WO2011066510A2 - Visualization instrument - Google Patents

Visualization instrument Download PDF

Info

Publication number
WO2011066510A2
WO2011066510A2 PCT/US2010/058226 US2010058226W WO2011066510A2 WO 2011066510 A2 WO2011066510 A2 WO 2011066510A2 US 2010058226 W US2010058226 W US 2010058226W WO 2011066510 A2 WO2011066510 A2 WO 2011066510A2
Authority
WO
WIPO (PCT)
Prior art keywords
insertable
camera
visualization instrument
distal
visualization
Prior art date
Application number
PCT/US2010/058226
Other languages
English (en)
French (fr)
Other versions
WO2011066510A3 (en
Inventor
Thomas W. Mcgrail
Michael S. Pargett
David J. Miller
Yun Siung Tony Yeh
Gary Vincent Palladino
Brian Hack
Paul Crosby Gregory
Kristin Jugenheimer Size
Randal Chinnock
George Grubner
Elizabeth Power Goodrich
Richard Miller
Original Assignee
King Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Systems Corporation filed Critical King Systems Corporation
Priority to KR1020147015405A priority Critical patent/KR101614233B1/ko
Priority to JP2012541223A priority patent/JP5596169B2/ja
Priority to CA2780343A priority patent/CA2780343C/en
Priority to CN201080053619.9A priority patent/CN102647936B/zh
Priority to EP10788184.9A priority patent/EP2506753B1/en
Priority to AU2010324600A priority patent/AU2010324600B2/en
Priority to KR1020127013444A priority patent/KR101442359B1/ko
Priority to MX2012005856A priority patent/MX347417B/es
Priority to NZ599923A priority patent/NZ599923A/en
Publication of WO2011066510A2 publication Critical patent/WO2011066510A2/en
Publication of WO2011066510A3 publication Critical patent/WO2011066510A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/00052Display arrangement positioned at proximal end of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00103Constructional details of the endoscope body designed for single use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/01Guiding arrangements therefore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay

Definitions

  • the present disclosure relates generally to a system including a visualization instrument comprising a camera to view an internal space and, more particularly, to a visualization instrument comprising a camera to examine the interior of a patient.
  • Visualization instruments include endoscopes, laryngoscopes, borescopes and other medical instruments designed to look inside the body of a patient. Medical visualization instruments are used in a multitude of medical procedures including laryngoscopy, rhinoscopy, bronchoscopy, cystoscopy, hysteroscopy, laparoscopy, arthroscopy, etc. Visualization instruments are also used in non-medical applications such as to investigate the internal structures of machines, buildings, and explosive devices. Laryngoscopes are used to obtain view of the vocal folds and the glottis to perform noninvasive tracheal intubations. A conventional rigid laryngoscope consists of a handle with a light source and a blade.
  • Direct laryngoscopy is usually carried out with the patient lying on his or her back.
  • the laryngoscope is inserted into the mouth, typically on the right side, and pushed towards the left side to move the tongue out of the line of sight and to create a pathway for insertion of an endotracheal tube.
  • the blade may be lifted with an upwards and forward motion to move the epiglottis and make a view of the glottis possible.
  • the endotracheal tube may be inserted into the pathway.
  • the blade may be provided with guide surfaces to guide the insertion of the endotracheal tube.
  • Laryngoscopes may be outfitted with illumination devices and optical devices to provide views of the vocal cords externally of the patient's body.
  • Optical devices include lenses, mirrors, prisms and fiberoptic fibers, all adapted to transfer an optical image. Imaging devices may also be provided to capture the optical images and display the optical images in high definition display monitors. Stylets and other visualization instruments have also been developed. Each instrument has its own limitations such as, for example, fogging, insufficient lighting to produce a good optical image, inability to project images remotely, additional procedural steps to insert the endotracheal tube, and cost. As difficult intubations may be performed remotely from a hospital, such as at the scene of an accident or military battle, it would be desirable to provide emergency responders and others affordable equipment necessary to perform field intubations. It would be desirable to provide visualization instruments which may be discarded after a single or a limited number of uses.
  • a visualization instrument and a method of using the visualization instrument are disclosed herein.
  • the visualization instrument is insertable into a space to capture images representing internal views of the space.
  • the visualization instrument comprises an insertable portion supporting an imaging sensor and a video device configured to display images corresponding to views captured by the imaging sensor.
  • a visualization instrument comprising a display device; an imaging assembly including a camera and a lens, the camera including an imaging sensor, an imaging support having a distal surface and an optical cavity, the optical cavity defining a cavity opening in the distal surface, the lens and the camera sealed within the optical cavity to keep the optical cavity dry, the camera outputting a digital image stream corresponding to a plurality of views obtained through the lens; a handle portion detachably coupled to the display device; a self-contained energy source supported by one of the handle portion and the display device; and an insertable portion coupled to the handle portion and insertable into the patient, the insertable portion having a distal cavity with a distal opening at a distal end thereof, the imaging assembly received by the distal cavity through the distal opening, the imaging assembly electronically coupled to the display device when the insertable portion is coupled to the handle portion and the handle portion is coupled to the display device to present images corresponding to the plurality of views with the display device.
  • the insertable portion further comprises a guide pathway adapted for guiding a tube into a patient, the distal cavity and the guide pathway arranged laterally to each other to reduce an anterior/posterior height of the insertable portion.
  • the handle portion and the insertable portion are integrally formed as a single piece blade.
  • the insertable portion further comprises an anterior guide surface and a medial guide surface, the anterior guide surface and the medial guide surface defining a guide pathway adapted for guiding a tube into a patient.
  • the anterior guide surface and the medial guide surface are substantially orthogonal to each other.
  • the tube is distinguishable in the digital image stream as the tube passes through a field of view of the lens.
  • the guide pathway comprises a proximal portion and a distal portion, the insertable portion further comprising a posterior guide surface opposite the anterior guide surface and a lateral guide surface opposite the medial guide surface, the distal portion of the guide pathway defined by the anterior guide surface, the posterior guide surface, the medial guide surface and the lateral guide surface.
  • the proximal portion of the guide pathway is shorter than the distal portion.
  • a proximal portion length of the proximal portion of the guide pathway, measured along a center line of the insertion portion, is at most 40% of a distal portion length of the distal portion of the guide pathway.
  • the medial guide surface includes a transition portion extending through the proximal portion of the guide pathway and a longitudinally aligned portion extending through the distal portion of the guide pathway, wherein the transition portion extends from a side of the insertable portion to the longitudinally aligned portion. In a further variation, the transition portion extends from a lateral side of the insertable portion.
  • the insertable portion further comprises an anterior wall and a medial wall, the anterior wall and the medial wall defining a guide pathway adapted for guiding a tube into a patient, the guide pathway adjacent a side of the medial wall and the distal cavity adjacent an opposite side of the medial wall, the anterior wall having a tip portion extending distally beyond the medial wall.
  • the tip portion includes a textured surface adapted to engage a tissue of the patient.
  • the textured surface includes a plurality of ridges arranged in a regulated pattern.
  • the plurality of ridges are longitudinally aligned.
  • the textured surface has a first coefficient of friction measured in a first direction and a second coefficient of friction measured in a second direction different from the first direction.
  • the tip portion includes one or more flexural support feature.
  • the one or more flexural support feature increases a flexural strength of the tip portion by at least 5%.
  • the flexural support feature comprises at least one of a longitudinally aligned ridge, a longitudinally aligned wall portion, and a transverse curvature of the tip portion.
  • the insertable portion comprises an elongate tubular member.
  • the elongate tubular member is malleable.
  • the elongate tubular member is steerable, further comprising a steering mechanism supported by the handle portion.
  • the imaging assembly is permanently attached to the insertable portion.
  • the visualization instrument further comprises an electronic connector affixed to the insertable portion and accessible from the distal cavity, the imaging assembly removably connecting to the connector when the imaging assembly is positioned in the distal cavity.
  • the visualization instrument further comprises a translucent cover attached to the distal surface, the translucent cover including an anti-fog coating.
  • the visualization instrument further comprises a second lens and a camera barrel having a barrel cavity, the lens positioned between the distal surface and the camera barrel when the camera barrel is received by the optical cavity, and the second lens received by the camera barrel and positioned between the camera barrel and the camera.
  • the visualization instrument further comprises a motion sensor detecting motion of the display device and disabling presentation of the images when motion is not detected during a predetermined amount of time.
  • the camera forms the digital image stream using radiation having wavelengths ranging between 10 nanometers and 14,000 nanometers.
  • the elongate tubular member is malleable.
  • the camera forms the digital image stream using radiation having wavelengths in the visible light spectrum.
  • the visualization instrument further comprises a protrusion and a recess configured to receive the protrusion, the recess and the protrusion generating an audible sound when the handle portion couples to the display device.
  • the visualization instrument further comprises a display device support portion supporting the display device, the handle portion includes a handle cavity adapted to receive the display device support portion thereby coupling the display device to the insertable portion, one of the protrusion and the recess are positioned on the display device support portion and the other of the protrusion and the recess are positioned inside the handle cavity.
  • a visualization instrument partially insertable into a patient.
  • the visualization instrument comprising a display device; a lens; a camera including an imaging sensor, the camera outputting a digital image stream corresponding to a plurality of views obtained through the lens; a handle portion detachably coupled to the display device; a self-contained energy source supported by one of the handle portion and the display device; and an insertable portion coupled to the handle portion and insertable into the patient, the insertable portion having a distal cavity at a distal end thereof receiving the lens and the camera, the camera electronically coupled to the display device when the insertable portion is coupled to the handle portion and the handle portion is coupled to the display device to present images corresponding to the plurality of views with the display device, the insertable portion further comprising at least two substantially non-resilient walls and at least one resilient wall, the at least two non-resilient walls and the at least one resilient wall forming a guide pathway operable to guide insertion of a tube into the patient and defining an e
  • the handle portion and the insertable portion are integrally formed as a single piece blade.
  • the blade is configured to be discarded after a single use.
  • the guide pathway defines a proximal anterior/posterior height at one end thereof and a distal anterior/posterior height at a distal end thereof, the proximal anterior/posterior height being greater than the distal anterior/posterior height.
  • the proximal anterior/posterior height is at least 0.5 mm greater than the distal anterior/posterior height.
  • the proximal anterior/posterior height is at least 1.0 mm greater than the distal anterior/posterior height.
  • the distal tip extends distally beyond the lens, the distal tip having a textured surface operable to displace the glottis of the patient.
  • the distal tip includes a use indicia positioned within the field of view of the lens and operable to determine a use state of the insertable portion, wherein the processing device disables presentation of the images when the use state indicates prior uses exceed a permitted number of uses.
  • the distal tip includes flexural strengthening features to reduce flexure of the distal tip by at least 5% when the distal tip engages the patient's tissue.
  • the flexural strengthening features comprise at least one of a curved profile of the distal tip along its width, a longitudinal ridge extending from a surface of the distal tip, and a longitudinal wall.
  • a visualization instrument partially insertable into a patient.
  • the visualization instrument comprising an insertable portion having guiding means for guiding insertion of a tube into a patient, the guiding means resiliently deforming when at least a portion of the tube is removed through the guiding means; attachment means for detachably coupling a display device to the insertable portion; and; imaging means for capturing a plurality of images corresponding to a field of view of the imaging means and outputting a digital image stream operable to present corresponding images with the display device.
  • a visualization instrument comprising a display device; a lens; a camera including an imaging sensor, the camera outputting a digital image stream corresponding to a plurality of views obtained through the lens; a handle portion detachably coupled to the display device; a self-contained energy source supported by one of the handle portion and the display device; an insertable portion coupled to the handle portion and insertable into the patient, the insertable portion having a distal cavity at a distal end thereof receiving the lens and the camera, the camera electronically coupled to the display device when the insertable portion is coupled to the handle portion and the handle portion is coupled to the display device to present images corresponding to the plurality of views with the display device; and a use indicia located in one of the handle portion and the insertable portion, the use indicia operable to determine prior uses of the insertable portion and to disable presentation of the images when the prior uses exceed a permitted number of uses.
  • the permitted number of uses is one.
  • the use indicia provides information regarding environmental variables including at least one of temperature and humidity.
  • the use indicia comprises a single-use fuse.
  • the visualization instrument further comprises a processing device cooperating with the use indicia to determine the prior uses.
  • the instrument further comprises a sensing device electronically coupled to the processing device and sensing the use indicia to determine the prior uses.
  • the instrument further comprises an image sensor identifier, wherein the processing device determines the prior uses based on the image sensor identifier.
  • the image sensor identifier is stored in the camera.
  • further comprising an electronic device storing the image sensor identifier the electronic device is supported by one of the handle portion and the insertable portion and electronically coupled to the processing device when the insertable portion is coupled to the display device.
  • the insertable portion comprises an elongate tubular member.
  • the elongate tubular member is malleable.
  • the elongate tubular member is steerable, further comprising a steering mechanism supported by the handle portion.
  • the visualization instrument is adapted to intubate a patient with a tube, wherein the tube is distinguishable in the images presented with the display device as the tube passes through a field of view of the lens.
  • the handle portion and the insertable portion are integrally formed as a single piece blade, the blade further comprising at least two guide surfaces defining a guide pathway.
  • the processing device compares the camera identifier to the plurality of camera identifiers to find a match and disables presentation of the images if the match is not found.
  • a visualization partially insertable into a patient comprising an insertable portion having guiding means for guiding insertion of a tube into a patient; attachment means for detachably coupling a display device to the insertable portion; imaging means for capturing a plurality of images corresponding to a field of view of the imaging means and outputting a digital image stream operable to present corresponding images with the display device; and use tracking means for disabling presentation of the corresponding images when the insertable portion has been used more than a permitted number of uses.
  • a visualization kit comprising a first component insertable into an oral cavity of a patient, the first component including a first camera operable to transmit first images of the oral cavity; a second component different from and interchangeable with the first component, the second component including a second camera operable to transmit second images; a third component detachably attachable to the first component and the second component and sized to be held by a hand of a user, the third component including a viewable screen and being communicatively coupled to the first camera when the third component is attached to the first component and to the second camera when the third component is attached to the second component; wherein the viewable screen presents images corresponding to one of the first images and the second images.
  • the first component comprises a guide pathway adapted to guide insertion of a tube into the oral cavity and the second component comprises a stylet.
  • a visualization method comprising the steps of providing an insertable component having a camera; detachably coupling a display support component to the insertable component, the display support component sized to be held by a hand of a user and including a display device, the display support component being communicatively coupled to the camera when the display support component is coupled to the insertable component; inserting the insertable component into a target space; capturing with the camera a plurality of views corresponding to a field of view of the camera; presenting with the display device a plurality of images corresponding to the plurality of views; aligning the field of view with a target within the target space; removing the insertable component from the target space; and detaching the display support component from the insertable component.
  • the method further comprises the step of discarding the insertable component.
  • the method further comprises the step of tracking uses of the insertable component and disabling presentation of the plurality of images when the insertable portion has been used more than a permitted number of uses.
  • the step of tracking uses comprises sensing a use indicia.
  • the step of tracking uses comprises storing a use indicia after use of the insertable component.
  • the target space is an interior of a patient and the target comprises the vocal cords of the patient, and the method further comprises the step of intubating the patient using the insertable component before removing the insertable component from the target space.
  • the insertable component comprises a resilient portion, and the removing step includes the step of resiliently deforming the resilient portion.
  • the display device includes a display side and an opposite side opposite the display side, the display support component further comprising a rest surface and a switch, the rest surface and the switch disposed on the opposite side, further comprising the step of laying the display support component to rest on the rest surface without actuating the switch.
  • the method further comprises the steps of comparing with a processing device a camera identifier to a plurality of camera identifiers stored in a memory device to find a match, and disabling presentation of the plurality of images if the match is not found.
  • a visualization instrument configured to intubate a patient.
  • the visualization instrument comprising a display device including a display driver and a display; an imaging assembly having an image sensor, a transparent cover, a plurality of lenses between the image sensor and the transparent cover, and an illumination device illuminating a cavity of the patient, the imaging assembly configured to transfer an image stream representing views of the cavity to the display device; a control component including a processor, a memory, and a program embedded in the memory, the processor receiving the data stream from the imaging assembly, transforming the data stream into a second data stream, and providing the second data stream to the display driver to show the views of the cavity on the display; a housing coupled to the display device and having a first connector configured to receive the second data stream from the control component; and an insertable portion having a proximal cavity configured to receive the housing and a distal cavity configured to receive the imaging assembly, the insertable portion also including a second connector configured transfer the first image stream from the imaging assembly through the first connector
  • a visualization instrument comprising a display device including a display driver and a display; an imaging assembly having an image sensor, a transparent cover, a lens between the image sensor and the transparent cover, and an illumination device illuminating a cavity of the patient, the imaging assembly configured to transfer an image stream representing views of the cavity to the display device; a control component including a processor, a memory, and a program embedded in the memory, the processor receiving the data stream from the imaging assembly, transforming the data stream into a second data stream, and providing the second data stream to the display driver to show the views of the cavity on the display; a housing coupled to the display device and having a first connector configured to receive the second data stream from the control component; and an insertable portion having a proximal cavity configured to receive the housing and a distal cavity configured to receive the imaging assembly, the insertable portion also including a second connector, a passageway, and a distal tip, the second connector configured to transfer the first image stream from the imaging assembly
  • a visualization instrument comprising a display device including a display driver and a display; an imaging assembly having an image sensor, a transparent cover, a lens between the image sensor and the transparent cover, and an illumination device illuminating a cavity of the patient, the imaging assembly configured to transfer an image stream representing views of the cavity to the display device; a control component including a processor, a memory, and a program embedded in the memory, the processor receiving the data stream from the imaging assembly, transforming the data stream into a second data stream, and providing the second data stream to the display driver to show the views of the cavity on the display; a housing coupled to the display device and having a first connector configured to receive the second data stream from the control component; and an insertable portion having a proximal cavity configured to receive the housing and a distal end having a distal cavity configured to receive the imaging assembly, the insertable portion also including a second connector, a passageway, and a distal tip, the second connector configured to transfer the
  • a visualization instrument configured to intubate a patient.
  • the visualization instrument comprising an insertable component including a camera, at least two lenses, and an illumination device to illuminate the oral cavity of the patient when the insertable component is inserted, at least partially, into the oral cavity, the insertable component being configured to guide insertion of a tube through the vocal cords of the patient, and the camera being mounted on the insertable component so as to capture images of a distal end of the tube as the tube enters the vocal cords; a reusable component including a display device and a video processing portion, the reusable component being removably attachable to the insertable component; an identification insignia on the insertable component; and a sensor supported by the reusable component and operable to sense the identification insignia, wherein the reusable component determines an identity data of the insertable component based on the identification insignia, and determines a status of the insertable component by comparing the identity data to a plurality of identity and status data
  • FIG. 1 is an elevation view of an embodiment of a visualization instrument
  • FIG. 2 is a cross-sectional perspective view of an embodiment of an imaging assembly
  • FIG. 3 is a partial perspective view of the visualization instrument of FIG. 1 illustrating the imaging assembly of FIG. 2;
  • FIG. 4 is a partial perspective view of the visualization instrument of FIG. 1 illustrating the imaging assembly of FIG. 2 and a view obtainable with the imaging assembly;
  • FIGS. 5 and 6 are perspective views of another embodiment of imaging assembly
  • FIGS. 7 and 8 are cross-sectional perspective and elevation views of a further embodiment of an imaging assembly
  • FIGS. 9 and 10 are perspective proximal and distal views of yet another embodiment of an imaging assembly
  • FIG. 11 is a block diagram of an embodiment of electronic components of a visualization instrument.
  • FIGS. 12 and 13 are diagrammatic views of embodiments of visualization systems
  • FIG. 14 is a depiction of a visualization device operable with the visualization system of FIGS. 12 and 13;
  • FIGS. 15 and 16 are elevation and perspective views of another embodiment of a visualization instrument
  • FIGS. 17 and 18 are partial perspective views of the distal portion of the visualization instrument of FIGS. 15 and 16;
  • FIGS. 19 and 20 are partial plan views of alternative embodiments of the distal end of an insertable portion of a visualization instrument
  • FIGS. 21 and 22 are elevation views of a further embodiment of an insertable portion of a visualization instrument
  • FIGS. 23 and 24 are elevation views of yet another embodiment of an insertable portion of a visualization instrument
  • FIGS. 25 to 28 are perspective views of embodiments of distal tip surfaces
  • FIGS. 29 and 30 are elevation views of an embodiment of a reusable portion of a visualization instrument
  • FIG. 31 is an elevation view of a further embodiment of a visualization instrument
  • FIGS. 32 to 35 illustrate embodiments of a visualization instrument comprising a stylet
  • FIGS. 36 and 37 illustrate portions of the visualization instrument comprising a stylet
  • FIGS. 38 and 39 illustrate further embodiments of a visualization instrument of FIG. 35;
  • FIGS. 40 and 41 are elevation and perspective views of another embodiment of a visualization instrument;
  • FIGS. 42 and 43 are partial distal and posterior elevation views of the instrument of FIGS. 40 and 41 ;
  • FIG. 44 is a lateral elevation view of the instrument of FIGS. 40 and 41 ;
  • FIG. 45 is a lateral elevation view of another embodiment of a blade of a visualization instrument.
  • FIGS. 46 to 52 are partial perspective views of features of the instrument of FIGS. 40 and 41 ; and FIGS. 53 and 54 are perspective and exploded views of an imaging system operable with a visualization instrument.
  • the visualization instrument comprises a display screen and a display screen support portion removably and electrically coupled to an insertable portion including an imaging system to acquire images of an internal space.
  • Exemplary visualization instruments include endoscopes, laryngoscopes, and stylets.
  • the display screen support portion and the display screen may be integrally constructed and may be reusable or disposable.
  • a unitary component comprising the display screen and the display screen support portion is referred to as a reusable portion denoting that in many instances it is possible, although not necessary, and perhaps desirable for economic reasons, to reuse the display screen and electronic components relating thereto.
  • the visualization instrument transfers images to a remote display.
  • the reusable portion includes a housing received in a proximal cavity of a handle coupled to the insertable portion.
  • the display device is supported by the housing.
  • the display device is supported by the housing at a fixed angle, preferably between 10 degrees and 30 degrees, and even more preferably between 12.5 degrees and 25 degrees, measured from a plane parallel to the posterior surface of the proximal end of the insertable portion.
  • the display device is hinged to enable a practitioner to adjust the display angle as the visualization instrument is inserted into the patient.
  • An anti-glare coating or layer may be provided on the display surface.
  • the insertable portion comprises a passageway or guide pathway configured to guide insertion of an elongate tubular component, e.g., an airway device, endotracheal tube and the like, and an imaging assembly disposed on or in the distal end of the insertable portion.
  • the imaging assembly captures images of the patient which are shown with the display device.
  • a distal end of the tubular component may also be visible in the images as the tubular component slides through the guide pathway towards the vocal cords. Illustrative embodiments of the reusable and insertable portions are described with reference to FIGS. 1, 15 to 30, and 40-52.
  • the insertable portion comprises an elongate arm having an imaging assembly disposed in the distal end of the arm.
  • the elongate arm is coupled to a handle adapted to receive the reusable portion.
  • the elongate arm forms part of a stylet. Illustrative embodiments of stylets are described with reference to FIGS. 31 to 39.
  • the elongate arm and the handle comprise an endoscope.
  • an imaging cap is provided.
  • the imaging cap comprises a handle adapted to removably receive the reusable portion and a camera to enable a user to capture external images. Additional data acquisition sensors may be coupled to the reusable portion or the imaging cap. An illustrative embodiment of the imaging cap and the sensors is described below with reference to FIG. 14. It should be understood that in any of the embodiments disclosed herein, the reusable portion may be adapted to removably receive the handle instead of the handle being adapted to removably receive the reusable portion.
  • the visualization instruments described above are adapted to transmit images to a remote device.
  • Exemplary embodiments of systems adapted to transmit images from the reusable portion to the remote device are described below with reference to FIGS. 12 and 13.
  • the imaging assembly may be configured to be produced at a low cost to enable the insertable portion to function as a single-use disposable device.
  • the imaging assembly comprises a support structure or camera barrel supporting a camera integrated circuit (IC), camera, or camera-chip, an illumination device, and lenses.
  • the imaging assembly may be inserted into a cavity located in the distal end of the insertable portion.
  • the imaging assembly may comprise a retention device, e.g., a pin, detent, resilient elastomeric filler, screw or any other fixation device configured to securely couple the imaging assembly to the distal cavity. Exemplary embodiments of imaging assemblies are described below with reference to FIGS. 2 to 10, 53 and 54.
  • the distal surface of the most distally located lens is coated to reduce or eliminate fogging.
  • an anti-fog coating is applied to one side of a substrate and an adhesive coating is applied to the other side of the substrate. The adhesively coated side is then adhered to the distal lens surface to attach the anti-fog coating to the lens.
  • the substrate may comprise any known combination of polymers extruded in clear thin film form. Exemplary polymers include polycarbonate, polyester based polymers, polystyrene, polyethylene, polypropylene, and other transparent polymers.
  • a removable backing may be applied to the adhesively coated thin film to facilitate processing.
  • a cover plate seals the cavity and prevents lens fogging.
  • the cover plate includes an anti-fog layer or coating on its external surface.
  • the insertable portion may be packaged with a swab comprising H202 or other antifog coating agents, such that the swab wipes the lens when the insertable portion is withdrawn from the packaging.
  • the packaging may comprise a polymeric strip with a swab attached thereto.
  • the adhesively and anti-fog coated substrate may be adhered to the cover plate.
  • defogging is achieved by coupling a heating element to the distal lens or to the cover plate.
  • the heating element is coupled to the power leads of an illumination device, which in one embodiment is a white light emitting diode (LED), which is driven above its nominal illumination power level to generate heat with the excess power.
  • an LED conducting 150 milliamps coupled to a thermal element heats the distal lens to 45 degrees Celsius in about one minute.
  • powering the illumination device and the heating element from the same power conductors reduces costs by eliminating additional connectors.
  • a commercially available camera such as a camera used in cellular phones and personal digital assistants (PDAs), comprises an image sensor and electronic components configured to convert pixel data captured by the image sensor to image data, e.g., digital images, and to output streams of digital images in a standard format.
  • Image sensors may comprise CCD, CMOS sensors with active or passive pixels, or other photo sensors well known in the art.
  • Operational signals are provided to the image sensor to control its operation.
  • the cost of the disposable portion is reduced further by locating the components for providing the operational signals in the reusable portion.
  • a display driver configured to receive the standard image stream and drive the display device accordingly, also comprises the components necessary to control the camera.
  • the input/output signals are provided by signal conductors, e.g., a multi- conductor flexible ribbon.
  • a control component is provided intermediate the camera and the display driver to transform the standard image stream into a differently structured image stream conforming to the size of the display device and/or transforming the standard image stream to a different format corresponding to the format required by the display driver.
  • the operational circuits are integrated with the camera, which is configured to output a preconfigured image stream upon the application of power, and which is usable directly by the display device.
  • control components supported by the reusable portion housing provide control signals to the camera to define the size of the images output by the camera.
  • the image stream output by the camera is transmitted wirelessly by a wireless transmitter located in the insertion portion.
  • the wireless transmitter is integrated with the camera.
  • the wireless transmitter is positioned in the proximal end of the insertable portion or in the distal cavity.
  • the camera forms a digital image stream using radiation having wavelengths ranging between 10 nanometers and 14,000 nanometers. The wavelengths include the visible light, ultraviolet, and infrared spectrums.
  • the camera is an infrared camera.
  • the camera is an ultraviolet light camera.
  • the camera is a visible light camera.
  • FIG. 1 is a plan view of an intubation instrument 10 comprising a reusable portion 12 having a display device 110 pivotally coupled via a hinge 22 to a housing 108 and a blade 14.
  • Blade 14 comprises a handle 30 in a proximal end thereof spaced apart from an insertable portion located at a distal end.
  • An imaging assembly illustratively imaging assembly 100, is located at the distal end.
  • the term blade denotes a single part integrally combining handle 30 and an insertable portion defined by a plurality of walls as described below.
  • the handle and the insertable portion are distinct parts that are removably attachable.
  • Display device 110 includes a viewing screen 112. Hinge 22 may comprise a friction hinge or may include an adjustment knob to lock display device 110 in a desired position.
  • Handle 30 comprises a proximal cavity 32 for receiving housing 108 and coupling reusable portion 12 to blade 14.
  • the insertable portion of blade 14 comprises an elongate passageway, illustratively passageway 36, designed to guide insertion of a catheter, intubation tube and the like (not shown) into the larynx of a patient.
  • Housing 108 includes batteries and electronic circuits, described in detail with reference to FIG. 11 , to receive image signals from imaging assembly 100 via a conductor 102 which comprises a plurality of signal conductors and may comprise power and control conductors as well.
  • conductor 102 may be at least partially replaced with a wireless transmitter and receiver coupling imaging assembly 100 and housing 108.
  • Housing 108 may comprise a control component 106 and a connector 104 adapted to couple with a connector 105 of blade 14 to transfer images thereto.
  • imaging assembly 100 for exemplary purposes. Unless stated differently below, reference to imaging assembly 100 is representative and non-limiting. Any one of imaging assemblies 300, 350, 380, 400 and variations thereof, may be used instead.
  • Passageway 36 is defined by the interior surfaces of a medial wall 44, an anterior wall 34, a posterior wall 24, and a lateral wall 50 which in this embodiment comprises a wall portion 54.
  • Each wall has an interior surface which is the surface adjacent to passageway 36.
  • a surface 42 is the interior surface of medial wall 44.
  • Surfaces 38 and 40 are the external surfaces of anterior wall 34 and posterior wall 24, respectively.
  • wall 50 may extend uninterrupted from the proximal to the distal end of blade 14 or may be configured with more or fewer wall portions.
  • Passageway 36 may have a cross-section designed to be operable with endotracheal tubes having internal diameters ranging from 2.0 to 10.0 mm, and more preferably between 5.0 and 8.0 mm.
  • Wall 50 may also include a wall portion 56 configured to confine the volume of passageway 36 further than as confined by wall portion 54.
  • a distal tip 46 extends wall 34 beyond the end of medial wall 44 and comprises a surface 70 which is configured to contact the patient to move the epiglottis and expose the vocal cords.
  • FIG. 2 is a cross-sectional perspective view of imaging assembly 100.
  • Imaging assembly 100 comprises a plurality of lenses supported by a camera barrel 200.
  • a heating element 230 supports an illumination device 220 which, as shown, comprises an LED powered by connectors 216 and 218. The LED may be over-driven to provide power in excess of that which is necessary to produce the maximum illumination output of the device. The excess power generates heat which is transferred to heating element 230 and a distal lens 210 to reduce fogging.
  • Camera barrel 200 also supports a lens 212 and a lens 214. Images corresponding to spaces viewable by distal lens 210 are sensed by a camera 202 which comprises a sensing array and circuitry to output an image stream comprising pixel data.
  • a support prong 236 is provided proximally adjacent to camera 202 to secure under pressure imaging assembly 100 to blade 14.
  • FIG. 3 is a partial perspective view of blade 14.
  • the distal end of blade 14 comprises passageway 36 on one side of medial wall 44 and imaging assembly 100 inserted in a distal cavity on the opposite side.
  • FIG. 4 illustrates a viewing area 240 oriented perpendicular to distal surface 226 of distal lens 210 with a center line 250 passing through the center of viewing area 240 at the crossing of a medial/lateral (M/L) center line 242 and an anterior/posterior (A/P) center line 244 indicating the direction of view (DOV) of camera 202. It is desirable to view the insertion of the endotracheal tube through the vocal cords.
  • imaging assembly 100 may be angled with respect to medial wall 44 to obtain an angled DOV.
  • distal lens 210 and/or lenses 212 and 214 are angled with respect to medial wall 44 and/or each other to provide an angled DOV while retaining imaging assembly 100 parallel to medial wall 44.
  • lenses may be angled to enable placing imaging assembly 100 in a smaller cavity thereby reducing the size and cost of blade 14 even further.
  • center line 250 and imaging assembly 100 are oriented parallel to surface 70 and between 10 degrees and 25 degrees towards passageway 36 relative to medial wall 44.
  • blade 14 comprises an anterior and a posterior part which may be injection molded and thereafter joined together.
  • imaging features are provided on a surface of the insertion portion to indicate its orientation relative to the space viewed by the camera as observed in the images.
  • the imaging feature is a landmark, illustratively ridge 48.
  • An image object corresponding to ridge 48 is displayed in the image stream and, further, the position and shape of the image object are adjusted to reflect the angular orientation of imaging assembly 100 relative to center line 250. For example, if imaging assembly 100 is oriented at 15 degrees, the image object may be extracted from the image and replaced at a 15 degree offset.
  • a "landing strip”, scalloped edge, a name or label, an arrow, line or other orientation demarking symbol is provided near ridge 48 which, when viewed in the display device, enable a practitioner to easily determine how to orient intubation instrument 10 to direct the endotracheal tube toward the vocal cords which are visible in the image.
  • gages, bar graphs, compasses, and other digitally generated orientation images are provided in the images to indicate the direction of movement of the instrument.
  • the orientation images may be generated by identifying vocal cord landmarks in the image stream, comparing the landmarks to the image object, e.g., the image of ridge 48, and then determining the amount of change required in each axis of motion to align the tube in the passageway with the vocal cords.
  • FIGS. 5 to 10 illustrate additional embodiments of imaging assemblies.
  • FIGS. 5 and 6 are perspective views of an imaging assembly 300.
  • imaging assembly 300 is similar to imaging assembly 100.
  • Illumination device 220 is powered by conductors 216 and 218 which pass through electrically insulating rings 222 and 224 which are thermally conductive.
  • a plurality of prongs 304 extend proximally from a camera barrel 306.
  • a circuit board including camera 202 comprises a plurality of notches configured to fit around prongs 304.
  • a pressure plate 302 comprising tabs 308, 310 and 312 is configured to press-fit against prongs 304 to secure camera 202 against camera barrel 306.
  • FIGS. 7 and 8 are cross-sectional perspective and plan views of an imaging assembly 350 comprising a heating element 352 having an orifice 354, and a cover 370 having a distal surface 372. Heating element 352 supports illumination device 220.
  • Camera barrel 200 shown in a cavity 101, also supports camera 202 and is supported by support element 240 between the anterior and the posterior walls of the insertable portion.
  • Heating element 352 heats cover 370 to prevent fogging or to defog.
  • a surface 372 may be covered with an anti-fog coating or layer.
  • a portion of distal tip 46 is shown in FIG. 8 illustrating a portion of surface 71 in which ridge 48 or another "landing strip" landmark may be provided for viewing by the imaging assembly.
  • FIGS. 9 and 10 are perspective views of an imaging assembly 380.
  • Imaging assembly 380 comprises a camera barrel 376 which supports distal lens 210, lens 212, lens 214, and camera 202.
  • Camera barrel 376 is similar to camera barrel 306 since both have prongs adapted to receive a pressure plate which may be used to hold the camera in place.
  • Camera barrel 376 is supported by a camera holder 384 which comprises a distal wall 382 and a support structure 386 having a cavity receiving illumination device 220 therein.
  • a distal wall 382 comprises a distal face 390 and an aperture 392.
  • An anti-fog film or layer coated with antifogging composition may be attached to distal face 390.
  • distal wall 382 may comprise a translucent or transparent material without aperture 392, attachable to camera holder 384. At least a portion of camera holder 384 fits within the distal cavity of the insertable portion of the visualization instrument. It may snap-fit into place or be adhesively bonded to ensure retainment therein. Camera holder 384 may be attached to the insertable portion or imaging cap with adhesive, heat stakes, ultrasonic welds, tongue-and-groove arrangement, or any other suitable means. Similar attachment methods may be used to attach an anti-fog cover to the insertable portion or imaging cap.
  • the prongs extend from the proximal end of camera holder 384 rather than from the proximal end of camera barrel 376.
  • Camera barrel 376 slides into a cavity in the camera holder from the proximal end of the camera holder.
  • the circuit board supporting the camera is attached.
  • the pressure plate is attached last.
  • the pressure plate engages the prongs of the camera holder thereby holding the camera barrel and the camera in place.
  • the camera can be mounted onto the camera barrel in any other manner.
  • the size of the circuit board holding the camera can be reduced since it no longer has to engage the prongs.
  • the camera can be supported by any other means alternative to a circuit board.
  • FIG. 11 is a block diagram of electronic components of an embodiment of a visualization device.
  • the device comprises an imaging assembly, illustratively imaging assembly 100, disposed in an insertable portion or imaging cap, illustratively a support 400, and electronically coupled to housing 108 by conductor 102 and connectors 104 and 105.
  • a control component 430 comprises one or more circuit boards containing electronic components such as a chip 440, illustratively a field programmable gate array (FPGA), a chip 442, illustratively a NTSC/S-video conversion IC, and optionally a video processing chip and memory, illustratively a video chip 444 and a memory chip 446, respectively.
  • Control component 430 controls the operation of camera 202 by providing operational signals.
  • control component 430 may convert the first image stream to a format suitable for an external display and for remote transmission.
  • control component 430 may sample images to reduce the amount of information transmitted to a remote device.
  • control component 430 may provide operational signals for display device 110. Such signal may also be generated by components incorporated in display device 110.
  • the camera supplies a first image stream which is
  • the resolution of the camera is 640x480 (VGA) pixels per frame. There are 30 frames per second.
  • the data format is 2 bytes per pixel (i.e., the so called YUV (4:2:2) format). Intensity Y is specified at every pixel, color information U or V every second time.
  • a FPGA is programmed to convert the data stream to a second image stream with a format compatible with the display device 110 which comprises an OLED display.
  • the camera data is provided to the video processing chip, and the video processing chip, after adding information such as colors, symbols or other information, outputs a video stream to the FPGA for the FPGA to convert to the VGA format.
  • the display resolution is 320X240 (QVGA) pixels per frame, 30 frames per second.
  • the data format is RGB (6, 6, 6). This format uses a 6-bit value for red, a 6-bit value for green, and a 6-bit value for blue.
  • RGB (6, 6, 6) This format uses a 6-bit value for red, a 6-bit value for green, and a 6-bit value for blue.
  • the FPGA implements this conversion. It also performs the conversion (e.g. dropping every second pixel) to convert from VGA to QVGA resolution.
  • the FPGA also provides signals for writing the converted data stream into the OLED display's memory/buffer.
  • the FPGA also sends the camera data to the NTSC/S-video conversion chip.
  • the video chip having the video processor is capable of accepting the VGA, YUV format almost directly.
  • the FPGA provides the necessary operational signals to load the video chip's memory.
  • the FPGA also verifies the identity of the camera against a database of approved cameras.
  • the FPGA extracts camera information from the camera, for example a built-in camera ID or a programmable camera ID, and checks the identity against an approved list which is periodically updated. If the camera identification is not on the approved list, the FPGA does not convert the first image stream or, optionally, inserts a warning into the second image stream to alert a practitioner that the insertable portion is not an approved device. Approval may be desirable to ensure the insertable portion meets quality specifications.
  • a program and data structures are embedded in the memory.
  • the program comprises a plurality of processing sequences operable by the processor to interact with data structures containing data.
  • Data may include parameters such as video instructions, security feature instructions, landmark patterns and the like.
  • the reusable portion may comprise temperature and humidity sensors, and the data may thus include status information, e.g., battery charge level and number of uses, and environmental information, e.g. temperature and humidity levels.
  • status information e.g., battery charge level and number of uses
  • environmental information e.g. temperature and humidity levels.
  • Such data may be displayed by the display device or transmitted to a remote device to assist the practitioner. Suitable alarm functions may be implemented if the environmental or battery information falls outside predetermined ranges.
  • a first processing sequence examines the first image stream and identifies a plurality of landmarks corresponding to features of the internal space and orientation features on the insertable portion. Another processing sequence transforms the first image stream by coloring the space landmarks. A third processing sequence transforms the first image stream by coloring the orientation features.
  • the orientation feature is a viewable marking in the distal surface of distal tip 46 or an internal surface of wall 34 and the space landmark corresponds to the shape of the vocal cords. The first image stream is thus transformed to enhance the practitioner's ability to align the intubation instrument with the vocal cords.
  • power saving features are provided to extend the battery life of the reusable portion of the visualization instrument. Power is consumed by illumination, image display, image stream generation, and conversion of the image stream from the image sensor to the display device.
  • the reusable portion disables the display device if it detects the absence of the camera (a disengaged period). Enablement of the display device during disengaged periods may cause video display noise and frozen images which are prevented if the display is disabled during those periods.
  • the display device is also disabled during monitoring periods and automatically enabled if monitoring generates an alert, e.g., low battery, defective connection, high humidity and the like.
  • an inactive mode may be set which disables monitoring and thereby also disables the display device.
  • the monitoring or the inactive mode may be determined based on the engagement or disengagement of the imaging cap or the insertable portion.
  • the camera may be disabled during the monitoring and inactive periods.
  • enabling the camera only under predetermined conditions, including engagement not only saves power, but also minimizes the damage that may be caused by hot-swapping the reusable and insertable portions.
  • Table 1 summarizes a multiplicity of operating modes of the viewing instrument based upon the state of its components as described above. However, the modes described herein are exemplary, and additional or alternative criteria may be used to determine the same or more operating modes.
  • the visualization instrument either or both the reusable and insertable portions, comprise a motion sensor.
  • exemplary motion sensors include micro-electromechanical sensors (MEMS), e.g., inertial sensors, gyroscopes, accelerometers, rate sensors, and inclinometers, configured to detect absence of motion. If absence of motion during a predetermined time period is detected, all functions except motion detection may be shut down to save power, thus placing the instrument in sleep mode. Once motion is detected during sleep mode, all functions may be reestablished without performing start-up routines to quickly enable full functionality.
  • MEMS micro-electromechanical sensors
  • the insertable portion When the insertable portion is intended to be a single-use disposable unit, potential re- usability of the insertable portion may be of concern to practitioners, hospital administrators and others responsible for patient safety.
  • the reusable portion may disable or not enable the insertable portion if the insertable portion has been previously used, thereby alleviating or eliminating the concern.
  • One exemplary feature for preventing repeated uses is described herein as a single-use fuse.
  • a single-use fuse feature detects an irreversible change to the insertable portion or the handle.
  • Another exemplary feature is status tracking. Status tracking enables an insertion portion to be used once and then discarded, e.g. a disposable insertion portion, and also enables a permitted number of uses.
  • the insertable portion comprises an identification feature to track the number of uses.
  • the reusable portion or the blade can be configured to detect the identification feature.
  • the reusable portion or an associated database and processing system can track uses.
  • reusable blades and insertion portions can be used with multiple reusable portions so long as the use limit has not been reached.
  • the program may indicate the status of the insertable portion or the blade with the display device.
  • the identification information may be encrypted to prevent tampering.
  • An anti-tampering integrated circuit may be coupled to the conductor in the insertable portion.
  • a tab is provided which is deformed, e.g., broken, when the insertable portion is coupled to the reusable portion or when it is disengaged.
  • the reusable portion detects the broken tab when an attempt is made to re -use the insertable portion.
  • the housing may contain an angled protrusion which enables a tab in the proximal cavity of the handle to pass over it.
  • the angled protrusion tears the tab.
  • the reusable portion detects the deformed tab.
  • Exemplary detectors include limit switches, optical sensors, pressure sensors, and the like. An alterable mechanical key/slot may be used as well.
  • a film or coating that changes color after being exposed to the environment is provided in or on the insertable portion or the blade.
  • the color change is irreversible, for example by an irreversible chemical reaction, UV activated cross-linking of polymers and the like
  • the feature is a single-use feature.
  • the feature may be a status tracking feature if the color change is reversible.
  • software may disable the insertable portion or changes its status. The color may be detected with a detector in the housing or in the first image stream.
  • Environmental variables include, without limitation, air, moisture, e.g. saliva, pressure, e.g. touch or heat, and other suitable variables.
  • Sensors may be provided in the insertable portion to detect the environmental variables.
  • MEMS IC's may be provided on the external surfaces of the insertable portion.
  • the environmental variable may have to be maintained in the changed state for a predetermined amount of time. For example, temperature may have to be greater than 75 degrees for one minute to trigger the status change.
  • the insertable portion is encoded by an identification component such as an electronic identifier (ID) or a unique feature detectable in the first image stream.
  • Electronic ID features may comprise, without limitation, an RFID passive or active transmitter, a camera ID, a programmable ID located in an IC in the insertable portion, and the like.
  • the distally-facing surface of the glottis-engaging protrusion located at the distal end of the insertable portion is encoded with a pattern viewable by the image sensor.
  • the software detects the pattern in the image stream.
  • the pattern may comprise holographic keys molded or engraved in the distally-facing surface and may be designed to change during use so that a subsequent use may be detected.
  • the identification component comprises a physical mark in the insertable portion which is sensed by the reusable portion to determine first-use or re-use.
  • exemplary identification components include barcodes, luminescence marks, color keys, holographic keys, magnetic keys, and the like.
  • Sensors adapted to sense corresponding physical marks include microbarcode readers having high magnification objectives to enable minimization of the size of the physical mark, optical sensors and/or detectors, optical sensors or detectors sensitive to holographic diffraction patterns, Hall effect sensors, pressure sensors or detectors, contact switches, and other suitable sensors. Combinations of physical marks are also envisioned, such as a key/slot combined with magnetic or optical marks.
  • the identification component may also identify the type, make and model of the insertable portion, display, and/or record that information, including date and GPS stamp, to a second image stream produced for forensic use.
  • the control component adds the forensic information to the first image stream to generate the second image stream.
  • the forensic data is stored and transmitted separately from the image stream.
  • fluid management lumens are provided.
  • the insertable portion includes a lumen for providing or withdrawing fluids to or from the patient.
  • the lumen is molded opposite the guide pathway.
  • a plurality of small channels are included in the molded parts of the insertable portion with distal apertures located around the imaging assembly so as to not increase the size of the insertable portion.
  • the lumen or the channels are connected to external tubes to transfer fluids, e.g. medications or bodily fluids, therethrough to and/or from an external fluid reservoir.
  • Exemplary fluids provided to the patient include liquids, air, and gases.
  • the handle comprises soft material to enhance grasping comfort.
  • the insertion portion comprises a resilient component to reduce pressure on the teeth of the patient.
  • a blade comprises a first material which imparts structure and rigidity to the insertable portion and a second material coupled to the first material to provide a soft and resilient feel.
  • the second material extends, at least partially, over the surface of the handle.
  • the second material is textured to increase grasping comfort.
  • sensors are placed beneath the second material to detect pressure and trigger status changes.
  • a thin layer of elastomeric material may be provided over surface 40 and extend to the posterior side of handle 30.
  • the second material may also extend over the surface of wall 50.
  • the second material may be adhesively secured to the first material.
  • the first material has a first modulus and the second material has a second modulus which is lower than the first modulus.
  • walls 34 and 44 comprise the first material and wall portion 54 comprises the second material.
  • this embodiment provides flexibility to wall portion 54 which facilitates removal of the endotracheal tube from passageway 36.
  • Exemplary visualization systems are described with reference to FIGS. 12 and 13. Represented therein are visualization instruments, illustratively intubation instruments 460 and 480, a local processing system, illustratively computer 462, and remote processing systems, illustratively computer 476 and portable device 488.
  • Portable device 488 may comprise a PDA such as a Blackberry(TM), IPOD(TM) and portable phone with viewable screen 490.
  • local and remote processing systems it is meant devices capable of performing programmed instructions accessible in a storage device such as memory, compact disk and the like.
  • remote processing system it is meant a processing system which is not necessary to generate images with the visualization device but which is provided to view images obtained with the visualization device.
  • FIG. 12 illustrates a system in which a visualization device directly transmits video images electronically to computer 462.
  • the visualization device may transmit through hardwired or wireless communication links.
  • a wireless signal 464 is illustrated.
  • the communication link may comprise a physical connector, BLUETOOTH(TM) device, cellular modem, IR or other communication link.
  • Computer 462 may re-transmit the video images through a modem/router 470 to the internet, represented by a cloud 472, and thereafter to a modem/router 474 and remote computer 476.
  • FIG. 13 illustrates a visualization device transmitting video images to a communications satellite 484 for retransmission to a processing system 488.
  • Signals 482 and 486 are cellular signals.
  • signal 464 may be received by modem/router 470 without a local processing system.
  • intubation device 480 may transmit wirelessly to a local processing system and the local processing system may use cellular communications to reach a remote processing system.
  • a local processing system advantageously enables use of low power wireless transmission to save the power of the intubation device.
  • the reusable portion transmits an image stream to a cellular phone
  • the cellular phone transmits the image stream to the remote computer
  • the remote computer receives the image stream, receives input from a remote practitioner, and transmits the same back to the cellular phone
  • the cellular phone, the visualization instrument either, or both, provides the feedback to the local practitioner.
  • Commonly known cellular phones and PDAs comprise all the necessary elements such as displays, microphones, keyboards, and communications components to simultaneously display images and transmit text or audio signals.
  • the remote two-directional link between the visualization instrument and the remote device may be used for teaching and forensic purposes in addition to providing feedback to the practitioner performing the intubation.
  • Remote feedback enables a practitioner observing remotely to provide suggestions and other information to the local practitioner.
  • a medical technician may perform the intubation in a battlefield or accident scene as directed by a physician at a hospital.
  • the remote feedback may be text, image, audio or any other type of feedback.
  • Visual feedback may be provided in the display device through the electronic communication link between the visualization device and the local computer.
  • the local computer or the reusable portion may also include speakers to aurally communicate the remote feedback to the practitioner.
  • the reusable portion or the local computer provides feedback to the practitioner, the source of the feedback being generated with the remote processing system. Images generated with visualization device may be viewed by a practitioner in the display device of the reusable portion, and in the local and remote processing systems simultaneously. The images displayed by each device may be the same or different.
  • Local computer 462 may incorporate display features suitable to local use while remote computer 476 or portable device 488 may incorporate features suitable for remote use or compatible with their processing capabilities.
  • FIGS. 12 and 13 are leveraged with the addition of another component of a visualization system, illustratively imaging cap 492, comprising imaging assembly 100, illustrated in FIG. 14.
  • a medical technician may carry reusable portion 12, blade 14, and imaging cap 492. After intubating the patient, the medical technician may remove blade 14 and replace it with imaging cap 492 with which he/she can then scan the patient to enable remote viewing of the patient's wounds.
  • a multisensor adapter is also provided, illustratively multisensory adapter 494 having sensors SI , S2 and S3, which may be connected to a port of reusable portion 12 or a communications port provided in imaging cap 492.
  • Sensors SI , S2 and S3 may comprise, for example, a temperature sensor, a blood pressure sensor, and a cardiac rhythm sensor.
  • Either reusable portion 12 or imaging cap 492 may comprise processing capabilities to sample sensor signals which are then transmitted to the local or remote processing system.
  • the sensor signals may also be processed by the reusable portion 12 which then display indications corresponding to the sensor signals such as blood pressure alarms and the like.
  • the local computer collects patient information and transmits the information to the reusable portion.
  • the reusable portion displays on-screen indicators in the display device to alert the practitioner without requiring the practitioner to look away to receive the same information.
  • On-screen information may include vital signs, C02 levels in the air exhaled by the patient, temperature, oxygen saturation, pulse, blood pressure and any other patient vital signs.
  • On-screen information may also include corresponding indicators such as alarms, color- coded thresholds indicating that the vital signs are approaching concerning levels, and alarms/indicators corresponding to the performance of equipment such as ventilators.
  • the reusable portion displays on-screen information and indicators generated by the reusable portion.
  • Such information may include parameters extracted from the first image stream, indicators from comparisons of landmarks in the first image stream to the expected location of the landmarks relative to the insertable portion, and other data which the reusable portion may collect with sensors such as those attached to the communications port.
  • the visualization system is well suited for emergency, rescue and military operations.
  • communications gear typically used in such operations are provided with a cradle in which the reusable portion is stored.
  • the cradle comprises a charging housing to re-charge batteries in the reusable portion.
  • the cradle may comprise UV lights to sterilize the reusable portion, since the reusable portion may be used several times before the rescue team or military unit returns to base.
  • the reusable portion can be designed to communicate locally only and thereby its size and weight may be minimized.
  • the cradle may also sterilize a reposable portion.
  • the use of such cradles is not limited to rescue and military operations. Cradles may be used in any environment in which the reusable portion can be used.
  • Intubation instrument 500 comprises reusable portion 12 having display device 110 pivotably coupled via hinge 22 to housing 108 and blade 514 having handle 30 in a proximal end spaced apart from a distal end having distal cavity 568 in which imaging assembly 100 is located.
  • Blade 514 comprises passageway 536 which is designed to guide insertion of a catheter into the larynx of a patient. Passageway 536 is defined by interior surface 542 of medial wall 44 and interior surface 538 of anterior wall 534.
  • Blade 514 further comprises atraumatic distal tip 546 having surface 570 and protrusion 552 disposed across its distal edge 554 (shown in FIG. 18).
  • atraumatic it is meant a feature without surfaces generally known to cause trauma such as sharp edges and tightly radiused protrusions.
  • Distal tip 546 functions similarly to distal tip 46.
  • Edges 556 and 558 are angled so that distal edge 554 is narrower than the width of the insertable portion. Of course, the width of the insertable portion can equal the width of distal edge 554 in which case edges 556 and 558 will coextend with walls 534 and 560.
  • Surface 570 may comprise any smooth surface or any textured surface such as any one of surfaces 700, 710, 730 or 740 (shown in FIGS.
  • Atraumatic wall portion 550 is also included to reduce the sensory effect caused by blade 514 as it is moved laterally to displace the tongue of the patient.
  • Wall portion 550 partially extends wall 560 along the edge of distal tip 546.
  • Medial wall 44 defines one side of the distal cavity.
  • a distal cavity wall may extend past the end of the distal cavity towards and until it reaches distal tip 546.
  • the portion of the wall opposite medial wall 44 which extends beyond the opening of the distal cavity is denoted by numeral 550.
  • Wall portion 550 may extend from posterior surface 40 or any point intermediate posterior surface 40 and interior wall 538 as shown in FIGS. 19 and 20 (see wall portions 550A and 550B).
  • Distal tip 546 may include the protrusion denoted by numeral 552 which is provided to reduce trauma.
  • passageway 536 is partially constrained at the distal end of the insertable portion by an extension portion of posterior wall 24 such that an internal surface of the extension portion of posterior wall 24 faces interior surface 538.
  • the extension portion may be provided integrally with wall 24, for example as a single extruded part, or may be attached to the insertable portion, for example by providing a layer that can be adhesively bonded to surface 40 of wall 24.
  • the extension portion may comprise an elastomeric composition, as described above, which resiliently allows removal of the insertable portion after an endotracheal tube is inserted through the passageway into the larynx of the patient.
  • extension portion may be similar to those of wall 54 shown in FIG. 1. However, as stated herein and unlike wall 54, the extension portion extends parallel from wall 24 and not perpendicularly to it (i.e., does not extend as in FIG. 1).
  • the extension portion, medial wall 44, and anterior wall 34 form a C-channel coextensive with the distal portion of passageway 36.
  • FIGS. 17 to 20 illustrate various adaptations of distal tip 546 having surface 570 (shown in FIG. 15).
  • Surface 570 is substantially flat.
  • the surface is concave to increase the flexural strength of distal tips 46 and 546.
  • the lateral borders of surface 570 are curved sufficiently to increase flexural strength by about 10%. Flexural strength is further increased by the addition of ridge 48. Flexural strength means the ability of the distal tip to withstand a force applied to surface 570 without bending. Flexural strength is desirable to resist the force applied by the patient's glottis as the instrument is used to displace the glottis.
  • distal tip 546 the lateral edges of distal tip 546, denoted by numerals 556 and 558, are angled with respect to the center line of blade 514 so as to reduce the possibility of causing a traumatic experience for the patient.
  • the angles are sufficient to reduce the length of edge 554 to the width of an average glottis of an average patient.
  • the width of edge 554 may be wider in the case of devices made for use with adult patients and narrower for devices made for use with infants.
  • wall height may vary to form a shallow or steep angle with reference to surface 40.
  • wall 550 reaches surface 40 thereby minimizing any edge effects which the patient might detect.
  • the height of walls 550, 550A and 550B is a result of a compromise between the desire to reduce trauma, increase flexural strength and increase the field of view of insertable portion 514.
  • FIGS. 21 and 22 are elevation views of an exemplary blade, denoted by numeral 600.
  • Blade 600 is similar to blade 14 except that the anterior wall of passageway 36 comprises wall portions 604 and 610 rather than a continuous wall 34. Wall portions 602 and 54 comprise the lateral wall of passageway 36. Distal cavity 101 is shown opposite passageway 36.
  • FIGS. 23 and 24 are elevation views of another exemplary blade, denoted by numeral 640, comprising an anterior wall including wall portion 654 rather than a continuous wall 34. Wall portions 644 and 54 comprise the lateral wall of passageway 36.
  • the cross-sectional area of passageway 36 may be uniform or may vary. In one embodiment, the cross-sectional area of passageway 36 is smaller at the distal end of the insertable portion than at its proximal end.
  • One or both of walls 24 and 54, or portions thereof, may be formed at least in part of a composition comprising resilient material, e.g., thermoset or thermoplastic elastomeric material, buta-N (Nitrile) (NBR), EPDM, Silicone, Neoprene, block copolymers (SIS, SBS, SEBS, SEPS), etc., configured to enable the smaller cross-sectional area to expand when a tube is introduced through passageway 36 having a diameter which is larger than the cross-sectional area.
  • resilient material e.g., thermoset or thermoplastic elastomeric material, buta-N (Nitrile) (NBR), EPDM, Silicone, Neoprene, block copolymers (SIS, SBS, SEBS, SEPS), etc.
  • a resilient distal cross-sectional area enables the insertion portion to snugly receive tubes of different diameters which are pressed against the anterior wall by the resilient material and are thereby placed by the resilient material adjacent to distal tip 46.
  • a resilient tab is positioned in the interior surface of the posterior wall and/or on the interior surface of the lateral wall, at the distal end of the insertion portion. The resilient tab is designed to push the endotracheal tube passing through passageway 36 towards distal tip 46 regardless of the tube diameter. Thus, even when the tube diameter is substantially smaller than the cross-sectional area of the passageway, the tab(s) push(es) the endotracheal tube into the proper position for insertion through the vocal cords.
  • FIGS. 25 to 28 illustrate exemplary distal tips 700, 710, 730 and 740 exhibiting textured surfaces.
  • the textured surfaces may be applied to any of the anterior surfaces disclosed herein including surfaces 70 and 570.
  • Textured surfaces may exhibit a regulated pattern, as shown in FIGS. 25-28, and may exhibit an unregulated, or random, pattern.
  • the regulated pattern may be longitudinally aligned, as exemplified by FIG. 25, or transversely aligned, as exemplified by FIG. 27.
  • Exemplary textured surfaces include roughness, bumps, ridges, protrusions or irregularities which have sufficiently pronounced three-dimensional characteristics so as to be visible without the aid of optical devices and to be distinguishable by touch.
  • FIG. 25 depicts distal tip 700 comprising a plurality of elongate ridges, illustratively ridges 702, protruding therefrom.
  • Ridges 702 provided distal tip 700 with a surface that has two coefficients of friction depending on the measurement direction. In the longitudinal direction, the coefficient of friction may be lower than the coefficient of friction measured in a direction perpendicular to ridges 702.
  • two coefficients of friction may facilitate motion in the longitudinal direction of distal tip 700 against the patient's glottis and prevent lateral motion or displacement of the glottis.
  • FIG. 26 is similarly designed and depicts distal tip 710 comprising a plurality of protrusions 722 designed to calibrate the tension between ridges 702 and the glottis when the tip pushes against the glottis.
  • Ridges 702 and protrusions 722 may be sized and configured to produce a desired sensation in the patient.
  • the height, shape, and cross-sectional area of protrusions 722, as well as the separation between contiguous protrusions, may be varied.
  • two coefficients of friction may be obtained and protrusions 722 may be utilized to control the difference between them.
  • FIG. 27 depicts distal tip 730 comprising a plurality of elongate ridges 732 protruding therefrom disposed perpendicularly to wall 44.
  • the ridges are configured to prevent longitudinal displacement of the glottis after distal tip 730 contacts the glottis.
  • Protrusions may be provided between the ridges similarly as those provided in FIG. 26.
  • the ridges may enable displacement of the glottis with application of less force than would be required if the ridges were not present.
  • distal tip 740 comprising a regulated pattern exemplified by pattern 742 comprising a multitude of four-sided protrusions which may provide the benefits disclosed hereinabove with respect to contact with a patient's glottis.
  • a criss-cross pattern of ridges defines four-sided cavities.
  • the angles between the sides, and the lengths of the sides, of the four-sided protrusions or cavities, as the case might be, are varied to form at least one of squares, rectangles and diamonds.
  • the protrusions or cavities are oval or round.
  • distal tip 746 extending from distal tip 46 to provide an atraumatic edge, illustratively edge 744, thereto.
  • the atraumatic protrusion is also shown in FIGS. 15 to 17 as protrusion 552.
  • FIGS. 29 and 30 illustrate an embodiment of a reusable portion, denoted by numeral 800, with a display device provided at a fixed angle.
  • Reusable portion 800 comprises a housing 802 and a neck 804 coupling housing 802 to viewable screen 112.
  • a plurality of push-buttons 806 is provided to control the intubation instrument. Exemplary push-buttons are provided to activate the camera, change display characteristics and wirelessly transmit an image stream or other data to an external device.
  • Line 808 depicts a plane parallel to housing 802 and line 810 depicts the fixed angle at which viewable screen 112 is oriented relative to line 808.
  • the practitioner stands proximally to the head of the patient facing towards the patient's feet. As the intubation device is inserted into the patient, viewable screen 112 faces the practitioner so that the practitioner may look at the display and into the oral cavity of the patient by merely shifting his/her gaze.
  • FIG. 31 is a plan view of another visualization instrument, denoted by numeral 900.
  • Intubation instrument 900 is configured to receive an endotracheal tube over an insertable portion, illustratively stylet 902, which is removably coupled to an adapter 901 configured to connect stylet 902 and housing 108.
  • Adapter 901 comprises a conductor 906 electrically coupling connectors 904 and 905.
  • the diameter of stylet 902 may range between 2 mm and 7 mm, preferably between 3 mm and 6 mm.
  • Stylet 902 may comprise a malleable material adapted to retain a longitudinal shape and facilitate introduction of imaging assembly 100 into the cavity of interest. Additional components may be used with the reusable portion such as a flexible catheter and a catheter having a tip controllable with a steerable mechanism.
  • FIGS. 32 to 39 illustrate a further embodiment of a visualization instrument, depicted by numeral 1000, comprising a reusable portion 1002 and a stylet 1004.
  • Reusable portion 1002 includes a housing 1008 coupled to a display device 1020 having a viewable screen 1012.
  • Display device 1020 is supported by a support portion 1018.
  • Display device 1020 also includes an illumination device, illustratively LED 1016, suitable for indicating a power-on status or other suitable indications such as alarms.
  • LED 1016 blinks or flashes to indicate a condition which benefits persons not able to distinguish LED colors. Exemplary conditions include power-on, disablement due to uses exceeding a permitted number of uses, low battery, and other suitable conditions.
  • a power-on button (not shown) may be provided in the side of display device 1020 opposite viewable screen 1012.
  • the power-on button may be covered with resilient material (disclosed in detail further below with reference to FIGS. 46 and 47), e.g. elastomeric polymer or rubber, to seal the power-on button and enhance the ability to clean the reusable portion.
  • Stylet 1004 comprises a handle 1030 defining cavity 1032 configured to receive reusable portion 1002 and stylet arm 1100 which supports imaging assembly 100.
  • a silicone gasket comprising magnetic particles, and a magnetically attractive material, e.g.
  • body portion 1008 and support portion 1018 are provided on body portion 1008 and support portion 1018, for example at the joint between body portion 1008 and neck portion 1018, to latch the insertable portion.
  • the magnetic coupling may also form a magnetic interlock circuit which the processor of the reusable portion checks to verify proper insertion of the housing into the insertable portion or imaging cap before enabling use of the camera.
  • one of the reusable portion and the insertable portion comprises a mechanical locking feature, e.g. a tab, which makes an audible sound when the two portions are mated together.
  • Handle 1030 may comprise a textured external surface to enhance grip.
  • Handle 1030 includes connector 1060 adapted to communicatively couple the camera to body portion 1008.
  • a similar connector may be provided in a cradle to charge the reusable portion when not in use.
  • a cradle may comprise an inductive charger and either of the reusable portion or the insertable portion may comprise a matching induction coil. When the intubation instrument is placed in the cradle, the inductive charger charges the induction coil to recharge the intubation instrument.
  • a least a portion of a wall of handle 1030 may be sufficiently thin to enable the electromagnetic waves emitted by the inductive charger to efficiently pass through the wall.
  • FIG. 33 illustrates reusable portion 1002 inserted into cavity 1032.
  • FIG. 34 illustrates features of display device 1020 such as a communication port cover 1014 underneath which is a communication port and a protrusion 1036 provided as a positive interface feature to indicate the proper orientation of display device 1020 relative to handle 1030.
  • Exemplary communication port receptacles include USB, mini-USB, micro- USB, serial, co-axial, IEEE 1994 format, and any other known connector for any communication standard.
  • Protrusion 1036 matches a notch 1034 located in handle 1030.
  • the visualization instrument comprises audible engagement features.
  • protrusion 1036 makes an audible sound when it engages notch 1034 to indicate to a user that handle 1030 and display device 1020 have been properly engaged.
  • FIGS. 35 and 36 illustrate additional features of handle 1030.
  • alignment features are provided, illustratively guide channels 1044 and 1046, in the interior surface of the anterior wall of handle 1030 to receive elongate longitudinal rails located in the anterior surface of body portion 1008 and to ensure proper coupling between reusable portion 1002 and handle 1030. Any of a variety of other mechanical keying features may be employed.
  • the posterior surface of handle 1030 is substantially flat and the anterior surface of handle 1030 (one of which comprises compartment cover 1010) is substantially round or oval to assist the user in determining by touch the orientation of reusable portion 1002 relative to handle 1030.
  • Handle 1030 may be manufactured as two or more injection molded parts which snap together.
  • FIG. 36 illustrates in phantom the location of a connector 1060.
  • Connector 1060 fits into an interface slot (not shown) in reusable portion 1002 which receives connector 1060 to communicatively couple body portion 1008 to handle 1030.
  • FIG. 37 illustrates the internal side of compartment cover 1010.
  • compartment cover 1010 is positioned to cover an internal compartment, e.g. battery compartment. It has an internal distal surface 1050 connected to a surface 1054.
  • a key latch structure 1052 extends from internal surface 1050 and mates with a mirror image structure provided in body portion 1008 when compartment cover 1010 is secured over the compartment, thereby positively locking compartment cover 1010 in place.
  • stylet 1004 is steerable.
  • FIG. 38 illustrates a variation of a steerable stylet comprising stylet arm 1100 having a shaft 1102 at its proximal end and a flexible shaft 1104 at its distal end.
  • Flexible shaft 1104 may bend relative to shaft 1102 producing a plurality of viewing positions, illustratively positions A, B, and C which are steerable in an arc, illustratively arc 1108.
  • a one-dimensional arc is shown, the arc may be formed in any orientation. Consequently, the tip of flexible shaft 1104 is repositionable with three degrees of freedom.
  • a steering mechanism is provided in stylet handle 1030 and shaft 1102 (not shown) to bend shaft 1104.
  • An exemplary steering mechanism is a gear train or guide wire.
  • the gear train is activated by a rotary thumb switch 1040, comprising a lever 1042, which is provided to enable a user to easily actuate rotary thumb switch 1040 to cause stylet arm 1100 to change the position of its distal end and thereby to change the viewing angle of the camera.
  • Stylet arm 1100 may be permanently or removably attached to stylet handle 1030.
  • FIG. 39 illustrates an example of a removably attachable stylet arm 1100.
  • An aperture 1070 is provided in stylet handle 1030 to receive a stylet arm connector 1120 having protrusions 1122 and 1124 thereon extending radially outwardly from its surface.
  • Aperture 1070 comprises a longitudinal round aperture, a longitudinally extending slot 1080 provided to receive protrusions 1122 and 1124, and radial slots 1082 and 1084.
  • Stylet arm 1102 further comprises a collar 1110 having a shoulder 1112. Stylet arm connector 1120 penetrates aperture 1070 when protrusions 1122 and 1124 are aligned with slot 1080.
  • Stylet arm 1100 may then be rotated counter-clockwise to lock stylet arm 1100 with stylet handle 1030 when protrusions 1122 and 1124 enter slots 1082 and 1084.
  • a removable sheath envelops the stylet. After use, the stylet sheath is discarded. A new sheath is placed over the stylet to reuse the stylet.
  • FIGS. 40 and 41 A further embodiment of a visualization instrument is illustrated in FIGS. 40 and 41.
  • the medical visualization instrument is exemplified as a video laryngoscope 1200 comprising a first portion 1201 having a display device 1202, a housing 1370 (shown in FIGS 49 and 50), and a support portion 1208 coupling display device 1202 to housing 1370.
  • Video laryngoscope 1200 also comprises a blade 1250 having a handle 1256, which has a posterior side 1252 and an anterior side 1253 (shown in FIG. 41), and an insertable portion 1258.
  • the handle will typically be in a primarily vertical orientation, in the context of the blade parts the terms anterior and posterior refer to one or the opposite sides of the blade.
  • Display device 1202 includes a display screen 1204 surrounded by a frame 1205, and a video output port 1206.
  • frame 1205 is metallized to dissipate static electricity.
  • back lighting is disabled to save power until blade 1250 and first portion 1201 are connected.
  • display device 1202 is disabled entirely until blade 1250 and first portion 1201 are connected.
  • a gasket is provided between connecting portions of blade 1250 and first portion 1201 to fluidly seal the connection.
  • Blade 1250 includes a plurality of guide walls forming a pathway for an endotracheal tube.
  • the guide pathway is defined, at least in part, by an anterior guide surface and a medial guide surface.
  • the anterior guide surface e.g. anterior guide surface 1269
  • the medial guide surface e.g. the surface of medial wall 1272 shown in FIG. 41.
  • Orthogonal guide surfaces are also shown in FIG. 45, illustrated by surfaces of anterior wall 1270 and medial wall 1273.
  • the guide pathway includes a proximal portion and a distal portion. The proximal portion of the guide pathway is defined by anterior guide surface 1269 and the surface of medial wall 1272 shown in FIG.
  • the distal portion of the guide pathway extends from the proximal portion and is further defined by posterior guide surface 1263 and the pathway facing surface of lateral guide wall 1276.
  • An exemplary distal portion of a guide pathway is denoted by numeral 1262.
  • the proximal portion of the guide pathway measured along a center line of the insertion portion, is shorter than the distal portion.
  • the proximal portion length is at most 40% of a distal portion length.
  • the medial guide surface includes a transition portion extending through the proximal portion of the guide pathway and a longitudinally aligned portion extending through the distal portion of the guide pathway.
  • the transition portion extends from a side of the insertable portion to the longitudinally aligned portion.
  • the transition portion extends from a lateral side of the insertable portion to the longitudinally aligned portion.
  • the transition portion rotates from its proximal end to its distal end such that at its distal end it is orthogonal to the anterior guide surface.
  • Blade 1250 supports the imaging sensor and electronic components to electrically couple the imaging sensor to video display 1202.
  • the imaging sensor may be electronically coupled wirelessly or by electrical conductors embedded in the insertable portion of the blade.
  • blade 1250 includes an electronics pathway defined by medial wall 1272, a posterior electronics pathway wall 1278, a lateral electronics pathway wall 1271, and anterior wall 1270.
  • a distal cavity denoted by numeral 1300, receives therein an imaging assembly 1400.
  • a tip portion 1280 of blade 1250 extends distally beyond the electronics pathway.
  • An imaging landmark illustratively elongate protrusion 1284, may be provided in tip portion 1280 to assist the user in detecting the center of blade 1250 in the images viewed by the camera in imaging assembly 1400.
  • An atraumatic tip exemplified by ridge 1286, may also be provided.
  • tip portion 1280 may also include an atraumatic wall portion, illustratively wall portion 1282, which may also comprise any atraumatic wall portion as previously described with reference to FIGS. 15-20.
  • any of the blade embodiments described above and also with reference to FIGS. 3-4 and 15-28 are provided without any one or more of imaging landmarks, atraumatic tips, and atraumatic walls.
  • the blade supports an imaging assembly at its distal end and an electronic connector coupling the imaging assembly to the reusable portion is embedded within one of the walls of the insertable portion.
  • the electronic connector can comprise electrical conductors embedded in the medial wall of the blade.
  • the electronic connector is bonded to the insertable portion.
  • the connector may comprise a flat ribbon connector and may be bonded to the medial wall.
  • a first component 1261 comprises the first material and includes the handle and a rigid portion of the insertable portion of blade 1250.
  • the first material imparts structure and rigidity to the blade.
  • a second component 1260 comprises the second material and includes posterior guide wall 1274 and lateral guide wall 1276.
  • the second material provides resiliency and softness relative to the first material.
  • Second component 1260 is bonded to or over- molded onto first component 1261. Any known bonding method, such as adhesive, thermal, ultrasonic, and mechanical may be utilized to bond second component 1260 and first component 1261.
  • the second material hardness is between 60 and 90 shore A. In a variation thereof, the second material hardness is between 75 and 85 shore A.
  • alignment features are provided to facilitate engagement of the reusable portion and the handle.
  • Exemplary mating alignment features were described with referring to FIG. 35.
  • the alignment features comprise mating alignment features which prevent engagement of the reusable portion and the blade unless the reusable portion is properly aligned with the blade.
  • mating alignment features facilitate tactile engagement of the reusable portion and the blade without requiring a user to visually align the two components.
  • FIG. 40 A further example of mating alignment features is shown in FIG. 40 comprising a protrusion 1214 extending distally from support portion 1208 and engaging an opening in handle 1256, exemplified by a semi-circular opening 1254, to compel proper orientation of housing 1370 relative to handle 1256.
  • the locations of the protrusion and the opening are reversed.
  • the opening comprises internal or external surface indentations, slots, or any other surface modification provided to engage protrusions and thereby indicate proper orientation of first portion 1201 relative to handle 1256.
  • Alignment features may also comprise visual indications such as surface markings.
  • surface markings comprise orientation or alignment indicia such as lines on the surface of the handle and the reusable portion.
  • surface markings comprise anterior and posterior colors wherein the reusable portion and the handle exhibit one color on the anterior side and a different color on the posterior side.
  • insertable portion 1258 comprises an anterior guide surface 1269 of anterior wall 1270 and a posterior guide surface 1263 of posterior wall 1274 which define an anterior/posterior height.
  • a proximal anterior/posterior height is denoted by numeral 1310 in FIG. 44 where a distal anterior/posterior height is denoted by numeral 1312.
  • the proximal and distal anterior/posterior heights are substantially the same.
  • the distal anterior/posterior height is less than the proximal anterior/posterior height. In one variation thereof, the proximal anterior/posterior height is greater than the distal anterior/posterior height by at least 0.5 mm. In one variation thereof, the proximal anterior/posterior height is greater than the distal anterior/posterior height by at least 1.0 mm.
  • the reduction of the proximal anterior/posterior height provides a biasing force on the endotracheal tube, from the posterior side, to ensure the tube exits guide pathway 1262 biased towards the anterior wall. In one variation of the previous example, the biasing force is created by reducing the arc of the posterior guide wall to reduce the distal anterior/posterior height.
  • the posterior guide wall and the lateral guide wall are formed of a resilient material adapted to increase the distal anterior/posterior height when an endotracheal tube having sufficiently large diameter forces the posterior guide wall, which in its rest position defines an anterior/posterior height which is smaller than the diameter of the endotracheal tube, to move posteriorly away from the anterior wall.
  • the resilient posterior guide wall may return to its rest position.
  • component 1260 comprises the resilient material.
  • a resilient bar or ramp protrudes from the posterior guide surface towards the guide pathway to provide the biasing force.
  • a blade having a distal end biasing force as described herein permits use of one blade with any of a plurality of endotracheal tubes having different diameters as the biasing force ensures that, regardless of the diameter, the endotracheal tubes are biased towards the anterior wall as they exit the guide pathway and are thereby directed towards the vocal cords and visible by the camera.
  • a visualization instrument comprises a reusable portion, a handle portion, an insertable portion, and an imaging assembly.
  • the insertable portion comprises a distal cavity at a distal end thereof and a connector accessible through the distal cavity to electrically and detachably couple the imaging assembly to the insertable portion.
  • the handle portion and the insertable portion are integrally coupled.
  • the imaging assembly is connected to the connector prior to use and subsequently disconnected. The insertable portion is then discarded while the imaging assembly may be cleaned and re-used.
  • a reusable imaging assembly reduces the cost of the insertable portion which may be discarded after a single or a limited number of uses.
  • image alignment features are provided to facilitate visualization of the endotracheal tube.
  • An example of image alignment features is shown in Fig. 43 where posterior guide wall 1274 has a distal edge 1275 disposed substantially perpendicular to the longitudinal axis of blade 1250 and posterior electrical pathway wall 1278 has a distal edge 1279 disposed at an angle, defined by axial lines 1290 and 1292 and denoted by numeral 1294, relative to distal edge 1275.
  • Imaging assembly 1400 may be aligned perpendicularly to axial line 1290 to angle the line of sight of imaging assembly 1400 as described above with reference to FIG. 4 to facilitate viewing the displacement of the endotracheal tube towards the vocal cords.
  • FIG. 43 An example of image alignment features is shown in Fig. 43 where posterior guide wall 1274 has a distal edge 1275 disposed substantially perpendicular to the longitudinal axis of blade 1250 and posterior electrical pathway wall 1278 has a distal edge 1279 disposed at an angle, defined by axial lines 1290 and 1292 and
  • lenses in the imaging assembly may be constructed with an angled face to provided an angled view, where the line of sight is directed towards the center line of the blade, while the imaging assembly is positioned parallel to the center line of the blade.
  • the distal lens is angled relative to the center line of the imaging assembly to provide an angled view.
  • a blade without posterior and lateral guide walls is provided.
  • An example of such a blade is shown in FIG. 45 where a lateral view of a blade 1320 is illustrated.
  • Anterior and posterior sides of blade 1320 are denoted by numerals 1324 and 1322.
  • a medial wall is denoted by numeral 1273.
  • Medial wall 1273 is substantially the same as medial wall 1272 except that it is shorter as medial wall 1273 does not extend to support posterior wall 1274.
  • rest features are provided which support the reusable portion when the reusable portion rests on a surface.
  • the rest features comprise rest surfaces adapted to stabilize the medical instrument in a rest position.
  • the rest surface has a coefficient of friction higher than the coefficient of friction of the distal surface of the display device.
  • the rest surface comprises rubber.
  • the rest surface comprises a polymeric material with a coefficient of friction that is higher than the coefficient of friction of the material from which the display device frame is made.
  • a rest surface extends from the distal surface of the display device.
  • a rest surface is parallel to the supporting surface when the reusable portion is decoupled from the handle.
  • a rest surface is parallel to the supporting surface when the reusable portion is coupled to the handle.
  • the display device comprises a rest feature having two rest surfaces. One rest surface supports the display device when the handle is coupled to the reusable portion and the other rest surface supports the display device when the handle is not coupled the reusable portion.
  • a switch cover is disposed between the rest surface and the screen and the rest surface prevents accidental activation of the switch. An example of a rest surface and switch cover will now be described with reference to FIGS. 41, 46 and 47 where, on its distal side, display device 1202 comprises a rest surface, illustratively rest bar 1210.
  • Rest bar 1210 comprises a material having a coefficient of friction suitable for substantially preventing sliding of the reusable portion on the supporting surface.
  • Exemplary materials include rubber and elastomeric polymers.
  • the surface of the rest bar is textured to increase friction.
  • texture may comprise lines and bumps.
  • Exemplary switches include push-button switches and toggle switches. Switch 1330 may be configured to turn power to the medical visualization instrument on and off.
  • FIG. 46 also shows housing 1370 extending from support portion 1208 which connects housing 1370 and display device 1202.
  • the display device 1202 includes a receptacle 1332 connected internally to electronic circuits configured to provide an image output.
  • the image output may be a serial or parallel signal, and may a digital or analog signal.
  • a connector 1334 extends from a cable 1336.
  • Connector 1334 electronically couples receptacle 1332 to transfer the image output through cable 1336 to a remote device such as a computer, video monitor, or hardware interface configured to further transfer the image output for eventual display at a remote device.
  • display device 1202 comprises a cavity sealingly receiving a sealing portion disposed between connector 1334 and cable 1336, illustratively cavity 1333 and sealing portion 1338.
  • Sealing portion 1338 and cavity 1333 are rectangularly shaped.
  • the sealing portion and the cavity comprise another shape. Exemplary shapes include oval, circular, and square.
  • sealing the connector and the receptacle prevents exposure of cavity 1333 to debris and contaminants and, as a result, display device 1202 may be more easily cleaned or disinfected.
  • a similarly shaped cover without a cable is provided to seal cavity 1333 when it is not desired to provide an image output to a remote device.
  • FIG. 49 illustrates an exemplary housing, denoted by numeral 1370, having a particular cross-sectional profile designed to easily mate with a corresponding cross-sectional profile of a handle.
  • housing 1370 has a body 1372 with a generally oval cross-section and comprises an elongate protrusion, illustratively protrusion 1374, extending from the generally oval body 1372 in the longitudinal direction.
  • handle 1256 comprises two longitudinally disposed surfaces, embodied in ridges 1360, which together define a slot 1362 configured to receive protrusion 1374.
  • the longitudinally disposed surfaces are formed by protrusions extending from the internal surface of the handle without forming ridges.
  • slot 1362 may be formed directly on the wall of the handle.
  • the visualization instrument comprises audible engagement features.
  • protrusion 1036 makes an audible sound when it engages notch 1034 to indicate to a user that handle 1030 and display device 1020 have been properly engaged.
  • one or both ridges 1360 shown in FIG. 50 (or channels 1044 and 1446 shown in FIG. 35) comprise an interruption (not shown) adapted to receive a protrusion (not shown) extending from oval body 1372, or any of the above described handle portions, and to make an audible sound when the protrusion is received by the interruption to indicate that housing 1370 and handle 1256 have been properly engaged.
  • a protrusion supported by one of the handle and a support element supporting a display device, and a matching recess in the other of the handle and the support element are configured to generate an audible sound, such as a "click" sound, when the handle and the support element are properly engaged.
  • a housing of a reusable portion comprising a battery connection portion 1382 and a battery cover 1380.
  • the housing also comprises a battery cover locking feature.
  • the locking feature comprises a ridge and a slot.
  • battery cover 1380 When battery cover 1380 is pressed against battery connection portion 1382 and a longitudinally oriented force is applied, the ridge and the slot mate.
  • battery cover 1380 comprises a ridge and battery connection portion 1382 comprises a slot 1384.
  • the positions of the slot and the ridge are reversed.
  • the slot and the ridge are located in lateral surfaces of battery connection portion 1382 and battery cover 1380.
  • FIGS. 53 and 54 are perspective and exploded views of an exemplary embodiment of an imaging assembly, illustratively imaging assembly 1400.
  • Imaging assembly 1400 comprises a distal cover 1402, a camera holder 1404 having an imaging opening 1406 and an illumination opening 1408, a distal lens 1422, a camera barrel 1420, lenses 1424 and 1426, a gasket 1430, a camera 1432, a support board 1434 supporting camera 1432, a cable 1436, and a backing plate 1442 having a pressure component 1444 and a plurality of locking components 1446.
  • Backing plate 1442 presses support board 1434 and lenses 1424 and 1426 in camera barrel 1420.
  • Camera barrel 1420 is press-fit into an opening of camera holder 1404 to hold distal lens 1422 inside camera holder 1404.
  • Gasket 1430 is optional and may be removed. If used, gasket 1430 seals imaging sensor 1432 inside camera barrel 1420 and prevents light from entering camera barrel 1420 and degrading the images.
  • LED 1440 is coupled to camera holder 1404 to illuminate the space before distal cover 1402 through illumination opening 1408.
  • distal cover 1402 is adhesively bonded to camera holder 1404 using a silicone release application method. Adhesive is provided on a silicone paper. The silicon paper and adhesive are applied to distal cover 1402.
  • the silicone release method described herein protects distal lens 1422 from inadvertent spearing of adhesive on its distal surface.
  • the combination of a support housing and an imaging barrel simplifies assembly of the imaging assembly. In a variation of the example described above, only two lenses are used.
  • the camera barrel and the camera holder are formed by single-mold inserts which cause the distal lens and second lens to self-align relative to the optical axis of the imaging assembly which simplifies the assembly process and reduces cost by eliminating the need for focusing features.
  • the imaging assembly comprises a distal lens having a negative meniscus, and a doublet comprised of biconvex and negative meniscus elements.
  • the distal and doublet lenses have aspheric surfaces which, combined with the meniscus and biconvex elements, achieve nearly diffraction limited performance.
  • visualization instruments comprising a reusable portion and a handle coupled to an insertable portion in a single piece construction were described above.
  • the insertable portion and the handle are detachably coupled. Any of the alignment and state features described above with reference to coupling of the handle and the reusable portion may also be applied to coupling of the handle and the insertable portion.
  • the handle is integrally formed with the housing supporting the video display, and the insertable portion is detachably coupled to the handle.
  • the insertable portion comprises walls defining a guide pathway.
  • the insertable portion comprises an elongate tubular member.
PCT/US2010/058226 2009-11-30 2010-11-29 Visualization instrument WO2011066510A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020147015405A KR101614233B1 (ko) 2009-11-30 2010-11-29 시각화 기구
JP2012541223A JP5596169B2 (ja) 2009-11-30 2010-11-29 映像化装置
CA2780343A CA2780343C (en) 2009-11-30 2010-11-29 Visualization instrument
CN201080053619.9A CN102647936B (zh) 2009-11-30 2010-11-29 可视化仪器
EP10788184.9A EP2506753B1 (en) 2009-11-30 2010-11-29 Visualization instrument
AU2010324600A AU2010324600B2 (en) 2009-11-30 2010-11-29 Visualization instrument
KR1020127013444A KR101442359B1 (ko) 2009-11-30 2010-11-29 시각화 기구
MX2012005856A MX347417B (es) 2009-11-30 2010-11-29 Instrumento de visualización.
NZ599923A NZ599923A (en) 2009-11-30 2010-11-29 Visualization instrument

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US26533009P 2009-11-30 2009-11-30
US61/265,330 2009-11-30
US31405810P 2010-03-15 2010-03-15
US61/314,058 2010-03-15
US12/874,035 US9179831B2 (en) 2009-11-30 2010-09-01 Visualization instrument
US12/874,058 2010-09-01
US12/874,035 2010-09-01
US12/874,058 US9854962B2 (en) 2009-11-30 2010-09-01 Visualization instrument

Publications (2)

Publication Number Publication Date
WO2011066510A2 true WO2011066510A2 (en) 2011-06-03
WO2011066510A3 WO2011066510A3 (en) 2011-07-21

Family

ID=44069393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/058226 WO2011066510A2 (en) 2009-11-30 2010-11-29 Visualization instrument

Country Status (10)

Country Link
US (2) US9854962B2 (ko)
EP (1) EP2506753B1 (ko)
JP (2) JP5596169B2 (ko)
KR (2) KR101442359B1 (ko)
CN (1) CN102647936B (ko)
AU (1) AU2010324600B2 (ko)
CA (1) CA2780343C (ko)
MX (1) MX347417B (ko)
NZ (1) NZ599923A (ko)
WO (1) WO2011066510A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526320A (ja) * 2010-05-13 2013-06-24 エアクラフト メディカル リミテッド ビデオ喉頭鏡
CN103228198A (zh) * 2010-09-08 2013-07-31 科维蒂恩有限合伙公司 具有成像组件的导管
WO2016184851A1 (en) * 2015-05-21 2016-11-24 Intersurgical Ag Video laryngoscopes
WO2022226254A1 (en) * 2021-04-22 2022-10-27 Alta Smiles, Llc Dental imaging device

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072446B2 (en) 2008-06-23 2015-07-07 Intubrite, Llc Laryngoscope and method of use
US9095298B2 (en) * 2008-06-23 2015-08-04 Intubrite, Llc Adjustable display mechanism and method
US8968186B2 (en) 2008-06-23 2015-03-03 Intubrite, Llc Handle for fiber optic device
USRE48598E1 (en) 2008-06-23 2021-06-22 Salter Labs Laryngoscope and method of use
GB0903610D0 (en) * 2009-03-03 2009-04-08 Aircraft Medical Ltd Insertion section for laryngoscope with lateral tube guide
US9289114B2 (en) * 2010-07-30 2016-03-22 Nilesh R. Vasan Disposable, self-contained laryngoscope and method of using same
US8717494B2 (en) * 2010-08-11 2014-05-06 Hand Held Products, Inc. Optical reading device with improved gasket
US8702594B2 (en) * 2010-10-21 2014-04-22 Avram Allan Edidin Imaging system having a quick connect coupling interface
EP2709513A4 (en) 2011-05-03 2015-04-22 Endosee Corp METHOD AND APPARATUS FOR HYSTEROSCOPY AND BIOPSY OF THE ENDOMETER
EP2535075A1 (en) * 2011-06-15 2012-12-19 Medizinische Hochschule Hannover Medical device for conducting a laryngoscopy and/or an intubation
CN102283628B (zh) * 2011-07-08 2013-09-11 舒妮 电控高频喷射通气喉镜
AU2012282150B2 (en) 2011-07-11 2017-01-19 Ambu A/S Endobronchial tube
EP2557407B1 (en) * 2011-08-12 2020-02-12 Fenwal, Inc. A blood processing system and method
TW201311305A (zh) * 2011-09-09 2013-03-16 Tien-Sheng Chen 氣管插管工具
US20130096457A1 (en) * 2011-10-18 2013-04-18 Qscope, LLC Oral scope system with image sensor and method for visual examination of oral cavity and upper airway
CN102579114A (zh) * 2012-02-13 2012-07-18 上海宇度医学科技有限公司 微创内窥可视宫腔组织吸引管
US9468367B2 (en) 2012-05-14 2016-10-18 Endosee Corporation Method and apparatus for hysteroscopy and combined hysteroscopy and endometrial biopsy
DE102012009749A1 (de) * 2012-05-16 2013-11-21 Karl Storz Gmbh & Co. Kg Videoendoskop mit einem 3-Achsen Beschleunigungssensor
US9357905B2 (en) * 2012-06-01 2016-06-07 Robert Molnar Airway device, airway assist device and the method of using same
US9622646B2 (en) 2012-06-25 2017-04-18 Coopersurgical, Inc. Low-cost instrument for endoscopically guided operative procedures
AU2013290002A1 (en) * 2012-07-13 2015-01-29 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc Infrared illuminated airway management devices and kits and methods for using the same
WO2014035730A1 (en) * 2012-08-30 2014-03-06 Intubrite, Llc Illumination device
USD735343S1 (en) 2012-09-07 2015-07-28 Covidien Lp Console
USD717340S1 (en) 2012-09-07 2014-11-11 Covidien Lp Display screen with enteral feeding icon
US9517184B2 (en) 2012-09-07 2016-12-13 Covidien Lp Feeding tube with insufflation device and related methods therefor
USD716841S1 (en) 2012-09-07 2014-11-04 Covidien Lp Display screen with annotate file icon
US9198835B2 (en) 2012-09-07 2015-12-01 Covidien Lp Catheter with imaging assembly with placement aid and related methods therefor
US9107573B2 (en) 2012-10-17 2015-08-18 Karl Storz Endovision, Inc. Detachable shaft flexible endoscope
US9736342B2 (en) 2012-10-19 2017-08-15 Milwaukee Electric Tool Corporation Visual inspection device
EP2911572A2 (en) 2012-10-25 2015-09-02 Laryngoport Ltd. A pre-shaped rigid port
EP2754384B1 (en) 2013-01-10 2018-07-11 Ambu A/S Endobronchial tube with integrated image sensor and cleaning nozzle arrangement
CN103070662A (zh) * 2013-02-01 2013-05-01 陈旭全 一种便携式口腔内窥装置
US9538677B2 (en) 2013-03-13 2017-01-03 General Electric Company System for mobile device cradle and tube gripper of non-destructive testing inspection device
SG11201507609UA (en) * 2013-03-15 2015-10-29 Synaptive Medical Barbados Inc Surgical imaging systems
ITBO20130269A1 (it) * 2013-05-28 2014-11-29 Deas S R L Dispositivo medico del tipo di un laringoscopio e simili
WO2015031406A1 (en) * 2013-08-26 2015-03-05 King Systems Corporation Visualization instrument
EP3038510B1 (en) * 2013-08-27 2020-08-05 King Systems Corporation Visualization instrument
US10149957B2 (en) * 2013-10-03 2018-12-11 University Of Utah Research Foundation Tracheal intubation system including a laryngoscope
US9962226B2 (en) 2013-11-28 2018-05-08 Alcon Pharmaceuticals Ltd. Ophthalmic surgical systems, methods, and devices
WO2015081262A1 (en) * 2013-11-28 2015-06-04 Xcelerator Labs, Llc Ophtalmic surgical systems, methods, and devices
CA2937890A1 (en) 2014-01-31 2015-08-06 University Of Louisville Research Foundation, Inc. Laryngoscope with integrated and controllable suction
US10702128B2 (en) 2014-07-02 2020-07-07 Xenocor, Inc. Medical borescopes and related tip assemblies
US9943214B2 (en) 2014-07-02 2018-04-17 Xenocor, Inc. Medical borescopes and related methods and systems
MX2017000054A (es) * 2014-07-02 2017-06-30 Xenocor Inc Boroscopios y metodos y sistemas relacionados.
CN105266753A (zh) * 2014-07-11 2016-01-27 赵艳凤 一种口腔镜
US11147442B2 (en) 2014-08-08 2021-10-19 Wm & Dg, Inc. Medical devices and methods of placement
US10722110B2 (en) 2014-08-08 2020-07-28 Wm & Dg, Inc. Medical devices and methods of placement
US11633093B2 (en) 2014-08-08 2023-04-25 Wm & Dg, Inc. Medical devices and methods of placement
US10070940B2 (en) * 2014-09-15 2018-09-11 Synaptive Medical (Barbados) Inc. End effector for a positioning device
US11344690B2 (en) * 2014-09-16 2022-05-31 Truphatek International Ltd. Imaging device and data management system for medical device
US9833587B2 (en) * 2014-10-23 2017-12-05 Cookgas, Llc Camera tube with guide surface for intubation stylet and method of use
TW201617017A (zh) * 2014-11-12 2016-05-16 賴賢勇 影像喉頭鏡
US9498120B2 (en) 2014-12-22 2016-11-22 Carl Zeiss Meditec Ag Method and system for optical coherence elastography of posterior parts of the eye
JP6348854B2 (ja) * 2015-02-03 2018-06-27 富士フイルム株式会社 内視鏡用プロセッサ装置、内視鏡システム及び内視鏡システムの非接触給電方法
US10869592B2 (en) 2015-02-23 2020-12-22 Uroviu Corp. Handheld surgical endoscope
US9782061B2 (en) 2015-03-04 2017-10-10 Velosal Medical, Inc. Video laryngoscopy device
WO2016139801A1 (ja) * 2015-03-05 2016-09-09 株式会社エム・ピー・アイ ビデオ内視鏡システム
US9844426B2 (en) * 2015-03-12 2017-12-19 Align Technology, Inc. Digital dental tray
CN108348149B (zh) * 2015-06-08 2020-10-30 通用医疗公司 气道管理和可视化设备
CN104921692A (zh) * 2015-06-19 2015-09-23 京东方光科技有限公司 一种窥视辅助设备
KR101748822B1 (ko) * 2015-07-01 2017-07-03 에이스메디칼 주식회사 핸들링이 용이한 비디오 후두경
US20170020384A1 (en) * 2015-07-22 2017-01-26 Opticks Inc. Laryngoscope
EP3331420A4 (en) 2015-08-05 2020-02-05 Inscope Medical Solutions, Inc. MEDICAL DEVICE WITH ELEMENT FOR INSERTION IN THE RESPIRATORY TRACT
WO2017134662A1 (en) * 2016-02-02 2017-08-10 The Trendlines Group Ltd. Device for detecting body fluid balance and/or electrolyte balance
JP6638058B2 (ja) * 2016-02-25 2020-01-29 オリンパス株式会社 内視鏡システム
US11064877B2 (en) * 2016-03-01 2021-07-20 Flexicare (Group) Limited Laryngoscope
US10702305B2 (en) 2016-03-23 2020-07-07 Coopersurgical, Inc. Operative cannulas and related methods
CN105640485A (zh) * 2016-03-29 2016-06-08 广州医科大学附属第医院 一种气道环境监测装置
CN106419811A (zh) * 2016-05-31 2017-02-22 杭州创辉医疗电子设备有限公司 可视喉镜
US9887497B1 (en) * 2016-06-10 2018-02-06 Amazon Technologies, Inc. Device connector with reduced electromagnetic noise
CN105996971A (zh) * 2016-06-16 2016-10-12 深圳市宏济医疗技术开发有限公司 视频喉镜
US10932708B2 (en) 2016-07-18 2021-03-02 Vioptix, Inc. Oximetry device with laparoscopic extension
KR101865657B1 (ko) * 2016-09-23 2018-06-11 부경대학교 산학협력단 성대 종양 침윤 범위 진단장치
US11832797B2 (en) 2016-09-25 2023-12-05 Micronvision Corp. Endoscopic fluorescence imaging
US11684248B2 (en) 2017-09-25 2023-06-27 Micronvision Corp. Endoscopy/stereo colposcopy medical instrument
RU2662277C2 (ru) * 2016-11-03 2018-07-25 ООО "Медикрон Групп" Модульная видеоэндоскопическая система
CN106419812A (zh) * 2016-11-09 2017-02-22 深圳市添朗医疗器械有限公司 一种远程喉镜观测系统
US10820792B2 (en) * 2017-01-09 2020-11-03 Verathon Inc. Upgradable video laryngoscope system exhibiting reduced far end dimming
US10229563B2 (en) * 2017-04-05 2019-03-12 Lighthouse Worldwide Solutions, Inc. Illuminated handle for portable instruments
US10334687B2 (en) * 2017-04-20 2019-06-25 Ngok Wing Jimmy Kwok Multispectral switch fiber optic lighting laryngoscope
WO2018204996A1 (en) * 2017-05-12 2018-11-15 Medical University "Prof. Dr. Paraskev Stoyanov" Spatula for laryngoscope
EP3417758A1 (en) 2017-06-19 2018-12-26 Ambu A/S A method for processing image data using a non-linear scaling model and a medical visual aid system
CN107348938A (zh) * 2017-07-21 2017-11-17 叶建光 一种具有显示切换键的视频喉镜
US11051682B2 (en) 2017-08-31 2021-07-06 Wm & Dg, Inc. Medical devices with camera and methods of placement
US11771304B1 (en) 2020-11-12 2023-10-03 Micronvision Corp. Minimally invasive endoscope
CN111093463A (zh) 2017-09-28 2020-05-01 安布股份有限公司 内窥镜
US10278572B1 (en) * 2017-10-19 2019-05-07 Obp Medical Corporation Speculum
US11033180B2 (en) 2017-11-03 2021-06-15 Aircraft Medical Ltd. Video laryngoscope systems and methods
US10835115B2 (en) * 2017-11-15 2020-11-17 Aircraft Medical Ltd. Multifunctional visualization instrument
CN107928615A (zh) * 2017-12-06 2018-04-20 广东名威科技有限公司 一种可视喉镜
GB2569362B (en) 2017-12-15 2022-04-06 Sydehealth Ltd A dental display system
EP4273610A3 (en) 2018-03-14 2023-12-27 Ambu A/S Method for manufacturing a pot-shaped tip housing
ES2960355T3 (es) 2018-04-04 2024-03-04 Coopersurgical Inc Dispositivos endoscópicos y métodos relacionados
EP3854292A1 (en) 2018-05-18 2021-07-28 Verathon, Inc. Video endoscope with flexible tip
KR102118497B1 (ko) * 2018-06-22 2020-06-04 아람휴비스 주식회사 인투베이션을 위한 스마트폰 디스플레이를 활용한 비데오 스타일렛
US11490790B2 (en) * 2018-07-18 2022-11-08 Cook Medical Technologies Llc Device for shielding endoscopic optics with a fluid barrier
USD876625S1 (en) 2018-08-07 2020-02-25 Adroit Surgical, Llc Laryngoscope
US11510561B2 (en) * 2018-08-21 2022-11-29 Verily Life Sciences Llc Endoscope defogging
EP3613326B1 (en) 2018-08-24 2023-09-20 Ambu A/S A tip part for a vision device
US11311184B2 (en) 2018-08-24 2022-04-26 Ambu A/S Tip part for a vision device
EP3613327A1 (en) 2018-08-24 2020-02-26 Ambu A/S A tip part for a vision device
EP3620098B1 (en) 2018-09-07 2021-11-03 Ambu A/S Enhancing the visibility of blood vessels in colour images
USD945612S1 (en) * 2018-10-02 2022-03-08 Ambu A/S Endoscope handle
US10653307B2 (en) 2018-10-10 2020-05-19 Wm & Dg, Inc. Medical devices for airway management and methods of placement
JP2022536176A (ja) * 2019-06-13 2022-08-12 立偉 張 フルタイムモニタニングするビデオ内蔵型内視鏡を有する気管内チューブ
WO2021016626A1 (en) 2019-07-25 2021-01-28 Uroviu Corp. Disposable endoscopy cannula with integrated grasper
KR102317811B1 (ko) * 2019-08-07 2021-10-27 아람휴비스 주식회사 인투베이션을 위한 비데오 스타일렛
US11696671B2 (en) 2019-08-19 2023-07-11 Covidien Ag Steerable endoscope with motion alignment
CN110338744A (zh) * 2019-08-23 2019-10-18 深圳市宏济医疗技术开发有限公司 一种喉镜
DE102019009010A1 (de) * 2019-12-23 2021-06-24 Karl Storz Se & Co. Kg Endoskop, Trokarhülle, endoskopisches System und Antibeschlagverfahren für ein Endoskop
US11426055B2 (en) 2020-02-21 2022-08-30 Ambu A/S Medical visualisation system including a monitor and a graphical user interface therefore
EP3871584B1 (en) * 2020-02-25 2023-06-07 BMG (British Medical Group) Limited Medical examination device with a single use body comprising a handle and a blade
US11497382B1 (en) 2020-04-27 2022-11-15 Canon U.S.A., Inc. Apparatus and method for endoscopic image orientation control
US11328390B2 (en) 2020-05-13 2022-05-10 Ambu A/S Method for adaptive denoising and sharpening and visualization systems implementing the method
US20230371805A1 (en) * 2020-09-23 2023-11-23 Flexicare (Group) Limited Intubation device and system
US11497394B2 (en) 2020-10-12 2022-11-15 Wm & Dg, Inc. Laryngoscope and intubation methods
EP4011270A1 (en) 2020-12-08 2022-06-15 Ambu A/S Endoscope tip part with improved optical properties
WO2022177773A1 (en) * 2021-02-18 2022-08-25 Covidien Lp Laryngoscope blade with glare-reducing features
WO2022195830A1 (ja) * 2021-03-18 2022-09-22 オリンパスメディカルシステムズ株式会社 受信機および受信機の作動方法
US20220211263A1 (en) * 2021-03-23 2022-07-07 Axcess Instruments Inc. Multi-piece access port imaging systems
KR102582149B1 (ko) * 2021-08-09 2023-09-25 재단법인대구경북과학기술원 광학 스캐닝 장치
USD1015535S1 (en) * 2021-12-03 2024-02-20 Ambu A/S Endoscope handle
US11832800B2 (en) 2022-02-09 2023-12-05 Visurraga Enterprises Llc Medical visualization and intubation systems
EP4289330A1 (en) * 2022-06-08 2023-12-13 Ambu A/S Video laryngoscope

Family Cites Families (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625793A (en) * 1969-09-23 1971-12-07 David S Sheridan Balloon-type catheters and method of manufacture
US3771514A (en) 1971-06-29 1973-11-13 Concept Laryngoscope
US3766909A (en) 1971-07-20 1973-10-23 A Ozbey Laryngoscope with disposable blade and light guide
US4114609A (en) 1975-07-16 1978-09-19 Moses John A Laryngoscope
US4090518A (en) * 1975-08-25 1978-05-23 Elam James O Esophago-pharyngeal airway
SE409817B (sv) * 1976-07-23 1979-09-10 Kemi Intressen Ab Bitblock for genom munnen pa en patient inforda organ, sasom slangar, sonder o dyl
US4126127A (en) 1976-09-27 1978-11-21 May Laurence M Suctioning/oxygenating laryngoscope blade
US4231365A (en) * 1978-01-30 1980-11-04 Scarberry Eugene N Emergency resuscitation apparatus
JPH0115361Y2 (ko) * 1979-02-10 1989-05-09
US4337761A (en) 1979-11-28 1982-07-06 Upsher Michael S Laryngoscope
US4360008A (en) 1980-09-02 1982-11-23 Corazzelli Jr Frank G Laryngoscope
US4611579A (en) 1980-11-10 1986-09-16 Avulunga Pty Ltd. Laryngoscope
US4573451A (en) 1984-11-08 1986-03-04 Jack Bauman Laryngoscope blade with a bendable tip
US5016614A (en) 1985-11-07 1991-05-21 Macallister Niall P Endotracheal intubation apparatus
US4793327A (en) 1986-01-21 1988-12-27 Frankel Alfred R Device for opening a patient's airway during automatic intubation of the trachea
GB2189148B (en) 1986-04-16 1990-04-18 Wolf Gmbh Richard Laryngoscope
US4742819A (en) 1987-03-23 1988-05-10 George Gordon P Intubating scope with camera and screen
US5042469A (en) 1987-03-24 1991-08-27 Augustine Medical, Inc. Tracheal intubation guide
US5203320A (en) 1987-03-24 1993-04-20 Augustine Medical, Inc. Tracheal intubation guide
US4846153A (en) 1988-06-10 1989-07-11 George Berci Intubating video endoscope
US4947896A (en) 1988-11-04 1990-08-14 Bartlett Robert L Laryngoscope
US4982729A (en) 1989-02-10 1991-01-08 Wu Tzu Lang Rigid fiberoptic intubating laryngoscope
US5003962A (en) 1989-05-10 1991-04-02 Choi Jay J Laryngoscope with double-angle blade
US5443058A (en) 1989-05-26 1995-08-22 Ough; Yon D. Blade for telescopic laryngoscope
US5038766A (en) 1989-11-08 1991-08-13 Parker Jeffrey D Blind orolaryngeal and oroesophageal guiding and aiming device
US5174283A (en) 1989-11-08 1992-12-29 Parker Jeffrey D Blind orolaryngeal and oroesophageal guiding and aiming device
CA2035488A1 (en) 1990-02-14 1991-08-15 Edwin L. Adair Endotracheal tube intubation assist device
US5381787A (en) 1990-05-04 1995-01-17 Bullard; James R. Extendable and retractable laryngoscope
US5095888A (en) 1990-07-09 1992-03-17 Circon Corporation Intubating stylet for a laryngoscope
JP3009056B2 (ja) 1990-10-23 2000-02-14 オリンパス光学工業株式会社 接眼レンズ
US5183031A (en) 1991-05-13 1993-02-02 Rossoff Leonard J Fiberoptic intubating laryngoscope
US5287848A (en) 1991-09-30 1994-02-22 Anthony Cubb Easy intubator
US5261392A (en) 1992-04-03 1993-11-16 Achi Corporation Laryngoscope with interchangeable fiberoptic assembly
US5643175A (en) 1992-09-01 1997-07-01 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
WO1994005200A1 (en) 1992-09-01 1994-03-17 Adair Edwin Lloyd Sterilizable endoscope with separable disposable tube assembly
US5363838B1 (en) 1992-12-09 2000-03-28 Gordon P George Fiberoptic intubating scope with camera and lightweight portable screen and method of using same
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
JP2671745B2 (ja) * 1993-03-26 1997-10-29 有限会社新興光器製作所 内視鏡
US5431152A (en) 1993-09-21 1995-07-11 Flam; Gary H. Oral fiberoptic intubating apparatus and method
US5607386A (en) * 1993-09-21 1997-03-04 Flam; Gary H. Malleable fiberoptic intubating stylet and method
IL107594A (en) * 1993-11-12 1997-06-10 Truphatek Int Ltd Laryngoscope
EP0674435B1 (en) 1994-02-28 2002-11-27 Canon Kabushiki Kaisha Image sensing apparatus
US5498231A (en) 1994-03-07 1996-03-12 Franicevic; Klaus Intubating laryngoscope
US5645519A (en) 1994-03-18 1997-07-08 Jai S. Lee Endoscopic instrument for controlled introduction of tubular members in the body and methods therefor
US5842973A (en) 1994-05-17 1998-12-01 Bullard; James Roger Nasal intubation apparatus
US5551946A (en) 1994-05-17 1996-09-03 Bullard; James R. Multifunctional intubating guide stylet and laryngoscope
US5607435A (en) * 1994-05-23 1997-03-04 Memory Medical Systems, Inc. Instrument for endoscopic-type procedures
US5513627A (en) 1995-01-27 1996-05-07 Flam; Gary H. Esophageal tracheal intubator airway
US5913817A (en) 1995-04-05 1999-06-22 Karl Storz Imaging Electrical isolation of endoscopic video camera
US5716323A (en) 1995-04-05 1998-02-10 Karl Storz Imaging Electrical isolation of endoscopic video camera
US5603688A (en) 1995-04-24 1997-02-18 Upsher Laryngoscope Corporation Laryngoscope including an upwardly curved blade having a downwardly directed tip portion
EP0845187A2 (de) 1995-08-17 1998-06-03 Karl Storz GmbH & Co. Endoskopie-videosystem
US5676635A (en) 1995-08-30 1997-10-14 Levin; Bruce Instrument for insertion of an endotracheal tube
US6413209B1 (en) 1995-09-15 2002-07-02 Med Images, Inc. Imaging system with condensation control
DE29521244U1 (de) 1995-10-10 1996-10-17 Vbm Medizintechnik Gmbh Transpharyngealtubus für Intubationsnarkosen
US6870566B1 (en) 1995-12-07 2005-03-22 Canon Kabushiki Kaisha Image sensing system for sensing an image and converting the image into image signals with a controlled operating rate
IL117250A (en) 1996-02-23 2000-06-01 Arco Medic Ltd Laryngoscope
US20050139220A1 (en) * 1996-02-26 2005-06-30 Evergreen Medical Incorporated Method and apparatus for ventilation / oxygenation during guided insertion of an endotracheal tube
US6860264B2 (en) * 1996-02-26 2005-03-01 Evergreen Medical Incorporated Method and apparatus for endotracheal intubation using a light wand and curved guide
US6568388B2 (en) * 1996-02-26 2003-05-27 Evergreen Medical Incorporated Method and apparatus for ventilation / oxygenation during guided insertion of an endotracheal tube
US5928137A (en) 1996-05-03 1999-07-27 Green; Philip S. System and method for endoscopic imaging and endosurgery
US5873814A (en) 1996-07-12 1999-02-23 Adair; Edwin L. Sterile encapsulated endoscopic video monitor and method
US6432046B1 (en) 1996-07-15 2002-08-13 Universal Technologies International, Inc. Hand-held, portable camera for producing video images of an object
US5879289A (en) 1996-07-15 1999-03-09 Universal Technologies International, Inc. Hand-held portable endoscopic camera
JPH1042176A (ja) 1996-07-25 1998-02-13 Canon Inc 撮像装置
US6322498B1 (en) 1996-10-04 2001-11-27 University Of Florida Imaging scope
US20050182297A1 (en) 1996-10-04 2005-08-18 Dietrich Gravenstein Imaging scope
US6115523A (en) 1996-10-04 2000-09-05 University Of Florida Plastic optical fiber airway imaging system
US6830049B2 (en) 1996-10-16 2004-12-14 Arizant Healthcare Inc. Airway device with provision for coupling to an introducer
US5800344A (en) 1996-10-23 1998-09-01 Welch Allyn, Inc. Video laryngoscope
JPH10127579A (ja) * 1996-11-02 1998-05-19 Takeshi Okada 喉頭鏡
JP3615890B2 (ja) 1996-12-04 2005-02-02 フジノン株式会社 電子内視鏡装置
US5776052A (en) 1996-12-19 1998-07-07 Callahan; Patrick C. Laryngoscope adapted to position and advance a fiberoptic bronchoscope
US5827178A (en) 1997-01-02 1998-10-27 Berall; Jonathan Laryngoscope for use in trachea intubation
US5845634A (en) 1997-03-18 1998-12-08 Parker Medical Limited Partnership Endoscope viewing system with orotracheal introducing guide
DE19715507C1 (de) * 1997-04-14 1999-02-04 Storz Karl Gmbh & Co Medizinisches Instrument mit einem tubusartigen Element und einem dazu abgewinkelten Griff, insbesondere Mediastinoskop, Laryngoskop, Divertikuloskop
DE19715510C2 (de) 1997-04-14 2000-05-18 Storz Karl Gmbh & Co Kg Endoskop mit einem Kameramodul und einer Kupplung
DE19880445D2 (de) 1997-04-16 2002-08-14 Storz Karl Gmbh & Co Kg Endoskopisches System
US5803898A (en) 1997-05-05 1998-09-08 Bashour; Charles Allen Intubation system
US6097423A (en) 1997-06-06 2000-08-01 Karl Storz Imaging, Inc. Image orientation for endoscopic video displays
US6079409A (en) 1997-07-25 2000-06-27 Brain; Archibald Ian Jeremy Intubating laryngeal mask
US6043839A (en) 1997-10-06 2000-03-28 Adair; Edwin L. Reduced area imaging devices
US5929901A (en) 1997-10-06 1999-07-27 Adair; Edwin L. Reduced area imaging devices incorporated within surgical instruments
US7030904B2 (en) 1997-10-06 2006-04-18 Micro-Medical Devices, Inc. Reduced area imaging device incorporated within wireless endoscopic devices
US5986693A (en) 1997-10-06 1999-11-16 Adair; Edwin L. Reduced area imaging devices incorporated within surgical instruments
US6982742B2 (en) 1997-10-06 2006-01-03 Adair Edwin L Hand-held computers incorporating reduced area imaging devices
US6310642B1 (en) 1997-11-24 2001-10-30 Micro-Medical Devices, Inc. Reduced area imaging devices incorporated within surgical instruments
US6982740B2 (en) 1997-11-24 2006-01-03 Micro-Medical Devices, Inc. Reduced area imaging devices utilizing selected charge integration periods
US6142144A (en) 1997-12-01 2000-11-07 Pacey; John A. Intubation instrument
US6543447B2 (en) * 1997-12-01 2003-04-08 Saturn Biomedical Systems Inc Intubation instrument
US6655377B2 (en) 1997-12-01 2003-12-02 Saturn Biomedical Systems Inc. Intubation instrument
GB9817537D0 (en) * 1998-08-13 1998-10-07 Brain Archibald Ian Jeremy A laryngear mask airway with mutually independant laterally-placed ultra-flexible eastric access/discharge and airway tubes
US20010004768A1 (en) 1998-09-28 2001-06-21 Hodge Winston W. Hodge Winston W. Highly integrated computer controlled digital head end
GB9821771D0 (en) 1998-10-06 1998-12-02 Brain Archibald Ian Jeremy Improvements relating to laryngeal mask airway devices
US6432042B1 (en) 1998-12-11 2002-08-13 Cleveland Clinic Foundation Intubation system
US7116352B2 (en) 1999-02-25 2006-10-03 Visionsense Ltd. Capsule
US8248457B2 (en) 1999-02-25 2012-08-21 Visionsense, Ltd. Optical device
US7683926B2 (en) 1999-02-25 2010-03-23 Visionsense Ltd. Optical device
US6396873B1 (en) 1999-02-25 2002-05-28 Envision Advanced Medical Systems Optical device
US7154527B1 (en) 1999-02-25 2006-12-26 Visionsense Ltd. Optical device
US8636648B2 (en) 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6652453B2 (en) 1999-03-03 2003-11-25 Vincent A. Smith Portable video laryngoscope
US20050279355A1 (en) 1999-05-04 2005-12-22 Loubser Paul G Superglottic and peri-laryngeal apparatus having video components for structural visualization and for placement of supraglottic, intraglottic, tracheal and esophageal conduits
US6901928B2 (en) 1999-05-04 2005-06-07 Paul G. Loubser Superglottic and peri-laryngeal apparatus for supraglottic airway insertion
EP1179988B1 (de) 1999-05-21 2004-03-10 Karl Storz GmbH & Co. KG Laryngoskop
US6354993B1 (en) 1999-06-21 2002-03-12 Karl Storz Gmbh & Co. Kg Rigid intubating laryngoscope with interchangeable blade and video display
US20060004260A1 (en) 1999-10-14 2006-01-05 Ben Boedeker Endotracheal video device
US6890298B2 (en) 1999-10-14 2005-05-10 Karl Storz Gmbh & Co. Kg Video laryngoscope with detachable light and image guides
US20050192481A1 (en) 1999-10-14 2005-09-01 George Berci Laryngoscope and camera coupling
US6248061B1 (en) 1999-11-04 2001-06-19 Lewis L. Cook, Jr. Suctioning laryngoscope blade
US6663560B2 (en) 1999-12-17 2003-12-16 Digital Optical Imaging Corporation Methods and apparatus for imaging using a light guide bundle and a spatial light modulator
DE19962372C2 (de) 1999-12-23 2002-06-27 Vbm Medizintechnik Gmbh Transpharyngealtubus
DE19962985C1 (de) 1999-12-24 2000-12-28 Vbm Medizintechnik Gmbh Transpharyngealtubus
US6750037B2 (en) 1999-12-27 2004-06-15 Edwin L. Adair Method of cancer screening primarily utilizing non-invasive cell collection, fluorescence detection techniques, and radio tracing detection techniques
IL139788A (en) 2000-11-20 2006-10-05 Minelu Zonnenschein Stapler for endoscopes
EP1285623B1 (en) 2000-04-18 2006-06-07 S.C.B., S.A. Optical luminous laryngoscope
DE10019956C2 (de) * 2000-04-20 2002-07-18 Vbm Medizintechnik Gmbh Hyperpharynx-Tubus
GB0031621D0 (en) 2000-12-23 2001-02-07 Univ Northumbria Newcastle Laryngoscope
EP1399201B1 (en) 2001-01-11 2012-04-11 Given Imaging Ltd. Device for in-vivo procedures
US20020103494A1 (en) 2001-01-31 2002-08-01 Pacey John Allen Percutaneous cannula delvery system for hernia patch
EP1377201A4 (en) * 2001-03-14 2004-06-16 Western Sydney Area Health Ser LARYNGOSCOPE
DE20105206U1 (de) 2001-03-22 2001-06-21 Storz Karl Gmbh & Co Kg Endoskopisches Intubationssystem
US6764484B2 (en) * 2001-03-30 2004-07-20 Scimed Life Systems, Inc. C-channel to o-channel converter for a single operator exchange biliary catheter
JP2003010112A (ja) 2001-06-28 2003-01-14 Olympus Optical Co Ltd 内視鏡システム
US6623425B2 (en) 2001-07-23 2003-09-23 Cartledge Medical Products, Llc Modified laryngoscope blade to reduce dental injuries during intubation
US6494828B1 (en) 2001-07-23 2002-12-17 Jonathan Berall Laryngoscope
US6929600B2 (en) 2001-07-24 2005-08-16 Stephen D. Hill Apparatus for intubation
US7159589B2 (en) 2001-08-23 2007-01-09 Indian Ocean Medical Inc. Disposable laryngeal mask airway device
US7212227B2 (en) 2001-11-09 2007-05-01 Karl Storz Imaging, Inc. Programmable and reconfigurable camera control unit for video systems
US8274559B2 (en) 2001-11-09 2012-09-25 Karl Storz Imaging, Inc. Replaceable hardware component of a camera control unit for video systems
US8089509B2 (en) 2001-11-09 2012-01-03 Karl Storz Imaging, Inc. Programmable camera control unit with updatable program
US8199188B2 (en) 2001-11-09 2012-06-12 Karl Storz Imaging, Inc. Video imaging system with a camera control unit
US7471310B2 (en) 2001-12-28 2008-12-30 Karl Storz Imaging, Inc. Intelligent camera head
US20030195390A1 (en) 2002-03-11 2003-10-16 Graumann Martin Panczel Digital laryngoscope
US7289139B2 (en) 2002-03-12 2007-10-30 Karl Storz Imaging, Inc. Endoscope reader
US8194122B2 (en) 2002-03-12 2012-06-05 Karl Storz Imaging, Inc. Universal scope reader
US9510740B2 (en) 2002-03-12 2016-12-06 Karl Storz Endovision, Inc. Auto recognition of a shaver blade for medical use
US8599250B2 (en) 2002-03-12 2013-12-03 Karl Storz Imaging, Inc. Wireless camera coupling
US6840903B2 (en) 2002-03-21 2005-01-11 Nuvista Technology Corporation Laryngoscope with image sensor
US6923176B2 (en) * 2002-03-26 2005-08-02 Willy Rusch Gmbh Resuscitation tube
US7182728B2 (en) 2002-07-24 2007-02-27 Intubation Plus, Inc. Laryngoscope with multi-directional eyepiece
CA2752536C (en) 2002-09-13 2015-01-27 Karl Storz Imaging, Inc. Video recording and image capture device
US6923663B2 (en) 2002-09-17 2005-08-02 Leviton Manufacturing Co., Inc. Triplex receptacle
US7278420B2 (en) * 2002-09-24 2007-10-09 Thomas Jefferson University Oropharyngeal airway
US20060020171A1 (en) 2002-10-21 2006-01-26 Gilreath Mark G Intubation and imaging device and system
KR100991112B1 (ko) 2002-12-19 2010-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 그 제작 방법
US6792948B2 (en) 2003-01-22 2004-09-21 Archibald I. J. Brain Laryngeal mask airway device with airway tube having flattened outer circumference and elliptical inner airway passage
ES2234387B1 (es) 2003-02-24 2007-08-01 Pedro Acha Gandarias Laringoscopio optico luminoso con dispositivo de extraccion de fluidos incorporado.
WO2004096294A2 (en) 2003-04-28 2004-11-11 Northwestern University Visualization stylet for endotracheal intubation
EP2106740B1 (en) 2003-04-29 2017-03-01 Aircraft Medical Limited Laryngoscope with means to restrict re-use of blades
DE10325382A1 (de) 2003-05-30 2004-12-23 Karl Storz Gmbh & Co. Kg Verfahren und Vorrichtung zum Visualisieren von medizinischen Patientendaten auf einer medizinischen Anzeigeeinheit
US7243653B2 (en) 2003-06-06 2007-07-17 Radlyn Llc Intubation device
IL156715A0 (en) 2003-06-30 2004-01-04 Medigus Ltd Autoclavable imager assembly
AT501561B1 (de) 2003-09-01 2008-03-15 Schunk Metall & Kunststoff Laryngoskop
US7128071B2 (en) 2003-09-10 2006-10-31 Indian Ocean Medical Inc. Intubating laryngeal mask airway device with fiber optic assembly
US7946981B1 (en) * 2003-10-23 2011-05-24 Anthony Cubb Two-piece video laryngoscope
US20050090712A1 (en) * 2003-10-23 2005-04-28 Anthony Cubb Res-Q-Scope
US20050090715A1 (en) 2003-10-24 2005-04-28 Armin Schorer Spatula device for performance of laryngoscopical treatment
JP2005143756A (ja) 2003-11-13 2005-06-09 Scalar Corp 経口エアウェイ、及び気道確保補助器具
IL159383A0 (en) 2003-12-16 2004-06-01 Laryngoscope with time indicating means and method for use thereof
US7134992B2 (en) 2004-01-09 2006-11-14 Karl Storz Development Corp. Gravity referenced endoscopic image orientation
US20070156022A1 (en) 2004-01-16 2007-07-05 Patel Rajeev J Illuminated Medical Devices
US20050159649A1 (en) 2004-01-16 2005-07-21 Patel Rajeev J. Laryngoscope and associated method of intubating a patient
JP2005218644A (ja) * 2004-02-05 2005-08-18 Chinontec Kk 気管内挿管装置
US7297105B2 (en) 2004-02-10 2007-11-20 Mackin Robert A Endotracheal camera
US7127758B2 (en) 2004-03-02 2006-10-31 Gabbay Daniel S Active head/neck positioning device for endotracheal intubation
US20050240081A1 (en) 2004-04-22 2005-10-27 The Cleveland Clinic Foundation Laryngoscope blade
US20050244801A1 (en) 2004-04-28 2005-11-03 Desalvo Antonino System and method of training the proper placement of airway adjuncts in a training manikin
IL162251A0 (en) 2004-05-31 2005-11-20 Medigus Ltd A reusable laparoscopic or endoscopic camera head
IL162390A0 (en) 2004-06-07 2005-11-20 Medigus Ltd Multipurpose endoscopy suite
US20090118580A1 (en) 2004-07-02 2009-05-07 Wei-Zen Sun Image-type intubation-aiding device
US20060004258A1 (en) 2004-07-02 2006-01-05 Wei-Zen Sun Image-type intubation-aiding device
US20060020166A1 (en) 2004-07-21 2006-01-26 Jonathan Berall Protection of sensitive instruments
DE202004012992U1 (de) 2004-08-19 2005-12-29 Storz Endoskop Produktions Gmbh Endoskopisches Video-Meßsystem
US8858425B2 (en) 2004-09-24 2014-10-14 Vivid Medical, Inc. Disposable endoscope and portable display
US9033870B2 (en) 2004-09-24 2015-05-19 Vivid Medical, Inc. Pluggable vision module and portable display for endoscopy
JP4814504B2 (ja) 2004-09-27 2011-11-16 淳一 小山 挿管支援具および挿管支援装置
JP2006109969A (ja) 2004-10-13 2006-04-27 Machida Endscope Co Ltd 気道確保チューブ用ガイド装置
JP3108837U (ja) * 2004-11-12 2005-04-28 一 村上 気管挿管用小型カメラ無線システム
WO2006053446A1 (en) 2004-11-19 2006-05-26 Saturn Biomedical Systems Inc. Secretion clearing ventilation catheter and airway management system
WO2006056976A2 (en) 2004-11-23 2006-06-01 Truphatek International Ltd Handheld penknife-like laryngoscope
USD534652S1 (en) 2004-11-30 2007-01-02 Aircraft Medical Limited Laryngoscope blade
JP4937136B2 (ja) * 2004-12-28 2012-05-23 パトリック・シー・メルダー 内視鏡画像システム
US20060162730A1 (en) 2005-01-26 2006-07-27 Raymond Glassenberg Video-assisted laryngeal mask airway devices
KR100704724B1 (ko) 2005-01-27 2007-04-06 왕수건 상하 굽힘이 가능한 굴곡형 전자 후두내시경
US20060241476A1 (en) 2005-02-10 2006-10-26 Loubser Paul G Apparatus and method for holding a transesophageal echocardiography probe
WO2006095336A2 (en) 2005-03-08 2006-09-14 Truphatek International Ltd Handheld portable medical viewing assembly for displaying medical images during endotracheal intubation, and intubation stylet for use therewith
CN101175436B (zh) 2005-04-01 2011-01-26 维拉顿医疗(加拿大)Ulc公司 视频牵引器
WO2006106522A2 (en) 2005-04-07 2006-10-12 Visionsense Ltd. Method for reconstructing a three- dimensional surface of an object
WO2006111965A2 (en) 2005-04-20 2006-10-26 Visionsense Ltd. System and method for producing an augmented image of an organ of a patient
US7563227B2 (en) 2005-04-29 2009-07-21 Gardner Glenn P Instrument for direct laryngoscopy with a rigid blade and flexible fiberoptics
US20070074728A1 (en) 2005-05-13 2007-04-05 Rea James L Endotracheal electrode and optical positioning device
JP4738893B2 (ja) * 2005-05-27 2011-08-03 大研医器株式会社 喉頭鏡
US20070173697A1 (en) 2005-08-17 2007-07-26 University Of Rochester Medical Center Combined flexible and rigid intubating video laryngoscope
US20070049794A1 (en) 2005-09-01 2007-03-01 Ezc Medical Llc Visualization stylet for medical device applications having self-contained power source
JP5042481B2 (ja) 2005-09-02 2012-10-03 オリンパスメディカルシステムズ株式会社 電子内視鏡
US8231524B2 (en) 2005-09-20 2012-07-31 Ai Medical Devices, Inc. Endotracheal intubation device
US7658708B2 (en) 2005-09-20 2010-02-09 Ai Medical Devices, Inc. Endotracheal intubation device
US20070095352A1 (en) 2005-10-18 2007-05-03 Jonathan Berall Endotracheal tube with markings
US7771350B2 (en) 2005-10-21 2010-08-10 General Electric Company Laryngoscope and laryngoscope handle apparatus including an LED and which may include an ergonomic handle
JP4928860B2 (ja) 2005-10-24 2012-05-09 Hoya株式会社 挿管支援装置
FR2892290B1 (fr) * 2005-10-24 2012-08-17 Pentax Corp Appareil d'aide a l'intubation.
JP4761928B2 (ja) 2005-10-24 2011-08-31 Hoya株式会社 挿管支援装置
US8479739B2 (en) 2005-12-02 2013-07-09 The Cooper Health System System and method for managing difficult airways
CN105125163A (zh) 2005-12-09 2015-12-09 飞机医疗有限公司 喉镜片
US20070137651A1 (en) 2005-12-16 2007-06-21 Ezc Medical Llc Visualization esophageal-tracheal airway apparatus and methods
US20070215162A1 (en) 2005-12-16 2007-09-20 Ezc Medical Llc Visualization airway apparatus and methods for selective lung ventilation
US20080029100A1 (en) 2005-12-16 2008-02-07 Ezc Medical Llc Visualization laryngeal airway apparatus and methods of use
CN101432037A (zh) 2005-12-21 2009-05-13 韦拉索恩医学加拿大无限责任公司 用于清除分泌物的患者气道管理系统
US20070162095A1 (en) 2006-01-06 2007-07-12 Ezc Medical Llc Modular visualization stylet apparatus and methods of use
US20070179342A1 (en) 2006-01-12 2007-08-02 Kb Port Llc Wireless Laryngoscope with Internal Antennae and One Piece Construction Adapted for Laryngoscopy Training
JP4871362B2 (ja) 2006-01-24 2012-02-08 パヘ 65,ソシエダッド リミターダ 発光光学喉頭鏡
US20070175482A1 (en) 2006-01-27 2007-08-02 Ezc Medical Llc Apparatus for introducing an airway tube into the trachea having visualization capability and methods of use
US20070195539A1 (en) 2006-02-21 2007-08-23 Karl Storz Gmbh & Co. Kg Ultra wide band wireless optical endoscopic device
US20070197873A1 (en) 2006-02-21 2007-08-23 Karl Storz Gmbh & Co. Kg Wireless optical endoscopic device
IL181470A (en) 2006-02-24 2012-04-30 Visionsense Ltd Method and system for navigation within a flexible organ in the human body
US7511732B2 (en) 2006-03-30 2009-03-31 Crucible Technologies, Llc Assembly and method for securing an endoscope to a digital camera
US7909757B2 (en) 2006-04-03 2011-03-22 Dwight Herman Laryngoscope blade
EP2010040B1 (en) 2006-04-27 2015-10-14 Colin Dunlop A light source apparatus
JP2007301092A (ja) 2006-05-10 2007-11-22 Pentax Corp 電子内視鏡のコネクタ装置
EP2050277A2 (en) 2006-08-07 2009-04-22 Innovative Medical Devices, Inc. System to aid in the positioning, confirmation and documentation of an endotracheal tube
US20080045801A1 (en) 2006-08-15 2008-02-21 M.S. Vision Ltd. Intubation laryngoscope with detachable blades
TWM309971U (en) 2006-09-13 2007-04-21 Tien-Sheng Chen Bronchoscope with wireless-transmission monitor
US7976459B2 (en) 2006-10-17 2011-07-12 Intra L.L.C. Portable endoscope for intubation
TWM315097U (en) 2007-01-19 2007-07-11 Ten-Sun Chen Arrange system with double vision of trachea and inner pipe
US8398545B2 (en) 2007-01-19 2013-03-19 Tien-Sheng Chen Laryngoscope with a movable image-capturing unit
US7695433B2 (en) 2007-01-24 2010-04-13 Zeppelin Designs, Inc. Laryngoscope with disposable blade cover
US7502217B2 (en) 2007-02-16 2009-03-10 Medtronic, Inc. Filtering capacitor feedthrough assembly
IL181851A0 (en) 2007-03-11 2007-07-04 Truphatek Int Ltd Laryngoscope handle and accessories therefor
KR100811588B1 (ko) 2007-03-26 2008-03-11 한국화학연구원 자동비디오점적기
US20080236575A1 (en) 2007-03-29 2008-10-02 Robert Michael Chuda Intubation device with video, stylet steering, prep and storage system
US9386914B2 (en) 2007-04-04 2016-07-12 Karl Storz Endovision, Inc. Video endoscopic device with detachable control circuit
US8029440B2 (en) 2007-04-04 2011-10-04 Karl Storz Endovision, Inc. Video blade laryngoscope
US20080294010A1 (en) 2007-05-25 2008-11-27 Cooper John D Laryngoscope that indicates contact
US8419634B2 (en) 2007-06-12 2013-04-16 University Hospitals Of Cleveland Apparatus and method for airway management
US20080312507A1 (en) 2007-06-16 2008-12-18 Taehoon Kim Apparatus and method for imaging-assisted intubation using pre-existing practitioner skill set
EP2175920A2 (en) 2007-07-02 2010-04-21 Frédéric Supiez Endotracheal intubation system and intubation procedure
US8495999B2 (en) 2007-08-04 2013-07-30 John Adam Law Airway intubation device
GB2452402B (en) 2007-08-28 2010-03-17 Aircraft Medical Ltd Laryngoscope insertion section
GB0716672D0 (en) * 2007-08-28 2007-10-03 Aircraft Medical Ltd Laryngoscope
TWM327719U (en) 2007-09-07 2008-03-01 Tien-Sheng Chen Endotracheal inner-tube probe and installation set of endotracheal inner-tube
US10182712B2 (en) 2007-10-12 2019-01-22 Beth Israel Deaconess Medical Center, Inc. Catheter guided endotracheal intubation
US8425409B2 (en) 2007-10-26 2013-04-23 Vm Specialty, Inc. Laryngoscope
JP2009148420A (ja) * 2007-12-20 2009-07-09 Olympus Medical Systems Corp 分離型内視鏡
WO2009089043A2 (en) 2008-01-09 2009-07-16 Ezc Medical Llc. Intubation systems and methods
US8633975B2 (en) 2008-01-16 2014-01-21 Karl Storz Imaging, Inc. Network based endoscopic surgical system
US20090192350A1 (en) 2008-01-28 2009-07-30 Mauricio Mejia Wireless video stylet with display mounted to laryngoscope blade and method for using the same
US8888683B2 (en) 2008-01-28 2014-11-18 Mauricio Mejia Modifications in endoscope apparatus, using fluid and gas dynamics, and methods for improving visibility during endoscopy
US9295378B2 (en) 2008-02-04 2016-03-29 University Hospitals Of Cleveland Universal handle
US20090264708A1 (en) 2008-02-15 2009-10-22 Pacey Jack Single-use multi-platform intubation and surgical apparatus
US20090247833A1 (en) 2008-04-01 2009-10-01 Tanaka David T Adapter for removably coupling a camera to a laryngoscope and laryngoscope and system using same
WO2009130666A1 (en) 2008-04-21 2009-10-29 Elges Ernst Lehnert Ges.M.B.H Laryngoscope
US8257250B2 (en) 2008-06-23 2012-09-04 Intubrite, Llc Laryngoscope and method of use
US8152719B2 (en) 2008-06-23 2012-04-10 Intubrite, Llc Laryngoscope and method of use
US20090318768A1 (en) 2008-06-23 2009-12-24 Tenger James P Laryngoscope and Method of Use
DE102008033506A1 (de) 2008-07-07 2010-01-14 Karl Storz Gmbh & Co. Kg Videoendoskop mit schaltbaren Halbleiterlichtquellen
TWI444165B (zh) 2008-10-07 2014-07-11 Medical Intubation Tech Corp Separate endoscopic photographic device
GB0819942D0 (en) 2008-10-30 2008-12-10 Indian Ocean Medical Inc Guiding device for use with laryngoscope
US8998804B2 (en) 2008-11-12 2015-04-07 Board Of Regents Of The University Of Nebraska Suction catheter assembly for a laryngoscope
WO2010066787A1 (en) 2008-12-10 2010-06-17 Ambu A/S Imaging system with disposable part
RU2510234C2 (ru) 2008-12-10 2014-03-27 Амбу А/С Эндоскоп, имеющий корпус камеры, и способ изготовления корпуса камеры
US20100249639A1 (en) 2009-01-20 2010-09-30 Samir Bhatt Airway management devices, endoscopic conduits, surgical kits, and methods of using the same
US8894570B2 (en) * 2009-01-22 2014-11-25 Li Ding Video laryngoscope
GB0903612D0 (en) 2009-03-03 2009-04-08 Aircraft Medical Ltd Laryngoscope insertion section with tube guide
GB0903610D0 (en) 2009-03-03 2009-04-08 Aircraft Medical Ltd Insertion section for laryngoscope with lateral tube guide
US20100224187A1 (en) 2009-03-04 2010-09-09 Thomas Maxwell Dalton Apparatus and methods facilitating atraumatic intubation
EP2414015B1 (en) 2009-03-31 2021-09-01 Dilon Technologies, Inc. Laryngoscope and system
US20100261967A1 (en) 2009-04-14 2010-10-14 Verathon Inc. Video laryngoscope system and devices
US9833586B2 (en) 2009-05-18 2017-12-05 Nihon Kohden Corporation Intubation assistance instrument, intubation assistance apparatus and intubation assistance system
WO2011106754A1 (en) * 2010-02-27 2011-09-01 King Systems Corporation Laryngeal tube
US8998798B2 (en) * 2010-12-29 2015-04-07 Covidien Lp Multi-lumen tracheal tube with visualization device
US9415179B2 (en) * 2012-06-01 2016-08-16 Wm & Dg, Inc. Medical device, and the methods of using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526320A (ja) * 2010-05-13 2013-06-24 エアクラフト メディカル リミテッド ビデオ喉頭鏡
JP2015166019A (ja) * 2010-05-13 2015-09-24 エアクラフト メディカル リミテッドAircraft Medical Limited ビデオ喉頭鏡
US9364140B2 (en) 2010-05-13 2016-06-14 Covidien Lp Video laryngoscope
US9907464B2 (en) 2010-05-13 2018-03-06 Aircraft Medical Limited Video laryngoscope
US10617292B2 (en) 2010-05-13 2020-04-14 Aircraft Medical Limited Video laryngoscope
US10973401B2 (en) 2010-05-13 2021-04-13 Aircraft Medical Limited Video laryngoscope
CN103228198A (zh) * 2010-09-08 2013-07-31 科维蒂恩有限合伙公司 具有成像组件的导管
CN103228198B (zh) * 2010-09-08 2016-07-06 科维蒂恩有限合伙公司 具有成像组件的导管
WO2016184851A1 (en) * 2015-05-21 2016-11-24 Intersurgical Ag Video laryngoscopes
CN107847120A (zh) * 2015-05-21 2018-03-27 英特外科股份公司 视频喉镜
US11058292B2 (en) 2015-05-21 2021-07-13 Intersurgical Ag Video laryngoscopes
WO2022226254A1 (en) * 2021-04-22 2022-10-27 Alta Smiles, Llc Dental imaging device

Also Published As

Publication number Publication date
US20110130632A1 (en) 2011-06-02
MX2012005856A (es) 2012-09-12
JP5795671B2 (ja) 2015-10-14
MX347417B (es) 2017-04-26
KR20120101018A (ko) 2012-09-12
AU2010324600A1 (en) 2012-05-31
KR101442359B1 (ko) 2014-09-17
US9179831B2 (en) 2015-11-10
CN102647936B (zh) 2015-11-25
NZ599923A (en) 2014-08-29
CA2780343A1 (en) 2011-06-03
KR101614233B1 (ko) 2016-04-20
WO2011066510A3 (en) 2011-07-21
KR20140082861A (ko) 2014-07-02
CA2780343C (en) 2016-02-02
JP5596169B2 (ja) 2014-09-24
AU2010324600B2 (en) 2014-04-24
US9854962B2 (en) 2018-01-02
EP2506753B1 (en) 2016-10-12
EP2506753A2 (en) 2012-10-10
JP2013512046A (ja) 2013-04-11
JP2015037548A (ja) 2015-02-26
US20110130627A1 (en) 2011-06-02
CN102647936A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
CA2780343C (en) Visualization instrument
US8416291B2 (en) System to aid in the positioning, confirmation and documentation of an endotracheal tube
CN111655118B (zh) 视频喉镜系统和方法
US20140160261A1 (en) Visualization instrument
EP1738789B1 (en) Endotracheal video device
CA2756698C (en) Laryngoscope and system
US7044909B2 (en) Video laryngoscope with detachable light and image guides
US9821131B2 (en) Intubation device
US20180168433A1 (en) Airway management and visualization device
JP4964452B2 (ja) 挿管支援装置
JP2014210085A (ja) 挿管支援装置
US8808165B2 (en) Casing of capsule endoscope, capsule endoscope kit, assembly method of capsule endoscope kit and assembly device of capsule endoscope kit
JP2007117115A (ja) 挿管支援具および挿管支援装置
JP5576059B2 (ja) 挿管支援具、挿管支援装置および挿管支援システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053619.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2780343

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010324600

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/005856

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20127013444

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010788184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012541223

Country of ref document: JP

Ref document number: 2010788184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010324600

Country of ref document: AU

Date of ref document: 20101129

Kind code of ref document: A