WO2011071138A1 - シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置 - Google Patents

シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置 Download PDF

Info

Publication number
WO2011071138A1
WO2011071138A1 PCT/JP2010/072201 JP2010072201W WO2011071138A1 WO 2011071138 A1 WO2011071138 A1 WO 2011071138A1 JP 2010072201 W JP2010072201 W JP 2010072201W WO 2011071138 A1 WO2011071138 A1 WO 2011071138A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
silica glass
hydrogen separation
porous
separation material
Prior art date
Application number
PCT/JP2010/072201
Other languages
English (en)
French (fr)
Inventor
博匡 俵山
徹 足立
俊昭 柿井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/515,230 priority Critical patent/US9126151B2/en
Priority to CA 2783961 priority patent/CA2783961A1/en
Priority to CN201080056142XA priority patent/CN102652036A/zh
Priority to EP10836057.9A priority patent/EP2511005B1/en
Priority to KR1020127015087A priority patent/KR101880769B1/ko
Priority to JP2011545256A priority patent/JP5757243B2/ja
Publication of WO2011071138A1 publication Critical patent/WO2011071138A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00415Inorganic membrane manufacture by agglomeration of particles in the dry state by additive layer techniques, e.g. selective laser sintering [SLS], selective laser melting [SLM] or 3D printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2696Catalytic reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21811Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production

Definitions

  • the present invention relates to a hydrogen separation material for separating hydrogen with high purity from a mixed gas containing hydrogen generated by fuel reforming and the like, a method for producing the same, and a hydrogen separation module and a hydrogen production apparatus including the same.
  • the present invention relates to a hydrogen separation material in which a silica-based hydrogen permselective membrane that selectively permeates hydrogen is formed on the surface of a porous support, a method for producing the same, and a hydrogen separation module and a hydrogen production apparatus including the same.
  • hydrogen is produced by steam reforming a hydrocarbon fuel at a temperature of about 700 ° C. (CH 4 + H 2 O ⁇ CO + 3H 2 ), and then converting CO at a few hundred degrees (CO + H 2 O ⁇ CO 2 + H 2 ) is widely used from the viewpoint of price competitiveness.
  • Gas components obtained through these reactions include carbon dioxide, carbon monoxide, unreacted hydrocarbons and water in addition to hydrogen.
  • the purity of hydrogen is not increased in order to reduce costs, and a mixed gas with a hydrogen concentration of about 60% is directly used as the fuel electrode of the fuel cell.
  • the carbon monoxide that poisons the fuel electrode catalyst is oxidized to carbon dioxide (CO + 1 / 2O 2 ⁇ CO 2 ) before supply, and the concentration is removed to less than 10 ppm. Yes.
  • CO + 1 / 2O 2 ⁇ CO 2 carbon dioxide
  • concentration is removed to less than 10 ppm.
  • Examples of methods for extracting high-purity hydrogen from a mixed gas containing hydrogen include an absorption method, a cryogenic separation method, an adsorption method, and a membrane separation method.
  • the feature of the membrane separation method is high efficiency and easy miniaturization. have.
  • a membrane reactor in which a hydrogen separation membrane is inserted into a reaction vessel that performs steam reforming, hydrogen generated by the reforming reaction is continuously extracted from the reaction atmosphere, and the reforming reaction is performed even at a temperature of about 500 ° C.
  • CO shift reaction can be promoted at the same time, and high-purity hydrogen can be produced efficiently.
  • an expensive noble metal catalyst such as platinum used for CO conversion is not required in the membrane reactor, and the cost can be reduced and the equipment can be downsized.
  • the purity of the hydrogen gas that has passed through the hydrogen separation membrane depends on the performance of the hydrogen separation membrane, but even if CO removal or high purity is required depending on the application, the load on these steps should be reduced. Is possible.
  • Non-Patent Document 1 describes a hydrogen separation membrane in which a palladium alloy membrane is supported by a zirconia porous substrate. In this hydrogen separation membrane, hydrogen is dissolved as atoms in the palladium alloy, and is separated by a method of diffusing with the concentration gradient and allowing only pure hydrogen to permeate, so that high purity hydrogen can be obtained in principle.
  • Non-Patent Document 2 describes a hydrogen separation membrane in which a silica glass membrane is supported by an alumina porous substrate. This hydrogen separation membrane utilizes the fact that the silica glass membrane has pores with a size (0.3 nm) that allows only hydrogen molecules to pass through, and separates hydrogen by a molecular sieving function that selectively permeates hydrogen molecules. Is.
  • Non-Patent Document 1 due to long-term use, the mechanical strength decreases due to hydrogen embrittlement of the palladium alloy membrane and impurities such as sulfur and iron contained in the raw material gas. There is a disadvantage that the palladium alloy film is broken by alloying. Furthermore, palladium, which is a raw material, is not suitable for mass production because it is expensive and has a poor stable supply capability. Zirconia porous support is a material that has high thermal shock resistance among typical ceramics and has a small difference in thermal expansion coefficient from the palladium alloy film. There is a drawback of peeling from the porous support.
  • a hydrogen separation material comprising a membrane and its support
  • the membrane is a silica glass membrane
  • the linear thermal expansion coefficient of the support is By defining the above, it is possible to obtain a hydrogen separation material that is resistant to thermal shock and excellent in hydrogen separation characteristics, and in the production method, a porous support is formed that forms a porous support made of porous silica glass. It has been found that a desired hydrogen separation material can be produced by including a step and a silica glass film forming step of forming a silica glass film on the surface of the porous silica glass, and the present invention has been completed. That is, a hydrogen separation material and a method for producing the same according to the present invention, a hydrogen separation module and a hydrogen production apparatus including the same are as follows.
  • the hydrogen separation material of the present invention is characterized in that a silica glass membrane is formed on a porous support having a linear thermal expansion coefficient of 2 ⁇ 10 ⁇ 6 / K or less.
  • the suitable form of the hydrogen separation material of this invention is characterized by the said porous support body being porous silica glass.
  • Another preferred embodiment of the hydrogen separation material of the present invention is characterized in that the shape is tubular.
  • another preferred embodiment of the hydrogen separation material of the present invention is that the porous silica glass and / or the silica glass film has at least one element selected from rare earth elements, group 4B elements, Al and Ga. Is added.
  • the silica is formed on the porous support made of the porous silica glass by surface-modifying and densifying the porous silica glass. A glass film is formed.
  • the surface modification is performed by irradiating at least one selected from a CO 2 laser, a plasma arc and an oxyhydrogen burner, and the porous silica glass. It is the process which densifies the surface of this.
  • the method for producing a hydrogen separation material of the present invention includes a porous support forming step for forming a porous support made of porous silica glass, and a silica for forming a silica glass film on the surface of the porous silica glass. And a glass film forming step.
  • the porous support forming step deposits porous silica glass around the dummy rod, and then pulls out the dummy rod to make it porous. Characterized in that it is a step of forming a tubular porous support made of porous silica glass.
  • the porous support forming step is at least selected from a rare earth element, a group 4B element, Al and Ga around a dummy rod. This is characterized in that a porous silica glass to which one kind of element is added is deposited, and then a dummy rod is pulled out to form a tubular porous support made of porous silica glass.
  • the method for producing a hydrogen separation material of the present invention comprises a porous support forming step of forming a porous support made of the porous silica glass, and a dense surface by densifying the surface of the porous silica glass.
  • the silica glass film forming step irradiates at least one selected from a CO 2 laser, a plasma arc, and an oxyhydrogen burner. It is a step of densifying the surface of the porous silica glass.
  • Another hydrogen separation material of the present invention is obtained by any one of the above-described methods for producing a hydrogen separation material of the present invention.
  • Another preferred embodiment of the hydrogen separation material of the present invention is characterized in that the porosity of the porous support is 20 to 70%.
  • Another preferred embodiment of the hydrogen separation material of the present invention is characterized in that the porous support has a thickness of 0.2 to 5 mm.
  • Another preferred embodiment of the hydrogen separation material of the present invention is characterized in that the silica glass membrane has a thickness of 0.01 to 50 ⁇ m.
  • the hydrogen separation module of the present invention is characterized by including any of the hydrogen separation materials of the present invention described above and a steam reforming catalyst.
  • the hydrogen production apparatus of the present invention is characterized by including the hydrogen separation module of the present invention described above.
  • Another hydrogen production apparatus of the present invention includes the above-described hydrogen separation module and CO removal module of the present invention.
  • a preferred embodiment of the hydrogen production apparatus of the present invention is characterized in that the CO removal module includes a CO methanation catalyst.
  • the suitable form of the hydrogen production apparatus of this invention was equipped with the hydrogen separation module of this invention mentioned above, and the hydrogen purification module which applied the pressure swing adsorption (PSA) method.
  • PSA pressure swing adsorption
  • a hydrogen separation material that is resistant to thermal shock, has good adhesion between a membrane and a support, and has excellent hydrogen separation characteristics, a method for producing the same, and a hydrogen separation equipped with the same A module and a hydrogen production apparatus can be provided.
  • FIG. 1 is a partial cross-sectional view showing an example of the hydrogen separation material of the present invention.
  • the hydrogen separation material 10 is formed by forming a silica glass membrane 12 on a porous support 11 having a linear thermal expansion coefficient of 2 ⁇ 10 ⁇ 6 / K or less.
  • the silica glass film 12 is used as a hydrogen permeable film in this way, thereby suppressing hydrogen embrittlement and film deterioration due to reaction with raw material impurities.
  • the thickness of the silica glass film 12 is not particularly limited, but is preferably 0.01 to 50 ⁇ m, more preferably 0.02 to 10 ⁇ m, and further preferably 0.03 to 5 ⁇ m. preferable. If it is less than 0.01 ⁇ m, the hydrogen purity of the permeate gas becomes too low, and if it exceeds 50 ⁇ m, the hydrogen permeation rate becomes too low, and it may be difficult to obtain practically sufficient hydrogen separation performance.
  • the porous support 11 can be used to support the thin film without interfering with hydrogen permeation through the silica glass film 12.
  • the porosity of the porous support 11 is not particularly limited, but is preferably 20 to 70% from the balance of mechanical strength and gas permeability.
  • the “porosity” can be calculated as the ratio of the air volume per unit volume.
  • the linear thermal expansion coefficient of the porous support 11 is 2 ⁇ 10 ⁇ 6 / K or less as described above. When it exceeds 2 ⁇ 10 ⁇ 6 / K, the generated thermal stress increases, and the desired thermal shock resistance cannot be obtained.
  • the material of the porous support 11 is not particularly limited as long as it has a prescribed linear thermal expansion coefficient, but is preferably a material whose linear thermal expansion coefficient approximates that of the silica glass film 12 from the viewpoint of thermal shock resistance.
  • the thickness of the porous support 11 is not particularly limited, but is preferably 0.2 to 5 mm, more preferably 0.5 to 3 mm, from the balance of mechanical strength and gas permeability. preferable.
  • the shape of the hydrogen separation material 10 of the present invention is not particularly limited, and may be any shape such as a planar shape. However, in order to increase the contact area with the hydrogen-containing mixed gas from the viewpoint of reaction efficiency. It is preferable that it is tubular.
  • FIG. 2 shows an example of a tubular hydrogen separation material 20.
  • the hydrogen separation material 20 has a substantially cylindrical shape, and has a central hole 23 having a substantially circular cross section extending in the longitudinal direction at the center thereof.
  • the hydrogen separation material 20 has a porous support 21 and a silica glass membrane 22 in this order as tube walls on the outer periphery of the center hole 23.
  • the outer diameter T is 2 mm to 50 mm
  • the inner diameter (diameter of the center hole 23) P is 1.6 mm to 48 mm
  • the length L is about 200 mm to 400 mm. It is desirable that one end 23a of the center hole 23 is closed. Further, in order to increase the surface area of the tube, the outer diameter T and the inner diameter P may be periodically changed in the longitudinal direction, and the thickness can be partially changed in order to reinforce the mechanical strength.
  • the porous support 11 is preferably selected from those whose linear thermal expansion coefficient approximates that of the silica glass film 12.
  • the material of the porous support 11 is preferably porous silica glass.
  • the silica glass film 12 and the porous silica glass constituting the porous support 11 are used.
  • a rare earth element, a 4B group element, Al, Ga, or a combination of two or more of these elements can be added to either one or both. This is because by adjusting the components of the porous silica glass and the silica glass film 12 constituting the porous support 11, desired mechanical properties, water vapor resistance, and the like can be obtained.
  • the hydrogen separation material 10 of the present invention when used for steam reforming of hydrocarbon fuel, it necessarily comes into contact with steam at 500 ° C. or higher, so that the steam resistance performance is improved by introducing other components in this way. It is preferable.
  • the porous silica glass which comprises the porous support body 11 can be manufactured by manufacturing methods, such as a sooting method (CVD method) and an injection molding method.
  • the method for forming the silica glass film 12 is not particularly limited, but means other than the sol-gel method and the CVD method can be used for forming the surface by modifying the surface of the porous silica glass constituting the porous support 11. .
  • “Surface modification” means that a portion that becomes a surface membrane, for example, the vicinity of the surface of the porous silica glass that constitutes the porous support 11 is somewhat densified in order to produce a hydrogen permeable membrane portion.
  • One of the methods is heating.
  • the silica glass film 12 can be manufactured by a sol-gel method or a CVD method.
  • the porous silica glass and the silica glass film 12 constituting the porous support 11 are separately formed.
  • the degree of densification of the silica glass film 12 is set by the molecular size of the gas to be separated. From the viewpoint of hydrogen permeation, it is desirable that the silica glass film 12 be densified so that the pore diameter is about 0.3 nm.
  • the method for producing a hydrogen separation material of the present invention includes (1) a porous support forming step for forming a porous support made of porous silica glass, and (2) forming a silica glass film on the surface of the porous silica glass. A silica glass film forming step.
  • porous support body formation process Although the method to manufacture porous silica glass is not specifically limited, For example, a sooting method (CVD method) and the injection molding method can be mentioned. In addition, as a preferable example of the manufacturing method in the case where the tubular hydrogen separation material 20 described above has a porous support 21 made of porous silica glass, porous silica glass is deposited around a dummy rod. A method of pulling out the dummy rod (drawing step) later (deposition step) can be mentioned. An embodiment of the method will be described below with reference to FIG.
  • FIG. 3A is a diagram illustrating a deposition process according to the embodiment
  • FIG. 3B is a diagram illustrating a drawing process according to the embodiment.
  • the dummy bar 30 is arranged vertically with the tip portion facing down. Moreover, it is good also as a form arrange
  • alumina, glass, refractory ceramics, carbon or the like can be used as a material of the dummy bar 30, alumina, glass, refractory ceramics, carbon or the like can be used. After the dummy bar 30 is fixed, it is rotated about the central axis. Then, glass particles are deposited on the outer periphery of the dummy bar 30 by a burner 35 disposed on the side of the dummy bar 30 by an external CVD method (OVD method). Depending on the desired mechanical properties and water vapor resistance, rare earth elements, group 4B elements, Al, Ga, or a combination of two or more of these elements can be added to the glass fine particles. That is, according to
  • the burner 35 When depositing the glass particles, the burner 35 is traversed in the axial direction of the dummy bar 30 or the dummy bar 30 is traversed in the axial direction.
  • the feed material and the supply amount can be varied for each number of traverses.
  • the glass fine particles deposited on the outer periphery of the dummy bar 30 have a predetermined bulk density and composition distribution in the radial direction. Further, by depositing glass particles on the tip of the dummy rod 30, a tubular porous silica glass 25 having a closed tip is produced.
  • silica glass fine particles may be heat-sintered and densified so that the porosity is in the range of 20 to 70% after silica glass fine particles are deposited.
  • the porosity may be controlled by adjusting the temperature.
  • the temperature for heating and sintering after deposition is not particularly limited, but is preferably 1000 ° C. to 1400 ° C. If it is less than 1000 ° C., sintering may not proceed sufficiently, and if it exceeds 1400 ° C., the porosity may be too small.
  • the temperature is not particularly limited, but is preferably set to 1400 ° C. to 1700 ° C., for example.
  • the deposition temperature is more preferably 1500 ° C. to 1600 ° C.
  • the drawing process after the deposition process will be described with reference to FIG.
  • the dummy rod 30 is pulled out from the porous silica glass 25.
  • the central hole 23 formed by drawing does not penetrate, the lower end side (tip end side) 23a is closed, and only the upper end side is opened (see FIG. 2).
  • FIG.3 (c) is a figure explaining the silica glass film formation process which concerns on this embodiment.
  • a method for forming a silica glass film by modifying the surface of the porous silica glass with a surface treatment apparatus will be described.
  • the surface of the porous silica glass 25 obtained in the porous support process is modified by densifying the surface of the porous silica glass 25 into a dense silica glass film 22 by the surface treatment device 36.
  • the porous support 21 and the silica glass film 22 are formed by surface modification of the porous silica glass 25.
  • the degree of surface modification of the silica glass membrane 22 is not particularly limited as long as the silica glass membrane 22 functions as a hydrogen permeable membrane, but from the viewpoint of hydrogen molecule separability, the thickness is 0.01. It is preferably from ⁇ 50 ⁇ m, more preferably from 0.02 to 10 ⁇ m, and even more preferably from 0.03 to 5 ⁇ m.
  • membrane 22 has a hole about 0.3 nm in diameter so that only a hydrogen molecule may permeate
  • a drawing step is performed in which only the dummy rod 30 is drawn from the porous silica glass 25 deposited around the dummy rod 30 before the silica glass film forming step.
  • the silica glass film forming step may be performed in a state where the porous silica glass 25 is deposited.
  • the tubular hydrogen separation material 20 can be formed by pulling out only the dummy rod 30.
  • the hydrogen separation module of the present invention includes the hydrogen separation material of the present invention and a steam reforming catalyst.
  • FIG. 4 is a diagram illustrating a hydrogen separation module to which the hydrogen separation material 20 is applied.
  • a hydrogen separation module 40 shown in FIG. 4 includes a hydrogen separation material 20 and a steam reforming catalyst 41 in a reaction vessel 42.
  • the reaction vessel 42 has an introduction port 43 for introducing the raw material gas 50 into the reaction vessel 42, an exhaust port 44 for discharging the exhaust gas 51 from the reaction vessel 42, and an installation for installing the hydrogen separation material 20 in the reaction vessel 42. And a mouth 45.
  • the steam reforming catalyst 41 is packed around the hydrogen separation material 20 in the reaction vessel 42.
  • the raw material gas 50 is obtained by burning fuel such as city gas, propane gas, kerosene, petroleum, biomethanol, natural gas, methane hydrate and the like.
  • the source gas 50 is heated at about 500 ° C. and reformed by the steam reforming catalyst 41 (for example, a Ru-based catalyst) to generate hydrogen gas.
  • the generated hydrogen gas is selectively extracted by the tubular hydrogen separation material 20, permeated to the central hole 23 inside the tube, and taken out of the reactor 42. For this reason, hydrogen production is promoted in a chemical equilibrium, the reaction temperature can be lowered, and a CO shift reaction occurs at the same time, so that a CO shift catalyst is theoretically unnecessary.
  • the hydrogen production apparatus of the present invention includes the hydrogen separation module of the present invention.
  • the hydrogen separated and produced by the hydrogen separation module of the present invention is considered to have a high purity of 99% or more.
  • a CO selective oxidation catalyst may be used instead of the CO methanation catalyst. In this case, oxygen or air must be supplied between the hydrogen separation module and the CO removal module, and the reaction between hydrogen and oxygen.
  • FIG. 5 is a diagram illustrating a hydrogen production apparatus including a hydrogen separation module 40 and a CO removal module having a CO methanation catalyst.
  • a hydrogen production apparatus 60 shown in FIG. 5 includes a hydrogen separation module 40 and a CO removal module 65.
  • the CO removal module 65 includes a reaction vessel 61 in which a CO removal reaction is performed, and a CO methanation catalyst (for example, a Ru-based catalyst) 62 therein.
  • the hydrogen production apparatus 60 includes a heating element 53 for causing a steam reforming reaction of the raw material gas 50 in the vicinity of the hydrogen separation module 40 and a heating element 63 for causing a CO removal reaction in the vicinity of the CO removal module 65.
  • the CO removal module 65 is connected to the hydrogen separation module 40 through a connection pipe 54 using a connection joint 48.
  • the hydrogen gas generated by the hydrogen separation module 40 is introduced into the CO removal module 65 through the connecting pipe 54 and used for the CO removal reaction. In this way, the highly purified hydrogen gas is taken out from the discharge port 64.
  • FIG. 6 is a diagram for explaining a hydrogen production apparatus including a hydrogen separation module 40 and a hydrogen purification module to which a pressure swing adsorption (PSA) method is applied.
  • a hydrogen production apparatus 70 shown in FIG. 6 includes a plurality of hydrogen separation modules 40 and a hydrogen purification module (PSA unit) 75 to which the PSA method is applied.
  • PSA unit hydrogen purification module
  • a hydrogen discharge portion (not shown) in the hydrogen separation material 20 is connected to the PSA unit 75 via a connection pipe 71.
  • a panel-like heating element (shown by a dotted line) 72 is installed in the vicinity of the plurality of hydrogen separation modules 40 to cause a steam reforming reaction.
  • the generated hydrogen gas is introduced into the PSA unit 75 through the connecting pipe 71, and then gas components other than hydrogen are removed to produce high purity hydrogen gas.
  • Example 1 Porous glass having the composition shown in Table 1 (mol%) is deposited on a carbon-coated one-end-sealed alumina tube using an external CVD method, and a dummy rod is pulled out to obtain an outer diameter of 10 mm, a thickness of 1 mm, and a length. An end-sealed porous glass having a thickness of 300 mm was produced. A silica glass film having a thickness of 50 nm was formed on the surface of the porous glass using a sol-gel method. When these composite structures were heated to 500 ° C. in an electric furnace and quickly dropped into water at 30 ° C., no breakage of the composite structure or crack formation of the silica glass film was observed.
  • Example 4 Porous silica glass was deposited on a carbon-coated one-end-sealed alumina tube using an external CVD method. Next, the surface of the porous silica glass was irradiated with a CO 2 laser to form a dense silica glass film having a thickness of 1 micron. A dummy rod was pulled out from this composite structure to produce a tubular hydrogen separation material having an outer diameter of 16 mm, a thickness of 1.5 mm, a length of 300 mm, a porosity of 40%, and a linear thermal expansion coefficient of 0.7 ⁇ 10 ⁇ 6 / K. .
  • the hydrogen concentration of the atmospheric gas permeated to the inside of the hydrogen separation material was 99% or more, and 550 ° C.
  • the hydrogen permeation coefficient was 4 ⁇ 10 ⁇ 7 mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ⁇ Pa ⁇ 1 .
  • Example 5 Porous silica glass was deposited on a carbon-coated one-end-sealed alumina tube using an external CVD method. Next, the surface of this porous body was irradiated with a plasma arc to form a silica glass dense film having a thickness of 20 microns. A dummy bar was pulled out from this composite structure to produce a tubular hydrogen separation material having an outer diameter of 10 mm, a thickness of 1 mm, a length of 300 mm, a porosity of 68%, and a linear thermal expansion coefficient of 0.7 ⁇ 10 ⁇ 6 / K.
  • the hydrogen concentration of the atmospheric gas permeated to the inside of the hydrogen separation material was 99% or more, and 550 ° C.
  • the hydrogen permeation coefficient was 0.3 ⁇ 10 ⁇ 7 mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ⁇ Pa ⁇ 1 .
  • Example 6 Porous silica glass was deposited on a carbon-coated one-end-sealed alumina tube using an external CVD method. Next, the surface of the porous body was irradiated with an oxyhydrogen burner flame to form a silica glass dense film having a thickness of 40 microns. A dummy bar was pulled out from this composite structure to produce a tubular hydrogen separation material having an outer diameter of 16 mm, a thickness of 4 mm, a length of 300 mm, a porosity of 22%, and a linear thermal expansion coefficient of 0.7 ⁇ 10 ⁇ 6 / K.
  • the hydrogen concentration of the atmospheric gas permeated to the inside of the hydrogen separation material was 99% or more, and 550 ° C.
  • the hydrogen permeation coefficient was 0.05 ⁇ 10 ⁇ 7 mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ⁇ Pa ⁇ 1 .
  • Example 7 to 10 Four types of porous silica glass added with 1000 ppm of Y, Al, Ti, and Ga were deposited on a carbon-coated one-end-sealed alumina tube using an external CVD method. Next, the surface of this porous body was irradiated with a CO 2 laser to form a silica glass dense film having a thickness of 3 microns. A dummy rod was pulled out from this composite structure to produce a tubular hydrogen separation material having an outer diameter of 16 mm, a thickness of 1.5 mm, a length of 300 mm, a porosity of 40%, and a linear thermal expansion coefficient of 0.7 ⁇ 10 ⁇ 6 / K. .
  • H 2 O / CH 4 3 source gas was supplied to the reaction vessel of the hydrogen separation module equipped with the tubular hydrogen separation material of Example 9 and a commercially available Ru-based reforming catalyst, Steam reforming was performed at a temperature of 550 ° C. and a pressure of 0.5 MPaG.
  • the hydrogen concentration of the gas permeated inside the tubular hydrogen separation material was 99% or more, the carbon monoxide concentration was about 500 ppm, and the hydrogen production rate was 0.02 Nm 3 / h.
  • the carbon monoxide concentration after passing this gas through a CO removal module equipped with a commercially available Ru-based CO methanation catalyst was 10 ppm or less.
  • Table 2 shows the characteristics and the like of Examples 4 to 12 above.
  • the porous support by making the porous support the same material with a thermal expansion coefficient of 2 ⁇ 10 ⁇ 6 / K or less and a thermal expansion coefficient approximate to that of the silica glass film, it becomes more resistant to thermal shock.
  • An excellent hydrogen separation material can be obtained.
  • a hydrogen separation material having high bonding strength between the membrane and the support can be obtained, and the thickness and pores of the silica glass membrane can be obtained. Can be easily controlled by the degree of modification (densification).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 本発明の目的は、熱衝撃に強く、水素分離特性に優れた水素分離膜等に適用できる水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置を提供することにある。 水素分離材料は、線熱膨張係数が2×10-6/K以下の多孔質支持体上に、シリカガラス膜を形成した。水素分離材料の製造方法は、多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程と、該多孔質シリカガラスの表面にシリカガラス膜を形成するシリカガラス膜形成工程とを有する。水素分離モジュールは、該水素分離材料と水蒸気改質触媒とを備える。水素製造装置は、該水素分離モジュールを備える。

Description

シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置
 本発明は、燃料改質等により生成した水素を含む混合ガスから水素を高純度に分離するための水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置に係り、特に、水素を選択的に透過するシリカ系水素選択透過膜が多孔質支持体の表面に形成された水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置に関する。
 水素エネルギー社会実現のために、水素製造技術や水素利用インフラ整備についての研究開発が進められるなか、自動車用燃料電池、家庭用定置型燃料電池、水素ステーション、そして将来的には大型の化学プラントなどで使用される高純度水素は、今後大きな需要が見込まれ、その製造には更なる高効率化が求められている。
 現在、水素の製造は、炭化水素燃料を700℃程度の温度で水蒸気改質(CH+HO→CO+3H)した後、さらに数百度程度でCO変成(CO+HO→CO+H)する方法が価格競争力の点から広く利用されている。これらの反応を経て得られたガスの成分には、水素の他に二酸化炭素や一酸化炭素、さらには未反応の炭化水素や水が含まれる。近年、家庭への普及が始まった固体高分子型燃料電池システムでは、低コスト化を実現するために水素の高純度化は行わず、水素濃度60%程度の混合ガスをそのまま燃料電池の燃料極に供給しているが、燃料極の触媒を被毒する一酸化炭素については、供給前に二酸化炭素に酸化し(CO+1/2O→CO)、その濃度を10ppm未満まで除去している。しかしながら、混合ガスを用いる燃料電池は、純水素燃料電池と比較して発電効率が低いため、さらに純度の高い水素を省スペースで安価に製造する技術が求められている。また、自動車用燃料電池には、上記CO濃度の制限に加えて、99.99%以上の水素を供給する必要があり、安価な高純度水素を大量に製造する技術が求められている。
 水素を含む混合ガスから高純度水素を取り出す方法としては、吸収法、深冷分離法、吸着法、膜分離法などが挙げられるが、膜分離法は高効率で小型化が容易であるという特徴を有している。また、水蒸気改質を行う反応容器内に水素分離膜を挿入したメンブレンリアクターを構成することにより、改質反応によって生成した水素を連続的に反応雰囲気から引き抜き、500℃程度の温度でも改質反応とCO変成反応を同時に促進させ、効率良く高純度水素を製造することが可能となる。さらに、メンブレンリアクターではCO変成に使用される白金等の高価な貴金属触媒も不要となり、コストの低減や設備の小型化が可能となる。なお、水素分離膜を通過した水素ガスの純度は水素分離膜の性能に依存するが、用途に応じてさらにCO除去や高純度化が必要な場合でも、これらの工程にかかる負荷を軽減することが可能となる。
 以上説明したように、水素分離膜を用いた水素製造の有利さを背景に、いくつかの水素分離膜が提案されている。例えば、非特許文献1にはパラジウム合金膜をジルコニア多孔質基材で支持した水素分離膜が記載されている。この水素分離膜においては、水素はパラジウム合金に原子として溶解し、その濃度勾配で拡散して純水素のみを透過させる方法によって水素を分離するため、原理的に高純度の水素を得ることができる。非特許文献2にはシリカガラス膜をアルミナ系多孔質基材で支持した水素分離膜が記載されている。この水素分離膜は、シリカガラス膜が水素分子のみを通す大きさ(0.3nm)の孔を有していることを利用し、水素分子を選択的に透過させる分子ふるい機能により水素を分離するものである。
独立行政法人新エネルギー・産業技術総合開発機構 燃料電池・水素技術開発シンポジウム平成20年度要旨集「高耐久性メンブレン型LPガス改質装置の開発」 独立行政法人新エネルギー・産業技術総合開発機構「高効率高温水素分離膜の開発」(事後評価)分科会議事録(平成19年7月30日)
 しかし、非特許文献1に記載のパラジウム合金膜/ジルコニア多孔質支持体では、長時間の使用により、パラジウム合金膜の水素脆性による機械強度の低下や原料ガスに含まれる硫黄や鉄などの不純物との合金化によりパラジウム合金膜が破損するという欠点を有する。更に、その原料であるパラジウムは高価であることに加え、安定供給性が悪いため量産には適さない。ジルコニア多孔質支持体は、代表的なセラミックスの中では耐熱衝撃性が高く、パラジウム合金膜との熱膨張率差が小さい材料ではあるが、急激な温度変化により破損したり、パラジウム合金膜がジルコニア多孔質支持体から剥離したりする欠点がある。数百度に加熱されたセラミックスに水滴が接触すると、容易にクラックが形成されるため、特にセラミックス支持体をメンブレンリアクターに使用する場合は、セラミックス支持体を水蒸気が結露するような位置で使用することはできない。このため、セラミック支持体と分離した水素をメンブレンリアクターの外へ取り出すための金属部材を高温加熱部で気密接合する必要があるが、長時間の使用により接合部が劣化し、気密もれが発生しやすくなるという問題点がある。非特許文献2に記載のシリカガラス膜/アルミナ多孔質支持体では、シリカガラス膜の劣化による破損は克服されているが、アルミナはジルコニアよりも耐熱衝撃性が低く、シリカガラスとの熱膨張率の差も大きいため、上記で述べたように、急激な温度変化により破損したり、シリカガラス膜が支持体から剥離したりといった問題点が発生しやすい。
 本発明は、従来の水素分離膜における上記課題に鑑みてなされたものであって、その目的とするところは、熱衝撃に強く、膜と支持体との密着性が良く、水素分離特性に優れた水素分離膜等に適用できる水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置を提供することである。
 本発明の発明者らは、上記目的を達成するため鋭意検討を重ねた結果、膜とその支持体からなる水素分離材料において、膜をシリカガラス膜とし、且つ、その支持体の線熱膨張係数を規定することにより、熱衝撃に強く、水素分離特性に優れた水素分離材料が得られること、及び、製造方法においては、多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程と、該多孔質シリカガラスの表面にシリカガラス膜を形成するシリカガラス膜形成工程とを含むことにより、所望の水素分離材料が製造できることを見出し、本発明を完成するに至った。
 即ち、本発明にかかる水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置は下記の通りである。
 (1)本発明の水素分離材料は、線熱膨張係数が2×10-6/K以下の多孔質支持体上に、シリカガラス膜を形成したことを特徴とする。
 (2)また、本発明の水素分離材料の好適形態は、前記多孔質支持体が多孔質シリカガラスであることを特徴とする。
 (3)また、本発明の水素分離材料の別の好適形態は、形状が管状であることを特徴とする。
 (4)また、本発明の水素分離材料の別の好適形態は、前記多孔質シリカガラス及び/又は前記シリカガラス膜に希土類元素、4B族元素、Al及びGaから選択される少なくとも1種の元素が添加されたことを特徴とする。
 (5)また、本発明の水素分離材料の別の好適形態は、前記多孔質シリカガラスを表面改質して緻密化することで、前記多孔質シリカガラスからなる多孔質支持体上に前記シリカガラス膜を形成したことを特徴とする。
 (6)また、本発明の水素分離材料の別の好適形態は、前記表面改質が、COレーザー、プラズマアーク及び酸水素バーナーから選択される少なくとも1種を照射して前記多孔質シリカガラスの表面を緻密化する処理であることを特徴とする。
 (7)本発明の水素分離材料の製造方法は、多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程と、前記多孔質シリカガラスの表面にシリカガラス膜を形成するシリカガラス膜形成工程とを有することを特徴とする。
 (8)また、本発明の水素分離材料の製造方法の好適形態は、前記多孔質支持体形成工程が、ダミー棒の周囲に多孔質シリカガラスを堆積させ、その後、前記ダミー棒を引き抜いて多孔質シリカガラスからなる管状の多孔質支持体を形成する工程であることを特徴とする。
 (9)また、本発明の水素分離材料の製造方法の別の好適形態は、前記多孔質支持体形成工程が、ダミー棒の周囲に希土類元素、4B族元素、Al及びGaから選択される少なくとも1種の元素が添加された多孔質シリカガラスを堆積させ、その後、ダミー棒を引き抜いて多孔質シリカガラスからなる管状の多孔質支持体を形成する工程であることを特徴とする。
 (10)本発明の水素分離材料の製造方法は、前記多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程と、前記多孔質シリカガラスの表面を緻密化して緻密質のシリカガラス膜を形成するシリカガラス膜形成工程とを有することを特徴とする。
 (11)また、本発明の水素分離材料の製造方法の別の好適形態は、前記シリカガラス膜形成工程が、COレーザー、プラズマアーク及び酸水素バーナーから選択される少なくとも1種を照射して前記多孔質シリカガラスの表面を緻密化する工程であることを特徴とする。
 (12)本発明の別の水素分離材料は、上述した本発明の水素分離材料の製造方法の何れかの方法により得られることを特徴とする。
 (13)また、本発明の水素分離材料の別の好適形態は、前記多孔質支持体の気孔率が20~70%であることを特徴とする。
 (14)また、本発明の水素分離材料の別の好適形態は、前記多孔質支持体の厚みが0.2~5mmであることを特徴とする。
 (15)また、本発明の水素分離材料の別の好適形態は、前記シリカガラス膜の厚みが 0.01~50μmであることを特徴とする。
 (16)本発明の水素分離モジュールは、上述した本発明の水素分離材料の何れかと、水蒸気改質触媒とを備えたことを特徴とする。
 (17)本発明の水素製造装置は、上述した本発明の水素分離モジュールを備えたことを特徴とする。
 (18)本発明の別の水素製造装置は、上述した本発明の水素分離モジュールとCO除去モジュールとを備えたことを特徴とする。
 (19)また、本発明の水素製造装置の好適形態は、前記CO除去モジュールがCOメタン化触媒を備えたことを特徴とする。
 (20)また、本発明の水素製造装置の好適形態は、上述した本発明の水素分離モジュールと圧力スウィング吸着(PSA)法を適用した水素高純度化モジュールとを備えたことを特徴とする。
 本発明によれば、熱衝撃に強く、膜と支持体との密着性が良く、水素分離特性に優れた水素分離膜等に適用できる水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置を提供することができる。
本発明の水素分離材料の一実施形態を示す部分断面図である。 本発明の水素分離材料の一実施形態を示す模式図である。 本発明の水素分離材料の製造方法の一実施形態である堆積工程(a)、引抜工程(b)およびシリカガラス膜形成工程(c)を説明する図である。 水素分離材料20を適用した水素分離モジュールを説明する図である。 水素分離モジュール40を適用した水素製造装置の一例を説明する図である。 水素分離モジュール40を適用した水素製造装置の他の一例を説明する図である。
 以下、本発明の水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置について、図面を参照して詳細に説明する。
(水素分離材料)
 図1は、本発明の水素分離材料の一例を示す部分断面図である。水素分離材料10は、線熱膨張係数が2×10-6/K以下の多孔質支持体11の上に、シリカガラス膜12を形成してなる。
 本発明においては、このようにシリカガラス膜12を水素透過膜として使用するが、それにより、水素脆性や原料不純物との反応による膜の劣化を抑制した。シリカガラス膜12の厚みは、特に限定されるものではないが、0.01~50μmであることが好ましく、0.02~10μmであることがより好ましく、0.03~5μmであることが更に好ましい。0.01μm未満では、透過ガスの水素純度が低くなりすぎ、また、50μmを超えると水素透過速度が小さくなりすぎ、実用上十分な水素分離性能が得られにくくなる場合がある。
 シリカガラス膜12の支持体については多孔質支持体11とすることで、上記シリカガラス膜12における水素の透過を干渉することなく該薄膜を支持することができる。多孔質支持体11の気孔率は、特に限定されるものではないが、機械的強度とガス透過性のバランスから20~70%であることが好ましい。なお、「気孔率」は、単位体積当たりの空気容積が占める割合として算出できる。
 また、多孔質支持体11の線熱膨張係数は、上述のように、2×10-6/K以下である。2×10-6/Kを超えると、発生する熱応力が大きくなり、所望の耐熱衝撃性が得られない。多孔質支持体11の材料については、規定の線熱膨張係数を有するものであれば特に限定はされないが、耐熱衝撃性の観点からシリカガラス膜12と線熱膨張係数が近似するものが好ましい。
 該多孔質支持体11の厚みは、特に限定されるものではないが、機械的強度とガス透過性のバランスから0.2~5mmであることが好ましく、0.5~3mmであることがより好ましい。
 本発明の水素分離材料10の形状は、特に限定はされず、例えば平面状等、任意の形状とすることができるが、反応効率の点から水素含有混合ガスとの接触面積をより広くするためには管状であることが好ましい。
 図2に、管状の水素分離材料20の一例を示す。水素分離材料20は略円柱形状であり、その中心には長手方向に延びる略円形断面の中心孔23を有する。水素分離材料20は、中心孔23の外周上に管壁として多孔質支持体21およびシリカガラス膜22をこの順に有してなる。その外径Tは2mm~50mm、内径(中心孔23の径)Pは1.6mm~48mm、長さLは200mm~400mm程度である。中心孔23の一方の端部23aは塞がれていることが望ましい。また、管の表面積を大きくするため、外径Tおよび内径Pを長手方向に周期的に変化させても良く、機械的強度を補強するため厚みを部分的に変化させることもできる。
 上述のように、耐熱衝撃性の観点から多孔質支持体11はシリカガラス膜12に線熱膨張係数が近似するものから選ばれることが好ましい。本発明の水素分離材料10においては、多孔質支持体11の材料を多孔質シリカガラスとすることが好ましく、その場合、シリカガラス膜12、および多孔質支持体11を構成する多孔質シリカガラスのいずれか一方又は双方に、希土類元素、4B族元素、Al、Ga、又はこれらの2種以上の元素を組合せて添加することができる。多孔質支持体11を構成する多孔質シリカガラスやシリカガラス膜12の成分を調整することにより、所望の機械特性や、耐水蒸気性などが得られるからである。
 例えば、本発明の水素分離材料10を炭化水素燃料の水蒸気改質に用いる場合、500℃以上の水蒸気に必然的に接触するため、このように他成分を導入することにより耐水蒸気性能を向上させることが好ましい。
 また、多孔質支持体11を構成する多孔質シリカガラスは、スス付け法(CVD法)、射出成形法などの製法により製造できる。シリカガラス膜12についてもその形成法は特に限定されないが、ゾルゲル法やCVD法の他、多孔質支持体11を構成する多孔質シリカガラスを表面改質することにより形成する手段を用いることができる。尚、「表面改質」とは、水素透過膜部分を作製するために、表面の膜となる部分、例えば、多孔質支持体11を構成する多孔質シリカガラスの表面近傍をある程度緻密化することによって、緻密質のシリカガラスの層にすることをいう。その一つの方法として、加熱によるものが挙げられる。具体的には、例えば、COレーザー、プラズマアーク、酸水素バーナーなどを単独で、又は複数組合せて照射する方法である。
 上記したように、ゾルゲル法やCVD法でもシリカガラス膜12を製造できるが、表面改質による形成法によれば、多孔質支持体11を構成する多孔質シリカガラスとシリカガラス膜12を別々に製造して積層する製造方法より、膜と支持体との接合強度を上げることができ、またシリカガラス膜12の厚さや孔の大きさを緻密化の程度によって、簡単に制御することができる。シリカガラス膜12の緻密化の程度は、分離する気体の分子サイズで設定される。水素透過の観点から、シリカガラス膜12の孔径が0.3nm程度となるように緻密化されることが望ましい。
 更に、本発明の別の水素分離材料は、以下の製造方法により得られるものである。
(水素分離材料の製造方法)
 本発明の水素分離材料の製造方法は、(1)多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程、(2)前記多孔質シリカガラスの表面にシリカガラス膜を形成するシリカガラス膜形成工程、を含む。以下、本発明の水素分離材料の製造方法について、図面を参照しつつ説明する。
(1)多孔質支持体形成工程
 多孔質シリカガラスを製造する方法は、特に限定はされないが、例えば、スス付け法(CVD法)、射出成形法を挙げることができる。
 また、前記で説明した管状の水素分離材料20であって、その多孔質支持体21が多孔質シリカガラスである場合の製造方法の好適例として、ダミー棒の周囲に多孔質シリカガラスを堆積した後(堆積工程)、該ダミー棒を引き抜いて(引抜工程)行う方法を挙げることができる。図3を用いて、当該方法の一実施形態を以下に説明する。
 図3(a)は、該実施形態に係る堆積工程を説明する図であり、図3(b)は、該実施形態に係る引抜工程を説明する図である。図3(a)において、ダミー棒30は、先端部が下になるようにして鉛直に配置される。また、水平に配置する形としても良い。ダミー棒30の素材としては、アルミナ、ガラス、耐火性セラミクス、カーボンなどを用いることができる。ダミー棒30は固定された後、中心軸を中心として回転される。そして、外付けCVD法(OVD法)により、ダミー棒30の側方に配置されたバーナー35により、ダミー棒30の外周にガラス微粒子が堆積される。ガラス微粒子には、所望する機械特性や耐水蒸気性に応じて、希土類元素、4B族元素、Al、Ga、又はこれらの2種以上の元素を組合せて添加することができる。即ち、この製造法によれば、容易に成分の調整ができる。
 このガラス微粒子堆積に際して、バーナー35をダミー棒30の軸方向にトラバース、またはダミー棒30を軸方向にトラバースする。そのトラバースの回数毎に供給原料や供給量を異ならせることもできる。これにより、ダミー棒30の外周に堆積されるガラス微粒子は、径方向に所定の嵩密度と組成の分布を有することになる。また、ダミー棒30の先端部にもガラス微粒子を堆積させることで、先端が閉じた管状の多孔質シリカガラス25が作製される。
 多孔質シリカガラスは、シリカガラス微粒子を堆積させた後にその気孔率が20~70%の範囲になるようにシリカガラス微粒子を加熱焼結し緻密化させてもよいが、シリカガラス微粒子を堆積させる温度を調整し、その気孔率を制御しても良い。堆積後に加熱焼結させる場合の温度は特に限定されないが、1000℃~1400℃とすることが好ましい。1000℃未満では焼結が十分に進行しない場合があり、1400℃を超えると気孔率が小さくなりすぎる場合がある。また、堆積温度により気孔率を調整する場合も特に温度の限定はないが、例えば1400℃~1700℃とすることが好ましい。1400℃未満ではシリカガラス微粒子の焼結が十分に進行しない場合があり、1700℃を超えると気孔率が小さくなりすぎる場合がある。堆積温度は1500℃~1600℃とすることがより好ましい。
 堆積工程の後の引抜工程を図3(b)で説明する。図3(b)では、多孔質シリカガラス25からダミー棒30が引き抜かれる。引抜により形成される中心孔23は、貫通しておらず、下端側(先端側)23aが塞がれていて、上端側のみが開口している(図2参照)。なお、引き抜きを容易にするために、予めダミー棒30の表面にカーボンや窒化物等を塗布しておくことが好ましい。
(2)シリカガラス膜形成工程
 多孔質シリカガラスからなる多孔質支持体が形成された後、ゾルゲル法やCVD法、多孔質シリカガラスを表面改質する方法などにより、該多孔質支持体の表面にシリカガラス膜が形成される。図3(c)は、該実施形態に係るシリカガラス膜形成工程を説明する図である。ここでは、多孔質シリカガラスの表面を、表面処理装置により表面改質して、シリカガラス膜を形成する方法について説明する。
 上記多孔質支持体工程で得られた多孔質シリカガラス25は、表面処理装置36によって、その表面を緻密質なシリカガラス膜22に緻密化することで表面改質される。表面処理装置36としては、例えば高温のエネルギー線を照射できるものであればよく、COレーザー、プラズマアーク、酸水素バーナーなどを単独で、又は複数組合せて用いるができる。こうして多孔質シリカガラス25を表面改質することで、多孔質支持体21とシリカガラス膜22とが形成される。
 シリカガラス膜22の表面改質の程度は、シリカガラス膜22が水素透過膜として機能する範囲であれば特に限定されるものではないが、水素分子分離性の観点から、その厚みは0.01~50μmであることが好ましく、0.02~10μmであることがより好ましく、0.03~5μmであることが更に好ましい。また、シリカガラス膜22は水素分子のみを透過するように直径0.3nm程度の孔を有していることが好ましい。
 また、上記はシリカガラス膜形成工程の前にダミー棒30の周囲に堆積された多孔質シリカガラス25からダミー棒30のみを引き抜く引抜工程を行なっているが、勿論、ダミー棒30の周囲に多孔質シリカガラス25が堆積された状態でシリカガラス膜形成工程を行なっても良い。シリカガラス膜形成工程の後、ダミー棒30のみを引き抜くことで管状の水素分離材料20を形成することができる。
(水素分離モジュール)
 本発明の水素分離モジュールは、本発明の水素分離材料と、水蒸気改質触媒を含む。以下、本発明の水素分離モジュールの一実施形態について、図4を参照して説明する。図4は、水素分離材料20を適用した水素分離モジュールを説明する図である。
 図4に示す水素分離モジュール40は、水素分離材料20と水蒸気改質触媒41を反応容器42内に備える。反応容器42は、原料ガス50を反応容器42内に導入する導入口43と、反応容器42から排ガス51を排出する排出口44と、水素分離材料20を反応容器42内に設置するための設置口45とを備える。水蒸気改質触媒41は、反応容器42内の水素分離材料20の周囲に詰められる。
 原料ガス50は、都市ガス、プロパンガス、灯油、石油、バイオメタノール、天然ガス、メタンハイドレート等の燃料を燃焼することにより得られる。原料ガス50は、反応器42内に導入された後に500℃程度で加熱され、水蒸気改質触媒41(例えばRu系触媒)により改質されて水素ガスを生成する。改質反応中、生成した水素ガスは管状の水素分離材料20によって選択的に引抜かれて管の内部の中心孔23まで透過され、反応器42の外へ取り出される。そのため、化学平衡的に水素生成が促進され、反応の低温化を実現することができ、同時にCO変成反応も起こるため、CO変成触媒は理論的に不要となる。
(水素製造装置)
 本発明の水素製造装置は、本発明の水素分離モジュールを備える。本発明の水素分離モジュールにより分離生成された水素は99%以上の高純度であると考えられるが、混入するCO量をより低減するため(好ましくは10ppm以下)、例えば家庭用定置型燃料電池に用いる水素製造装置の場合は、COメタン化触媒等を有するCO除去モジュールを更に備えることが好ましい。なお、COメタン化触媒の代わりにCO選択酸化触媒を用いてもよいが、この場合、水素分離モジュールとCO除去モジュールの間で酸素または空気を供給する必要があること、水素と酸素の反応による水生成や窒素などの混入により水素濃度が低下することなどの欠点がある。自動車用燃料電池に用いる水素の製造装置の場合は、更にCO濃度が低く(1ppm未満)高純度の水素(99.99%以上)が求められるため、圧力スウィング吸着(PSA)法を適用した水素高純度化モジュールを更に備えることが好ましい。
 以下、本発明の水素製造装置の一実施形態について、図5及び6を参照して説明する。
 図5は、水素分離モジュール40と、COメタン化触媒を有するCO除去モジュールとを備えた水素製造装置を説明する図である。
 図5に示す水素製造装置60は、水素分離モジュール40と、CO除去モジュール65とを備える。CO除去モジュール65は、CO除去反応が行なわれる反応容器61と、その内部にCOメタン化触媒(例えばRu系触媒)62とから構成される。また、水素製造装置60は、水素分離モジュール40の近傍に原料ガス50の水蒸気改質反応を起こすための発熱体53を、CO除去モジュール65の近傍にCO除去反応を起こすための発熱体63を更に備える。CO除去モジュール65は連結管54を介して連結継手48を用いて水素分離モジュール40に連結されている。水素分離モジュール40により生成された水素ガスは連結管54を通じてCO除去モジュール65に導入され、CO除去反応に供されることとなる。こうしてより高純度化された水素ガスは排出口64から取り出される。
 図6は、水素分離モジュール40と、圧力スウィング吸着(PSA)法を適用した水素高純度化モジュールとを備えた水素製造装置を説明する図である。
 図6に示す水素製造装置70は、複数個の水素分離モジュール40と、PSA法を適用した水素高純度化モジュール(PSAユニット)75とを備える。各々の水素分離モジュール40は、その水素分離材料20における水素排出部分(不図示)が連結管71を介してPSAユニット75に連結されている。複数の水素分離モジュール40の近傍にはパネル状の発熱体(点線で示す)72が設置されており、水蒸気改質反応を生起する。生成した水素ガスは連結管71を通じてPSAユニット75に導入された後、水素以外のガス成分が除去されることで高純度の水素ガスが製造される。
 以下、本発明に係る実施例を示して本発明を更に詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。
(比較例1~2)
 外径10mm、厚み1mm、長さ300mmの一端封じ多孔質アルミナまたは多孔質ジルコニア管の支持体表面にゾルゲル法を用いて、厚み50nmのシリカガラス膜を形成した。これらの複合構造体を、耐熱衝撃性の確認のため、電気炉にて500℃に加熱し、30℃の水中にすばやく落下(水中落下試験)させたところ、複合構造体は破断した。
(比較例3)
 カーボンコートした一端封じアルミナ管に、外付けCVD法を用いて表1に記載の組成(mol%)の多孔質ガラスを堆積し、ダミー棒を引抜くことで、外径10mm、厚み1mm、長さ300mmの一端封じ多孔質ガラスを作製した。この多孔質ガラスの表面にゾルゲル法を用いて、厚み50nmのシリカガラス膜を形成した。この複合構造体を電気炉にて500℃に加熱し、30℃の水中にすばやく落下させたところ、複合構造体が破断することはなかったが、電子顕微鏡観察によりシリカガラス膜にクラックが形成されていることを確認した。
(実施例1~3)
 カーボンコートした一端封じアルミナ管に、外付けCVD法を用いて表1に記載の組成(mol%)の多孔質ガラスを堆積し、ダミー棒を引抜くことで、外径10mm、厚み1mm、長さ300mmの一端封じ多孔質ガラスを作製した。この多孔質ガラスの表面にゾルゲル法を用いて、厚み50nmのシリカガラス膜を形成した。これらの複合構造体を電気炉にて500℃に加熱し、30℃の水中にすばやく落下させたところ、複合構造体の破断やシリカガラス膜のクラック形成は観察されなかった。
Figure JPOXMLDOC01-appb-T000001
 上記結果から、多孔質支持体の熱膨張係数を2×10-6/K以下とすることで、耐熱衝撃性に優れた水素分離材料とすることができることが明らかである。
(実施例4)
 カーボンコートした一端封じアルミナ管に、外付けCVD法を用いて多孔質シリカガラスを堆積させた。次にCOレーザーをこの多孔質シリカガラスの表面に照射し、厚さ1ミクロンのシリカガラス緻密膜を形成させた。この複合構造体からダミー棒を引き抜き、外径16mm、厚み1.5mm、長さ300mm、気孔率40%、線熱膨張係数0.7×10-6/Kの管状の水素分離材料を作製した。この水素分離材料の外側に0.2MPaGの50%H‐50%Nガスを供給したところ、水素分離材料の内側に透過した大気圧のガスの水素濃度は99%以上であり、550℃の水素透過係数は4×10-7mol・m-2・s-1・Pa-1であった。また、この水素分離材料の外側を0.2MPaG、600℃の水蒸気に120時間暴露した後、その表面を電子顕微鏡で観察したところ、ごく小面積の変質層が認められたものの、クラックなどの欠陥は観察されなかった。
(実施例5)
 カーボンコートした一端封じアルミナ管に、外付けCVD法を用いて多孔質シリカガラスを堆積させた。次にプラズマアークをこの多孔体の表面に照射し、厚さ20ミクロンのシリカガラス緻密膜を形成させた。この複合構造体からダミー棒を引き抜き、外径10mm、厚み1mm、長さ300mm、気孔率68%、線熱膨張係数0.7×10-6/Kの管状の水素分離材料を作製した。この水素分離材料の外側に0.2MPaGの50%H-50%Nガスを供給したところ、水素分離材料の内側に透過した大気圧のガスの水素濃度は99%以上であり、550℃の水素透過係数は0.3×10-7mol・m-2・s-1・Pa-1であった。
(実施例6)
 カーボンコートした一端封じアルミナ管に、外付けCVD法を用いて多孔質シリカガラスを堆積させた。次に酸水素バーナー火炎をこの多孔体の表面に照射し、厚さ40ミクロンのシリカガラス緻密膜を形成させた。この複合構造体からダミー棒を引き抜き、外径16mm、厚み4mm、長さ300mm、気孔率22%、線熱膨張係数0.7×10-6/Kの管状の水素分離材料を作製した。この水素分離材料の外側に0.2MPaGの50%H‐50%Nガスを供給したところ、水素分離材料の内側に透過した大気圧のガスの水素濃度は99%以上であり、550℃の水素透過係数は0.05×10-7mol・m-2・s-1・Pa-1であった。
(実施例7~10)
 カーボンコートした一端封じアルミナ管に、外付けCVD法を用いてそれぞれ1000ppmのY、Al、Ti、Gaを添加した4種類の多孔質シリカガラスを堆積させた。次にCOレーザーをこの多孔体の表面に照射し、厚さ3ミクロンのシリカガラス緻密膜を形成させた。この複合構造体からダミー棒を引き抜き、外径16mm、厚み1.5mm、長さ300mm、気孔率40%、線熱膨張係数0.7×10-6/Kの管状の水素分離材料を作製した。この水素分離材料の外側に0.2MPaGの50%H‐50%Nガスを供給したところ、水素分離材料の内側に透過した大気圧のガスの水素濃度はいずれも99%以上であり、550℃の水素透過係数は1×10-7mol・m-2・s-1・Pa-1であった。また、この管状の水素分離材料の外側を0.2MPaG、600℃の水蒸気に120時間暴露した後、その表面を電子顕微鏡で観察したが、変質層やクラックなどの欠陥は観察されなかった。
(実施例11)
 図5に示したように、実施例9の管状の水素分離材料と市販のRu系改質触媒を備えた水素分離モジュールの反応容器にHO/CH=3の原料ガスを供給し、温度550℃、圧力0.5MPaGで水蒸気改質を行った。管状の水素分離材料の内側に透過したガスの水素濃度は99%以上、一酸化炭素濃度はおよそ500ppmであり、水素製造速度は0.02Nm/hであった。また、このガスを市販のRu系COメタン化触媒を備えたCO除去モジュールを通過させた後の一酸化炭素濃度は10ppm以下であった。
(実施例12)
 実施例9の管状の水素分離材料と市販のRu系改質触媒を備えた水素分離モジュール52台を図6に示したように連結した。全モジュールの反応容器にHO/CH=3の原料ガスを供給し、温度550℃、圧力0.5MPaGで水蒸気改質を行った。水素分離材料の内側に透過したガスの水素濃度は99%以上、一酸化炭素濃度はおよそ500ppmであり、水素製造速度は1Nm/hであった。また、このガスを市販のPSA型水素精製器を用いて精製した後の水素濃度は99.99%以上であり、一酸化炭素濃度は1ppm以下であった。
 上記実施例4~12についての特性等を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表からわかるように、多孔質支持体を、熱膨張係数を2×10-6/K以下で且つシリカガラス膜と熱膨張係数が近似する同質の材料とすることで、より耐熱衝撃性に優れた水素分離材料とすることができる。特に、多孔質シリカガラスの表面を改質してシリカガラス膜とする方法によれば、膜と支持体との接合強度が高い水素分離材料とすることができるとともに、シリカガラス膜の厚さや孔の大きさを改質(緻密化)の程度によって、簡単に制御することができる。
 10、20…水素分離材料、11、21…多孔質支持体、12、22…シリカガラス膜、23…中心孔、23a…中心孔の先端部、25…多孔質シリカガラス、30…ダミー棒、35…バーナー、36…表面処理装置、40…水素分離モジュール、41…水蒸気改質触媒、42、61…反応容器、43…導入口、44、64…排出口、45…設置口、48…連結継手、50…原料ガス、51…排ガス、53、63、72…発熱体、54、71…連結管、60、70…水素製造装置、62…COメタン化触媒、65…CO除去モジュール、75…水素高純度化モジュール(PSAユニット)、T…外径、P…内径、L…長さ。 
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2009年12月11日付で出願された日本特許出願(特願2009-282210)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (20)

  1.  線熱膨張係数が2×10-6/K以下の多孔質支持体上に、シリカガラス膜を形成した水素分離材料。
  2.  前記多孔質支持体が多孔質シリカガラスである請求項1に記載の水素分離材料。
  3.  形状が管状である請求項2に記載の水素分離材料。
  4.  前記多孔質シリカガラス及び/又は前記シリカガラス膜に希土類元素、4B族元素、Al及びGaから選択される少なくとも1種の元素が添加された請求項2又は3に記載の水素分離材料。
  5.  前記多孔質シリカガラスからなる多孔質支持体を表面改質して緻密化することで、前記多孔質シリカガラスからなる多孔質支持体上に前記シリカガラス膜を形成した請求項2~4の何れか一項に記載の水素分離材料。
  6.  前記表面改質が、COレーザー、プラズマアーク及び酸水素バーナーから選択される少なくとも1種を照射して前記多孔質シリカガラスの表面を緻密化する処理である請求項2~5の何れか一項に記載の水素分離材料。
  7.  多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程と、前記多孔質シリカガラスの表面にシリカガラス膜を形成するシリカガラス膜形成工程と、を有する水素分離材料の製造方法。
  8.  前記多孔質支持体形成工程は、ダミー棒の周囲に多孔質シリカガラスを堆積させ、その後、前記ダミー棒を引き抜いて多孔質シリカガラスからなる管状の多孔質支持体を形成する工程である請求項7に記載の水素分離材料の製造方法。
  9.  前記多孔質支持体形成工程は、ダミー棒の周囲に希土類元素、4B族元素、Al及びGaから選択される少なくとも1種の元素が添加された多孔質シリカガラスを堆積させ、その後、前記ダミー棒を引き抜いて多孔質シリカガラスからなる管状の多孔質支持体を形成する工程である請求項8に記載の水素分離材料の製造方法。
  10.  前記多孔質シリカガラスからなる多孔質支持体を形成する多孔質支持体形成工程と、前記多孔質シリカガラスの表面を緻密化して緻密質のシリカガラス膜を形成するシリカガラス膜形成工程と、を有する請求項7~9の何れか一項に記載の水素分離材料の製造方法。
  11.  前記シリカガラス膜形成工程が、COレーザー、プラズマアーク及び酸水素バーナーから選択される少なくとも1種を照射して前記多孔質シリカガラスの表面を緻密化する工程である請求項10に記載の水素分離材料の製造方法。
  12.  請求項7~11の何れか一項に記載の方法により得られる水素分離材料。
  13.  前記多孔質支持体の気孔率が20~70%である請求項1~6及び12の何れか一項に記載の水素分離材料。
  14.  前記多孔質支持体の厚みが0.2~5mmである請求項1~6、12及び13の何れか一項に記載の水素分離材料。
  15.  前記シリカガラス膜の厚みが0.01~50μmである請求項1~6及び12~14の何れか一項に記載の水素分離材料。
  16.  請求項1~6及び12~15の何れか一項に記載の水素分離材料と、水蒸気改質触媒と、を備えた水素分離モジュール。
  17.  請求項16記載の水素分離モジュールを備えた水素製造装置。
  18.  請求項16記載の水素分離モジュールとCO除去モジュールとを備えた水素製造装置。
  19.  前記CO除去モジュールがCOメタン化触媒を備えた請求項18に記載の水素製造装置。
  20.  請求項16記載の水素分離モジュールと圧力スウィング吸着(PSA)法を適用した水素高純度化モジュールとを備えた水素製造装置。
PCT/JP2010/072201 2009-12-11 2010-12-10 シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置 WO2011071138A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/515,230 US9126151B2 (en) 2009-12-11 2010-12-10 Silica-based hydrogen separation material and manufacturing method therefor, as well as hydrogen separation module and hydrogen production apparatus having the same
CA 2783961 CA2783961A1 (en) 2009-12-11 2010-12-10 Silica-based hydrogen separation material and manufacturing method therefor, as well as hydrogen separation module and hydrogen production apparatus having the same
CN201080056142XA CN102652036A (zh) 2009-12-11 2010-12-10 石英类氢分离材料及其制造方法、包括该氢分离材料的氢分离模块及氢制造装置
EP10836057.9A EP2511005B1 (en) 2009-12-11 2010-12-10 Process for production of silica-containing hydrogen-separating material
KR1020127015087A KR101880769B1 (ko) 2009-12-11 2010-12-10 실리카계 수소 분리 재료 및 그 제조 방법과 그것을 포함한 수소 분리 모듈 및 수소 제조 장치
JP2011545256A JP5757243B2 (ja) 2009-12-11 2010-12-10 シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-282210 2009-12-11
JP2009282210 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011071138A1 true WO2011071138A1 (ja) 2011-06-16

Family

ID=44145681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072201 WO2011071138A1 (ja) 2009-12-11 2010-12-10 シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置

Country Status (7)

Country Link
US (1) US9126151B2 (ja)
EP (1) EP2511005B1 (ja)
JP (1) JP5757243B2 (ja)
KR (1) KR101880769B1 (ja)
CN (1) CN102652036A (ja)
CA (1) CA2783961A1 (ja)
WO (1) WO2011071138A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022553A (ja) * 2011-07-25 2013-02-04 Sumitomo Electric Ind Ltd 流体分離材料及びその製造方法
JP2013056788A (ja) * 2011-09-07 2013-03-28 Sumitomo Electric Ind Ltd 多孔質ガラス管の製造方法
JP2013234082A (ja) * 2012-05-07 2013-11-21 Sumitomo Electric Ind Ltd ガラス管およびその製造方法、ガラス管を用いた流体分離材料
JP2015024363A (ja) * 2013-07-25 2015-02-05 住友電気工業株式会社 流体分離材料及びその製造方法
JP2018111629A (ja) * 2017-01-11 2018-07-19 日本電気硝子株式会社 ガラス部材及びその製造方法
CN117863707A (zh) * 2024-03-11 2024-04-12 杭州邦齐州科技有限公司 一种预键合玻璃分离治具及其分离方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222519B2 (en) * 2016-03-10 2019-03-05 Coorstek Kk Composite silica glass made light diffusion member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204006A (ja) * 1985-03-07 1986-09-10 Ngk Insulators Ltd 分離膜及びその製造方法
JP2001137673A (ja) * 1999-11-12 2001-05-22 Sumitomo Electric Ind Ltd 水素分離複合体
WO2002045832A1 (fr) * 2000-12-05 2002-06-13 Sumitomo Electric Industries, Ltd. Structure permeable a l'hydrogene
WO2005021141A1 (ja) * 2003-08-27 2005-03-10 Ngk Insulators, Ltd. ガス分離体、及びその製造方法
JP2009282210A (ja) 2008-05-21 2009-12-03 Hitachi Maxell Ltd 反射偏光子及びそれを用いた液晶表示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620704A (en) * 1969-12-18 1971-11-16 Texas Instruments Inc Method and apparatus for forming and drawing fused metal-oxide tubes
JPS5992923A (ja) * 1982-11-15 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> 多孔質ガラス膜の製造方法
US4689150A (en) * 1985-03-07 1987-08-25 Ngk Insulators, Ltd. Separation membrane and process for manufacturing the same
JPS62258704A (ja) * 1986-05-06 1987-11-11 Asahi Glass Co Ltd 流体の分離膜
US6461408B2 (en) * 1995-11-06 2002-10-08 Robert E. Buxbaum Hydrogen generator
US6537352B2 (en) * 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
JPH1119458A (ja) * 1997-07-07 1999-01-26 Sumitomo Electric Ind Ltd ガス分離膜及びその製造方法
JP3316173B2 (ja) * 1997-11-06 2002-08-19 株式会社ノリタケカンパニーリミテド ゼオライト膜担持用基材
CA2361504A1 (en) * 1999-02-02 2000-08-10 Virginia Tech Intellectual Properties, Inc. Hydrogen-selective silica based membrane
JP2002282640A (ja) * 2001-03-28 2002-10-02 Kyocera Corp ガス分離モジュールの保守方法
JP2003040623A (ja) * 2001-07-26 2003-02-13 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法
JP2003176140A (ja) 2001-12-06 2003-06-24 Tokuyama Toshiba Ceramics Co Ltd 透明石英ガラスとその製造方法
JP4184037B2 (ja) 2002-10-29 2008-11-19 東京瓦斯株式会社 水素製造装置
JP4562565B2 (ja) * 2005-03-23 2010-10-13 株式会社ノリタケカンパニーリミテド 無機多孔質分離膜およびその製造方法
JP4490383B2 (ja) * 2006-03-13 2010-06-23 日本碍子株式会社 水素ガス分離体固定構造体及びそれを用いた水素ガス分離装置
US7585356B2 (en) * 2006-05-01 2009-09-08 Virginia Tech Intellectual Properties, Inc. Hydrothermally-stable silica-based composite membranes for hydrogen separation
JP4371427B2 (ja) * 2007-03-29 2009-11-25 株式会社ノリタケカンパニーリミテド 水素ガス分離材製造方法
US20090107330A1 (en) * 2007-10-30 2009-04-30 Yunfeng Gu Amorphous silica hybrid membrane structure
WO2009121763A1 (de) 2008-04-03 2009-10-08 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur herstellung von synthetischem quarzglas
US8900344B2 (en) * 2010-03-22 2014-12-02 T3 Scientific Llc Hydrogen selective protective coating, coated article and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204006A (ja) * 1985-03-07 1986-09-10 Ngk Insulators Ltd 分離膜及びその製造方法
JP2001137673A (ja) * 1999-11-12 2001-05-22 Sumitomo Electric Ind Ltd 水素分離複合体
WO2002045832A1 (fr) * 2000-12-05 2002-06-13 Sumitomo Electric Industries, Ltd. Structure permeable a l'hydrogene
WO2005021141A1 (ja) * 2003-08-27 2005-03-10 Ngk Insulators, Ltd. ガス分離体、及びその製造方法
JP2009282210A (ja) 2008-05-21 2009-12-03 Hitachi Maxell Ltd 反射偏光子及びそれを用いた液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511005A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022553A (ja) * 2011-07-25 2013-02-04 Sumitomo Electric Ind Ltd 流体分離材料及びその製造方法
JP2013056788A (ja) * 2011-09-07 2013-03-28 Sumitomo Electric Ind Ltd 多孔質ガラス管の製造方法
JP2013234082A (ja) * 2012-05-07 2013-11-21 Sumitomo Electric Ind Ltd ガラス管およびその製造方法、ガラス管を用いた流体分離材料
JP2015024363A (ja) * 2013-07-25 2015-02-05 住友電気工業株式会社 流体分離材料及びその製造方法
JP2018111629A (ja) * 2017-01-11 2018-07-19 日本電気硝子株式会社 ガラス部材及びその製造方法
CN117863707A (zh) * 2024-03-11 2024-04-12 杭州邦齐州科技有限公司 一种预键合玻璃分离治具及其分离方法
CN117863707B (zh) * 2024-03-11 2024-05-10 杭州邦齐州科技有限公司 一种预键合玻璃分离治具及其分离方法

Also Published As

Publication number Publication date
US9126151B2 (en) 2015-09-08
EP2511005A4 (en) 2016-11-16
CA2783961A1 (en) 2011-06-16
CN102652036A (zh) 2012-08-29
KR101880769B1 (ko) 2018-07-20
JP5757243B2 (ja) 2015-07-29
KR20120114261A (ko) 2012-10-16
EP2511005B1 (en) 2020-02-19
EP2511005A1 (en) 2012-10-17
JPWO2011071138A1 (ja) 2013-04-22
US20130022509A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5757243B2 (ja) シリカ系水素分離材料及びその製造方法、並びにそれを備えた水素分離モジュール及び水素製造装置
Yoshino et al. Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
AU2005286952B2 (en) Membrane steam reformer
JP5390448B2 (ja) 膜分離型反応器及び水素の製造方法
US7947117B2 (en) Hydrogen purification process that uses a combination of membrane separation units
KR20160047386A (ko) 쉘-앤-튜브형 천연가스 개질용 반응기 및 이를 이용한 합성가스 또는 수소가스의 제조방법
Wang et al. Inorganic membranes for in-situ separation of hydrogen and enhancement of hydrogen production from thermochemical reactions
JP2004502623A (ja) 熱交換膜反応装置による発電
Atsonios et al. Introduction to palladium membrane technology
Wang et al. Hydrogen separation at elevated temperatures using metallic nickel hollow fiber membranes
JP4521358B2 (ja) 水素又はヘリウムの透過膜、貯蔵膜及びその形成方法
KR102482676B1 (ko) 원통형 또는 튜브형 지지체 상에 분말 입자들이 순차적으로 적층되어 결정화된 적층막의 제조방법
JP5757186B2 (ja) 流体分離材料及びその製造方法
JP5821438B2 (ja) 多孔質ガラス管の製造方法
JP2012200675A (ja) 水素分離材料及びその製造方法
JP5906863B2 (ja) ガラス管及びその製造方法
JP5928047B2 (ja) ガラス管及びその製造方法
JP2012071999A (ja) 多孔質材料製造方法、多孔質材料、水素分離モジュールおよび水素製造装置
Hu et al. The iron (Fe) hollow fiber membranes, the microstructure and the performance of the membrane Low-cost iron (Fe) hollow fiber membrane for hydrogen separation
Arvanitis High Temperature High Pressure Water Gas Shift Reaction in Zeolite Membrane Reactors
JPH08321321A (ja) 燃料電池
JP5906929B2 (ja) ガラス管およびその製造方法、ガラス管を用いた流体分離材料
JP2013234085A (ja) ガラス管およびその製造方法
Durai-Swamy High flux ceramic membrane for hydrogen separation. Final technical progress report

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056142.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545256

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2783961

Country of ref document: CA

Ref document number: 20127015087

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010836057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13515230

Country of ref document: US