JP5120708B2 - 制振装置及び車両 - Google Patents

制振装置及び車両 Download PDF

Info

Publication number
JP5120708B2
JP5120708B2 JP2008127635A JP2008127635A JP5120708B2 JP 5120708 B2 JP5120708 B2 JP 5120708B2 JP 2008127635 A JP2008127635 A JP 2008127635A JP 2008127635 A JP2008127635 A JP 2008127635A JP 5120708 B2 JP5120708 B2 JP 5120708B2
Authority
JP
Japan
Prior art keywords
vibration
correction amount
phase
frequency
phase correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008127635A
Other languages
English (en)
Other versions
JP2009275815A (ja
Inventor
英朗 守屋
雄志 佐藤
丈生 伊藤
克好 中野
恭次 村岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2008127635A priority Critical patent/JP5120708B2/ja
Publication of JP2009275815A publication Critical patent/JP2009275815A/ja
Application granted granted Critical
Publication of JP5120708B2 publication Critical patent/JP5120708B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,発生する振動を抑制する制振装置及びこれを備えた車両に関する。
従来から車両のエンジンの出力トルク変動により生じた車両振動について,加振手段によって制振力を発生させて積極的に加振させることで,車両振動を打ち消す制振装置が知られている。より具体的には,このような制振装置としては,振動発生源となるエンジンに設けられた加振手段となるリニアアクチュエータと,振動発生源となるエンジンの回転数を検出する手段と,制振するべき位置における振動を検出する振動検出手段と,検出されたエンジンの回転数及び制振するべき位置の振動に基づいてリニアアクチュエータに加振指令を出力する適応制御アルゴリズムとを備えるものが提案されている(例えば,特許文献1参照)。この制振装置では,適応制御アルゴリズムによってエンジン回転数と制振するべき位置で現在検出されている振動に応じた最適な振幅と位相とを有する加振指令を出力することが可能であり,これにより加振手段から発生する制振力によって振動発生源となるエンジンから発生し,座席部など制振するべき位置に伝達される振動を低減させることができるものである
また,車両に加振機と,加振機の設置箇所から車室内の所定点までの振動伝達特性を記憶した特性マップと,加速度センサによる検出信号と振動伝達特性とから車室内の所定点における振動を予測するデジタルフィルタとを備え,予測した振動を低減するように加振機によって振動を与えることによって振動を低減する装置が知られている(例えば,特許文献2参照)。
一方,往復動を行う加振手段として,可動子が,固定子に対して往復動可能であるように弾性支持部(板バネ)によって支持されたリニアアクチュエータが知られている(例えば,特許文献3参照)。このリニアアクチュエータは,可動子が摩耗しないため,長期間にわたって使用した後でも軸支持の精度が低下しない。また,可動子に摺動抵抗が作用しないため,摺動抵抗による消費電力の損失が少ない。さらにまた,嵩の張るコイルと弾性支持部とを近接して配置できるので,リニアアクチュエータを小型化できるという特徴がある。
特許文献3に記載されたリニアアクチュエータは,駆動時の反力によって,制振しようとする対象機器が発生している振動を相殺することができる。すなわち,制振対象機器の振動加速度に対して,アクチュエータの発生反力が逆位相になるように電流指令を印加することにより,アクチュエータは制振対象機器の振動を低減することができる。なお,一般的には,アクチュエータの反力を増加させるため,可動子には補助質量(おもり)が付与される。このようなリニアアクチュエータを用いた制振装置を自動車の車体に取り付けることにより,自動車のエンジンから車体に加わる力を相殺することができるため,車体の振動を低減することができる。
特開平10−049204号公報 特開平08−226489号公報 特開2004−343964号公報
ところで,特許文献1に示す制振装置は,加振手段であるリニアアクチュエータを車体の振動発生源であるエンジン近傍に装着しているが,例えば特許文献3に記載されたリニアアクチュエータを加振手段として車体に後付けしようとしても,設置スペースの都合上,エンジン近傍や制振するべき位置近傍に装着できない場合がある。このような場合,加振手段の装着位置をエンジンや制振するべき位置から離す必要があるが,振動発生源(エンジン),加振手段(リニアアクチュエータ),制振するべき位置(座席部)が異なることになるため,最適な制振力を得られないという問題がある。すなわち,振動発生源から制振するべき位置までの伝達特性と,加振手段が設けられた位置から制振するべき位置までの伝達特性が異なるため,加振手段によって発生させるべき制振力の振幅と位相を,エンジン回転数から一意に決めることができなくなるのである。なお,各伝達特性は,車体の剛性や,加振手段の指令に対する応答性や,加速度センサのフィルタ特性などによって決定される。
このような問題を解決するために,特許文献2の制振装置は,振動伝達特性に基づいて,発生している振動を予測し,加振手段によって発生させるべき制振力の位相と振幅を求めるようにしたため,振動伝達特性を考慮して,振動抑制制御を行うことができる。
しかしながら,振動伝達特性を決める車体剛性等の特性は経年変化や温度変化によって特性が変化するため,この車体の特性変化に応じて,振動伝達特性も変化してしまい,予め求めてある振動伝達特性を考慮して,振動抑制制御を実施しても期待する制振効果を得ることができないという問題がある。さらに,たとえば車体の振動周波数が共振周波数から非共振周波数へ急激に変化した直後には,共振状態で必要だった大きな制振力のまま,本来であれば小さな制振力で済む非共振状態での振動を制御することになるため,過渡状態において制御が不安定化するという問題がある。
本発明は,このような事情に鑑みてなされたもので,制振対象の機器において,加振手段から振動検出手段までの振動伝達特性が変化した場合や,振動周波数が急激に変化した場合であっても,安定して高い制振効果を得ることができる制振装置及び車両を提供することを目的とする。
本発明は、振動発生源から伝達された制振するべき位置での振動を検出して振動信号として出力する振動検出手段と、前記制振するべき位置と異なる位置に設けられ前記制振するべき位置での振動を打ち消すために制振力を発生させる加振手段と、前記振動信号と前記振動発生源が発生する振動の周波数成分を有する基準波とから前記加振手段に前記制振力を発生させるための加振指令を出力する加振指令発生手段と、前記加振手段から前記振動検出手段までの振動伝達特性の逆特性に基づいて生成された基準加振指令と前記振動信号との位相差を算出する位相差検出手段と、周波数ごとに振動周波数の関数であって且つ前記振動伝達特性の位相成分を補正する位相補正量が記憶された位相補正量記憶手段と、前記位相補正量記憶手段に記憶された前記位相補正量を予め設定された更新補正量を付与することによって更新する更新手段と、ある周期におけるサンプリング結果による前記位相補正量を、当該周期前のサンプリング結果による位相補正量に0または予め設定された固定角度を加減算して求める前記位相補正量によって前記基準加振指令と前記振動信号との位相差が目標位相角度と一致するように前記基準加振指令の位相を補正して加振指令を算出する位相補正手段とを具備し、前記更新手段は前記振動信号の周波数に対応する位相補正量を更新する場合に前記更新補正量以下の調整補正量を付与することによって該周波数より低いまたは高い周波数に対応する位相補正量を更新することを特徴とする。
本発明によれば,振動検出手段は,振動発生源から伝達された制振するべき位置での振動を検出し,振動信号として位相差検出手段へ出力する。そして,位相補正手段が,位相差検出手段によって検出された位相差に対応する位相補正量を位相補正量記憶手段から取得して,その位相差と目標位相角度とが一致するように,前記出力される前の加振指令の位相を補正する。この補正に基づいて,加振指令発生手段は,位相補正後の加振指令を出力する。そして加振手段は,加振指令発生手段から出力された位相補正後の加振指令に基づいて制振力を発生させる。
なお,目標位相角度とは,前記振動信号に対する前記加振指令の位相差の目標値のことであり,たとえば0(ゼロ)°である。
また,更新手段は,位相差と目標位相角度とがずれている場合に,振動信号の周波数に対応する位相補正量に更新補正量を付加するとともに,振動信号の周波数の前後の少なくともいずれか一方の周波数に対応する位相補正量に,更新補正量よりも小さい調整補正量を付加して位相補正量記憶手段を更新する。
すなわち,初期状態と経年変化等後との位相差を補正して制振力を生成しているので,経年変化や温度変化等により制振対象機器の振動伝達特性が変化しても期待する制振効果を得ることができる。
さらに,更新手段が,振動信号に対応する周波数だけでなく,その前後の少なくともいずれか一方の周波数に対応する位相補正量に調整補正量を付加するので,振動信号の周波数の前後で位相補正量の変化を緩やかにすることができる。そのため,たとえば振動周波数が共振周波数から非共振周波数へ急激に変化した場合であっても,位相補正量の変化に伴って制振力も緩やかに変化させることができるので,安定した制振制御を行うことができる。
また,本発明は,前記更新手段が,前記更新補正量に1以下の係数を乗算することにより前記調整補正量を算出することを特徴とする。
この発明によれば,調整補正量を迅速かつ確実に算出することができるので,安定した制振制御を行うことができる。
また,本発明は,前記係数が,前記振動信号の周波数から遠ざかるほど小さくなるように該周波数より低いまたは高い周波数ごとに複数設定されており,前記更新手段は,前記更新補正量に該係数を乗算することにより前記調整補正量を算出することを特徴とする。
この発明によれば,振動信号の周波数に対応する位相補正量を中心として,その前後の周波数それぞれの複数の位相補正量を段階的に小さくして,それぞれの位相補正量に付加することができ,振動信号の周波数の前後で位相補正量の変化を緩やかにすることができるので,安定した制振制御を行うことができる。
また,本発明の車両は,請求項1から請求項3のいずれか一項に記載の制振装置を備えることを特徴とする。
この発明によれば,経年変化や温度変化等により車両の振動伝達特性が変化した場合でも,経年変化等前とほぼ変わらぬ制振効果を保ち続けることができ,かつ,走行状態の変化に伴って車体に急激な振動周波数の変化が生じた場合でも,制御を不安定化させることないので,長期に渡って乗員に快適な乗り心地を提供することが出来る。
本発明によれば,振動発生源に起因して発生している制振すべき位置の振動と,振動を打ち消すための制振力との位相差に基づいて,発生すべき制振力の大きさと位相とを補正するようにした。このため,制振対象機器の振動伝達特性が変化した場合でも,制振効果を保ち続けることができる。また,制振力の大きさと位相とを補正する際には,特定の周波数の補正値のみが大きくなってしまうことを防ぎ,周波数毎の補正値を連続的に変化させるようにした。このため,制振すべき位置の振動周波数が急激に変化した場合でも,不安定化を招くことなく制御を行うことができる。
以下,図面を参照して本発明の一実施形態による制振装置を説明する。図1は同実施形態の構成を示すブロック図である。この図において,符号1は,自動車等の車両を走行させるための駆動力を発生するために車両に搭載されたエンジン(振動発生源)であり,車両内に発生する振動の発生源である。符号10は,所定の質量を有する補助質量11を備え,この補助質量11を振動させることにより得られる反力によって車両内に発生する振動を抑制するための制振力を発生するリニアアクチュエータ(以下,「アクチュエータ」(加振手段)と称する)である。符号2は,車両の車体フレームであり,エンジンマウント1mによってエンジン1が搭載されるとともに,所定の位置にアクチュエータ10が装着される。ここでは,アクチュエータ10は,車体フレーム2に発生する上下方向(重力方向)の振動を抑制制御するものとする。
符号3は,アクチュエータ10に制振力を発生させて,車両内に発生する振動を抑制する制御を行う制御部である。符号4は,制御部3から出力される指令値に基づいて,アクチュエータ10を駆動するための電流をアクチュエータ10に対して供給するアンプである。符号5は,車両内の乗員用の座席6の近傍に装着された加速度センサ(振動検出手段)である。制御部3は,エンジン1から出力されるエンジンパルス信号(点火タイミング信号)と,加速度センサ5から出力される加速度センサ出力信号に基づいて,アクチュエータ10を駆動するための加振指令を求めて,アンプ4へ出力する。アンプ4は,この加振指令に基づいて,アクチュエータ10に対して供給するべき電流値を求めてアクチュエータ10へ供給することにより,補助質量が往復運動(図1に示す例では,上下方向の運動)を行い,その反力を使用して,制振するべき位置である座席近傍に発生している振動を低減することができる。
ここで,図2を参照して,図1に示すアクチュエータ10の詳細な構成を説明する。図2は,図1に示すアクチュエータ10の詳細な構成を示す図である。この図において,符号12は,永久磁石を備える固定子であり,車体フレーム2に固定される。符号13は,可動子であり,抑制するべき振動方向と同方向の往復動(図2の紙面では上下動)を行う。ここでは,車体フレーム2の抑制するべき振動の方向と可動子13の往復動方向(推力方向)とが一致するように,車体フレーム2に固定される。符号14は,可動子13及び補助質量11を推力方向に移動可能なように支持する板バネであり固定子12に固定されている。符号15は,可動子13と補助質量11を接合する軸であり,板バネ14によって支持されている。アクチュエータ10と補助質量11によって,動吸振器が構成されていることになる。
次に,図2に示すアクチュエータ10の動作を説明する。アクチュエータ10を構成するコイル(図示せず)に交流電流(正弦波電流,矩形波電流)を流した場合,コイルに所定方向の電流が流れる状態では,磁束が,永久磁石においてS極からN極に導かれることにより,磁束ループが形成される。その結果,可動子13には,重力に逆らう方向(上方向)に移動する。一方,コイルに対して所定方向とは逆方向の電流を流すと,可動子13は,重力方向(下方向)に移動する。可動子13は,交流電流によるコイルへの電流の流れの方向が交互に変化することにより以上の動作を繰り返し,固定子12に対して軸15の軸方向に往復動することになる。これにより,軸15に接合されている補助質量11が上下方向に振動することになる。アクチュエータ10と補助質量11によって構成される動吸振器は,アンプ4から出力する電流制御信号に基づいて,補助質量11の加速度を制御して制振力を調節することにより,車体フレーム2に発生する振動を相殺して振動を低減することができる。
次に,図4を参照して,図1に示す車体フレーム2の振動伝達特性について説明する。ここでは,車体フレーム2の振動の振動源はエンジン1のみであるとし,車体フレーム2に発生する振動のうち,乗員用の座席(運転席)6付近で発生する振動を抑制するものとして説明する。エンジン1を駆動するためのエンジンパルスは,点火するタイミングで立ち上がるパルスであり,4気筒のエンジン1の回転数が1200rpmであれば40Hzのパルス信号となって出力されることになる(図4(a)参照)。このエンジンパルスに応じて,エンジン1の各気筒は,点火することになるため,この点火タイミングに同期した振動がエンジン1から発生することになる(図4(b)参照)。エンジン1において発生した振動波は,車体フレーム2を伝達して座席6に到達する。このときの車体フレーム2の振動伝達特性をG’とする。エンジン1で発生した振動は,車体フレーム2の振動伝達特性G’によって,位相が変化する(例えば,θ’だけ遅れる)とともに,振幅も変化して,座席6の振動として現れることになる。この振動波を加速度センサ5に検出することにより,座席6において発生する振動を検出することが可能となる(図4(c)参照)。加速度センサ5により得られた振動波の信号の逆位相の振動(図4の破線で示す振動波)を座席6の位置において発生すれば座席6に発生している振動を相殺することができるため,座席6の振動を抑制することが可能となる。
しかし,座席6の近傍に振動抑制のための制振力を発生する振動源を設けることは車両のレイアウトの制限上できない場合がある。そのため,図1に示すアクチュエータ10は,振動を抑制するべき位置(加速度センサ5が設けられている位置)とは異なる位置に設けなければならない場合がある。したがって,補助質量11を振動させることによって発生する制振力は,車体フレーム2を伝達して座席6に到達することになる。このとき,車体フレーム2の伝達特性Gによって,アクチュエータ10に発生させた振動波の位相と振幅が変化してしまう。このため,アクチュエータ10によって発生させるべき振動波は,アクチュエータ10の装着位置から加速度センサ5の装着位置(座席6の位置)までの振動伝達特性Gに基づく位相変化と振幅変化を考慮して(例えば,位相をθだけ早めたり,振幅を大きくするなど),加速度センサ5の出力信号の逆位相の信号を生成する必要がある(図4(d)参照)。そこで,アクチュエータ10の装着位置から加速度センサ5の装着位置(座席6の位置)までの振動伝達特性Gに基づく位相変化と振幅変化を考慮して,制振力を発生させれば,期待する制振効果を得ることが可能となる。ただし,経年変化や温度変化等によって振動伝達特性Gが変化するため,本発明は,振動伝達特性の変化に応じて,アクチュエータ10が発生するべき振動波の補正を行うようにして,特性変化が生じることにより振動伝達特性が変化しても期待する制振効果を得ることができるようにするものである。
次に,図3を参照して,図1に示す制御部3がアクチュエータ10の装着位置から加速度センサ5の装着位置までの振動伝達特性Gに基づく位相変化と振幅変化を考慮して,加振手段に制振力を発生させるための振動波の信号(加振指令)を生成する動作を説明する。制御部3は,振動波の信号を生成する場合に,振動伝達特性の変化に応じて,生成する振動波の振幅および位相を補正した加振指令を生成する。図3は,図1に示す制御部3の詳細な構成を示す制御ブロック図である。制御部3は,加速度センサ5の出力信号と,エンジン1のエンジンパルス信号を入力し,アンプ4に対して,加振指令を出力するものである。
初めに,制御部3がアクチュエータ10の装着位置から加速度センサ5の装着位置までの振動伝達特性Gに基づく位相変化と振幅変化を考慮して,制振力を発生させるための振動波の信号(加振指令)を生成する基本動作を説明する。
BPF(バンドパスフィルタ)50は,加速度センサ5の出力信号のうち,振動信号としてAsin(ωt+φ)を出力する。ここでAsin(ωt+φ)は,周波数検出部31が検出したエンジンパルス信号の周波数fの成分である(ω=2πf)。BPF50が出力する振動信号は,現時点で発生している振動を検出した信号となる。すなわち,この振動信号がエンジン1を起振源として発生した振動の検出信号であるため,この信号の位相を反転した信号を生成し,この位相を反転した信号に対して,振動伝達特性Gの逆特性(1/G)を与えて,アンプ4へ出力することにより,エンジン1を起振源として発生した振動の制振制御を行う。
BPF50から出力される信号(Asin(ωt+φ))は,収束ゲイン2μが乗算される。乗算器33,34は,その乗算結果に,正弦波発信器32から出力される基準正弦波sin(ωt)と基準余弦波cos(ωt)をそれぞれ乗算して,積分器35,36に出力する。積分器35,36は,乗算器33,34からの出力を積分し,振幅補正成分と位相差成分の両方を有する信号をそれぞれ出力する。すなわち,積分器35は−A’cosφ’を,積分器36は−A’sinφ’を乗算器39,40,46,47に出力する。なお,図3及び以下の説明においては,加速度センサ5によって検出した成分については「A」と「φ」と表記し,制御部3内において生成した成分については「A’」と「φ’」と表記する。
正弦波発振器32は,周波数検出部31によって検出されたエンジンパルス信号の周波数fから,内蔵された電気角生成部(図示せず)によって基準角度ωtを生成し,当該基準角度ωtから,基準波sin(ωt)と基準波cos(ωt)を出力する。
値設定部37は,エンジンパルス信号の周波数fに対する振幅テーブルおよび位相テーブルを備えている。この2つのテーブルには,経年変化や温度変化前における,加振手段から振動検出手段までの振動伝達特性,すなわちアクチュエータの発生力から加速度センサが検出する加速度までの伝達関数Gを予め測定した結果に基づき,その逆特性である振幅成分|1/G(jω)|および位相成分∠1/G(jω)が記録されている。そして値設定部37は,周波数検出部31が検出したエンジンパルス信号の周波数fを入力し,この周波数fに関係付けられた位相成分∠1/G(jω)と振幅成分|1/G(jω)|を2つのテーブルからそれぞれ読み出す。そして,値設定部37は,位相成分をPとして変化量抑制部42へ出力し,振幅成分を(1/G)として正弦波発振器38へ出力する。
正弦波発振器38は,周波数fと,振動伝達特性Gの逆特性の振幅成分(1/G)と,変化勾配抑制部45の出力を入力する。そして,正弦波発振器38は,これらの入力値に基づいて,振動伝達特性Gの逆特性(∠1/G(jω)及び|1/G(jω)|)を乗算した基準正弦波(1/G)sin(ωt+P+Δp)と基準余弦波(1/G)cos(ωt+P+Δp)を出力する。ここで,Δpは振動伝達特性Gの逆特性の位相成分Pを補正するための位相補正量であり,詳細については後述する。
加算器41は,乗算器39の出力(−A’cosφ’)×(1/G)sin(ωt+P+Δp)と乗算器40の出力(−A’sinφ’)×(1/G)cos(ωt+P+Δp)とを加算し,加法定理より−(A’/G)sin(ωt+φ’+P+Δp)を出力する。すなわち,加振器41は,加速度センサ出力信号のうちエンジンパルス信号の周波数fの成分であるAsin(ωt+φ)に対し,振幅については近似した振幅A’と振動伝達特性の逆特性の振幅成分(1/G)とを,位相については近似した位相差φ’と振動伝達特性の逆特性の振幅特性Pと位相補正量Δpとを補正した信号を出力する。なお,符号(−1)は加速度センサ出力信号に対して180°位相反転するためのものである。
加算器41の出力−(A’/G)sin(ωt+φ’+P+Δp)は,バンドパスフィルタ51に出力される加振指令である。
BPF51は,周波数f近傍の周波数を通過させるフィルタである。なお,fは周波数検出部31から出力されるエンジンパルス信号の周波数である。
制振すべき周波数が変化した場合,過渡状態では,制振力には複数の周波数成分が存在する。そのため,たとえば変化後の周波数近傍に制振対象の共振周波数が存在する場合には,制振力には周波数が共振周波数と一致し,かつ共振振動を低減できる振動の位相とは異なる位相の成分が含まれる場合があるため,共振周波数を加振してしまい,制御が不安定化することがある。
このBPF51により,制振すべき周波数以外の制振力を除去することにより,制振効果を高め,かつ,制御が不安定化するのを防止することができる。
加振指令をバンドパスフィルタ51を介してアンプ4へ出力すると,補助質量11が振動して制振力を発生することにより,加速度センサ5によって検出されるエンジン1が発生する振動が抑制されることになる。このとき,アクチュエータ10が補助質量を振動させることにより発生する制振力は,アクチュエータ10の装着位置から加速度センサ5の装着位置までの振動伝達特性Gに基づく位相変化と振幅変化を考慮した制振力であるため,振動を検出する位置(座席6の位置)と制振力を発生する位置が異なっていても発生する振動を効率よく抑制することができる。
次に,変化量抑制部42,位相補正部43,変化勾配抑制部45,テーブル補正部49が,経年変化等による振動伝達特性の変化に応じて加振指令の位相を位相補正量Δpによって補正する動作を説明する。
テーブル補正部49は,加算器48の出力(−A’sinφ’)×cos(ωt)+(−A’cosφ’)×sin(ωt)=−A’sin(ωt+φ’)と,エンジンパルス信号の周波数fと,加速度センサ出力信号の周波数fの成分であるAsin(ωt+φ)とを入力する。そして,入力した2つの信号(−A’sin(ωt+φ’)とAsin(ωt+φ))の位相差Δφを検出する。
ここでΔφは,加速度センサ5で検出した成分φと,制御部3内にて生成した成分φ’との差であり,経年変化等による振動伝達特性の変化を数値化したものである。すなわち,経年変化等によって,実際の車体における振動伝達特性が値設定部37で記憶している振動伝達特性と異なるほど,Δφが0から遠ざかることになる。
本発明では,このΔφが0になるように加振指令の位相を位相補正量Δpにより補正する。以下,位相補正量Δpについて説明する。
まず,経年変化等がなく,振動伝達特性Gに変化がない場合,Asin(ωt+φ)と(−A’sin(ωt+φ’))とは,図9に示すように逆位相になる。すなわち,Asin(ωt+φ)と(−A’sin(ωt+φ’))とは,符号がたとえば負から正に変化するゼロクロスポイントの時点が一致する。このとき,エンジン1から制振するべき位置に伝達される振動と,アクチュエータ10が発生する制振力とが相殺しあい,位相補正をしなくても制振するべき位置での振動が抑制される。そのため,テーブル補正部49は,位相補正の必要がないと判定する。
次に,経年変化等により振動伝達特性Gが変化した場合について述べる。このとき,(−A’sin(ωt+φ’))はAsin(ωt+φ)に対し,図10に示すようなΔφの位相進み(0≦Δφ≦π),または図11に示すようなΔφの位相遅れ(−π≦Δφ≦0)の状態となる。テーブル補正部49は,このΔφ≠0の時に位相補正量Δpを用いて加振指令の位相を補正する。
ここで位相補正量Δpの算出方法について述べる。位相補正量Δpはエンジンパルス信号の振動周波数fの関数であり,次式で定義される。
Δp(f,n)=Δp(f,n−m) (φ=0)
Δp(f,n)=Δp(f,n−m)−h (0≦Δφ≦π)
Δp(f,n)=Δp(f,n−m)+h (−π≦Δφ≦0)
なお,n,mはn≧mの整数であり,hは前述した予め設定された固定角度である。すなわち,あるサンプリング周期における位相補正量Δp(f,n)は,そのmサンプリング周期前のΔp(f,m−n)に0またはhを加減算して求める。
そして,テーブル補正部49は,求めたΔpの値と,周波数検出部31から出力される周波数fとに基づいて,補正値テーブル44を更新する。図5に図3に示す補正値テーブル44のテーブル構造を示す。図5に示すように,補正値テーブル44は,周波数毎に,位相補正量(Δp)が関係付けられて記憶されるテーブルである。また,テーブルの初期値は,全ての周波数について,たとえば「0」が記憶されているものである。補正値テーブル44は,不揮発性メモリから構成され,電源が切断されても記憶内容は保持される。
テーブル補正部49は,位相補正量を更新する場合,更新しようとする周波数に関係付けられた位相補正量を読み出し,この位相補正量に対して,Δφを0に近づけるための所定の補正値hを加算する。例えば,図5に示す例では,周波数fが40Hzの場合,位相補正量Δpは,前回の状態で「−1°」と定義されている(Δp(40Hz,n−1)=−1°)。このとき,位相遅れが検出されたならば,以下の式に示すように,たとえば1サンプリング周期前の位相補正量Δp(40Hz,n−1)に対して,予め設定された値(例えば,h=1°)だけ加算する。
Δp(40Hz,n)=Δp(40Hz,n−1)+1°=0°
ここで,加算する値を所定の小さい値としているのは,Δφを正確に求めるには演算量が増大すること,一度の補正で大きい補正を行うと制御が不安定になる可能性があることが理由である。経年変化による特性の変化は,短い時間で変化するものではないため,一度に補正する値は小さい値にしておき,制御動作を安定に保ったまま徐々に補正しようとするものである。この動作によって,補正値テーブル44は,常に経年変化等によって振動伝達特性Gが変化した場合の位相補正値が記憶されることになる。
本実施形態のテーブル補正部49は,補正地テーブル44に記憶されている位相補正量について,補正するべき振動周波数fの位相補正量を更新するだけではなく,その直前または直後の少なくともいずれか一方の振動周波数の位相補正量を段階的に小さくなるように更新する。この位相補正量の更新方法を,以下,前後位相補正と表記する。
たとえば図8及び以下の式に示すように,f=40Hzの位相補正量Δp=0°に予め設定された値h=1を加えてΔp=1°とする場合に,その近傍の周波数におけるΔpについてもh=1の1/2または1/4の値を加える。
Δp(39.8Hz,n)=Δp(39.8Hz,n−1)+0.25°
Δp(39.9Hz,n)=Δp(39.9Hz,n−1)+0.5°
Δp(40.0Hz,n)=Δp(40.0Hz,n−1)+1°
Δp(40.1Hz,n)=Δp(40.1Hz,n−1)+0.5°
Δp(40.2Hz,n)=Δp(40.2Hz,n−1)+0.25°
すなわち,前後位相補正では,更新しようとする位相補正量Δp(f,n)を中心として,Δp(f,n)に対して前後対称となるように,その直前直後の周波数の位相補正量Δp(f−k,n),Δp(f+k,n)についても,予め設定されたhを定数倍した値を付加する。なお,kは整数または正の小数である。
このようにすることによって,1つの周波数における位相補正量のみが大きくなってしまうことを防止し,周波数毎の位相補正量の変化を連続的にすることができるため,位相補正を安定的に行うことが可能となる。
なお,前後位相補正は,更新しようとする周波数fを中心に前後対称とならなくても良く,たとえば図12に示すように,Δp(f−k,n)は中心周波数fから遠ざかるごとに一定値(例えば、0.25)を減じていくようにし,Δp(f+k,n)は中心周波数fから遠ざかるごとに指数的に減じていくようにしても良い。また,予め設定した周波数帯域では中心周波数fを中心に前後対称となるようにΔp(f−k,n),Δp(f+k,n)を更新し,それ以外の周波数帯域では前後非対称になるように更新しても良い。このように周波数に対して更新する量を変化させることによって,たとえば車体フレーム2の共振点付近や,ノイズが多い周波数帯域付近での位相補正量の変化を滑らかにすることができるので,位相補正を安定的に行うことが出来る。
一方,変化量抑制部42は,mサンプリング周期毎に出力したPの値を内部に保持しておき,値設定部37から出力されるPの値と,前回出力されたPの値とを比較し,その差が予め決められた所定値(変化可能上限値)より大きい場合に,前回出力されたPの値との差が所定値を超えないように,新たに出力しようとする値を修正して出力する(図6参照)。このように,mサンプリング周期毎に出力されるPの値の変化量が所定値を超えないように抑制するようにしたため,制御が発散することなく安定的に制御を実施することができる。
次に,位相補正部43は,周波数検出部31から出力される周波数に関係付けられた位相補正量Δpを補正値テーブル44から読み出し,この読み出した位相補正量を,変化量抑制部42から出力される信号に加算する。位相補正量が加算された信号(P+Δp)は,変化勾配抑制部45に出力される。
変化勾配抑制部45は,mサンプリング周期毎に出力したΔpの値を内部に保持しておき,Δp(f,n−m)からΔp(f,n)への変化勾配が緩やかになるように,その変化分を変化勾配制限値sずつ出力する。すなわち,たとえば図7に示すように,位相補正量をΔp(f,n−1)から1サンプリング周期ごとに変化勾配制限値s={Δp(f,n)−Δp(f,n−1)}/4ずつ増やしてゆき,4サンプリング周期後にΔp(f,n)とする。このように,mサンプリング周期毎に出力されるP+Δpの変化勾配を抑制するようにしたため,制御が発散することなく安定的に制御を実施することができる。
ここで,変化勾配制限値sとは,固定角度hよりも小さな値の制御値をいうものであり,例えば,固定角度hの1/20(0.05)に設定される。
このP+Δpが正弦波発振器38に出力されることにより,前述した基本動作によって,アクチュエータ10への加振指令が生成される。すなわち,生成される加振指令は,位相補正部43によって,経年変化等による振動伝達特性の変化に応じた位相補正がなされた信号となる。
なお,加速度センサ5で検出した成分φと制御部3内にて生成した成分φ’との差であるΔφが予め定めた閾値よりも小さい場合には,位相補正量の更新を行わない,または位相補正を行わないようにしてもよい。すなわち,位相補正に不感帯を設けることにより,振動発生源または制振すべき位置で過渡的に微小な周波数の変化が生じた場合でも,制御部がその変化に過度に追従することによって制御が不安定化するのを防ぐことができる。なお,制御が不安定化しやすいかどうかは,振動発生源の振動が制振対象の共振周波数近傍であるかどうかによっても影響されるので,上述した閾値は周波数ごとに設定されていても良いし,周波数によらず一定値であっても良い。
また,位相補正部43は,振動発生源の周波数fが,予め設定した範囲内で,予め設定した回数だけ連続して検出された場合に位相補正量の更新または位相補正を行うようにしても良い。たとえば,f±1Hzの周波数が10サンプリング検出された場合に位相補正量の更新または位相補正を行うようにすることにより,振動発生源または制振すべき位置で過渡的に微小な周波数の変化が生じた場合でも,制御部がその変化に過度に追従することによって制御が不安定化するのを防ぐことができる。なお,制御が不安定化しやすいかどうかは,振動発生源の振動が制振対象の共振周波数近傍であるかどうかによっても影響されるので,上述した設定範囲または設定回数は周波数ごとに設定されていても良いし,周波数によらず一定値であっても良い。
また,位相補正部43は,加振指令の振幅が,予め設定した範囲内で,予め設定した回数だけ連続してアンプ4へ出力された場合に位相補正量の更新または位相補正を行うようにしても良い。たとえば,加振指令の振幅変動が±2%の範囲内で,10サンプリング出力された場合に位相補正量の更新または位相補正を行うようにすることにより,振動発生源または制振すべき位置で過渡的に微小な周波数の変化が生じた場合でも,制御部がその変化に過度に追従することによって制御が不安定化するのを防ぐことができる。なお,制御が不安定化しやすいかどうかは,振動発生源の振動が制振対象の共振周波数近傍であるかどうかによっても影響されるので,上述した設定範囲または設定回数は周波数ごとに設定されていても良いし,周波数によらず一定値であっても良い。
また,加速度センサ5により検出された加速度振幅が,予め設定した閾値より大きい場合に位相補正量の更新または位相補正を行うようにしても良い。たとえば,制振すべき位置が車両の座席である場合,着座した人間が大きいと感じる振動の加速度振幅を閾値に設定することにより,閾値以上である場合には確実に制振を行うことによって乗員に快適な乗り心地を提供しながらも,閾値以下である場合には位相補正量の更新または位相補正を行わないため演算負荷を軽減でき,また,量子化誤差による誤演算を防止できる。なお,たとえば人間が感じやすい振動は周波数によって異なるため,上述した閾値は周波数ごとに設定されていても良いし,周波数によらず一定値であっても良い。
また,補正値テーブル44は,必ずしも不揮発性のメモリである必要はなく,書き換えが可能な他の記録媒体でも良い。また,たとえば停車やエンジン停止などの所定のタイミングごとに振動周波数毎の位相補正量を記録媒体に保存し,再起動時に読み出して制振制御に用いても良い。すなわち,再起動する前まで更新してきた位相補正量を用いることにより,再起動直後でも違和感なく制振制御を行うことが出来る。なお,再起動する際には,前回記録した位相補正量に,たとえば0.5のような所定の値を乗じて制振制御に用いるようにしても良い。
このように,加速度センサ5で検出した成分φと制御部3内にて生成した成分φ’との差であるΔφに基づいて加振指令の位相を補正するようにしたため,経年変化や温度変化等により車体フレーム2の振動伝達特性Gが変化した場合でも,変化する前と同等の高い制振効果を得ることができる。すなわち,経年変化等によって制振装置内に予め設定してある振動伝達特性Gを修正する必要が生じた場合でも,制振装置が自律的にGの変化分を補正できるため,ユーザーに何ら複雑な修正作業を行わせることなく,経年変化等前の制振効果を保ち続けることができる。
また,エンジンパルス信号の周波数fに基づいて,逆特性テーブルから振幅成分1/Gおよび位相成分Pを求める一方で,加算器48の出力−A’sin(ωt+φ’)と加速度センサ出力信号の周波数fの成分であるAsin(ωt+φ)との位相差Δφが0になるように位相補正量Δpを求め,PとΔpにより加振指令の位相を補正している。そのため,たとえばエンジンパルス信号と加速度センサ出力信号とから逆特性そのものを演算する場合に比べ,演算処理を簡略化でき,演算時間を短縮することが出来る。すなわち,応答性の良い制御を実現できるだけでなく,演算に必要な回路を安価に構成することができるので,ユーザーに安価で制振性能の高い制振装置を提供することが出来る。
また,加振手段から振動検出手段までの振動伝達特性の逆特性を加味して制振力を発生させるようにしているため,加振手段であるアクチュエータ10を,車体フレーム2の任意の位置に後付けでも装着することが出来る。そのため,たとえば経年変化等を経た中古車両に後付けした場合でも,何ら複雑な調整作業を要することなく,制振を行うことができる。なお,経年変化等のない新車両に最初から装着することも可能である。
なお,前述した説明においては,車体フレーム2に発生する上下方向(重力方向)の振動を抑制制御する場合について述べたが,制振する振動の方向は上下方向に限られるものではなく,振動検出手段の検出位置および検出方向と,加振手段の加振位置および加振方向は適宜変更が可能である。たとえば検出手段を車両のハンドルに設置すれば,ハンドルからドライバーの手に伝わる振動を経年変化等の影響を受けることなく低減することが可能である。
また,図2に示すリニアアクチュエータ10を使用して,制振力を発生するものとして説明したが,補助質量11を振動させることによって振動を抑制することができる反力を発生できる駆動源であれば,補助質量11を振動させる手段は何でもよい。
なお,制御部3は,加振指令発生手段,位相差検出手段,位相補正量記憶手段,位相補正手段及び更新手段として兼用されるものである。具体的には,正弦波発振器32,ゲイン2μ,乗算器33,34,積分器35,36,加算器41が,加振指令発生手段として機能するものであり,テーブル補正部49が,位相差検出手段及び更新手段として機能するものである。また,位相補正部43,正弦波発振器38,乗算器39,40が,位相補正手段として機能するものであり,補正値テーブル44が位相補正量記憶手段として機能するものである。
本発明による制振装置は,振動を抑制するべき位置と制振力を発生させる位置が異なる場合における振動抑制する用途に適用することができる。また,前述した説明においては,制振対象を自動車の車体フレームであるものとして説明したが,本発明の制振装置による制振対象機器は必ずしも自動車の車体フレームである必要はなく,自律走行搬送車の車体,ロボットアーム等であってもよい。
本発明の一実施形態の構成を示すブロック図である。 図1に示すアクチュエータ10の構成を示す模式図である。 図1に示す制御部3の構成を示すブロック図である。 図1に示す車体フレーム2の振動伝達特性G,G’を示す説明図である。 図3に示す補正値テーブル44のテーブル構成を示す説明図である。 図3に示す変化量抑制部42の動作を示す説明図である。 図3に示す変化勾配抑制部45の動作を示す説明図である。 図3に示すテーブル補正部49の動作を示す説明図である。 生成した信号と検出した信号の位相ずれ状態を示す説明図である。 生成した信号と検出した信号の位相ずれ状態を示す説明図である。 生成した信号と検出した信号の位相ずれ状態を示す説明図である。 図8の位相補正の変形例を示す説明図である。
符号の説明
1・・・エンジン,2・・・車体フレーム,3・・・制御部(加振指令発生手段,位相差検出手段,位相補正量記憶手段,位相補正手段,更新手段),4・・・アンプ,5・・・加速度センサ(振動検出手段),6・・・座席,10・・・・アクチュエータ(リニアアクチュエータ,加振手段),11・・・補助質量,31・・・周波数検出部,32,38・・・正弦波発振器,37・・・値設定部,42・・・変化量抑制部,43・・・位相補正部,44・・・補正値テーブル,45・・・変化勾配抑制部,49・・・テーブル補正部,50,51・・・BPF(バンドパスフィルタ)

Claims (4)

  1. 振動発生源から伝達された制振するべき位置での振動を検出して振動信号として出力する振動検出手段と、
    前記制振するべき位置と異なる位置に設けられ、前記制振するべき位置での振動を打ち消すために制振力を発生させる加振手段と、
    前記振動信号と、前記振動発生源が発生する振動の周波数成分を有する基準波とから、前記加振手段に前記制振力を発生させるための加振指令を出力する加振指令発生手段と、
    前記加振手段から前記振動検出手段までの振動伝達特性の逆特性に基づいて生成された基準加振指令と、前記振動信号との位相差を算出する位相差検出手段と、
    振動周波数ごとに振動周波数の関数であって且つ前記振動伝達特性の位相成分を補正する位相補正量が記憶された位相補正量記憶手段と、
    前記位相補正量記憶手段に記憶された前記位相補正量を、予め設定された更新補正量を付与することによって更新する更新手段と、
    ある周期におけるサンプリング結果による前記位相補正量を、当該周期前のサンプリング結果による位相補正量に0または予め設定された固定角度を加減算して求める前記位相補正量によって、前記基準加振指令と前記振動信号との位相差が目標位相角度と一致するように前記基準加振指令の位相を補正して加振指令を算出する位相補正手段とを具備し、
    前記更新手段は、前記振動信号の周波数に対応する位相補正量を更新する場合に、前記更新補正量以下の調整補正量を付与することによって、該周波数より低いまたは高い周波数に対応する位相補正量を更新することを特徴とした制振装置。
  2. 前記更新手段は、前記更新補正量に1以下の係数を乗算することにより前記調整補正量を算出することを特徴とする請求項1に記載の制振装置。
  3. 前記係数は、前記振動信号の周波数から遠ざかるほど小さくなるように該周波数より低いまたは高い周波数ごとに複数設定されており、
    前記更新手段は、前記更新補正量に該係数を乗算することにより前記調整補正量を算出することを特徴とする請求項1または2に記載の制振装置。
  4. 請求項1から請求項3のいずれか一項に記載の制振装置を備えることを特徴とする車両。
JP2008127635A 2008-05-14 2008-05-14 制振装置及び車両 Expired - Fee Related JP5120708B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127635A JP5120708B2 (ja) 2008-05-14 2008-05-14 制振装置及び車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127635A JP5120708B2 (ja) 2008-05-14 2008-05-14 制振装置及び車両

Publications (2)

Publication Number Publication Date
JP2009275815A JP2009275815A (ja) 2009-11-26
JP5120708B2 true JP5120708B2 (ja) 2013-01-16

Family

ID=41441434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127635A Expired - Fee Related JP5120708B2 (ja) 2008-05-14 2008-05-14 制振装置及び車両

Country Status (1)

Country Link
JP (1) JP5120708B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019888B (zh) * 2014-05-23 2017-05-03 重庆长安汽车股份有限公司 座椅振动测试方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874925A (ja) * 1994-09-07 1996-03-19 Mazda Motor Corp 車両の振動低減装置及びその制御方法
JPH08210433A (ja) * 1995-02-03 1996-08-20 Nok Corp アクティブマウント制御装置
JP2007253755A (ja) * 2006-03-22 2007-10-04 Toyota Motor Corp 車両用振動制御装置

Also Published As

Publication number Publication date
JP2009275815A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5522038B2 (ja) 制振装置および車両
KR101140925B1 (ko) 자동차 차체의 진동을 저감하는 자동차용 제진장치
JP5522037B2 (ja) 制振装置および車両
JP5391578B2 (ja) 制振装置及び車両
KR20120114214A (ko) 제진 장치 및 이것을 구비한 차량
JP5120707B2 (ja) 制振装置及び車両
JP5098796B2 (ja) 制振装置及び車両
JP6657047B2 (ja) 能動型振動騒音抑制装置
JP2002005227A (ja) アクティブマウント制御装置の制御データ設定方法及びデータ記録媒体
JP5120709B2 (ja) 制振装置及び車両
JP5098795B2 (ja) 制振装置及び車両
JP5146747B2 (ja) 制振装置及び加振指令テーブルの製造方法
JP5120708B2 (ja) 制振装置及び車両
JP4983720B2 (ja) 制振装置及び車両
JP7197774B2 (ja) 制振装置、制振装置を備えた車両及び制振装置の安定度判定方法
JP5353657B2 (ja) 制振装置及びこれを搭載した車両
JP7089173B2 (ja) 制振装置、制振装置を備えた車両及び制振装置の位相誤差推定方法
JP3419231B2 (ja) 能動型振動制御装置
JP2009275819A (ja) 制振装置
JP2009275827A (ja) 制振装置および輸送用機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees