WO2011065144A1 - 組成物、硬化体および電子デバイス - Google Patents

組成物、硬化体および電子デバイス Download PDF

Info

Publication number
WO2011065144A1
WO2011065144A1 PCT/JP2010/068114 JP2010068114W WO2011065144A1 WO 2011065144 A1 WO2011065144 A1 WO 2011065144A1 JP 2010068114 W JP2010068114 W JP 2010068114W WO 2011065144 A1 WO2011065144 A1 WO 2011065144A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
composition
compound
general formula
Prior art date
Application number
PCT/JP2010/068114
Other languages
English (en)
French (fr)
Inventor
新井 隆之
高橋 昌之
圭二 今野
松木 安生
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2011543166A priority Critical patent/JP5664874B2/ja
Priority to CN201080053173.XA priority patent/CN102639642B/zh
Priority to EP10832991A priority patent/EP2505613A4/en
Publication of WO2011065144A1 publication Critical patent/WO2011065144A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to a composition, a cured body formed from the composition, and an electronic device including the cured body.
  • an organic EL element that is a typical sealed electronic device has a problem in that light emission characteristics such as luminance and light emission efficiency are gradually lowered due to moisture that has entered the organic EL element as the driving period becomes longer. is there.
  • Japanese Patent Application Laid-Open No. 2005-298598 and Japanese Translation of PCT International Publication No. 2008-518399 disclose in advance trapping of moisture such as organometallic compounds and metal alkoxides in the device. Techniques are being studied to place the agent and keep the inside of the device in a low humidity environment.
  • a decomposition product such as alkane or alcohol is produced by reacting with water.
  • decomposition products diffuse into the device, they may be absorbed by an organic material such as a charge transport layer or an organic light emitting layer constituting the device, or may cause a volume expansion of voids existing in the device.
  • pinholes are generated in the device, and the device is deformed to promote moisture intrusion, thereby shortening the device life.
  • the coating liquid by dissolving the moisture scavenger in a solvent, forming the coating liquid by a coating method such as spin coating, and removing the solvent.
  • the solvent may remain in the film.
  • the solvent remaining in the film diffuses inside the device and is absorbed by an organic material such as a charge transport layer or an organic light emitting layer constituting the device, or in the device.
  • an organic material such as a charge transport layer or an organic light emitting layer constituting the device, or in the device.
  • There is a risk of causing volume expansion of existing voids As a result, there is a possibility that a pinhole is generated in the device, and the device is further deformed to accelerate the intrusion of moisture, thereby shortening the device life. Therefore, it has been desired to develop a moisture scavenger from which the solvent is removed as much as possible.
  • such a moisture scavenger may be deformed by heat flow in an environment of use (for example, about 80 ° C. in organic EL lighting or the like) or may become opaque by reacting with water.
  • the moisture scavenger is usually formed on the surface of a glass substrate or the like, it is required to have excellent film forming properties and excellent glass adhesion.
  • some embodiments according to the present invention solve the above-mentioned problems, and are excellent in water absorption, heat fluidity (heat resistance), and also excellent in transparency, film formability, and glass adhesion.
  • the present invention provides a moisture capturing composition capable of forming a body, a cured body formed from the composition, and an electronic device provided with the cured body.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • composition according to the present invention is: Compound (A) represented by the following general formula (1), Compound (B) having a structure represented by the following general formula (2), Containing.
  • R 1 is selected from a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group, aryl group, carboxyl group and a group represented by R 3 O—.
  • a plurality of R 1 may be the same or different, but at least one of the plurality of R 1 is a group having one or more unsaturated bonds, and R 3 is a substituted or non-substituted group.
  • M is 2 to 4 A valence atom.
  • R 2 is one selected from a hydrogen atom, a halogen atom and an organic group.
  • the compound (A) may have a carbon-carbon unsaturated bond.
  • the M in the general formula (1) may be at least one selected from aluminum, boron, magnesium, calcium, titanium, zirconium and zinc.
  • the compound (B) may be a polysiloxane having a repeating unit represented by the following general formula (3).
  • R 2 is one selected from a hydrogen atom, a halogen atom and an organic group.
  • the compound (A) may be a compound represented by the following general formula (4).
  • R 4 is a divalent organic group.
  • R 5 is a hydrogen atom or a monovalent organic group. A plurality of R 4 and R 5 may be the same or different.
  • a catalyst (C) for promoting the hydrosilylation reaction between the compound (A) and the compound (B) can be further contained.
  • composition described in any one of the application examples 1 to 7 can be used for the purpose of capturing moisture.
  • Application Example 9 One aspect of the cured body according to the present invention is: It is formed using the moisture capturing composition described in Application Example 8.
  • Application Example 10 One aspect of the electronic device according to the present invention is: The cured product according to Application Example 9 is provided.
  • the composition according to the present invention can form a cured body (coating film, film, etc.) having excellent hygroscopicity and heat resistance, as well as excellent transparency, film forming properties, and glass adhesion.
  • the cured body is not deformed by heat flow even under a use environment exceeding 80 ° C., for example.
  • composition according to the present invention can take a form not containing a solvent.
  • the solvent does not remain in the cured body. Therefore, by mounting the cured body in the electronic device, it is possible to prevent harmful effects that occur in the electronic device due to the solvent remaining in the cured body, for example, the occurrence of pinholes and moisture intrusion due to device deformation. .
  • the cured product is suitable for use as a moisture scavenger in an electronic device such as an organic EL element, and when it is excellent in transparency, it can be used, for example, in a top emission type organic EL element.
  • FIG. 1 is a diagram schematically showing a cross section of the organic EL element according to the first embodiment.
  • FIG. 2 is a diagram schematically showing a cross section of the organic EL element according to the second embodiment.
  • FIG. 3 is a 1 H-NMR spectrum of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum.
  • FIG. 4 is a 1 H-NMR spectrum of tri (2- (2-vinyloxyethoxy) ethoxy) aluminum.
  • composition The composition concerning this Embodiment is A compound (A) represented by the following general formula (1) (hereinafter also simply referred to as “component (A)”) and a compound (B) having a structure represented by the following general formula (2) (hereinafter simply referred to as “ (B) also referred to as “component”).
  • R 1 is selected from a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group, aryl group, carboxyl group and a group represented by R 3 O—.
  • a plurality of R 1 may be the same or different, but at least one of the plurality of R 1 is a group having one or more unsaturated bonds, and R 3 is a substituted or non-substituted group.
  • M is 2 to 4 A valence atom.
  • R 2 is one selected from a hydrogen atom, a halogen atom and an organic group.
  • composition concerning this Embodiment contains the compound (A) shown by the said General formula (1).
  • One of the functions of the component (A) is to capture moisture when the R 1 -M bond present in the component (A) reacts with moisture.
  • a cured product having excellent hygroscopicity can be obtained. That is, in order to use a cured product formed from the composition according to the present embodiment for capturing moisture, it is necessary that the R 1 -M bond is substantially present in the cured product. For this purpose, the R 1 -M bond needs to be substantially present in the composition according to the present embodiment.
  • R 1 is selected from a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group, aryl group, carboxyl group, and group represented by R 3 O—.
  • a plurality of R 1 may be the same or different, but at least one of the plurality of R 1 is a group having one or more unsaturated bonds.
  • R 1 is preferably a group represented by R 3 O—, and R 3 is selected from a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group or aryl group. It is a seed.
  • R 1 and R 3 may be linear or cyclic, or may have a branched chain.
  • R 1 or R 3 is an alkenyl group or an alkynyl group
  • the position and number of double bonds and triple bonds are not particularly limited.
  • R 1 can be appropriately selected from groups described above in consideration of the characteristics of the cured product of interest.
  • R 1 is the group described above, the compatibility between the component (A) and the component (B) described later can be improved. As a result, a phase separation can be suppressed even if left as it is, and a composition having good storage stability can be produced.
  • n is an integer of 2 to 4, there are a plurality of R 1 .
  • a plurality of R 1 may be the same or different, but at least one of the plurality of R 1 has one or more unsaturated bonds.
  • the position and number of unsaturated bonds are not particularly limited.
  • the Si—H bond present in component (B) is cleaved and added to the unsaturated bonds present in R 1 (so-called hydrosilylation reaction). can do.
  • the component (A) and the component (B) can be combined and immobilized.
  • R 1 existing in plural numbers, to have all unsaturated bonds more preferable.
  • the amount of R 1 remaining without reacting with the component (B) can be reduced when the component (A) and the component (B) described later are bonded and immobilized. .
  • the occurrence of hydrolysis component such as an alkane or an alcohol derived from R 1 (R 1 H) can be suppressed.
  • the unsaturated bond present in R 1 is preferably a carbon-carbon unsaturated bond. If it is a carbon-carbon unsaturated bond, it can react with the Si—H bond to generate a stable Si—C bond. As a result, it is possible to suppress the occurrence of even if the component (A) is hydrolyzed, since Si-C bond is stable, hydrolysis component such as an alkane or an alcohol derived from R 1 (R 1 H) .
  • the carbon-carbon unsaturated bond is more preferably an ethylenically unsaturated bond. Since the ethylenically unsaturated bond is rich in reactivity with the Si—H bond, the reaction between the component (A) and the component (B) described later easily proceeds. As a result, it is possible to suppress the occurrence of (B) can be reduced R 1 amount remaining without reacting with the component, thus hydrolyzing component such as an alkane or an alcohol derived from R 1 (R 1 H).
  • R 1 preferably has 6 to 30 carbon atoms, more preferably 10 to 20 carbon atoms, and particularly preferably 12 to 20 carbon atoms.
  • hydrolysis component such as an alkane or an alcohol derived from R 1 (R 1 H) are generated.
  • the carbon number of R 1 is in the above-mentioned range since the boiling point of these hydrolysis components is high, it is difficult to become an outgas component, and a uniform mixture with the component (B) described later is easily formed. Further, the carbon number of R 1 is in the above range, the generated hydrolysis component (R 1 H) does not act as a plasticizer for the cured product, preferred in that it does not increase the thermal fluidity.
  • the boiling point of a hydrolysis component is 200 degreeC or more in 1 atmosphere, and it is more preferable that it is 250 degreeC or more. If it is 200 degreeC or more, the spreading
  • R 1 is a group having two or more unsaturated bonds
  • the crosslinked structure of the reaction product with the component (B) is maintained even after hydrolysis, which is more preferable.
  • alkyl group examples include hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, hexadecyl group, tetramethylhexadecyl group, octadecyl group and the like.
  • alkenyl group examples include octenyl group, dodecenyl group, octadecenyl group, allyl group and the like.
  • alkynyl group examples include ethynyl group, propynyl group, phenylethynyl group and the like.
  • Examples of the cyclic alkyl group include a cyclohexyl group.
  • aryl group examples include a phenyl group and a benzyl group.
  • M is a divalent to tetravalent atom.
  • examples of such atoms include Group 2 elements, Group 4 elements, Group 12 elements, Group 13 elements, and Group 14 elements in the IUPAC periodic table.
  • Al, B, Mg, Zn, Ti, Zr, Si, etc. are mentioned.
  • Al is preferable from the viewpoint of being excellent in hygroscopicity and capable of maintaining transparency after being decomposed by trapping moisture without being colored.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (4).
  • R 4 is a divalent organic group.
  • the divalent organic group is preferably a substituted or unsubstituted alkylene group or oxyalkylene group.
  • R 5 is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is preferably one selected from a substituted or unsubstituted alkenyl group, alkynyl group, cyclic alkyl group, aryl group and carboxyl group.
  • R 4 and R 5 can be appropriately selected according to the properties of the target cured product.
  • the ether structure is present in the group represented by R 4 or R 5 , the compatibility between the component (A) and the component (B) described later is further improved.
  • the blending ratio of the component (A) and the component (B) can be freely controlled. Furthermore, since the compound represented by the general formula (4) has an ethylenically unsaturated bond, it can easily react with a Si—H bond. As a result, it is possible to greatly reduce the occurrence of low molecular weight components that are generated by the hydrolysis of the component (A).
  • Specific examples of the compound represented by the general formula (4) include, for example, tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum, tri (2- (2-vinyloxyethoxy) ethoxy) Examples thereof include aluminum and tri (2-dodecenoxy) aluminum.
  • tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum and tri (2- (2-vinyloxyethoxy) ethoxy) aluminum are novel compounds having an excellent water scavenging action, It has a structure shown by following formula (5) and following formula (6).
  • tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum represented by the following formula (5) has a boiling point of alcohol generated by reacting with moisture of 258 ° C. under 1 atm. It has the feature of producing alcohol that is less likely to volatilize in the environment of use.
  • the compounds represented by the following formula (5) and the following formula (6) are both excellent in compatibility with the compound (B) described later, and a transparent composition can be produced.
  • the compound represented by the above formula (5) is obtained by adding triisobutylaluminum to 2.8 to 3.5 equivalents of trimethylolpropane diallyl ether little by little with stirring, and starting from 1 hour at an appropriate temperature of 0 to 150 ° C. It can be easily produced by reacting for 4 hours. Then, the compound shown by said Formula (5) is obtained by post-processing in accordance with a conventional method. In addition, in the production process of the compound represented by the formula (5), components derived from the reaction solution and by-products that are inevitably mixed in the product may be mixed, but the formula (5) indicates Any product containing a compound as a main component can be applied to this embodiment as it is.
  • the content of the component (A) in the composition according to the present embodiment is preferably 10% by mass to 90% by mass, and more preferably 50% by mass when the total mass of the composition is 100% by mass. % To 80% by mass. It is preferable for the content of the component (A) to be within the above range because the action of capturing moisture can be effectively expressed in the cured body. Furthermore, when the content of the component (A) is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability such as film formation when forming a cured product is good. Become.
  • composition concerning this Embodiment contains the compound (B) which has a structure shown by the said General formula (2).
  • Such a compound (B) may be a polymer having a structure represented by the general formula (2) or a monomer.
  • the Si—H bond present in the component (B) is cleaved ( A)
  • An addition reaction (so-called hydrosilylation reaction) can be performed on the unsaturated bond present in the component.
  • a cured product in which the component (A) is fixed to the component (B) can be formed.
  • “low molecular weight” means that the molecular weight is up to about 300.
  • the component (B) When the component (B) is a monomer, the component (B) itself undergoes a polymerization reaction in the step of curing the composition according to the present embodiment to form a cured product, and the component (A) and ( A cured product in which the component (A) is immobilized on the component (B) can be formed by a copolymerization reaction with the component B).
  • the component (B) when the component (B) is a bifunctional or higher monomer, crosslinking occurs even if the component (B) itself does not cause a polymerization reaction, and the component (A) and the component (B) are bonded to each other.
  • a cured body can be formed. By forming such a cured body, it is possible to prevent the hydrolysis product generated when the component (A) absorbs moisture from being reduced in molecular weight. Thereby, volatilization of the hydrolysis product can be suppressed.
  • the component (B) is more preferably a compound having a structure represented by the following general formula (3).
  • R 2 is one selected from a hydrogen atom, a halogen atom and an organic group.
  • R 2 is one selected from a hydrogen atom, a halogen atom, and an organic group.
  • R 2 can be appropriately selected from the groups described above in consideration of the properties of the target cured product.
  • the compatibility between the component (A) and the component (B) described later can be improved.
  • the organic group include a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group or aryl group, and the group may contain a halogen atom or an ether group.
  • organic groups may be linear or cyclic, and may have a branched chain.
  • the position and number of double bonds and triple bonds are not particularly limited.
  • the organic group is preferably an organic group having 1 to 30 carbon atoms.
  • R 2 is an organic group having 1 to 30 carbon atoms, the compatibility between the component (A) and the component (B) may be further improved, and a composition having better storage stability may be produced.
  • alkyl group examples include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, hexadecyl, tetramethylhexadecyl, octadecyl, 3,3,3-trifluoropropyl. Groups and the like.
  • alkenyl group examples include a vinyl group, an octenyl group, a dodecenyl group, an octadecenyl group, and an allyl group.
  • alkynyl group examples include ethynyl group, propynyl group, phenylethynyl group and the like.
  • Examples of the cyclic alkyl group include a cyclohexyl group.
  • aryl group examples include a phenyl group and a benzyl group.
  • the component (B) is preferably a polymer having a repeating unit represented by the general formula (2), and more preferably a polysiloxane having a repeating unit represented by the general formula (3).
  • Examples of the component (B) include polydihydrogensiloxane, poly (methylhydrogensiloxane), poly (ethylhydrogensiloxane), poly (phenylhydrogensiloxane), polyphenyl (dimethylhydrogensiloxy) siloxane, and poly [ (Methylhydrogensiloxane) (dimethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (ethylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (diethylsiloxane)] copolymer, poly [(methylhydrogen) Siloxane) (hexylmethylsiloxane)] copolymer, poly [(methylhydr
  • the weight average molecular weight is preferably 300 to 100,000, more preferably 1,000 to 50,000.
  • “weight average molecular weight” refers to a weight average molecular weight in terms of polystyrene by GPC (gel permeation chromatography).
  • moderate viscosity can be provided to a composition by adding (B) component as the weight average molecular weight of (B) component exists in the said range.
  • the component (B) is not particularly limited as long as it is a compound having the structure represented by the general formula (2).
  • the component (B) is not particularly limited as long as it is a compound having the structure represented by the general formula (2).
  • diphenyl t-butylhydrosilane, tribenzylsilane, etc. Is mentioned.
  • the composition can be made solvent-free by using the component (B). Since the component (B) can be arbitrarily mixed with the component (A), a solvent for dissolving the component (A) becomes unnecessary. Thereby, the bad effect by a solvent remaining in the hardening body as mentioned above can be prevented.
  • the component (B) can suppress the thermal fluidity of the cured body.
  • the (A) component reacts with the (B) component, whereby the (A) component becomes the (B) component.
  • a cured product fixed to the substrate can be formed.
  • Such a cured product can suppress thermal fluidity while maintaining the hygroscopicity of the component (A) described above.
  • the component (B) can be arbitrarily mixed with the component (A), the transparency of the cured product obtained by curing the composition can be improved.
  • the content of the component (B) in the composition according to the present embodiment is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass when the total mass of the composition is 100% by mass. % Or more and 50% by mass or less. When the content of the component (B) is within the above range, a good cured product can be formed without impairing each function described above.
  • the composition according to the present embodiment contains a catalyst (C) (hereinafter also simply referred to as “component (C)”) in order to promote the hydrosilylation reaction between the component (A) and the component (B). May be.
  • the catalyst (C) is preferably a platinum complex or a rhodium complex.
  • the platinum complex include a carbonylcyclovinylmethylsiloxane platinum complex, a platinum-octal / octanol complex, a cyclovinylmethylsiloxane platinum complex, a carbonyldivinylmethylplatinum complex, a divinyltetramethyldisiloxane platinum complex, and the like.
  • the rhodium complex include tris (dibutyl sulfide) rhodium trichloride.
  • the content of the component (C) in the composition according to the present embodiment is preferably 0.0001% by mass or more and 1% by mass or less, more preferably 100% by mass when the total mass of the composition is 100% by mass. It is 0.001 mass% or more and 0.1 mass% or less.
  • the content of component (C) is within the above range, not only can the hydrosilylation reaction between component (A) and component (B) be promoted, but also the moisture absorption of the cured product obtained by curing the composition. It is preferable in that basic performance such as property and transparency is not impaired.
  • the content ratio (W A / W B ) between the content (W A ) of the component ( A ) and the content (W B ) of the component ( B ) is preferably It is 0.18 or more and 5 or less, more preferably 1 or more and 5 or less, and particularly preferably 1 or more and 4 or less.
  • the content ratio (W A / W B ) is within the above range, the obtained cured body can ensure a sufficient water absorption capacity and have excellent heat resistance and glass adhesion.
  • a hygroscopic agent other than the component (A) may be further added.
  • the hygroscopic agent other than the component (A) is not particularly limited as long as it has compatibility with the component (B).
  • the moisture absorbent other than the component (A) for example, trihexyloxyaluminum, trioctyloxyaluminum, tridecyloxyaluminum, tridodecyloxyaluminum, trioctadecyloxyaluminum, tridecyloxyborane, tridodecyloxyborane, triocta Examples include decyloxyborane, tridecyl aluminum, and tridodecyl aluminum.
  • a polymerizable compound other than the component (B) may be further added.
  • the polymerizable compound other than the component (B) include (meth) acrylic acid, methyl methacrylate (MMA), ethyl methacrylate (EMA), propyl methacrylate (PMA), butyl methacrylate (BMA), and methacrylic acid.
  • EHMA Ethylhexyl
  • TMSPMA trimethoxysilylpropyl methacrylate
  • t-BMA tertiary butyl methacrylate
  • methacrylic acid hydrogenated butadiene trade name “L1253” manufactured by Kuraray Co., Ltd.
  • methyl acrylate acrylic acid
  • Polymerizable compounds having an acrylic group such as ethyl and benzyl acrylate Polymerizable compounds having a vinyl ether group such as triethylene glycol divinyl ether; Polymerizable compounds having a vinyl group such as vinylcyclohexene monooxide; Oxetanyl groups and oxirani Polymerizable compound having a cyclic ether group such as and the like.
  • These polymerizable compounds may be used singly or in combination of two or more.
  • a stabilizer may be further added to the composition according to the present embodiment.
  • a stabilizer By adding a stabilizer, the gelation of the composition according to the present embodiment can be suppressed, and the storage stability is improved.
  • the stabilizer include sulfur compounds, phosphorus compounds, alkyne compounds, maleic acid derivatives, nitrogen-containing compounds, and the like.
  • benzothiazole tris (2,4-di-t-butylphenyl) phosphite, 1-ethynyl-1-cyclohexanol, diethyl malate, N-methylpyrrolidone, 1,3-dimethyl-2- And imidazolidone, N-vinyl- ⁇ -caprolactam (all available from Tokyo Chemical Industry Co., Ltd.), and the like.
  • These stabilizers may be used alone or in combination of two or more. By using these stabilizers, the gelation time can be appropriately controlled, so that a composition having excellent storage stability can be obtained, and a good cured product can be produced.
  • the content of the stabilizer is preferably 0.01 parts by weight or more and 5 parts by weight or less, more preferably 0.05 parts by weight or more when the total weight of the composition excluding the stabilizer is 100 parts by weight. It is 0.05 parts by mass or less and particularly preferably 1 part by mass or less. When the content of the stabilizer is in the above range, the storage stability of the composition is improved, so that a sufficient pot life can be obtained and the curability of the composition is not impaired.
  • the composition according to the present embodiment may be mixed with a heat conductive filler as necessary in order to enhance the heat transfer. Since an organic EL lighting device using a plurality of organic EL elements in which the composition according to this embodiment is used generates heat, the temperature in the vicinity of the element increases, resulting in luminance characteristics such as luminance and luminous efficiency. There may be inconvenience of adverse effects. However, it is preferable to mix a heat-conducting filler because heat dissipation can be improved and the element can be protected from moisture, and at the same time, the element can be protected from adverse effects due to heat generation.
  • the heat conductive filler known fillers such as inorganic particles can be used.
  • inorganic particles When inorganic particles are used as the heat conductive filler, not only the thermal conductivity of the cured product formed using the composition according to the present embodiment is improved, but the component (A) is decomposed by moisture absorption.
  • the components (decomposition products) generated in this manner can be adsorbed to capture the decomposition products inside the cured body. Thereby, it can prevent that the said decomposition product acts as a plasticizer of a hardening body. That is, the cured body formed using the composition according to the present embodiment is not deformed by heat flow even in a use environment exceeding 80 ° C., for example.
  • other functions of the inorganic particles include improving the mechanical strength of a cured product formed using the composition according to the present embodiment, increasing the hygroscopic capacity of the cured product, and the like.
  • inorganic particles refers to particles formed from compounds other than organic compounds having carbon atoms in the basic skeleton of the structure, but particles formed from allotropes of carbon are included.
  • the material of the inorganic particles is preferably a metal oxide or a metal nitride.
  • the metal oxide include silica (including silica gel), smectite, zeolite, alumina, titanium oxide, zirconia, magnesia, and various glass powders used for heat dissipation materials.
  • the metal nitride include boron nitride, aluminum nitride, and silicon nitride.
  • silicon carbide boron carbide, and activated carbon can also be used as inorganic particles.
  • alumina silica, boron nitride, aluminum nitride, silicon nitride, magnesia, silicon carbide, boron carbide and smectite
  • alumina and / or boron nitride particles are particularly preferable. These inorganic particles may be used alone or in combination of two or more.
  • the method for producing the silica particles used in the present embodiment is not particularly limited, and a conventionally known method can be applied. For example, it can be produced according to the method for producing a silica particle dispersion described in JP-A No. 2003-109921 and JP-A No. 2006-80406. Further, as a conventionally known method, there is a method of producing silica particles by removing alkali from an alkali silicate aqueous solution.
  • the alkali silicate aqueous solution include a sodium silicate aqueous solution, an ammonium silicate aqueous solution, a lithium silicate aqueous solution, and a potassium silicate aqueous solution that are generally known as water glass.
  • ammonium silicate include silicates made of ammonium hydroxide and tetramethylammonium hydroxide.
  • the silica particles used in the present embodiment are preferably hydrophobically modified.
  • “Hydrophobic modification” means that a hydrogen atom of a silanol group (—SiOH) present in a silica particle is substituted with a hydrophobic group (—R) such as an alkyl group.
  • Silanol groups present on the surface of the silica particles tend to reduce the water absorption capacity of the cured product formed from the composition according to the present embodiment by reacting with the component (A). Therefore, it is possible to suppress a decrease in water absorption ability of the cured body by hydrophobically modifying the silanol group present on the surface of the silica particles.
  • the dispersibility of the silica particle at the time of mixing improves by performing the hydrophobic modification of the silica particle.
  • the shape of the inorganic particles is not particularly limited, and may be spherical or elliptical, or polygonal.
  • the inorganic particles may be porous particles, or core / shell particles having a hollow inside.
  • the average particle size of the inorganic particles is preferably 5 to 5,000 nm, more preferably 5 to 2,000 nm, still more preferably 5 to 500 nm, and particularly preferably 5 to 100 nm.
  • an average particle diameter of 5 to 100 nm is advantageous in that a cured product having excellent transparency can be formed.
  • the average particle size is within the above range, it becomes easy to impart an appropriate viscosity as described later to the composition, and workability (applicability, etc.) when forming a cured product is improved.
  • the inorganic particles have a surface area sufficient to capture the decomposition products, thereby suppressing deformation due to heat flow of the cured body. preferable.
  • the average particle size of the inorganic particles is preferably calculated from the specific surface area measured using the BET method, but is not limited thereto, and can be measured by other known methods.
  • the average particle size of the inorganic particles is measured by collecting the cured body formed from the composition according to the present embodiment, cutting the cured body, and observing the cut surface with an electron microscope or the like. You can also. By measuring by this method, the average particle diameter of the inorganic particles can be measured even after the cured body is formed.
  • the content of the inorganic particles in the composition according to the present embodiment is preferably 0.1% by mass or more from the viewpoint of improving the thermal conductivity of the cured body when the total mass of the composition is 100% by mass. It is 80 mass% or less, More preferably, it is 20 mass% or more and 60 mass% or less. Furthermore, from the viewpoint of ensuring the transparency of the cured body, it is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.1% by mass or more and 10% by mass or less. In addition, if content of an inorganic particle is 0.1 mass% or more, the hardening body which does not deform
  • composition concerning this Embodiment can be manufactured by mixing (A) component and (B) component, and (C) component and another additive as needed.
  • the method of mixing these components is not particularly limited, but the component (A) is added little by little while stirring the component (B) (added with the component (C) and other additives as necessary).
  • the composition concerning this Embodiment can be obtained by making it melt
  • the composition according to this embodiment preferably has a viscosity at 20 ° C. of 50 to 500,000 cP.
  • the composition can be directly applied to the element substrate and cured by the ODF method or the dispensing method. This eliminates the need to prepare the composition according to the present embodiment in the form of a film or the like in advance and incorporate it into the element, thereby simplifying the process. Further, if a photoacid generator or the like is added to the composition according to the present embodiment to impart photosensitivity, fine patterning becomes possible. In addition, the said viscosity shows the value measured by the falling needle method.
  • composition concerning this Embodiment can form the hardening body containing (A) component, it can be used for the use which capture
  • the composition according to the present embodiment can be used as a moisture scavenger for organic EL elements, organic TFTs, organic solar cells, organic CMOS sensors and the like, and is particularly suitably used as a moisture scavenger for organic EL elements.
  • the “cured body” means a film whose viscosity or hardness has increased from that of the original composition by forming or molding the above composition into a shape suitable for use and further heating or irradiating with light.
  • the cured body according to the present embodiment can be obtained, for example, by applying the above composition onto a substrate such as a glass substrate to form a film, and then curing it by heating or light irradiation.
  • the cured body contains a component (A) having an R 1 -M bond.
  • This R 1 -M bond reacts with moisture to capture moisture, and the effects of the present invention can be achieved. Therefore, in order to use the cured body for the purpose of capturing moisture, it is necessary that the R 1 -M bond is substantially present in the cured body.
  • Examples of the coating method include a spin coater, a roll coater, a spray coater, a dispenser, and a method using an inkjet device.
  • the temperature at the time of curing is, for example, preferably 40 ° C to 250 ° C, and more preferably 50 ° C to 150 ° C.
  • a good cured product can be produced by heating to a temperature in the above range.
  • the shape of the obtained cured body is not particularly limited, but has, for example, a film shape.
  • the film thickness is preferably 5 to 100 ⁇ m, for example.
  • the content of the component (A) in the cured product according to the present embodiment is preferably 10% by mass or more and 90% by mass or less, more preferably 50% by mass or more when the total mass of the cured product is 100% by mass. 80% by mass or less. It is preferable that the content of the component (A) is in the above range because a function of capturing moisture can be sufficiently expressed. Furthermore, it is preferable that the content of the component (A) is in the above-mentioned range because the film formability is improved and the cured body is easily imparted with transparency.
  • the electronic device according to the present embodiment includes the cured body inside the electronic device.
  • the cured body can be mounted on any electronic device as long as it is an electronic device that dislikes moisture.
  • an example of an organic EL element which is a typical sealed electronic device, will be described with reference to the drawings.
  • FIG. 1 is a diagram schematically showing a cross section of the organic EL element 100 according to the first embodiment.
  • the organic EL element 100 includes an organic EL layer 10, a structure 20 that houses the organic EL layer and blocks it from the outside air, and a trapping agent layer 30 formed in the structure 20. It consists of.
  • the organic EL layer 10 may have a structure in which an organic light emitting material layer made of an organic material is sandwiched between a pair of electrodes facing each other.
  • anode / charge (hole) transport agent / light emitting layer / cathode A known structure such as the above can be adopted.
  • the scavenger layer 30 is a cured product of the above composition. As shown in FIG. 1, the scavenger layer 30 is formed away from the organic EL layer 10.
  • the structure 20 includes a substrate 22, a sealing cap 24, and an adhesive 26.
  • the substrate 22 include a glass substrate
  • examples of the sealing cap 24 include a structure made of glass.
  • the structure of the structure 20 is not particularly limited as long as the organic EL layer 10 can be accommodated.
  • FIG. 2 is a diagram schematically showing a cross section of the organic EL element 200 according to the second embodiment.
  • the organic EL element 200 is different from the organic EL element 100 in that the capturing agent layer 30 formed in the structure 20 is formed in close contact with the organic EL layer 10. Since the scavenger layer 30 is a cured body with little residual or generated volatile components, the display characteristics of the organic EL layer 10 are not impaired.
  • the trapping agent layer 30 can protect the organic EL layer 10 while preventing moisture from entering the organic EL layer 10.
  • TMDE-3 tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum
  • FIG. 3 is a 1 H-NMR spectrum of the obtained TMDE-3.
  • toluene-d8 near peak ⁇ 2.1
  • FIG. 3 shows that the obtained compound has a chemical structure represented by the above formula (5).
  • TMDE-3B a mixture containing allyloxymethyl) -1-butoxy) aluminum
  • TMDE-3C a mixture containing allyloxymethyl) -1-butoxy) aluminum
  • FIG. 4 is a 1 H-NMR spectrum diagram of the obtained DEGV-3.
  • toluene-d8 near peak ⁇ 2.1
  • FIG. 4 shows that the obtained compound has a chemical structure represented by the above formula (6).
  • the tri (2- (2-vinyloxyethoxy) ethoxy) aluminum (DEVV-3) thus obtained was used as the component (A) in the following examples.
  • Catalyst (C) In the following Examples and Comparative Examples, the following commercially available compounds were used as the catalyst (C). ⁇ Cyclovinylmethylsiloxane platinum complex (manufactured by Amax Co., Ltd., trade name “SIP6832.0”, 3 mass% methylvinylsiloxane-containing product) ⁇ Carbonyldivinylmethylplatinum complex (manufactured by Amax Co., Ltd., trade name “SIP6832.0”, 3 mass% vinylmethyl cyclic siloxane-containing product)
  • a predetermined amount of the component corresponding to the compound (A) and the component corresponding to the compound (B) are mixed and sufficiently stirred to obtain a uniform solution. did.
  • a predetermined amount of stabilizer was added thereto and further stirred until a uniform solution was obtained.
  • a predetermined amount of catalyst (C) was added to obtain compositions A to V described in Table 1 or Table 2.
  • compositions of Compositions A to V are shown in Table 1 and Table 2.
  • TMDE-3 tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum (synthesized in the above “4.1.1.”)
  • TMDE-3B tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum
  • TMDE-3C mixture containing tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum (synthesized in the above section "4.1.1.”)
  • DEVV-3 tri (2- (2-vinyloxyethoxy) ethoxy) aluminum (synthesized in the above “4.1.2.”) ⁇ “TD-3”; tridodecylaluminum ⁇ “(i-PrO) 3Al”: aluminum isopropoxide ⁇ “PMHS”; polymethylhydrogensiloxane ⁇ “PEHS”; polyeth
  • Hygroscopicity A glass petri dish having an inner diameter of 3 cm, each of the films of Examples and Comparative Examples having a thickness of 0.6 mm were prepared, and a desiccator with an internal volume of 800 cm 3 equipped with a hygrometer and a thermometer. The prepared film was put together with the glass petri dish, and the changes in humidity and temperature inside the desiccator were measured.
  • the absolute humidity (Ha,%) was determined from the relative humidity (Hr,%) and the temperature in degrees Celsius (Tc, ° C) obtained by the measurement according to the following formula (7).
  • the reduction rate of absolute humidity Ha (2h) 2 hours after absolute humidity Ha (0h) at the time of a measurement start was made into water absorption, and the water absorption was computed and evaluated by following formula (8).
  • Water absorption rate (%) 100 ⁇ (Ha (0h) ⁇ Ha (2h)) / Ha (0h) (8)
  • the water absorption rate (%) is preferably 20% or more, more preferably 30% or more, and particularly preferably 40% or more.
  • Example 13 where no stabilizer was added, gelation took about 15 minutes, whereas in Examples 7 to 12 where a stabilizer was added, gelation did not occur for more than one week. From this result, it was found that the storage stability was dramatically improved by adding a stabilizer.
  • Example 2 In the composition of Example 2, not only TMDE-3 but also the moisture absorbent TD-3 was added, but the addition of TD-3 did not affect the performance of the film.
  • the content ratio (W A / W B ) of the composition of Example 3 is 0.18.
  • the water absorption was 30%, and a tendency to decrease as compared with the compositions of Example 1 and Example 2 was recognized, but the product was in the category of non-defective products.
  • Example 5 the compound (B) was changed to PPMHS having a Si—H group at the end. This did not affect the performance of the film.
  • Example 6 the catalyst (C) was changed to a carbonyldivinylmethylplatinum complex. This did not affect the performance of the film.
  • Example 14 and Example 15 a mixture containing TMDE-3 as the compound (A) was used. In these examples, almost the same result as in Example 12 was obtained, and the performance of the film was not affected by using a mixture containing TMDE-3 as the compound (A).
  • Example 16 and Example 17 DEGV-3 was used instead of TMDE-3.
  • the curing time was longer than when TMDE-3 was used, the use of DEGV-3 as the compound (A) did not affect the performance of the film.
  • Comparative Example 1 is an example using calcium oxide (CaO) generally used as a hygroscopic agent instead of the compound (A). This calcium oxide was in a state of being dispersed without being dissolved in the compound (B). In Comparative Example 1, since the solution was not cured and did not become a film, the water absorption rate could not be measured.
  • CaO calcium oxide
  • Comparative Example 2 is an example in which barium oxide (BaO), which is generally used as a hygroscopic agent, is used instead of the compound (A). This barium oxide was not dissolved in the compound (B) but was dispersed. In Comparative Example 2, the water absorption rate could not be measured because the solution did not cure and became a film as in Comparative Example 1.
  • BaO barium oxide
  • Comparative Example 3 is an example in which PMS having no Si—H group was used in place of the compound (B).
  • the PMS having no Si—H group could not react with the compound (A), and the molecular weight of the component in the film did not increase, so that the fluidity could not be suppressed. For this reason, a film could not be formed, and the water absorption rate could not be measured. Similarly, transparency, film formability, and glass adhesion could not be evaluated.
  • Comparative Example 4 is an example using TD-3 as a hygroscopic agent instead of the compound (A).
  • the organic group in TD-3 did not have an unsaturated bond, the hydrosilylation reaction with compound (B) could not be performed. Therefore, since the molecular weight of the component in the cured body does not increase, the fluidity cannot be suppressed, and deformation of the film was observed. Furthermore, in the heat fluidity test, deformation of the film due to the generation of low molecular weight alkanes and alcohols was also observed. Water absorption, transparency, film formability, and glass adhesion could not be evaluated because a film could not be formed.
  • Comparative Example 5 is an example using (i-PrO) 3Al as a hygroscopic agent instead of the compound (A).
  • the organic group in (i-PrO) 3Al did not have an unsaturated bond, the hydrosilylation reaction with compound (B) could not be performed. Therefore, since the molecular weight of the component in the cured body does not increase, the fluidity cannot be suppressed, and deformation of the film was observed. Furthermore, in the heat fluidity test, deformation of the film due to the generation of low molecular weight alcohol was also observed. Water absorption, transparency, film formability, and glass adhesion could not be evaluated because a film could not be formed.
  • the film formed from the composition containing the compound (A) and the compound (B) is excellent in water absorption and heat resistance, as well as transparency, film formability, and glass adhesion. I understood that.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明にかかる組成物は、下記一般式(1)で示される化合物(A)と、下記一般式(2)で示される構造を有する化合物(B)と、を含有する。 (R)nM …(1)

Description

組成物、硬化体および電子デバイス
 本発明は、組成物、該組成物から形成された硬化体、および該硬化体を備えた電子デバイスに関する。
 水分によって障害を受ける電子デバイス、例えばキャパシタや有機EL素子等は、水分を排除するために密閉した状態で使用する必要がある。しかしながら、このような密閉型の電子デバイスに使用される封止剤のみでは、水分の侵入を完全に阻止することはできない。このため、デバイス内に徐々に侵入する水分を除去する仕組みがなければ、電子デバイスの機能は時間の経過に伴い徐々に低下してしまう。
 例えば、代表的な密閉型電子デバイスである有機EL素子は、駆動期間の長期化に伴って、有機EL素子内に進入した水分により輝度や発光効率等の発光特性が徐々に低下するという問題がある。
 このような密閉型電子デバイスを外部から侵入する水分から保護する手段として、特開2005-298598号公報や特表2008-518399号公報では、あらかじめデバイス内に有機金属化合物や金属アルコキシド等の水分捕捉剤を配置し、デバイス内部を低湿度環境に保つ技術が検討されている。
 しかしながら、このような有機金属化合物や金属アルコキシド等を水分捕捉剤として使用する場合、水と反応することでアルカンやアルコール等の分解生成物を生じる。このような分解生成物がデバイス内部に拡散すると、デバイスを構成する電荷輸送層や有機発光層等の有機材料に吸収されたり、デバイス内に存在する空隙の体積膨張を起こしたりするおそれがある。その結果、デバイスにピンホールが発生し、さらにはデバイスが変形して水分の侵入が促進されてデバイスの寿命が短くなる場合があった。
 さらに、一般的には、水分捕捉剤を溶媒に溶解させて塗布液とし、該塗布液をスピンコート等の塗布法により成膜して溶媒を除去することにより成形する必要がある。しかしながら、かかる方法で成形した場合、膜中に溶媒が残留することがある。このような場合、上記の分解生成物と同様、膜中に残留した溶媒がデバイス内部に拡散して、デバイスを構成する電荷輸送層や有機発光層等の有機材料に吸収されたり、デバイス内に存在する空隙の体積膨張を起こしたりするおそれがある。その結果、デバイスにピンホールが発生し、さらにはデバイスが変形して水分の侵入が促進されてデバイスの寿命が短くなる等の問題が生じる可能性があった。そこで、できる限り溶媒が除去された水分捕捉剤の開発が望まれていた。
 また、このような水分捕捉剤は、使用環境下(例えば、有機EL照明等では80℃程度)において熱流動により変形したり、水と反応することで不透明化する場合があった。
 一方、水分捕捉剤は、通常ガラス基板等の表面に形成されるものであるため、成膜性に優れると共に、ガラス密着性に優れていることが求められる。
 そこで、本発明にかかる幾つかの態様は、上記課題を解決することで、吸水性、熱流動性(耐熱性)に優れると共に、透明性、成膜性、およびガラス密着性にも優れた硬化体を形成することができる水分捕捉用組成物、該組成物から形成された硬化体、および該硬化体を備えた電子デバイスを提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明にかかる組成物の一態様は、
 下記一般式(1)で示される化合物(A)と、
 下記一般式(2)で示される構造を有する化合物(B)と、
を含有する。
 (R)nM  …(1)
(上記式(1)中、Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基、アリール基、カルボキシル基およびRO-で表される基から選択される1種である。複数存在するRは同一または異なってもよいが、複数存在するRのうち少なくとも1個は1以上の不飽和結合を有する基である。Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基およびアリール基から選択される1種である。nは2~4の整数であり、Mの原子価に等しい。Mは2~4価の原子である。)
Figure JPOXMLDOC01-appb-C000004
(上記式(2)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。)
 [適用例2]
 適用例1において、
 前記化合物(A)は、炭素-炭素不飽和結合を有することができる。
 [適用例3]
 適用例1または適用例2において、
 前記一般式(1)の前記Mは、アルミニウム、ホウ素、マグネシウム、カルシウム、チタン、ジルコニウムおよび亜鉛から選択される少なくとも1種であることができる。
 [適用例4]
 適用例1ないし適用例3のいずれか一例において、
 前記化合物(B)は、下記一般式(3)で示される繰り返し単位を有するポリシロキサンであることができる。
Figure JPOXMLDOC01-appb-C000005
(上記式(3)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。)
 [適用例5]
 適用例1ないし適用例4のいずれか一例において、
 前記化合物(A)は、下記一般式(4)で示される化合物であることができる。
Figure JPOXMLDOC01-appb-C000006
(上記式(4)中、Rは2価の有機基である。Rは水素原子または1価の有機基である。複数存在するRおよびRは同一または異なってもよい。)
 [適用例6]
 適用例1ないし適用例5のいずれか一例において、
 前記化合物(A)と前記化合物(B)とのヒドロシリル化反応を促進させるための触媒(C)をさらに含有することができる。
 [適用例7]
 適用例1ないし適用例6のいずれか一例において、
 ベンゾチアゾール、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、1-エチニル-1-シクロヘキサノール、ジエチルマレート、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリドンおよびN-ビニル-ε-カプロラクタムから選択される少なくとも1種の安定化剤をさらに含有することができる。
 [適用例8]
 適用例1ないし適用例7のいずれか一例に記載の組成物は、水分を捕捉する用途に使用することができる。
 [適用例9]
 本発明にかかる硬化体の一態様は、
 適用例8に記載の水分捕捉用組成物を用いて形成されたことを特徴とする。
 [適用例10]
 本発明にかかる電子デバイスの一態様は、
 適用例9に記載の硬化体を備えたことを特徴とする。
 本発明にかかる組成物は、吸湿性および耐熱性に優れると共に、透明性、成膜性、およびガラス密着性にも優れた硬化体(塗布膜やフィルム等)を形成することができる。該硬化体は、例えば80℃を超える使用環境下においても、熱流動により変形することがない。
 さらに、本発明にかかる組成物は、溶媒を含有しない態様を取ることができる。かかる態様によれば、硬化体中に溶媒が残留することがない。したがって、該硬化体を電子デバイス内に搭載することにより、硬化体中に溶媒が残留することによって電子デバイスに生じる弊害、例えばピンホールの発生やデバイスの変形による水分の侵入を防止することができる。
 上記硬化体は、有機EL素子等の電子デバイスにおける水分捕捉剤としての用途に好適であり、また透明性に優れる場合には、例えばトップエミッション型の有機EL素子に用いることができる。
図1は、第1の実施形態にかかる有機EL素子の断面を模式的に示す図である。 図2は、第2の実施形態にかかる有機EL素子の断面を模式的に示す図である。 図3は、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムのH-NMRスペクトル図である。 図4は、トリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウムのH-NMRスペクトル図である。
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例をも含む。
 1.組成物
 本実施の形態にかかる組成物は、
 下記一般式(1)で示される化合物(A)(以下、単に「(A)成分」ともいう。)と、下記一般式(2)で示される構造を有する化合物(B)(以下、単に「(B)成分」ともいう。)と、を含有する。
 (R)nM  …(1)
(上記式(1)中、Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基、アリール基、カルボキシル基およびRO-で表される基から選択される1種である。複数存在するRは同一または異なってもよいが、複数存在するRのうち少なくとも1個は1以上の不飽和結合を有する基である。Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基およびアリール基から選択される1種である。nは2~4の整数であり、Mの原子価に等しい。Mは2~4価の原子である。)
Figure JPOXMLDOC01-appb-C000007
(上記式(2)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。)
 以下、本実施の形態にかかる組成物を構成する各成分について説明する。
 1.1.化合物(A)
 本実施の形態にかかる組成物は、上記一般式(1)で示される化合物(A)を含有する。(A)成分の機能の一つとしては、(A)成分中に存在するR-M結合が水分と反応することにより、水分を捕捉することが挙げられる。このような(A)成分を用いることにより、吸湿性に優れた硬化体を得ることができる。すなわち、本実施の形態にかかる組成物から形成される硬化体を水分を捕捉する用途に用いるためには、該硬化体中に実質的にR-M結合が存在している必要がある。そのためには、本実施の形態にかかる組成物中においても、実質的にR-M結合が存在している必要がある。
 上記一般式(1)中、Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基、アリール基、カルボキシル基およびRO-で表される基から選択される1種であって、複数存在するRは同一または異なってもよいが、複数存在するRの少なくとも1個は1以上の不飽和結合を有する基である。Rは、RO-で表される基であることが好ましく、Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基またはアリール基から選択される1種である。前記R、Rは、直鎖状でも環状でもよいし、分岐鎖を有してもよい。また、前記RまたはRがアルケニル基もしくはアルキニル基である場合において、それぞれ二重結合、三重結合の位置および数は特に制限されない。なお、Rは、目的とする硬化体の特性を考慮して前述した基の中から適宜選択することができる。Rが前述した基であると、(A)成分と後述する(B)成分との相溶性を向上させることができる。その結果、放置しても相分離を抑制することができ、貯蔵安定性が良好な組成物を作製できる。
 上記一般式(1)中、nは2~4の整数であるから、Rは複数存在することになる。ここで、複数存在するRは同一または異なっていてもよいが、複数存在するRのうち少なくとも1個は1以上の不飽和結合を有している。不飽和結合の位置および数は、特に制限されない。R中に1以上の不飽和結合を有することにより、(B)成分中に存在するSi-H結合が開裂して、R中に存在する不飽和結合へ付加反応(いわゆるヒドロシリル化反応)することができる。この反応により、(A)成分と(B)成分とを結合させて固定化することができる。
 なお、複数存在するRは、全て不飽和結合を有することがより好ましい。Rの全てが不飽和結合を有すると、(A)成分と後述する(B)成分とを結合させて固定化するに際して、(B)成分と反応せずに残留するR量を低減できる。その結果、Rに由来するアルカンやアルコール等の加水分解成分(RH)の発生を抑制できる。
 R中に存在する不飽和結合は、炭素-炭素不飽和結合であることが好ましい。炭素-炭素不飽和結合であると、Si-H結合と反応して安定なSi-C結合を生成することができる。その結果、(A)成分が加水分解した場合であっても、Si-C結合は安定であるので、Rに由来するアルカンやアルコール等の加水分解成分(RH)の発生を抑制できる。
 さらに、前記炭素-炭素不飽和結合は、エチレン性の不飽和結合であることがより好ましい。エチレン性の不飽和結合は、Si-H結合との反応性に富んでいるため、(A)成分と後述する(B)成分との反応が容易に進行する。その結果、(B)成分と反応せずに残留するR量を低減でき、ひいてはRに由来するアルカンやアルコール等の加水分解成分(RH)の発生を抑制できる。
 Rの炭素数は、好ましくは6~30であり、より好ましくは10~20であり、特に好ましくは12~20である。上記一般式(1)で示される化合物が加水分解することにより、Rに由来するアルカンやアルコール等の加水分解成分(RH)が発生する。しかしながら、Rの炭素数が前記範囲内であると、これらの加水分解成分の沸点が高くなり、アウトガスの成分となりにくく、また後述する(B)成分と均一な混合物を形成しやすいため好ましい。また、Rの炭素数が前記範囲内であると、発生する加水分解成分(RH)が硬化体の可塑剤として作用しないため、熱流動性を増大させない点で好ましい。なお、加水分解成分の沸点は、1気圧において200℃以上であることが好ましく、250℃以上であることがより好ましい。200℃以上であれば、例えば電子デバイス内への加水分解成分の拡散を抑制することができる。
 なお、Rが2以上の不飽和結合を有する基である場合、加水分解後も(B)成分との反応生成物の架橋構造が維持され、さらに好ましい。
 上記アルキル基としては、例えば、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、テトラメチルヘキサデシル基、オクタデシル基等が挙げられる。
 上記アルケニル基としては、オクテニル基、ドデセニル基、オクタデセニル基、アリル基等が挙げられる。
 上記アルキニル基としては、エチニル基、プロピニル基、フェニルエチニル基等が挙げられる。
 上記環式アルキル基としては、シクロヘキシル基等が挙げられる。
 上記アリール基としては、フェニル基、ベンジル基等が挙げられる。
 上記一般式(1)中、Mは2~4価の原子である。このような原子としては、IUPAC周期表における第2族元素、第4族元素、第12族元素、第13族元素、第14族元素があり、具体的にはAl、B、Mg、Zn、Ti、Zr、Si等が挙げられる。これらの中でも、吸湿性に優れており、かつ、水分を捕捉することにより分解した後、着色がなく透明性を保持できる観点から、Alが好ましい。
 上記一般式(1)で示される化合物は、下記一般式(4)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(4)中、Rは、2価の有機基である。2価の有機基としては、置換もしくは非置換の、アルキレン基、オキシアルキレン基であることが好ましい。Rは、水素原子または1価の有機基である。1価の有機基としては、置換もしくは非置換の、アルケニル基、アルキニル基、環式アルキル基、アリール基およびカルボキシル基から選択される1種であることが好ましい。RおよびRは、目的とする硬化体の特性によって適時選択することができる。また、エーテル構造がRやRで示される基中に存在すると、(A)成分と後述する(B)成分との相溶性がより向上するため、硬化体の要求される特性に応じて(A)成分と(B)成分との配合量比を自由にコントロールできる場合がある。さらに、上記一般式(4)で示される化合物がエチレン性の不飽和結合を有するため、Si-H結合と容易に反応することができる。その結果、(A)成分が加水分解することにより発生する低分子量成分の発生を大幅に低減することができる。
 上記一般式(4)で示される化合物の具体例としては、例えば、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム、トリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウム、トリ(2-ドデセノキシ)アルミニウム等が挙げられる。
 上記トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムおよびトリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウムは、優れた水分捕捉作用を有する新規な化合物であり、それぞれ下記式(5)および下記式(6)で示される構造を有する。特に下記式(5)で示されるトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムは、水分と反応することにより生成されるアルコールの沸点が1気圧下で258℃であり、使用環境下において揮発しにくいアルコールを生成するという特徴を有している。さらに、下記式(5)および下記式(6)で示される化合物は、いずれも後述する化合物(B)との相溶性にも優れており、透明な組成物を製造することができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 以下、上記式(5)で示される化合物の製造方法について説明する。
 上記式(5)で示される化合物は、トリメチロールプロパンジアリルエーテル2.8~3.5当量に、トリイソブチルアルミニウムを撹拌しながら少量ずつ添加し、0~150℃の適度な温度で1時間から4時間反応させることにより容易に製造することができる。その後、常法に従って後処理することによって、上記式(5)で示される化合物が得られる。なお、上記式(5)で示される化合物の製造過程において、生成物中に不可避的に混入する反応液由来の成分や副生成物が混入する場合があるが、上記式(5)で示される化合物を主成分とする生成物であれば、本実施の形態にそのまま適用することができる。
 以下、上記式(6)で示される化合物の製造方法について説明する。
 上記式(6)で示される化合物は、トリイソプロポキシアルミニウムを乾燥トルエン中に溶解させて、そこに2-(2-ビニロキシエトキシ)エタノールを3~4当量加え、90℃で所定時間反応させることにより容易に製造することができる。その後、常法に従って後処理することによって、上記式(6)で示される化合物が得られる。なお、上記式(6)で示される化合物の製造過程において、生成物中に不可避的に混入する反応液由来の成分や副生成物が混入する場合があるが、上記式(6)で示される化合物を主成分とする生成物であれば、本実施の形態にそのまま適用することができる。
 本実施の形態にかかる組成物中における(A)成分の含有量は、組成物の全質量を100質量%とした場合、好ましくは10質量%以上90質量%以下であり、より好ましくは50質量%以上80質量%以下である。(A)成分の含有量が前記範囲内であると、水分を捕捉する作用を硬化体において効果的に発現させることができるため好ましい。さらに、(A)成分の含有量が前記範囲内であると、組成物に後述するような適度な粘度を付与することができ、硬化体を形成する際の成膜等の作業性が良好となる。
 1.2.化合物(B)
 本実施の形態にかかる組成物は、上記一般式(2)で示される構造を有する化合物(B)を含有する。かかる化合物(B)は、上記一般式(2)で示される構造を有するポリマーであってもよいし、モノマーであってもよい。
 本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において(A)成分と(B)成分とが共存すると、(B)成分中に存在するSi-H結合が開裂して(A)成分中に存在する不飽和結合に付加反応(いわゆるヒドロシリル化反応)することができる。この付加反応によって、(A)成分が(B)成分に固定化された硬化体を形成することができる。このような硬化体を形成することで、(A)成分が吸湿することによって発生する加水分解生成物を低分子量化させることを防止できる。これにより、加水分解生成物の揮発を抑制することができる。なお、本明細書において、「低分子量」とは、分子量が300程度までであることをいう。
 なお、(B)成分がモノマーである場合、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において(B)成分自体が重合反応すると共に、前述した(A)成分と(B)成分とが共重合反応して、(A)成分が(B)成分に固定化された硬化体を形成することができる。もしくは、(B)成分が2官能以上のモノマーである場合には、(B)成分自体が重合反応を起こさなくても架橋がかかり、(A)成分と(B)成分とが相互に結合した硬化体を形成することができる。このような硬化体を形成することで、(A)成分が吸湿することにより発生する加水分解生成物を低分子量化させることを防止できる。これにより、加水分解生成物の揮発を抑制することができる。
 なお、(B)成分は、下記一般式(3)で示される構造を有する化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
(上記式(3)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。)
 上記一般式(2)および上記一般式(3)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。なお、Rは、目的とする硬化体の特性を考慮して前述した基の中から適宜選択することができる。Rが前述した基であると、(A)成分と後述する(B)成分との相溶性を向上させることができる。その結果、放置しても相分離を抑制することができ、貯蔵安定性が良好な組成物を作製できる。前記有機基としては、例えば、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基またはアリール基が挙げられ、基中にハロゲン原子、エーテル基を含んでいてもよい。これらの有機基は、直鎖状でも環状でもよいし、分岐鎖を有してもよい。また、アルケニル基、アルキニル基において、それぞれ二重結合、三重結合の位置および数は特に限定されない。なお、前記有機基としては、炭素数1~30の有機基であることが好ましい。Rが炭素数1~30の有機基であると、(A)成分と(B)成分との相溶性がさらに向上し、貯蔵安定性がさらに良好な組成物を作製できる場合がある。
 上記アルキル基としては、例えば、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、テトラメチルヘキサデシル基、オクタデシル基、3,3,3-トリフルオロプロピル基等が挙げられる。
 上記アルケニル基としては、ビニル基、オクテニル基、ドデセニル基、オクタデセニル基、アリル基等が挙げられる。
 上記アルキニル基としては、エチニル基、プロピニル基、フェニルエチニル基等が挙げられる。
 上記環式アルキル基としては、シクロヘキシル基等が挙げられる。
 上記アリール基としては、フェニル基、ベンジル基等が挙げられる。
 (B)成分は、上記一般式(2)で示される繰り返し単位を有するポリマーであることが好ましく、上記一般式(3)で示される繰り返し単位を有するポリシロキサンであることがより好ましい。(B)成分としては、例えば、ポリジハイドロジェンシロキサン、ポリ(メチルハイドロジェンシロキサン)、ポリ(エチルハイドロジェンシロキサン)、ポリ(フェニルハイドロジェンシロキサン)、ポリフェニル(ジメチルハイドロジェンシロキシ)シロキサン、ポリ[(メチルハイドロジェンシロキサン)(ジメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(エチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ヘキシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクタデシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(フェニルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジメトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(3,3,3-トリフルオロプロピルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(2-フルオロエトキシメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((2-メトキシエトキシ)メチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(フェノキシメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(ナフチルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(4-クロロフェニルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((4-メトキシフェニル)シメチルシロキサン)]コポリマー等が挙げられる。
 (B)成分がポリマーである場合の重量平均分子量は、好ましくは300~100,000であり、より好ましくは1,000~50,000である。なお、本発明において「重量平均分子量」とは、GPC(ゲル浸透クロマトグラフィー)によるポリスチレン換算の重量平均分子量のことである。(B)成分の重量平均分子量が前記範囲内であると、(A)成分が吸湿することにより発生する加水分解生成物の低分子量化を防止することができる。これにより、加水分解生成物の揮発を抑制することができるため好ましい。また、(B)成分の重量平均分子量が前記範囲内であると、(B)成分を添加することで組成物に適度な粘性を付与することができる。これにより、本実施の形態にかかる組成物の成膜等の作業性を向上させることができる。
 (B)成分がポリマーでない場合、(B)成分としては、上記一般式(2)で示される構造を有する化合物であれば特に限定されないが、例えば、ジフェニルt-ブチルハイドロシラン、トリベンジルシラン等が挙げられる。
 以下、(B)成分の機能について列挙して説明する。
 第1に、前述したように、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において、(A)成分と(B)成分とが反応することにより、(A)成分が(B)成分に固定化された硬化体を形成することができる。その結果、該硬化体中の(A)成分に由来する部位が水分と反応することにより発生する加水分解生成物は、揮発性の高い低分子量のアルコールやアルカン等ではなく、揮発性の低い中分子量ないし高分子量のアルコールやアルカン等の化合物となる。これにより、加水分解生成物の揮発による電子デバイス内への拡散を抑制することができる。
 第2に、(B)成分を使用することで組成物を無溶媒化することができる。(B)成分は(A)成分と任意に混ざり合うことができるため、(A)成分を溶解させるための溶媒が不要となる。これにより、前述したような硬化体中に溶媒が残留することによる弊害を防止することができる。
 第3に、(B)成分は、硬化体の熱流動性を抑制させることができる。前述したように、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において、(A)成分と(B)成分とが反応することにより、(A)成分が(B)成分に固定化された硬化体を形成することができる。かかる硬化体は、前述した(A)成分の吸湿能を維持したままで熱流動性を抑制させることができる。
 第4に、(B)成分は、(A)成分と任意に混ざり合うことができるため、組成物を硬化させて得られる硬化体の透明性を向上させることができる。
 本実施の形態にかかる組成物中における(B)成分の含有量は、組成物の全質量を100質量%とした場合、好ましくは10質量%以上90質量%以下であり、より好ましくは20質量%以上50質量%以下である。(B)成分の含有量が前記範囲内であると、前述した各機能を損なわずに良好な硬化体を形成することができる。
 1.3.触媒(C)
 本実施の形態にかかる組成物は、(A)成分と(B)成分とのヒドロシリル化反応を促進させるために、触媒(C)(以下、単に「(C)成分」ともいう。)を含有してもよい。触媒(C)としては、白金錯体またはロジウム錯体が好ましい。白金錯体としては、例えば、カルボニルシクロビニルメチルシロキサン白金錯体、白金-オクタナル/オクタノール錯体、シクロビニルメチルシロキサン白金錯体、カルボニルジビニルメチル白金錯体、ジビニルテトラメチルジシロキサン白金錯体等が挙げられる。ロジウム錯体としては、例えば、トリス(ジブチルスルフィド)ロジウムトリクロライド等が挙げられる。
 本実施の形態にかかる組成物中における(C)成分の含有量は、組成物の全質量を100質量%とした場合、好ましくは0.0001質量%以上1質量%以下であり、より好ましくは0.001質量%以上0.1質量%以下である。(C)成分の含有量が前記範囲内であると、(A)成分と(B)成分とのヒドロシリル化反応を促進させることができるだけでなく、組成物を硬化させて得られる硬化体の吸湿性や透明性等の基本的な性能を損なわない点で好ましい。
 1.4.含有比率(W/W
 本実施の形態にかかる組成物において、前記(A)成分の含有量(W)と前記(B)成分の含有量(W)との含有比率(W/W)は、好ましくは0.18以上5以下であり、より好ましくは1以上5以下であり、特に好ましくは1以上4以下である。含有比率(W/W)が前記範囲内であることにより、得られる硬化体は、十分な吸水容量を確保できると共に、優れた耐熱性およびガラス密着性を有することができる。含有比率(W/W)が0.18未満であると、得られる硬化体の吸水容量が小さくなり水分捕捉剤としての機能が十分に発揮されず、成膜性、ガラス密着性の点で劣る傾向がある。一方、含有比率(W/W)が5を超えると、得られる硬化体の吸水容量については十分であるが、耐熱性、成膜性、ガラス密着性の点で劣る傾向がある。
 1.5.その他の添加剤
 本実施の形態にかかる組成物には、上記(A)成分以外の吸湿剤をさらに添加してもよい。(A)成分以外の吸湿剤は、(B)成分と相溶性を有するものであれば特に制限されない。(A)成分以外の吸湿剤としては、例えばトリヘキシロキシアルミニウム、トリオクチロキシアルミニウム、トリデシロキシアルミニウム、トリドデシロキシアルミニウム、トリオクタデシロキシアルミニウム、トリデシロキシボラン、トリドデシロキシボラン、トリオクタデシロキシボラン、トリデシルアルミニウム、トリドデシルアルミニウム等が挙げられる。
 本実施の形態にかかる組成物には、上記(B)成分以外の重合性化合物をさらに添加してもよい。上記(B)成分以外の重合性化合物としては、例えば(メタ)アクリル酸、メタクリル酸メチル(MMA)、メタクリル酸エチル(EMA)、メタクリル酸プロピル(PMA)、メタクリル酸ブチル(BMA)、メタクリル酸エチルヘキシル(EHMA)、メタクリル酸トリメトキシシリルプロピル(TMSPMA)、メタクリル酸ターシャリーブチル(t-BMA)、メタクリル酸水添ブタジエン(株式会社クラレ製、商品名「L1253」)、アクリル酸メチル、アクリル酸エチル、アクリル酸ベンジル等のアクリル基を有する重合性化合物;トリエチレングリコールジビニルエーテル等のビニルエーテル基を有する重合性化合物;ビニルシクロヘキセンモノオキサイド等のビニル基を有する重合性化合物、オキセタニル基やオキシラニル基等の環状エーテル基を有する重合性化合物等が挙げられる。これらの重合性化合物は、1種単独あるいは2種以上組み合わせて使用してもよい。
 本実施の形態にかかる組成物には、安定化剤をさらに添加してもよい。安定化剤を添加することにより、本実施の形態にかかる組成物のゲル化を抑制でき、貯蔵安定性が良好となる。安定化剤としては、例えば、硫黄化合物、リン化合物、アルキン化合物、マレイン酸誘導体、含窒素化合物等が挙げられる。具体的には、ベンゾチアゾール、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、1-エチニル-1-シクロヘキサノール、ジエチルマレート、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリドン、N-ビニル-ε-カプロラクタム(いずれも東京化成工業株式会社より入手可能)等が挙げられる。これらの安定化剤は、1種単独で用いてもよく、2種以上混合して用いてもよい。これらの安定化剤を使用することにより、ゲル化時間を適切にコントロールできるため貯蔵安定性に優れる組成物を得ることができ、しかも良好な硬化体を作製することができる。
 安定化剤の含有量は、安定化剤を除いた組成物の全質量を100質量部とした場合、好ましくは0.01質量部以上5質量部以下、より好ましくは0.05質量部以上2質量部以下、特に好ましくは0.05質量部以上1質量部以下である。安定化剤の含有量が前記範囲にあると、組成物の貯蔵安定性が良好となるため十分な常温可使時間が得られると共に、組成物の硬化性も損なわれない点で好ましい。
 また、本実施の形態にかかる組成物には、必要に応じて伝熱性を高めるために伝熱性のフィラーを混合してもよい。本実施の形態にかかる組成物が用いられる、有機EL素子を複数配置した有機EL照明装置は発熱するため、素子近傍の温度が高くなることに起因して、輝度や発光効率等の発光特性に悪影響を与えるという不都合が生じることがある。しかし、伝熱性のフィラーを混合することにより放熱性を高めて、水分から素子を保護すると同時に発熱による弊害からも素子を保護することができるため好ましい。
 伝熱性のフィラーとしては、無機粒子等の公知のフィラーを使用することができる。また、伝熱性のフィラーとして無機粒子を使用する場合、本実施の形態にかかる組成物を用いて形成された硬化体の熱伝導性を向上させるだけでなく、(A)成分が吸湿により分解されて発生する成分(分解生成物)を吸着させて、硬化体の内部に該分解生成物を捕捉しておくことができる。これにより、前記分解生成物が硬化体の可塑剤として作用することを防止することができる。すなわち、本実施の形態にかかる組成物を用いて形成された硬化体は、例えば80℃を超える使用環境下においても、熱流動により変形することがない。さらに無機粒子の他の機能としては、本実施の形態にかかる組成物を用いて形成された硬化体の機械的強度を向上させること、該硬化体の吸湿能を高めること等が挙げられる。
 本発明において、「無機粒子」とは、炭素原子を構造の基本骨格に有する有機化合物以外の化合物から形成された粒子をいうが、炭素の同素体から形成された粒子は含まれる。
 無機粒子の材質としては、金属酸化物または金属窒化物であることが好ましい。金属酸化物としては、例えばシリカ(シリカゲルを含む)、スメクタイト、ゼオライト、アルミナ、酸化チタン、ジルコニア、マグネシア、放熱材料用に使用される各種ガラス粉末等が挙げられる。金属窒化物としては、例えば窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられる。また、金属酸化物や金属窒化物ではないが、炭化ケイ素、炭化ホウ素、活性炭を無機粒子として使用することもできる。これらの中でも、熱流動性を抑制する観点から、アルミナ、シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、マグネシア、炭化ケイ素、炭化ホウ素およびスメクタイトから選択される少なくとも1種の粒子であることが好ましく、さらに熱伝導性に優れている観点から、アルミナおよび/または窒化ホウ素の粒子であることが特に好ましい。これらの無機粒子は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 本実施の形態において使用されるシリカ粒子の作製方法は、特に限定されず、従来の公知の方法を適用することができる。例えば、特開2003-109921号公報や特開2006-80406号公報に記載のシリカ粒子分散液の製造方法に準じて作製することができる。また、従来の公知の方法として、ケイ酸アルカリ水溶液からアルカリを除去することによりシリカ粒子を作製する方法がある。ケイ酸アルカリ水溶液としては、一般に水ガラスとして知られているケイ酸ナトリウム水溶液、ケイ酸アンモニウム水溶液、ケイ酸リチウム水溶液、ケイ酸カリウム水溶液等が挙げられる。また、ケイ酸アンモニウムとしては、水酸化アンモニウム、テトラメチルアンモニウム水酸化物からなるケイ酸塩が挙げられる。
 本実施の形態において使用されるシリカ粒子は、疎水変性されているものが好ましい。「疎水変性」とは、シリカ粒子に存在するシラノール基(-SiOH)の水素原子がアルキル基等の疎水基(-R)に置換されることをいう。シリカ粒子の表面に存在するシラノール基は、上記(A)成分と反応することにより本実施の形態にかかる組成物から形成される硬化体の吸水能を低下させる傾向がある。したがって、シリカ粒子の表面に存在するシラノール基を疎水変性することにより、硬化体の吸水能の低下を抑制することができる。また、シリカ粒子の疎水変性を行うことにより、混合する際のシリカ粒子の分散性が向上する。
 無機粒子の形状については、特に限定されず、球状または楕円球状であってもよいし、多角体状であってもよい。また、無機粒子は、多孔質粒子であってもよいし、内部が空洞化したコア・シェル粒子であってもよい。
 無機粒子の平均粒径は、好ましくは5~5,000nmであり、より好ましくは5~2,000nmであり、さらに好ましくは5~500nmであり、特に好ましくは5~100nmである。平均粒径が前記範囲内にあると、本実施の形態にかかる組成物を用いて形成された硬化体の熱流動による変形を防止することができる。特に平均粒径が5~100nmであると、透明性に優れた硬化体を形成できる点で有利である。平均粒径が前記範囲内であると、組成物に後述するような適度な粘度を付与することが容易となり、硬化体を形成する際の作業性(塗布性等)が良好となる。さらに、平均粒径が前記範囲内であると、無機粒子が分解生成物を捕捉するのに十分な表面積を有することになり、これにより前記硬化体の熱流動による変形を抑制することができるため好ましい。
 なお、無機粒子の平均粒径は、BET法を用いて測定した比表面積から算出されたものであることが好ましいが、これに限定されず他の公知の方法により測定することもできる。
 また、無機粒子の平均粒径は、本実施の形態にかかる組成物から形成された硬化体を回収し、該硬化体を切断し、その切断面を電子顕微鏡等で観察することにより測定することもできる。かかる方法で測定することにより、硬化体形成後においても無機粒子の平均粒径を測定することができる。
 本実施の形態にかかる組成物中における無機粒子の含有量は、組成物の全質量を100質量%とした場合、硬化体の熱伝導性を向上させる観点では、好ましくは0.1質量%以上80質量%以下であり、より好ましくは20質量%以上60質量%以下である。さらに、硬化体の透明性を確保する観点では、好ましくは0.1質量%以上20質量%以下であり、より好ましくは0.1質量%以上10質量%以下である。なお、無機粒子の含有量が0.1質量%以上であれば、熱流動により変形しない硬化体を得ることができる。
 1.6.組成物の製造方法
 本実施の形態にかかる組成物は、(A)成分および(B)成分、必要に応じて(C)成分、その他の添加剤を混合することにより製造することができる。これらの成分を混合する方法は、特に制限されないが、(B)成分(必要に応じて(C)成分、その他の添加剤を加えたもの)を撹拌しながら(A)成分を少量ずつ添加して溶解させることで本実施の形態にかかる組成物を得ることができる。
 1.7.組成物の物性および用途
 本実施の形態にかかる組成物は、20℃における粘度が50~500,000cPであることが好ましい。粘度が前記範囲内であることにより、組成物をODF法やディスペンス法により直接、素子基板へ塗布し、硬化させることができる。これにより、本実施の形態にかかる組成物をフィルム状等の成形体としてあらかじめ作製しておき、それを素子へ組み込む工程を経る必要がなくなるので、工程を簡略化することができる。また、本実施の形態にかかる組成物に光酸発生剤等を添加して、感光性を付与すれば、微細なパターニングが可能となる。なお、上記粘度は、フォーリング・ニードル法により測定される値を示す。
 本実施の形態にかかる組成物は、(A)成分を含有する硬化体を形成することができるため、水分を捕捉する用途に使用することができる。本実施の形態にかかる組成物は、有機EL素子、有機TFT、有機太陽電池、有機CMOSセンサー等の水分捕捉剤として用いることができ、特に有機EL素子の水分捕捉剤に好適に用いられる。
 2.硬化体
 本発明において「硬化体」とは、上記組成物を使用に適する形状に成膜もしくは成形し、さらに加熱または光照射することにより、もとの組成物よりも粘度または硬度が上昇したものをいう。
 本実施の形態にかかる硬化体は、例えば上記組成物をガラス基板等の基材上に塗布して成膜した後、加熱または光照射して硬化させることにより得られる。当該硬化体は、R-M結合を有する(A)成分を含有している。このR-M結合が水分と反応することにより水分を捕捉し、本願発明の作用効果を奏することができるのである。したがって、当該硬化体を水分を捕捉する用途に用いるためには、該硬化体中に実質的にR-M結合が存在している必要がある。
 塗布方法としては、スピンコータ、ロールコータ、スプレーコータ、ディスペンサ、インクジェット装置を用いる方法等が挙げられる。
 硬化の際の温度は、例えば、40℃~250℃であることが好ましく、50℃~150℃であることがより好ましい。特に(C)成分を用いる場合には、前記範囲の温度に加熱することで良好な硬化体を作製することができる。
 得られた硬化体の形状は、特に限定されないが、例えばフィルム形状を有する。該硬化体がフィルム形状を有する場合、その膜厚は、例えば5~100μmであることが好ましい。
 本実施の形態にかかる硬化体中における(A)成分の含有量は、硬化体の全質量を100質量%とした場合、好ましくは10質量%以上90質量%以下、より好ましくは50質量%以上80質量%以下である。(A)成分の含有量が前記範囲内であると、水分を捕捉する機能を十分に発現させることができるため好ましい。さらに、(A)成分の含有量が前記範囲内であると、成膜性が良好となり、硬化体に透明性を付与しやすくなる点で好ましい。
 3.電子デバイス
 本実施の形態にかかる電子デバイスは、上記硬化体を電子デバイスの内部に備えている。水分を嫌う電子デバイスであれば、いかなる電子デバイスにも上記硬化体を搭載することができる。以下、代表的な密閉型電子デバイスである有機EL素子の一例について図面を参照しながら説明する。
 図1は、第1の実施形態にかかる有機EL素子100の断面を模式的に示す図である。図1に示すように、有機EL素子100は、有機EL層10と、有機EL層を収納して外気から遮断するための構造体20と、構造体20内に形成された捕捉剤層30と、からなる。
 有機EL層10は、有機材料からなる有機発光材料層が、互いに対向する一対の電極の間に挟持されてなる構造であればよく、例えば陽極/電荷(正孔)輸送剤/発光層/陰極等の公知の構造をとることができる。
 捕捉剤層30は、上記組成物の硬化体である。捕捉剤層30は、図1に示すように、有機EL層10と離間して形成されている。
 図1中、構造体20は、基板22と、封止キャップ24と、接着剤26とからなる。基板22としてはガラス基板等、封止キャップ24としてはガラスからなる構造体等が挙げられる。なお、構造体20の構造は、有機EL層10を収納することができればよく、特に限定されない。
 図2は、第2の実施形態にかかる有機EL素子200の断面を模式的に示す図である。図2に示すように、有機EL素子200は、構造体20内に形成された捕捉剤層30が有機EL層10に密着させるように形成されている点で、有機EL素子100とは異なる。捕捉剤層30は、揮発性成分の残留や発生が少ない硬化体であるため、有機EL層10の表示特性を損なうことがない。また、捕捉剤層30は、有機EL層10へ水分が進入することを防止すると共に、有機EL層10を保護することもできる。
 4.実施例
 以下、本発明に関して実施例を挙げて説明するが、本発明はこれらの実施例により何ら制限されるものではない。
 4.1.化合物(A)
 4.1.1.トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムの合成
 500mLの三口フラスコに、トリメチロールプロパンジアリルエーテル(ダイソー株式会社製、商品名「ネオアリルT-20」)162.0g[756mmol]を仕込み、撹拌しながら少量ずつトリイソブチルアルミニウム50.0g[252.7mmol]をグローボックス中で滴下した。1時間そのまま撹拌した後、120℃で90分間撹拌した。温度を120℃に保ちつつ、真空ポンプによって減圧しながら未反応の原料を留去し、室温まで冷却してトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム(以下、「TMDE-3」という)164.0gを無色透明油状物として得た。収率は、定量的であった。
 図3は、得られたTMDE-3のH-NMRスペクトル図である。H-NMR測定においては、内部標準物質としてトルエン-d8(ピークδ2.1付近)を用いた。図3により、得られた化合物は、上記式(5)で示される化学構造を有することが示された。
 また、仕込み量をトリメチロールプロパンジアリルエーテル162.0g[756mmol]、トリイソブチルアルミニウム60.0g[303.2mmol]に変更したこと以外は、上記の方法と同様にしてトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムを含有する混合物(以下、「TMDE-3B」という)172.0gを得た。得られたTMDE-3BをTMDE-3と同様にH-NMR測定した結果、上記式(5)で示される化学構造を有する化合物を含有する混合物であることが分かった。
 さらに、仕込み量をトリメチロールプロパンジアリルエーテル194.4g[907mmol]、トリイソブチルアルミニウム50.0g[252.7mmol]に変更したこと以外は、上記の方法と同様にしてトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムを含有する混合物(以下、「TMDE-3C」という)194.0gを得た。得られたTMDE-3CをTMDE-3と同様にH-NMR測定した結果、上記式(5)で示される化学構造を有する化合物を含有する混合物であることが分かった。
 このようにして得られたトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム(TMDE-3)およびTMDE-3を含有する混合物(TMDE-3B、TMDE-3C)を以下に示す実施例および比較例において、(A)成分として使用した。
 4.1.2.トリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウムの合成
 200mLの三口フラスコに、トリイソプロポキシアルミニウム15.0g[73.4mmol]および乾燥トルエン45mLを仕込み、乾燥窒素雰囲気下で攪拌しながらトリイソプロポキシアルミニウムを溶解した。そこへ、2-(2-ビニロキシエトキシ)エタノール33.0mL[257mmol]加え、90℃で10分間保った後、温度をそのまま13.3kPaにて反応で出てくる2-プロパノールを留去し、133Paにて未反応の2-(2-ビニロキシエトキシ)エタノールを留去した。このようにして、トリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウム(以下、「DEGV-3」という)32gを無色透明油状物として得た。収率は、定量的であった。
 図4は、得られたDEGV-3のH-NMRスペクトル図である。H-NMR測定においては、内部標準物質としてトルエン-d8(ピークδ2.1付近)を用いた。図4により、得られた化合物は、上記式(6)で示される化学構造を有することが示された。
 このようにして得られたトリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウム(DEGV-3)を以下に示す実施例において、(A)成分として使用した。
 4.2.化合物(B)
 以下に示す実施例および比較例において、市販されている下記の化合物を化合物(B)として使用した。
・ポリメチルハイドロジェンシロキサン(アヅマックス株式会社製、商品名「HMS-991」)
・ポリエチルハイドロジェンシロキサン(アヅマックス株式会社製、商品名「HES-992」)
・ポリフェニル(ジメチルハイドロジェンシロキシ)シロキサン(アヅマックス株式会社製、商品名「HDP-111」)
 4.3.触媒(C)
 以下に示す実施例および比較例において、市販されている下記の化合物を触媒(C)として使用した。
・シクロビニルメチルシロキサン白金錯体(アヅマックス株式会社製、商品名「SIP6832.0」、3質量%メチルビニルシロキサン含有品)
・カルボニルジビニルメチル白金錯体(アヅマックス株式会社製、商品名「SIP6832.0」、3質量%ビニルメチル環状シロキサン含有品)
 4.4.安定化剤
 以下に示す実施例および比較例において、市販されている下記の化合物を安定化剤として使用した。
・ベンゾチアゾール(東京化成工業株式会社製)
・トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(東京化成工業株式会社製)
・1-エチニル-1-シクロヘキサノール(東京化成工業株式会社製)
・ジエチルマレート(東京化成工業株式会社製)
・N-メチルピロリドン(東京化成工業株式会社製)
・N-ビニル-ε-カプロラクタム(東京化成工業株式会社製)
 4.5.その他の添加剤
 以下に示す実施例および比較例において、市販されている下記の化合物を添加剤として使用した。
・トリドデシルアルミニウム(ケムチュラ株式会社製、商品名「TA0365」)
・ポリジメチルシロキサン(アヅマックス株式会社製、商品名「DMS-T21」)
・アルミニウムイソプロポキシド(シグマ アルドリッチ ジャパン株式会社製)
 4.6.実施例および比較例
 4.6.1.フィルムの作製
 下記のようにして、実施例1~18および比較例1~5において評価するフィルムを作製した。
 まず、露点-60℃以下、酸素5ppm以下のグローブボックス中で、所定量の化合物(A)に相当する成分および化合物(B)に相当する成分を混合し、十分に撹拌して均一な溶液とした。そこに、所定量の安定化剤を添加し、さらに均一な溶液となるまで撹拌した。その後、所定量の触媒(C)を添加して、表1または表2に記載の組成物A~Vを得た。
 次いで、得られた組成物をガラス基板上に塗布し、80℃または100℃の温度で30分または1時間または3時間加熱することにより熱硬化させてフィルムを成形した。組成物A~Vの組成を、表1および表2に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 なお、表1および表2における成分の略称は、それぞれ下記の成分を表す。
・「TMDE-3」;トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム(前記「4.1.1.」項で合成したもの)
・「TMDE-3B」;トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムを含有する混合物(前記「4.1.1.」項で合成したもの)
・「TMDE-3C」;トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムを含有する混合物(前記「4.1.1.」項で合成したもの)
・「DEGV-3」;トリ(2-(2-ビニロキシエトキシ)エトキシ)アルミニウム(前記「4.1.2.」項で合成したもの)
・「TD-3」;トリドデシルアルミニウム
・「(i-PrO)3Al」:アルミニウムイソプロポキシド
・「PMHS」;ポリメチルハイドロジェンシロキサン
・「PEHS」;ポリエチルハイドロジェンシロキサン
・「PPMHS」;ポリフェニル(ジメチルハイドロジェンシロキシ)シロキサン
・「PMS」;ポリジメチルシロキサン
・「BT」;ベンゾチアゾール
・「TDBPP」;トリス(2,4-ジ-t-ブチルフェニル)フォスファイト
・「ECHO」;1-エチニル-1-シクロヘキサノール
・「DEM」;ジエチルマレート
・「NMP」;N-メチルピロリドン
・「VC」;N-ビニル-ε-カプロラクタム
 4.6.2.評価方法
 上記「4.6.1.フィルムの作製」で得られた各フィルムについて、吸湿性、透明性、成膜性、ガラス密着性および貯蔵安定性(ゲル化時間)を下記の方法により評価した。なお、熱流動性は、下記の方法により別途フィルムを作製して評価した。その結果を表1および表2に併せて示す。
 (1)吸湿性
 内径3cmのガラスシャーレに、実施例、比較例の各フィルムで厚さが0.6mmのものを作製し、湿度計と温度計を装着した内容積800cmのデシケーターに、先に作製したフィルムをガラスシャーレごと入れ、デシケーター内部の湿度と温度の変化を測定した。測定により得られた相対湿度(Hr、%)、摂氏温度(Tc、℃)の値から下記式(7)により絶対湿度(Ha、%)を求めた。そして、測定開始時の絶対湿度Ha(0h)から2時間後の絶対湿度Ha(2h)の減少割合を吸水率とし、吸水率を下記式(8)により算出して評価した。
 Ha=4.0×10-3{exp(6.4×10-2・Tc)}Hr …(7)
 吸水率(%)=100×(Ha(0h)-Ha(2h))/Ha(0h) …(8)
 吸水率(%)は、20%以上が好ましく、30%以上がより好ましく、40%以上が特に好ましい。
 (2)熱流動性(耐熱性)
 まず、組成物A~Vのいずれか1種をサンプル管中に適量入れて、80℃で60分間加熱することにより、膜厚2mmのフィルムを前記サンプル管の底部に作製した。次に、大気中で前記フィルムを十分に吸湿させた後、さらに蓋を閉めシールし、サンプル管の底部が上(成膜面が上)となるように固定した状態で85℃の環境下に静置した。その後336時間経過した時点のフィルムの状態を観察した。なお、熱流動性の評価基準は、フィルムに変化が認められなかった場合を「○」、フィルムが下方へ垂れて変形が認められた場合を「×」とした。
 (3)透明性
 上記「4.6.1.フィルムの作製」で得られたフィルムについて、目視により白濁が生じないものを「○」、白濁するものを「×」とした。なお、透明性の要求されるトップエミッション型の有機EL等の用途に適用する場合には、透明性が良好なものが好ましい。
 (4)成膜性
 上記「4.6.1.フィルムの作製」で得られたフィルムについて、目視によりフィルムにクラックおよび凹凸が発生していないものを「○」、フィルムにクラックまたは凹凸が認められた場合を「×」とした。なお、有機EL等の用途に適用する場合には、クラックおよび凹凸の発生が抑制されているものが好ましい。
 (5)ガラス密着性
 上記「4.6.1.フィルムの作製」で得られたフィルムについて、大気中でガラスから剥離しないものを「○」、剥離するものを「×」とした。なお、ガラス基板への密着性が要求される表示材料等の用途に適用する場合は、ガラス密着性が良好なものが好ましい。
 (6)貯蔵安定性
 組成物の調製後、すぐに得られた組成物を透明ガラス容器に少量加え、密閉して保管した。組成物をガラス容器に加えてから組成物に流動性が認められなくなった時点までの経過時間をゲル化時間として評価した。流動性の確認は、ガラス容器を傾けて、そのときの組成物の状態を目視で観察することにより行った。
 4.6.3.評価結果
 表1および表2の結果から、実施例1~18の組成物から形成されたフィルムによれば、いずれの組成物も化合物(A)および化合物(B)を含有するため、優れた吸湿性および耐熱性を有していることが分かった。また、実施例1~18の組成物によれば、透明性、成膜性、ガラス密着性にも優れているフィルムが得られることが分かった。
 また、安定化剤を添加しない実施例13では約15分間でゲル化したのに対し、安定化剤を添加した実施例7~12では、1週間以上ゲル化しなかった。この結果より、安定化剤を添加することにより貯蔵安定性が飛躍的に向上することが分かった。
 実施例2の組成物には、TMDE-3だけでなく吸湿剤のTD-3も添加されているが、TD-3の添加によりフィルムの性能に影響を及ぼすことはなかった。
 実施例3の組成物の含有比率(W/W)は、0.18である。これにより、吸水率が30%となり実施例1や実施例2の組成物と比較すると低下する傾向が認められたが、製品としては良品の範疇であった。
 実施例5では、化合物(B)を末端にSi-H基が存在するPPMHSへと変更した。これにより、フィルムの性能に影響を及ぼすことはなかった。
 実施例6では、触媒(C)をカルボニルジビニルメチル白金錯体へと変更した。これにより、フィルムの性能に影響を及ぼすことはなかった。
 実施例14および実施例15では、化合物(A)としてTMDE-3を含有する混合物を用いた。これらの実施例では、実施例12とほぼ同等の結果が得られ、化合物(A)としてTMDE-3を含有する混合物を用いることによりフィルムの性能に影響を及ぼすことはなかった。
 実施例16および実施例17では、TMDE-3に代えてDEGV-3を用いた。その結果、TMDE-3を用いた場合に比べて硬化時間が長くなるものの、化合物(A)としてDEGV-3を用いることによりフィルムの性能に影響を及ぼすことはなかった。
 これに対して、比較例1は、化合物(A)の代わりに吸湿剤として一般的に使用されている酸化カルシウム(CaO)を使用した例である。この酸化カルシウムは、化合物(B)中に溶解せずに分散された状態であった。比較例1では、溶液が硬化せずにフィルム状とならなかったため、吸水率を測定することができなかった。
 比較例2は、化合物(A)の代わりに吸湿剤として一般的に使用されている酸化バリウム(BaO)を使用した例である。この酸化バリウムは、化合物(B)中に溶解せずに分散された状態であった。比較例2では、比較例1と同様に溶液が硬化せずにフィルム状とならなかったため、吸水率を測定することができなかった。
 比較例3は、化合物(B)の代わりにSi-H基を有しないPMSを使用した例である。比較例3では、Si-H基を有しないPMSが化合物(A)と反応することができず、膜中成分の分子量が増大しないため流動性を抑制させることができなかった。このためフィルムを形成することができず、吸水率を測定することもできなかった。透明性、成膜性、ガラス密着性についても同様に評価することができなかった。
 比較例4は、化合物(A)の代わりに吸湿剤のTD-3を使用した例である。比較例4では、TD-3中の有機基が不飽和結合を有しないため、化合物(B)とヒドロシリル化反応することができなかった。したがって、硬化体中の成分の分子量が増大しないため流動性を抑制させることができず、フィルムの変形が認められた。さらに、熱流動性の試験において、低分子量のアルカンやアルコールが発生することによるフィルムの変形も認められた。吸水率、透明性、成膜性、ガラス密着性については膜を形成できないため評価することができなかった。
 比較例5は、化合物(A)の代わりに吸湿剤の(i-PrO)3Alを使用した例である。比較例5では、(i-PrO)3Al中の有機基が不飽和結合を有しないため、化合物(B)とヒドロシリル化反応することができなかった。したがって、硬化体中の成分の分子量が増大しないため流動性を抑制させることができず、フィルムの変形が認められた。さらに、熱流動性の試験において、低分子量のアルコールが発生することによるフィルムの変形も認められた。吸水率、透明性、成膜性、ガラス密着性については膜を形成できないため評価することができなかった。
 以上の結果より、化合物(A)および化合物(B)を含有する組成物から形成されたフィルムは、吸水率および耐熱性に優れると共に、透明性、成膜性、ガラス密着性にも優れていることが分かった。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
10…有機EL層、20…構造体、22…基板、24…封止キャップ、26…接着剤、30…捕捉剤層、100…有機EL素子

Claims (10)

  1.  下記一般式(1)で示される化合物(A)と、
     下記一般式(2)で示される構造を有する化合物(B)と、
    を含有する、組成物。
     (R)nM  …(1)
    (上記式(1)中、Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基、アリール基、カルボキシル基およびRO-で表される基から選択される1種である。複数存在するRは同一または異なってもよいが、複数存在するRのうち少なくとも1個は1以上の不飽和結合を有する基である。Rは、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基およびアリール基から選択される1種である。nは2~4の整数であり、Mの原子価に等しい。Mは2~4価の原子である。)
    Figure JPOXMLDOC01-appb-C000001
    (上記式(2)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。)
  2.  請求項1において、
     前記化合物(A)は、炭素-炭素不飽和結合を有する、組成物。
  3.  請求項1または請求項2において、
     前記一般式(1)の前記Mは、アルミニウム、ホウ素、マグネシウム、カルシウム、チタン、ジルコニウムおよび亜鉛から選択される少なくとも1種である、組成物。
  4.  請求項1ないし請求項3のいずれか一項において、
     前記化合物(B)は、下記一般式(3)で示される繰り返し単位を有するポリシロキサンである、組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(3)中、Rは、水素原子、ハロゲン原子および有機基から選択される1種である。)
  5.  請求項1ないし請求項4のいずれか一項において、
     前記化合物(A)は、下記一般式(4)で示される化合物である、組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(4)中、Rは2価の有機基である。Rは水素原子または1価の有機基である。複数存在するRおよびRは、同一または異なってもよい。)
  6.  請求項1ないし請求項5のいずれか一項において、
     前記化合物(A)と前記化合物(B)とのヒドロシリル化反応を促進させるための触媒(C)をさらに含有する、組成物。
  7.  請求項1ないし請求項6のいずれか一項において、
     ベンゾチアゾール、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、1-エチニル-1-シクロヘキサノール、ジエチルマレート、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリドンおよびN-ビニル-ε-カプロラクタムから選択される少なくとも1種の安定化剤をさらに含有する、組成物。
  8.  請求項1ないし請求項7のいずれか一項に記載の水分捕捉用組成物。
  9.  請求項8に記載の水分捕捉用組成物を用いて形成された、硬化体。
  10.  請求項9に記載の硬化体を備えた、電子デバイス。
PCT/JP2010/068114 2009-11-27 2010-10-15 組成物、硬化体および電子デバイス WO2011065144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011543166A JP5664874B2 (ja) 2009-11-27 2010-10-15 水分捕捉用組成物、硬化体および電子デバイス
CN201080053173.XA CN102639642B (zh) 2009-11-27 2010-10-15 组合物、固化物以及电子装置
EP10832991A EP2505613A4 (en) 2009-11-27 2010-10-15 COMPOSITION, VULCANIZED PRODUCT, AND ELECTRONIC DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009270018 2009-11-27
JP2009-270018 2009-11-27
JP2010-059149 2010-03-16
JP2010059149 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011065144A1 true WO2011065144A1 (ja) 2011-06-03

Family

ID=44066248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068114 WO2011065144A1 (ja) 2009-11-27 2010-10-15 組成物、硬化体および電子デバイス

Country Status (6)

Country Link
EP (1) EP2505613A4 (ja)
JP (1) JP5664874B2 (ja)
KR (1) KR20120101635A (ja)
CN (1) CN102639642B (ja)
TW (1) TWI476231B (ja)
WO (1) WO2011065144A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158719A1 (ja) * 2010-06-18 2011-12-22 東ソー株式会社 典型金属含有ポリシロキサン組成物、その製造方法、及びその用途
JP2012006991A (ja) * 2010-06-22 2012-01-12 Jsr Corp 重合体、組成物、硬化体および電子デバイス
JP2012246359A (ja) * 2011-05-26 2012-12-13 Shin-Etsu Chemical Co Ltd 剥離紙又は剥離フィルム用シリコーン組成物
WO2014069488A1 (ja) * 2012-10-30 2014-05-08 東ソー株式会社 ポリメタロキサン組成物、その製造方法、及びその用途
JP2019509638A (ja) * 2016-03-31 2019-04-04 ダウ グローバル テクノロジーズ エルエルシー 不動態化薄膜トランジスタコンポーネント
JP2019085369A (ja) * 2017-11-07 2019-06-06 双葉電子工業株式会社 アルコキシド化合物、乾燥剤、乾燥剤層、封止構造体及び有機el素子
WO2023013443A1 (ja) * 2021-08-02 2023-02-09 信越化学工業株式会社 白金-亜リン酸エステル錯体含有ヒドロシリル化触媒、その製造方法、白金-亜リン酸エステル錯体含有ヒドロシリル化触媒の結晶化を抑制する方法及び硬化性オルガノポリシロキサン組成物並びに物品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565052B (zh) * 2017-08-25 2020-04-17 京东方科技集团股份有限公司 封装结构及其制造方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780337A (en) * 1986-12-29 1988-10-25 Massachusetts Institute Of Technology Hybrid polymers derived from Si-H containing organosilicon polymers and unsaturated metal alkoxides
WO2000020425A1 (fr) * 1998-10-06 2000-04-13 Rhodia Chimie Silanes et polyorganosiloxanes a fonction(s) boronate
JP2002371185A (ja) * 2001-06-06 2002-12-26 Dow Corning Corp シリコーン組成物および硬化したシリコーン生成物
JP2003109921A (ja) 2001-10-01 2003-04-11 Catalysts & Chem Ind Co Ltd 研磨用シリカ粒子分散液、その製造方法および研磨材
JP2005298598A (ja) 2004-04-08 2005-10-27 Futaba Corp 有機el素子用水分吸収剤及び有機el素子
JP2006080406A (ja) 2004-09-13 2006-03-23 Catalysts & Chem Ind Co Ltd 研磨用組成物
JP2006241273A (ja) * 2005-03-02 2006-09-14 Three M Innovative Properties Co 湿気反応性組成物及び有機el素子
JP2008518399A (ja) 2004-10-22 2008-05-29 イーストマン コダック カンパニー トップエミッション型oledの乾燥剤膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014971B2 (ja) * 2010-06-18 2016-10-26 東ソー株式会社 典型金属含有ポリシロキサン組成物、その製造方法、およびその用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780337A (en) * 1986-12-29 1988-10-25 Massachusetts Institute Of Technology Hybrid polymers derived from Si-H containing organosilicon polymers and unsaturated metal alkoxides
WO2000020425A1 (fr) * 1998-10-06 2000-04-13 Rhodia Chimie Silanes et polyorganosiloxanes a fonction(s) boronate
JP2002371185A (ja) * 2001-06-06 2002-12-26 Dow Corning Corp シリコーン組成物および硬化したシリコーン生成物
JP2003109921A (ja) 2001-10-01 2003-04-11 Catalysts & Chem Ind Co Ltd 研磨用シリカ粒子分散液、その製造方法および研磨材
JP2005298598A (ja) 2004-04-08 2005-10-27 Futaba Corp 有機el素子用水分吸収剤及び有機el素子
JP2006080406A (ja) 2004-09-13 2006-03-23 Catalysts & Chem Ind Co Ltd 研磨用組成物
JP2008518399A (ja) 2004-10-22 2008-05-29 イーストマン コダック カンパニー トップエミッション型oledの乾燥剤膜
JP2006241273A (ja) * 2005-03-02 2006-09-14 Three M Innovative Properties Co 湿気反応性組成物及び有機el素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2505613A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158719A1 (ja) * 2010-06-18 2011-12-22 東ソー株式会社 典型金属含有ポリシロキサン組成物、その製造方法、及びその用途
JP2012021139A (ja) * 2010-06-18 2012-02-02 Tosoh Corp 典型金属含有ポリシロキサン組成物、その製造方法、およびその用途
US8907038B2 (en) 2010-06-18 2014-12-09 Tosoh Corporation Typical metal containing polysiloxane composition, process for its production, and its uses
JP2016172848A (ja) * 2010-06-18 2016-09-29 東ソー株式会社 典型金属含有ポリシロキサン組成物、その製造方法、およびその用途
JP2012006991A (ja) * 2010-06-22 2012-01-12 Jsr Corp 重合体、組成物、硬化体および電子デバイス
JP2012246359A (ja) * 2011-05-26 2012-12-13 Shin-Etsu Chemical Co Ltd 剥離紙又は剥離フィルム用シリコーン組成物
WO2014069488A1 (ja) * 2012-10-30 2014-05-08 東ソー株式会社 ポリメタロキサン組成物、その製造方法、及びその用途
JP2019509638A (ja) * 2016-03-31 2019-04-04 ダウ グローバル テクノロジーズ エルエルシー 不動態化薄膜トランジスタコンポーネント
JP2019085369A (ja) * 2017-11-07 2019-06-06 双葉電子工業株式会社 アルコキシド化合物、乾燥剤、乾燥剤層、封止構造体及び有機el素子
WO2023013443A1 (ja) * 2021-08-02 2023-02-09 信越化学工業株式会社 白金-亜リン酸エステル錯体含有ヒドロシリル化触媒、その製造方法、白金-亜リン酸エステル錯体含有ヒドロシリル化触媒の結晶化を抑制する方法及び硬化性オルガノポリシロキサン組成物並びに物品

Also Published As

Publication number Publication date
CN102639642B (zh) 2014-06-18
JP5664874B2 (ja) 2015-02-04
CN102639642A (zh) 2012-08-15
TWI476231B (zh) 2015-03-11
KR20120101635A (ko) 2012-09-14
EP2505613A4 (en) 2012-12-12
TW201132681A (en) 2011-10-01
EP2505613A1 (en) 2012-10-03
JPWO2011065144A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5664874B2 (ja) 水分捕捉用組成物、硬化体および電子デバイス
JP5566088B2 (ja) 熱硬化性シリコーン樹脂用組成物
KR101774306B1 (ko) 폴리실록산계 조성물, 경화물, 및, 광학 디바이스
CN103509345B (zh) 固化性树脂组合物、它的固化物及使用该固化物的光半导体装置
TW200820819A (en) Moisture-reactive composition and organic electroluminescent device
JP2012122002A (ja) 付加硬化性メタロシロキサン化合物
KR20090129989A (ko) 규소 함유 화합물, 경화성 조성물 및 경화물
CN104487520A (zh) 固化性有机聚硅氧烷组合物、其制造方法、有机聚硅氧烷固化物的制造方法、有机聚硅氧烷的缩合方法、光半导体密封体以及有机聚硅氧烷的缩合催化剂
JP2011068791A (ja) 被覆蛍光体及びled発光装置
JP5773160B2 (ja) 水分または酸素捕捉用組成物、硬化体、および電子デバイス
JP6417878B2 (ja) 半導体発光装置封止材用硬化性オルガノポリシロキサン組成物、該組成物を硬化させてなるオルガノポリシロキサン硬化物及びこれを用いて封止されてなる半導体発光装置
JP6958862B2 (ja) 縮合反応型のダイボンディング剤、led発光装置及びその製造方法
JP5716921B2 (ja) 組成物、硬化体および電子デバイス、ならびにトリ(2,2−ビス(アリロキシメチル)−1−ブトキシ)アルミニウムおよびその製造方法
WO2012086334A1 (ja) 発光体および表示デバイス
JP6022885B2 (ja) 表面修飾複合金属酸化物を含有する樹脂組成物
WO2015019705A1 (ja) 硬化性樹脂組成物
JP2015115494A (ja) 半導体発光装置
TWI538903B (zh) A composition, a hardened body for water trapping, and an electronic device
JP5605551B2 (ja) 重合体、組成物、硬化体および電子デバイス
JP2017075237A (ja) 放射線硬化性シリコーン組成物及びそれを用いた帯電防止性剥離フィルムの製造方法
JP2009158852A (ja) 半導体発光装置の製造方法
JP6973360B2 (ja) 吸湿性シリコーン樹脂組成物、有機el用透明封止材、有機el用透明乾燥材、及びその使用方法
JP7437140B2 (ja) 紫外線硬化型ポリオルガノシロキサン組成物及びその硬化物を有する電気・電子機器
JP7302503B2 (ja) 吸湿性シリコーン樹脂組成物、有機el素子用透明封止材、有機el素子用透明乾燥材、およびこれらの使用方法
TW202239871A (zh) 乾燥劑組成物、密封結構體、有機el裝置、及製造有機el裝置之方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053173.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010818

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010832991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010832991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011543166

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE