさらなる小型化(特には低背化)を図ることができる。
 同様に、変形例1において、キャパシタC11のキャパシタC13側の電極を形成するパターン導体122と、キャパシタC13のキャパシタC11側の電極を形成するパターン導体122とは、共通化されていてもかまわない。
 また、主線路111と副線路112とは、多層基板12の同層に配置されていてもよい。つまり、主線路111及び副線路112の各々は、多層基板12の内層において当該多層基板12の主面と平行に配置されたパターン導体122により構成されており、主線路111を構成するパターン導体122と副線路112を構成するパターン導体122とは、複数の基材層121a(複数の絶縁体層)の同層に配置されていてもよい。言い換えると、主線路111を構成するパターン導体122と副線路112を構成するパターン導体122とは、上記実施の形態では多層基板12の積層方向に並んで配置されていたが、当該積層方向に垂直な方向(すなわち多層基板12の主面に平行な方向)に並んで配置されていてもよい。
 このような構成であっても、主線路111と副線路112とが多層基板12の内層のパターン導体122により構成されていることにより、上記実施の形態と同様の効果が奏される。すなわち、特性について信頼性の高いカプラ内蔵基板を実現することができる。また、多層基板12をマザー基板またはアンテナ素子等と接続するための表面電極について、配置レイアウトの自由度を高めることができる。
 さらに、このような構成によれば、主線路111と副線路112とが多層基板12の同層に配置されていることにより、上記実施の形態に比べて多層基板12の薄型化を図ることができる。よって、カプラ内蔵基板全体について、さらなる小型化(特には低背化)を図ることができる。
 また、上記説明では、高周波送信信号の電力を検出するためにカプラ11を用いる構成を例に説明した。しかし、カプラ11は、例えば、アンテナ素子2における高周波送信信号の反射電力を検出するための用いられてもかまわない。このような構成では、上述したスイッチポートPSW(入力ポート)がアンテナ素子2に接続され、上述したアンテナポートPANT(出力ポート)がスイッチ回路40に接続される。つまり、入力ポート及び出力ポートは、電力を検出する対象の高周波信号に応じて、アンテナ素子2及びスイッチ回路40等のカプラ内蔵基板の周辺回路の部品と適宜接続され得る。
 また、カプラ11は、例えば、高周波受信信号の電力を検出するために用いられてもかまわない。つまり、カプラ11は、パワーアンプを備える送信系の高周波フロントエンド回路1に限らず、ローノイズアンプを備える受信系の高周波フロントエンド回路に用いられてもかまわない。
 また、例えば、高周波フロントエンド回路1または通信装置4において、各構成要素の間に、インダクタやキャパシタが接続されていてもかまわない。なお、当該インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。
 本発明は、小型かつ良好な特性を有するカプラ内蔵モジュール、高周波フロントエンド回路及び通信装置として、携帯電話などの通信機器に広く利用できる。
 1 高周波フロントエンド回路
 2 アンテナ素子
 3 RFIC(RF信号処理回路)
 4 通信装置
 10、10A、10B カプラ内蔵基板(方向性結合器内蔵基板)
 11 カプラ(方向性結合器)
 12 多層基板
 20 送信増幅回路群
 30 フィルタ群
 40 スイッチ回路
 111 主線路
 112 副線路
 121 積層素体
 121a 基材層(絶縁体層)
 122 パターン導体
 123 ビア導体
 124a、124b グランド導体
 125、126 表面電極
 C11 キャパシタ(第1キャパシタ)
 C12 キャパシタ(第2キャパシタ)
 C13 キャパシタ(第3キャパシタ)
 L13 インダクタ
 M1、M2 整合回路
 PSW スイッチポート(入力ポート)
 PANT アンテナポート(出力ポート)
 PCPL カップリングポート(結合ポート)
 R12 抵抗素子(インピーダンス素子)

Claims (11)

  1.  入力ポート、出力ポート及び結合ポートと、
     一端が前記入力ポートに接続され、かつ、他端が前記出力ポートに接続された主線路と、前記主線路と電磁気的に結合し、かつ、一端が前記結合ポートに接続された副線路と、を有する方向性結合器と、
     前記副線路と並列接続された第1キャパシタと、
     前記副線路の他端とグランドとを接続する第2キャパシタと、
     前記副線路の前記他端とグランドとを接続し、かつ、所定の周波数において基準化インピーダンス未満のインピーダンスを有するインピーダンス素子と、
     前記副線路の前記一端と前記結合ポートとの間に接続され、かつ、前記所定の周波数において前記結合ポートのインピーダンスを前記基準化インピーダンスに整合させる整合回路と、
     複数の絶縁体層が積層されることで構成され、かつ、前記方向性結合器を内蔵する多層基板と、を備える、
     方向性結合器内蔵基板。
  2.  前記多層基板は、さらに、前記第1キャパシタ、前記第2キャパシタ及び前記整合回路を内蔵する、
     請求項1に記載の方向性結合器内蔵基板。
  3.  前記主線路及び前記副線路の各々は、前記多層基板の主面と平行に配置されたパターン導体により構成され、
     前記主線路を構成するパターン導体と前記副線路を構成するパターン導体とは、前記複数の絶縁体層のうち少なくとも一部の絶縁体層を介して、対向して配置されている、
     請求項1または2に記載の方向性結合器内蔵基板。
  4.  前記主線路を構成するパターン導体及び前記副線路を構成するパターン導体はいずれも、前記多層基板の内層に配置されている、
     請求項3に記載の方向性結合器内蔵基板。
  5.  前記主線路及び前記副線路の各々は、前記多層基板の内層において当該多層基板の主面と平行に配置されたパターン導体により構成され、
     前記主線路を構成するパターン導体と前記副線路を構成するパターン導体とは、前記複数の絶縁体層の同層に配置されている、
     請求項1または2に記載の方向性結合器内蔵基板。
  6.  前記整合回路は、
     前記副線路の前記一端と前記結合ポートとを接続するインダクタと、
     前記インダクタの一端とグランドとを接続する第3キャパシタと、を有する、
     請求項1~5のいずれか1項に記載の方向性結合器内蔵基板。
  7.  前記第3キャパシタは、前記インダクタの前記結合ポート側の前記一端とグランドとを接続する、
     請求項6に記載の方向性結合器内蔵基板。
  8.  前記第3キャパシタは、前記インダクタの前記副線路側の前記一端とグランドとを接続する、
     請求項6に記載の方向性結合器内蔵基板。
  9.  前記第1キャパシタは、前記副線路と前記インダクタとの直列接続回路に対して並列接続されている、
     請求項6~8のいずれか1項に記載の方向性結合器内蔵基板。
  10.  請求項1~9のいずれか1項に記載の方向性結合器内蔵基板と、
     前記入力ポートに接続された共通端子、及び、前記共通端子と選択的に接続される複数の選択端子を有するスイッチ回路と、
     前記複数の選択端子に個別に接続された複数のフィルタと、を備える、
     高周波フロントエンド回路。
  11.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項10に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2017/038538 2016-10-27 2017-10-25 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置 WO2018079614A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780064993.0A CN109845029B (zh) 2016-10-27 2017-10-25 定向耦合器内置基板、高频前端电路以及通信装置
US16/375,864 US10892538B2 (en) 2016-10-27 2019-04-05 Directional coupler-integrated board, radio-frequency front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016211008 2016-10-27
JP2016-211008 2016-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/375,864 Continuation US10892538B2 (en) 2016-10-27 2019-04-05 Directional coupler-integrated board, radio-frequency front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018079614A1 true WO2018079614A1 (ja) 2018-05-03

Family

ID=62024938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038538 WO2018079614A1 (ja) 2016-10-27 2017-10-25 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置

Country Status (3)

Country Link
US (1) US10892538B2 (ja)
CN (1) CN109845029B (ja)
WO (1) WO2018079614A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213927A1 (en) * 2019-04-15 2020-10-22 Samsung Electronics Co., Ltd. Directional coupler and electronic device having the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854533B (zh) * 2019-11-15 2021-11-02 Oppo广东移动通信有限公司 天线模组和终端
CN110855334B (zh) * 2019-11-15 2021-10-29 Oppo广东移动通信有限公司 射频电路和终端
CN111430869A (zh) * 2020-03-23 2020-07-17 深圳市大富科技股份有限公司 一种定向耦合器及调试定向耦合器方向性的方法
JP7334858B2 (ja) * 2020-05-09 2023-08-29 株式会社村田製作所 方向性結合器
WO2021241339A1 (ja) * 2020-05-27 2021-12-02 株式会社村田製作所 高周波モジュールおよび通信装置
KR20220005949A (ko) * 2020-07-07 2022-01-14 삼성전자주식회사 결합기를 포함하는 인쇄회로기판 및 전자 장치
WO2022100841A1 (en) * 2020-11-12 2022-05-19 Advantest Corporation Directional coupler arrangement
CN113922775B (zh) * 2021-09-17 2023-06-27 深圳飞骧科技股份有限公司 一种应用于低频功率放大器的耦合电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074370A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 方向性結合器
JP2011250354A (ja) * 2010-05-31 2011-12-08 Japan Radio Co Ltd 方向性結合器
JP2012105193A (ja) * 2010-11-12 2012-05-31 Mitsubishi Electric Corp 方向性結合器
JP2013046305A (ja) * 2011-08-25 2013-03-04 Tdk Corp 方向性結合器および無線通信装置
WO2016121455A1 (ja) * 2015-01-29 2016-08-04 株式会社村田製作所 高周波モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625328A (en) * 1995-09-15 1997-04-29 E-Systems, Inc. Stripline directional coupler tolerant of substrate variations
US7394333B2 (en) * 2002-12-06 2008-07-01 Stmicroelectronics S.A. Directional coupler
WO2011074323A1 (ja) * 2009-12-18 2011-06-23 日本碍子株式会社 方向性結合器
CN103370832B (zh) * 2011-03-14 2015-04-01 株式会社村田制作所 方向性耦合器
US20130027273A1 (en) 2011-07-27 2013-01-31 Tdk Corporation Directional coupler and wireless communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074370A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 方向性結合器
JP2011250354A (ja) * 2010-05-31 2011-12-08 Japan Radio Co Ltd 方向性結合器
JP2012105193A (ja) * 2010-11-12 2012-05-31 Mitsubishi Electric Corp 方向性結合器
JP2013046305A (ja) * 2011-08-25 2013-03-04 Tdk Corp 方向性結合器および無線通信装置
WO2016121455A1 (ja) * 2015-01-29 2016-08-04 株式会社村田製作所 高周波モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213927A1 (en) * 2019-04-15 2020-10-22 Samsung Electronics Co., Ltd. Directional coupler and electronic device having the same
EP3928430A4 (en) * 2019-04-15 2022-04-27 Samsung Electronics Co., Ltd. DIRECTIONAL COUPLER AND ELECTRONIC DEVICE THEREOF
US11374300B2 (en) 2019-04-15 2022-06-28 Samsung Electronics Co., Ltd Directional coupler and electronic device having the same

Also Published As

Publication number Publication date
US20190237843A1 (en) 2019-08-01
CN109845029B (zh) 2021-03-09
US10892538B2 (en) 2021-01-12
CN109845029A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2018079614A1 (ja) 方向性結合器内蔵基板、高周波フロントエンド回路及び通信装置
KR101119910B1 (ko) 모바일 rfid 리더 송수신 시스템
US8773232B2 (en) High-frequency transformer, high-frequency component, and communication terminal device
US20090195334A1 (en) High frequency module provided with power amplifier
KR20110042171A (ko) 밴드 패스 필터, 고주파 부품 및 통신 장치
JP6455532B2 (ja) 高周波スイッチモジュール
US10454440B2 (en) Directional coupler and wireless communication device using the same
JP2009153106A (ja) バンドパスフィルタ、高周波部品および通信装置
JP5796579B2 (ja) フィルタ及びバランを備えた積層体型電子部品
JP6760515B2 (ja) 整合回路および通信装置
US8324981B2 (en) Composite balun
WO2018225590A1 (ja) 高周波モジュール
US6911890B2 (en) High frequency laminated device
JP6315347B2 (ja) 方向性結合器およびそれを用いたモジュール
JP4936119B2 (ja) 積層型バラントランス及び高周波部品
JP2010041316A (ja) ハイパスフィルタ、高周波モジュールおよびそれを用いた通信機器
US10008757B2 (en) High-frequency module
US11838043B2 (en) Filter circuit module, filter circuit element, filter circuit, and communication apparatus
KR100332889B1 (ko) 이동통신용 듀얼폰 단말기의 원칩화된 출력파워 제어장치및 그 제조방법
JP7131711B2 (ja) バラン
JP2005168060A (ja) 方向性結合器
JP5636662B2 (ja) 高周波モジュール
US20170373364A1 (en) Circulator, front-end circuit, antenna circuit, and communication apparatus
US12021497B2 (en) Balun
US20230238936A1 (en) Filter device and high-frequency front end circuit having same mounted thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP