WO2011065441A1 - 制振装置及びこれを備えた車両 - Google Patents

制振装置及びこれを備えた車両 Download PDF

Info

Publication number
WO2011065441A1
WO2011065441A1 PCT/JP2010/071051 JP2010071051W WO2011065441A1 WO 2011065441 A1 WO2011065441 A1 WO 2011065441A1 JP 2010071051 W JP2010071051 W JP 2010071051W WO 2011065441 A1 WO2011065441 A1 WO 2011065441A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
frequency
pseudo
canceling
generated
Prior art date
Application number
PCT/JP2010/071051
Other languages
English (en)
French (fr)
Inventor
猛 富崎
英朗 守屋
丈生 伊藤
恭次 村岸
Original Assignee
シンフォニアテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009267245A external-priority patent/JP5353657B2/ja
Priority claimed from JP2009269276A external-priority patent/JP5353661B2/ja
Priority claimed from JP2009269640A external-priority patent/JP5353662B2/ja
Application filed by シンフォニアテクノロジー株式会社 filed Critical シンフォニアテクノロジー株式会社
Priority to CN201080053633.9A priority Critical patent/CN102667227B/zh
Priority to EP10833287A priority patent/EP2505870A1/en
Publication of WO2011065441A1 publication Critical patent/WO2011065441A1/ja
Priority to US13/473,876 priority patent/US9075418B2/en
Priority to HK12112257.9A priority patent/HK1171494A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/027Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means comprising control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17855Methods, e.g. algorithms; Devices for improving speed or power requirements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/005Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion using electro- or magnetostrictive actuation means

Definitions

  • the present invention relates to a vibration damping device that suppresses generated vibrations, and more particularly to a vibration damping device that improves the stability of vibration damping control and a vehicle including the same.
  • Patent Literature 1 calculates a pseudo vibration corresponding to a vibration to be damped using an adaptive control algorithm, generates a cancellation signal based on the calculated pseudo vibration, and generates a cancellation signal. Based on this, canceling vibration is generated at a position to be controlled through vibration means such as an actuator, and the acceleration sensor detects the vibration remaining as a canceling error between the generated canceling vibration and the vibration to be controlled.
  • the adaptive control algorithm is learned and adapted so that the remaining vibration becomes small, and the pseudo vibration is converged to a true value.
  • the frequency of the pseudo vibration is determined on the assumption that the frequency recognized based on the engine crankshaft rotation pulse signal matches the frequency of the vibration to be damped.
  • the frequency of the vibration to be damped is generally recognized based on a signal related to the vibration generation source and the frequency of the pseudo vibration is determined.
  • Patent Document 1 discloses a cancellation signal for canceling vibration transmitted from a vibration source to a position to be damped by inputting a frequency corresponding to vibration generated at the vibration source.
  • Control means for generating vibration, excitation means for generating a cancellation vibration at a position to be damped by inputting a cancellation signal generated by the control means, and a vibration generating source at the position to be damped
  • Vibration detecting means for detecting a vibration remaining as a canceling error between the generated vibration and the canceling vibration, and the control means cancels the vibration remaining as a canceling error based on the vibration detected by the vibration detecting means. What modifies the signal is disclosed.
  • Patent Document 1 and Patent Document 2 calculate a pseudo vibration corresponding to the vibration to be controlled using an adaptive filter, and based on the calculated pseudo vibration, an excitation of an actuator or the like.
  • the cancellation vibration is generated at the position to be controlled through the means, the vibration remaining as the cancellation error between the generated cancellation vibration and the vibration to be controlled is detected by the acceleration sensor, and the remaining vibration as the detected cancellation error is reduced.
  • a method is disclosed in which the calculation of the adaptive filter is repeatedly executed, and the pseudo vibration and the adaptive filter are converged to a true value by accumulation of the calculation.
  • a vibration damping device that performs such adaptive control typically has a configuration in which calculation of adaptive filters is stacked using a convergence coefficient that indicates the degree to which the adaptive filter approaches a true value for each calculation. The speed of convergence to the true value of is determined.
  • the convergence coefficient is generally a constant convergence coefficient as exemplified in Patent Document 2.
  • the conventional vibration damping device has the following problems.
  • the frequency recognized based on a signal related to a vibration generation source such as an engine crank rotation shaft pulse signal or an engine ignition pulse signal does not necessarily match the vibration frequency to be damped.
  • the frequency recognized as the actual frequency of the vibration to be damped due to various reasons, such as an error caused by sampling at the time of capturing the pulse signal, or a discretization error occurring in the calculation at the time of frequency recognition. May not match. If the actual frequency of the vibration to be damped differs from the recognized frequency, the phase difference between the phase of the vibration to be damped and the phase of the pseudo-vibration gradually increases. Increases, the adaptability of the adaptive control algorithm decreases, and the damping performance and control stability are impaired.
  • the amplitude or phase of the vibration generated by the vibration means changes in the process of transmission to the position to be damped by the transmission characteristic on the vibration transmission path from the vibration means to the position to be damped.
  • the damping effect obtained by the vibration of the vibration means is low, and the cancellation vibration generated at the position to be controlled through the vibration means is small. Therefore, the conventional vibration damping device tries to continue to increase the vibration generated by the vibrating means.
  • the first invention has been made paying attention to the first problem, and the purpose thereof is even when the frequency of vibration to be damped is erroneously recognized as a frequency different from the actual frequency.
  • the second invention has been made paying attention to the second problem, and its purpose is to impair the stability of vibration suppression by a low sensitivity region where the vibration suppression effect obtained through the vibration of the vibration means is low. It is an object of the present invention to provide a vibration damping device and a vehicle equipped with the vibration damping device that solve the above-mentioned problems and improve the vibration damping stability.
  • the third invention has been made paying attention to the third problem, and its purpose is that it is necessary to greatly change the canceling vibration generated due to a significant change in the vibration to be damped. It is to provide a vibration damping device and a vehicle equipped with the vibration damping device that improve the response or stability of the vibration damping control by appropriately responding to this when there is no or a mixture of these.
  • the vibration damping device uses an adaptive control algorithm to cancel the vibration generated at the vibration generating source and the canceling vibration generated through the vibrating means at a position to be controlled.
  • the pseudo vibration necessary for canceling the vibration transmitted to the position to be damped from is calculated, and the canceling vibration is generated at the position pos to be damped through the vibration means based on the calculated pseudo vibration.
  • An adaptive damping device wherein the frequency of the vibration at the position to be damped is a signal related to the vibration generated at the vibration source to be based on the frequency of the pseudo vibration.
  • Phase difference specifying means for specifying the phase difference from the phase of the canceling vibration generated at the position pos to be controlled based on the pseudo vibration, and the frequency recognition means based on the phase difference specified by the phase difference specifying means
  • Frequency correction means for correcting the recognized frequency in a direction in which the phase difference is eliminated.
  • the frequency recognition means recognizes the frequency of vibration transmitted from the vibration source to the position to be damped based on a signal related to vibration generated at the vibration source, and the recognized frequency is detected from the vibration source.
  • the adaptive control algorithm is designed to generate a cancellation vibration at the power position, detect the vibration remaining as a cancellation error between the generated cancellation vibration and the vibration at the position to be controlled, and reduce the vibration remaining as the detected cancellation error. Learning adaptation is performed and vibration suppression control is performed.
  • the phase difference specifying means detects the vibration remaining as the cancellation error at the position to be controlled, specifies the phase of the vibration remaining as the cancellation error, and specifies the phase of the vibration remaining as the specified cancellation error.
  • the phase difference from the phase of the canceling vibration generated at the position to be damped based on the pseudo vibration is specified, and the frequency recognized by the frequency recognizing means according to the specified phase difference is changed to the phase difference by the frequency correcting means. Since the frequency of vibration transmitted from the vibration source to the position to be controlled is erroneously recognized as a frequency different from the actual frequency, the frequency of the pseudo vibration is determined from the vibration source.
  • the adaptability of the adaptive control algorithm can be improved in accordance with the frequency of vibration transmitted to the position to be damped, and the damping performance and stability can be improved.
  • the engine speed changes significantly due to the accelerator operation, and the vibration frequency fluctuates sharply with changes in the speed, making vibration control difficult.
  • the recognized frequency is corrected, it is effective in that it is possible to follow even if the frequency fluctuation of vibration is severe.
  • the frequency correction unit is configured to perform a preset correction per time when there is a phase difference specified by the phase difference specifying unit. It is preferable to correct the frequency recognized by the frequency recognition means using a correction amount that does not exceed the upper limit correction amount.
  • the frequency correction unit uses the correction amount having a magnitude corresponding to the amount of phase difference specified by the phase difference specifying unit. It is desirable to correct the recognized frequency.
  • the frequency correction unit has a phase shift amount specified by the phase difference specifying unit larger than a preset threshold value. It is effective to sometimes correct the frequency recognized by the frequency recognizing means and not to correct the recognized frequency when the amount of phase difference deviation is less than or equal to the threshold value.
  • the vibration damping device inputs a frequency corresponding to the vibration when canceling the vibration generated at the vibration generation source and the canceling vibration generated by the vibrating means at a position where vibration is to be suppressed.
  • Control means for generating a canceling signal for canceling vibration transmitted from the vibration generating source to the position to be controlled, and when the canceling signal generated by the control means is input, the control means operates.
  • the control means is a vibration damping device that corrects the canceling signal so as to reduce vibration remaining as the canceling error based on the vibration detected by the vibration detecting means, from the exciting means to Storage means for storing the transmission characteristics on the vibration transmission path to the position to be shaken as the sensitivity information in association with the frequency, and low sensitivity that the current frequency is difficult to transmit the vibration generated by the excitation means based on the sensitivity information Sensitivity determining means for determining whether or not the current frequency is in the region, and the control means generates the cancellation signal by the vibration means when the sensitivity determining means determines that the current frequency is in the low sensitivity region. It corrects in the direction which suppresses the cancellation vibration to be performed.
  • the transmission characteristic on the vibration transmission path from the vibration means to the position to be damped is stored as sensitivity information in association with the frequency, and the current frequency is determined by the vibration means based on this sensitivity information. If it is determined that the generated vibration is in a low-sensitivity region, the cancellation signal is corrected in a direction to suppress the cancellation vibration generated by the vibration means, so that vibration suppression obtained by the vibration of the vibration means is obtained. In the low-sensitivity area where the effect is low, vibration generated by the vibration means is suppressed, and adverse effects on vibrations to other parts, or excessive cancellation vibration that is more than necessary when passing through the low-sensitivity area. Can be prevented, and problems caused by the low sensitivity region can be eliminated, and the vibration suppression stability can be improved.
  • the sensitivity determination unit is configured to transmit one of the transfer characteristics on the vibration transmission path associated with the current frequency based on the sensitivity information. It is preferable to determine that the current frequency is in the low sensitivity region when the degree of transmission of the amplitude component is lower than a predetermined first threshold value.
  • the sensitivity determination means includes the current frequency based on the sensitivity information.
  • the transmission of the amplitude component which is one of the transmission characteristics on the vibration transmission path associated with
  • the second threshold which is higher than the first threshold
  • the current frequency is the low sensitivity.
  • An invariable region is provided between the first threshold value and the second threshold value, and an invariable region is provided between the first threshold value and the second threshold value, and the control means includes the sensitivity determination means. Therefore, it is desirable not to correct the cancellation signal when it is determined that the current frequency is not in the low sensitivity region.
  • the canceling signal is a vibration suppression current command, and a predetermined current upper limit value is determined from the frequency.
  • the vibration suppression current command is limited, and the current excess detection means is determined by the sensitivity determination means that the current frequency is in a low sensitivity region. In this case, it is preferable to correct the current upper limit value in a direction in which the damping current command is limited.
  • the above-described vibration damping device can be particularly preferably applied when vibrations generated from an engine are mounted on a vehicle.
  • the vibration damping device uses an adaptive filter to cancel the vibration generated at the vibration generation source and the canceling vibration generated through the vibration excitation means from the vibration generation source using an adaptive filter.
  • Pseudo vibration calculation means for calculating a pseudo vibration necessary for canceling the vibration transmitted to the position to be controlled, and the vibration suppression through the vibration excitation means based on the pseudo vibration calculated by the pseudo vibration calculation means.
  • Canceling vibration generation command means for generating the canceling vibration at a position to be controlled, and vibration detecting means for detecting vibration remaining as a cancellation error between the vibration generated at the vibration generating source and the canceling vibration at the position to be controlled.
  • the pseudo-vibration calculation means is based on the vibration detected by the vibration detection means and a convergence coefficient that determines a speed at which the adaptive filter converges to a true value.
  • a vibration damping device that repeatedly executes calculation of the adaptive filter so as to reduce vibration remaining as a killing error, and converges the pseudo vibration and the adaptive filter to a true value by accumulating the calculation, the vibration damping source from the vibration source Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted to the position to be corrected and the cancellation vibration generated at the position to be controlled based on the pseudo vibration, and acquired by the deviation information acquisition means
  • a convergence coefficient changing means for changing the convergence coefficient so that the speed at which the adaptive filter converges according to an increase in the deviation is increased based on the deviation information.
  • the pseudo vibration necessary for canceling the vibration transmitted from the vibration source to the position to be controlled is calculated by the pseudo vibration calculating means using the adaptive filter, and based on the calculated pseudo vibration.
  • the canceling vibration generation command means generates a canceling vibration at a position to be damped through the vibrating means, and the vibration detecting means causes a vibration that remains as a canceling error between the vibration generated at the vibration source and the canceling vibration at the position to be damped.
  • the adaptive filter is calculated by the pseudo vibration calculating means so that the vibration remaining as an offset error is reduced. Vibration suppression control for converging the pseudo vibration and the adaptive filter to the true value is performed by stacking.
  • the deviation information acquisition means acquires deviation information corresponding to the deviation, and based on the acquired deviation information, the convergence coefficient is increased so that the adaptive filter converges as the deviation increases. Is changed by the convergence coefficient changing means, so that when the canceling vibration generated at the position to be damped needs to be greatly changed, the speed at which the adaptive filter converges is increased to increase the response and improve the response of the vibration suppression control. Can be made.
  • the vibration damping device uses an adaptive filter to offset the vibration generated from the vibration generation source and the canceling vibration generated through the vibration excitation unit from the vibration generation source using an adaptive filter.
  • Pseudo vibration calculation means for calculating a pseudo vibration necessary for canceling the vibration transmitted to the position to be shaken, and the vibration to be controlled through the excitation means based on the pseudo vibration calculated by the pseudo vibration calculation means
  • a canceling vibration generation command means for generating the canceling vibration at a position; and a vibration detecting means for detecting a vibration remaining as a canceling error between the vibration generated at the vibration generating source and the canceling vibration at the position to be damped.
  • the pseudo-vibration calculating unit is configured to perform the cancellation error based on the vibration detected by the vibration detecting unit and a convergence coefficient that determines a speed at which the adaptive filter converges to a true value.
  • the vibration control apparatus repeatedly executes calculation of the adaptive filter so as to reduce the remaining vibration, and converges the pseudo vibration and the adaptive filter to a true value by accumulating the calculation.
  • Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted to the position and the cancellation vibration generated at the position to be controlled based on the pseudo vibration, and the deviation acquired by the deviation information acquisition means
  • Convergence coefficient changing means for changing the convergence coefficient so that the speed at which the adaptive filter converges according to the decrease in the deviation based on the information is provided.
  • the deviation information corresponding to the deviation is acquired by the deviation information acquisition means, and the speed at which the adaptive filter converges according to the decrease in the deviation is reduced based on the acquired deviation information.
  • the convergence coefficient is changed by the convergence coefficient changing means, so when there is no need to greatly change the canceling vibration to be excited, the speed at which the adaptive filter converges is reduced to reduce the behavior of the canceling vibration, thereby suppressing vibration. Control stability can be improved.
  • the vibration damping device uses an adaptive filter to reduce the vibration generated from the vibration generating source and the canceling vibration generated through the exciting means from the vibration generating source using an adaptive filter.
  • Pseudo vibration calculation means for calculating a pseudo vibration necessary for canceling the vibration transmitted to the position to be shaken, and the vibration to be controlled through the excitation means based on the pseudo vibration calculated by the pseudo vibration calculation means
  • a canceling vibration generation command means for generating the canceling vibration at a position; and a vibration detecting means for detecting a vibration remaining as a canceling error between the vibration generated at the vibration generating source and the canceling vibration at the position to be damped.
  • the pseudo vibration calculating means cancels the cancellation based on the vibration detected by the vibration detecting means and a convergence coefficient that determines a speed at which the adaptive filter converges to a true value.
  • a vibration damping device that repeatedly executes the calculation of the adaptive filter so as to reduce vibration remaining as a difference, and converges the pseudo vibration and the adaptive filter to a true value by accumulating the calculation, the vibration damping from the vibration source Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted to the power position and the cancellation vibration generated at the position to be controlled based on the pseudo vibration, and acquired by the deviation information acquisition means
  • a convergence coefficient change that changes the convergence coefficient so that the speed at which the adaptive filter converges increases as the deviation increases and the speed at which the adaptive filter converges decreases as the deviation decreases based on deviation information Means.
  • the deviation information acquisition means acquires deviation information corresponding to the deviation, and the acquired deviation information Based on this, the convergence coefficient is changed by the convergence coefficient changing means so that the speed at which the adaptive filter converges increases as the deviation increases, and the speed at which the adaptive filter converges decreases as the deviation decreases.
  • the response speed of the adaptive filter can be increased to increase the response, and the response of the vibration suppression control can be improved.
  • the speed at which the adaptive filter converges can be reduced to reduce the behavior of the canceling vibration, thereby improving the stability of the damping control. Therefore, it is possible to appropriately perform the vibration suppression control when there are cases where the canceling vibration to be generated needs to be largely changed or when there is no need to change it.
  • the deviation information acquisition means is generated as a deviation information corresponding to the deviation at a position to be controlled based on the pseudo vibration.
  • the excitation force amplitude component corresponding to the amplitude value of the canceling vibration is acquired, and the convergence coefficient changing unit changes the convergence coefficient according to the excitation force amplitude component acquired by the deviation information acquisition unit. It is done.
  • the deviation information acquisition unit remains as a cancellation error detected by the vibration detection unit as the deviation information corresponding to the deviation.
  • the vibration amplitude component may be acquired, and the convergence coefficient changing unit may change the convergence coefficient according to the vibration amplitude component remaining as the cancellation error acquired by the deviation information acquisition unit.
  • the deviation information acquisition unit may generate a signal related to vibration generated at the vibration source as deviation information corresponding to the deviation.
  • the amount of vibration frequency change at the position to be damped is acquired based on, and the convergence coefficient changing means changes the convergence coefficient according to the amount of frequency fluctuation acquired by the deviation information acquiring means.
  • the deviation information acquisition unit includes the phase of the vibration remaining as the cancellation error as the deviation information corresponding to the deviation and the pseudo vibration.
  • the convergence coefficient changing means changes the convergence coefficient in accordance with the phase difference acquired by the deviation information acquiring means.
  • the vibration of the vibrating means adversely affects the vibration to other parts, and when the current frequency goes out of the low sensitivity region, a larger canceling vibration than necessary is excited. It is possible to prevent the problem caused by the low sensitivity region and improve the vibration damping stability.
  • the third aspect of the invention it is possible to improve the response or stability of vibration suppression control regardless of whether or not it is necessary to greatly change the canceling vibration generated in response to a significant change in vibration to be controlled. It becomes. Therefore, according to the first, second, and third inventions, it is possible to provide a vibration damping device that improves the stability of the vibration damping control.
  • the schematic whole schematic diagram of the vibration damping device of 1st embodiment The schematic block diagram of a structure and function of the control means concerning the embodiment.
  • the detailed block diagram of the structure of the control means which concerns on the same embodiment. 5 is a flowchart showing a frequency correction calculation processing routine executed by a frequency correction amount calculation unit according to the embodiment.
  • Explanatory drawing regarding the vibration transmitted to the position which should be damped from a vibration means Explanatory drawing regarding the vibration which remains as cancellation error of the vibration transmitted to the position which should be controlled from a vibration generation source, and cancellation vibration.
  • the vibration damping device of the first embodiment will be described with reference to FIGS.
  • the first embodiment corresponds to the first invention.
  • the vibration damping device of the first embodiment is mounted on a vehicle such as an automobile, and vibration detection means 1 such as an acceleration sensor provided at a position pos to be damped such as a seat st.
  • Vibration means 2 using a linear actuator that generates vibration Vi2 by vibrating auxiliary mass 2a having a predetermined mass, engine ignition pulse signal that is a vibration generation source gn, and detection from vibration detection means 1
  • a control means 3 for generating a canceling vibration Vi4 at the position pos to be damped by inputting a signal and transmitting the vibration Vi2 generated by the oscillating means 2 to the position pos to be damped.
  • the vibration Vi3 generated by the vibration generation source gn of the engine or the like mounted on the frm through the mounter gnm and the canceling vibration Vi4 generated through the vibration means 2 are to be damped at a position pos. Is intended to reduce vibration at the position pos should be damped by killed.
  • the control means 3 generates vibrations at the position pos to be damped in order to generate a canceling vibration Vi4 that accurately cancels the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped.
  • a pseudo vibration Vi3 ′ simulating the vibration Vi3 transmitted from the generation source gn to the position pos to be damped is calculated using an adaptive algorithm, and the position to be damped through the vibration means 2 based on the calculated pseudo vibration Vi3 ′.
  • a cancellation vibration Vi4 is generated at pos.
  • the control means 3 detects the remaining vibration (Vi3 + Vi4) as a cancellation error between the cancellation vibration Vi4 and the vibration Vi3 transmitted from the vibration means 2 to the position pos to be controlled by the vibration detection means 1, and detects the detected cancellation error.
  • the adaptive control is learned and adapted so that the remaining vibration (Vi3 + Vi4) becomes small, and the vibration suppression control for converging the pseudo vibration to the true value is performed.
  • the pseudo vibration necessary to cancel the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped is the pseudo vibration Vi3 ′ simulating the vibration Vi3. It is also possible to directly simulate the canceling vibration Vi4 transmitted from the vibration means 2 to the position pos to be damped without performing the above.
  • the control means 3 for executing the vibration suppression control by the adaptive control includes a frequency recognition means 31, a pseudo vibration calculation means 32, and a cancellation signal generation means 33 as shown in FIG.
  • the frequency recognizing means 31 recognizes the vibration frequency at the position pos to be damped based on a signal related to the vibration Vi1 generated at the vibration generation source gn.
  • the recognized frequency is used as the basis of the frequency of the pseudo vibration when the pseudo vibration is calculated by the pseudo vibration calculating means 32.
  • an engine ignition pulse signal as a vibration related to the vibration Vi1 generated at the vibration generating source gn is input from an ECU or the like.
  • other signals such as a detection pulse signal from a sensor that detects the rotation speed of the engine crank may be used instead of the engine ignition pulse signal.
  • the pseudo vibration calculating unit 32 calculates the pseudo vibration by an adaptive algorithm after adopting the frequency recognized by the frequency recognizing unit 31 as the frequency of the pseudo vibration, and the remaining vibration as an offset error input from the vibration detecting unit 1 is reduced.
  • the adaptive algorithm is learned.
  • the pseudo vibration calculation means 32 includes a pseudo vibration calculation unit 32a and a learning adaptation unit 32b.
  • the pseudo vibration calculating unit 32a calculates pseudo vibration by changing the amplitude and phase of the reference wave by applying filtering using the adaptive filter 32f to the reference wave having the same frequency as the frequency recognized by the frequency recognizing unit 31.
  • the learning adaptation unit 32b sequentially updates the adaptive filter 32f so that no vibration remains as a cancellation error input from the vibration detection means 1.
  • the canceling signal generating means 33 generates a canceling signal as a command for generating the canceling vibration Vi4 at the position pos to be damped through the vibrating means 2 based on the pseudo vibration calculated by the pseudo vibration calculating means 32.
  • the vibration means 2 When the cancellation signal generated by the cancellation signal generation means 33 is input to the vibration means 2, the vibration means 2 generates the cancellation vibration Vi4 at a position pos where vibration cancellation is to be performed.
  • the canceling signal as shown in FIG. 5, if vibration Vi1 having a reverse waveform of vibration Vi3 is applied to vibration Vi3 transmitted from vibration generation source gn to position pos to be controlled.
  • the canceling vibration Vi4 is present at the position pos to be damped in consideration of this change.
  • the vibration Vi2 needs to be generated by the vibration means 2 so as to be applied.
  • the inverse transfer function of the vibration transfer function G that changes the amplitude and phase of vibration transmitted from the vibration means 2 to the position pos to be damped is stored in advance in the inverse transfer function storage unit 33a.
  • the cancellation vibration vi2 is calculated by adding a reverse transfer function to the vibration obtained by inverting the pseudo vibration Vi3 ′ simulating the vibration Vi3 at the position pos to be shaken.
  • the amplitude component of the inverse transfer function is set to 1 / G, and the phase component is stored as P in the inverse transfer function storage unit 33a.
  • a vibration transfer function for changing the amplitude or phase of vibration transmitted from the vibration source gn to the position pos to be damped is denoted by G ′.
  • the present embodiment further includes phase difference specifying means 34 and recognition frequency correcting means 35 as shown in FIG.
  • the phase difference specifying means 34 detects the vibration (Vi3 + Vi4) remaining as a cancellation error at the position pos to be damped, identifies the phase ⁇ of the vibration detected, and should be damped.
  • a phase difference ⁇ ( ⁇ ′) between the phase ⁇ of the vibration (Vi3 + Vi4) remaining as a cancellation error at the position pos and the phase ⁇ ′ of the cancellation vibration Vi4 generated at the position pos to be controlled based on the pseudo vibration Vi3 ′. )
  • the phase difference specifying unit 34 includes an immediate phase specifying unit 34a, a pseudo vibration phase specifying unit 34b, and a phase difference specifying unit 34c.
  • the immediate phase specifying unit 34 a immediately specifies the phase of the vibration based on the vibration detected by the vibration detecting unit 1.
  • the pseudo vibration phase specifying unit 34b specifies the phase of the pseudo vibration with reference to the calculation result of the pseudo vibration calculating unit 32a.
  • the phase difference specifying unit 34c specifies the phase difference between the vibration phase at the position pos to be damped specified by the immediate phase specifying unit 34a and the phase of the pseudo vibration specified by the pseudo vibration phase specifying unit 34b.
  • the frequency correcting unit 35 corrects the frequency recognized by the frequency recognizing unit 31 on the basis of the phase difference specified by the phase difference specifying unit 34 in a direction in which the phase difference is eliminated, and an upper limit correction amount storage unit 35a; A dead zone storage unit 35b.
  • the frequency correction unit 35 uses a correction amount that does not exceed the upper limit correction amount per correction stored in advance in the upper limit correction amount storage unit 35b when there is a phase difference specified by the phase difference specifying unit 34. Correction is performed, frequency correction is performed when the amount of phase difference deviation is larger than a threshold value stored in advance in the dead zone storage unit 35c, and frequency correction is performed when the amount of phase difference deviation is equal to or less than the threshold value. It is configured not to implement.
  • the frequency detection unit 41 as the frequency recognition means 31 recognizes the vibration frequency f at the position pos to be damped based on the input engine pulse signal.
  • the basic electrical angle calculator 42 calculates the basic electrical angle ⁇ by inputting the recognized frequency f.
  • the reference wave generation unit 43 receives the calculated basic electrical angle ⁇ and generates a reference sine wave sin ⁇ and a reference cosine wave cos ⁇ that are reference waves. These reference waves serve as references for the amplitude and phase of the waveform in the signal processing by the control means 3.
  • the integration of the second term Asin (2 ⁇ + ⁇ ) on the right side is also an integration of the periodic function as described above, and can be ignored, and the amplitude of the value A ′ whose entire right side is close to the true value A It converges to A′sin ⁇ ′ having a component and a phase component of a value ⁇ ′ close to the true value ⁇ .
  • a ′ cos ⁇ ′ and A ′ sin ⁇ ′ are adaptive filters in so-called adaptive control, and in order to converge the amplitude A ′ and phase ⁇ ′ of the pseudo vibration to the true amplitude A and phase ⁇ by the input of the vibration signal.
  • Self-adapt the adaptive filter is transformed into pseudo vibration by multiplying and adding the reference wave to the adaptive filter, and thus can be said to represent the amplitude difference and phase difference between the pseudo vibration and the reference wave.
  • the pseudo vibration calculating means 32 is configured as shown in FIG. That is, the multiplier 45 multiplies the vibration signal Asin ( ⁇ + ⁇ ) and the convergence coefficient 2 ⁇ .
  • the multipliers 46 and 47 multiply the multiplication result of the multiplier 45 by the reference sine wave sin ⁇ and the reference cosine wave cos ⁇ output from the reference wave generation unit 43, respectively, and output the result to the integrators 48 and 49.
  • the integrators 48 and 49 integrate the outputs from the multipliers 46 and 47, and output A ′ cos ⁇ ′ and A ′ sin ⁇ ′ as the adaptive filter 32f representing the amplitude difference and phase difference between the pseudo vibration and the reference wave. .
  • the adaptive filter 32f When the adaptive filter 32f is multiplied by the reference sine wave sin ⁇ and the reference cosine wave ⁇ and added, the pseudo vibration A′sin ( ⁇ + ⁇ ′) is obtained as described above.
  • the amplitude component and the phase component are obtained.
  • the reference wave taking into account the inverse transfer function is generated before multiplication with the adaptive filter 32f.
  • the inverse transfer function of the amplitude component and the phase component may be added after calculating the pseudo vibration.
  • the inverse transfer function amplitude setting unit 53 stores the amplitude component of the inverse transfer function corresponding to the frequency in advance, and receives the recognized frequency f to input the amplitude component 1 / of the inverse transfer function. G is specified.
  • the inverse transfer function phase setting unit 50 stores the phase component of the inverse transfer function corresponding to the frequency in advance, and specifies the phase component P of the inverse transfer function by inputting the recognized frequency f.
  • the identified phase component P and the basic electrical angle ⁇ are added by the adder 51 and input to the oscillator 52.
  • the oscillator 52 generates a sine wave sin ( ⁇ + P) and a cosine wave cos ( ⁇ + P) in which the phase component P of the inverse transfer function is added.
  • the multipliers 54 and 55 respectively multiply the generated sine wave sin ( ⁇ + P) and cosine wave cos ( ⁇ + P) by the amplitude component 1 / G of the inverse transfer function specified by the inverse transfer function amplitude setting unit 53. Then, a reference wave that takes into account the inverse transfer function of the amplitude and phase is generated.
  • the above-mentioned adaptive filter 32f is applied to the reference waves (1 / G) sin ( ⁇ + P) and (1 / G) cos ( ⁇ + P) taking into account the amplitude and phase inverse transfer functions generated by the multipliers 54 and 55.
  • A'cos ⁇ 'and A'sin ⁇ ' are multiplied by multipliers 56 and 57, respectively.
  • the cancellation vibration [ ⁇ (A ′ / G) sin ( ⁇ + ⁇ ′ + P)] is obtained.
  • a canceling signal for instructing the generation is generated, and canceling vibration [ ⁇ (A ′ / G) sin ( ⁇ + ⁇ ′ + P)] is vibrated by the vibration means 2.
  • the immediate phase specifying unit 34a, the pseudo vibration phase specifying unit 34b and the phase difference specifying unit 34c constituting the phase difference specifying unit 34, and the frequency correcting unit 35 are also provided.
  • a frequency correction amount calculation unit 68 that constitutes.
  • the immediate phase specifying unit 34a constituting the phase difference specifying unit 34 inputs the vibration signal Asin ( ⁇ + ⁇ ) detected through the vibration detecting unit 1 and immediately specifies the phase ⁇ . Specifically, first, the vibration signal Asin ( ⁇ + ⁇ ) is divided by the amplitude A detected by the real-time amplitude detection unit 60 in the divider 60a to obtain sin ( ⁇ + ⁇ ) of amplitude 1.
  • the amplitude A is acquired immediately by removing the pulsation component by LPF (low pass filter) and multiplying by 2 / ⁇ .
  • Multipliers 61 and 62 multiply sin ( ⁇ + ⁇ ), which is the result of division by divider 60a, by 2 sin ⁇ and 2 cos ⁇ , respectively, and obtain cos ⁇ cos (2 ⁇ + ⁇ ) and sin ⁇ + sin (2 ⁇ + ⁇ ) from the product-sum theorem. .
  • a notch process 63 for removing a double frequency component is applied to cos ⁇ cos (2 ⁇ + ⁇ ), which is a calculation result of the multiplier 61, and a pulsation component is removed by an LPF (low pass filter) process 65 to obtain cos ⁇ .
  • a notch process 64 for removing a double frequency component is applied to sin ⁇ + sin (2 ⁇ + ⁇ ), which is a calculation result of the multiplier 62, and a pulsation component is removed by an LPF (low-pass filter) process 66 to obtain sin ⁇ .
  • LPF low-pass filter
  • the immediate phase specifying unit 34a immediately specifies cos ⁇ and sin ⁇ having the phase component of the vibration signal Asin ( ⁇ + ⁇ ).
  • the pseudo-vibration phase specifying unit 34b constituting the phase difference specifying means 34 is configured so that the adaptive filter 32f, A ′ cos ⁇ ′ and A ′ sin ⁇ ′, have pseudo-vibration phase components. 32f is input to the phase difference specifying unit 34c.
  • the phase difference specifying unit 34c constituting the phase difference specifying unit 34 specifies the phase difference based on cos ⁇ and sin ⁇ specified by the immediate phase specifying unit 34a and A ′ cos ⁇ ′ and A ′ sin ⁇ ′ which are the adaptive filters 32f. To do. Specifically, since the phase ⁇ and the phase ⁇ ′ represent a phase shift based on the common basic electrical angle ⁇ , the phase of the pseudo vibration and the phase of the vibration at the position pos to be damped Are equal to each other, ⁇ and ⁇ ′ are equal. Therefore, the phase difference ⁇ is defined as ⁇ ′, and the phase difference is expressed by a sine component ⁇ and a cosine component ⁇ of the phase difference calculated using the following equations.
  • the sine component ⁇ has a constant change amount in the positive direction.
  • the sine component ⁇ is constant in the negative direction. Decrease with change.
  • the phase difference ⁇ exceeds the range of ⁇ 60 degrees, the control diverges and the vibration cannot be controlled, and therefore the sine component ⁇ under the condition of the cosine component ⁇ > 0. It can be determined whether ⁇ is advanced or delayed by the sign of, and the amount of deviation of the phase difference ⁇ can be grasped by the magnitude of the sine component ⁇ .
  • step S (S> 0) that is the upper limit correction amount per correction stored in the upper limit correction amount storage unit 35a is acquired.
  • A2 it is determined whether or not the sign of the sine component ⁇ is positive (A3). If it is determined that the sign of ⁇ is positive (A3: YES), the frequency correction amount ⁇ f is set to step S, that is, ⁇ f is set to a positive value (A4).
  • the frequency correction amount ⁇ f is set to ⁇ step S, that is, ⁇ f is set to a negative value (A5), and the recognized frequency f is set to a direction in which the phase difference ⁇ is eliminated. To correct.
  • the vibration damping device performs adaptive control when canceling the vibration Vi3 generated by the vibration generation source gn and the canceling vibration Vi4 generated through the vibration means 2 at the position pos to be controlled.
  • a pseudo vibration Vi3 ′ necessary for canceling the vibration Vi3 transmitted from the vibration source to the position pos to be damped is calculated using an algorithm, and the canceling vibration Vi4 is excited based on the calculated pseudo vibration Vi3 ′.
  • the vibration (Vi3 + Vi4) remaining as a cancellation error between the generated cancellation vibration Vi4 and the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be controlled is detected.
  • the adaptive control algorithm is learned and adapted so that the vibration (Vi3 + Vi4) remaining as an error becomes small, and the frequency of the pseudo vibration Vi3 ′
  • the frequency recognition means 31 for recognizing the frequency f of the vibration Vi3 at the position pos to be damped based on a signal related to the vibration Vi1 generated by the vibration source gn and the cancellation at the position pos to be damped.
  • the vibration (Vi3 + Vi4) remaining as an error is detected, the phase ⁇ of the vibration (Vi3 + Vi4) remaining as the cancellation error is specified, and the vibration should be controlled based on the phase ⁇ of the vibration (Vi3 + Vi4) remaining as the specified cancellation error and the pseudo vibration Vi3 ′.
  • phase difference specifying means 34 for specifying the phase difference ⁇ with respect to the phase ⁇ ′ of the canceling vibration Vi4 generated at the position pos, and the frequency recognition means 31 are recognized based on the phase difference ⁇ specified by the phase difference specifying means 34.
  • Frequency correction means 35 for correcting the frequency f in a direction in which the phase difference ⁇ is eliminated.
  • the frequency recognition means 31 recognizes the frequency f of the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be damped based on the signal related to the vibration Vi1 generated at the vibration generation source gn.
  • the pseudo vibration Vi3 ′ is calculated by using an adaptive control algorithm as a basis of the frequency of the pseudo vibration Vi3 ′ necessary for canceling the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be controlled. Then, based on the calculated pseudo vibration Vi3 ′, the canceling vibration Vi4 is generated at the position pos to be damped through the vibration means 2, and the generated cancellation vibration Vi4 and the vibration generation source gn are transmitted to the position pos to be damped.
  • the vibration (Vi3 + Vi4) remaining as a cancellation error with the detected vibration Vi3 is detected, and the vibration (Vi3 + Vi4) remaining as the detected cancellation error is small. Learning adaptation performed by the damping control of the adaptive control algorithm is carried out so that.
  • the phase difference specifying unit 34 detects the vibration (Vi3 + Vi4) remaining as a cancellation error at the position pos to be controlled, and specifies and specifies the phase ⁇ of the vibration (Vi3 + Vi4) remaining as the cancellation error.
  • the phase difference ⁇ ( ⁇ ′) between the phase ⁇ of the vibration (Vi3 + Vi4) remaining as the canceling error and the phase ⁇ ′ of the canceling vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′.
  • the frequency f recognized by the frequency recognizing means 31 in accordance with the specified phase difference ⁇ is corrected by the frequency correcting means 35 in a direction in which the phase difference ⁇ is eliminated. Even if the frequency of the vibration Vi3 transmitted to pos is erroneously recognized as a frequency different from the actual frequency, the frequency of the pseudo vibration Vi3 ′ should be controlled from the vibration source gn.
  • the adaptability of the adaptive control algorithm can be improved in accordance with the frequency of the vibration Vi3 transmitted to the target position pos, and the damping performance and stability can be improved.
  • the frequency correction unit 35 is a correction amount that does not exceed the preset upper limit correction amount when there is a phase difference ⁇ specified by the phase difference specifying unit 34. Since the frequency recognized by the frequency recognizing means 31 is corrected using the step S of the value, the frequency correction is carried out little by little, depending on the case, and a large value exceeding the upper limit correction amount per correction time. By performing the correction with the correction amount, it is possible to prevent the frequency from abruptly changing and to make the control unstable, and to improve the damping performance without impairing the stability of the damping control.
  • the frequency correction means 35 has a frequency recognized by the frequency recognition means 31 when the deviation amount of the phase difference ⁇ specified by the phase difference specifying means 34 is larger than a preset threshold value. Since the correction is performed and the frequency recognized when the amount of deviation of the phase difference ⁇ is equal to or less than the threshold value is not corrected, when the phase difference ⁇ is slight, that is, when the frequencies of both vibrations match to some extent, A dead zone in which no correction is performed can be provided, so that computation can be omitted, and it is possible to prevent frequency correction from being performed with poor effects.
  • the vibration damping device is provided in a vehicle such as an automobile, a comfortable ride can be provided to the passenger.
  • a pulsation component is removed by applying an LPF (low pass filter) to the sine component ⁇ . You may make it calculate. If comprised in this way, it will become possible to contribute to realization of stable frequency correction.
  • LPF low pass filter
  • the frequency correction means 35 determines a fixed value step S, which is an upper limit correction amount per correction, as a correction amount regardless of the shift amount of the phase difference ⁇ , and adds this correction amount.
  • the correction amount having a magnitude corresponding to the amount of deviation of the phase difference ⁇ may be determined, and the correction may be performed using this correction amount.
  • phase component P of the reverse transfer function stored in advance in the reverse transfer function phase setting unit 50 and the phase component of the actual reverse transfer function do not match due to secular change or the like, and this mismatch is detected by the phase difference specifying unit 34c. It may be detected as ⁇ . Therefore, as shown in FIG. 8, in order to correct this discrepancy, a phase correction unit 70 for correcting the phase of the canceling vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′ may be added. It is done.
  • the phase correction unit 70 calculates a phase correction amount P ′ based on the sine component ⁇ and the cosine component ⁇ specified by the phase difference specifying unit 34c, outputs the phase correction amount P ′ to the adder 51, and corrects the phase difference ⁇ . .
  • a desired damping effect can be obtained even if the vibration transmission characteristics of the damping target such as the body frame frm change due to aging, temperature change, and the like.
  • a switching unit 71 that switches between phase correction by the phase correction unit 70 and frequency correction by the frequency correction amount calculation unit 68 with reference to the sine component ⁇ specified by the phase difference specifying unit 34c may be further provided.
  • the switching unit 71 when the phase component of the inverse transfer function is not shifted and the frequency is shifted, the sine component ⁇ changes with a constant change amount, while the frequency is not shifted and the phase component of the inverse transfer function is changed.
  • the frequency correction amount calculation unit 68 performs frequency correction.
  • the phase correction unit 70 switches to phase correction. If comprised in this way, a suitable correction function is realizable and it becomes possible to improve a damping effect.
  • the vibration damping device of this embodiment is mounted on a vehicle such as an automobile, and includes vibration detection means 201 such as an acceleration sensor provided at a position pos to be damped such as a seat st. From the vibration means 202 using the linear actuator 220 that generates the canceling vibration Vi4 at the position pos to be damped by vibrating the auxiliary mass 202a having a predetermined mass, and the engine ignition pulse that is the vibration generation source gn
  • a vibration generating source such as an engine having an adaptive control means 204 for generating at a position pos to be shaken and mounted on the body frame frm via a mounter gnm And canceling vibrations Vi4 to generate through vibration Vi3 and vibrating means 202 occurring in the n by offset at the position pos should damping is to reduce the vibration at the position pos should be damped.
  • the linear actuator 220 fixes a stator 222 having a permanent magnet to the vehicle body frame frm, and moves the reciprocating motion in the same direction as the vibration direction to be suppressed (vertical motion in the plane of FIG. 10). It is of a reciprocating type that is made to perform to 223.
  • the body frame frm is fixed to the body frame frm so that the vibration direction to be suppressed and the reciprocating direction (thrust direction) of the mover 223 coincide.
  • the mover 223 is attached to the shaft 225 together with the auxiliary mass 221, and the shaft 225 is supported by the stator 222 via the leaf spring 224 so that the mover 223 and the auxiliary mass 221 can be moved in the thrust direction.
  • the linear actuator 220 and the auxiliary mass 221 constitute a dynamic vibration absorber.
  • the auxiliary mass 221 joined to the shaft 225 vibrates in the vertical direction. Since a more specific structure and description of the operation of the linear actuator 220 itself are known, details are omitted.
  • the operating range of the mover 223 is restricted by a stopper (not shown).
  • the dynamic vibration absorber constituted by the linear actuator 220 and the auxiliary mass 221 controls the acceleration of the auxiliary mass 221 and adjusts the damping force based on the current control signal ss output from the amplifier 206.
  • the vibration generated in the frame frm can be canceled to reduce the vibration.
  • the reference wave generating unit 203 generates a reference sine wave (sin ⁇ ) and a reference cosine wave (cos ⁇ ), which are reference waves ej ⁇ of the basic order, from the basic frequency f [Hz].
  • the generated reference sine wave (sin ⁇ ) and reference cosine wave (cos ⁇ ) may or may not be synchronized with any synchronization signal.
  • the adaptive control means 204 is mainly composed of an adaptive algorithm block 204a which is an adaptive control means for controlling vibration.
  • a damping current command I 41 is generated, and based on this, a current control signal ss is input to the linear actuator 220 via a current PI calculation block 205 and an amplifier 206 described later.
  • a canceling vibration Vi4 having a phase opposite to the vibration from the vibration generation source gn is generated through the vibration means 202 at the position pos to be damped.
  • the vibration detection signal A 1 sin ( ⁇ + ⁇ ) is multiplied by the convergence parameter ⁇ , and then multiplied by the reference sine wave sin ⁇ or the reference cosine wave cos ⁇ in the multipliers 241a and 241b, and the integrator 241c and 241d each time before the calculation. It is integrated by adding to the value Z- 1 .
  • the calculated application filter coefficients (Re, Im) are multiplied by the reference sine wave sin ⁇ and the reference cosine wave cos ⁇ in the multipliers 241e and 241f, respectively, and the result is added in the adder 241g, thereby obtaining the vibration detection signal sg.
  • This damping current command I 41 is a canceling signal that is the basis of the current control signal ss that causes the vibration means 202 to generate the canceling vibration Vi4 to cancel the vibration Vi3 transmitted from the vibration generating source gn to the position pos to be controlled. It is.
  • the cancellation of the vibration proceeds as A ′ and ⁇ ′ converge to the values corresponding to the true values A and ⁇ .
  • the fundamental frequency f and the phase ⁇ constantly change, so the changes always follow. Control is performed in the form.
  • this damping current command I 41 In generating this damping current command I 41 , as shown in FIG. 5, a vibration ⁇ Vi 3 having a vibration Vi 3 having a reverse waveform with respect to the vibration Vi 3 transmitted from the vibration generation source gn to the position pos to be damped.
  • the vibration Vi2 generated by the vibration means 202 is transmitted to the position pos to be damped by the transfer characteristic on the vibration transmission path from the vibration means 202 to the position pos to be damped.
  • the amplitude or phase changes. Therefore, in consideration of this change, a vibration suppression current command I 41 that causes the vibration means 202 to generate the vibration Vi2 so that the cancellation vibration Vi4 is applied to the position pos to be damped.
  • a vibration suppression current command I 41 that causes the vibration means 202 to generate the vibration Vi2 so that the cancellation vibration Vi4 is applied to the position pos to be damped. Must be generated.
  • the inverse transfer function (1 / G) of the vibration transfer function G representing the transfer characteristic on the vibration transfer path is stored in advance as sensitivity information in association with the frequency in the reverse transfer gain storage means 250 shown in FIG.
  • the illustration and description of the phase component of the inverse transfer function are omitted.
  • the amplitude component of the transfer function is G
  • the phase component is P
  • the vibration transfer function that changes the amplitude or phase of vibration transmitted from the vibration source gn to the position pos to be damped is denoted by G ′. Yes.
  • the transfer function gain (amplitude component) and the inverse transfer function gain (amplitude component) representing the transfer characteristics on the vibration transfer path from the vibration means 202 to the position pos to be damped are shown in FIGS. As shown in each of b), the degree of transmission varies depending on the frequency, and is stored in the reverse transmission gain storage means 250 in association with the frequency.
  • the vibration Vi2 generated by the vibration means due to the position where the vibration means 202 is provided and the environment such as the medium for transmitting the vibration is greatly attenuated until it is transmitted to the position to be damped. Low sensitivity regions where vibrations are difficult to be transmitted exist in the low and high frequency bands.
  • the damping effect obtained by the vibration of the vibration means 202 is low, the cancellation vibration Vi4 generated by the vibration means 202 is small, and this cancellation vibration Vi4 and the vibration Vi3 at the position pos to be controlled. since canceling error is bury not at all with the vibration damping device the vibration is generated in the vibrator 202 Vi2, that is, it tries to continue to increase the damping current command I 41. This state is not preferable from the viewpoint of damping stability, and the damping current command I 41 needs to be limited.
  • Sensitivity determination means 252 is provided. As shown in FIG. 11 and FIG. 12B, the sensitivity determination means 252 has the current frequency in the low sensitivity region when the inverse transfer function gain (1 / G) is lower than the first threshold. If the reverse transfer function gain (1 / G) is higher than the second threshold value, it is determined that the current frequency is not in the low sensitivity region and the low sensitivity detection signal Flg is output. The output of the sensitivity detection signal Flg is stopped.
  • the second threshold value is set to be higher in transmission than the first threshold value, and a predetermined interval is provided between the first threshold value and the second threshold value, and the determination result is cut off.
  • An invariable area that does not change is provided.
  • the first threshold value is desirably set to about ⁇ several tens [dB] or less of the maximum value of the transfer function gain (the value at which the transfer degree reaches a peak), It is desirable to set the second threshold value to a value about several [dB] higher than the first threshold value.
  • the damping current command I 41 that is a cancellation signal suppresses the cancellation vibration Vi4 generated by the vibration means 202.
  • the correction is to prevent the occurrence of problems such as collision of the movable element 223 constituting the linear actuator 220 with a stopper (not shown) provided on the stator 222 due to overcurrent. Is performed using a mechanism for suppressing the damping current command I 41 provided in
  • the mechanism includes amplitude detection means 204b for calculating the peak current value A 1 ′ of the damping current command I 41 and a current upper limit value ⁇ 1 set in advance from the fundamental frequency f.
  • derived peak current value a 1 of the damping current command I 41 ' is configured to include a current exceedance detector 204c for generating a current upper limit exceeded signal S 41 if they exceed the current upper limit value alpha 1 ing.
  • the amplitude detection unit 204b is a block that calculates the amplitude A 1 ′ of the damping current command I 41 as needed (real time).
  • the amplitude A 1 ′ may be obtained from the waveform A 1 ′ sin ( ⁇ + ⁇ ′) of the generated damping current command I 41 or may be the square sum of squares of the addition data before the waveform generation. Further, in order to reduce the amount of calculation, only the sum of squares may be taken and the current upper limit value ⁇ 1 to be compared may be squared.
  • Current excess detection means 204c stores the current upper limit value alpha 1 in the form of a current clamp table 241 h.
  • the upper limit value alpha 1 is adopted the value of the smaller one shown in FIG. 13 (a) to the motor upper limit current shown Ic (maximum output) or position the upper limit current Ip (collision prevention).
  • the motor upper limit current Ic is the smaller of the maximum current value that can be output by the controller that implements the arithmetic processing function of the present embodiment and the maximum current value that can be passed through the linear actuator 220 (so that the magnet does not demagnetize). This value is constant regardless of the frequency.
  • the position upper limit current Ip is the upper limit value of the current that does not exceed the upper limit of the amplitude at which the movable element 223 that operates by passing a sine wave current can move.
  • the current command Iref is calculated by the current PI calculation block 205 and input to the amplifier 206 as a voltage command, and the linear actuator 220 is driven at the acceleration a by the drive of the amplifier 206. As shown in FIG.
  • current upper limit values ⁇ 1 (Ic or Ip, whichever is smaller) are input to the selection unit 260 as they are, while the current upper limit value ⁇ 1 is branched and limited by a multiplier 261 to 1 ⁇ 2 times.
  • current upper limit value ( ⁇ 1/2) is input to the selection unit 260.
  • the selection unit 260 outputs the current upper limit value ⁇ 1 when the low sensitivity detection signal Flg is output by the sensitivity determination unit 252, while the low sensitivity detection signal Flg is not output by the sensitivity determination unit 252. output limited current upper limit value of ( ⁇ 1/2).
  • the output current upper limit value (either ⁇ 1 or ⁇ 1/2 ) and the peak current value A 1 ′ output by the amplitude detector 204b are input to the comparison unit 241i, and the basic order peak current value A 1 ′. Is equal to or higher than the current upper limit value (either ⁇ 1 or ⁇ 1/2 ) of the frequency, and if it exceeds, the current upper limit excess signal (ON signal) S 41 is output. . If not exceeded, the current upper limit excess signal S41 is not output (OFF signal).
  • the signal S 41 is also may be to ON / OFF by whether purely excess may have the characteristics of some hysteresis.
  • the adaptive algorithm block 204a repeats the process of updating the adaptive filter coefficient (Re, Im) while integrating the input signal sg input from the vibration detecting means 201.
  • an integration removal processing block 204d is provided at a position where the integral value is narrowed down to perform integration removal processing.
  • the current upper limit exceeded signal S 41 is the interior of the flag setting unit 241j by whether or not the input, sets a 0 or 1 flag 241k, when the signal S 41 is not input (when the flag 1 ) Is not narrowed down, and when the signal S 4 1 is input (when flag 0), the extraction coefficient value k set in the extraction coefficient setting unit 241z in the multipliers 241m and 241n at each calculation timing is the previous value. Multiply Z -1 to narrow down the integral value.
  • the extraction coefficient value k is set to a value that does not significantly cut 1 (the amount of reduction is kept small), if the value is too large, the value of the damping current command I 41 changes suddenly with a single reduction operation. This is because harmonics are superimposed on the output and cause abnormal vibrations.
  • This extraction coefficient value k is extracted in accordance with the deviation signal from the comparison unit 241i so that the excess amount from the current upper limit value ⁇ 1 (current clamp value) increases (that is, the narrowing amount increases).
  • the value may be varied in the coefficient setting unit 241z. Further, by calculating the ratio of the excess amount, it may be synchronized with the current upper limit value alpha 1.
  • the damping current command I 41 when the damping current command I 41 is exceeded, the excess of the damping current command I 41 is not cut immediately, but instead of a predetermined range (here, the integration is narrowed by the extraction coefficient value k). since in the range) and repeats the modification to limit the damping current command I 41, generation of harmonics, towards the free amplitude collision of the movable element, the damping current command I 41 is to be asymptotic.
  • Refine coefficient generation block 204d is merely an example, if a block to increase or decrease the OFF to the narrowing coefficient k of the application of the narrowing coefficient k from the current upper limit exceeded signal S 41, the internal structure may be any kind of form Absent. The convergence of the adaptive filter coefficients (Re, Im) becomes faster as the convergence parameter ⁇ is larger.
  • an adaptive algorithm block 204a is a control means for generating a cancellation signal serving damping current command I 41 for canceling vibration Vi3 that communicated by entering the corresponding frequency f to the position pos should be damped from the vibration generating source gn
  • the excitation means 202 that operates when the damping current command I 41 that is the cancellation signal generated by the adaptive algorithm block 204a as the control means is input and generates the cancellation vibration Vi4 at the position pos to be controlled, A vibration for detecting a vibration remaining as a cancellation error between the vibration Vi3 generated by the vibration generation source gn and the cancellation vibration Vi4 at the position pos to be controlled.
  • a control unit adaptive algorithm block 204a is a cancellation signal serving damping current command I 41 so that the vibration is reduced remains as offset error based on the detected vibration by the vibration detection unit 201
  • the reverse transmission gain storage means 250 is a storage means for correcting and storing the transmission characteristics on the vibration transmission path from the vibration means 202 to the position pos to be damped as the sensitivity information in association with the frequency.
  • a sensitivity determination unit 252 for determining whether or not the current frequency is in a low sensitivity region where vibration generated by the vibration unit 202 is difficult to be transmitted.
  • the adaptive algorithm block 204a serving as the control unit is controlled by the sensitivity determination unit 252.
  • the cancellation signal serving damping current command I 41 if the current frequency is determined to be in the low sensitivity region in the vibrating means It is configured to modify the direction of suppressing the offset vibrations Ri is generated.
  • the transmission characteristic on the vibration transmission path from the vibration means 202 to the position pos to be damped is stored as sensitivity information in association with the frequency, and the current frequency is excited based on this sensitivity information. If it is determined that the easily transmitted low sensitivity region of the vibration Vi2 generated by means 202, the cancellation signal serving damping current command I 41 is modified in a direction to suppress the offsetting oscillation Vi4 generated by vibration means 202 Therefore, in the low sensitivity region where the vibration suppression effect obtained by the vibration of the vibration unit 202 is low, the vibration generated by the vibration unit 2 is suppressed, adversely affecting the vibration to other parts, and the low sensitivity region. It is possible to prevent the excessive canceling vibration Vi4 from being excited when the vibration has passed through, eliminate the problems caused by the low sensitivity region, and improve the vibration damping stability.
  • the sensitivity determination means 252 has a first threshold in which the degree of transmission of the amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with the current frequency, is determined based on the sensitivity information. If it is lower than the value, it is determined that the current frequency is in the low sensitivity region. Therefore, it is possible to effectively determine whether or not the current frequency is in the low sensitivity region depending on the setting of the first threshold value. .
  • the sensitivity determination unit 252 transmits the amplitude component, which is one of the transmission characteristics on the vibration transmission path associated with the current frequency based on the sensitivity information, higher than the first threshold value.
  • the current threshold is higher than the second threshold value, it is determined that the current frequency is not in the low sensitivity region, and the determination result does not change between the first threshold value and the second threshold value.
  • the adaptive algorithm block 204a which is a control means, does not correct the damping current command I41 that is an offset signal when the sensitivity determination means 252 determines that the current frequency is not in the low sensitivity area, When the current frequency is in the vicinity of the threshold value, it is possible to avoid that the determination result frequently changes and the control becomes unstable.
  • the canceling signal is the damping current command I 41
  • a predetermined current upper limit value ⁇ 1 is derived from the frequency
  • the peak current value A 1 ′ of the damping current command I 41 is the current upper limit value.
  • alpha 1 further comprising a current exceedance detector 204c for inputting the current upper limit exceeded signal S 41 to the control means serving adaptive algorithm block 204a if they exceeded, the control means serving adaptive algorithm block 204a, the current upper limit exceeded signal S 41 is configured to limit the damping current command I 41 and the current excess detection means 204c is determined by the sensitivity determination means 252 that the current frequency is determined to be in the low sensitivity region.
  • the damping current command I 41 is controlled to suppress the canceling vibration Vi 4 generated by the vibrating means 202 when the current frequency is in the low sensitivity region. Can be corrected.
  • the specific structure of each part is not limited only to embodiment mentioned above.
  • the inverse transfer function gain is recorded in association with the frequency, and the sensitivity determination unit 252 determines whether or not the current frequency is in the low sensitivity region based on the inverse transfer function gain.
  • the transfer function gain may be stored in association with the frequency, and the above determination may be performed based on the transfer function gain.
  • the vibration damping device of the third embodiment is mounted on a vehicle such as an automobile, and vibration detection means 1 such as an acceleration sensor provided at a position pos to be damped such as a seat st.
  • vibration detection means 1 such as an acceleration sensor provided at a position pos to be damped such as a seat st.
  • Vibration means 2 using a linear actuator that generates vibration Vi2 by vibrating auxiliary mass 2a having a predetermined mass, engine ignition pulse signal that is a vibration generation source gn, and detection from vibration detection means 1
  • a control means 3 for generating a canceling vibration Vi4 at the position pos to be damped by inputting a signal and transmitting the vibration Vi2 generated by the oscillating means 2 to the position pos to be damped.
  • the control means 3 generates vibrations at a position pos to be damped in order to generate a canceling vibration Vi4 that accurately cancels the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped.
  • a pseudo vibration Vi3 ′ simulating the vibration Vi3 transmitted from the generation source gn to the position pos to be damped is calculated using the adaptive filter 332f of the adaptive algorithm, and is controlled through the vibration means 2 based on the calculated pseudo vibration Vi3 ′.
  • a canceling vibration Vi4 is generated at the position pos to be shaken.
  • the control means 3 detects the remaining vibration (Vi3 + Vi4) as a cancellation error between the cancellation vibration Vi4 and the vibration Vi3 transmitted from the vibration means 2 to the position pos to be controlled by the vibration detection means 1, and detects the detected cancellation error.
  • the calculation of the adaptive filter 332f is repeatedly executed so that the remaining vibration (Vi3 + Vi4) becomes small, and the vibration suppression control for converging the pseudo vibration Vi3 ′ and the adaptive filter 332f to the true value by the accumulation of the calculation is performed.
  • the pseudo vibration necessary to cancel the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped is the pseudo vibration Vi3 ′ simulating the vibration Vi3. It is also possible to directly simulate the canceling vibration Vi4 transmitted from the vibration means 2 to the position pos to be damped without performing the above.
  • the control means 3 for executing the vibration suppression control by the adaptive control includes a pseudo vibration calculating means 332 and a canceling vibration generation command means 333 as shown in FIG.
  • the pseudo vibration calculating means 332 calculates the pseudo vibration Vi3 'using the adaptive filter 332f, and sequentially updates the adaptive filter 332f so that the vibration (Vi3 + Vi4) remaining as a cancellation error input from the vibration detecting means 1 is reduced.
  • the pseudo vibration calculation unit 332 includes a pseudo vibration calculation unit 332a and a learning adaptation unit 332b.
  • the pseudo vibration calculation unit 332a calculates the pseudo vibration Vi3 ′ by changing the amplitude and phase of the reference wave by applying filtering using the adaptive filter 332f to the reference wave that is a basis for calculating the pseudo vibration Vi3 ′. .
  • the learning adaptation unit 332b calculates the adaptive filter from the reference wave, which is the basis of the calculation of the adaptive filter 332f, to the true value of the adaptive filter so that the vibration (Vi3 + Vi4) remaining as the cancellation error input from the vibration detection unit 1 is eliminated. It is repeatedly executed, and the pseudo vibration Vi3 ′ and the adaptive filter 332f are converged to true values by accumulating the calculations.
  • a convergence coefficient 332u indicating the degree of approaching the adaptive filter 332f to the true value is used for each calculation, and the convergence coefficient 332u determines the speed at which the adaptive filter 332f converges to the true value. ing.
  • the canceling vibration generation command means 333 generates the canceling vibration Vi4 at the position pos to be controlled through the vibration means 2 based on the pseudo vibration Vi3 ′ calculated by the pseudo vibration calculation means 332.
  • a vibration ⁇ Vi3 having a reverse waveform of the vibration Vi3 is applied to the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be controlled.
  • the amplitude or phase of the vibration Vi2 generated by the vibration means 2 changes in the process of transmission to the position pos to be damped
  • the canceling vibration Vi4 is present at the position pos to be damped in consideration of this change.
  • the vibration Vi2 needs to be generated by the vibration means 2 so as to be applied.
  • the inverse transfer function of the vibration transfer function G that changes the amplitude and phase of vibration transmitted from the vibration means 2 to the position pos to be damped is stored in advance in the inverse transfer function storage unit 333a.
  • the vibration Vi2 is calculated by adding a reverse transfer function to the canceling vibration Vi4 having a reverse waveform of the pseudo vibration Vi3 ′ simulating the vibration Vi3 at the position pos to be shaken.
  • the amplitude component of the inverse transfer function is 1 / G
  • the phase component is P, which is stored in the inverse transfer function storage unit 333a.
  • a vibration transfer function for changing the amplitude or phase of vibration transmitted from the vibration source gn to the position pos to be damped is denoted by G ′.
  • the present embodiment further includes deviation information acquisition means 334 and convergence coefficient changing means 335 as shown in FIG.
  • the deviation information acquisition means 334 is a deviation corresponding to a deviation between the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be damped and the canceling vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′. Get information.
  • the convergence coefficient changing means 335 changes the convergence coefficient so that the speed at which the adaptive filter 332f converges increases as the excitation force amplitude component acquired by the deviation information acquisition means 334 increases.
  • the frequency detection unit 341 receives an engine pulse signal indicating the timing of initiation of the engine that is the vibration generation source gn, and the vibration Vi3 at the position pos where the frequency of the input engine pulse signal is to be controlled.
  • the frequency f of the vibration Vi3 is recognized.
  • other signals such as a detection pulse signal from a sensor that detects the rotation speed of the engine crank may be used instead of the engine ignition pulse signal.
  • the reference wave generation unit 343 generates a reference sine wave sin ⁇ and a reference cosine wave cos ⁇ , which are reference waves, based on the calculated basic electrical angle ⁇ . These reference waves serve as references for the amplitude and phase of the waveform in the signal processing by the control means 3.
  • the vibration at the position pos to be controlled detected by the vibration detection means 1 that is an acceleration sensor includes other vibrations in addition to the vibration generated at the vibration generation source gn.
  • a BPF band pass filter
  • a ′ cos ⁇ ′ and A ′ sin ⁇ ′ are adaptive filters 332 f in so-called adaptive control, and in order to converge the amplitude A ′ and the phase ⁇ ′ of the pseudo vibration to the true amplitude A and phase ⁇ by the input of the vibration signal. Self-adapt. Further, since the adaptive filter is transformed into pseudo vibration by multiplying the adaptive filter by the reference wave and adding it, it can be said that it represents the amplitude difference and phase difference between the pseudo vibration and the reference wave.
  • the pseudo vibration calculating means 332 is configured as shown in FIG. That is, the multiplier 345 multiplies the vibration signal Asin ( ⁇ + ⁇ ) and the convergence coefficient based on 2 ⁇ . Multipliers 346 and 347 multiply the multiplication result of multiplier 345 by reference sine wave sin ⁇ and reference cosine wave cos ⁇ output from reference wave generation unit 343, respectively, and output the result to integrators 348 and 349.
  • the integrators 348 and 349 integrate the outputs from the multipliers 346 and 347, and output A'cos ⁇ 'and A'sin ⁇ ' as the adaptive filter 32f representing the amplitude difference and phase difference between the pseudo vibration and the reference wave. .
  • the inverse transfer function amplitude setting unit 353 stores the amplitude component of the inverse transfer function corresponding to the frequency in advance, and receives the recognized frequency f to input the amplitude component 1 / of the inverse transfer function. G is specified.
  • the inverse transfer function phase setting unit 350 stores in advance the phase component of the inverse transfer function corresponding to the frequency, and specifies the phase component P of the inverse transfer function by inputting the recognized frequency f.
  • the identified phase component P and the basic electrical angle ⁇ are added by the adder 351 and input to the oscillator 352.
  • the oscillator 352 generates a sine wave sin ( ⁇ + P) and a cosine wave cos ( ⁇ + P) in which the phase component P of the inverse transfer function is added.
  • Multipliers 354 and 355 multiply the generated sine wave sin ( ⁇ + P) and cosine wave cos ( ⁇ + P) by the amplitude component 1 / G of the inverse transfer function specified by the inverse transfer function amplitude setting unit 353, respectively. Then, a reference wave that takes into account the inverse transfer function of the amplitude and phase is generated.
  • the adaptive filter 332f For the reference waves (1 / G) sin ( ⁇ + P) and (1 / G) cos ( ⁇ + P) taking into account the inverse transfer functions of the amplitude and phase generated by the multipliers 354 and 355, the adaptive filter 332f is used. A ′ cos ⁇ ′ and A ′ sin ⁇ ′ are multiplied by multipliers 356 and 357, respectively. When the multiplication results of the multipliers 356 and 357 are added by the adder 358, and the added result is multiplied by ⁇ 1 by the multiplier 359, the cancellation vibration [ ⁇ (A ′ / G) sin ( ⁇ + ⁇ ′ + P)] is obtained. A canceling signal for instructing the generation is generated, and canceling vibration [ ⁇ (A ′ / G) sin ( ⁇ + ⁇ ′ + P)] is vibrated by the vibration means 2.
  • the apparatus further includes an excitation force amplitude component acquisition unit 334c that constitutes the deviation information acquisition unit 334 and a convergence coefficient change unit 335.
  • the excitation force amplitude component acquisition unit 334c that constitutes the deviation information acquisition unit 334 has a vibration (Vi3 + Vi4) that remains as a cancellation error when the vibration generated at the vibration source gn changes as the amplitude value of the cancellation vibration Vi4 increases. Accordingly, the deviation between the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be damped and the canceling vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′ increases. Focusing on the above, the excitation force amplitude component corresponding to the amplitude value of the canceling vibration Vi4 is acquired as an index of the deviation.
  • the excitation force amplitude component include the amplitude component of the adaptive filter 332f that is the basis of the amplitude value of the canceling vibration Vi4, the amplitude component of the pseudo vibration Vi3 'calculated by the pseudo vibration calculation means 332, and the like.
  • a ′ cos ⁇ ′ and A ′ sin ⁇ ′ which are the adaptive filters 332 f output by the integrators 348 and 349, are input, and the amplitude component A of the adaptive filter 332 f is input based on the input adaptive filter 332 f. 'Is acquired as the excitation force amplitude component.
  • the convergence coefficient changing unit 335 changes the convergence coefficient 332u according to the amplitude component A ′ of the adaptive filter 332f that is the excitation force amplitude component acquired by the deviation information acquisition unit 334.
  • the convergence coefficient 332u is changed by changing the basic value 2 ⁇ as a basis by outputting the gain to the multiplier 335a.
  • the convergence coefficient changing unit 335 has a constant convergence speed of the adaptive filter 332f.
  • the gain When the gain is output so as to be Ds, and the amplitude component A ′ exceeds the threshold value Ath, the gain is output so that the convergence speed increases linearly, and the convergence speed reaches the preset upper limit value Dmax. In this case, the gain is output so that the convergence speed becomes the upper limit value Dmax regardless of the increase of the amplitude component A ′.
  • the upper limit value Dmax is provided to prevent the adaptive filter 332f from diverging when the convergence speed determined by the convergence coefficient 332u exceeds a certain upper limit and diverges.
  • the convergence coefficient changing means 335 changes the convergence coefficient 332u so as to increase the speed at which the adaptive filter 332f converges according to the increase in the excitation force amplitude component as described above, and also according to the decrease in the excitation force amplitude component.
  • the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges becomes slow.
  • only the configuration in which the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges may be changed, or only the configuration in which the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges may be reduced.
  • the vibration damping device cancels the vibration Vi3 generated by the vibration generation source gn and the canceling vibration Vi4 generated through the vibration means 2 at the position pos where the vibration is to be suppressed.
  • the cancellation vibration generation command means 333 Based on the vibration Vi3 ′, the cancellation vibration generation command means 333 that generates the cancellation vibration Vi4 at the position pos to be damped through the vibration means 2, and the vibration Vi3 generated at the vibration source gn at the position pos to be damped.
  • Vibration detection means 1 for detecting vibration (Vi3 + Vi4) remaining as an offset error with respect to vibration Vi4, and pseudo vibration calculation means 332 includes: Based on the vibration (Vi3 + Vi4) detected by the motion detection means 1 and the convergence coefficient 332u that determines the speed at which the adaptive filter 332f converges to the true value, the adaptive filter 332f is reduced so that the remaining vibration (Vi3 + Vi4) remains as an offset error.
  • the pseudo vibration Vi3 ′ and the adaptive filter 332f are converged to the true value by accumulating the calculations.
  • Deviation information acquisition means 334 for acquiring deviation information corresponding to the deviation from the canceling vibration Vi4 generated at the position pos to be damped based on the above, and an increase in deviation based on the deviation information acquired by the deviation information acquisition means 334
  • Filter 332f is characterized in that a convergence factor changing means 335 for changing the convergence factor 332u so that the speed of convergence becomes slow.
  • the pseudo vibration Vi3 ′ necessary for canceling the vibration Vi3 transmitted from the vibration source gn to the position pos to be controlled is calculated and calculated by the pseudo vibration calculating means 332 using the adaptive filter 332f.
  • the cancellation vibration generation command means 333 Based on the pseudo vibration Vi3 ′, the cancellation vibration generation command means 333 generates the cancellation vibration Vi4 at the position pos to be damped through the vibration means 2, and the vibration Vi3 generated at the vibration source gn at the position pos to be damped.
  • the vibration (Vi3 + Vi4) remaining as a cancellation error between the canceling vibration Vi4 and the canceling vibration Vi4 is detected by the vibration detecting means 1, and the detected vibration (Vi3 + Vi4) and the convergence coefficient 332u that determines the speed at which the adaptive filter 332f converges to the true value.
  • the vibration (Vi3 + Vi4) remaining as a cancellation error is reduced based on the Adaptive filter 332f is calculated, damping control for converging a pseudo vibration Vi3 'and the adaptive filter 332f to the true value is carried out by stacking the calculation.
  • the cancellation vibration Vi4 when the cancellation vibration Vi4 needs to be greatly changed in response to the change of the vibration Vi3 to be damped, it is generated at the position pos to be damped based on the vibration (Vi3 + Vi4) remaining as a cancellation error and the pseudo vibration Vi3 ′. While the deviation from the canceling vibration Vi4 is increased, the deviation is reduced when the canceling vibration Vi4 does not need to be greatly changed.
  • the convergence coefficient 332u is adjusted so that the speed at which the adaptive filter 332f converges increases as the deviation increases, and the speed at which the adaptive filter 332f converges as the deviation decreases. Is changed by the convergence coefficient changing means 335, so that the canceling vibration Vi4 generated at the position pos to be controlled is greatly changed.
  • the speed at which the adaptive filter 332f converges is decreased to cancel the cancellation vibration Vi4.
  • the response of vibration control is improved and the response and stability of the vibration suppression control are improved, and appropriate vibration suppression control is realized even when there is a need to change the cancellation vibration Vi4 greatly or not. can do.
  • the amplitude component A ′ of the adaptive filter 332f that is the excitation force amplitude component corresponding to the amplitude value of the vibration Vi4 is acquired, and the convergence coefficient changing unit 335 is the excitation force amplitude component acquired by the deviation information acquisition unit 334.
  • the amplitude component A ′ of the adaptive filter 332f increases, the speed at which the adaptive filter 332f converges increases and the adaptive filter 332f varies. Since the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges in response to the decrease in the component A ′, the response of the vibration suppression control is obtained by using the magnitude of the excitation force amplitude component as the deviation index. It is possible to realize a configuration that improves performance and stability.
  • FIG. 17 is a block diagram showing the configuration and function of the control means 403 of this embodiment.
  • the control unit 403 has substantially the same configuration as the control unit 3 according to the third embodiment, but instead of the excitation force amplitude component acquisition unit 334c constituting the deviation information acquisition unit 334 shown in FIGS. 14 and 15. 14 has a residual vibration amplitude component acquisition unit 334a indicated by an imaginary line in FIG.
  • the residual vibration amplitude component acquisition unit 334a pays attention to the fact that the deviation becomes larger as the amplitude component of the vibration (Vi3 + Vi4) remaining as the cancellation error becomes larger, and the amplitude component of the vibration (Vi3 + Vi4) remaining as the cancellation error becomes the deviation. Obtained as an indicator. Specifically, the vibration signal Asin ( ⁇ + ⁇ ) output from the BPF (bandpass filter) 344 is input, and the vibration component A is acquired from the input vibration signal Asin ( ⁇ + ⁇ ).
  • the convergence coefficient changing unit 335 inputs the vibration component A acquired by the residual vibration amplitude component acquisition unit 334a, and the adaptive filter 332f according to the increase of the input vibration component A.
  • the convergence coefficient is changed so that the convergence speed of the adaptive filter 332f decreases as the input vibration component A decreases.
  • the gain is output so that the amplitude component An ⁇ predetermined coefficient k becomes the convergence coefficient 332u.
  • the convergence coefficient 332u may be determined by other processing such as PI control (proportional integral control) for setting the target value to 0 for the amplitude component A.
  • the residual vibration amplitude component acquisition unit 334a that constitutes the deviation information acquisition unit 334 has an offset error detected by the vibration detection unit 1 as deviation information corresponding to the deviation.
  • the amplitude component A of the remaining vibration (Vi3 + Vi4) is acquired, and the convergence coefficient changing unit 335 has the amplitude component of the remaining vibration (Vi3 + Vi4) as a cancellation error acquired by the residual vibration amplitude component acquisition unit 334a constituting the deviation information acquisition unit 334.
  • the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges as A increases and the speed at which the adaptive filter 332f converges as the amplitude component A decreases.
  • the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped and the position pos to be damped based on the pseudo vibration Vi3 ′.
  • the amplitude component A of the vibration (Vi3 + Vi4) remaining as the canceling error detected by the vibration detecting means 1 is obtained as deviation information corresponding to this deviation.
  • the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges increases as the acquired amplitude component A increases, and the speed at which the adaptive filter 332f converges decreases as the acquired amplitude component A decreases. Therefore, by using the amplitude component A of the vibration that remains as a cancellation error as an index of the deviation, the response and stability of the damping control can be reduced. It is possible to realize a configuration to improve sexual.
  • FIG. 18 is a block diagram showing the configuration and function of the control means 503 of the present embodiment.
  • the control unit 503 has substantially the same configuration as the control unit 3 according to the third embodiment, but instead of the excitation force amplitude component acquisition unit 334c constituting the deviation information acquisition unit 334 shown in FIGS. 14 includes a frequency fluctuation amount acquisition unit 334b indicated by an imaginary line in FIG.
  • the frequency fluctuation amount acquisition unit 334b pays attention to the fact that the deviation becomes larger as the frequency fluctuation amount of the vibration Vi3 at the position pos to be damped is larger, and generates a signal related to the vibration generated at the vibration source gn. Based on this, the amount of change in the vibration frequency at the position pos to be damped is acquired as an index of the deviation.
  • the frequency fluctuation amount acquisition unit 334b receives the frequency f recognized by the frequency detection unit 341, and acquires the fluctuation amount of the frequency f by performing differentiation processing or the like on the input frequency f.
  • the convergence coefficient changing unit 335 inputs the fluctuation amount of the frequency f of the vibration Vi3 acquired by the frequency fluctuation amount acquisition unit 334b, and adapts according to the increase of the input fluctuation amount.
  • the convergence coefficient is changed so that the speed at which the filter 332f converges is increased and the speed at which the adaptive filter 332f converges is decreased in accordance with the decrease in the input fluctuation amount.
  • the convergence coefficient 332u is determined so that the convergence speed of the adaptive filter 332f increases in proportion to the fluctuation amount of the frequency f.
  • a certain gain is multiplied, or one convergence is selected from a plurality of convergence coefficients 332u set in advance depending on whether or not the fluctuation amount of the frequency f exceeds a predetermined threshold. You may comprise so that it can switch so that the coefficient 332u may be used.
  • the frequency fluctuation amount acquisition unit 334b constituting the deviation information acquisition unit 334 has a signal related to the vibration Vi3 generated in the vibration source 1 as the deviation information corresponding to the deviation. Based on the engine pulse signal, the amount of change in the frequency f of the vibration Vi3 at the position pos to be damped is acquired, and the convergence coefficient changing means 335 is obtained by the frequency fluctuation amount acquiring unit 334b constituting the deviation information acquiring means 334.
  • the speed at which the adaptive filter 332f converges according to the increase in the amount of fluctuation of the acquired frequency f increases, and the speed at which the adaptive filter 332f converges according to the decrease in the amount of fluctuation of the acquired frequency f.
  • the convergence coefficient 332u is changed.
  • the vibration generated at the vibration source gn as deviation information corresponding to this deviation.
  • the engine pulse signal that is a signal related to Vi3 the amount of change in the frequency f of the vibration Vi3 at the position pos to be damped is acquired, and the adaptive filter 332f converges according to the increase in the amount of change in the acquired frequency f. Since the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges is decreased in accordance with the decrease in the obtained amount of change in the frequency f, the position pos to be damped as the deviation index is increased.
  • FIG. 19 is a block diagram showing the configuration and function of the control means 603 of the present embodiment.
  • the control unit 603 has substantially the same configuration as the control unit 3 according to the third embodiment, but instead of the excitation force amplitude component acquisition unit 334c that constitutes the deviation information acquisition unit 334 shown in FIGS. 14 and 15. 14 includes a phase difference acquisition unit 334d indicated by an imaginary line in FIG.
  • the phase difference acquisition unit 334d has the phase ⁇ ′ of the vibration (Vi3 + Vi4) remaining as a cancellation error and the phase ⁇ ′ of the cancellation vibration Vi4 generated at the position pos to be controlled based on the pseudo vibration Vi3 ′.
  • Phase difference ⁇ ( ⁇ ′). The configuration will be specifically described below.
  • the divider 660a divides the vibration signal Asin ( ⁇ + ⁇ ) by the amplitude A detected by the real-time amplitude detector 660 to obtain sin ( ⁇ + ⁇ ) of amplitude 1.
  • the amplitude A is acquired immediately by removing the pulsation component by LPF (low pass filter) and multiplying by 2 / ⁇ .
  • Multipliers 661 and 662 multiply sin ( ⁇ + ⁇ ), which is the result of division by divider 660a, by 2sin ⁇ and 2cos ⁇ , respectively, and obtain cos ⁇ cos (2 ⁇ + ⁇ ) and sin ⁇ + sin (2 ⁇ + ⁇ ) from the product-sum theorem. .
  • a notch process 663 for removing a double frequency component is applied to cos ⁇ cos (2 ⁇ + ⁇ ), which is a calculation result of the multiplier 661, and a pulsation component is removed by an LPF (low pass filter) process 665 to obtain cos ⁇ .
  • a notch process 664 for removing a double frequency component is applied to sin ⁇ + sin (2 ⁇ + ⁇ ), which is an operation result of the multiplier 662, and a pulsation component is removed by an LPF (low-pass filter) process 666 to obtain sin ⁇ .
  • LPF low-pass filter
  • the phase difference specifying unit 667 specifies a phase difference based on the specified cos ⁇ and sin ⁇ and A ′ cos ⁇ ′ and A ′ sin ⁇ ′ which are the adaptive filters 332f. Specifically, since the phase ⁇ and the phase ⁇ ′ represent a phase shift based on the common basic electrical angle ⁇ , the phase of the pseudo vibration and the phase of the vibration at the position pos to be controlled Are equal to each other, ⁇ and ⁇ ′ are equal. Therefore, the phase difference ⁇ is defined as ⁇ ′, and the phase difference is expressed by a sine component ⁇ and a cosine component ⁇ of the phase difference calculated using the following equations.
  • the convergence coefficient changing unit 335 inputs a sine component ⁇ and a cosine component ⁇ indicating the phase difference ⁇ acquired by the phase difference acquisition unit 334d, and an adaptive filter according to the phase difference ⁇ .
  • the convergence coefficient is changed so that the speed at which 332f converges changes. Specifically, when the frequency f of the position pos to be controlled fluctuates, the phase difference ⁇ also often fluctuates. Therefore, if the phase difference ⁇ fluctuates, the adaptive filter is proportional to the fluctuation amount.
  • the convergence coefficient 332u is determined so that the convergence speed of 32f changes.
  • a constant gain is multiplied, or one of a plurality of convergence coefficients 32u set in advance depending on whether the amount of fluctuation of the phase difference ⁇ exceeds a predetermined threshold. You may comprise so that switching is possible so that the one convergence coefficient 32u may be used.
  • the phase difference acquisition unit 334d that configures the deviation information acquisition unit 334 and the phase ⁇ of the vibration (Vi3 + Vi4) that remains as a cancellation error as the deviation information corresponding to the deviation are simulated.
  • a phase difference ⁇ ( ⁇ ′) with the phase ⁇ ′ of the canceling vibration Vi4 generated at the position pos to be damped based on the vibration Vi3 ′ is acquired, and the convergence coefficient changing unit 335 sets the deviation information acquiring unit 334.
  • the speed at which the adaptive filter 332f converges increases as the phase difference ⁇ acquired by the phase difference acquisition unit 334d is increased, and the speed at which the adaptive filter 332f converges decreases as the phase difference ⁇ decreases.
  • the convergence coefficient 332u is changed to the above.
  • the vibration frequency at the position pos to be damped often fluctuates, and the vibration Vi3 and the pseudo vibration Vi3 ′ transmitted from the vibration source gn to the position pos to be damped are often found. Focusing on the fact that the deviation from the cancellation vibration Vi4 generated at the position pos to be damped based on this increases, the phase difference ⁇ is obtained as deviation information corresponding to this deviation, and the obtained phase difference ⁇ is increased.
  • the convergence coefficient 332u is changed so that the speed at which the adaptive filter 332f converges increases and the speed at which the adaptive filter 332f converges according to the decrease in the phase difference ⁇ .
  • the serial phase difference ⁇ becomes possible to realize a configuration to improve the response and stability of damping control by using as an indicator of the deviation.
  • the convergence coefficient changing unit 335 changes the convergence coefficient 332u so that the speed at which the adaptive filter 332f converges and the convergence coefficient 332u so that the speed at which the adaptive filter 332f converges become slower.
  • the convergence coefficient changing means 335 may only have a configuration for changing the convergence coefficient 332u so that the speed at which the adaptive filter 332f converges becomes faster. Only a configuration in which the convergence coefficient 332u is changed so that the convergence speed is slow may be used.
  • the deviation information acquisition means 334 also includes the excitation force amplitude component as the deviation information corresponding to the deviation, the amplitude component of the vibration remaining as a cancellation error, the amount of change in the frequency of the vibration to be controlled, and the vibration remaining as the cancellation error.
  • the deviation information of any one of the phase differences between the phase and the vibration generated at the position to be controlled based on the pseudo vibration is acquired, but the convergence coefficient is changed by acquiring a plurality of deviation information. You may comprise. In the configuration in which single deviation information is acquired, deviation information in which signs of increase or decrease in the deviation do not easily appear may be acquired. In this case, it is considered that the change of the convergence coefficient is delayed. However, when it is configured to acquire multiple deviation information, it is more responsive to acquire deviation information that tends to show signs of increase or decrease of the deviation than the configuration that acquires single deviation information. And control accuracy such as safety can be improved.
  • the vibration of the vibrating means adversely affects the vibration to other parts, and when the current frequency goes out of the low sensitivity region, a larger canceling vibration than necessary is excited. It is possible to prevent the problem caused by the low sensitivity region and improve the vibration damping stability.
  • the third aspect of the invention it is possible to improve the response or stability of vibration suppression control regardless of whether or not it is necessary to greatly change the canceling vibration generated in response to a significant change in vibration to be controlled. It becomes. Therefore, according to the first, second, and third inventions, it is possible to provide a vibration damping device that improves the stability of the vibration damping control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Vibration Prevention Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

制振すべき振動の周波数を実際の周波数と異なる周波数であると誤認識した場合であっても、制振性および安定性を向上させた制振装置を提供する。制振装置は、相殺振動(Vi4)を制振すべき位置(pos)で相殺するにあたり、適応制御アルゴリズムを用いて振動発生源(gn)から制振すべき位置へ伝達した振動(Vi3)を相殺するために必要な疑似振動(Vi3’)を算出し、算出した疑似振動に基づいて加振手段(2)を通じて制振すべき位置に相殺振動を発生させ、発生した相殺振動と制振すべき位置での振動との相殺誤差として残る振動(Vi3+Vi4)を検出し、検出した相殺誤差として残る振動が小さくなるように適応制御アルゴリズムを学習適応するものであり、疑似振動の周波数の基礎とするため制振すべき位置での振動の周波数を振動発生源で生ずる振動発生源に関連する信号に基づいて認識する周波数認識手段(31)と、制振すべき位置での相殺誤差として残る振動の位相と相殺振動の位相との位相差(Δφ)を特定する位相差特定手段(34)と、特定された位相差に基づいて周波数認識手段により認識された周波数を位相差が無くなる方向へ補正する周波数補正手段(35)とを有している。

Description

制振装置及びこれを備えた車両
 本発明は、発生する振動を抑制する制振装置に係り、特に制振制御の安定性を向上させた制振装置及びこれを備えた車両に関する。
 従来から車両のエンジン等の振動発生源で生じた振動と加振手段を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として特許文献1には、適応制御アルゴリズムを用いて制振すべき振動に相当する疑似振動を算出し、算出した疑似振動に基づいて相殺信号を生成し、相殺信号に基づいてアクチュエータ等の加振手段を通じて相殺振動を制振すべき位置に発生させ、発生した相殺振動と制振すべき振動との相殺誤差として残る振動を加速度センサで検出し、検出した相殺誤差として残る振動が小さくなるように上記適応制御アルゴリズムを学習適応して、疑似振動を真値に収束させるものが開示されている。
 特許文献1に例示される制振装置では、エンジンクランク軸回転パルス信号に基づいて認識される周波数が制振すべき振動の周波数と一致しているものとして疑似振動の周波数を決定しており、その他の制振装置でも振動発生源に関連する信号に基づいて制振すべき振動の周波数を認識して疑似振動の周波数を決定しているのが通例である。
 また、従来から車両のエンジン等の振動発生源で生じた振動と加振手段を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として特許文献1には、振動発生源で生じた振動に対応する周波数を入力して振動発生源から制振すべき位置へ伝達した振動を相殺するための相殺信号を発生する制御手段と、この制御手段の発生する相殺信号が入力されることにより作動して制振すべき位置に相殺振動を発生させる加振手段と、制振すべき位置において振動発生源で生じた振動と相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、制御手段が、振動検出手段により検出された振動に基づいて相殺誤差として残る振動が小さくなるように相殺信号を修正するものが開示されている。
 また、従来から車両のエンジン等の振動発生源で生じた振動と加振手段を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として特許文献1及び特許文献2には、適応フィルタを用いて制振すべき振動に相当する疑似振動を算出し、算出した疑似振動に基づいてアクチュエータ等の加振手段を通じて制振すべき位置に相殺振動を発生させ、発生した相殺振動と制振すべき振動との相殺誤差として残る振動を加速度センサで検出し、検出した相殺誤差として残る振動が小さくなるように上記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させるものが開示されている。
 このような適応制御を行う制振装置は、算出一回当たりに適応フィルタを真値へ近づける度合を示す収束係数を用いて適応フィルタの算出を積み重ねる構成が通例であり、この収束係数により適応フィルタの真値への収束する速度が決定されている。収束係数は、特許文献2に例示されるように、一定の収束係数を用いるのが一般的である。
特開2003-202902号公報 特開2008-250131号公報
 しかしながら、上記従来の制振装置では、下記の課題がある。
 まず、第一の課題がある。すなわち、例えば、エンジンクランク回転軸パルス信号やエンジンの点火パルス信号等の振動発生源に関連する信号に基づいて認識した周波数が制振すべき振動の周波数に必ずしも一致しているとは限らないばかりか、パルス信号の取り込み時におけるサンプリングによって誤差が生じたり、周波数の認識時の演算で離散化誤差が発生したりする等の種々の理由により制振すべき振動の実際の周波数と認識した周波数とが一致しないことがある。制振すべき振動の実際の周波数と認識した周波数とが異なると、制振すべき振動の位相と疑似振動の位相との位相差が徐々に大きくなり、位相差の増大により相殺誤差としての振動が増加して適応制御アルゴリズムの適応性が低下し、制振性および制御の安定性を損なう。
 上記第一の課題とは別に第二の課題がある。すなわち、加振手段で発生させた振動は、加振手段から制振すべき位置に至る振動伝達経路上の伝達特性により制振すべき位置へ伝達する過程でその振幅又は位相が変化するものであり、加振手段を設ける位置によっては加振手段で発生させた振動が制振すべき位置に伝達するまでに大きく減衰してしまうという振動の伝わりにくい低感度領域が存在する場合がある。この低感度領域では、加振手段の加振により得られる制振効果が低く、加振手段を通じて制振すべき位置に発生させる相殺振動が小さくなり、この相殺振動と制振すべき位置の振動との相殺誤差が一向に埋まらないので、従来の制振装置では加振手段で発生させる振動を増加させ続けようとする。この状態に陥ると、他の部位への振動に悪影響を及ぼす場合があるうえ、この状態で周波数が推移して低感度領域を抜けると、必要以上の大きな相殺振動が制振すべき位置に加振されてしまい、制振の安定性を損ねるばかりでなく、最悪制御が発散状態に陥ることがある。
 上記課題以外に第三の課題がある。すなわち、従来のように収束係数が常に一定である制振装置では、例えばエンジンの回転数やアクセル開度によって制振すべき振動が変化し、この変化に対応して発生させるべき相殺振動を大きく変化させる必要があるときには適応フィルタの収束が遅くて応答性が低下し所望の制振効果を発揮できない。また、制振すべき振動の微少な変化等により発生させるべき相殺振動を大きく変化させる必要がないときには適応フィルタの収束が速まって挙動が大きくなり、オーバーシュート等の不具合を招いて制振制御の安定性を損なう。
 第一の発明は、第一の課題に着目してなされたものであって、その目的は、制振すべき振動の周波数を実際の周波数と異なる周波数であると誤認識した場合であっても疑似振動の周波数を制振すべき振動の周波数に合わせて適応制御アルゴリズムの適応性を向上させ、制振性および安定性を向上させた制振装置及びこれを備えた車両を提供することである。
 第二の発明は、第二の課題に着目してなされたものであって、その目的は、加振手段の加振を通じて得られる制振効果が低い低感度領域によって制振の安定性を損なうという不具合を解消し、制振の安定性を向上させた制振装置及びこれを備えた車両を提供することである。
 第三の発明は、第三の課題に着目してなされたものであって、その目的は、制振すべき振動の著しい変化に起因して発生させる相殺振動を大きく変化させる必要があるときや無いとき、若しくはこれらが混在する場合であってもこれに適切に対応して制振制御の応答性または安定性を向上させた制振装置及びこれを備えた車両を提供することである。
 第一の発明は、かかる目的を達成するために、次のような手段を講じたものである。すなわち、第一の発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応制御アルゴリズムを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出し、算出した疑似振動に基づいて前記相殺振動を前記加振手段を通じて前記制振すべき位置posに発生させ、発生した相殺振動と前記振動発生源から前記制振すべき位置へ伝達した振動との相殺誤差として残る振動を検出し、検出した相殺誤差として残る振動が小さくなるように前記適応制御アルゴリズムを学習適応する制振装置であって、前記疑似振動の周波数の基礎とするため前記制振すべき位置での振動の周波数を前記振動発生源で生ずる振動に関連する信号に基づいて認識する周波数認識手段と、前記制振すべき位置での相殺誤差として残る振動を検出して当該相殺誤差として残る振動の位相を特定し特定された相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置posに発生される相殺振動の位相との位相差を特定する位相差特定手段と、前記位相差特定手段により特定された位相差に基づいて前記周波数認識手段により認識された周波数を当該位相差が無くなる方向へ補正する周波数補正手段とを具備してなることを特徴とする。
 この構成によれば、振動発生源で生ずる振動に関連する信号に基づいて振動発生源から制振すべき位置へ伝達した振動の周波数を周波数認識手段により認識し、認識した周波数を振動発生源から制振すべき位置へ伝達した振動を相殺するために必要な疑似振動の周波数の基礎として適応制御アルゴリズムを用いて疑似振動を算出し、算出された疑似振動に基づいて加振手段を通じて制振すべき位置に相殺振動を発生させ、発生した相殺振動と制振すべき位置での振動との相殺誤差として残る振動を検出して、検出した相殺誤差として残る振動が小さくなるように適応制御アルゴリズムの学習適応が行われて制振制御が実施される。この制振制御の実施に際し、位相差特定手段が、制振すべき位置での相殺誤差として残る振動を検出して相殺誤差として残る振動の位相を特定し特定した相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置に発生される相殺振動の位相との位相差を特定し、特定された位相差に応じて周波数認識手段により認識された周波数が周波数補正手段により位相差が無くなる方向へ補正されるので、振動発生源から制振すべき位置へ伝達した振動の周波数を実際の周波数と異なる周波数であると誤認識した場合であっても疑似振動の周波数を振動発生源から制振すべき位置へ伝達した振動の周波数に合わせて適応制御アルゴリズムの適応性を向上させ、制振性および安定性を向上させることができる。
 特に自動車のエンジンで生じる振動を制振する場合は、アクセル操作によりエンジン回転数が著しく変化し、回転数の変化に伴って振動の周波数の変動が激しく、制振制御が難しいものであるが、本発明では認識した周波数を補正するので、振動の周波数変動が激しいものであっても追従を可能とする点で有効である。
 制振制御の安定性を損なうことなく制振性を向上させるためには、前記周波数補正手段は、前記位相差特定手段により特定された位相差があるときに予め設定された補正一回当たりの上限補正量を超えない補正量を用いて前記周波数認識手段により認識された周波数を補正することが好ましい。
 周波数の補正を迅速かつ適切に実施するためには、前記周波数補正手段は、前記位相差特定手段により特定された位相差のズレ量に応じた大きさの補正量を用いて前記周波数認識手段により認識された周波数を補正することが望ましい。
 演算を省略でき、且つ、効果が乏しい周波数補正の実施を防止するためには、前記周波数補正手段は、前記位相差特定手段により特定された位相差のズレ量が予め設定された閾値よりも大きいときに前記周波数認識手段により認識された周波数の補正を実施し、前記位相差のズレ量が前記閾値以下であるときに前記認識された周波数の補正を実施しないことが効果的である。
 乗員に快適な乗り心地を提供するためには、上記の制振装置を車両に備えることが挙げられる。
 第二の発明は、かかる目的を達成するために、次のような手段を講じたものである。すなわち、第二の発明に係る制振装置は、振動発生源で生じる振動と加振手段により発生される相殺振動とを制振すべき位置で相殺するにあたり、前記振動に対応する周波数を入力して前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するための相殺信号を発生する制御手段と、この制御手段の発生する相殺信号が入力されることにより作動して前記制振すべき位置に相殺振動を発生させる加振手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記制御手段が、前記振動検出手段により検出された振動に基づいて前記相殺誤差として残る振動が小さくなるように前記相殺信号を修正する制振装置であって、前記加振手段から前記制振すべき位置に至る振動伝達経路上の伝達特性を周波数と関連づけて感度情報として記憶する記憶手段と、前記感度情報に基づいて現周波数が前記加振手段により発生される振動の伝わりにくい低感度領域にあるか否かを判定する感度判定手段とを設け、前記制御手段は、前記感度判定手段により現周波数が低感度領域にあると判定される場合に前記相殺信号を前記加振手段により発生される相殺振動を抑える方向に修正することを特徴とする。
 このように構成すると、加振手段から制振すべき位置に至る振動伝達経路上の伝達特性が周波数と関連づけて感度情報として記憶されており、この感度情報に基づいて現周波数が加振手段により発生される振動の伝わりにくい低感度領域にあると判定されると、相殺信号が加振手段により発生される相殺振動を抑える方向に修正されるので、加振手段の加振により得られる制振効果が低い低感度領域では、加振手段により発生される振動が抑えられ、他の部位への振動に悪影響を及ぼすことや低感度領域を抜けた場合に必要以上の大きな相殺振動が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることができる。
 特に、現周波数が低感度領域にあるか否かを効果的に判定するためには、前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が予め定められた第1しきい値より低い場合に現周波数が前記低感度領域にあると判定することが好ましい。
 現周波数が低感度領域にあるか否かの判定結果が頻繁に変わることにより制御が不安定になることを有効に防止するためには、前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が前記第1しきい値より高い伝達度である第2しきい値よりも高い場合に現周波数が前記低感度領域にないと判定するものであって、前記第1しきい値と前記第2しきい値との間に判定結果が変わらない不変領域が設けられており、前記制御手段は、前記感度判定手段により現周波数が低感度領域にないと判定される場合に前記相殺信号の修正を行わないことが望ましい。
 多大な制振電流指令が流れることによる不具合を防止する機構を利用して上記判定を実現するためには、前記相殺信号が制振電流指令であって、前記周波数から予め定めた電流上限値を導出し前記制振電流指令のピーク電流値が前記電流上限値を超過している場合に前記制御手段に電流上限超過信号を入力する電流超過検出手段を更に具備し、前記制御手段は、前記電流上限超過信号の入力を受けて前記制振電流指令を制限するように構成されるものであり、前記電流超過検出手段は、前記感度判定手段により現周波数が低感度領域にあると判定されている場合に前記電流上限値を前記制振電流指令が制限される方向へ修正することが好ましい。
 上記制振装置は、車両に搭載してエンジンから発生する振動を制振する上で特に好適に適用が可能である。
 第三の発明は、かかる目的を達成するために、次のような手段を講じたものである。すなわち、第三の発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする。
 この構成によれば、振動発生源から制振すべき位置へ伝達した振動を相殺するために必要な疑似振動が適応フィルタを用いて疑似振動算出手段により算出され、算出された疑似振動に基づいて相殺振動発生指令手段により加振手段を通じて制振すべき位置に相殺振動が発生され、制振すべき位置において振動発生源で生じた振動と相殺振動との相殺誤差として残る振動が振動検出手段により検出され、検出された振動と適応フィルタが真値への収束する速度を決定する収束係数とに基づいて相殺誤差として残る振動が小さくなるように疑似振動算出手段により適応フィルタが算出され、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振制御が実施される。この場合、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要があるときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が大きくなることに着目して、偏差情報取得手段により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の増加に応じて適応フィルタが収束する速度が速まるように収束係数を収束係数変更手段により変更するので、制振すべき位置に発生させる相殺振動を大きく変化させる必要があるときに適応フィルタが収束する速度を速めて高応答化し、制振制御の応答性を向上させることができる。
 また、本発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする。
 この構成によれば、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要がないときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が小さくなることに着目して、偏差情報取得手段により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の減少に応じて適応フィルタが収束する速度が遅くなるように収束係数を収束係数変更手段により変更するので、加振すべき相殺振動を大きく変化させる必要がないときに適応フィルタが収束する速度を低下させて相殺振動の挙動を小さくして、制振制御の安定性を向上させることができる。
 さらに、本発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まり前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする。
 この構成によれば、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要があるときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が大きくなり、相殺振動を大きく変化させる必要がないときに前記偏差が小さくなることに着目して、偏差情報取得手段により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の増加に応じて適応フィルタが収束する速度が速まり偏差の減少に応じて適応フィルタが収束する速度が遅くなるように収束係数を収束係数変更手段により変更するので、加振すべき相殺振動を大きく変化させる必要があるときに適応フィルタが収束する速度を速めて高応答化し、制振制御の応答性を向上させることができる。しかも、加振すべき相殺振動を大きく変化させる必要がないときに適応フィルタが収束する速度を低下させて相殺振動の挙動を小さくして、制振制御の安定性を向上させることができる。したがって、発生させる相殺振動を大きく変化させる必要があるときや無いときが混在する場合に制振制御を適切に実施することが可能となる。
 上記偏差に対応する偏差情報を用いた制振を実現する具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記疑似振動に基づき制振すべき位置に発生される相殺振動の振幅値に対応する加振力振幅成分を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された加振力振幅成分に応じて前記収束係数を変更することが挙げられる。
 上記偏差に対応する偏差情報を用いた制振を実現する他の具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記振動検出手段により検出される相殺誤差として残る振動の振幅成分を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された相殺誤差として残る振動の振幅成分に応じて前記収束係数を変更することが挙げられる。
 上記偏差に対応する偏差情報を用いた制振を実現する他の具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記振動発生源で生ずる振動に関連する信号に基づいて前記制振すべき位置での振動の周波数の変化量を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された周波数の変動量に応じて前記収束係数を変更することが挙げられる。
 上記偏差に対応する偏差情報を用いた制振を実現する他の具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置に発生される振動の位相との位相差を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された位相差に応じて前記収束係数を変更することが挙げられる。
 乗員に快適な乗り心地を提供するためには、上記の制振装置を車両に備えることが挙げられる。
 第一の発明によれば、制振すべき振動の周波数を実際の周波数と異なる周波数であると誤認識した場合であっても疑似振動の周波数を制振すべき振動の周波数に合わせて適応制御アルゴリズムの適応性を向上させ、制振性および安定性を向上させることが可能となる。
 第二の発明によれば、加振手段の振動により他の部位への振動に悪影響を及ぼすことや現周波数が低感度領域を抜けた場合に必要以上の大きな相殺振動が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることが可能となる。
 第三の発明によれば、制振すべき振動の著しい変化に応じて発生させる相殺振動を大きく変化させる必要の有無に左右されずに制振制御の応答性または安定性を向上させることが可能となる。
 したがって、これら第一、第二及び第三の発明によれば、制振制御の安定性を向上させた制振装置を提供することが可能となる。
第一実施形態の制振装置の概略全体模式図。 同実施形態に係る制御手段の構成および機能の概略ブロック図。 同実施形態に係る制御手段の構成の詳細なブロック図。 同実施形態に係る周波数補正量算出部で実行される周波数補正算出処理ルーチンを示すフローチャート。 加振手段から制振すべき位置へ伝達する振動に関する説明図。 振動発生源から制振すべき位置へ伝達した振動と相殺振動との相殺誤差として残る振動に関する説明図。 制振すべき位置での振動の周波数とこの振動を模擬した疑似振動の周波数とに差がある場合に生ずる位相差に関する説明図。 第一実施形態とは別の実施形態の制御手段の構成の詳細なブロック図。 第二実施形態の制振装置を車両に適用した模式的な構成図。 同制振装置を構成するリニアアクチュエータを備えた加振手段の模式的な構成図。 同実施形態における制振制御に係る構成を示すブロック図。 加振手段から制振すべき位置に至る振動伝達経路上の伝達特性を示す模式図。 同実施形態において電流クランプテーブルに設定された上限値及びこれを導出する概念を示す図。 第三実施形態の制御手段の構成および機能の概略ブロック図。 同実施形態に係る制御手段の構成を詳細に示すブロック図。 相殺振動の振幅値とこの振幅値に応じて変更される収束係数との関係を示す図。 第四実施形態の制御手段の構成を詳細に示すブロック図。 第五実施形態の制御手段の構成を詳細に示すブロック図。 第六実施形態の制御手段の構成を詳細に示すブロック図。
<第一実施形態>
 以下、第一実施形態の制振装置を、図1~図7を参照して説明する。第一実施形態は、第一の発明に対応するものである。
 第一実施形態の制振装置は、図1に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posに設けた加速度センサ等の振動検出手段1と、所定の質量を有する補助質量2aを振動させることにより振動Vi2を発生するリニアアクチュエータを用いた加振手段2と、振動発生源gnであるエンジンの点火パルス信号と振動検出手段1からの検出信号とを入力し加振手段2で発生させた振動Vi2を制振すべき位置posへ伝達させることにより制振すべき位置posに相殺振動Vi4を発生させる制御手段3とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi3と加振手段2を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posでの振動を低減するものである。
 制御手段3は、図2に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を的確に相殺する相殺振動Vi4を制振すべき位置posに発生させるために、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を模擬した疑似振動Vi3’を適応アルゴリズムを用いて算出し、算出した疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させる。また、制御手段3は、加振手段2から制振すべき位置posへ伝達した相殺振動Vi4と振動Vi3との相殺誤差として残る振動(Vi3+Vi4)を振動検出手段1で検出し、検出した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応アルゴリズムを学習適応させて疑似振動を真値に収束させる制振制御を行う。本実施形態では、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動は、振動Vi3を模擬した疑似振動Vi3’であるが、この振動Vi3の模擬を行うことなく加振手段2から制振すべき位置posへ伝達する相殺振動Vi4を直接模擬したものであってもよい。
 この適応制御による制振制御を実行する制御手段3は、図2に示すように、周波数認識手段31と、疑似振動算出手段32と、相殺信号生成手段33とを有する。
 周波数認識手段31は、振動発生源gnで生ずる振動Vi1に関連する信号に基づいて制振すべき位置posでの振動の周波数を認識する。認識した周波数は、疑似振動算出手段32で疑似振動を算出する際に疑似振動の周波数の基礎として用いられる。本実施形態では、振動発生源gnで生ずる振動Vi1に関連する振動としてのエンジンの点火パルス信号をECU等から入力している。勿論、エンジンの点火パルス信号に代えて例えばエンジンクランクの回転数を検出するセンサからの検出パルス信号等、その他の信号を用いてもよい。
 疑似振動算出手段32は、周波数認識手段31により認識した周波数を疑似振動の周波数に採用した上で疑似振動を適応アルゴリズムにより算出すると共に、振動検出手段1より入力した相殺誤差として残る振動が小さくなるように適応アルゴリズムを学習させるものである。具体的には、疑似振動算出手段32は、疑似振動算出部32aと、学習適応部32bとを有する。疑似振動算出部32aは、周波数認識手段31により認識した周波数と等しい周波数の基準波に対して適応フィルタ32fを用いたフィルタリングを施すことにより基準波の振幅及び位相を変化させて疑似振動を算出する。学習適応部32bは、振動検出手段1より入力した相殺誤差として残る振動が無くなるように適応フィルタ32fを逐次更新する。
 相殺信号生成手段33は、疑似振動算出手段32が算出した疑似振動に基づいて相殺振動Vi4を加振手段2を通じて制振すべき位置posに発生させる指令たる相殺信号を生成する。相殺信号生成手段33により生成された相殺信号が加振手段2に入力されると加振手段2が相殺振動Vi4を制振すべき位置posに発生する。この相殺信号を生成するにあたり、図5に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3に対してこの振動Vi3を逆波形にした振動-Vi3を加振すればよいが、加振手段2で発生させた振動Vi2は制振すべき位置posに伝達する過程で振幅又は位相が変化するので、この変化を考慮して制振すべき位置posに相殺振動Vi4が印加されるように振動Vi2を加振手段2で発生させる必要がある。具体的には、加振手段2から制振すべき位置posまで伝達する振動の振幅及び位相の変化させる振動伝達関数Gの逆伝達関数を逆伝達関数記憶部33aに予め記憶しておき、制振すべき位置posでの振動Vi3を模擬した疑似振動Vi3’を逆波形にした振動に対して逆伝達関数を加味して相殺振動vi2を算出する。ここでは、逆伝達関数の振幅成分を1/Gとし、位相成分をPとして逆伝達関数記憶部33aに記憶している。なお、振動発生源gnから制振すべき位置posへ伝達する振動の振幅又は位相を変化させる振動伝達関数をG’と示している。
 上記の構成に対して本実施形態ではさらに、図2に示すように、位相差特定手段34と、認識周波数補正手段35とを備えている。
 位相差特定手段34は、図6に示すように、制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)を検出して検出した振動の位相φを特定し特定された制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(=φ-φ’)を即時に特定するものである。位相φ及び位相φ’は、ωt(=θ)を基準としたものである。具体的には、図2に示すように、位相差特定手段34は、即時位相特定部34aと、疑似振動位相特定部34bと、位相差特定部34cとを有する。即時位相特定部34aは、振動検出手段1により検出された振動に基づいてその振動の位相を即時に特定する。疑似振動位相特定部34bは、疑似振動算出部32aでの算出結果を参照して疑似振動の位相を特定する。位相差特定部34cは、即時位相特定部34aにより特定された制振すべき位置posでの振動の位相と疑似振動位相特定部34bにより特定された疑似振動の位相との位相差を特定する。
 周波数補正手段35は、位相差特定手段34により特定された位相差に基づいて周波数認識手段31により認識された周波数を位相差が無くなる方向へ補正するものであり、上限補正量記憶部35aと、不感帯記憶部35bとを有している。周波数補正手段35は、位相差特定手段34により特定された位相差があるときに上限補正量記憶部35bに予め記憶された補正一回当たりの上限補正量を超えない補正量を用いて周波数の補正を実施したり、位相差のズレ量が不感帯記憶部35cに予め記憶された閾値よりも大きいときに周波数の補正を実施し、位相差のズレ量が閾値以下であるときに周波数の補正を実施しないように構成されている。
 このような制御手段3を実現する具体的な制御ブロックを図3に示して説明する。
 図3に示すように、周波数認識手段31である周波数検出部41は、入力したエンジンパルス信号に基づいて制振すべき位置posでの振動の周波数fを認識する。基本電気角算出部42は、認識された周波数fを入力して基本電気角θを算出する。基準波生成部43は、算出された基本電気角θを入力して基準波である基準正弦波sinθ及び基準余弦波cosθを生成する。これら基準波は制御手段3での信号処理においての波形の振幅及び位相等の基準となるものである。
 加速度センサである振動検出手段1で検出される制振すべき位置posでの振動には、振動発生源gnで生じた振動以外にも他の振動が含まれているので、振動検出手段1の出力信号に対して周波数検出部41で認識された周波数f成分の信号のみを取り出すBPF(バンドパスフィルタ)44を施すことにより振動発生源gnで生じた振動のみを振動信号として検出している。
 この振動信号を模擬するために、振動信号をAsin(θ+φ)、θ=ωtと仮定し、以下の式を利用する。
 まず、振動信号Asin(θ+φ)にsinθを乗算したものを積和定理を用いて表すと、
Asin(θ+φ)×sinθ=(-A/2)(cos(2θ+φ)-cosφ)
と変形できる。この式に2を乗算すると、
2Asin(θ+φ)×sinθ=Acosφ-Acos(2θ+φ)
となる。この式を収束係数μを用いて積分すると、右辺第二項Acos(2θ+φ)の積分は(μA/2ω)sin(2θ+φ)となり、μをAに比べて非常に小さな値に設定すると振幅が小さく且つ周期関数の積分であるため(μA/2ω)sin(2θ+φ)を無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’cosφ’に収束する。
 同様に、振動信号Asin(θ+φ)にcosθを乗算したものを積和定理を用いて表すと、
Asin(θ+φ)×cosθ=(A/2)(sin(2θ+φ)+sinφ)
と変形できる。この式に2を乗算すると、
2Asin(θ+φ)×cosθ=Asinφ+Asin(2θ+φ)
となる。この式を収束係数μを用いて積分すると、右辺第二項Asin(2θ+φ)の積分も上記と同様に周期関数の積分であるため無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’sinφ’に収束する。
 上記で求めたA’cosφ’及びA’sinφ’にsinθ及びcosθをそれぞれ乗算して足し合わせものを加法定理を用いて表すと、
sinθ×A’cosφ’+cosθ×A’sinφ’=A’sinθ×cosφ’+A’cosθ×sinφ’=A’sin(θ+φ’)
となる。したがって、振動信号に対して上記の演算を実施することにより振動信号Asin(θ+φ)を模擬した疑似振動A’sin(θ+φ’)を算出できる。これらA’cosφ’及びA’sinφ’は、いわゆる適応制御における適応フィルタであり、振動信号の入力により疑似振動の振幅A’及び位相φ’を真値である振幅A及び位相φに収束させるべく自己適応する。また、適応フィルタは、適応フィルタに対して基準波を乗算して足し合わせることにより疑似振動に変形するので、疑似振動と基準波との振幅差及び位相差を表すものといえる。
 上記の演算処理を用いて振動信号Asin(θ+φ)に基づいて適応フィルタ32fを学習更新しつつ疑似振動を算出するために、図3に示すように疑似振動算出手段32を構成している。すなわち、乗算器45は、振動信号Asin(θ+φ)と収束係数2μとを乗算する。乗算器46、47は、乗算器45での乗算結果に対して基準波生成部43から出力される基準正弦波sinθと基準余弦波cosθをそれぞれ乗算して、積分器48、49へ出力する。積分器48、49は、乗算器46、47からの出力を積分し、疑似振動と基準波との振幅差及び位相差を表す適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を出力する。
 この適応フィルタ32fに対して基準正弦波sinθ及び基準余弦波θをそれぞれ乗算した後に足し合わせると上記の通り疑似振動A’sin(θ+φ’)となるが、本実施形態では、振幅成分及び位相成分の逆伝達関数を加味した基準波を適応フィルタ32fとの乗算前に生成している。勿論、疑似振動を算出した後に振幅成分及び位相成分の逆伝達関数を加味してもよい。具体的に本実施形態では、逆伝達関数振幅設定部53は、周波数に対応した逆伝達関数の振幅成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の振幅成分1/Gを特定する。同様に、逆伝達関数位相設定部50は、周波数に対応した逆伝達関数の位相成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の位相成分Pを特定する。特定された位相成分Pと基本電気角θとが加算器51で加算されて発振器52に入力される。発振器52は、逆伝達関数の位相成分Pが加味された正弦波sin(θ+P)及び余弦波cos(θ+P)を生成する。乗算器54、55は、生成された正弦波sin(θ+P)及び余弦波cos(θ+P)に対して逆伝達関数振幅設定部53により特定された逆伝達関数の振幅成分1/Gとをそれぞれ乗算して、振幅及び位相の逆伝達関数を加味した基準波を生成する。
 これら乗算器54、55により生成された振幅及び位相の逆伝達関数を加味した基準波(1/G)sin(θ+P)及び(1/G)cos(θ+P)に対して上記の適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を乗算器56、57でそれぞれ乗算する。乗算器56、57での乗算結果を加算器58で足し合わせ、足し合わせた結果に-1を乗算器59で乗算すると、相殺振動[-(A’/G)sin(θ+φ’+P)]の発生を指令する相殺信号が生成され、加振手段2で相殺振動[-(A’/G)sin(θ+φ’+P)]が加振される。
 上記の適応制御を用いた制振制御を行う構成に加えてさらに、位相差特定手段34を構成する即時位相特定部34a、疑似振動位相特定部34b及び位相差特定部34cと、周波数補正手段35を構成する周波数補正量算出部68とを有している。
 位相差特定手段34を構成する即時位相特定部34aは、振動検出手段1を介して検出した振動信号Asin(θ+φ)を入力して、その位相φを即時に特定するものである。具体的には、まず、除算器60aにおいて振動信号Asin(θ+φ)をリアルタイム振幅検出部60で検出した振幅Aで除算して、振幅1のsin(θ+φ)を得る。
 リアルタイム振幅検出部60は、振幅1の正弦波sinθの半周期0~πの積分値が(-cosπ)-(-cos0)=(1)-(-1)=2であり、その平均値は0~πまでの平均であることから2/πとなることを利用したもので、振動信号Asin(θ+φ)を入力して、絶対値処理を加え、二倍の周波数成分を除去するノッチフィルタを介し、脈動分をLPF(ローパスフィルタ)で除去して2/πを乗ずることにより即時で振幅Aを取得するものである。
 乗算器61、62は、除算器60aでの除算結果であるsin(θ+φ)に対して2sinθ及び2cosθをそれぞれ乗算して積和定理より、cosφ-cos(2θ+φ)とsinφ+sin(2θ+φ)とを得る。乗算器61の演算結果であるcosφ-cos(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理63を施し、脈動分をLPF(ローパスフィルタ)処理65で除去してcosφを得る。同様に、乗算器62の演算結果であるsinφ+sin(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理64を施し、脈動分をLPF(ローパスフィルタ)処理66で除去してsinφを得る。このように即時位相特定部34aは、振動信号Asin(θ+φ)の位相成分を有するcosφ及びsinφを即時に特定する。
 位相差特定手段34を構成する疑似振動位相特定部34bは、上記の適応フィルタ32fであるA’cosφ’及びA’sinφ’が疑似振動の位相成分を有するのでこれをそのまま利用すべく、適応フィルタ32fを位相差特定部34cへ入力するものである。
 位相差特定手段34を構成する位相差特定部34cは、即時位相特定部34aにより特定されたcosφ及びsinφと適応フィルタ32fであるA’cosφ’及びA’sinφ’とに基づいて位相差を特定するものである。具体的には、これら位相φ及び位相φ’は、共通の基本電気角θを基準とした位相ズレを表すものであるので、疑似振動の位相と制振すべき位置posでの振動の位相とが一致している場合はφとφ’が等しいものとなる。したがって、位相差Δφをφ-φ’と定義して、以下の式を用いて算出される位相差の正弦成分α及び余弦成分βにより位相差を表現している。
正弦成分α=A’sin(φ-φ’)=A’(sinφcosφ’-cosφsinφ’)=sinφ(A’cosφ’)-cosφ(A’sinφ’)
余弦成分β=A’cos(φ-φ’)=A’(cosφcosφ’+sinφsinφ’)=cosφ(A’cosφ’)+sinφ(A’sinφ’)
 図7(a)に示すように制振すべき位置posでの振動Vi3の周波数より振動Vi3を模擬する疑似振動Vi3’の周波数が低いときには、正弦成分αが正の方向へ一定の変化量で増加し、図7(b)に示すように制振すべき位置posでの振動Vi3の周波数より振動Vi3を模擬する疑似振動Vi3’の周波数が高いときに正弦成分αが負の方向へ一定の変化量で減少する。上記の適応制御アルゴリズムは、位相差Δφが±60度の範囲を超えた場合は制御が発散して制振不能となることが判明しているので、余弦成分β>0の条件で正弦成分αの符号によりΔφが進んでいるか遅れているか否かを判断でき、正弦成分αの大きさにより位相差Δφのズレ量を把握できる。
 図3に示すように、周波数補正手段35を構成する周波数補正量算出部68は、位相差特定部34cで特定された正弦成分αに基づいて周波数補正量Δfを算出して加算器69へ出力し、この周波数補正量Δfと周波数検出部41により認識された周波数fとを加算器69で加算させることにより認識された周波数fを補正するものである。補正量算出部68は、図4に示すように、正弦成分αの大きさが不感帯記憶部35bに記憶されている閾値以下であるか否かを判定し(A1)、閾値以下であると判定した場合(A1:YES)には、周波数補正量Δf=0とする(A6)。一方、閾値以下でないと判定した場合(A1:NO)には、上限補正量記憶部35aに記憶されている補正一回当たりの上限補正量である一定値のステップS(S>0)を取得し(A2)、正弦成分αの符号が正であるか否かを判定する(A3)。αの符号が正であると判定した場合には(A3:YES)、周波数補正量ΔfをステップS、すなわちΔfを正値とする(A4)。一方、αの符号が正でないと判定した場合には(A3:NO)、周波数補正量Δfを-ステップS、すなわちΔfを負値とし(A5)、認識した周波数fを位相差Δφが無くなる方向へ補正する。
 以上のように、第一実施形態に係る制振装置は、振動発生源gnで生じる振動Vi3と加振手段2を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺するにあたり、適応制御アルゴリズムを用いて振動発生源から制振すべき位置posへ伝達した振動Vi3を相殺するため必要な疑似振動Vi3’を算出し、算出した疑似振動Vi3’に基づいて相殺振動Vi4を加振手段2を通じて制振すべき位置posに発生させ、発生した相殺振動Vi4と振動発生源gnから制振すべき位置posへ伝達した振動Vi3との相殺誤差として残る振動(Vi3+Vi4)を検出し、検出した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応制御アルゴリズムを学習適応するものであり、疑似振動Vi3’の周波数の基礎とするため制振すべき位置posでの振動Vi3の周波数fを振動発生源gnで生ずる振動Vi1に関連する信号に基づいて認識する周波数認識手段31と、制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)を検出して相殺誤差として残る振動(Vi3+Vi4)の位相φを特定し特定された相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφを特定する位相差特定手段34と、位相差特定手段34により特定された位相差Δφに基づいて周波数認識手段31により認識された周波数fを位相差Δφが無くなる方向へ補正する周波数補正手段35とを具備してなることを特徴とする。
 第一実施形態によれば、振動発生源gnで生ずる振動Vi1に関連する信号に基づいて振動発生源gnから制振すべき位置posへ伝達した振動Vi3の周波数fを周波数認識手段31により認識し、認識した周波数fを振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’の周波数の基礎として適応制御アルゴリズムを用いて疑似振動Vi3’を算出し、算出された疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させ、発生した相殺振動Vi4と振動発生源gnから制振すべき位置posへ伝達した振動Vi3との相殺誤差として残る振動(Vi3+Vi4)を検出して、検出した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応制御アルゴリズムの学習適応が行われて制振制御が実施される。この制振制御の実施に際し、位相差特定手段34が、制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)を検出して相殺誤差として残る振動(Vi3+Vi4)の位相φを特定し特定した相殺誤差として残る振動(Vi3+Vi4)の位相φと前記疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(=φ-φ’)を特定し、特定された位相差Δφに応じて周波数認識手段31により認識された周波数fが周波数補正手段35により位相差Δφが無くなる方向へ補正されるので、振動発生源gnから制振すべき位置posへ伝達した振動Vi3の周波数を実際の周波数と異なる周波数であると誤認識した場合であっても疑似振動Vi3’の周波数を振動発生源gnから制振すべき位置posへ伝達した振動Vi3の周波数に合わせて適応制御アルゴリズムの適応性を向上させ、制振性および安定性を向上させることができる。
 特に自動車のエンジンで生じる振動を制振する場合は、アクセル操作によりエンジン回転数が著しく変化し、回転数の変化に伴って振動の周波数が激しく変動し、制振制御が難しいものであるが、本実施形態では認識した周波数を補正するので、振動の周波数変動が激しいものであっても追従を可能とする点で有効である。
 また、第一実施形態では、周波数補正手段35が、位相差特定手段34により特定された位相差Δφがあるときに予め設定された補正一回当たりの上限補正量を超えない補正量である一定値のステップSを用いて周波数認識手段31により認識された周波数を補正するので、場合によるが周波数の補正を複数回に分けて少しずつ実施し、補正一回当たりの上限補正量を超えた大きな補正量で補正を実施することにより周波数が急激に変化して制御が不安定になることを防止でき、制振制御の安定性を損なうことなく制振性を向上させることができる。
 さらに、第一実施形態では、周波数補正手段35が、位相差特定手段34により特定された位相差Δφのズレ量が予め設定された閾値よりも大きいときに周波数認識手段31により認識された周波数の補正を実施し、位相差Δφのズレ量が閾値以下であるときに認識された周波数の補正を実施しないので、位相差Δφが軽微であるとき、すなわち両振動の周波数がある程度一致したときには周波数の補正を実施しない不感帯を設け、演算の省略ができるとともに、得られる効果が乏しい周波数補正の実施を防止することができる。
 その他、第一実施形態では、上記制振装置を自動車等の車両に備えているので、乗員に快適な乗り心地を提供することができる。
 以上、第一実施形態にについて図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、正弦成分αは変動が激しいので正弦成分αにLPF(ローパスフィルタ)を掛けて脈動分を除去し、このLPFを通した正弦成分αに基づいて補正量算出部68で周波数補正量Δfを算出するようにしてもよい。このように構成すると、安定した周波数補正の実現に資することが可能となる。
 また、第一実施形態では、周波数補正手段35は、位相差Δφのズレ量に係わらず補正一回当たりの上限補正量である一定値のステップSを補正量として決定し、この補正量を付加して補正を実施しているが、位相差Δφのズレ量に応じた大きさの補正量を決定し、この補正量を用いて補正を実施するようにしてもよい。このように構成すると、位相差Δφのズレ量が大きい場合には周波数の補正量を大きくし、位相差Δφのズレ量が小さい場合には周波数の補正量を小さくして、周波数の補正回数を低減し、周波数の補正を迅速かつ適切に実施することが可能となる。
 逆伝達関数位相設定部50に予め記憶されている逆伝達関数の位相成分Pと実際の逆伝達関数の位相成分とが経年変化等により一致しなくなり、この不一致が位相差特定部34cにより位相差Δφとして検出されることがある。そこで、図8に示すように、この不一致を是正するべく、疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相を補正する位相補正部70を追加することが挙げられる。位相補正部70は、位相差特定部34cで特定された正弦成分α及び余弦成分βに基づいて位相補正量P’を算出して加算器51へ出力し、位相差Δφを補正するものである。このように構成すると、経年変化や温度変化等により車体フレームfrm等の制振対象の振動伝達特性が変化しても所望の制振効果を得ることができる。
 さらにまた、図8に示すように、上記の位相補正部70を追加した構成において位相差Δφに基づいて周波数補正又は位相補正のいずれを実施するのが適切であるかを判断するために、位相差特定部34cで特定された正弦成分αを参照して位相補正部70による位相補正と周波数補正量算出部68による周波数補正とを切り替える切替部71をさらに設けるとよい。この切替部71は、逆伝達関数の位相成分がズレておらず周波数がズレている場合は正弦成分αが一定の変化量で変化する一方、周波数がズレておらず逆伝達関数の位相成分がズレている場合は正弦成分αが変化しないことを利用して、入力した正弦成分αを微分して変化量を捉え、正弦成分αが変化している場合は周波数補正量算出部68による周波数補正に切り替え、正弦成分αが変化していない場合は位相補正部70による位相補正に切り替えるものである。このように構成すると、適切な補正機能を実現でき、制振効果を向上させることが可能となる。
 その他、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
<第二実施形態>
 第二実施形態の制振装置を、図9~図13を参照して説明する。第二実施形態は、第二の発明に対応するものである。なお、上記第一実施形態の図面と同じ図面(具体的には、図5)を援用する。
 この実施形態の制振装置は、図9に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posに設けた加速度センサ等の振動検出手段201と、所定の質量を有する補助質量202aを振動させることにより相殺振動Vi4を制振すべき位置posに発生するリニアアクチュエータ220を用いた加振手段202と、振動発生源gnであるエンジンの点火パルスから取り出される基本周波数fから基準波ejθを生成する基準波生成手段203と、振動検出手段201からの振動検出信号sgと前記基準波ejθとを入力し加振手段202に相殺振動Vi4を制振すべき位置posに発生させる適応制御手段204とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi3と加振手段202を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posにおける振動を低減するものである。
 振動検出手段201は、加速度センサ等を用いてエンジンの主振動方向と同一方向の主振動を検出し、振動検出信号sg{=Asin(θ+φ)}を出力する。
 リニアアクチュエータ220は、図10に示すように、永久磁石を備える固定子222を車体フレームfrmに固定し、抑制するべき振動方向と同方向の往復動(図10の紙面では上下動)を可動子223に行わせるようにしたレシプロタイプのものである。ここでは、車体フレームfrmの抑制すべき振動の方向と可動子223の往復動方向(推力方向)とが一致するように、車体フレームfrmに固定される。可動子223は補助質量221とともに軸225に取り付けられ、この軸225は可動子223及び補助質量221を推力方向に移動可能なように板バネ224を介して固定子222に支持されている。リニアアクチュエータ220と補助質量221によって、動吸振器が構成されていることになる。
 リニアアクチュエータ220を構成するコイル(図示せず)に交流電流(正弦波電流、矩形波電流)を流した場合、コイルに所定方向の電流が流れる状態では、磁束が、永久磁石においてS極からN極に導かれることにより、磁束ループが形成される。その結果、可動子223は、重力に逆らう方向(上方向)に移動する。一方、コイルに対して所定方向とは逆方向の電流を流すと、可動子223は、重力方向(下方向)に移動する。可動子223は、交流電流によるコイルへの電流の流れの方向が交互に変化することにより以上の動作を繰り返し、固定子222に対して軸225の軸方向に往復動することになる。これにより、軸225に接合されている補助質量221が上下方向に振動することになる。このリニアアクチュエータ220それ自体のより具体的な構造や動作説明は公知であるため、詳細は省略する。可動子223は図示しないストッパによって動作範囲が規制されている。リニアアクチュエータ220と補助質量221とによって構成される動吸振器は、アンプ206から出力される電流制御信号ssに基づいて、補助質量221の加速度を制御して制振力を調節することにより、車体フレームfrmに発生する振動を相殺して振動を低減することができる。
 基準波生成手段203は、図11に示すように、基本周波数f[Hz]から基本次数の基準波ejθである基準正弦波(sinθ)と基準余弦波(cosθ)を生成する。生成される基準正弦波(sinθ)と基準余弦波(cosθ)は何らかの同期信号に対し同期しても、させなくてもどちらでもよい。θ=ωt=2πftである。
 適応制御手段204は、振動を制御する適応制御手段たる適応アルゴリズムブロック204aを主体とする。この適応アルゴリズムブロック204aは、振動検出信号sgと前記基準波ejθ{=(sinθ、cosθ)}とから適応フィルタ係数(Re、Im)=(A´cosφ´、A´sinφ´)を算出して当該適応フィルタ係数(Re、Im)に基づき制振電流指令I41を生成し、これに基づき後述する電流PI演算ブロック205やアンプ206を介してリニアアクチュエータ220に電流制御信号ssを入力することで、制振すべき位置posに前記振動発生源gnからの振動に対し逆相となる相殺振動Vi4を加振手段202を通じて発生させる。先ず、検出してきた振動検出信号sg{=Asin(θ+φ)}の基本周波数成分の正弦波の逆信号(正逆が反対の信号)を生成する。振動検出信号Asin(θ+φ)は収束パラメータμと乗算されたのち、乗算器241a、241bにおいて基準正弦波sinθ、あるいは、基準余弦波cosθと乗算され、積分器241c、241dにおいて演算毎に前回値Z-1 に加算する形で積分される。その演算結果は、振動検出信号sgの基準正弦波sinθからずれた逆相正弦波ベクトルの収束方向の成分を持つ逆相正弦波のベクトルすなわち適用フィルタ係数(Re、Im)=(A´cosφ´、A´sinφ´)として算出される。算出した適用フィルタ係数(Re、Im)に対し、乗算器241e、241fにおいてそれぞれ基準正弦波sinθ、基準余弦波cosθを乗算し、その結果を加算器241gにおいて加算することで、振動検出信号sgの逆相正弦波信号として制振電流指令I41{=A´sin(θ+φ´)}を生成する。この制振電流指令I41は、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するため加振手段202に相殺振動Vi4を発生させる電流制御信号ssの基礎となる相殺信号である。積分を繰り返すと、A´、φ´が真値A、φと対応する値に収束するにつれて振動の相殺が進むが、基本周波数fや位相θは絶えず変化しているため、常に変化に追従する形で制御が行われる。
 この制振電流指令I41を生成するにあたり、図5に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3に対してこの振動Vi3を逆波形にした振動-Vi3を相殺振動として加振すればよいが、加振手段202で発生させた振動Vi2は加振手段202から制振すべき位置posに至る振動伝達経路上の伝達特性によって制振すべき位置posに伝達する過程でその振幅又は位相が変化するので、この変化を考慮して制振すべき位置posに相殺振動Vi4が印加されるように振動Vi2を加振手段202に発生させる制振電流指令I41を生成する必要がある。具体的には、前記振動伝達経路上の伝達特性を表す振動伝達関数Gの逆伝達関数(1/G)を図11に示す逆伝達ゲイン記憶手段250に周波数と関連付けて感度情報として予め記憶しておき、上記で求めた振動検出信号sgの逆相正弦波信号(=相殺振動Vi4)と逆伝達関数(1/G)とを乗算器251で乗算して振動Vi2を発生させる制振電流指令I41を生成している。なお、ここでは、逆伝達関数の位相成分については図示及びその説明を省略している。図5では、伝達関数の振幅成分をGとし、位相成分をPとし、振動発生源gnから制振すべき位置posへ伝達する振動の振幅又は位相を変化させる振動伝達関数をG’と示している。
 この加振手段202から制振すべき位置posに至る振動伝達経路上の伝達特性を表す伝達関数ゲイン(振幅成分)及び逆伝達関数ゲイン(振幅成分)は、図12(a)及び図12(b)にそれぞれ示されるように、周波数によってその伝達度が変化するものであり、周波数と関連付けて逆伝達ゲイン記憶手段250に記憶されている。図12に示す例では、加振手段202を設ける位置や振動を伝達する媒体等の環境によって加振手段で発生させた振動Vi2が制振すべき位置に伝達するまでに大きく減衰してしまうという振動が伝わりにくい低感度領域が低周波数帯と高周波数帯に存在している。この低感度領域では、加振手段202の加振により得られる制振効果が低く、加振手段202により発生させる相殺振動Vi4が小さくなり、この相殺振動Vi4と制振すべき位置posの振動Vi3との相殺誤差が一向に埋まらないので、制振装置が加振手段202で発生させる振動Vi2、すなわち制振電流指令I41を増加させ続けようとする。この状態は制振の安定性の観点から好ましくなく、制振電流指令I41を制限する必要がある。
 そこで、第二実施形態ではさらに、逆伝達ゲイン記憶手段250に記憶される感度情報に基づいて現周波数が加振手段202により発生される振動Vi2の伝わりにくい低感度領域にあるか否かを判定する感度判定手段252を設けている。感度判定手段252は、図11及び図12(b)に示すように、逆伝達関数ゲイン(1/G)が第1しきい値より低い伝達度である場合は現周波数が低感度領域にあると判定して低感度検出信号Flgを出力する一方、逆伝達関数ゲイン(1/G)が第2しきい値より高い伝達度である場合は現周波数が低感度領域にないと判定して低感度検出信号Flgの出力を停止する。第2しきい値は、第1しきい値よりも高い伝達度に設定されており、第1しきい値と第2しきい値との間には所定の間隔が設けられて判定結果が切り変わらない不変領域が設けられている。各しきい値の具体的な設定例として、第1しきい値は、伝達関数ゲインの最大値(伝達度がピークとなる値)の-数十[dB]程度以下に設定するのが望ましく、第2しきい値は、第1しきい値に対し数[dB]程度高い値に設定するのが望ましい。このように、しきい値を用いてヒステリシス特性を持たせることにより、判定結果が頻繁に切り変わって低感度検出信号FlgのON/OFFが繰り返されるチャタリングを防止することが可能となる。
 この低感度検出信号Flgが出力されているとき、すなわち現周波数が低感度領域にあるときに、相殺信号である制振電流指令I41が加振手段202により発生される相殺振動Vi4を抑える方向に修正(制限)されるが、この修正(制限)は、過電流によりリニアアクチュエータ220を構成する可動子223が固定子222に設けた図示しないストッパ等への衝突等の不具合発生を防止するために設けられた制振電流指令I41を抑える機構を利用して行われている。
 すなわち、その機構は、図11に示すように、前記制振電流指令I41のピーク電流値A´を算出する振幅検出手段204bと、基本周波数fから予め設めた電流上限値αを導出し前記制振電流指令I41のピーク電流値A´が前記電流上限値αを超過している場合に電流上限超過信号S41を生成する電流超過検出手段204cとを含んで構成されている。
 振幅検出手段204bは、制振電流指令I41の振幅A´を随時(リアルタイム)に算出するブロックである。振幅A´は、生成した制振電流指令I41の波形A´sin(θ+φ´)から求めてもよいし、その波形生成前の加算データの二乗和平方根をとっても良い。また、演算量を軽くするために二乗和だけをとり、比較する電流上限値αを二乗しても良い。
 電流超過検出手段204cは、電流上限値αを電流クランプテーブル241hの形で記憶している。この上限値αには、図13(a)に示すモータ上限電流Ic(最大出力値)もしくは位置上限電流Ip(衝突防止)の何れか小さい方の値が採用されている。
 モータ上限電流Icは、本実施形態の演算処理機能を具現するコントローラにおいて出力できる最大電流値あるいはリニアアクチュエータ220に流すことができる(磁石が減磁しない程度の)最大電流値のうち何れか小さい方の値で、周波数によらず一定である。
 一方、位置上限電流Ipは、正弦波電流を流すことにより動作する可動子223が可動可能な振幅上限を超えない電流の上限値であり、正弦波加速度をa、最大加速度をAp(=a√2)とした場合、図13(b)に示す電流指令Irefの許容振幅Lpは、Lp<┃Xmax┃=Ap/ωとされる。この電流指令Irefは電流PI演算ブロック205で演算され、電圧指令としてアンプ206に入力されて、アンプ206による駆動でリニアアクチュエータ220が加速度aで駆動されることになる。図13(c)に示すように、電流指令Irefから可動子223に加速度aが発生するまでの伝達ゲインをE(f)とすると、a(f)=Iref・E(f)…(1)なる関係がある。今、最大電流Ip(f)を与えた場合に最大化速度Ap(f)が得られるとすると、Ap(f)=E(f)・Ip(f)…(2)であるから、(1)、(2)式より、Ip(f)=ω|Xmax|/E(f)が得られ、このIp(f)が位置上限電流とされ、エンジンgnから取り出した基本周波数fを入力することによってその時々の位置上限電流Ip(f)が求まる。
 これらの電流上限値α(IcまたはIpの何れか小さい方)は、そのまま選択部260に入力される一方で、電流上限値α1を分岐して乗算器261で1/2倍に制限された電流上限値(α/2)が選択部260に入力されている。この選択部260は、感度判定手段252により低感度検出信号Flgが出力されている場合には電流上限値α1を出力する一方、感度判定手段252により低感度検出信号Flgが出力されていない場合には制限された電流上限値(α/2)を出力する。出力された電流上限値(αまたはα/2の何れか一方)と振幅検出手段204bにより出力されたピーク電流値A´は比較部241iに入力され、基本次数ピーク電流値A´がその周波数の電流上限値(α又はα/2の何れか一方)以上となっているかどうかを判別し、もし、超過していれば電流上限超過信号(ON信号)S41を出力する。超過していない場合、電流上限超過信号S41は出力されない(OFF信号)。この信号S41は純粋に超過の可否によってON/OFFすることでもよいし、多少のヒステリシスの特性を持たせても良い。
 出力された電流上限超過信号S41は前記適応アルゴリズムブロック204aに入力されて、当該適応アルゴリズムブロック204aに、前記電流上限超過信号S41が入力されている間、すなわち現周波数が低感度領域にある間、前記適応フィルタ係数(Re、Im)を算出する毎に当該適応フィルタ係数(Re、Im)を予め定めた範囲内で制振電流指令I41が制限される方向に修正するようにしている。
 適応アルゴリズムブロック204aは、前述したごとく、前記振動検出手段201から入力される入力信号sgを積分しながら適応フィルタ係数(Re、Im)を更新する処理を繰り返すものであるが、制振電流指令I41を制限する際、前記積分値を小さく絞り込む位置に積分抜き処理ブロック204dを設け、積分抜き処理を行う。具体的には、電流上限超過信号S41が入力されているか否かによって内部のフラグ設定部241j、241kに0か1のフラグを立て、信号S41が入力されていないとき(フラグ1のとき)は絞り込みを行わず、信号S1が入力されているとき(フラグ0のとき)は演算タイミング毎に乗算器241m、241nにおいて抜き係数設定部241zに設定された抜き係数値kを前回値Z-1 に乗算することで、積分値を小さく絞り込む。抜き係数値kは一回の演算で絞り込む量を小さくするためのもので、例えばk=1020/1024(=0.9961)などと設定される。抜き係数値kを、1を大きく割り込まない値にしているのは(絞り込み量を小さく抑えているのは)、大きくしすぎると、一回の絞り込み動作で制振電流指令I41の値が急変し、出力に高調波が重畳されて異常振動を励起する原因になるからである。この抜き係数値kは、電流上限値α(電流クランプ値)からの超過量が大きくなるほど小さくなるように(つまり絞り込み量を大きくするように)、比較部241iからの偏差信号に応じて抜き係数設定部241zにおいて値を可変しても良い。また、超過量の比率を算出して、電流上限値αに同期させても良い。
 すなわち、制振電流指令I41が超過している場合に、即座に制振電流指令I41の超過分をカットするのではなく、予め定めた範囲(ここでは、抜き係数値kによる積分の絞込みの範囲)で制振電流指令I41を制限する修正を繰り返すため、高調波の発生や、可動子の衝突のない振幅に向かって、制振電流指令I41が漸近することになる。絞り込み係数生成ブロック204dはあくまでも例であり、電流上限超過信号S41から絞り込み係数kの適用のオンオフないし当該絞り込み係数kを増減させるブロックであれば、内部構成はどの様な形であってもかまわない。適応フィルタ係数(Re、Im)の収束は、収束パラメータμが大きいほど早くなる。
 以上のように、本実施形態の制振装置は、振動発生源gnで生じる振動Vi3と加振手段202により発生される相殺振動Vi4とを制振すべき位置posで相殺するにあたり、振動Vi3に対応する周波数fを入力して振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するための相殺信号たる制振電流指令I41を発生する制御手段である適応アルゴリズムブロック204aと、この制御手段である適応アルゴリズムブロック204aの発生する相殺信号たる制振電流指令I41が入力されることにより作動して制振すべき位置posに相殺振動Vi4を発生させる加振手段202と、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動を検出する振動検出手段201とを具備し、制御手段である適応アルゴリズムブロック204aが、振動検出手段201により検出された振動に基づいて相殺誤差として残る振動が小さくなるように相殺信号たる制振電流指令I41を修正するものであり、加振手段202から制振すべき位置posに至る振動伝達経路上の伝達特性を周波数と関連づけて感度情報として記憶する記憶手段たる逆伝達ゲイン記憶手段250と、感度情報に基づいて現周波数が加振手段202により発生される振動の伝わりにくい低感度領域にあるか否かを判定する感度判定手段252とを設け、制御手段たる適応アルゴリズムブロック204aは、感度判定手段252により現周波数が低感度領域にあると判定される場合に相殺信号たる制振電流指令I41を前記加振手段により発生される相殺振動を抑える方向に修正するように構成している。
 このように構成すると、加振手段202から制振すべき位置posに至る振動伝達経路上の伝達特性が周波数と関連づけて感度情報として記憶されており、この感度情報に基づいて現周波数が加振手段202により発生される振動Vi2の伝わりにくい低感度領域にあると判定されると、相殺信号たる制振電流指令I41が加振手段202により発生される相殺振動Vi4を抑える方向に修正されるので、加振手段202の加振により得られる制振効果が低い低感度領域では、加振手段2により発生される振動が抑えられ、他の部位への振動に悪影響を及ぼすことや低感度領域を抜けた場合に必要以上の大きな相殺振動Vi4が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることができる。
 また、本実施形態では、感度判定手段252が、感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が予め定められた第1しきい値より低い場合に現周波数が低感度領域にあると判定するので、第1しきい値の設定次第で、現周波数が低感度領域であるか否かを効果的に判定することが可能となる。
 さらに、本実施形態では、感度判定手段252が、感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が第1しきい値より高い伝達度である第2しきい値よりも高い場合に現周波数が低感度領域にないと判定するものであって、第1しきい値と第2しきい値との間に判定結果が変わらない不変領域が設けられており、制御手段たる適応アルゴリズムブロック204aが、感度判定手段252により現周波数が低感度領域にないと判定される場合に相殺信号たる制振電流指令I41の修正を行わないので、現周波数がしきい値近傍にある場合に判定結果が頻繁に変わり制御が不安定になることを回避することが可能となる。
 さらにまた、本実施形態では、相殺信号が制振電流指令I41であって、周波数から予め定めた電流上限値α1を導出し制振電流指令I41のピーク電流値A´が電流上限値αを超過している場合に制御手段たる適応アルゴリズムブロック204aに電流上限超過信号S41を入力する電流超過検出手段204cを更に具備し、制御手段たる適応アルゴリズムブロック204aは、電流上限超過信号S41の入力を受けて制振電流指令I41を制限するように構成されるものであり、電流超過検出手段204cは、感度判定手段252により現周波数が低感度領域にあると判定されている場合に電流上限値αを制振電流指令I41が制限される方向へ修正して電流上限値(α/2)とするので、多大な制振電流指令が流れることによる可動子223の衝突等の不具合を防止する機構を利用して、現周波数が低感度領域にあるときに制振電流指令I41を加振手段202により発生される相殺振動Vi4を抑える方向に修正することを実現できる。
 したがって、このような制振装置を車両に搭載することにより、当該車両の制振機能に係る信頼性や耐久性を有効に向上させて、優れた走行機能を実現することが可能となる。
 以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。例えば、本実施形態では、逆伝達関数ゲインを周波数と関連づけて記録し、逆伝達関数ゲインに基づいて現周波数が低感度領域であるか否かを感度判定手段252で判定しているが、逆伝達関数ゲインの代わりに伝達関数ゲインを周波数と関連づけて記憶し、伝達関数ゲインに基づいて上記判定を行うように構成してもよい。
 その他、本発明を振動発生が問題となる車両以外の移動装置や機器類に適用するなど、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
<第三実施形態>
 以下、第三実施形態の制振装置を、図14~16を参照して説明する。第三実施形態は、第三の発明に対応するものである。なお、上記第一実施形態の図面と同じ図面(具体的には、図1、図5及び図6)を援用する。
 第三実施形態の制振装置は、図1に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posに設けた加速度センサ等の振動検出手段1と、所定の質量を有する補助質量2aを振動させることにより振動Vi2を発生するリニアアクチュエータを用いた加振手段2と、振動発生源gnであるエンジンの点火パルス信号と振動検出手段1からの検出信号とを入力し加振手段2で発生させた振動Vi2を制振すべき位置posへ伝達させることにより制振すべき位置posに相殺振動Vi4を発生させる制御手段3とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi1と加振手段2を通じて制振すべき位置posに発生させた相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posでの振動を低減するものである。
 制御手段3は、図14に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を的確に相殺する相殺振動Vi4を制振すべき位置posに発生させるために、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を模擬した疑似振動Vi3’を適応アルゴリズムの適応フィルタ332fを用いて算出し、算出した疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させる。また、制御手段3は、加振手段2から制振すべき位置posへ伝達した相殺振動Vi4と振動Vi3との相殺誤差として残る振動(Vi3+Vi4)を振動検出手段1で検出し、検出した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ332fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ332fを真値へ収束させる制振制御を行う。本実施形態では、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動は、振動Vi3を模擬した疑似振動Vi3’であるが、この振動Vi3の模擬を行うことなく加振手段2から制振すべき位置posへ伝達した相殺振動Vi4を直接模擬したものであってもよい。
 この適応制御による制振制御を実行する制御手段3は、図14に示すように、疑似振動算出手段332と、相殺振動発生指令手段333とを有する。
 疑似振動算出手段332は、適応フィルタ332fを用いて疑似振動Vi3’を算出すると共に、振動検出手段1より入力した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ332fを逐次更新する。具体的には、疑似振動算出手段332は、疑似振動算出部332aと、学習適応部332bとを有する。疑似振動算出部332aは、疑似振動Vi3’の算出の基礎となる基準波に対して適応フィルタ332fを用いたフィルタリングを施すことにより基準波の振幅及び位相を変化させて疑似振動Vi3’を算出する。学習適応部332bは、振動検出手段1より入力した相殺誤差として残る振動(Vi3+Vi4)が無くなるように適応フィルタ332fの算出の基礎である基準波から適応フィルタの真値へ向かって適応フィルタの算出を繰り返し実行し、この算出の積み重ねにより疑似振動Vi3’及び適応フィルタ332fを真値へ収束させるものである。適応フィルタ332fの算出の際には、算出一回当たりに適応フィルタ332fを真値へ近づける度合を示す収束係数332uを用い、この収束係数332uにより適応フィルタ332fが真値へ収束する速度が決定されている。
 相殺振動発生指令手段333は、疑似振動算出手段332が算出した疑似振動Vi3’に基づいて加振手段2を通じて相殺振動Vi4を制振すべき位置posに発生させる。この相殺振動を発生させるにあたり、図5に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3に対してこの振動Vi3を逆波形にした振動-Vi3を加振すればよいが、加振手段2で発生させた振動Vi2は制振すべき位置posに伝達する過程で振幅又は位相が変化するので、この変化を考慮して制振すべき位置posに相殺振動Vi4が印加させるように振動Vi2を加振手段2で発生させる必要がある。具体的には、加振手段2から制振すべき位置posまで伝達する振動の振幅及び位相の変化させる振動伝達関数Gの逆伝達関数を逆伝達関数記憶部333aに予め記憶しておき、制振すべき位置posでの振動Vi3を模擬した疑似振動Vi3’を逆波形にした相殺振動Vi4に対して逆伝達関数を加味して振動Vi2を算出する。ここでは、逆伝達関数の振幅成分を1/Gとし、位相成分をPとして逆伝達関数記憶部333aに記憶している。なお、振動発生源gnから制振すべき位置posへ伝達する振動の振幅又は位相を変化させる振動伝達関数をG’と示している。
 上記の構成に対して本実施形態ではさらに、図14に示すように、偏差情報取得手段334と、収束係数変更手段335とを備えている。
 偏差情報取得手段334は、振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差に対応する偏差情報を取得する。
 収束係数変更手段335は、偏差情報取得手段334により取得された加振力振幅成分が大きくなるほど適応フィルタ332fが収束する速度が速まるように収束係数を変更するものである。
 このような制御手段3を実現する具体的な制御ブロックを図15に示して説明する。
 図15に示すように、周波数検出部341は、振動発生源gnであるエンジンの起爆タイミングを示すエンジンパルス信号を入力し、入力したエンジンパルス信号の周波数が制振すべき位置posでの振動Vi3の周波数fと一致するものと取り扱い、振動Vi3の周波数fを認識する。勿論、エンジンの点火パルス信号に代えて例えばエンジンクランクの回転数を検出するセンサからの検出パルス信号等、その他の信号を用いてもよい。基本電気角算出部342は、認識された周波数fを入力して基本電気角θ(=ωt)を算出する。基準波生成部343は、算出された基本電気角θを基礎として基準波である基準正弦波sinθ及び基準余弦波cosθを生成する。これら基準波は制御手段3での信号処理においての波形の振幅及び位相等の基準となるものである。
 加速度センサである振動検出手段1で検出される制振すべき位置posでの振動には、振動発生源gnで生じた振動以外にも他の振動が含まれているので、振動検出手段1の出力信号に対して周波数検出部341で認識された周波数f成分の信号のみを取り出すBPF(バンドパスフィルタ)344を施すことにより振動発生源gnで生じた振動のみを振動信号として検出している。
 この振動信号を模擬するために、振動信号をAsin(θ+φ)、θ=ωtと仮定し、以下の式を利用する。
 まず、振動信号Asin(θ+φ)に2sinθを乗算すると、
2Asin(θ+φ)×sinθ=Acosφ-Acos(2θ+φ)
と変形できる。この式を収束係数μを用いて積分すると、右辺第二項Acos(2θ+φ)の積分は(μA/2ω)sin(2θ+φ)となり、μをAに比べて非常に小さな値に設定すると振幅が小さく且つ周期関数の積分であるため(μA/2ω)sin(2θ+φ)を無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’cosφ’に収束する。
 同様に、振動信号Asin(θ+φ)に2cosθを乗算すると、
2Asin(θ+φ)×cosθ=Asinφ+Asin(2θ+φ)
と変形できる。この式を収束係数μを用いて積分すると、右辺第二項Asin(2θ+φ)の積分も上記と同様に周期関数の積分であるため無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’sinφ’に収束する。
 上記で求めたA’cosφ’及びA’sinφ’にsinθ及びcosθをそれぞれ乗算して足し合わせると、
sinθ×A’cosφ’+cosθ×A’sinφ’=A’sinθ×cosφ’+A’cosθ×sinφ’=A’sin(θ+φ’)
と変形できる。したがって、振動信号に対して上記の演算を実施することにより振動信号Asin(θ+φ)を模擬した疑似振動A’sin(θ+φ’)を算出できる。これらA’cosφ’及びA’sinφ’は、いわゆる適応制御における適応フィルタ332fであり、振動信号の入力により疑似振動の振幅A’及び位相φ’を真値たる振幅A及び位相φに収束させるべく自己適応する。また、適応フィルタは、適応フィルタに対して基準波を乗算して足し合わせることにより疑似振動に変形するので、疑似振動と基準波との振幅差及び位相差を表すものといえる。
 上記の演算処理を用いて振動信号Asin(θ+φ)に基づいて適応フィルタ332fを学習更新しつつ疑似振動を算出するために、図15に示すように疑似振動算出手段332を構成している。すなわち、乗算器345は、振動信号Asin(θ+φ)と2μを基礎とする収束係数とを乗算する。乗算器346、347は、乗算器345での乗算結果に対して基準波生成部343から出力される基準正弦波sinθと基準余弦波cosθをそれぞれ乗算して、積分器348、349へ出力する。積分器348、349は、乗算器346、347からの出力を積分し、疑似振動と基準波との振幅差及び位相差を表す適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を出力する。
 この適応フィルタ332fに対して基準正弦波sinθ及び基準余弦波θをそれぞれ乗算した後に足し合わせると上記の通り疑似振動A’sin(θ+φ’)となるが、本実施形態では、振幅成分及び位相成分の逆伝達関数を加味した基準波を適応フィルタ332fとの乗算前に生成している。勿論、疑似振動を算出した後に振幅成分及び位相成分の逆伝達関数を加味してもよい。具体的に本実施形態では、逆伝達関数振幅設定部353は、周波数に対応した逆伝達関数の振幅成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の振幅成分1/Gを特定する。同様に、逆伝達関数位相設定部350は、周波数に対応した逆伝達関数の位相成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の位相成分Pを特定する。特定された位相成分Pと基本電気角θとが加算器351で加算されて発振器352に入力される。発振器352は、逆伝達関数の位相成分Pが加味された正弦波sin(θ+P)及び余弦波cos(θ+P)を生成する。乗算器354、355は、生成された正弦波sin(θ+P)及び余弦波cos(θ+P)に対して逆伝達関数振幅設定部353により特定された逆伝達関数の振幅成分1/Gとをそれぞれ乗算して、振幅及び位相の逆伝達関数を加味した基準波を生成する。
 これら乗算器354、355により生成された振幅及び位相の逆伝達関数を加味した基準波(1/G)sin(θ+P)及び(1/G)cos(θ+P)に対して上記の適応フィルタ332fとしてのA’cosφ’及びA’sinφ’を乗算器356、357でそれぞれ乗算する。乗算器356、357での乗算結果を加算器358で足し合わせ、足し合わせた結果に-1を乗算器359で乗算すると、相殺振動[-(A’/G)sin(θ+φ’+P)]の発生を指令する相殺信号が生成され、加振手段2で相殺振動[-(A’/G)sin(θ+φ’+P)]が加振される。
 上記の適応制御を用いた制振制御を行う構成に加えてさらに、偏差情報取得手段334を構成する加振力振幅成分取得部334cと、収束係数変更手段335とを有している。
 偏差情報取得手段334を構成する加振力振幅成分取得部334cは、相殺振動Vi4の振幅値が大きいほど振動発生源gnで生ずる振動に変化が発生した際に相殺誤差として残る振動(Vi3+Vi4)が大きくなり、これに伴って振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなることに着目して、相殺振動Vi4の振幅値に対応する加振力振幅成分を上記偏差の指標として取得している。この加振力振幅成分の具体例としては、相殺振動Vi4の振幅値の基礎となる適応フィルタ332fの振幅成分や疑似振動算出手段332により算出された疑似振動Vi3’の振幅成分等が挙げられる。本実施形態では具体的に、積分器348、349により出力された適応フィルタ332fであるA’cosφ’及びA’sinφ’を入力し、入力した適応フィルタ332fに基づいて適応フィルタ332fの振幅成分A’を加振力振幅成分として取得する。
 収束係数変更手段335は、偏差情報取得手段334により取得された加振力振幅成分たる適応フィルタ332fの振幅成分A’に応じて収束係数332uを変更する。収束係数332uの変更は、ゲインを乗算器335aに出力することにより基礎となる基礎値2μを変化させて行う。収束係数変更手段335は、図16に示すように、加振力振幅成分たる適応フィルタ332fの振幅成分A’が予め設定された閾値Ath以下であるときは、適応フィルタ332fの収束速度が一定値Dsとなるようにゲインを出力し、振幅成分A’が閾値Athを超えている場合は、収束速度がリニアに増加するようにゲインを出力し、収束速度が予め設定された上限値Dmaxに達したときは振幅成分A’の増加に係わらず収束速度が上限値Dmaxになるようにゲインを出力する。上限値Dmaxは、収束係数332uにより決定される収束速度が或る上限を超えて速くなると適応フィルタ332fが発散するので、これを防止すべく設けられるものである。収束係数変更手段335は、上記のように加振力振幅成分の増加に応じて適応フィルタ332fが収束する速度が速まるように収束係数332uを変更するとともに、加振力振幅成分の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更する。勿論、適応フィルタ332fが収束する速度が速まるように収束係数332uを変更する構成のみでもよいし、適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更する構成のみでもよい。
 以上のように、本実施形態に係る制振装置は、振動発生源gnで生じる振動Vi3と加振手段2を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺するにあたり、適応フィルタ332fを用いて振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’を算出する疑似振動算出手段332と、疑似振動算出手段332により算出された疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させる相殺振動発生指令手段333と、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動(Vi3+Vi4)を検出する振動検出手段1とを具備し、疑似振動算出手段332は、振動検出手段1により検出された振動(Vi3+Vi4)と適応フィルタ332fが真値への収束する速度を決定する収束係数332uとに基づいて相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ332fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ332fを真値へ収束させるものであり、振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差に対応する偏差情報を取得する偏差情報取得手段334と、偏差情報取得手段334により取得された偏差情報に基づいて偏差の増加に応じて適応フィルタ332fが収束する速度が速まるように且つ偏差の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更する収束係数変更手段335とを備えたことを特徴とする。
 本実施形態では、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’が適応フィルタ332fを用いて疑似振動算出手段332により算出され、算出された疑似振動Vi3’に基づいて相殺振動発生指令手段333により加振手段2を通じて制振すべき位置posに相殺振動Vi4が発生され、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動(Vi3+Vi4)が振動検出手段1により検出され、検出された振動(Vi3+Vi4)と適応フィルタ332fが真値への収束する速度を決定する収束係数332uとに基づいて相殺誤差として残る振動(Vi3+Vi4)が小さくなるように疑似振動算出手段332により適応フィルタ332fが算出され、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ332fを真値へ収束させる制振制御が実施される。この場合、制振すべき振動Vi3の変化に対応して相殺振動Vi4を大きく変化させる必要があるときに相殺誤差として残る振動(Vi3+Vi4)と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなる一方、相殺振動Vi4を大きく変化させる必要がないときに前記偏差が小さくなることに着目して、偏差情報取得手段334により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の増加に応じて適応フィルタ332fが収束する速度が速まるように且つ偏差の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを収束係数変更手段335により変更するので、制振すべき位置posに発生させる相殺振動Vi4を大きく変化させる必要があるときに適応フィルタ332fが収束する速度を速めて高応答化し、加振すべき相殺振動Vi4を大きく変化させる必要がないときに適応フィルタ332fが収束する速度を低下させて相殺振動Vi4の挙動を小さくして、制振制御の応答性および安定性を向上させて、相殺振動Vi4を大きく変化させる必要があるときや無いときが混在する場合であっても適切な制振制御を実現することができる。
 特に本実施形態では、疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の振幅値が大きいほど振動発生源gnで生ずる振動Vi3に変化が発生した際に相殺誤差として残る振動(Vi3+Vi4)が大きくなり、上記偏差が大きくなることに着目して、偏差情報取得手段34が、偏差に対応する偏差情報として疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の振幅値に対応する加振力振幅成分である適応フィルタ332fの振幅成分A’を取得し、収束係数変更手段335が、偏差情報取得手段334により取得された加振力振幅成分である適応フィルタ332fの振幅成分A’の増加に応じて適応フィルタ332fが収束する速度が速まるように且つ適応フィルタ332fの振幅成分A’の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更するので、上記偏差の指標として加振力振幅成分の大きさを用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
<第四実施形態>
 次に、第四実施形態の制振装置を、図17を参照して説明する。第四実施形態は、第三の発明に対応するものである。
 図17は、本実施形態の制御手段403の構成及び機能を示すブロック図である。制御手段403は、上記第三実施形態に係る制御手段3とほぼ同様の構成を有するが、図14及び図15に示す偏差情報取得手段334を構成する加振力振幅成分取得部334cの代わりに、図14において想像線で示す残振動振幅成分取得部334aを有している。
 残振動振幅成分取得部334aは、相殺誤差として残る振動(Vi3+Vi4)の振幅成分が大きいほど上記の偏差が大きくなることに着目して、相殺誤差として残る振動(Vi3+Vi4)の振幅成分を上記偏差の指標として取得している。具体的には、BPF(バンドパスフィルタ)344から出力される振動信号Asin(θ+φ)を入力し、入力した振動信号Asin(θ+φ)から振動成分Aを取得している。
 この残振動振幅成分取得部334aに対応して収束係数変更手段335は、残振動振幅成分取得部334aにより取得された振動成分Aを入力し、入力した振動成分Aの増加に応じて適応フィルタ332fが収束する速度が速まるように且つ入力した振動成分Aの減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数を変更している。具体的には、振幅成分An×所定係数kが収束係数332uとなるようにゲインを出力している。勿論、振幅成分に応じていれば、例えば振幅成分Aに対して目的値を0とするPI制御(比例積分制御)等のその他の処理により収束係数332uを決定してもよい。
 以上のように、本実施形態に係る制振装置は、偏差情報取得手段334を構成する残振動振幅成分取得部334aが、偏差に対応する偏差情報として振動検出手段1により検出される相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aを取得し、収束係数変更手段335が、偏差情報取得手段334を構成する残振動振幅成分取得部334aにより取得された相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aの増加に応じて適応フィルタ332fが収束する速度が速まるように且つ振幅成分Aの減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更することを特徴とする。
 本実施形態では、相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aが大きいほど振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3‘に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなることに着目して、この偏差に対応する偏差情報として振動検出手段1により検出される相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aを取得し、取得した振幅成分Aの増加に応じて適応フィルタ332fが収束する速度が速まるように且つ取得した振幅成分Aの減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更するので、上記偏差の指標として相殺誤差として残る振動の振幅成分Aを用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
<第五実施形態>
 次に、第五実施形態の制振装置を、図18を参照して説明する。第五実施形態は、第三の発明に対応するものである。
 図18は、本実施形態の制御手段503の構成及び機能を示すブロック図である。制御手段503は、上記第三実施形態に係る制御手段3とほぼ同様の構成を有するが、図14及び図15に示す偏差情報取得手段334を構成する加振力振幅成分取得部334cの代わりに、図14において想像線で示す周波数変動量取得部334bを有している。
 周波数変動量取得部334bは、制振すべき位置posでの振動Vi3の周波数の変動量が大きいほど上記の偏差が大きくなることに着目して、振動発生源gnで生ずる振動に関連する信号に基づいて制振すべき位置posでの振動の周波数の変化量を上記偏差の指標として取得している。具体的には、周波数変動量取得部334bは、周波数検出部341により認識された周波数fを入力し、入力した周波数fに対して微分処理などを行うことにより周波数fの変動量を取得する。
 この周波数変動量取得部334bに対応して収束係数変更手段335は、周波数変動量取得部334bにより取得された振動Vi3の周波数fの変動量を入力し、入力した変動量の増加に応じて適応フィルタ332fが収束する速度が速まるように且つ入力した変動量の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数を変更している。具体的には、周波数fの変動量に比例して適応フィルタ332fの収束する速度が速まるように収束係数332uを決定している。勿論、周波数fの変動量に応じていれば、例えば一定のゲインを乗じたり、周波数fの変動量が所定閾値を超えるか否かによって予め設定された複数の収束係数332uのうちから一つの収束係数332uを用いるように切替可能に構成してもよい。
 以上のように、本実施形態に係る制振装置は、偏差情報取得手段334を構成する周波数変動量取得部334bが、偏差に対応する偏差情報として振動発生源1で生ずる振動Vi3に関連する信号であるエンジンパルス信号に基づいて制振すべき位置posでの振動Vi3の周波数fの変化量を取得し、収束係数変更手段335が、偏差情報取得手段334を構成する周波数変動量取得部334bにより取得された周波数fの変動量の増加に応じて適応フィルタ332fが収束する速度が速まるように且つ取得された周波数fの変動量の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更することを特徴とする。
 本実施形態では、制振すべき位置posでの振動Vi3の周波数fの変動量が大きいほど上記偏差が大きくなることに着目して、この偏差に対応する偏差情報として振動発生源gnで生ずる振動Vi3に関連する信号であるエンジンパルス信号に基づいて制振すべき位置posでの振動Vi3の周波数fの変化量を取得し、取得した周波数fの変化量の増加に応じて適応フィルタ332fが収束する速度が速まるように且つ取得した周波数fの変化量の減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更するので、上記偏差の指標として制振すべき位置posでの振動Vi3の周波数fの変動量を用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
<第六実施形態>
 次に、第六実施形態の制振装置を、図19及び図6を参照して説明する。第六実施形態は、第三の発明に対応するものである。
 図19は、本実施形態の制御手段603の構成及び機能を示すブロック図である。制御手段603は、上記第三実施形態に係る制御手段3とほぼ同様の構成を有するが、図14及び図15に示す偏差情報取得手段334を構成する加振力振幅成分取得部334cの代わりに、図14において想像線で示す位相差取得部334dを有している。
 位相差取得部334dは、図6に示すように、相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(=φ-φ’)を取得するものである。その構成を以下に具体的に説明する。
 図19に示すように、まず、除算器660aにおいて振動信号Asin(θ+φ)をリアルタイム振幅検出部660で検出した振幅Aで除算して、振幅1のsin(θ+φ)を得る。
 リアルタイム振幅検出部660は、振幅1の正弦波sinθの半周期0~πの積分値が(-cosπ)-(-cos0)=(1)-(-1)=2であり、その平均値は0~πまでの平均であることから2/πとなることを利用したもので、振動信号Asin(θ+φ)を入力して、絶対値処理を加え、二倍の周波数成分を除去するノッチフィルタを介し、脈動分をLPF(ローパスフィルタ)で除去して2/πを乗ずることにより即時で振幅Aを取得するものである。
 乗算器661、662は、除算器660aでの除算結果であるsin(θ+φ)に対して2sinθ及び2cosθをそれぞれ乗算して積和定理より、cosφ-cos(2θ+φ)とsinφ+sin(2θ+φ)とを得る。乗算器661の演算結果であるcosφ-cos(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理663を施し、脈動分をLPF(ローパスフィルタ)処理665で除去してcosφを得る。同様に、乗算器662の演算結果であるsinφ+sin(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理664を施し、脈動分をLPF(ローパスフィルタ)処理666で除去してsinφを得る。このように振動信号Asin(θ+φ)の位相成分を有するcosφ及びsinφを即時に特定する。
 位相差特定部667は、特定されたcosφ及びsinφと適応フィルタ332fであるA’cosφ’及びA’sinφ’とに基づいて位相差を特定するものである。具体的には、これら位相φ及び位相φ’は、共通の基本電気角θを基準とした位相ズレを表すものであるので、疑似振動の位相と制振すべき位置posでの振動の位相とが一致している場合はφとφ’が等しいものとなる。したがって、位相差Δφをφ-φ’と定義して、以下の式を用いて算出される位相差の正弦成分α及び余弦成分βにより位相差を表現している。
正弦成分α=A’sin(φ-φ’)=A’(sinφcosφ’-cosφsinφ’)=sinφ(A’cosφ’)-cosφ(A’sinφ’)
余弦成分β=A’cos(φ-φ’)=A’(cosφcosφ’+sinφsinφ’)=cosφ(A’cosφ’)+sinφ(A’sinφ’)
 上記の適応制御アルゴリズムは、位相差Δφが±60度の範囲を超えた場合は制御が発散して制振不能となることが判明しているので、余弦成分β>0の条件で正弦成分αの符号によりΔφが進んでいるか遅れているか否かを判断でき、正弦成分αの大きさにより位相差Δφのズレ量を把握できる。
 この位相差取得部334dに対応して収束係数変更手段335は、位相差取得部334dにより取得された位相差Δφを示す正弦成分α及び余弦成分βを入力し、位相差Δφに応じて適応フィルタ332fが収束する速度が変化するように収束係数を変更している。具体的には、制振すべき位置posの周波数fが変動しているときは位相差Δφも変動することが多いので、位相差Δφが変動していればその変動量に比例して適応フィルタ32fの収束する速度が変化するように収束係数332uを決定している。勿論、位相差Δφの変動量に応じていれば、例えば一定のゲインを乗じたり、位相差Δφの変動量が所定閾値を超えるか否かによって予め設定された複数の収束係数32uのうちから一つの収束係数32uを用いるように切替可能に構成してもよい。
 以上のように、本実施形態に係る制振装置は、偏差情報取得手段334を構成する位相差取得部334dが、偏差に対応する偏差情報として相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(φ-φ’)を取得し、収束係数変更手段335が、偏差情報取得手段334を構成する位相差取得部334dにより取得された位相差Δφの増加に応じて適応フィルタ332fが収束する速度が速まるように且つ位相差Δφの減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更することを特徴とする。
 本実施形態では、相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(φ-φ’)が大きくなる傾向にあるときは制振すべき位置posの振動の周波数が変動していることが多く、振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなることに着目して、この偏差に対応する偏差情報として上記位相差Δφを取得し、取得した位相差Δφの増加に応じて適応フィルタ332fが収束する速度が速まるように且つ位相差Δφの減少に応じて適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更するので、上記位相差Δφを上記偏差の指標として用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、上記実施形態において、収束係数変更手段335は、適応フィルタ332fが収束する速度が速くなるように収束係数332uを変更する構成と、適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更する構成との双方の構成を有しているが、収束係数変更手段335は、適応フィルタ332fが収束する速度が速くなるように収束係数332uを変更する構成のみでもよく、適応フィルタ332fが収束する速度が遅くなるように収束係数332uを変更する構成のみでもよい。
 また、偏差情報取得手段334は、上記偏差に対応する偏差情報として上記加振力振幅成分、相殺誤差として残る振動の振幅成分、制振すべき振動の周波数の変化量、相殺誤差として残る振動の位相と疑似振動に基づき制振すべき位置に発生される振動の位相との位相差のうちのいずれか1つの偏差情報を取得しているが、複数の偏差情報を取得して収束係数を変更するように構成してもよい。単一の偏差情報を取得する構成では、上記偏差の増加や減少の兆候が現れにくい偏差情報を取得していることがあり、この場合、収束係数の変更が遅れてしまうことが考えられる。しかし、複数の偏差情報を取得するように構成すると、上記偏差の増加や減少の兆候が現れやすい偏差情報を取得することが単一の偏差情報を取得する構成に比べて多くなるので、応答性や安全性等の制御精度を向上させることが可能となる。
 その他、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 第一の発明によれば、制振すべき振動の周波数を実際の周波数と異なる周波数であると誤認識した場合であっても疑似振動の周波数を制振すべき振動の周波数に合わせて適応制御アルゴリズムの適応性を向上させ、制振性および安定性を向上させることが可能となる。
 第二の発明によれば、加振手段の振動により他の部位への振動に悪影響を及ぼすことや現周波数が低感度領域を抜けた場合に必要以上の大きな相殺振動が加振されることを防止し、低感度領域により生ずる不具合を解消して、制振安定性を向上させることが可能となる。
 第三の発明によれば、制振すべき振動の著しい変化に応じて発生させる相殺振動を大きく変化させる必要の有無に左右されずに制振制御の応答性または安定性を向上させることが可能となる。
 したがって、これら第一、第二及び第三の発明によれば、制振制御の安定性を向上させた制振装置を提供することが可能となる。
 

Claims (14)

  1.  振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応制御アルゴリズムを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出し、算出した疑似振動に基づいて前記相殺振動を前記加振手段を通じて制振すべき位置に発生させ、発生した相殺振動と前記振動発生源から前記制振すべき位置へ伝達した振動との相殺誤差として残る振動を検出し、検出した相殺誤差として残る振動が小さくなるように前記適応制御アルゴリズムを学習適応する制振装置であって、
     前記疑似振動の周波数の基礎とするため前記制振すべき位置での振動の周波数を前記振動発生源で生ずる振動に関連する信号に基づいて認識する周波数認識手段と、
     前記制振すべき位置での相殺誤差として残る振動を検出して当該相殺誤差として残る振動の位相を特定し特定された相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置に発生される相殺振動の位相との位相差を特定する位相差特定手段と、
     前記位相差特定手段により特定された位相差に基づいて前記周波数認識手段により認識された周波数を当該位相差が無くなる方向へ補正する周波数補正手段とを具備してなることを特徴とする制振装置。
  2.  前記周波数補正手段は、前記位相差特定手段により特定された位相差があるときに予め設定された補正一回当たりの上限補正量を超えない補正量を用いて前記周波数認識手段により認識された周波数を補正する請求項1に記載の制振装置。
  3.  前記周波数補正手段は、前記位相差特定手段により特定された位相差のズレ量に応じた大きさの補正量を用いて前記周波数認識手段により認識された周波数を補正する請求項1又は2に記載の制振装置。
  4.  前記周波数補正手段は、前記位相差特定手段により特定された位相差のズレ量が予め設定された閾値よりも大きいときに前記周波数認識手段により認識された周波数の補正を実施し、前記位相差のズレ量が前記閾値以下であるときに前記認識された周波数の補正を実施しない請求項1又は2に記載の制振装置。
  5.  前記周波数補正手段は、前記位相差特定手段により特定された位相差のズレ量が予め設定された閾値よりも大きいときに前記周波数認識手段により認識された周波数の補正を実施し、前記位相差のズレ量が前記閾値以下であるときに前記認識された周波数の補正を実施しない請求項3に記載の制振装置。
  6.  振動発生源で生じる振動と加振手段により発生される相殺振動とを制振すべき位置で相殺するにあたり、前記振動に対応する周波数を入力して前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するための相殺信号を発生する制御手段と、この制御手段の発生する相殺信号が入力されることにより作動して前記制振すべき位置に相殺振動を発生させる加振手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記制御手段が、前記振動検出手段により検出された振動に基づいて前記相殺誤差として残る振動が小さくなるように前記相殺信号を修正する制振装置であって、
     前記加振手段から前記制振すべき位置に至る振動伝達経路上の伝達特性を周波数と関連づけて感度情報として記憶する記憶手段と、前記感度情報に基づいて現周波数が前記加振手段により発生される振動の伝わりにくい低感度領域にあるか否かを判定する感度判定手段とを設け、前記制御手段は、前記感度判定手段により現周波数が低感度領域にあると判定される場合に前記相殺信号を前記加振手段により発生される相殺振動を抑える方向に修正することを特徴とする制振装置。
  7.  前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が予め定められた第1しきい値より低い場合に現周波数が前記低感度領域にあると判定する請求項6に記載の制振装置。
  8.  前記感度判定手段は、前記感度情報に基づいて現周波数に関連づけられた振動伝達経路上の伝達特性の一つである振幅成分の伝達度が前記第1しきい値より高い伝達度である第2しきい値よりも高い場合に現周波数が前記低感度領域にないと判定するものであって、前記第1しきい値と前記第2しきい値との間に判定結果が変わらない不変領域が設けられており、前記制御手段は、前記感度判定手段により現周波数が低感度領域にないと判定される場合に前記相殺信号の修正を行わない請求項7に記載の制振装置。
  9.  前記相殺信号が制振電流指令であって、前記周波数から予め定めた電流上限値を導出し前記制振電流指令のピーク電流値が前記電流上限値を超過している場合に前記制御手段に電流上限超過信号を入力する電流超過検出手段を更に具備し、前記制御手段は、前記電流上限超過信号の入力を受けて前記制振電流指令を制限するように構成されるものであり、前記電流超過検出手段は、前記感度判定手段により現周波数が低感度領域にあると判定されている場合に前記電流上限値を前記制振電流指令が制限される方向へ修正する請求項6~8のいずれかに記載の制振装置。
  10.  振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
     前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、
     前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする制振装置。
  11.  振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
     前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、
     前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする制振装置。
  12.  振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
     前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、
     前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まり前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする制振装置。
  13.  前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記疑似振動に基づき制振すべき位置に発生される相殺振動の振幅値に対応する加振力振幅成分を取得し、
     前記収束係数変更手段は、前記偏差情報取得手段により取得された加振力振幅成分に応じて前記収束係数を変更する請求項10~12のいずれかに記載の制振装置。
  14.  請求項1、6、10、11又は12のいずれかに記載の制振装置を備えた車両。
PCT/JP2010/071051 2009-11-25 2010-11-25 制振装置及びこれを備えた車両 WO2011065441A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080053633.9A CN102667227B (zh) 2009-11-25 2010-11-25 减振装置以及具备该减振装置的车辆
EP10833287A EP2505870A1 (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
US13/473,876 US9075418B2 (en) 2009-11-25 2012-05-17 Vibration damping device and method for canceling out a vibration at a damping position based on a phase difference
HK12112257.9A HK1171494A1 (en) 2009-11-25 2012-11-28 Vibration damping device and vehicle provided therewith

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009267245A JP5353657B2 (ja) 2009-11-25 2009-11-25 制振装置及びこれを搭載した車両
JP2009-267245 2009-11-25
JP2009269276A JP5353661B2 (ja) 2009-11-26 2009-11-26 制振装置及びこれを備えた車両
JP2009-269276 2009-11-26
JP2009-269640 2009-11-27
JP2009269640A JP5353662B2 (ja) 2009-11-27 2009-11-27 制振装置及びこれを備えた車両

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/473,876 Continuation US9075418B2 (en) 2009-11-25 2012-05-17 Vibration damping device and method for canceling out a vibration at a damping position based on a phase difference

Publications (1)

Publication Number Publication Date
WO2011065441A1 true WO2011065441A1 (ja) 2011-06-03

Family

ID=44066546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071051 WO2011065441A1 (ja) 2009-11-25 2010-11-25 制振装置及びこれを備えた車両

Country Status (6)

Country Link
US (1) US9075418B2 (ja)
EP (1) EP2505870A1 (ja)
KR (1) KR20120114214A (ja)
CN (1) CN102667227B (ja)
HK (1) HK1171494A1 (ja)
WO (1) WO2011065441A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080929A2 (en) * 2006-05-08 2009-07-22 Shinko Electric Co., Ltd Damping apparatus for reducing vibration of automobile body
JP5926158B2 (ja) * 2012-09-25 2016-05-25 住友理工株式会社 能動型消音装置
KR101436984B1 (ko) * 2012-10-04 2014-09-04 한국기계연구원 공작기계 진동 저감 장치 및 방법
KR101628119B1 (ko) * 2014-08-11 2016-06-08 현대자동차 주식회사 소음제어시스템 및 그 방법
CN107257758B (zh) * 2015-02-27 2021-10-26 舍弗勒技术股份两合公司 用于对与转速信号叠加的振动进行滤波的滤波器以及用于设定滤波器的宽度的方法
US10095248B1 (en) * 2015-11-10 2018-10-09 The United States Of America As Represented By The Secretary Of The Navy Method for spatially confining vibrational energy
JP2017182496A (ja) * 2016-03-30 2017-10-05 ソニー株式会社 制御装置、制御方法およびプログラム
KR20180070241A (ko) * 2016-12-16 2018-06-26 현대자동차주식회사 자동차의 플로어 진동 기반 nvh 관리 시스템 및 그 제어 방법
CN109291803B (zh) * 2018-08-21 2022-07-12 沈阳工业大学 基于四轮全驱电动汽车虚拟轮的稳定性控制方法
CN111890908B (zh) * 2020-08-12 2022-10-04 湖南道依茨动力有限公司 车辆减振系统、车辆和车辆减振方法
CN113060151A (zh) * 2021-03-16 2021-07-02 东风越野车有限公司 车辆发动机主动减振方法及设备
CN114909509A (zh) * 2022-03-30 2022-08-16 中国第一汽车股份有限公司 一种电控减振器电流精度标定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202902A (ja) 2002-01-07 2003-07-18 Tokai Rubber Ind Ltd 適応制御法を用いた能動的振動制御方法
JP2006336736A (ja) * 2005-06-01 2006-12-14 Tokai Rubber Ind Ltd 能動型防振装置
JP2008250131A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd 能動型騒音制御装置
JP2009275822A (ja) * 2008-05-14 2009-11-26 Sinfonia Technology Co Ltd 制振装置及び車両

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211635B (en) * 1987-10-28 1992-02-05 Fokker Aircraft Control system for synchrophasing aircraft propellers
JPH03145976A (ja) * 1989-10-30 1991-06-21 Nikon Corp 超音波モータの駆動装置
FR2677096B1 (fr) * 1991-05-31 1995-02-17 Hutchinson Sa Dispositif d'attenuation des vibrations periodiques d'une structure mecanique.
JP3094517B2 (ja) * 1991-06-28 2000-10-03 日産自動車株式会社 能動型騒音制御装置
EP0560364B1 (en) * 1992-03-12 1998-10-28 Honda Giken Kogyo Kabushiki Kaisha Vibration/noise control system for vehicles
JP3276214B2 (ja) * 1992-08-31 2002-04-22 マツダ株式会社 車両の振動低減装置
US5537967A (en) * 1992-12-28 1996-07-23 Nippondenso Co., Ltd. Vibration damping control apparatus for vehicle
JPH06230788A (ja) * 1993-02-01 1994-08-19 Fuji Heavy Ind Ltd 車室内騒音低減装置
US5392607A (en) * 1993-07-08 1995-02-28 Hughes Aircraft Company Stirling-cycle cyrogenic cooler using adaptive feedforward vibration control
JP3572486B2 (ja) * 1994-03-25 2004-10-06 本田技研工業株式会社 振動騒音制御装置
US5660255A (en) * 1994-04-04 1997-08-26 Applied Power, Inc. Stiff actuator active vibration isolation system
US5418858A (en) * 1994-07-11 1995-05-23 Cooper Tire & Rubber Company Method and apparatus for intelligent active and semi-active vibration control
US5608360A (en) * 1995-11-03 1997-03-04 Northrop Grumman Corporation Oscillator formed of high frequency resonators and method of generating high frequency oscillator signal having reduced vibration sensitivity and phase noise and improved loop group delay
US5920173A (en) * 1995-11-15 1999-07-06 Applied Power Inc. Feedback enhanced adaptively tuned vibration absorber
JP3751359B2 (ja) * 1996-03-21 2006-03-01 本田技研工業株式会社 振動騒音制御装置
US5713438A (en) * 1996-03-25 1998-02-03 Lord Corporation Method and apparatus for non-model based decentralized adaptive feedforward active vibration control
US5710720A (en) * 1996-04-30 1998-01-20 Board Of Regents Of The University Of Nebraska Phase lock loop based system and method for decomposing and tracking decomposed frequency components of a signal, with application to vibration compensation system
JP3228153B2 (ja) * 1996-11-08 2001-11-12 日産自動車株式会社 能動型振動制御装置
US5786735A (en) * 1997-02-27 1998-07-28 The United States Of America As Represented By The Secretary Of The Army Phase and magnitude compensated tuning for suppression of vibration induced phase noise of crystal oscillator with varying vibration frequencies
US6075603A (en) * 1997-05-01 2000-06-13 Hughes Electronics Corporation Contactless acoustic sensing system with detector array scanning and self-calibrating
US5983168A (en) * 1998-03-23 1999-11-09 Marquip, Inc. Phase shift accommodation in active vibration damping system
JP2000337434A (ja) * 1999-05-25 2000-12-05 Delta Tooling Co Ltd 振動機構
CN1307406A (zh) * 2000-01-27 2001-08-08 华为技术有限公司 数字锁相环的滤波方法
US6933629B2 (en) * 2001-12-14 2005-08-23 Stirling Technology Company Active balance system and vibration balanced machine
US20100284546A1 (en) * 2005-08-18 2010-11-11 Debrunner Victor Active noise control algorithm that requires no secondary path identification based on the SPR property
JP4236998B2 (ja) * 2003-02-19 2009-03-11 株式会社神戸製鋼所 発振器
JP2003336736A (ja) * 2002-05-22 2003-11-28 Fuji Heavy Ind Ltd 車両用自動変速機
JP2004015088A (ja) * 2002-06-03 2004-01-15 Mitsubishi Electric Corp 小数点分周方式pll周波数シンセサイザ
EP1617551A4 (en) * 2003-04-22 2010-09-08 Panasonic Corp ENGINE CONTROL DEVICE, COMPRESSOR, AIR CONDITIONER AND REFRIGERATOR
JP3843082B2 (ja) * 2003-06-05 2006-11-08 本田技研工業株式会社 能動型振動騒音制御装置
JP4695342B2 (ja) * 2003-09-03 2011-06-08 富士通株式会社 光スイッチ制御装置および移動体制御装置
JP4314088B2 (ja) * 2003-09-25 2009-08-12 キヤノン株式会社 振動型アクチュエータの制御装置および制御方法、振動型アクチュエータを駆動源とする装置
US7027897B2 (en) * 2004-01-27 2006-04-11 Bombardier Transportation Gmbh Apparatus and method for suppressing mechanical resonance in a mass transit vehicle
JP4514520B2 (ja) * 2004-06-02 2010-07-28 株式会社日立製作所 適応車両走行制御システム及び適応車両走行制御方法
JP4479725B2 (ja) * 2004-07-07 2010-06-09 セイコーエプソン株式会社 圧電アクチュエータおよび機器
JP4213640B2 (ja) * 2004-07-28 2009-01-21 パナソニック株式会社 能動騒音低減装置
JP4074612B2 (ja) * 2004-09-14 2008-04-09 本田技研工業株式会社 能動型振動騒音制御装置
US8231098B2 (en) * 2004-12-07 2012-07-31 Newport Corporation Methods and devices for active vibration damping of an optical structure
CN101040320B (zh) * 2005-07-21 2011-01-05 松下电器产业株式会社 有源降噪装置
JP4328766B2 (ja) * 2005-12-16 2009-09-09 本田技研工業株式会社 能動型振動騒音制御装置
JP4792302B2 (ja) * 2006-03-01 2011-10-12 東海ゴム工業株式会社 周期性信号の適応制御装置
JP4174061B2 (ja) * 2006-03-23 2008-10-29 本田技研工業株式会社 ハイブリッド車両の能動型制振制御装置
JP2007328219A (ja) * 2006-06-09 2007-12-20 Matsushita Electric Ind Co Ltd 能動型騒音制御装置
KR101208565B1 (ko) * 2006-07-04 2012-12-06 삼성전자주식회사 높은 개시 이득과 함께 위상 노이즈 및 지터를 줄일 수 있는 전압 제어 발진기 및 그 방법
JP4322916B2 (ja) * 2006-12-26 2009-09-02 本田技研工業株式会社 能動型振動騒音制御装置
JP4573062B2 (ja) * 2007-02-14 2010-11-04 日本電気株式会社 位相雑音補正装置及びその方法
JP4378391B2 (ja) * 2007-03-28 2009-12-02 本田技研工業株式会社 車両用能動型騒音制御システム
JP5189307B2 (ja) * 2007-03-30 2013-04-24 本田技研工業株式会社 能動型騒音制御装置
JP5002302B2 (ja) * 2007-03-30 2012-08-15 本田技研工業株式会社 能動型騒音制御装置
US20080303800A1 (en) * 2007-05-22 2008-12-11 Elwell James K Touch-based input device providing a reconfigurable user interface
JP4350777B2 (ja) * 2007-09-10 2009-10-21 本田技研工業株式会社 車両用能動型振動騒音制御装置
JP2009171140A (ja) * 2008-01-15 2009-07-30 Fujitsu Ltd 位相同期発振器
EP2133866B1 (en) * 2008-06-13 2016-02-17 Harman Becker Automotive Systems GmbH Adaptive noise control system
US8044629B2 (en) * 2008-08-29 2011-10-25 Northern Illinois University Self-tuning vibration absorber
JP5448870B2 (ja) * 2009-04-23 2014-03-19 ルネサスエレクトロニクス株式会社 Pll回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202902A (ja) 2002-01-07 2003-07-18 Tokai Rubber Ind Ltd 適応制御法を用いた能動的振動制御方法
JP2006336736A (ja) * 2005-06-01 2006-12-14 Tokai Rubber Ind Ltd 能動型防振装置
JP2008250131A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd 能動型騒音制御装置
JP2009275822A (ja) * 2008-05-14 2009-11-26 Sinfonia Technology Co Ltd 制振装置及び車両

Also Published As

Publication number Publication date
HK1171494A1 (en) 2013-03-28
CN102667227A (zh) 2012-09-12
US20120226414A1 (en) 2012-09-06
EP2505870A1 (en) 2012-10-03
CN102667227B (zh) 2014-06-18
KR20120114214A (ko) 2012-10-16
US9075418B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
WO2011065441A1 (ja) 制振装置及びこれを備えた車両
JP4577107B2 (ja) 機械位置制御装置
JP3572486B2 (ja) 振動騒音制御装置
JP5522038B2 (ja) 制振装置および車両
US8471502B2 (en) Vibration damping apparatus, electric actuator driving apparatus and vehicle
WO2017188133A1 (ja) 能動型騒音低減装置及び能動型騒音低減方法
JP5391578B2 (ja) 制振装置及び車両
JP2018053988A (ja) 能動型振動騒音抑制装置
Kauba et al. Multi-channel narrowband Filtered-x-Least-Mean-Square algorithm with reduced calculation complexity
JP5098796B2 (ja) 制振装置及び車両
JP5120707B2 (ja) 制振装置及び車両
JP7197774B2 (ja) 制振装置、制振装置を備えた車両及び制振装置の安定度判定方法
JP5353662B2 (ja) 制振装置及びこれを備えた車両
JP5353661B2 (ja) 制振装置及びこれを備えた車両
JP4983720B2 (ja) 制振装置及び車両
JP5353657B2 (ja) 制振装置及びこれを搭載した車両
JP5120709B2 (ja) 制振装置及び車両
JP2012172782A (ja) 制振装置
JP5098795B2 (ja) 制振装置及び車両
JP5120708B2 (ja) 制振装置及び車両
JP7089173B2 (ja) 制振装置、制振装置を備えた車両及び制振装置の位相誤差推定方法
JP5846776B2 (ja) 能動型振動騒音抑制装置
JP5540667B2 (ja) 制振装置及びこれを備えた車両
JPH1011071A (ja) 能動型騒音振動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053633.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127008783

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4340/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010833287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE