WO2011061939A1 - スパッタリングターゲット及びそれを用いた薄膜トランジスタ - Google Patents

スパッタリングターゲット及びそれを用いた薄膜トランジスタ Download PDF

Info

Publication number
WO2011061939A1
WO2011061939A1 PCT/JP2010/006765 JP2010006765W WO2011061939A1 WO 2011061939 A1 WO2011061939 A1 WO 2011061939A1 JP 2010006765 W JP2010006765 W JP 2010006765W WO 2011061939 A1 WO2011061939 A1 WO 2011061939A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
less
zno
thin film
sintered body
Prior art date
Application number
PCT/JP2010/006765
Other languages
English (en)
French (fr)
Inventor
矢野公規
糸瀬将之
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/510,934 priority Critical patent/US8598578B2/en
Priority to CN201080052268.XA priority patent/CN102612501B/zh
Priority to KR1020127012749A priority patent/KR101787782B1/ko
Publication of WO2011061939A1 publication Critical patent/WO2011061939A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to a sintered body, a sputtering target, a thin film transistor using the same, and a method for manufacturing the same, and more particularly, to a sintered body made of an oxide mainly composed of a compound having a homologous crystal structure represented by InGaO 3 (ZnO). .
  • An amorphous oxide film made of indium oxide and zinc oxide, or made of indium oxide, zinc oxide, and gallium oxide has visible light transmittance, and has wide electrical characteristics as a conductor, semiconductor, or insulator. Attention has been focused on as a semiconductor film used for transparent conductive films, thin film transistors, and the like.
  • an oxide thin film is formed by physical film formation such as sputtering
  • a target made of an oxide sintered body is used in order to form a film uniformly, stably and efficiently (at a high film formation rate). It is common.
  • targets for producing oxide films (conductive films / semiconductor films, usually amorphous films) made of indium oxide, zinc oxide, and gallium oxide.
  • Patent Document 1 studies a manufacturing method in which an In—Ga—Zn—O sintered body does not generate a highly insulating Ga 2 O 3 crystal phase.
  • the main component is a homologous structure of InGaZnO 4 (InGaO 3 (ZnO)) (XRD peaks of other metal oxides are not observed), and the atomic ratio of In, Ga, and Zn is 1: 1: 1.
  • Targets of have been disclosed.
  • Patent Document 3 discloses a polycrystalline oxide target including a homologous structure of InGaZnO 4 (InGaO 3 (ZnO)).
  • a target having a single crystal type (a target in which XRD peaks of other metal oxides are not observed) has been desired. This is because a single crystal type target can be expected to have advantages such as easy quality control, less occurrence of abnormal discharge, little difference in composition ratio between the target and thin film, and easy manufacture of high strength. .
  • the atomic ratio of In and Ga needs to be 1: 1. Therefore, the examination was limited to those having an atomic ratio of In to Ga of 1: 1 (for example, an atomic ratio of In, Ga, and Zn was 1: 1: 1, 2: 2: 1). etc).
  • the film thickness changes due to slight plasma density distribution during sputtering, and the film thickness changes due to slight fluctuation of oxygen partial pressure between batches. The problem has become apparent.
  • Patent Document 4 describes an In—Ga—Zn—O target having a low Ga content and a composition ratio.
  • studies on the production method and properties of the target are not sufficient, resistance is still high, and no study has been made on producing a single crystal type target at a composition ratio with a low Ga content.
  • Non-Patent Document 1 synthesis studies of various crystal types using oxide powder have been performed (Non-Patent Document 1), but a sputtering target produced by sintering from a molded body has not been studied. In addition, no attempt has been made to manufacture a thin film transistor.
  • An object of the present invention is to provide a sintered body that can be used for a sputtering target having a single crystal structure as a main component in a region where the Ga content is lower than the In content.
  • the present inventors have conducted extensive research and studied various compositions. As a result, in a certain composition range, a compound having a homologous crystal structure in which the Ga content is represented by at least InGaO 3 (ZnO) rather than the In content. It has been found that a sputtering target having a main component can be obtained. Further, when this target is used, a carrier density suitable for semiconductor applications (the preferred carrier density range for semiconductor applications is 1 ⁇ 10 15 to 1 ⁇ 10 19 cm ⁇ 3 , and the more preferred range is 1 ⁇ 10 16 to It was found that a film of 5 ⁇ 10 18 cm ⁇ 3 and particularly preferably 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 can be formed at a stable film formation rate.
  • the preferred carrier density range for semiconductor applications is 1 ⁇ 10 15 to 1 ⁇ 10 19 cm ⁇ 3
  • the more preferred range is 1 ⁇ 10 16 to It was found that a film of 5 ⁇ 10 18 cm ⁇ 3 and particularly preferably 1 ⁇ 10 17 to 1
  • the following sintered body, sputtering target and the like are provided.
  • the firing according to 1, wherein a crystal of a compound represented by Ga 2 O 3 , ZnGa 2 O 4 , ZnO, In 2 O 3 , InGaO 3 , In 2 O 3 (ZnO) 3 is not confirmed by X-ray diffraction analysis. Union. 3.
  • a sputtering target comprising the sintered body according to any one of 1 to 4. 6). 6.
  • a method for manufacturing a thin film transistor including a step of forming a semiconductor layer using the sputtering target according to 7.5 or 6.
  • the sintered compact and sputtering target which are hard to break and enable stable sputtering are provided.
  • the sputtering target of the present invention it is expected that the film formation rate is less affected by fluctuations in oxygen partial pressure during sputtering, and a film having a carrier density suitable for semiconductor applications can be formed at a stable film formation rate.
  • the sputtering target of the present invention has a low Ga content, it is easy to control oxygen vacancies, and it can be expected that the carrier density of the thin film after sputtering can be stably controlled.
  • FIG. 3 is a diagram showing a structure of a channel stopper type thin film transistor manufactured in Example 1.
  • FIG. 6 is a diagram showing the results of X-ray diffraction measurement of a sintered body produced in Example 3.
  • the sintered body of the present invention is made of an oxide containing In, Ga, and Zn at the following atomic ratio.
  • This oxide is mainly composed of a compound having a homologous crystal structure represented by InGaO 3 (ZnO).
  • the sintered body of the present invention can be used as a sputtering target. 0.28 ⁇ Zn / (In + Zn + Ga) ⁇ 0.38 0.18 ⁇ Ga / (In + Zn + Ga) ⁇ 0.28
  • the risk of generating a crystal structure other than the homologous crystal structure represented by InGaO 3 (ZnO) is reduced, and the difference in properties between the target surface and the internal crystal type is reduced.
  • the effect of reflecting the In and Ga composition ratio of the target in the semiconductor film is expected.
  • Zn / (In + Zn + Ga) when Zn / (In + Zn + Ga) is 0.38 or less, an improvement in the average bending strength of the target can be expected. If it exceeds 0.38, another crystal structure may be generated inside. If it is 0.28 or more, an improvement in the relative density of the target and a reduction in the specific resistance can be expected. Further, when Ga / (In + Zn + Ga) is 0.28 or less, the mobility is improved and the S value can be reduced. In addition, it can be expected that a film having a carrier density suitable for semiconductor applications can be formed at a stable film formation rate. If it is less than 0.18, another crystal structure may be generated inside.
  • the atomic ratio is more preferably 0.30 ⁇ Zn / (In + Zn + Ga) ⁇ 0.36 0.19 ⁇ Ga / (In + Zn + Ga) ⁇ 0.28 Particularly preferably, 0.34 ⁇ Zn / (In + Zn + Ga) ⁇ 0.36 0.20 ⁇ Ga / (In + Zn + Ga) ⁇ 0.27 It is.
  • the main component is a homologous crystal structure represented by InGaO 3 (ZnO)” is usually “in X-ray diffraction, the total peak area attributed to the homologous crystal structure represented by InGaO 3 (ZnO)” “90% or more of the total peak area”. 95% or more is more preferable, 98% or more is further preferable, and 99% or more is particularly preferable. The upper limit is 100%.
  • each element is uniformly dispersed by MAP of surface analysis of the composition of In, Ga, Zn, and O by EPMA.
  • the measurement conditions of X-ray diffraction are as follows, for example. Equipment: Ultimate-III, manufactured by Rigaku Corporation X-ray: Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator) 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) Sampling interval: 0.02 ° Slit DS, SS: 2/3 °, RS: 0.6 mm
  • the crystal type can be specified by referring to a JCPDS card for those registered in the JCPDS (Joint Committee of Powder Diffraction Standards) card.
  • the homologous crystal structure represented by InGaO 3 (ZnO) is JCPDS card no. 38-1104. Note that the crystal type of InGaO 3 (ZnO) may be expressed as InGaZnO 4 .
  • oxygen may be excessive or insufficient (oxygen deficiency) (may be shifted according to the stoichiometric ratio), but oxygen deficiency may be present. It is preferable. If oxygen is excessive, resistance may become too high when targeted.
  • the lattice constant obtained from X-ray diffraction is JCPDS card No. It may be different from that of 38-1104.
  • the lattice constant a obtained from X-ray diffraction is usually 3.30 to 3.35, preferably 3.31 to 3.34, and particularly preferably 3.325 to 3.335.
  • the lattice constant c determined from X-ray diffraction is usually 26.00 to 26.70, preferably 26.30 to 26.60, and particularly preferably 26.45 to 26.55. Within the above range, a homologous crystal structure in which the Ga content is represented by at least InGaO 3 (ZnO) can be taken.
  • the peak position is the JCPDS card no. It may be different from that of 38-1104.
  • the peak position is preferably shifted to the low angle side. Note that the shift to the low angle side is presumed to be a state in which, for example, In is replaced by solid solution at the Ga site of InGaO 3 (ZnO) or atoms are inserted between lattices.
  • the reason why the peak position is preferably shifted to the low angle side is that it is presumed that generation of crystals other than InGaO 3 (ZnO) is suppressed due to the occurrence of the state.
  • the atomic ratio of In, Ga, and Zn in the oxide preferably satisfies the following formula. 0.59 ⁇ In / (In + Ga) Furthermore, it is particularly preferable that the following formula is satisfied. 0.60 ⁇ In / (In + Ga) When the atomic ratio is within this range, the mobility is improved and the S value can be reduced. In addition, it can be expected that a film having a carrier density suitable for semiconductor applications can be formed at a stable film formation rate.
  • the oxide is preferably substantially composed of In, Ga, Zn, and O. “Substantially composed of In, Ga, Zn, and O” means that no element is contained other than In, Ga, Zn, O and impurities that are inevitably included by the raw materials, the manufacturing process, and the like. Usually, impurities are 10 ppm or less. Examples of the assumed impurity include Fe, Ca, Cr, Pb, and Cd.
  • the sputtering target of the present invention can be used in a region where the film forming conditions are not sensitive to changes in oxygen partial pressure during sputtering film formation.
  • a sputtering target that is sensitive to oxygen partial pressure has a carrier density that changes drastically when the oxygen partial pressure changes when a film having a carrier density suitable for semiconductor applications is used. To do.
  • the film formation rate varies greatly as the carrier density changes.
  • a sputtering target that is not sensitive to oxygen partial pressure can be used even when the oxygen partial pressure changes when a film having a carrier density suitable for semiconductor use is used. There is no significant change in the carrier density, and there is little fluctuation in the deposition rate.
  • the hatched portion is an appropriate range of carrier density.
  • the sintered body and sputtering target of the present invention can be manufactured by a manufacturing method including a blending process, a calcining process, a molding process, a sintering process, a reduction process, and a processing process.
  • a manufacturing method including a blending process, a calcining process, a molding process, a sintering process, a reduction process, and a processing process.
  • a compounding process is a process of mixing the metal oxide which is a raw material of a sputtering target.
  • a raw material an indium compound powder, a gallium compound powder, or a zinc compound powder is used.
  • the indium compound include indium oxide and indium hydroxide.
  • the zinc compound include zinc oxide and zinc hydroxide.
  • the gallium compound include gallium oxide and gallium hydroxide.
  • an oxide is preferable because it is easy to sinter and it is difficult to leave a by-product.
  • the purity of the raw material is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, particularly preferably 4N (99.99% by mass) or more.
  • the purity is lower than 2N, the durability may be lowered, or when used in a liquid crystal display, impurities may enter the liquid crystal side and burn-in may occur.
  • metallic zinc zinc powder
  • zinc powder is used as a part of the raw material, the generation of white spots can be reduced.
  • the raw materials are mixed and uniformly mixed and pulverized using an ordinary mixing and pulverizing machine such as a wet ball mill, a bead mill or an ultrasonic device.
  • an ordinary mixing and pulverizing machine such as a wet ball mill, a bead mill or an ultrasonic device.
  • a calcination process is a process of calcining this mixture after obtaining the mixture of the raw material of a sputtering target, and is provided as needed.
  • calcination it is easy to increase the density, which is preferable, but there is a risk of increasing the cost. Therefore, it is more preferable to increase the density without performing calcination.
  • the calcination step is preferably heat-treated at 500 to 1200 ° C. for 1 to 100 hours, more preferably 800 to 1100 ° C. for 4 to 6 hours. Under heat treatment conditions of less than 500 ° C. or less than 1 hour, thermal decomposition of the indium compound, zinc compound, and gallium compound may be insufficient. On the other hand, when the heat treatment condition exceeds 1200 ° C. or exceeds 100 hours, grain coarsening may occur. Accordingly, it is particularly preferable to perform heat treatment (calcination) at 800 to 1200 ° C. for 2 to 50 hours. In addition, it is preferable to grind
  • the pulverization may be carried out so that the raw material powder has an average particle size (D50) of preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • D50 average particle size
  • the purpose is uniform dispersion of raw materials. If raw material powder having a large particle size is present, there may be uneven composition depending on the location. Uneven composition depending on the location causes abnormal discharge during sputtering. In addition, the composition unevenness may cause a difference in composition between the target and the produced thin film.
  • the molding step is a step in which a raw material mixture (or calcined product when the above calcining step is provided) is pressure-molded to form a molded body. By this process, it is formed into a shape suitable as a target.
  • the calcination step is provided, the obtained calcined fine powder can be granulated and then formed into a desired shape by press molding.
  • Examples of the molding process that can be used in this step include press molding (uniaxial press), mold molding, cast molding, injection molding, and the like. In order to obtain a sintered body (target) having a high sintering density. In this case, it is preferable to mold by cold isostatic pressure (CIP) or the like. Moreover, after press molding (uniaxial pressing), cold isostatic pressure (CIP), hot isostatic pressure (HIP), etc. may be performed to provide two or more molding processes.
  • press molding uniaxial press
  • CIP cold isostatic pressure
  • HIP hot isostatic pressure
  • the holding time is less than 0.5 minutes, the density after sintering may not increase or the resistance may increase. If it exceeds 60 minutes, it may take too much time and it may be uneconomical.
  • molding adjuvants such as polyvinyl alcohol, methylcellulose, polywax
  • a sintering process is a process of baking the molded object obtained at the said formation process.
  • As sintering conditions it is preferable to carry out under oxygen gas atmosphere or oxygen gas pressurization. If sintering is performed in an atmosphere that does not contain oxygen gas, the density of the target obtained cannot be sufficiently improved, and the occurrence of abnormal discharge during sputtering may not be sufficiently suppressed.
  • the sintering temperature is usually 1100 ° C. to 1600 ° C., more preferably 1350 to 1520 ° C., and particularly preferably 1400 to 1500 ° C.
  • the temperature is lower than 1100 ° C., the relative density does not increase and the specific resistance may increase.
  • crystal forms other than the target are easily generated. If the temperature is higher than 1600 ° C., the elements may evaporate and the composition ratio may change or the furnace may be damaged. In addition, crystal forms other than the target are easily generated.
  • the sintering time is usually 1 to 96 hours, preferably 4 to 30 hours, more preferably 8 to 24 hours, and particularly preferably 10 to 20 hours. If the sintering time is less than 1 hour, the relative density may not be increased and the specific resistance may be increased. In addition, crystal forms other than the target are easily generated. If it exceeds 96 hours, productivity may decrease. In addition, crystal forms other than the target are easily generated. In particular, when sintered at 1350 to 1520 ° C. for 8 to 24 hours, it is easy to form a single crystal. The temperature rise may be stopped once during the temperature rise and held at the holding temperature, and sintering may be performed in two or more stages.
  • the temperature decreasing rate during firing is usually 4 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, still more preferably 0.8 ° C./min or less, particularly preferably 0.5 C / min or less.
  • 4 ° C./min or less it is easy to obtain a single crystal of the present application. In addition, cracks are unlikely to occur when the temperature drops.
  • a reduction process is a process performed in order to reduce the bulk resistance of the sintered compact obtained at the said sintering process as the whole target, and is provided as needed.
  • the reduction method include a method using a reducing gas, a vacuum baking method, or a reduction method using an inert gas.
  • hydrogen, methane, carbon monoxide, a mixed gas of these gases and oxygen, or the like can be used.
  • reduction treatment by firing in an inert gas nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.
  • reduction treatment inert gas atmosphere such as argon or nitrogen, hydrogen atmosphere, or heat treatment under vacuum or low pressure.
  • reduction treatment inert gas atmosphere such as argon or nitrogen, hydrogen atmosphere, or heat treatment under vacuum or low pressure.
  • the processing step is a step for further cutting the sintered body obtained above into a shape suitable for mounting on a sputtering apparatus and attaching a mounting jig such as a backing plate.
  • the sintered body is ground with a surface grinder, for example, to have a surface roughness Ra of 5 ⁇ m or less.
  • the sputter surface of the sputtering target may be further mirror-finished so that the average surface roughness Ra may be 1000 mm or less.
  • a known polishing technique such as mechanical polishing, chemical polishing, and mechanochemical polishing (a combination of mechanical polishing and chemical polishing) can be used.
  • the grinding is preferably performed at 0.5 mm or more, more preferably 1 mm or more, and particularly preferably 2 mm or more.
  • the composition ratio fluctuation portion of the surface portion due to element sublimation can be removed.
  • the same composition ratio from the surface to the inside is important for the continuous production of thin film transistors with high reproducibility and uniformity. Moreover, there is a high risk that a crystal form other than the target will be mixed unless grinding is performed for 0.5 mm or more.
  • the surface roughness Ra of the target is preferably Ra ⁇ 2 ⁇ m, and more preferably Ra ⁇ 0.5 ⁇ m. Moreover, it is preferable that the surface of the target has a ground surface with no directivity. If Ra is large or the polished surface is directional, abnormal discharge or particles may occur.
  • polishing to # 2000 or more with a fixed abrasive polisher polishing liquid: water
  • lapping with loose abrasive lapping abrasive: SiC paste, etc.
  • lapping by changing the abrasive to diamond paste can be obtained by:
  • polishing method There is no particular limitation on the polishing method.
  • the thickness of the target is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm.
  • the target surface is preferably finished with a 200 to 10,000 diamond grindstone, and particularly preferably with a 400 to 5,000 diamond grindstone. If a diamond grindstone smaller than No. 200 or larger than 10,000 is used, the target may be easily broken.
  • ultrasonic cleaning is to perform multiple oscillations at a frequency of 25 to 300 KHz.
  • ultrasonic cleaning is performed by oscillating 12 types of frequencies at intervals of 25 KHz at a frequency of 25 to 300 KHz.
  • the obtained sputtering target is bonded to a backing plate. Further, a plurality of targets may be attached to one backing plate to make a substantially single target.
  • the relative density of the sputtering target is preferably 90% or more, more preferably 94% or more, and particularly preferably 95% or more. If it is 90% or more, abnormal discharge hardly occurs and the oxygen partial pressure sensitivity is stable. On the other hand, if it is 90% or more, the film forming speed is increased and the stability of the film forming speed is improved. Furthermore, the deviation of the composition ratio between the target and the produced thin film is reduced.
  • the specific resistance is preferably 15 m ⁇ cm or less, more preferably 8 m ⁇ cm or less, and particularly preferably 5 m ⁇ cm or less. If it exceeds 15 m ⁇ cm, the target may crack when DC sputtering is performed.
  • the average grain size is preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less. Abnormal discharge is less likely to occur when the thickness is 10 ⁇ m or less.
  • the bending strength (average bending strength) is preferably 58 MPa or more, more preferably 68 MPa or more, and particularly preferably 78 MPa or more.
  • the bending strength (average bending strength) is 58 MPa or more, even when a large target is manufactured, it is less likely to break during manufacturing or use.
  • the single crystal type that can be confirmed by X-ray diffraction is the main component as in the present application, an effect of increasing the bending strength (average bending strength) can be expected.
  • increasing the sintered density, reducing the crystal grain size, and reducing the surface roughness are also important for increasing the bending strength (average bending strength).
  • the average diameter of the aggregate of Ga atoms determined from the surface analysis of each element by EPMA is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • Substrate there is no particular limitation, and those known in this technical field can be used.
  • glass substrates such as alkali silicate glass, non-alkali glass and quartz glass, silicon substrates, resin substrates such as acrylic, polycarbonate and polyethylene naphthalate (PEN), polymer film bases such as polyethylene terephthalate (PET) and polyamide Materials can be used.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • polyamide Materials can be used.
  • the semiconductor layer is preferably an amorphous film.
  • the semiconductor layer is preferably an amorphous film.
  • adhesion to an insulating film and a protective layer can be improved, and uniform transistor characteristics can be easily obtained even in a large area.
  • the semiconductor layer is an amorphous film can be confirmed by X-ray crystal structure analysis. The case where no clear peak is observed is amorphous.
  • the composition ratio confirmed by ICP of the thin film produced by the target and sputtering is preferably within ⁇ 3% of the difference in atomic ratio, more preferably within ⁇ 2%, and particularly preferably within ⁇ 1%. If the difference in composition ratio confirmed by ICP between the target and sputtered thin film exceeds ⁇ 3%, the in-plane distribution of the composition ratio and thin film characteristics increases, and the desired characteristics do not appear. There is a fear.
  • Protective layer There is no restriction
  • SiO 2, SiN x, Al 2 O 3, Ta 2 O 5, TiO 2, MgO, ZrO 2, CeO 2, K 2 O, Li 2 O, Na 2 O, Rb 2 O, Sc 2 O 3, Y 2 O 3 , Hf 2 O 3 , CaHfO 3 , PbTi 3 , BaTa 2 O 6 , SrTiO 3 , AlN, or the like can be used.
  • SiO 2 , SiN x , Al 2 O 3 , Y 2 O 3 , Hf 2 O 3 , CaHfO 3 more preferably SiO 2 , SiN x , Y 2 O 3 , Hf 2.
  • O 3 and CaHfO 3 are particularly preferable, and oxides such as SiO 2 , Y 2 O 3 , Hf 2 O 3 , and CaHfO 3 are particularly preferable.
  • the number of oxygen in these oxides does not necessarily match the stoichiometric ratio (for example, it may be SiO 2 or SiO x ).
  • SiN x may contain a hydrogen element.
  • the protective film may have a structure in which two or more different insulating films are stacked.
  • Gate insulating film There is no restriction
  • SiO 2 , SiN x , Al 2 O 3 , Y 2 O 3 , Hf 2 O 3 , CaHfO 3 more preferably SiO 2 , SiN x , Y 2 O 3 , Hf 2. O 3 and CaHfO 3 .
  • the number of oxygen in these oxides does not necessarily match the stoichiometric ratio (for example, it may be SiO 2 or SiO x ).
  • SiN x may contain a hydrogen element.
  • the gate insulating film may have a structure in which two or more different insulating films are stacked.
  • the gate insulating film may be crystalline, polycrystalline, or amorphous, but is preferably polycrystalline or amorphous that is easy to manufacture industrially.
  • an organic insulating film such as poly (4-vinylphenol) (PVP) or parylene may be used.
  • the gate insulating film may have a stacked structure of two or more layers of an inorganic insulating film and an organic insulating film.
  • the gate insulating layer may be formed by sputtering, but is preferably formed by CVD such as TEOS-CVD or PECVD. In the sputtering method, off current may be increased.
  • Electrode There are no particular limitations on the material for forming the gate electrode, the source electrode, and the drain electrode, and any commonly used material can be selected.
  • transparent electrodes such as indium tin oxide (ITO), indium zinc oxide, ZnO, SnO 2 , metal electrodes such as Al, Ag, Cr, Ni, Mo, Au, Ti, Ta, Cu, or these An alloy metal electrode can be used.
  • ITO indium tin oxide
  • ZnO zinc oxide
  • SnO 2 metal electrodes
  • metal electrodes such as Al, Ag, Cr, Ni, Mo, Au, Ti, Ta, Cu, or these
  • An alloy metal electrode can be used.
  • each constituent member (layer) of the thin film transistor can be formed by a method known in this technical field.
  • a chemical film formation method such as a spray method, a dip method, or a CVD method
  • a physical film formation method such as a sputtering method, a vacuum evaporation method, an ion plating method, a pulse laser deposition method, or the like.
  • the method can be used. Since the carrier density can be easily controlled and the film quality can be easily improved, it is preferable to use a physical film forming method. More preferably, sputtering is used because of high productivity.
  • the formed film can be patterned by various etching methods.
  • the semiconductor layer is preferably formed by RF, DC, or AC sputtering using the target made of the oxide sintered body of the present invention.
  • RF sputtering is preferable in that a thin film for a thin film transistor can be produced with a low oxygen partial pressure.
  • DC or AC sputtering is preferred because it has a track record of large-scale equipment and can use inexpensive equipment.
  • the semiconductor layer is preferably heat-treated at 70 to 350 ° C. You may heat-process a semiconductor layer and a semiconductor protective layer simultaneously.
  • the thermal stability and heat resistance of the obtained transistor may be lowered, the mobility may be lowered, the S value may be increased, or the threshold voltage may be increased.
  • the temperature is higher than 350 ° C., there is a possibility that a substrate having no heat resistance cannot be used or the cost of heat treatment equipment is increased.
  • the thin film transistor of the present invention preferably has a mobility of 10 cm 2 / Vs or more, more preferably at least 11cm 2 / Vs, and particularly preferably equal to or greater than 12cm 2 / Vs.
  • a mobility of 10 cm 2 / Vs or more more preferably at least 11cm 2 / Vs, and particularly preferably equal to or greater than 12cm 2 / Vs.
  • the S value is preferably 0.4 V / decade or less, more preferably 0.3 V / decade or less, and particularly preferably 0.2 V / decade. Although there is no lower limit, about 0.06 V / decade is said to be the theoretical limit.
  • the drive state is preferably normally off. When it is normally off, the power consumption is small.
  • a sintered body having a thickness of 9 mm was ground and polished to a thickness of 5 mm.
  • the upper and lower surfaces and sides were cut with a diamond cutter, and the surface was ground with a surface grinder to obtain a target with a surface roughness Ra of 0.5 ⁇ m or less.
  • the surface was blown with air and further subjected to ultrasonic cleaning for 3 minutes, and then bonded to an oxygen-free copper backing plate with indium solder.
  • the surface roughness Ra of the target was Ra ⁇ 0.5 ⁇ m, and the surface had a non-directional ground surface. Ra was measured with a surface roughness meter.
  • X-ray diffraction measurement (B) The target sintered body after cutting and polishing was directly measured under the following conditions.
  • ⁇ Device ULTIMA-III, manufactured by Rigaku Corporation
  • X-ray Cu-K ⁇ ray (wavelength 1.5406 mm, monochromatized with a graphite monochromator) ⁇ 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) ⁇ Sampling interval: 0.02 ° ⁇ Slit DS, SS: 2/3 °, RS: 0.6 mm
  • the crystal structure of the compound was determined by the above X-ray diffraction measurement and JCPDS card.
  • (E) Average crystal grain size The average crystal grain size is determined by burying a sintered body in a resin, polishing the surface with alumina particles having a grain size of 0.05 ⁇ m, and then using an X-ray microanalyzer (EPMA) JXA- 8621MX (manufactured by JEOL Ltd.) was used to enlarge the polished surface to 5000 times, and the maximum diameter of the crystal particles observed within a 30 ⁇ m ⁇ 30 ⁇ m square frame on the sintered body surface was measured.
  • the average crystal grain size of Example 1 was 3.9 ⁇ m. Further, the average diameter of the aggregates of Ga atoms obtained from the surface analysis of each element by EPMA was 2 ⁇ m or less.
  • (B) Stability of film formation rate (variation) The film formation rates before and after 1000 hours of continuous discharge (film formation) were compared. A sample having a variation rate of less than 5% was evaluated as A, a sample having a variation rate of 5% or more and less than 10% was evaluated as B, and a sample having a variation rate of 10% or more was evaluated as C.
  • the channel stopper type thin film transistor (reverse stagger type thin film transistor) of FIG. 2 was produced and evaluated.
  • the substrate 10 a glass substrate (Corning 1737) was used.
  • 10 nm thick Mo, 80 nm thick Al, and 10 nm thick Mo were laminated in this order on the substrate 10 by electron beam evaporation.
  • a stacked film was formed on the gate electrode 20 by using a photolithography method and a lift-off method.
  • a 200 nm thick SiO 2 film was formed on the gate electrode 20 and the substrate 10 by the TEOS-CVD method to form the gate insulating layer 30. Subsequently, a semiconductor film 40 (channel layer) having a thickness of 50 nm was formed by RF sputtering using the target prepared in (1). Then, it heat-processed for 60 minutes at 300 degreeC in air
  • a SiO 2 film was deposited on the semiconductor film 40 as an etching stopper layer 60 (protective film) by sputtering.
  • the input RF power was 100 W.
  • the substrate temperature is 50 ° C.
  • the deposited oxide semiconductor film 40 and protective film 60 were processed into appropriate sizes by a photolithography method and an etching method.
  • the etching stopper layer 60 After the formation of the etching stopper layer 60, Mo having a thickness of 5 nm, Al having a thickness of 50 nm, and Mo having a thickness of 5 nm were laminated in this order, and the source electrode 50 and the drain electrode 52 were formed by photolithography and dry etching. . After that, heat treatment was performed in the atmosphere at 300 ° C. for 60 minutes, so that a transistor with a channel length of 20 ⁇ m and a channel width of 20 ⁇ m was manufactured.
  • ZnO InGaO 3
  • the sputtering target of the present invention can be used for manufacturing thin film transistors and the like.
  • the thin film transistor of the present invention can be used for an integrated circuit or the like.

Abstract

In、Ga、Znを0.28≦Zn/(In+Zn+Ga)≦0.38、0.18≦Ga/(In+Zn+Ga)≦0.28の原子比で含む酸化物であって、InGaO(ZnO)で表されるホモロガス結晶構造を有する化合物を主成分とする酸化物からなる焼結体。

Description

スパッタリングターゲット及びそれを用いた薄膜トランジスタ
 本発明は焼結体、スパッタリングターゲット、それを用いた薄膜トランジスタ及びその製造方法に関し、特にInGaO(ZnO)で表されるホモロガス結晶構造を有する化合物を主成分とする酸化物からなる焼結体に関する。
 酸化インジウム及び酸化亜鉛からなる、又は酸化インジウム、酸化亜鉛及び酸化ガリウムからなる非晶質の酸化物膜は可視光透過性を有し、かつ導電体、半導体又は絶縁体として広い電気特性を有するため、透明導電膜や薄膜トランジスタ等に用いる半導体膜として着目されている。
 この酸化物膜の成膜方法としては、スパッタリング・PLD(パルスレーザーデポジション)・蒸着等の物理的な成膜やゾルゲル法等の化学的な成膜が検討されているが、比較的低温で大面積に均一に成膜できる方法としてスパッタリング法等の物理的成膜が中心に検討されている。
 スパッタリング等の物理的成膜で酸化物薄膜を成膜する際は、均一に、安定して、効率よく(高い成膜速度で)成膜するために、酸化物焼結体からなるターゲットを用いることが一般的である。
 酸化インジウム、酸化亜鉛、酸化ガリウムからなる酸化物膜(導電膜・半導体膜、通常非晶質膜)を作製するためのターゲット(スパッタリングターゲット)として、様々なものが提案されている。
 例えば、特許文献1は、In-Ga-Zn-O焼結体において、絶縁性の高いGa結晶相を生成させない製造法の検討がなされている。
 特許文献2には、InGaZnO(InGaO(ZnO))のホモロガス構造を主成分とし(他の金属酸化物のXRDピークが観測されない)、In,Ga,Znの原子比が1:1:1のターゲットが開示されている。
 特許文献3には、InGaZnO(InGaO(ZnO))のホモロガス構造を含む多結晶酸化物ターゲットが開示されている。
 特に、単一の結晶型からなるターゲット(他の金属酸化物のXRDピークが観測されないターゲット)が望まれていた。単一結晶型からなるターゲットは、品質管理が容易で、異常放電の発生が少なく、ターゲットと薄膜の組成比のずれが少なく、強度の高いものを製造しやすい等の利点が期待できるからである。
 しかし、単一の結晶型からなるターゲット(X線回折による解析で他の金属酸化物のXRDピークが観測されないターゲット)を作製するにはInとGaの原子比が1:1であることが必要であると考えられていたため、検討はInとGaの原子比が1:1のものに限られていた(例えば、In、Ga、Znの原子比が1:1:1、2:2:1等)。
 これらのターゲットを用いた検討では、量産化の検討が進むにつれ、スパッタ時の僅かなプラズマ密度の分布により膜厚が変化する、バッチ間の僅かな酸素分圧の変動により膜厚が変化する等の問題が顕在化してきた。これは酸素との結合能力が強すぎたため、半導体用途に適したキャリア密度の膜を成膜しようとする際に、酸素分圧等の変動に成膜速度が敏感な条件で成膜せざるを得なかったためと思われる。これは、これらのターゲットのInとGaの原子比が均衡し、Gaの含有量が過多であったためと思われる。
 一方、In,Ga,Znの原子比が1:1:1のターゲットであっても単一の結晶型からなるターゲットの作製は課題が多かった。特許文献1に示されるようにGa等の結晶型を生成させないためには製造条件の制約が多かった。また、単一の結晶と判断していても詳細にみると他の結晶のピークが確認される場合があった。例えば、特許文献3の発明品Aは、密度は比較的高いが、図5にX線回折で2θ=62.0~62.6度の間にInGaZnOに帰属されないピークが示されている。さらに、特許文献1の比較例2や特許文献2の比較例1に示されるように、単一の結晶型からなるターゲットが作製できても密度が低い、抵抗が高い等の問題が発生しやすかった。
 一方、特許文献4には、Ga含有量の少ない組成比のIn-Ga-Zn-Oターゲットが記載されている。しかし、ターゲットの製造方法や性状に関する検討は不十分で、抵抗もまだ高く、Ga含有量の少ない組成比において単一の結晶型からなるターゲットを作製する検討はなされていなかった。
 また、酸化物粉末を用いた種々の結晶型の合成検討は行われていた(非特許文献1)が、成形体から焼結を経て作製するスパッタリングターゲットに関しては検討されていなかった。また、薄膜トランジスタを作製する試みもなされていなかった。
特開2007-223849号公報 特開2008-214697号公報 特開2007-73312号公報 国際公開第09/075281号パンフレット
M. Nakamura、 N. Kimizuka and T. Mohri、 J. Solid State Chem、93巻、2号、298頁、1991年
 本発明の目的は、Gaの含有量がInの含有量に比べ低い領域において、単一の結晶構造を主成分として有するスパッタリングターゲットに使用できる焼結体を提供することである。
 本発明者らは、鋭意研究を重ね種々の組成を検討したところ、一定の組成域では、Ga含有量がIn含有量よりも少なくともInGaO(ZnO)で表されるホモロガス結晶構造を示す化合物を主成分とするスパッタリングターゲットが得られることを見出した。さらに、このターゲットを用いると、半導体用途に適したキャリア密度(半導体用途として、好ましいキャリア密度の範囲は1×1015~1×1019cm-3であり、より好ましい範囲は1×1016~5×1018cm-3であり、特に好ましくは1×1017~1×1018cm-3である。)の膜を安定した成膜速度で成膜ができることを見出した。
 本発明によれば、以下の焼結体、スパッタリングターゲット等が提供される。
1.In、Ga、Znを下記の原子比で含む酸化物であって、InGaO(ZnO)で表されるホモロガス結晶構造を有する化合物を主成分とする酸化物からなる焼結体。
 0.28≦Zn/(In+Zn+Ga)≦0.38
 0.18≦Ga/(In+Zn+Ga)≦0.28
2.X線回折による解析で、Ga23、ZnGa24、ZnO、In23、InGaO3、In23(ZnO)3で表される化合物の結晶が確認されない1に記載の焼結体。
3.前記酸化物のIn、Ga、Znの原子比がさらに下記式を満たす1又は2に記載の焼結体。
 0.59≦In/(In+Ga)
4.前記酸化物が実質的にIn、Ga、Zn及びOからなる1~3のいずれかに記載の焼結体。
5.1~4いずれかに記載の焼結体からなるスパッタリングターゲット。
6.相対密度が90%以上であり、比抵抗が15mΩcm以下であり、表面粗さが2μm以下であり、平均結晶粒径が10μm以下である5に記載のスパッタリングターゲット。
7.5又は6に記載のスパッタリングターゲットを用いて半導体層を成膜する工程を含む薄膜トランジスタの製造方法。
8.5又は6に記載のスパッタリングターゲットを用いて作製した薄膜トランジスタ。
 本発明によれば、Gaの含有量が低い領域において、単一の結晶構造を主成分と有することにより、割れにくく、安定したスパッタリングが可能となる焼結体及びスパッタリングターゲットを提供する。
 本発明のスパッタリングターゲットを用いることにより、スパッタ時の酸素分圧の変動等に成膜速度が影響されにくく、半導体用途に適したキャリア密度の膜を安定した成膜速度で成膜できることが期待される。さらに、本発明のスパッタリングターゲットは、Gaの含有量が低いことにより、酸素欠損の制御が容易となり、スパッタリング後の薄膜のキヤリア密度を安定に制御することが期待できる。
スパッタ成膜時の酸素分圧とキャリア密度・成膜速度の関係を示す概略図である。 実施例1で作製したチャンネルストッパー型薄膜トランジスタの構造を示す図である。 実施例3で作製した焼結体のX線回折測定結果を示す図である。
 本発明の焼結体は、In、Ga、Znを下記の原子比で含む酸化物からなる。この酸化物は、InGaO(ZnO)で表されるホモロガス結晶構造を有する化合物を主成分とする。本発明の焼結体はスパッタリングターゲットとして使用できる。
 0.28≦Zn/(In+Zn+Ga)≦0.38
 0.18≦Ga/(In+Zn+Ga)≦0.28
 原子比が上記の範囲内にあると、InGaO(ZnO)で表されるホモロガス結晶構造以外の結晶構造の生成のおそれが減少する、ターゲット表面と内部の結晶型等の性状の差が少なくなる、半導体膜にターゲットのIn、Ga組成比が反映される等の効果が期待される。
 また、Zn/(In+Zn+Ga)が0.38以下であると、ターゲットの平均抗折強度の向上が期待できる。0.38超であると、内部に他の結晶構造が生成してしまう場合がある。0.28以上であると、ターゲットの相対密度の向上や比抵抗の低下が期待できる。
 また、Ga/(In+Zn+Ga)が0.28以下であると、移動度が向上し、S値が小さくできる。また、半導体用途に適したキャリア密度の膜を安定した成膜速度で成膜できることが期待できる。0.18未満であると、内部に他の結晶構造が生成してしまう場合がある。
 原子比は、より好ましくは、
 0.30≦Zn/(In+Zn+Ga)≦0.36
 0.19≦Ga/(In+Zn+Ga)≦0.28
特に好ましくは、
 0.34≦Zn/(In+Zn+Ga)≦0.36
 0.20≦Ga/(In+Zn+Ga)≦0.27
である。
 「InGaO(ZnO)で表されるホモロガス結晶構造を主成分とする」とは、通常「X線回折において、InGaO(ZnO)で表されるホモロガス結晶構造に帰属されるピーク面積の合計が全体のピーク面積の合計の90%以上」のことを言う。95%以上がより好ましく、98%以上がさらに好ましく、99%以上が特に好ましい。なお上限は100%である。
 X線回折で、InGaO3(ZnO)の結晶構造を示すパターンに帰属されないGa23、ZnGa24、ZnO、In23、InGaO3、In23(ZnO)3で表される化合物の結晶を示すピークが、InGaO3(ZnO)の最大ピーク(通常、2θ=30.8度付近)の5%以下であることが好ましく、3%以下がより好ましく、1%以下がさらに好ましく、確認できないことが特に好ましい。
 さらに「X線回折で、InGaO3(ZnO)以外の金属酸化物に帰属されるピークが確認されない」ことが最も好ましい。
 また、「X線回折で2θ=62.0~62.6度の間のピーク(InGaO(ZnO)で表されるホモロガス結晶構造に帰属されるものは除く)が、InGaO3(ZnO)の最大ピークの3%以下である」であることが好ましい。「X線回折で2θ=62.0~62.6度の間のピークが、InGaO3(ZnO)の最大ピークの3%以下である」とは、X線回折でInGaO3(ZnO)の結晶構造を示すパターンに帰属されない2θ=62.0~62.6度の間のピーク強度(高さ)が、InGaO3(ZnO)の最大ピーク(通常、2θ=30.8度付近)のピーク強度の3%以下であることを言う。さらに、2θ=62.0~62.6度の間のピークは、2%以下がより好ましく、0.5%以下がさらに好ましく、観測されないことが特に好ましい。
 また、EPMAによるIn、Ga、Zn、Oの組成の面分析のMAPで、各元素が均一に分散していることが好ましい。
 X線回折の測定条件は例えば以下の通りである。
 装置:(株)リガク製Ultima-III
 X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
 2θ-θ反射法、連続スキャン(1.0°/分)
 サンプリング間隔:0.02°
 スリット DS、SS:2/3°、RS:0.6mm
 結晶型(結晶構造)は、JCPDS(Joint Committee of Powder Diffraction Standards)カードに登録のあるものについては、JCPDSカードと参照することで特定することができる。InGaO(ZnO)で表されるホモロガス結晶構造はJCPDSカードNo.38-1104である。
 なお、InGaO(ZnO)の結晶型は、InGaZnOと表記される場合もある。
 結晶構造X線回折パターンで構造が判断されれば、酸素が過剰であったり不足(酸素欠損)であっても構わない(化学量論比通りでもずれていてもよい)が、酸素欠損を有していることが好ましい。酸素が過剰であるとターゲットにしたときに抵抗が高くなりすぎるおそれがある。
 X線回折から求めたパターンが同じ(構造が同じ)であれば、X線回折から求めた格子定数は、JCPDSカードNo.38-1104のものと異なっていても構わない。
 X線回折から求めた格子定数aは、通常3.30~3.35、好ましくは3.31~3.34、特に好ましくは3.325~3.335である。
 X線回折から求めた格子定数cは、通常26.00~26.70、好ましくは26.30~26.60、特に好ましくは26.45~26.55である。
 前記範囲内であると、Ga含有量が少なくともInGaO(ZnO)で表されるホモロガス結晶構造をとることができる。
 同様に、X線回折から求めたパターンが同じ(構造が同じ)であれば、ピーク位置は、JCPDSカードNo.38-1104のものと異なっていても構わない。特に、ピーク位置は低角側にシフトしていると好ましい。なお、低角側にシフトしていることは、InGaO(ZnO)のGaサイトにInが固溶置換しているか、格子間に原子が挿入されている等の状態が推定される。ピーク位置は低角側にシフトしていることが好ましいのは、前記状態が生じることによってInGaO(ZnO)以外の結晶が生成することが抑制されていると推定されるためである。
 酸化物のIn,Ga,Znの原子比は好ましくはさらに下記式を満たす。
 0.59≦In/(In+Ga)
 さらに、下記式を満たすことが特に好ましい。
 0.60≦In/(In+Ga)
 原子比がこの範囲であると、移動度が向上し、S値が小さくできる。また、半導体用途に適したキャリア密度の膜を安定した成膜速度で成膜できることが期待できる。
 また、酸化物は実質的にIn、Ga、Zn及びOからなることが好ましい。
 「実質的にIn、Ga、Zn及びOからなる」とは、In、Ga、Zn,Oと原料や製造工程等により不可避的に含まれる不純物等以外に元素を含まないことを意味する。通常、不純物が10ppm以下であることを言う。また、想定される不純物としては、Fe、Ca、Cr、Pb、Cd等が例示される。
 本発明のスパッタリングターゲットは上記構成によりスパッタ成膜時の酸素分圧の変化に敏感ではない成膜条件の領域で使用できる。酸素分圧に過敏なスパッタリングターゲットは、図1(A)に示すように、半導体用途に適したキャリア密度の膜を成膜使用とした際に、酸素分圧が変化するとキャリア密度が急激に変化する。また、キャリア密度が変化するのと同様に、成膜速度も大きく変動する。これに対し、酸素分圧に過敏でないスパッタリングターゲットは、図1(B)に示すように、半導体用途に適したキャリア密度の膜を成膜使用とした際に、酸素分圧が変化してもキャリア密度に大きな変化を生じず、成膜速度の変動も少ない。図1中、斜線で示す部分はキャリア密度の適正範囲である。
 本発明の焼結体及びスパッタリングターゲットは、配合工程、仮焼工程、成形工程、焼結工程、還元工程、加工工程を含む製造方法で製造できる。以下、各工程について説明する。
 配合工程は、スパッタリングターゲットの原料である金属酸化物を混合する工程である。
 原料としては、インジウム化合物の粉末、ガリウム化合物の粉末、亜鉛化合物の粉末を用いる。インジウム化合物としては、例えば、酸化インジウム、水酸化インジウム等が挙げられる。亜鉛の化合物としては、例えば、酸化亜鉛、水酸化亜鉛等が挙げられる。ガリウム化合物としては、酸化ガリウム、水酸化ガリウム等が挙げられる。各化合物として、焼結のし易さ、副生成物の残存のし難さから、酸化物が好ましい。
 また、原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、特に好ましくは4N(99.99質量%)以上である。純度が2Nより低いと耐久性が低下したり、液晶ディスプレイに用いた際に液晶側に不純物が入り焼き付けが起こるおそれがある。
 原料の一部として金属亜鉛(亜鉛末)を用いることが好ましい。原料の一部に亜鉛末を用いるとホワイトスポットの生成を低減することができる。
 原料を混合し、通常の混合粉砕機、例えば、湿式ボールミルやビーズミル又は超音波装置を用いて、均一に混合・粉砕することが好ましい。
 仮焼工程は、スパッタリングターゲットの原料の混合物を得た後、この混合物を仮焼する工程であり、必要に応じて設けられる。
 仮焼を行うと、密度を上げることが容易になり好ましいが、コストアップになるおそれがある。そのため、仮焼を行わずに密度を上げることがより好適である。
 仮焼工程は、500~1200℃、1~100時間の条件で原料混合物を熱処理することが好ましく、800~1100℃で4~6時間行うことがより好ましい。500℃未満又は1時間未満の熱処理条件では、インジウム化合物、亜鉛化合物、ガリウム化合物の熱分解が不十分となる場合がある。一方、熱処理条件が、1200℃を超えた場合又は100時間を超えた場合は、粒子の粗大化が起こる場合がある。
 従って、800~1200℃、2~50時間の条件で熱処理(仮焼)することが特に好ましい。
 なお、ここで得られた仮焼物は、下記の成形工程及び焼成工程の前に粉砕することが好ましい。粉砕は原料粉の粒径が平均粒径(D50)が好ましくは2μm以下、より好ましくは1μm以下、特に好ましくは0.5μm以下まで行うとよい。
 目的は、原料の均一分散化である。粒径の大きい原料粉が存在すると場所による組成むらが生じるおそれがある。場所による組成むらは、スパッタ時の異常放電の原因となる。また、組成むらがターゲットと作製した薄膜の組成のずれの原因となるおそれがある。
 成形工程は、原料混合物(上記仮焼工程を設けた場合には仮焼物)を加圧成形して成形体とする工程である。この工程により、ターゲットとして好適な形状に成形する。仮焼工程を設けた場合には得られた仮焼物の微粉末を造粒した後、プレス成形により所望の形状に成形することができる。
 本工程で用いることができる成形処理としては、例えば、プレス成形(一軸プレス)、金型成形、鋳込み成形、射出成形等も挙げられるが、焼結密度の高い焼結体(ターゲット)を得るためには、冷間静水圧(CIP)等で成形するのが好ましい。
 また、プレス成形(一軸プレス)後に、冷間静水圧(CIP)、熱間静水圧(HIP)等を行い2段階以上の成形工程を設けてもよい。
 CIP(冷間静水圧、あるいは静水圧加圧装置)を用いる場合、面圧800~4000kgf/cmで0.5~60分保持することが好ましく、面圧2000~3000kgf/cmで2~30分保持することがより好ましい。前記範囲内であると、成形体内部の組成むら等が減り均一化されることが期待される。また、面圧が800kgf/cm未満であると、焼結後の密度が上がらないあるいは抵抗が高くなるおそれがある。面圧4000kgf/cm超であると装置が大きくなりすぎ不経済となるおそれがある。保持時間が0.5分未満であると焼結後の密度が上がらないあるいは抵抗が高くなるおそれがある。60分超であると時間が掛かりすぎ不経済となるおそれがある。
 なお、成形処理は、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成形助剤を用いてもよい。
 焼結工程は、上記成形工程で得られた成形体を焼成する工程である。
 焼結条件としては、酸素ガス雰囲気又は酸素ガス加圧下で行うことが好ましい。酸素ガスを含有しない雰囲気で焼結すると、得られるターゲットの密度を十分に向上させることができず、スパッタリング時の異常放電の発生を十分に抑制できなくなる場合がある。
 焼結温度は、通常1100℃~1600℃、より好ましくは1350~1520℃、特に好ましくは1400~1500℃である。1100℃より低いと相対密度が上がらず、また比抵抗も高くなるおそれがある。また、目的以外の結晶型が生成しやすい。1600℃より高いと元素が蒸発して組成比が変動したり炉を傷めるおそれがある。また、目的以外の結晶型が生成しやすい。
 焼結時間は、通常1~96時間、好ましくは、4~30時間、さらに好ましくは8~24時間、特に好ましくは10~20時間である。焼結時間が1時間未満だと相対密度が上がらず、また比抵抗も高くなるおそれがある。また、目的以外の結晶型が生成しやすい。96時間超だと生産性が低下するおそれがある。また、目的以外の結晶型が生成しやすい。
 特に、1350~1520℃で8~24時間焼結すると単一の結晶としやすい。
 昇温の途中で一度昇温を止め保持温度で保持し、2段階以上で焼結を行ってもよい。
 また、焼成時の降温速度は、通常4℃/分以下、好ましくは2℃/分以下、より好ましくは1℃/分以下、さらに好ましくは0.8℃/分以下、特に好ましくは0.5℃/分以下である。4℃/分以下であると本願の単一の結晶としやすい。また、降温時にクラックが発生しにくい。
 還元工程は、上記焼結工程で得られた焼結体のバルク抵抗をターゲット全体として低減するために行う工程であり、必要に応じて設けられる。
 還元方法としては、例えば、還元性ガスによる方法や真空焼成又は不活性ガスによる還元方法等が挙げられる。
 還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素や、これらのガスと酸素との混合ガス等を用いることができる。
 不活性ガス中での焼成による還元処理の場合、窒素、アルゴンや、これらのガスと酸素との混合ガス等を用いることができる。
 還元処理(アルゴンや窒素等の不活性ガス雰囲気、水素雰囲気、あるいは真空や低圧での熱処理)は行わないことが好ましい。還元処理を行うと、表面部と深部の抵抗値の違いを発生させ、又は増幅させるおそれがある。表面部と深部の抵抗値の違いが発生すると成膜速度の安定性や薄膜トランジスタを作製した際の安定性が低下するおそれがある。なお、本発明のターゲットは還元処理を行わなくとも比抵抗の低いターゲットの作製が可能である。
 加工工程は、上記で得られた焼結体を、さらにスパッタリング装置への装着に適した形状に切削加工し、バッキングプレート等の装着用治具を取り付けるための工程である。
 酸化物焼結体をスパッタリングターゲット素材とするには、焼結体を例えば、平面研削盤で研削して表面粗さRa5μm以下の素材とする。ここで、さらにスパッタリングターゲットのスパッタ面に鏡面加工を施して、平均表面粗さRaが1000Å以下としてもよい。この鏡面加工(研磨)は機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の公知の研磨技術を用いることができる。
 研削は、0.5mm以上行うことが好ましく、1mm以上がより好ましく、2mm以上が特に好ましい。0.5mm以上研削を行うと、元素の昇華による表面部分の組成比変動部分を取り除くことができる。表面から内部まで組成比が同一であることは、再現性や均一性の高い薄膜トランジスタを連続製造する上で重要である。また、0.5mm以上研削を行わないと目的以外の結晶型が混入する危険性が高い。
 ターゲットの表面粗さRaは、好ましくはRa≦2μmであり、より好ましくはRa≦0.5μmである。また、ターゲットの表面は方向性のない研削面を備えていることが好ましい。Raが大きい、又は研磨面に方向性があると、異常放電が起きたりパーティクルが発生するおそれがある。
 例えば、固定砥粒ポリッシャー(ポリッシュ液:水)で#2000以上にポリッシングしたり、又は遊離砥粒ラップ(研磨材:SiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えてラッピングすることによって得ることができる。研磨方法には特に制限はない。
 ターゲットの厚みは通常2~20mm、好ましくは3~12mm、特に好ましくは4~6mmである。
 また、ターゲット表面は200~10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400~5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200番より小さい、又は10,000番より大きいダイヤモンド砥石を使用するとターゲットが割れやすくなるおそれがある。
 次に、このように加工した焼結体を清浄処理をすることが好ましい。清浄処理としてはエアーブロー又は流水洗浄等を使用できる。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。
 なお、以上のエアーブローや流水洗浄では限界があるので、さらに超音波洗浄等を行なうこともできる。超音波洗浄は周波数25~300KHzの間で多重発振させて行なう方法が有効である。例えば周波数25~300KHzで、25KHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なう。
 得られたスパッタリングターゲットはバッキングプレートへボンディングする。また、複数のターゲットを一つのバッキングプレートに取り付け、実質一つのターゲットとしてもよい。
 スパッタリングターゲットの相対密度は、好ましくは90%以上であり、より好ましくは94%以上であり、特に好ましくは95%以上である。90%以上であると異常放電が起き難く、酸素分圧感度も安定する。また、90%以上であると成膜速度が速くなり、かつ成膜速度の安定性が向上する。さらに、ターゲットと作製した薄膜の組成比のずれも少なくなる。比抵抗は好ましくは15mΩcm以下であり、より好ましくは8mΩcm以下、特に好ましくは5mΩcm以下である。15mΩcm超であるとDCスパッタを行った際、ターゲットにクラックが入るおそれがある。平均結晶粒径は好ましくは10μm以下、特に好ましくは5μm以下である。10μm以下であると異常放電が発生しにくい。
 また、抗折強度(平均抗折強度)は、58MPa以上が好ましく、68MPa以上がより好ましく、78MPa以上が特に好ましい。抗折強度(平均抗折強度)が58MPa以上であると、大型ターゲットを製造しても製造中や使用中に破損することが少なくなる。
 なお、本願のようにX線回折で確認できる単一の結晶型が主成分であることで抗折強度(平均抗折強度)を高くする効果が期待できる。また、焼結密度を高くする、結晶粒径を小さくする、表面粗さを小さくすることも抗折強度(平均抗折強度)を高くするために重要である。
 EPMAによる各元素の面分析から求めたGa原子の凝集体の平均径は10μm以下が好ましく、5μm以下がより好ましく、3μm以下が特に好ましい。
 以下、薄膜トランジスタの構成及び薄膜トランジスタの製造方法について説明する。
1.基板
 特に制限はなく、本技術分野で公知のものを使用できる。例えば、ケイ酸アルカリ系ガラス、無アルカリガラス、石英ガラス等のガラス基板、シリコン基板、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)等の樹脂基板、ポリエチレンテレフタレート(PET)、ポリアミド等の高分子フィルム基材等が使用できる。
2.半導体層
 上述したように、本発明のスパッタリングターゲットを用いてスパッタリングすることによって得られる酸化物薄膜を使用する。半導体層は非晶質膜であることが好ましい。非晶質膜であることにより、絶縁膜や保護層との密着性が改善でき、大面積でも均一なトランジスタ特性が容易に得られる。半導体層が非晶質膜であるか否かは、X線結晶構造解析により確認できる。明確なピークが観測されない場合が非晶質である。
 なお、ターゲットとスパッタで作製した薄膜のICPで確認した組成比は原子比で差異が±3%以内が好ましく、±2%以内がより好ましく、±1%以内が特に好ましい。ターゲットとスパッタで作製した薄膜のICPで確認した組成比の差異が±3%超であると、組成比や薄膜特性の面内分布が大きくなる、所望の特性が発現しない等の不具合が発生するおそれがある。
3.保護層
 保護層を形成する材料には特に制限はない。本発明の効果が損なわれない範囲で一般に用いられているものを任意に選択できる。例えば、SiO,SiN,Al,Ta,TiO,MgO,ZrO,CeO,KO,LiO,NaO,RbO,Sc,Y,Hf,CaHfO,PbTi,BaTa,SrTiO,AlN等を用いることができる。これらのなかでも、SiO,SiN,Al,Y,Hf,CaHfOを用いるのが好ましく、より好ましくはSiO,SiN,Y,Hf,CaHfOであり、特に好ましくはSiO,Y,Hf,CaHfO等の酸化物である。これらの酸化物の酸素数は、必ずしも化学量論比と一致していなくともよい(例えば、SiOでもSiOでもよい)。また、SiNは水素元素を含んでいてもよい。
 保護膜は、異なる2層以上の絶縁膜を積層した構造でもよい。
4.ゲート絶縁膜
 ゲート絶縁膜を形成する材料にも特に制限はなく、一般に用いられているものを任意に選択できる。例えば、SiO,SiN,Al,Ta,TiO,MgO,ZrO,CeO,KO,LiO,NaO,RbO,Sc,Y,Hf,CaHfO,PbTi,BaTa,SrTiO,AlN等を用いることができる。これらのなかでも、SiO,SiN,Al,Y,Hf,CaHfOを用いるのが好ましく、より好ましくはSiO,SiN,Y,Hf,CaHfOである。これらの酸化物の酸素数は、必ずしも化学量論比と一致していなくともよい(例えば、SiOでもSiOでもよい)。また、SiNは水素元素を含んでいてもよい。
 ゲート絶縁膜は、異なる2層以上の絶縁膜を積層した構造でもよい。また、ゲート絶縁膜は、結晶質、多結晶質、非晶質のいずれであってもよいが、工業的に製造しやすい多結晶質又は非晶質であるのが好ましい。
 また、ゲート絶縁膜としては、ポリ(4-ビニルフェノール)(PVP)、パリレン等の有機絶縁膜を用いてもよい。さらに、ゲート絶縁膜は無機絶縁膜及び有機絶縁膜の2層以上の積層構造を有してもよい。
 ゲート絶縁層の成膜はスパッタ法でもよいが、TEOS-CVD法やPECVD法等のCVD法で形成することが好ましい。スパッタ法ではオフ電流が高くなるおそれがある。
5.電極
 ゲート電極、ソ-ス電極及びドレイン電極の各電極を形成する材料には特に制限はなく、一般に用いられているものを任意に選択することができる。
 例えば、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物、ZnO、SnO等の透明電極や、Al,Ag,Cr,Ni,Mo,Au,Ti,Ta、Cu等の金属電極、又はこれらを含む合金の金属電極を用いることができる。
 薄膜トランジスタ(電界効果型トランジスタ)及び薄膜トランジスタパネルの製造において、薄膜トランジスタの各構成部材(層)は、本技術分野で公知の手法で形成できる。
 具体的に、成膜方法としては、スプレー法、ディップ法、CVD法等の化学的成膜方法、又はスパッタ法、真空蒸着法、イオンプレーティング法、パルスレーザーデポジション法等の物理的成膜方法を用いることができる。キャリア密度が制御し易く、膜質向上が容易であることから、物理的成膜方法を用いることが好ましい。より好ましくは生産性が高いことからスパッタ法を用いる。
 形成した膜は、各種エッチング法によりパターニングできる。
 本発明の薄膜トランジスタでは、半導体層を、本発明の酸化物焼結体からなるターゲットを用い、RF、DC又はACスパッタリングにより成膜することが好ましい。低い酸素分圧で薄膜トランジスタ用の薄膜が作製できるという点でRFスパッタが好ましい。大型装置の実績があり、安価な設備が利用できるという点でDC又はACスパッタリングが好ましい。
 また、本発明の薄膜トランジスタでは、半導体層を70~350℃で熱処理することが好ましい。半導体層と半導体の保護層を同時に熱処理してもよい。70℃より低いと得られるトランジスタの熱安定性や耐熱性が低下したり、移動度が低くなったり、S値が大きくなったり、閾値電圧が高くなるおそれがある。一方、350℃より高いと耐熱性のない基板が使用できなかったり、熱処理用の設備費用がかかるおそれがある。
 本発明の薄膜トランジスタは、移動度が10cm/Vs以上であることが好ましく、11cm/Vs以上がより好ましく、12cm/Vs以上が特に好ましい。10cm/Vs以上であると、スイッチング速度が速くなり大画面高精細のディスプレイに適用しやすくなる。また、アモルファスシリコンからの切り替えメリットが大きくなる。
 S値は、0.4V/decade以下が好ましく、0.3V/decade以下がより好ましく、0.2V/decadeが特に好ましい。下限は無いが、0.06V/decade程度が理論限界と言われている。0.4V/decade以下であるとオンオフの切り替え電圧の差が少なくなり消費電力を下げることが期待できる。
 駆動状態はノーマリーオフが好ましい。ノーマリーオフであると消費電力が小さくて済む。
(1)ターゲット(焼結体)の作製
 出発原料として、In(純度4N、アジア物性材料社製)、Ga(純度4N、アジア物性材料社製)、ZnO(純度4N、高純度化学社製)を使用した。
 これら原料を、秤量し、ボールミルで24時間混合した。その後、自然乾燥により造粒した。造粒物からCIP(静水圧加圧装置)、面圧2200kgf/cm、5分保持の条件により成形体を得て、下記条件で焼結した。
昇温速度   1℃/分
焼結温度   1500℃
焼結時間   12時間
焼結雰囲気  酸素
 還元条件下での熱処理は行わなかった。厚さ9mmの焼結体を厚さ5mmに研削・研磨した。なお、上下面・側辺をダイヤモンドカッターで切断して、表面を平面研削盤で研削して表面粗さRa0.5μm以下のターゲットとした。表面をエアーブローし、さらに3分間超音波洗浄を行なった後、インジウム半田にて無酸素銅製のバッキングプレートにボンディングした。ターゲットの表面粗さRaはRa≦0.5μmであり、表面は方向性のない研削面を備えていた。Raは表面粗さ計で測定した。
(2)ターゲットの評価
 得られたターゲット用焼結体の評価は下記の方法で行った。結果を表1に示す。
(a)比抵抗
 抵抗率計(三菱化学(株)製、ロレスタ)を使用し四探針法(JIS R 1637)に基づき測定し、比抵抗を求めた。
(b)X線回折測定(XRD)
 切削・研磨後のターゲット用焼結体を下記条件で直接測定した。
・装置:(株)リガク製Ultima-III
・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化した。)
・2θ-θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
 化合物の結晶構造は、上記X線回折測定とJCPDSカードにより求めた。
(c)相対密度
 原料粉の密度から計算した理論密度とアルキメデス法で測定した焼結体の密度から下記式によって算出した。
 相対密度(%)=(アルキメデス法で測定した密度)÷(理論密度)×100
(d)抗折強度
 3点曲げ試験による。78MPa以上のものをA、68MPa以上78MPa未満のものをB、68MPa未満のものをCの三段階で評価した。
(e)平均結晶粒径
 平均結晶粒径は、焼結体を樹脂に包埋し、その表面を粒径0.05μmのアルミナ粒子で研磨した後、X線マイクロアナライザー(EPMA)であるJXA-8621MX(日本電子社製)を用いて研磨面を5000倍に拡大し、焼結体表面の30μm×30μm四方の枠内で観察される結晶粒子の最大径を測定し、この結晶粒子の最大径を平均結晶粒径とした。
 実施例1の平均結晶粒径は3.9μmであった。また、EPMAによる各元素の面分析から求めたGa原子の凝集体の平均径は2μm以下であった。
(f)ターゲットの組成
 ICP発光分析装置(島津製作所社製)で分析した。
 ターゲットの評価結果を表1にまとめた。
 なお、InGaO(ZnO)で表されるホモロガス結晶構造に帰属されるピーク面積が全体のピーク面積の99%以上であった。Ga23、ZnGa24、ZnO、In23、InGaO3、In23(ZnO)3で表される化合物等InGaO3(ZnO)以外の金属酸化物に帰属される結晶のピークは確認されなかった。X線回折で2θ=62.0~62.6度の間にピークは確認されなかった。
 ピーク位置はJCPDSカードNo.38-1104データよりも低角側にシフトしていた。
 また、EPMAによるIn、Ga、Zn、Oの組成の面分析マップで、各元素が均一に分散していた。
(3)成膜特性
 得られたターゲットの成膜特性を以下のように評価した。結果を表1に示す。
(a)面内膜厚分布
 得られたターゲットを用いて370×470mmのガラス基板にスパッタリングにより成膜し、20点の膜厚を測定し、膜厚分布を求めた。膜厚は、触針式表面形状測定器(Dectak(アルバック(株)社製))で測定した。下記式で計算した変動率が7%以下のものをA、7%超のものをBと評価した。
変動率(%)=(膜厚の最大値-膜厚の最小値)÷(膜厚の平均値)×100
(b)成膜速度の安定性(変動)
 1000時間連続放電(成膜)前後の成膜速度を比較した。
 変動率が5%未満のものをA、5%以上10%未満のものをB、10%以上のものをCとして評価した。
 成膜速度(スパッタレート)は、触針式表面形状測定器(Dectak(アルバック(株)社製))で測定した膜厚を成膜時間で割ることで求めた。下記式の絶対値を成膜速度の変動率とした。
変動率=(連続放電前の成膜速度-連続放電後の成膜速度)÷(連続放電前の成膜速度)×100
(c)酸素分圧感度
 面内膜厚分布や成膜速度の安定性(変動)の結果等から判断した。
(d)薄膜の組成
 ICP発光分析装置(島津製作所社製)で分析した。薄膜の組成比はターゲットとほぼ同一(原子比で差異が±1%以内)であった。
(e)その他
 1000時間連続放電(成膜)後のターゲットを目視したが、ノジュールはほとんど見当たらず、またクラックも発生していなかった。
(4)薄膜トランジスタ(TFT)の作製
 完成したスパッタリングターゲットを用いて、図2のチャンネルストッパー型薄膜トランジスタ(逆スタガ型薄膜トランジスタ)を作製し、評価した。
 基板10は、ガラス基板(Corning 1737)を用いた。まず、基板10上に電子ビーム蒸着法により、厚さ10nmのMoと厚さ80nmのAlと厚さ10nmのMoをこの順で積層した。フォトリソグラフィー法とリフトオフ法を用いて、積層膜をゲート電極20に形成した。
 ゲート電極20及び基板10上に、厚さ200nmのSiO膜をTEOS-CVD法により成膜し、ゲート絶縁層30を形成した。
 続いて、RFスパッタ法により、(1)で作製したターゲットを使用して厚さ50nmの半導体膜40(チャネル層)を形成した。その後、大気中300℃で60分間熱処理した。
 半導体膜40の上に、スパッタ法によりエッチングストッパー層60(保護膜)としてSiO膜を堆積した。
 本実施例では、投入RFパワーは100Wとした。成膜時の雰囲気は、全圧0.4Paであり、その際のガス流量比はAr:O=97:3とした。また、基板温度は50℃である。堆積させた酸化物半導体膜40と保護膜60は、フォトリソグラフィー法及びエッチング法により、適当な大きさに加工した。
 エッチングストッパー層60の形成後に、厚さ5nmのMoと厚さ50nmのAlと厚さ5nmのMoをこの順で積層し、フォトリソグラフィー法とドライエッチングにより、ソース電極50及びドレイン電極52を形成した。
 その後、大気中300℃で60分間熱処理し、チャネル長が20μmで、チャネル幅が20μmのトランジスタを作製した。
(5)TFTの評価
 薄膜トランジスタの評価を以下のように行った。結果を表1に示す。
(a)移動度(電界効果移動度(μ))、S値及び駆動状態
 半導体パラメーターアナライザー(ケースレー4200)を用い、室温、遮光環境下で測定した。
 なお、駆動状態はVthが正のものをノーマリーオフ、負のものをノーマリーオンとした。
(b)TFT特性の安定性(変動)
 1000時間連続放電(成膜)前後にTFTを作製し、TFT特性の変動を評価した。閾値電圧(Vth)の変動が1V未満のものをA、1V以上のものをBで評価した。
実施例2~13
 表1の組成・条件とした以外は実施例1と同様に作製・評価した。結果を表1,2に示す。
 図3に実施例3で得られた焼結体のX線回折測定結果を示す。なお、X線回折から求めた格子定数は、a=3.330Å、c=26.506Åであった。
 実施例2~13とも、InGaO(ZnO)で表されるホモロガス結晶構造に帰属されるピーク面積が全体のピーク面積の99%以上であった。Ga23、ZnGa24、ZnO、In23、InGaO3、In23(ZnO)3で表される化合物に帰属される結晶のピークは確認されなかった。X線回折で2θ=62.0~62.6度の間にピークは確認されなかった。
 また、実施例2~13のスパッタリングで作製した薄膜の組成比はターゲットとほぼ同一(原子比で差異が±1%以内)であった。
比較例1~4
 表1の組成・条件とした以外は実施例1と同様に作製・評価した。結果を表3に示す。
 なお、比較例2~4では、X線回折で2θ=62~63度の間にInGaO3(ZnO)の最大ピーク(通常、2θ=30.8度付近)のピーク強度の3%超の高さのピークが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明のスパッタリングターゲットは薄膜トランジスタ等の製造に使用できる。また、本発明の薄膜トランジスタは集積回路等に使用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (8)

  1.  In、Ga、Znを下記の原子比で含む酸化物であって、InGaO(ZnO)で表されるホモロガス結晶構造を有する化合物を主成分とする酸化物からなる焼結体。
     0.28≦Zn/(In+Zn+Ga)≦0.38
     0.18≦Ga/(In+Zn+Ga)≦0.28
  2.  X線回折による解析で、Ga、ZnGa、ZnO、In、InGaO、In(ZnO)で表される化合物の結晶が確認されない請求項1に記載の焼結体。
  3.  前記酸化物のIn、Ga、Znの原子比がさらに下記式を満たす請求項1又は2に記載の焼結体。
     0.59≦In/(In+Ga)
  4.  前記酸化物が実質的にIn、Ga、Zn及びOからなる請求項1~3のいずれかに記載の焼結体。
  5.  請求項1~4いずれかに記載の焼結体からなるスパッタリングターゲット。
  6.  相対密度が90%以上であり、比抵抗が15mΩcm以下であり、表面粗さが2μm以下であり、平均結晶粒径が10μm以下である請求項5に記載のスパッタリングターゲット。
  7.  請求項5又は6に記載のスパッタリングターゲットを用いて半導体層を成膜する工程を含む薄膜トランジスタの製造方法。
  8.  請求項5又は6に記載のスパッタリングターゲットを用いて作製した薄膜トランジスタ。
PCT/JP2010/006765 2009-11-19 2010-11-18 スパッタリングターゲット及びそれを用いた薄膜トランジスタ WO2011061939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/510,934 US8598578B2 (en) 2009-11-19 2010-11-18 Sputtering target and thin film transistor equipped with same
CN201080052268.XA CN102612501B (zh) 2009-11-19 2010-11-18 溅射靶及使用它的薄膜晶体管
KR1020127012749A KR101787782B1 (ko) 2009-11-19 2010-11-18 스퍼터링 타겟 및 그것을 이용한 박막 트랜지스터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009264307A JP5596963B2 (ja) 2009-11-19 2009-11-19 スパッタリングターゲット及びそれを用いた薄膜トランジスタ
JP2009-264307 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011061939A1 true WO2011061939A1 (ja) 2011-05-26

Family

ID=44059426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006765 WO2011061939A1 (ja) 2009-11-19 2010-11-18 スパッタリングターゲット及びそれを用いた薄膜トランジスタ

Country Status (6)

Country Link
US (1) US8598578B2 (ja)
JP (1) JP5596963B2 (ja)
KR (1) KR101787782B1 (ja)
CN (1) CN102612501B (ja)
TW (1) TWI506153B (ja)
WO (1) WO2011061939A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492593B1 (ko) 2011-06-08 2023-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링 타겟, 스퍼터링 타겟의 제조 방법 및 박막의 형성 방법
JP6013685B2 (ja) 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 半導体装置
CN104380473B (zh) * 2012-05-31 2017-10-13 株式会社半导体能源研究所 半导体装置
JP5904056B2 (ja) * 2012-08-22 2016-04-13 東ソー株式会社 Igzo焼結体、その製造方法及びスパッタリングターゲット
JP5998712B2 (ja) * 2012-07-30 2016-09-28 東ソー株式会社 Igzo焼結体、及びスパッタリングターゲット並びに酸化物膜
WO2014021334A1 (ja) * 2012-07-30 2014-02-06 東ソー株式会社 酸化物焼結体、及びスパッタリングターゲット
JP6278229B2 (ja) * 2012-08-10 2018-02-14 三菱マテリアル株式会社 透明酸化物膜形成用スパッタリングターゲット及びその製造方法
KR20200011610A (ko) 2012-11-08 2020-02-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물 막 및 금속 산화물 막의 형성 방법
JP2014125422A (ja) * 2012-12-27 2014-07-07 Tosoh Corp 酸化物焼結体、酸化物焼結体スパッタリングターゲットおよびその製造方法
JP6264846B2 (ja) * 2012-12-27 2018-01-24 東ソー株式会社 酸化物焼結体、スパッタリングターゲットおよびその製造方法
JP2014169473A (ja) * 2013-03-01 2014-09-18 Tanaka Kikinzoku Kogyo Kk バッキングプレート付きスパッタリングターゲットの反り矯正方法
KR101973873B1 (ko) * 2013-03-29 2019-04-29 제이엑스금속주식회사 Igzo 스퍼터링 타깃 및 igzo 막
JP6387823B2 (ja) * 2014-02-27 2018-09-12 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6358083B2 (ja) * 2014-02-27 2018-07-18 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6158129B2 (ja) * 2014-03-28 2017-07-05 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
US20150329371A1 (en) * 2014-05-13 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Oxide, semiconductor device, module, and electronic device
JP6794850B2 (ja) * 2016-02-08 2020-12-02 三菱マテリアル株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法
CN105906338A (zh) * 2016-04-19 2016-08-31 北京冶科纳米科技有限公司 一种高密度igzo旋转靶材的制造方法
CN109136863A (zh) * 2018-08-16 2019-01-04 研创应用材料(赣州)股份有限公司 一种高耐候性的rpd用多元导电氧化物薄膜的制备方法
JP6722736B2 (ja) * 2018-09-21 2020-07-15 Jx金属株式会社 焼結体および、スパッタリングターゲット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223849A (ja) * 2006-02-24 2007-09-06 Sumitomo Metal Mining Co Ltd 酸化ガリウム系焼結体およびその製造方法
WO2008072486A1 (ja) * 2006-12-13 2008-06-19 Idemitsu Kosan Co., Ltd. スパッタリングターゲット及び酸化物半導体膜
WO2009084537A1 (ja) * 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. a-IGZO酸化物薄膜の製造方法
JP4415062B1 (ja) * 2009-06-22 2010-02-17 富士フイルム株式会社 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP4571221B1 (ja) * 2009-06-22 2010-10-27 富士フイルム株式会社 Igzo系酸化物材料及びigzo系酸化物材料の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078509B1 (ko) * 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 박막 트랜지스터의 제조 방법
JP5058469B2 (ja) 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
KR101612130B1 (ko) * 2007-03-20 2016-04-12 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟, 산화물 반도체막 및 반도체 디바이스
JP5241143B2 (ja) * 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
KR101092483B1 (ko) * 2007-05-31 2011-12-13 캐논 가부시끼가이샤 산화물 반도체를 사용한 박막트랜지스터의 제조 방법
US20080296567A1 (en) * 2007-06-04 2008-12-04 Irving Lyn M Method of making thin film transistors comprising zinc-oxide-based semiconductor materials
WO2009075281A1 (ja) 2007-12-13 2009-06-18 Idemitsu Kosan Co., Ltd. 酸化物半導体を用いた電界効果型トランジスタ及びその製造方法
JP5213458B2 (ja) * 2008-01-08 2013-06-19 キヤノン株式会社 アモルファス酸化物及び電界効果型トランジスタ
JP5348132B2 (ja) * 2008-04-16 2013-11-20 住友金属鉱山株式会社 薄膜トランジスタ型基板、薄膜トランジスタ型液晶表示装置および薄膜トランジスタ型基板の製造方法
JP5627071B2 (ja) * 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223849A (ja) * 2006-02-24 2007-09-06 Sumitomo Metal Mining Co Ltd 酸化ガリウム系焼結体およびその製造方法
WO2008072486A1 (ja) * 2006-12-13 2008-06-19 Idemitsu Kosan Co., Ltd. スパッタリングターゲット及び酸化物半導体膜
WO2009084537A1 (ja) * 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. a-IGZO酸化物薄膜の製造方法
JP4415062B1 (ja) * 2009-06-22 2010-02-17 富士フイルム株式会社 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP4571221B1 (ja) * 2009-06-22 2010-10-27 富士フイルム株式会社 Igzo系酸化物材料及びigzo系酸化物材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. MORIGA ET AL.: "Electrical and Optical Properties of Transparent Conducting Homologous Compounds in the Indium-Gallium-Zinc Oxide System", J. AM. CERAM. SOC., vol. 82, 1999, pages 2705 - 2710 *

Also Published As

Publication number Publication date
TW201127976A (en) 2011-08-16
TWI506153B (zh) 2015-11-01
US8598578B2 (en) 2013-12-03
CN102612501B (zh) 2014-05-21
JP2011105563A (ja) 2011-06-02
US20120228608A1 (en) 2012-09-13
KR101787782B1 (ko) 2017-10-18
CN102612501A (zh) 2012-07-25
JP5596963B2 (ja) 2014-09-24
KR20120103594A (ko) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5596963B2 (ja) スパッタリングターゲット及びそれを用いた薄膜トランジスタ
JP6314198B2 (ja) 複合酸化物焼結体及びそれからなるスパッタリングターゲット
JP5288141B2 (ja) スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
TWI433952B (zh) Sputtering target for oxide film and method for manufacturing the same
JP4875135B2 (ja) In−Ga−Zn−O系スパッタリングターゲット
TWI555867B (zh) Sputtering target
WO2011061936A1 (ja) In-Ga-Zn系酸化物スパッタリングターゲット
JPWO2009142289A6 (ja) スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
KR20130027007A (ko) In-Ga-Sn계 산화물 소결체, 타겟, 산화물 반도체막, 및 반도체 소자
KR20120091026A (ko) In-Ga-Zn-O계 산화물 소결체
JP4891381B2 (ja) In−Ga−Zn系焼結体、及びスパッタリングターゲット
JP5501306B2 (ja) In−Ga−Zn−O系スパッタリングターゲット
JP2012056842A (ja) In−Ga−Zn系酸化物、酸化物焼結体、及びスパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052268.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127012749

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13510934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831338

Country of ref document: EP

Kind code of ref document: A1