WO2011055629A1 - エンジンの吸気装置 - Google Patents

エンジンの吸気装置 Download PDF

Info

Publication number
WO2011055629A1
WO2011055629A1 PCT/JP2010/068319 JP2010068319W WO2011055629A1 WO 2011055629 A1 WO2011055629 A1 WO 2011055629A1 JP 2010068319 W JP2010068319 W JP 2010068319W WO 2011055629 A1 WO2011055629 A1 WO 2011055629A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
valve
passage
intake valve
engine
Prior art date
Application number
PCT/JP2010/068319
Other languages
English (en)
French (fr)
Inventor
奥村猛
立野学
久湊直人
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/499,477 priority Critical patent/US9086021B2/en
Priority to JP2011539330A priority patent/JP5218671B2/ja
Priority to EP10828189.0A priority patent/EP2497925B1/en
Priority to CN201080049925.5A priority patent/CN102762841B/zh
Publication of WO2011055629A1 publication Critical patent/WO2011055629A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/06Valve members or valve-seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/06Timing or lift different for valves of same cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an intake device for an engine using a high expansion ratio cycle.
  • Patent Document 1 an engine with a high expansion ratio cycle makes the expansion ratio in the combustion cycle larger than the compression ratio by delaying the closing timing of the intake valve. This reduces pump loss (pumping loss) to improve thermal efficiency and avoids knocking.
  • the air-fuel mixture sucked into the cylinder is sheared due to a change in the intake flow velocity, and is compressed while generating turbulence. Due to this disturbance, the air-fuel mixture is uniformly diffused into the cylinder, and stable combustion is obtained.
  • the intake valve is in an open state until the middle of the compression process. For this reason, the air-fuel mixture blows into the intake passage, and the disturbance of the air-fuel mixture in the cylinder is rapidly attenuated.
  • the intake valve is closed after the middle of the compression process, the turbulence of the air-fuel mixture in the cylinder has almost disappeared, causing a problem that combustion becomes unstable.
  • an object of the present invention is to reduce the pumping loss of the engine, realize stable combustion, and improve fuel efficiency.
  • An engine intake device of the present invention that solves such a problem is arranged side by side with a first intake passage for supplying fresh air into a cylinder, and the second intake air for supplying fresh air into the cylinder.
  • a first intake valve that opens and closes the first intake passage at the opening of the first intake passage
  • a second intake valve that opens and closes the second intake passage at the opening of the second intake passage.
  • the opening timing of the first intake valve is advanced from the top dead center, and the valve lift amount of the first intake valve is different from the valve lift amount of the second intake valve in the intake stroke.
  • the valve lift amount of the first intake valve is longer than the valve lift amount of the second intake valve.
  • the engine intake device may be configured such that the valve lift amount of the first intake valve is larger than the valve lift amount of the second intake valve in the first half of the intake stroke.
  • the engine intake device may be configured such that the first intake valve opens before the second intake valve. As a result, while the first intake valve is open and the second intake valve is closed, fresh air passes through the first intake passage and a swirling flow can be formed.
  • the engine intake device may be configured such that the first intake valve is closed before the second intake valve. As a result, while the first intake valve is closed and the second intake valve is open, blow-through occurs in the second intake passage, so that the swirl flow can be maintained.
  • the above-described engine intake device may include an introducing means for guiding a swirling flow in the cylinder into the second passage. With such a configuration, it is possible to improve the flow velocity of the airflow blown into the second passage. Thereby, the flow velocity of the swirling flow in the cylinder can be improved and the attenuation of the swirling flow can be suppressed.
  • the introduction means may be a guide formed so that a swirling flow blows from the cylinder wall side to the second passage.
  • the engine intake device includes a control valve that opens and closes the second intake passage on the second intake passage.
  • the control valve has the first intake valve opened and the second intake valve opened.
  • the valve can be closed during the open period, the first intake valve can be closed, and the second intake valve can be opened during the open period.
  • the engine intake device further includes a second passage injection valve that injects fuel into the second intake passage, and the second passage injection valve injects fuel when the second intake valve is opened. It can be. With such a configuration, the fuel is injected in a direction that opposes the air blown into the second passage from the inside of the cylinder, so that atomization of the spray is promoted. Thereby, combustion efficiency can be improved.
  • the engine intake device further includes a first passage injection valve that injects fuel into the first intake passage, and a second passage injection valve that injects fuel into the second intake passage.
  • the passage injection valve finishes fuel injection before the first intake valve is opened, and the second passage injection valve injects fuel when the second intake valve is opened.
  • the engine control device of the present invention can reduce pumping loss, suppress the attenuation of the swirling flow generated in the cylinder, promote the mixing of air and fuel, and form a stable combustion state.
  • FIG. 6 is a cam characteristic diagram of a first intake cam, a second intake cam, and an exhaust cam. It is explanatory drawing which showed the flow of the air which generate
  • FIG. 6 is an explanatory diagram showing a schematic configuration of a cylinder, a first intake passage, a second intake passage, and an exhaust passage in an intake device of Embodiment 3. It is explanatory drawing which showed the injection timing of the 1st injector and the 2nd injector.
  • FIG. 1 is an explanatory view showing an intake device 10 of the present embodiment.
  • FIG. 1A shows a front view of the intake device 10
  • FIG. 1B shows a plan view of the intake device 10.
  • the intake device 10 is a device that supplies fresh air to the cylinders 2 provided in the engine 1, and is provided for each cylinder.
  • the engine 1 in this embodiment is a 4-valve 4-cylinder DOHC engine.
  • a description will be given focusing on one of the cylinders 2.
  • the cylinder 2 is formed in a cylinder head 3 and a cylinder block 4, and a piston 5 is accommodated in the cylinder 2 so as to be able to reciprocate.
  • the intake device 10 includes two intake passages for supplying fresh air into the cylinder 2, a first intake passage 11, and a second intake passage 12.
  • the first intake passage 11 and the second intake passage 12 are formed in the cylinder head 3.
  • the first intake passage 11 and the second intake passage 12 branch from an intake manifold (not shown) and are connected to the cylinder 2 in parallel.
  • a first intake valve 13 that opens and closes the first intake passage 11 is disposed at the opening of the first intake passage 11.
  • a second intake valve 14 that opens and closes the second intake passage 12 is disposed at the opening of the second intake passage 12.
  • the intake device 10 includes a first injector 26 for fuel injection in the first intake passage 11.
  • the intake device 10 includes a guide 27 in the second intake passage 12. The guide 27 guides the swirling flow generated in the cylinder 2 into the second intake passage 12.
  • the engine 1 is provided with an exhaust passage 6, which is branched into two passages and connected to the cylinders 2 respectively.
  • Exhaust valves 7 for opening and closing the exhaust passage 6 are respectively disposed at the openings of the branched exhaust passage 6.
  • the intake device 1 includes a first camshaft 15 and a second camshaft 16.
  • a variable valve mechanism 17 is assembled to one end of the first camshaft 15. Gear teeth are formed on the outer periphery of the variable valve mechanism 17.
  • a driven sprocket 18 is assembled to one end of the second camshaft 16.
  • the outer periphery of the variable valve mechanism 17 and the driven sprocket 18 are connected to a drive sprocket (not shown) on the crankshaft side by a timing chain 19, and the rotation of the crankshaft is transmitted to the variable valve mechanism 17 and the driven sprocket 18. .
  • the variable valve mechanism 17 includes a vane variable valve timing (VVT) controller provided with a hydraulic chamber. The VVT controller can advance and retard the first camshaft 15 by rotating the vane by adjusting the hydraulic pressure.
  • VVT vane variable valve timing
  • the second intake cam 20 is assembled to the first camshaft 15.
  • the second intake cam 20 opens the second intake passage 12 by pushing down the second intake valve 14 via the rocker arm 21.
  • a first intake cam 22 and two exhaust cams 24 are assembled to the second camshaft 16.
  • the first intake cam 22 opens the first intake passage 11 by pushing down the first intake valve 13 via the roller rocker 23.
  • the exhaust cam 24 opens the exhaust passage 6 by pushing down the exhaust valve 7 via the rocker arm 25.
  • FIG. 2 is a cam characteristic diagram of the first intake cam 22, the second intake cam 20, and the exhaust cam 24.
  • the first intake cam 22 is formed so that the valve lift starts on the advance side from the top dead center (360 °). It is more advanced than the dead point.
  • the valve lift start timing of the second intake cam 20 is controlled by the VVT controller.
  • the valve lift start timing of the second intake cam 20 can be made the same as the opening timing of the first intake valve 13 when moved to the advance side, and the top dead center when moved to the retard side. Rather than the retard side.
  • the valve lift start of the second intake cam 20 is retarded from the top dead center.
  • the second intake cam 20 is formed such that the operating angle of the second intake cam 20 is larger than the operating angle of the first intake cam 22. That is, the valve opening period of the second intake valve 14 is longer than the valve opening period of the first intake valve 13. As a result, the second intake valve 14 is closed at a later timing than the first intake valve 13.
  • the second intake valve 14 is configured to close about 90 ° later than the first intake valve 13.
  • the valve lift amount of the first intake valve 13 and the valve lift amount of the second intake valve 14 are different, and the valve lift amount of the first intake valve 13 is the valve lift of the second intake valve 14.
  • a period larger than the lift amount is provided.
  • the valve lift amount of the first intake valve 13 is larger than the valve lift amount of the second intake valve 14.
  • first intake period the first intake valve 13 and the second intake valve 14 A period during which both valves are open
  • second intake period a period during which the first intake valve 13 is closed and the second intake valve 14 is open
  • intake period a period during which the first intake valve 13 is closed and the second intake valve 14 is open
  • FIG. 3 is an explanatory diagram showing the flow of air generated in the cylinder 2 during the third intake period.
  • FIG. 3A shows a case where the inside of the cylinder 2 is viewed from above, and
  • FIG. 3B shows a cross section taken along the line AA in FIG.
  • FIG. 3A also shows the state of the first intake passage 11 and the second intake passage 12, but the exhaust passage 6 is omitted.
  • FIG. 3B also shows the state of the second intake passage 12 and the exhaust passage 6.
  • first intake valve 13 is closed at the timing when the compression process starts, and the first intake valve 13 is closed.
  • second intake valve 14 is still open after this, fresh air is introduced to the second intake passage 12 side. Blows through.
  • the blow-through to the second intake passage 12 generates a counterclockwise swirling flow in the cylinder 2 as shown in FIGS. 3 (a) and 3 (b).
  • the swirling flow generated during this period is short in the compression period of the air-fuel mixture after the second intake valve 14 is closed thereafter, so that the attenuation is small and the turbulence of the air-fuel mixture can be maintained until combustion.
  • the guide 27 provided in the second intake passage 12 inhibits the airflow flowing from the first intake passage 11 side to the second intake passage 12 side, and travels from the outer peripheral side inside the cylinder 2 to the second intake passage 12. Only the air flow is easily flown into the second intake passage 12 to assist the swirling flow into the second intake passage 12. Thereby, the swirling flow in the cylinder 2 is further strengthened, and the turbulence of the air-fuel mixture is maintained even after the second intake valve 14 is closed. As described above, since the turbulence of the air-fuel mixture is maintained even after the second intake valve 14 is closed, the air-fuel mixture in the cylinder 2 becomes uniform and stable combustion is formed.
  • the closing timing of the second intake valve 14 can be controlled by the VVT controller. For this reason, under conditions where the engine 1 is at a high rotation speed and a high load, the closing timing of the second intake valve 14 is set to an appropriate timing at which the swirling flow can be maintained by the VVT controller. Thereby, the engine 1 can ensure a high torque and high output state.
  • the first intake valve 13 is closed during the intake stroke, the period during which the second intake valve 14 is closed, and the first intake valve 13 is closed. And a period during which the second intake valve 14 is open.
  • a swirl flow along the inner peripheral wall in the cylinder 2 is generated during a period in which the first intake valve 13 is opened and the second intake valve 14 is closed during the intake stroke.
  • the swirling flow blows through to the intake side during the period when the first intake valve 13 is closed and the second intake valve 14 is opened in the middle of the compression process. Since the swirl flow through the intake side is only in the second passage, the airflow in the cylinder is biased, and the swirl flow attenuation is suppressed.
  • the expansion ratio becomes larger than the compression ratio, and the pumping loss is reduced.
  • the pumping loss can be reduced, the attenuation of the swirling flow generated in the cylinder 2 can be suppressed, and the mixing of air and fuel can be promoted to form a stable combustion state. Thereby, EGR resistance increases and fuel consumption is improved.
  • the intake device 30 of the present embodiment has substantially the same configuration as the intake device 10 of the first embodiment.
  • the intake device 30 of the present embodiment differs from the intake device 10 of the first embodiment in that an intake control valve 31 that opens and closes the second intake passage 12 is provided on the second intake passage 12.
  • the intake control valve 31 is closed during a period in which the first intake valve 13 is open and the second intake valve 14 is open, the first intake valve 13 is closed, and the second intake valve 14 is The valve is configured to open during the valve opening period.
  • the intake device 30 Since the other configuration of the intake device 30 is the same as that of the intake device 10 of the first embodiment, the detailed description of the same components as those of the intake device 10 is omitted, and during the description of the present embodiment, Explanation will be made using the same reference numerals.
  • FIG. 4 is an explanatory diagram showing the timing of opening and closing of the intake control valve 31.
  • FIG. 4 is an explanatory diagram in which the opening / closing timing of the intake control valve 31 is added to FIG. 2 shown in the first embodiment.
  • the intake control valve 31 closes almost simultaneously with the opening of the second intake valve 14 and opens at the timing when the first intake valve 13 closes.
  • the intake control valve 31 is opened before the first intake valve 13 is closed in consideration of the time required for the air flow to occur after the valve is opened and closed. Further, the intake control valve 31 is open during a period other than the above.
  • FIG. 5 is an explanatory view showing the flow of air generated in the cylinder 2.
  • FIG. 5A shows a state where the second intake valve 14 is opened, but the intake control valve 31 is closed
  • FIG. 5B shows the second intake valve 14 opened. The state when the intake control valve 31 is opened in the valved state is shown.
  • the intake control valve 31 In the closing period of the intake control valve 31 in FIG. 4, the intake control valve 31 is closed simultaneously with the opening of the second intake valve 14, so that no air flows in the second intake passage 12. For this reason, during this period when the intake control valve 31 is closed, the air supplied into the cylinder 2 is limited to the first intake passage 11, and a drift occurs in the cylinder 2. ), The generation of the swirling flow is promoted. Thereafter, the intake control valve 31 is opened at the timing when the first intake valve 13 is closed, and air blown from the cylinder 2 into the second intake passage 12 occurs. Thus, the attenuation of the swirl flow is suppressed, and the turbulence of the air flow in the cylinder 2 increases. For this reason, even after the second intake valve 14 is closed, the turbulence of the airflow remains, and the air-fuel mixture diffuses to realize stable combustion. In the present embodiment, the same effect can be obtained even if the guide 27 is not provided.
  • FIG. 6 is an explanatory view showing a schematic configuration of the cylinder 2, the first intake passage 11, the second intake passage 12, and the exhaust passage 6 in the intake device 40 of the present embodiment.
  • the intake device 40 of the present embodiment has substantially the same configuration as the intake device 1 of the first embodiment.
  • the intake device 40 according to the present embodiment differs from the intake device 10 according to the first embodiment in that the second intake passage 12 includes a second injector 41 for fuel injection. Since the other configuration of the intake device 40 is the same as that of the intake device 10 of the first embodiment, the detailed description of the same components as those of the intake device 10 is omitted, and during the description of the present embodiment, Explanation will be made using the same reference numerals.
  • FIG. 7 is an explanatory view showing the injection timings of the first injector 26 and the second injector 41.
  • FIG. 7 is an explanatory diagram in which the injection timings of the first injector 26 and the second injector 41 are added to FIG. 2 shown in the first embodiment.
  • the first injector 26 performs the intake asynchronous injection, and finishes the fuel injection before the first intake valve 13 is opened.
  • the second injector 41 performs intake synchronous injection and injects fuel when the second intake valve 14 is opened.
  • the second injector 41 By providing the second injector 41 in this way, a part of the fuel injected by the first injector 26 when only the first injector 26 is provided can be injected by the second injector 41.
  • the fuel injected from the second injector 41 faces the airflow that blows through the second intake passage 12, so that the fuel spray is atomized. For this reason, the vaporization of fuel is promoted, the intake air temperature is lowered, the volumetric efficiency is improved, and the output is improved. In the present embodiment, the same effect can be obtained even if the guide 27 is not provided.
  • variable valve mechanism 17 may be configured such that the valve timing operating angle of the second intake valve 14 is variable. Further, a variable valve mechanism may be assembled to the second camshaft 16 so that the valve timing of the first intake valve 13 is variable. As a result, the intake air into the cylinder 2 can be controlled more flexibly, and the combustion efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 エンジン1の吸気装置10は、気筒2内へ新気を供給する第1吸気通路11と、第1吸気通路11と並べて配置され、気筒2内に新気を供給する第2吸気通路12と、第1吸気通路11の開口部において第1吸気通路11を開閉する第1吸気弁13と、第2吸気通路12の開口部において第2吸気通路12を開閉する第2吸気弁14と、第2吸気弁の開閉動作を制御する可変動弁機構17と、を備えている。さらに、エンジン1の吸気装置10では、吸気装置10の第1吸気弁13の開弁時期が上死点よりも進角しているとともに、吸気行程において、第1吸気弁13のバルブリフト量と第2吸気弁14のバルブリフト量とが異なり、第1吸気弁13のバルブリフト量が第2吸気弁14のバルブリフト量よりも大きい期間が設けられている。

Description

エンジンの吸気装置
 本発明は、高膨張比サイクルを利用するエンジンの吸気装置に関する。
 従来、エンジンの高効率化を図り、燃焼サイクル中の膨張比が圧縮比を上回るようにした、いわゆる高膨張比サイクルのエンジンが実用化されている。特許文献1によると、高膨張比サイクルのエンジンは、吸気弁の閉弁時期を遅らせることにより、燃焼サイクル中の膨張比を圧縮比よりも大きくする。これにより、ポンプ損失(ポンピングロス)を低減して熱効率の向上を図るとともに、ノッキングを回避している。
特開2004-183510号公報
 ところで、エンジンの圧縮工程において、筒内に吸入された混合気は、吸気流速の変化によりせん断が生じ、乱れを生成しながら圧縮される。この乱れにより混合気が筒内に均一に拡散し、安定した燃焼が得られる。ところが、吸気弁の閉弁時期を遅らせる、いわゆる、吸気遅閉じによる高膨張比サイクルのエンジンでは、吸気弁が圧縮工程半ばまで開いた状態となる。このため、混合気が吸気通路へ吹き抜け、筒内の混合気の乱れが急激に減衰してしまう。特に、圧縮工程半ばを過ぎて吸気弁を閉じた時点では、筒内の混合気の乱れがほとんど消滅してしまい、燃焼が不安定になるという問題が生じていた。
 そこで、本発明は、エンジンのポンピングロスを低減するとともに、安定した燃焼を実現し、燃費向上を図ることを目的とする。
 かかる課題を解決する本発明のエンジンの吸気装置は、気筒内へ新気を供給する第1吸気通路と、前記第1吸気通路と並べて配置され、前記気筒内に新気を供給する第2吸気通路と、前記第1吸気通路の開口部において前記第1吸気通路を開閉する第1吸気弁と、前記第2吸気通路の開口部において前記第2吸気通路を開閉する第2吸気弁と、を備え、前記第1吸気弁の開弁時期が上死点よりも進角しているとともに、吸気行程において、前記第1吸気弁のバルブリフト量と前記第2吸気弁のバルブリフト量とが異なり、前記第1吸気弁のバルブリフト量が前記第2吸気弁のバルブリフト量よりも大きい期間を設けたことを特徴とする。
 このような構成とすることにより、リフト量の大きい第1吸気弁側の第1吸気通路からリフト量の小さい第2吸気弁側の第2吸気通路へと吸気の吹き抜けが生じる。この吹き抜けにより筒内の内周壁に沿った旋回流が発生する。また、この吹き抜けにより吸入された新気が抜けるため、筒内の膨張比が圧縮比より大きくなりポンピングロスを低減できる。このとき、新気が第2吸気通路を吹き抜けることにより、筒内における気流に偏りが生じて旋回流の減衰が抑制される。このように、ポンピングロスを低減するとともに、筒内に発生する旋回流の減衰を抑制し、空気と燃料との混合を促進して安定した燃焼状態を形成することができる。また、上記エンジンの吸気装置は、吸気行程前半において、前記第1吸気弁のバルブリフト量が前記第2吸気弁のバルブリフト量よりも大きい構成とすることができる。
 上記エンジンの吸気装置は、前記第1吸気弁が前記第2吸気弁より先に開弁する構成とすることができる。これにより、第1吸気弁が開弁し、第2吸気弁が閉じている間に、新気が第1吸気通路を通り、旋回流が形成できる。また、上記エンジンの吸気装置は、前記第1吸気弁が前記第2吸気弁より先に閉弁する構成とすることができる。これにより、第1吸気弁が閉弁し、第2吸気弁が開いている間に、第2吸気通路へ吹き抜けが生じるため、旋回流が維持できる。
 上記エンジンの吸気装置において、前記第2通路内へ筒内の旋回流を導く導入手段を備えることができる。このような構成により、第2通路へ吹き抜ける気流の流速を向上できる。これにより、筒内の旋回流の流速を向上し、旋回流の減衰を抑制することができる。
 また、前記導入手段は、気筒の壁側から前記第2通路へと旋回流が吹き込むように形成されたガイドとすることができる。このような構成とすることにより、第2通路へ流れ込む気体のうち、旋回流を減衰する方向の流れの発生が抑制される。これにより、筒内を流れる旋回流の減衰が抑制され、空気と燃料との混合が促進される。
 上記エンジンの吸気装置において、前記第2吸気通路上に前記第2吸気通路を開閉する制御弁を備え、当該制御弁は、前記第1吸気弁が開弁し、前記第2吸気弁が開弁している期間において閉弁し、前記第1吸気弁が閉弁し、前記第2吸気弁が開弁している期間において開弁する構成とすることができる。このような構成とすることにより、制御弁が閉じる時期に、第1吸気通路のみから筒内へ混合気が供給されるため、筒内における気流に偏りが生じて旋回流を発生することができる。また、開閉弁が開く時期に、第2吸気通路のみから吹き抜けが生じるため、さらに気流に偏りが生じて旋回流の減衰が抑制される。これにより、筒内は旋回流により、混合気の乱れが維持され、安定した燃焼が行われる。
 また、上記エンジンの吸気装置において、前記第2吸気通路内に燃料を噴射する第2通路噴射弁を備え、当該第2通路噴射弁は、前記第2吸気弁の開弁時に燃料を噴射する構成とすることができる。このような構成とすることにより、筒内から第2通路内へ吹き抜ける空気に対抗する方向へ燃料を噴射するため、噴霧の微粒化が促進される。これにより、燃焼効率を向上できる。
 さらに、上記エンジンの吸気装置において、前記第1吸気通路内に燃料を噴射する第1通路噴射弁と、前記第2吸気通路内に燃料を噴射する第2通路噴射弁とを備え、前記第1通路噴射弁は、前記第1吸気弁の開弁以前に燃料の噴射を終え、前記第2通路噴射弁は、前記第2吸気弁の開弁時に燃料を噴射する構成とすることができる。このような構成とすることにより、バルブオーバーラップ時の混合気の吹き抜けが低減される。第1吸気弁は進角して開弁されるため、排気弁とオーバーラップする時期がある。本発明のように、第1吸気弁が開弁する以前に第1吸気通路内での燃料噴射が終わるので、排気側へと吹き抜ける混合気が低減できる。これにより、燃費向上、エミッション向上が図られる。また、第2通路側において噴射される燃料の噴霧が微粒化されて、燃焼効率が向上できる。
 本発明のエンジンの制御装置は、ポンピングロスを低減するとともに、筒内に発生する旋回流の減衰を抑制し、空気と燃料との混合を促進して安定した燃焼状態を形成することができる。
実施例1の吸気装置を示した説明図であって、(a)は吸気装置の正面図を示し、(b)は吸気装置の平面図を示している。 第1吸気カム、第2吸気カム、排気カムのカム特性図である。 第1吸気弁が閉弁し、第2吸気弁が開弁している期間において、気筒内に発生する空気の流れを示した説明図であって、(a)は、気筒内を上から見た場合を示し、(b)は、(a)中のA-A断面を示している。 吸気制御弁の開弁、閉弁の時期を示した説明図である。 実施例2において気筒内に発生する空気の流れを示した説明図であって、(a)は、第2吸気弁が開弁しているが、吸気制御弁が閉弁している場合の様子を示し、(b)は、第2吸気弁が開弁した状態で吸気制御弁を開弁した場合の様子を示している。 実施例3の吸気装置における気筒と第1吸気通路と第2吸気通路と排気通路との概略構成を示した説明図である。 第1インジェクタ及び第2インジェクタの噴射時期を示した説明図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。
 本発明の実施例1について図面を参照しつつ説明する。図1は本実施例の吸気装置10を示した説明図である。図1(a)は吸気装置10の正面図を示し、図1(b)は吸気装置10の平面図を示している。吸気装置10はエンジン1が備える気筒2へ新気を供給する装置であって、気筒毎に備えられている。本実施例におけるエンジン1は4バルブ4気筒のDOHCエンジンである。ここでは、気筒2の1つに着目して説明する。
 気筒2はシリンダヘッド3、シリンダブロック4内に形成されており、気筒2の内部にはピストン5が往復運動可能に収納されている。
 吸気装置10は、気筒2内へ新気を供給する2本の吸気通路、第1吸気通路11と、第2吸気通路12とを備えている。第1吸気通路11、第2吸気通路12は、シリンダヘッド3内に形成されている。第1吸気通路11と第2吸気通路12とは、吸気マニホールド(図示しない)から分岐し、並列して気筒2へ接続している。第1吸気通路11の開口部において第1吸気通路11を開閉する第1吸気弁13が配置されている。また、第2吸気通路12の開口部において第2吸気通路12を開閉する第2吸気弁14が配置されている。
 さらに、吸気装置10は第1吸気通路11に燃料噴射用の第1インジェクタ26を備えている。また、吸気装置10は、第2吸気通路12にガイド27を備えている。このガイド27は、気筒2内に発生する旋回流を第2吸気通路12内へ導くものである。
 また、エンジン1は排気通路6を備えており、この排気通路6は、2本の通路に分岐してそれぞれ気筒2に接続している。分岐した排気通路6の開口部において、排気通路6を開閉する排気弁7がそれぞれ配置されている。
 吸気装置1は第1カムシャフト15と、第2カムシャフト16とを備えている。第1カムシャフト15の一端には可変動弁機構17が組み付けられている。この可変動弁機構17の外周にはギヤの歯が形成されている。また、第2カムシャフト16の一端にはドリブンスプロケット18が組み付けられている。可変動弁機構17の外周及びドリブンスプロケット18は、タイミングチェーン19によりクランクシャフト側のドライブスプロケット(図示しない)と連結されて、可変動弁機構17及びドリブンスプロケット18へクランクシャフトの回転が伝達される。これにより、第1カムシャフト15、第2カムシャフト16とが回転する。可変動弁機構17は油圧室が設けられたベーン式の可変バルブタイミング(VVT)コントローラを備えている。このVVTコントローラは油圧の調整によりベーンを回転させて、第1カムシャフト15を進角、遅角することができる。
 第1カムシャフト15には、第2吸気カム20が組み付けられている。第2吸気カム20は、ロッカーアーム21を介して第2吸気弁14を押し下げることにより第2吸気通路12を開通させる。一方、第2カムシャフト16には、第1吸気カム22と2つの排気カム24とが組み付けられている。第1吸気カム22は、ローラーロッカー23を介して第1吸気弁13を押し下げることにより、第1吸気通路11を開通させる。また、排気カム24は、ロッカーアーム25を介して排気弁7を押し下げることにより排気通路6を開通させる。
 ここで、第1吸気カム22、第2吸気カム20、排気カム24のカム特性に関して説明する。図2は、第1吸気カム22、第2吸気カム20、排気カム24のカム特性図である。図2において、0°(=720°)、360°のとき、ピストン5が上死点に位置する。図2で示すように、第1吸気カム22は上死点(360°)よりも進角側でバルブリフトが開始するように形成されているため、第1吸気弁13の開弁時期は上死点よりも進角している。一方、第2吸気カム20のバルブリフト開始時期はVVTコントローラにより制御される。この第2吸気カム20のバルブリフト開始時期は、進角側に移動した場合には、第1吸気弁13の開弁時期と同一にでき、遅角側に移動した場合には、上死点よりも遅角側とすることができる。なお、図2中では、第2吸気カム20のバルブリフト開始が上死点よりも遅角側となっている。また、第2吸気カム20は第2吸気カム20の作用角が第1吸気カム22の作用角よりも大きくなるように形成されている。すなわち、第2吸気弁14の開弁期間が第1吸気弁13の開弁期間より拡大されている。これにより、第2吸気弁14は第1吸気弁13よりも遅い時期に閉弁することとなる。なお、図2によると、第2吸気弁14が第1吸気弁13よりも90°程度遅く閉弁するように構成されている。すなわち、吸気装置1の吸気行程において、第1吸気弁13のバルブリフト量と第2吸気弁14のバルブリフト量とが異なり、第1吸気弁13のバルブリフト量が第2吸気弁14のバルブリフト量よりも大きい期間が設けられている。特に、吸気行程前半において、第1吸気弁13のバルブリフト量が第2吸気弁14のバルブリフト量よりも大きくなっている。このようなカム特性を設定したことにより、排気弁7と第1吸気弁13とが同時に開弁している期間、すなわち、オーバーラップ期間が存在する。また、第1吸気弁13が開弁し、第2吸気弁14が閉弁している期間(以下、「第1吸気期間」と称する。)、第1吸気弁13および第2吸気弁14の両方が開弁している期間(以下、「第2吸気期間」と称する。)、第1吸気弁13が閉弁し、第2吸気弁14が開弁している期間(以下、「第3吸気期間」と称する。)が存在する。
 次に、吸気期間中に本実施例のエンジン1の気筒2内に発生する空気の流れについて説明する。図3は、上記第3吸気期間において、気筒2内に発生する空気の流れを示した説明図である。図3(a)は、気筒2内を上から見た場合を示し、図3(b)は、図3(a)中のA-A断面を示している。図3(a)では、第1吸気通路11、第2吸気通路12の様子も示しているが排気通路6は省略している。図3(b)では、第2吸気通路12と排気通路6の様子も示している。
 吸気が開始されると、図2のカム特性における第1吸気期間では、第1吸気弁13のみ開弁するため、第1吸気通路11側からのみ新気が気筒2内へ供給される。これにより、気筒2内に偏流が生じ、反時計回りの旋回流が発生する。この旋回流により、空気と燃料との混合が促進される。そして、第2吸気期間で第2吸気弁14が開弁することにより、第2吸気通路12側からも新気が取り込まれる。
 さらに、圧縮工程の始まるタイミングで第3吸気期間となり第1吸気弁13が閉弁となるが、この後も第2吸気弁14が開弁状態であるので、第2吸気通路12側へ新気が吹き抜ける。この第2吸気通路12への吹き抜けは、図3(a)、図3(b)に示すように、気筒2内に反時計回りの旋回流を発生させる。この期間に発生した旋回流は、その後第2吸気弁14の閉弁後における混合気の圧縮期間が短いため、減衰が小さく、燃焼まで混合気の乱れを維持することができる。さらに、第2吸気通路12に設けられたガイド27は、第1吸気通路11側から第2吸気通路12側へ流入する気流を阻害し、気筒2内部の外周側から第2吸気通路12へ向かう気流のみを第2吸気通路12へ流入しやすくして、旋回流が第2吸気通路12へ吹き込むことを補助する。これにより、気筒2内の旋回流がさらに強化され、混合気の乱れが第2吸気弁14の閉弁後にも維持される。このように、第2吸気弁14の閉弁後にも混合気の乱れが維持されるので、気筒2内の混合気が均一となり、安定した燃焼が形成される。
 また、上記の通り、このような第2吸気弁14の閉弁時期はVVTコントローラにより制御可能である。このため、エンジン1が高回転、高負荷となるような条件では、VVTコントローラにより第2吸気弁14の閉弁時期が旋回流を維持できる適切なタイミングに設定される。これにより、エンジン1は高トルク、高出力の状態を確保できる。
 以上のように、本実施例の吸気装置10は、吸気行程中に第1吸気弁13が開弁し、第2吸気弁14が閉弁している期間、及び、第1吸気弁13が閉弁し、第2吸気弁14が開弁している期間を備えている。これにより、吸気行程中の第1吸気弁13が開弁し、第2吸気弁14が閉弁している期間において、気筒2内の内周壁に沿った旋回流が発生する。さらに、圧縮工程半ばに第1吸気弁13が閉弁し、第2吸気弁14が開弁している期間において、旋回流が吸気側へ吹き抜ける。この旋回流の吸気側への吹き抜けは第2通路のみであるため、筒内における気流に偏りが生じ、旋回流の減衰が抑制される。また、吹き抜けにより、気筒2内の空気が抜けるため、膨張比が圧縮比より大きくなり、ポンピングロスが低減する。このように、ポンピングロスを低減するとともに、気筒2内に発生する旋回流の減衰を抑制し、空気と燃料との混合を促進して安定した燃焼状態を形成することができる。これにより、耐EGR性が増し、燃費を改善する。
 次に、本発明の実施例2について説明する。本実施例の吸気装置30は、実施例1の吸気装置10とほぼ同様の構成をしている。ただし、本実施例の吸気装置30は、第2吸気通路12上に第2吸気通路12を開閉する吸気制御弁31を備えた点で、実施例1の吸気装置10と異なる。この吸気制御弁31は、第1吸気弁13が開弁し、第2吸気弁14が開弁している期間において閉弁し、第1吸気弁13が閉弁し、第2吸気弁14が開弁している期間において開弁するように構成されている。なお、吸気装置30のその他の構成は実施例1の吸気装置10と同一であるため、吸気装置10と同一の構成要素については、その詳細な説明を省略するとともに、本実施例の説明中、同一の参照番号を用いて説明する。
 図4は、吸気制御弁31の開弁、閉弁の時期を示した説明図である。図4は、上記実施例1で示した図2に吸気制御弁31の開閉の時期を加えた説明図である。吸気制御弁31は、第2吸気弁14の開弁とほぼ同時に閉弁し、第1吸気弁13が閉弁するタイミングで開弁する。ここでは、弁が開閉してから空気の流れが発生するまでに時間を要することを考慮して、吸気制御弁31は、第1吸気弁13が閉弁する前から開弁する。また、上記以外の期間では、吸気制御弁31は開弁している。
 図5は、気筒2内に発生する空気の流れを示した説明図である。図5(a)は、第2吸気弁14が開弁しているが、吸気制御弁31が閉弁している場合の様子を示し、図5(b)は、第2吸気弁14が開弁した状態で吸気制御弁31を開弁した場合の様子を示している。
 図4中の吸気制御弁31の閉弁期間において、第2吸気弁14が開弁するのと同時に吸気制御弁31が閉弁するため、第2吸気通路12内は空気の流れが生じない。このため、吸気制御弁31が閉弁しているこの期間においては、気筒2内へ供給される空気は第1吸気通路11からに限られ、気筒2内に偏流が発生し、図5(a)に示すように、旋回流の発生が促進される。その後、第1吸気弁13が閉弁となるタイミングで吸気制御弁31が開弁して、気筒2内から第2吸気通路12への空気の吹き抜けが発生するため、図5(b)に示すように、旋回流の減衰が抑制され、気筒2内の気流の乱れが増加する。このため、第2吸気弁14が閉弁した後にも気流の乱れが残存し、混合気が拡散して安定した燃焼が実現される。なお、本実施例では、ガイド27を備えていなくとも同様の効果が得られる。
 次に、本発明の実施例3について説明する。図6は、本実施例の吸気装置40における気筒2と第1吸気通路11と第2吸気通路12と排気通路6との概略構成を示した説明図である。本実施例の吸気装置40は、実施例1の吸気装置1とほぼ同様の構成をしている。ただし、本実施例の吸気装置40は、第2吸気通路12に燃料噴射用の第2インジェクタ41を備えた点で、実施例1の吸気装置10と異なる。なお、吸気装置40のその他の構成は実施例1の吸気装置10と同一であるため、吸気装置10と同一の構成要素については、その詳細な説明を省略するとともに、本実施例の説明中、同一の参照番号を用いて説明する。
 図7は第1インジェクタ26及び第2インジェクタ41の噴射時期を示した説明図である。この図7は、上記実施例1で示した図2に第1インジェクタ26及び第2インジェクタ41の噴射時期を加えた説明図である。図7に示すとおり、第1インジェクタ26は、吸気非同期噴射を行い、第1吸気弁13の開弁以前に燃料の噴射を終える。一方、第2インジェクタ41は、吸気同期噴射を行い、第2吸気弁14の開弁時に燃料を噴射する。
 このように第2インジェクタ41を設けたことにより、第1インジェクタ26のみの場合に第1インジェクタ26で噴射していた燃料の一部を第2インジェクタ41で噴射することができる。これにより、第1吸気弁13と排気弁7とのバルブオーバーラップ時において、排気側へ吹き抜ける混合気を減少できるため、燃費、エミッションが向上する。また、第2吸気通路12側において、第2インジェクタ41から噴射される燃料は、第2吸気通路12を吹き抜ける気流に対向するため、燃料の噴霧が微粒化される。このため、燃料の気化が促進して吸気温が低下し、体積効率が向上して出力が改善される。なお、本実施例では、ガイド27を備えていなくとも同様の効果が得られる。
 上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。
 例えば、上記実施例において、可変動弁機構17は第2吸気弁14のバルブタイミングの作用角を可変とする構成であっても良い。また、第2カムシャフト16に可変動弁機構を組み付け、第1吸気弁13のバルブタイミングを可変とする構成としても良い。これにより、さらに柔軟に気筒2内への吸入空気をコントロールすることが可能となり、燃焼効率を向上することができる。
 1 エンジン
 2 気筒
 6 排気通路
 7 排気弁
 10、30、40 吸気装置
 11 第1吸気通路
 12 第2吸気通路
 13 第1吸気弁
 14 第2吸気弁
 15 第1カムシャフト
 16 第2カムシャフト
 17 可変動弁機構
 18 ドリブンスプロケット
 19 タイミングチェーン
 20 第2吸気カム
 21 ロッカーアーム
 22 第1吸気カム
 23 ローラーロッカー
 26 第1インジェクタ
 27 ガイド
 31 吸気制御弁
 41 第2インジェクタ

Claims (9)

  1.  気筒内へ新気を供給する第1吸気通路と、
     前記第1吸気通路と並べて配置され、前記気筒内に新気を供給する第2吸気通路と、
     前記第1吸気通路の開口部において前記第1吸気通路を開閉する第1吸気弁と、
     前記第2吸気通路の開口部において前記第2吸気通路を開閉する第2吸気弁と、
    を備え、
     前記第1吸気弁の開弁時期が上死点よりも進角しているとともに、吸気行程において、前記第1吸気弁のバルブリフト量と前記第2吸気弁のバルブリフト量とが異なり、前記第1吸気弁のバルブリフト量が前記第2吸気弁のバルブリフト量よりも大きい期間を設けたことを特徴とするエンジンの吸気装置。
  2.  吸気行程前半において、前記第1吸気弁のバルブリフト量が前記第2吸気弁のバルブリフト量よりも大きいことを特徴とする請求項1記載のエンジンの吸気装置。
  3.  前記第1吸気弁が前記第2吸気弁より先に開弁することを特徴とした請求項1または2記載のエンジンの吸気装置。
  4.  前記第1吸気弁が前記第2吸気弁より先に閉弁することを特徴とした請求項1乃至3のいずれか一項記載のエンジンの吸気装置。
  5.  前記第2通路内へ筒内の旋回流を導く導入手段を備えたことを特徴とする請求項1乃至4のいずれか一項記載のエンジンの吸気装置。
  6.  前記導入手段は、気筒の壁側から前記第2通路へと旋回流が吹き込むように形成されたガイドであることを特徴とする請求項5記載のエンジンの吸気装置。
  7.  前記第2吸気通路上に前記第2吸気通路を開閉する制御弁を備え、
     当該制御弁は、前記第1吸気弁が開弁し、前記第2吸気弁が開弁している期間において閉弁し、前記第1吸気弁が閉弁し、前記第2吸気弁が開弁している期間において開弁することを特徴とする請求項1乃至6のいずれか一項記載のエンジンの吸気装置。
  8.  前記第2吸気通路内に燃料を噴射する第2通路噴射弁を備え、当該第2通路噴射弁は、前記第2吸気弁の開弁時に燃料を噴射することを特徴とする請求項1乃至7のいずれか一項記載のエンジンの吸気装置。
  9.  前記第1吸気通路内に燃料を噴射する第1通路噴射弁と、
     前記第2吸気通路内に燃料を噴射する第2通路噴射弁とを備え、
     前記第1通路噴射弁は、前記第1吸気弁の開弁以前に燃料の噴射を終え、前記第2通路噴射弁は、前記第2吸気弁の開弁時に燃料を噴射することを特徴とする請求項1乃至7のいずれか一項記載のエンジンの吸気装置。
PCT/JP2010/068319 2009-11-05 2010-10-19 エンジンの吸気装置 WO2011055629A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/499,477 US9086021B2 (en) 2009-11-05 2010-10-19 Intake apparatus of engine
JP2011539330A JP5218671B2 (ja) 2009-11-05 2010-10-19 エンジンの吸気装置
EP10828189.0A EP2497925B1 (en) 2009-11-05 2010-10-19 Intake apparatus of engine
CN201080049925.5A CN102762841B (zh) 2009-11-05 2010-10-19 发动机的进气装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009253992 2009-11-05
JP2009-253992 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011055629A1 true WO2011055629A1 (ja) 2011-05-12

Family

ID=43969869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068319 WO2011055629A1 (ja) 2009-11-05 2010-10-19 エンジンの吸気装置

Country Status (5)

Country Link
US (1) US9086021B2 (ja)
EP (1) EP2497925B1 (ja)
JP (1) JP5218671B2 (ja)
CN (1) CN102762841B (ja)
WO (1) WO2011055629A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015081A (ja) * 2011-07-04 2013-01-24 Mitsubishi Motors Corp エンジン制御装置
JP2013024145A (ja) * 2011-07-21 2013-02-04 Hitachi Automotive Systems Ltd 内燃機関の制御装置
WO2013098905A1 (ja) * 2011-12-25 2013-07-04 Yaoita Yasuhito 火花点火式4サイクルエンジン
JP2015175249A (ja) * 2014-03-13 2015-10-05 本田技研工業株式会社 内燃機関の燃焼制御装置
CN106939808A (zh) * 2017-04-26 2017-07-11 哈尔滨工程大学 一种应用于低速柴油机的带液压旋阀器的排气阀装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013108187A1 (de) * 2012-12-05 2014-06-05 Hyundai Motor Company Kraftstoffverteiler für einen Motor mit doppelten Einspritzdüsen und Verfahren zur Steuerung des Kraftstoffverteilers
KR101393571B1 (ko) * 2012-12-17 2014-05-12 기아자동차 주식회사 밸브가변타이밍기구와 가변텀블기구를 갖는 엔진
CN103437897B (zh) * 2013-08-19 2015-11-18 重庆长安汽车股份有限公司 一种阿特金森循环发动机燃烧系统
JP6236739B2 (ja) * 2013-10-25 2017-11-29 スズキ株式会社 内燃機関
CN110170199B (zh) 2014-07-23 2022-10-25 康明斯滤清系统知识产权公司 入口旁路流动管理系统和方法
JP6425121B2 (ja) * 2014-10-03 2018-11-21 三菱自動車工業株式会社 内燃機関
US20180112633A1 (en) * 2016-10-20 2018-04-26 GM Global Technology Operations LLC Method for operating an internal combustion engine employing a dedicated-cylinder egr system
US10539080B2 (en) 2017-04-21 2020-01-21 Peter Chargo Internal combustion engine injection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183510A (ja) 2002-11-29 2004-07-02 Mitsubishi Motors Corp 高膨張比サイクルエンジン
JP2005042607A (ja) * 2003-07-28 2005-02-17 Honda Motor Co Ltd 内燃機関の動弁制御装置
JP2006161666A (ja) * 2004-12-07 2006-06-22 Mazda Motor Corp エンジンの吸排気制御装置
JP2008202406A (ja) * 2007-02-16 2008-09-04 Toyota Motor Corp 内燃機関の吸気バルブ制御装置及びこの制御装置を備えた内燃機関
JP2009103108A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 筒内直接噴射式内燃機関

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191140A (en) * 1978-03-06 1980-03-04 Yamaha Hatsudoki Kabushiki Kaisha Induction flow guide device for internal combustion engine intake manifold
US4354463A (en) * 1979-06-09 1982-10-19 Honda Giken Kogyo Kabushiki Kaisha Device for improving combustion efficiency of mixture in four cycle internal combustion engine
JPS6119632U (ja) 1984-07-10 1986-02-04 トヨタ自動車株式会社 複吸気弁エンジン
US4703734A (en) * 1985-03-06 1987-11-03 Nissan Motor Co., Ltd. Multi-valve internal combustion engine
JPS61218726A (ja) * 1985-03-26 1986-09-29 Nissan Motor Co Ltd 内燃機関の吸気装置
US4856473A (en) * 1987-08-25 1989-08-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with multiple intake valves and EGR arrangement
JPH05133212A (ja) * 1992-05-18 1993-05-28 Nissan Motor Co Ltd 多気筒内燃機関
JPH08260925A (ja) 1995-03-24 1996-10-08 Nissan Motor Co Ltd エンジンの吸気システム
JPH1026026A (ja) 1996-07-09 1998-01-27 Hitachi Ltd 火花点火機関
US6138651A (en) * 1997-05-30 2000-10-31 Nissan Motor Co., Ltd. Exhaust gas recirculation system for engine
JP3256671B2 (ja) * 1997-08-01 2002-02-12 本田技研工業株式会社 内燃機関のピストン
JP3807174B2 (ja) * 1999-12-06 2006-08-09 日産自動車株式会社 エンジンの制御装置
JP3799944B2 (ja) * 2000-03-21 2006-07-19 トヨタ自動車株式会社 内燃機関の可変動弁機構および吸気量制御装置
US6397813B1 (en) * 2000-04-28 2002-06-04 Ford Global Technologies, Inc. Method and apparatus for inducing swirl in an engine cylinder by controlling engine valves
JP2002206446A (ja) * 2001-01-10 2002-07-26 Hitachi Ltd 内燃機関及び内燃機関の燃料噴射制御装置
JP2002242716A (ja) * 2001-02-21 2002-08-28 Hitachi Ltd 筒内噴射エンジンの制御装置
US20030127063A1 (en) * 2002-01-10 2003-07-10 Yushu Wang Continually variable valve timing, lift, and duration for internal combustion engine
DE10228022B4 (de) * 2002-06-20 2009-04-23 Entec Consulting Gmbh Ventilhubvorrichtung zur Hubverstellung der Gaswechselventile einer Verbrennungskraftmaschine
JP3861789B2 (ja) * 2002-10-03 2006-12-20 日産自動車株式会社 内燃機関の吸気装置
JP4045915B2 (ja) * 2002-10-03 2008-02-13 日産自動車株式会社 内燃機関の吸気装置
DE10307167A1 (de) 2003-02-20 2004-09-02 Daimlerchrysler Ag Verfahren zur Steuerung eines Einlassventils einer Brennkraftmaschine
US20040237931A1 (en) * 2003-03-10 2004-12-02 Yoshio Okamoto Mixture supply device for internal-combustion engine
JP3903942B2 (ja) * 2003-04-03 2007-04-11 日産自動車株式会社 内燃機関の吸気装置
JP3829818B2 (ja) * 2003-04-18 2006-10-04 日産自動車株式会社 内燃機関の吸気装置
CN100580238C (zh) * 2005-01-31 2010-01-13 丰田自动车株式会社 用于内燃机的控制设备
JP4100401B2 (ja) * 2005-02-24 2008-06-11 トヨタ自動車株式会社 内燃機関
JP2006283696A (ja) * 2005-04-01 2006-10-19 Toyota Motor Corp 内燃機関の吸気装置
US7377236B2 (en) * 2005-09-09 2008-05-27 Ford Global Technologies, Llc System and method for exhaust heat generation using electrically actuated cylinder valves and variable stroke combustion cycles
US7992541B2 (en) * 2006-03-14 2011-08-09 Ford Global Technologies, Llc System and method for controlling auto-ignition
JP4680828B2 (ja) * 2006-05-11 2011-05-11 本田技研工業株式会社 エンジンの吸気ポ−ト構造
JP2008095600A (ja) * 2006-10-12 2008-04-24 Hitachi Ltd 多気筒内燃機関の動弁装置及びその組立方法
JP2009074401A (ja) * 2007-09-19 2009-04-09 Aisan Ind Co Ltd インテークマニホールド
US7992537B2 (en) * 2007-10-04 2011-08-09 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
JP2009228640A (ja) * 2008-03-25 2009-10-08 Honda Motor Co Ltd エンジンの動弁機構
JP4831373B2 (ja) * 2009-02-23 2011-12-07 三菱自動車工業株式会社 可変動弁装置付エンジン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183510A (ja) 2002-11-29 2004-07-02 Mitsubishi Motors Corp 高膨張比サイクルエンジン
JP2005042607A (ja) * 2003-07-28 2005-02-17 Honda Motor Co Ltd 内燃機関の動弁制御装置
JP2006161666A (ja) * 2004-12-07 2006-06-22 Mazda Motor Corp エンジンの吸排気制御装置
JP2008202406A (ja) * 2007-02-16 2008-09-04 Toyota Motor Corp 内燃機関の吸気バルブ制御装置及びこの制御装置を備えた内燃機関
JP2009103108A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 筒内直接噴射式内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2497925A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015081A (ja) * 2011-07-04 2013-01-24 Mitsubishi Motors Corp エンジン制御装置
JP2013024145A (ja) * 2011-07-21 2013-02-04 Hitachi Automotive Systems Ltd 内燃機関の制御装置
US9014949B2 (en) 2011-07-21 2015-04-21 Hitachi Automotive Systems, Ltd. Apparatus for and method of controlling internal combustion engine
WO2013098905A1 (ja) * 2011-12-25 2013-07-04 Yaoita Yasuhito 火花点火式4サイクルエンジン
JP2015175249A (ja) * 2014-03-13 2015-10-05 本田技研工業株式会社 内燃機関の燃焼制御装置
CN106939808A (zh) * 2017-04-26 2017-07-11 哈尔滨工程大学 一种应用于低速柴油机的带液压旋阀器的排气阀装置
CN106939808B (zh) * 2017-04-26 2023-06-02 哈尔滨工程大学 一种应用于低速柴油机的带液压旋阀器的排气阀装置

Also Published As

Publication number Publication date
JP5218671B2 (ja) 2013-06-26
JPWO2011055629A1 (ja) 2013-03-28
US9086021B2 (en) 2015-07-21
EP2497925A4 (en) 2013-12-04
CN102762841B (zh) 2016-03-30
EP2497925A1 (en) 2012-09-12
US20120210979A1 (en) 2012-08-23
EP2497925B1 (en) 2014-12-17
CN102762841A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5218671B2 (ja) エンジンの吸気装置
US6502541B2 (en) Control system for direct fuel injection engine
EP2948667B1 (en) Method for operating piston engine and piston engine
JPH1068323A (ja) 火花点火式ピストン往復内燃機関の運転方法および装置
WO2010116546A1 (ja) 排気バルブ昇降用カム、過給機付き4サイクルエンジン、およびバルブタイミング制御方法
JP2013096233A (ja) 内燃機関の燃料噴射装置
US8857177B2 (en) Piston engine
US6253729B1 (en) Induction control for direct injected engine
JP2009041531A (ja) 筒内噴射式内燃機関
JP2011144727A (ja) エンジンの吸気装置
JP2000199440A (ja) 筒内噴射式火花点火内燃機関
WO2012014288A1 (ja) 内燃機関の制御装置
JP2007309120A (ja) 内燃機関の動弁制御装置
US20130074801A1 (en) Internal combustion engine
JP2009264234A (ja) 内燃機関の吸気装置
JP2013011248A (ja) 内燃機関の制御装置
JP2005098309A (ja) 内燃機関の排気還流装置
KR20110129016A (ko) 연소 개선을 위한 밸브 리프트 장치를 가지는 엔진
JP2015031222A (ja) エンジンの制御装置
KR100515254B1 (ko) 통내분사형엔진
JPH0627487B2 (ja) 内燃機関の吸気装置
JP2010024938A (ja) エンジンの吸気装置
JP2011149347A (ja) エンジンの吸気装置
WO2018047446A1 (ja) エンジンの吸気装置およびエンジンの運転方法
JP2002317639A (ja) 内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049925.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828189

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13499477

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011539330

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010828189

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE