JP2004183510A - 高膨張比サイクルエンジン - Google Patents

高膨張比サイクルエンジン Download PDF

Info

Publication number
JP2004183510A
JP2004183510A JP2002348818A JP2002348818A JP2004183510A JP 2004183510 A JP2004183510 A JP 2004183510A JP 2002348818 A JP2002348818 A JP 2002348818A JP 2002348818 A JP2002348818 A JP 2002348818A JP 2004183510 A JP2004183510 A JP 2004183510A
Authority
JP
Japan
Prior art keywords
engine
intake
expansion ratio
valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348818A
Other languages
English (en)
Other versions
JP4151395B2 (ja
Inventor
Kazuhiro Kojima
一洋 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002348818A priority Critical patent/JP4151395B2/ja
Publication of JP2004183510A publication Critical patent/JP2004183510A/ja
Application granted granted Critical
Publication of JP4151395B2 publication Critical patent/JP4151395B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】本発明は、圧縮比に対して膨張比を大きく設定した高膨張比サイクルエンジンに関し、車両発進時等における過給機のレスポンスの低下を防止できるようにする。
【解決手段】過給機13を備えた高膨張比サイクルエンジンにおいて、エンジン1が低中速域及び低負荷域で運転され、且つエンジン1が加速過渡時であると判定されると、可変バルブタイミング機構50の作動を制御して排気弁7の開弁時期を進角させ、排気ブローダウンエネルギを増大させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮比に対して膨張比を大きく設定した高膨張比サイクルエンジンに関する。
【0002】
【従来の技術】
従来より、自動車等の車両の駆動源として、吸気・圧縮・膨張・排気の4行程(ストローク)からなるオットーサイクルのガソリンエンジンが広く普及している。このようなガソリンエンジンでは種々の改善や工夫により熱効率の向上が図られているが、より一層の熱効率の向上を図りたいという要望がある。
【0003】
熱効率の向上を図るには、エンジンの膨張時のストロークを長くして膨張比を高めればよいことが知られているが、オットーサイクルの場合、各行程におけるピストンストロークは同一であり膨張比と圧縮比とは等しい。このため、膨張比を高めると圧縮比も高くなってしまい、圧縮による発熱により燃焼室内で混合気が早期着火してノッキングが生じやすくなる。したがって、熱効率の向上を図るべく大幅に膨張比(=圧縮比)を高めようとしても限界が低く、実質的に膨張比を高めるのは困難である。
【0004】
そこで、従来より、吸気弁の閉弁時期を大幅に進角したり、或いは吸気弁の閉弁時期を大幅に遅角したりすることで吸気量を制限し、実質的に膨張比を圧縮比よりも大きく設定するようにした、高膨張比サイクル(以下、ミラーサイクル又はアトキンソンサイクルともいう)のエンジンが実用化されている。また、このようなミラーサイクルエンジンに関する技術としては、例えば特許文献1及び特許文献2にも開示されている。
【0005】
以下、このようなミラーサイクルを適用したエンジンについて図7及び図8の指圧線図を用いて簡単に説明する。このうち、図7はピストンが下死点に到達するよりも早いタイミングで吸気弁を閉じる、いわゆる吸気弁早閉じタイプのミラーサイクルエンジンの指圧線図、図8はピストンが下死点に到達した後のタイミングで吸気弁を閉じる、いわゆる吸気弁遅閉じタイプのミラーサイクルエンジンの指圧線図である。
【0006】
まず、図7を用いて吸気弁早閉じタイプのミラーサイクルエンジンの作動について説明すると、ピストンが上死点(TDC:図中a点)から下降して吸気行程が開始されると、筒内圧は略大気圧を保持したまま吸気弁から吸気(又は混合気)が取り込まれる。そして、下死点(BDC)手前の所定のタイミング(図中b点)において吸気弁が閉じられ、これにより実質的な吸気行程が終了する。
【0007】
その後、ピストンの下降に伴い筒内圧が低下し、ピストンが下死点(図中c点)に達すると吸気行程が終了する。そして、ピストンが上昇に反転すると吸気行程から圧縮行程に移行し、ピストンの上昇に伴い筒内圧が徐々に上昇する。さらにピストンが上昇して筒内圧がb点における圧力よりも高くなる(図中d点)と、このときのピストンのストローク位置から上死点(図中e点)までの間が実質的な圧縮行程となって吸気の圧縮が行なわれる。
【0008】
また、ピストンが上死点まで達すると圧縮行程が終了するとともに膨張行程が開始される。すなわち、ピストンの上死点近傍において混合気が着火,燃焼し、燃焼圧力により急激に筒内圧が上昇するとともにピストンが下降に転じる(図中f点)。そして、ピストンが下死点(図中g点)まで達すると膨張行程から排気行程に移行し、略大気圧の状態で燃焼ガスが排出される。さらに、ピストンが上死点(図中a点)に達すると一連のミラーサイクルが終了し、再び吸気行程が開始される。
【0009】
そして、このような吸気弁早閉じタイプのミラーサイクルでは、吸気弁をピストンが下死点に達するよりも大幅に早いタイミング(図中b点)で閉じることにより吸気量が低減され、これにより実際の圧縮比が大幅に低下する。
また、膨張行程は従来通りピストンの上死点から下死点までであるので、相対的に膨張行程が実質的な圧縮行程よりも大きくなり、これにより膨張比ε>実際の圧縮比ρとすることができる。なお、以下では実際の圧縮比を幾何学的圧縮比ともいう。
【0010】
このように膨張比εを幾何学的圧縮比ρよりも大きくすることで、ポンプ損失(ポンピングロス)を低減して熱効率の向上が図られる。また、低圧縮比化(例えば圧縮比ρ=9,ε=14)によりノッキング(ノック)を回避することができる。ただし、このようなミラーサイクルでは排気量に対して吸気量が低下するため、相対的に出力が低くなる。そこで、従来は過給機(主にターボチャージャ)により吸気を過給して出力を確保している。
【0011】
なお、このようなミラーサイクルエンジンは、一般的なオットーサイクルのエンジンに対して、吸気カムの形状を変更するのみで実現可能である。
また、図8に示す吸気弁遅閉じタイプのミラーサイクルについても、吸気弁の閉じるタイミングが異なる以外は、上述した吸気弁早閉じタイプと同様に作用する。つまり、ピストンが上死点(図中a点)から下降して吸気行程が開始されると、筒内圧は略大気圧を保持したまま吸気弁から吸気(又は混合気)が取り込まれる。
【0012】
そして、ピストンが下死点(図中c点)に達した後も、吸気弁を開いた状態を保持して、これにより、筒内圧が大気圧のまま圧縮行程が開始される。そして、下死点後の所定のタイミング(図中b′点)において吸気弁が閉じられて、この時点から実質的な圧縮行程が開始される。なお、これ以降は、吸気弁早閉じタイプと同様である。
【0013】
したがって、このような吸気弁遅閉じタイプのミラーサイクルエンジンも、上述した吸気弁早閉じタイプのミラーサイクルエンジンと同様に、相対的に膨張行程が実質的な圧縮行程よりも大きくなり、これにより膨張比ε>幾何学的圧縮比ρとすることができる。
【0014】
【特許文献1】
特公平7−91984号公報
【特許文献2】
特許第3236654号公報
【0015】
【発明が解決しようとする課題】
ところで、上述した従来のミラーサイクルエンジンでは、膨張比を大きく設定することにより筒内の燃焼エネルギのほとんどを膨張行程において消費させることができ、これにより熱効率の向上を図ることができる。しかしながら、上述のように、燃焼エネルギがほとんど膨張行程で消費されてしまうため、排気のエネルギ(すなわち、ターボチャージャを駆動するエネルギ、以下、排気ブローダウンエネルギという)が低下し、タービンの回転数が低下して過給圧の上昇速度が低下する。この結果、ターボチャージャのレスポンス低下を招き、特に車両発進時のレスポンスが悪化するという課題がある。
【0016】
また、ターボチャージャは一般に加速過渡時においては過給圧が立ち上がるまでの間は吸気量が低下するためトルクが不足して加速不良が生じるほか、低中速域の過給圧が低い運転状態では吸気量が少なく出力低下を招く。このようなターボチャージャの一般的な特性に加えて、上述のようにミラーサイクルエンジンでは排気ブローダウンエネルギが低下するため、加速過渡時や低中速域におけるドライバビリティがさらに悪化するという課題がある。
【0017】
本発明は、このような課題に鑑み創案されたもので、車両発進時等における過給機のレスポンスの低下を防止するとともに、加速過渡時及び低中速域における出力の低下を防止するようにした、高膨張比サイクルエンジンを提供することを目的とする。
【0018】
【課題を解決するための手段】
このため、本発明の高膨張比サイクルエンジンは、膨張比を圧縮比よりも大きく設定するとともに過給機を備えた高膨張比サイクルエンジンにおいて、運転状態判定手段により、エンジンが低中速域及び低負荷で運転されているときにエンジンの加速過渡時であると判定されると、制御手段により、排気弁の開弁時期が進角するように可変バルブタイミング機構の作動が制御される。これにより、車両発進時等においては、筒内の燃焼エネルギの一部が運動エネルギに変換される前に排気エネルギとなって排出されて排気ブローダウンエネルギが増大する。そして、排気ブローダウンエネルギが増大した分だけ過給機による吸気の過給効率が上昇し、過給機のレスポンスが向上してドライバビリティが向上する。
【0019】
【発明の実施の形態】
以下、図面により、本発明の一実施形態にかかる高膨張比サイクルエンジンについて説明すると、図1に示すエンジン1は、膨張比を圧縮比よりも大きく設定した高膨張比サイクル(ミラーサイクル又はアトキンソンサイクル)を適用したエンジンであって、本実施形態では、従来技術の欄で説明した吸気弁早閉じタイプのミラーサイクルが適用されている。
【0020】
また、このエンジン1は、シリンダ内に直接燃料を供給する、いわゆる筒内噴射型火花点火式エンジンであって、吸気行程での燃料噴射(吸気行程噴射)及び圧縮行程での燃料噴射(圧縮行程噴射)を切り換え可能に構成されている。
この筒内噴射型エンジン1は、理論空燃比(ストイキオ)での運転や過濃空燃比(リッチA/F)での運転(リッチ空燃比運転)や希薄空燃比(リーンA/F)での運転(リーン空燃比運転)が可能であり、種々のパラメータから得れる条件に応じて上述の複数の運転モードが切り換えられるようになっている。
【0021】
また、エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ(図示省略)及び燃料噴射弁6がそれぞれ配設され、また、各燃料噴射弁6には、図示しない燃料供給装置が接続されている。この燃料供給装置は、低圧燃料ポンプと高圧燃料ポンプとを有しており、燃料タンク内の燃料を低圧或いは高圧に加圧した後、燃料を燃料噴射弁6に供給するようになっている。
【0022】
シリンダヘッド2には、各気筒毎に略直立方向に吸気ポート9が形成されており、各吸気ポート9の上端には吸気マニホールド10の一端がそれぞれ接続されている。また、図示するように、吸気マニホールド10には、吸入空気量を調節するドライブバイワイヤ式のスロットル弁(ETV)14、上記スロットル弁14の開度を検出するスロットルポジションセンサ(TPS)16及び吸入空気量を計測する吸気量センサ(エアフローセンサ又はAFS)18が設けられている。
【0023】
ここで、ETV14はスロットルアクチュエータ14aをそなえており、このスロットルアクチュエータ14aによりスロットル開度が変更されるようになっている。また、スロットルアクチュエータ14aは、後述するECU(制御手段)40からの制御信号に基づきその作動が制御されるようになっており、通常はドライバのアクセルペダルの踏み込み量に応じたスロットル開度となるようにスロットルアクチュエータ14aの作動が制御されるようになっている。
【0024】
また、シリンダヘッド2には、各気筒毎に排気ポート11が形成され、この各排気ポート11に排気マニホールド12がそれぞれ接続されている。また、排気マニホールド12には排気エネルギにより吸気を加圧するターボチャージャ(過給機)13が設けられている。これは、従来技術の欄でも説明したように、ミラーサイクルエンジンでは排気量に対して吸気量が低下するためであり、ターボチャージャ13により吸気量の確保、即ち出力の確保を図っている。なお、図1では省略されているが吸気通路10上にはターボチャージャ13のコンプレッサが介装されている。また、本実施形態では、ターボチャージャ13は、タービンに付設されたノズルベーンの開度を変更することで過給圧を変更可能な、いわゆる可変ノズルベーン付きターボチャージャが適用されている。
【0025】
ここで、可変ノズルベーン付きターボチャージャ13について説明すると、図3に示すように、タービン13aのタービンブレード13bの周囲には、複数のノズルベーン13cが等間隔に配設されている。各ノズルベーン13cは、いずれもタービン13aと同軸上に配設された環状リング13dに接続されており、この環状リング13dが図中矢印方向に回転すると、ノズルベーン13cの角度、即ち、開度が変更されるようになっている。
【0026】
また、環状リング13dには、アクチュエータ(過給圧変更手段)20が接続されている。ここで、アクチュエータ20は、制御室20a内へ供給されるエアの圧力に応じてその作動状態が制御されるような正圧式のアクチュエータであって、アクチュエータ20の作動状態に応じてノズルベーン13cの角度(開度)が段階的に調整されるようになっている。また、詳細は図示しないが、このアクチュエータ20は高圧のエア通路に接続されており、エア通路上には例えば電磁弁が設けられている。そして、電磁弁をデューティ制御することで、アクチュエータ20の作動が制御されるようになっている。
【0027】
なお、アクチュエータ20は、このような構成のものに限定されるものではなく、ノズルベーンの角度を連続的又は段階的に調整できるようなものであれば他の構成のものを適用してもよい。
一方、ECU40は、入出力装置,記憶装置(ROM,RAM,不揮発性RAM等),演算装置(CPU),タイマカウンタ等を備えて構成されており、このECU40により、エンジン1の総合的な制御が実行されるようになっている。
【0028】
ECU40の入力側には、上述したTPS16及びAFS18が接続されるとともに、エンジン回転数Neを検出するエンジン回転数センサ3,ドライバのアクセルペダル踏み込み量Accを検出するアクセルポジションセンサ4及び車速を検出する車速センサ8も接続されている。さらには、図示しないOセンサや吸気通路10内の圧力を検出する圧力センサ等も接続されている。
【0029】
一方、ECU40の出力側には、上述の燃料噴射弁6及びETV(スロットル弁)14のアクチュエータ14a等の各種の出力デバイスが接統されており、これら出力デバイスには、ECU40からの制御信号が入力されるようになっている。具体的には、ECU40では、各種センサ類からの情報に基づいて目標空燃比(A/F)や目標点火時期等が設定され、この目標空燃比や目標点火時期となるように燃料噴射弁6の駆動パルス幅やスロットルアクチュエータ14aの駆動量が設定されるようになっている。
【0030】
そして、これにより燃料噴射弁6から適正なタイミングで適正量の燃料が噴射され、点火プラグにより適正なタイミングで火花点火が実施され、適正なタイミングで適正な開度となるようETV14が開閉駆動されるようになっている。
次に、本発明の要部について説明すると、このエンジン1の動弁機構には、吸気弁5の作動タイミングを変更可能な吸気側可変バルブタイミング機構可変(VVT)30と、排気弁7の作動タイミングを変更可能な排気側可変バルブタイミング機構(VVT)50とが設けられている。
【0031】
このうち、吸気側VVT30は、少なくとも吸気弁5の閉弁時期を変更可能に構成されたものであり、また、排気側のVVT30は少なくとも排気弁の開弁時期を変更可能に構成されている。なお、詳しくは後述するが、VVT30,50としては、例えば図2(a),(b)に示すような公知の機構が適用されている。
【0032】
また、ECU40の内部には、エンジン1が加速過渡時であるか否かを判定する加速過渡時判定手段41と、エンジン1の運転速度領域を判定する運転速度領域判定手段42と、エンジン負荷を判定する負荷判定手段47とが設けられている。なお、上記の加速過渡時判定手段41,運転速度領域判定手段42及び負荷判定手段47により、エンジン1の運転状態を判定する運転状態判定手段60が構成されている。
【0033】
ここで、加速過渡時判定手段41は、アクセルポジションセンサ4で検出されたアクセルペダル踏み込み量Acc及びその変化量ΔAccに基づき加速過渡時か否かを判定するようになっており、例えばアクセルペダル踏み込み量Accが所定値a以上で、且つアクセルペダル踏み込み変化量ΔAccが所定値b(≧0)以上であると、加速過渡時判定手段41では加速過渡時であると判定するようになっている。なお、加速過渡時か否かを判定する手法は上述のものに限定されず、例えばAFS18からの検出情報に基づくエンジン1の吸入空気量A/Nや吸気通路10内の圧力等のエンジン負荷に基づき判定するようにしてもよい。
【0034】
また、運転速度領域判定手段42は、エンジン回転数センサから3で検出されたエンジン回転数Neに基づき、エンジン1の運転速度領域を判定するようになっており、エンジン回転数が所定回転数Ne1未満であれば低中速域であると判定するとともに、上記所定回転数Ne1以上であれば高速域であると判定するようになっている。
【0035】
また、負荷判定手段47は、アクセルポジションセンサ4で検出されたアクセルペダル踏み込み量Acc、又はAFS18で検出される吸入空気量等に基づいて、エンジン負荷を判定するようになっている。
また、上述以外にも、ECU40には目標吸入空気量設定手段43,比較手段44及び過給圧設定手段45が設けられている。このうち目標吸入空気量設定手段43は、エンジン回転数Ne及びアクセルペダル踏み込み量(負荷)Acc等に基づいて、エンジン1の吸入空気量(以下、単に吸気量という)の目標値Vtを設定するものであって、例えば図示しないマップから目標値Vtが読み出されるようになっている。
【0036】
また、比較手段44は、上記目標吸入空気量設定手段43で設定された吸気量の目標値(目標吸気量)Vtと、AFS18で検出された実際の吸気量(実吸気量)Vrとを比較する手段であって、具体的には実吸気量Vrと目標吸気量Vtとの差ΔV(=Vr−Vt)を算出するものである。
また、過給圧設定手段45は、ターボチャージャ13の過給圧を設定するものであって、この過給圧設定手段45で設定された過給圧となるようにターボチャージャ13のアクチュエータ20の作動がフィードバック制御されるようなっている。
【0037】
そして、運転速度領域判定手段42によりエンジン1が低中速域で運転されていると判定され、且つ負荷判定手段47によりエンジン1が低負荷域で運転されていると判定され、且つ加速過渡時判定手段41によりエンジン1の運転状態が加速過渡時であると判定されると、以下のような排気ブローダウンエネルギ向上制御が実行されるようになっている。
【0038】
つまり、この場合には、比較手段44により目標吸入空気量設定手段43で設定された吸気量VtとAFS18で検出された実際の吸気量Vrとを比較して、実吸気量Vrが目標吸気量Vt以下であると判定されると(ΔV≦0であると)吸入空気量が不足している(すなわち、出力が不足している)と判定して、排気ブローダウンエネルギを増大させるべくECU40から排気側VVT50に対して排気弁7の開弁時期を進角させるような制御信号が出力されるようになっている。
【0039】
つまり、上述したように、ミラーサイクルエンジンでは、膨張比を大きく設定することにより、燃焼エネルギのほとんどを膨張行程において消費させて熱効率の向上を図ることができる反面、燃焼エネルギがほとんど膨張行程で消費されるためターボチャージャ13を駆動するための排気ブローダウンエネルギが低下する。これにより、ターボチャージャ13のレスポンスが低下してしまい、ドライバビリティが悪化する。特に、エンジン1の低負荷域や低中速域からの加速時(例えば発進時)には吸気量が少なく出力が低下するため、ドライバビリティがさらに悪化してしまう。
【0040】
そこで、上述したように、エンジン1の運転状態が低中速域及び低負荷域であって、且つ加速過渡時であると判定されると、排気側VVT50を作動させて排気弁7の開弁時期を進角させるようなっている。これにより、通常時は膨張行程後半のピストン下死点近傍で排気弁7が開弁するのに対して、VVT50の作動時には膨張行程において通常時よりも早期に排気弁7が開き、燃焼ガスのエネルギを排気ブローダウンエネルギとしてターボチャージャ13に供給することができる。この結果、ターボチャージャ13の過給圧が速やかに上昇して、ターボチャージャ13のレスポンスが向上し、発進時等においてドライバビリティを向上させることができる。
【0041】
また、上述のような排気側VVT50の制御とは独立して、吸気側VVT30の制御も実行されるようになっている。具体的には、加速過渡時判定手段41によりエンジン1の運転状態が加速過渡時であると判定されるか、又は運転速度領域判定手段42によりエンジンが中低速域で運転されていると判定されると、エンジン1で不足する吸気量を補うべくECU40ではVVT30に対して吸気弁5の閉弁時期を遅角させるように制御信号を出力するようになっている。
【0042】
これは、主に以下の理由による。つまり、本実施形態における吸気弁早閉じタイプのミラーサイクルエンジンでは、吸気行程時にピストンが下死点に達するよりも大幅に早いタイミングで吸気弁5を閉じることにより吸気量を低減し、これにより膨張比ε>実際の圧縮比(幾何学的圧縮比)ρとしてミラーサイクルを実現している。
【0043】
そして、このように膨張比εを幾何学的圧縮比ρよりも大きくすることで、ポンプ損失を低減して熱効率の向上を図るとともに、低圧縮比化(例えば圧縮比ρ=9)によりノッキング(ノック)を回避している。ただし、このようなミラーサイクルでは、排気量に対して吸気量が低下するため、相対的に出力が低くなるため、上述のようにターボチャージャ13により吸気を過給して出力を確保している。
【0044】
しかし、ターボチャージャ13は、一般にアクセルを踏み込んでから過給が行なわれるまでの間にタイムラグが存在する。これは、クランク軸から駆動力を取り出して吸気を圧縮するいわゆるスーパチャージャでも同様である。このため、加速過渡時においては過給圧が立ち上がるまでの間は吸気量が不足し、加速不良が生じる。また、ミラーサイクルにおいては圧縮比が小さいほど、また膨張比が大きいほど熱効率が高くなるが、圧縮比を小さくしすぎると、低中速域の過給圧が低い運転状態では吸気量が少なく出力低下を招くおそれがある。
【0045】
そこで、上述したように、エンジン1の運転状態が加速過渡時である、又はエンジン1が低中速域で運転されていると判定されると、VVT30を作動させて吸気弁5の閉弁時期を遅角させることにより、実質的に吸気行程を増大させて、不足する吸気量を補うようになっているのである。なお、吸気弁5の閉弁時期を遅角させる場合、閉弁時期は最大でも下死点近傍である。
【0046】
次に、VVT30,50の構成の一例について図2(a),(b)を用いて簡単に説明する。なお、VVT30,50は、ともに同様に構成されたものであるので、ここでは吸気側のVVT30を例に説明する。VVT30は、カムシャフト31上に形成されてクランクシャフトの回転に対応して回動するカム32a,32bと、これらのカム32a,32bによって駆動されるロッカアーム33a,33bとをそなえている。これらのロッカアーム33a,33bはともに吸気弁5,5には当接せず、吸気弁5,5の開閉駆動に間接的に係わるサブロッカアームとして構成されている。また、これらのサブロッカアーム33a,33bの間には、吸気弁5,5のステム端部に当接し吸気弁5,5の開閉駆動に直接係わるメインロッカアーム33cが設けられている。
【0047】
また、一方のカム32aは、吸気早閉じのミラーサイクルに適したカムプロフィルをそなえており、他方のカム32bは、上記一方のカム32aよりも閉弁時期を遅角させるようなカムプロファイルをそなえている。
ここで、メインロッカアーム33cはロッカシャフト34と一体に形成され、ロッカシャフト34とともに揺動可能に構成されている。そして、このメインロッカアーム33cの先端部が吸気弁5,5のステム上端部に当接している。
【0048】
また、2つのサブロッカアーム33a,33bは、いずれもロッカシャフト34(つまり、メインロッカアーム33c)に対して相対回転可能に軸支されている。
また、図2(b)に示すように、これらのサブロッカアーム33a,33bとロッカシャフト34との間には、サブロッカアーム33a,33bがロッカシャフト34に対して回転自在であってメインロッカアーム33cと連係動作しないモード(非連係モード)と、サブロッカアーム33a,33bがロッカシャフト34と一体回転してメインロッカアーム33cと連係動作するモード(連係モード)とを切り換えうる油圧ピストン機構36a,36bが設けられている。
【0049】
また、ロッカシャフト34の内部には油路34a,34bが形成されており、この油路34a,34bから供給,排出される作動油により、油圧ピストン機構36a,36bの作動が切り換えられるようになっている。例えば、油路34a,34bから各ピストン機構36a,36bへ作動油が供給されると、ピストン機構36aではピストン37aが基端側へ駆動され、ピストン37aの先端部が穴38aから離脱するようになっており、一方、ピストン機構36bではピストン37bが先端部側へ駆動され、ピストン37bの先端部が穴38bに嵌入するようになっている。
【0050】
そして、ピストン37bの穴38bへの嵌入により、サブロッカアーム33bがロッカシャフト34と一体回転してメインロッカアーム33cと連係動作するモード(連係モード)となり、ピストン37aが穴38aから離脱することにより、サブロッカアーム33aがロッカシャフト34に対して回転自在であってメインロッカアーム33cと連係動作しないモード(非連係モード)となるようになっている。
【0051】
また、上述の作動油の供給状態は、ECU40により制御されるようになっており、これによりサブロッカアーム33b,33aの連係モードと非連係モードとを適宜切り換えて、吸気弁5の閉弁時期を変更することができる。
本発明の一実施形態に係る高膨張比サイクルエンジンは上述のように構成されているので、吸気側のVVT30は、例えば図4に示すようなフローチャートにしたがって制御される。まず、ステップS1において、各センサからの情報が取り込まれる。具体的にはエンジン回転数センサ3から得られるエンジン回転数Neやアクセルポジションセンサ4から得られるアクセル開度Accが取り込まれる。次に、ステップS2おいて、エンジン回転数Ne及びアクセル開度Accに基づき、エンジン1が低中速域で運転されているか、又は加速過渡時であるかが判定される。なお、加速過渡時か否かについては、エンジン負荷としてのA/Nや吸気圧に基づいて判定してもよい。
【0052】
そして、ステップS2において、エンジン1が低中速域で運転されている、又は加速過渡時であると判定されると、ステップS3に進み、実吸気量と目標吸気量とが比較され、実吸気量が目標吸気量以下であると、次にステップS4に進んで、吸気弁5の閉弁時期が遅角側に制御される。
一方、排気側VVT50は、例えば図5に示すようなフローチャートに基づいてその作動が制御される。まず、ステップS11において、各センサからの情報が取り込まれる。次に、ステップS12おいて、上記ステップS11で取り込んだ各種情報を参照して、低中速及び低負荷運転時における加速過渡時であるか否かを判定する。
【0053】
そして、低中速及び低負荷運転時における加速過渡時であれば、排気ブローダウンエネルギの低下により吸気量が低下していることが考えられるので、ステップS13において実吸気量Vrと目標吸気量Vtとが比較され、実吸気量Vrが目標吸気量Vt以下であると判定されると、ステップS14に進んで排気弁7の開弁時期が進角側に制御される。つまり、この場合には、排気ブローダウンエネルギを増大させるべく、通常運転時よりも早期に排気弁7を開いて、ターボチャージャ13に排気エネルギを供給する。これにより、速やかに過給圧が高めることができ、ターボチャジャ13のレスポンスが向上する。なお、ステップS12において、低中速及び低負荷運転時における加速過渡時ではないと判定された場合にはそのままリターンする。
【0054】
したがって、本発明の一実施形態に係る高膨張比サイクルエンジンによれば、車両発進時のように排気ブローダウンエネルギが低い時には、一時的に排気弁7の開弁時期を進角させることにより排気ブローダウンエネルギを高めることができる。したがって、過給圧を速やかに高めることができ、ターボチャージャ13のレスポンスが向上する。この結果、ドライバビリティが向上する。
【0055】
また、加速過渡時における過給圧が立ち上がるまでの間の吸気量が少ない場合には、吸気量が増大するように吸気弁5の閉弁時期を遅角(高圧縮比化)させるので、燃焼量の低下による出力トルク不足が解消されて、十分な加速を得ることができる。また、低中速域では過給圧が低くやはり吸気量が不足気味となるが、上述と同様に吸気量が増大するように吸気弁5の閉弁時期を遅角(高圧縮比化)させることで、燃焼量の低下による出力トルク不足を解消でき、ドライバビリティが向上するという利点がある。また、既に実用化されている可変バルブタイミング機構の技術を適用することができるので、機械的な信頼度も高いという利点がある。
【0056】
なお、本発明は上述の実施形態のものに限定されるものではない。例えば上述の実施形態では、吸気早閉じタイプのミラーサイクルを適用した場合について説明したが、吸気遅閉じタイプのミラーサイクル(図8の指圧線図参照)を本発明に適用してもよい。
また、VVT(可変バルブタイミング機構)についても上述のようなロッカアーム切り換え式のものに限定されるものではなく、吸気弁5の閉弁時期を変更可能であれば他の種々の機構を適用可能である。例えば可変バルブタイミング機構として、図6に示すような電磁コイル5a,5bの駆動力により開閉タイミング及びリフト量を任意に設定できるようにした電磁式吸気弁を適用しても良い。
【0057】
また、本発明が適用されるエンジンは上述のような筒内噴射型火花点火式エンジンに限定されず、ポート噴射式のエンジンにも適用可能であるのは言うまでもない。
また、上述の実施形態では、AFS(エアフローセンサ)からの情報を用いて吸入空気量が目標吸入空気量となっているか否かを判定したが、ターボチャージャの下流側に圧力センサ(ブースト圧センサ)を設け、この圧力センサで得られるブースト圧に基づいて実吸入空気圧が目標吸入空気圧より大きいか否かを判定し、これにより吸入空気量が目標値以下か否かを判定するようにしていもよい。
【0058】
【発明の効果】
以上詳述したように、本発明の高膨張比サイクルエンジンによれば、例えば車両発進時のように、エンジンの運転域が低中速域及び低負荷域であって、且つエンジンが加速過渡時であると、排気弁の開弁時期が進角するように可変バルブタイミング機構の作動が制御されるので、排気ブローダウンエネルギが増大して、過給圧が速やかに上昇する。これにより過給機のレスポンスが向上して、発進時等のドライバビリティが向上する。また、既に実用化されている可変バルブタイミング機構の技術を適用することができるので、機械的な信頼度も高いという利点もある(請求項1)。
また、加速過渡時や中低速域の過給圧が低くなる運転領域では、吸気量が増大するように吸気弁の閉弁時期が制御されるので、燃焼量の低下による出力トルク不足を防止できる。これにより、加速過渡時や中低速域にも十分な加速を得られ、ドライバビリティが向上するという利点がある(請求項2)。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる高膨張比サイクルエンジンの全体構成を示す模式図である。
【図2】(a),(b)はともに本発明の一実施形態にかかる高膨張比サイクルエンジンに適用される可変バルブタイミング機構の一例について説明するための模式的な断面図である。
【図3】本発明の第一実施形態にかかる高膨張比サイクルエンジンの過給機を示す模式図である。
【図4】本発明の第1実施形態にかかる高膨張比サイクルエンジンの作用について説明するフローチャートである。
【図5】本発明の第1実施形態にかかる高膨張比サイクルエンジンの作用について説明するフローチャートである。
【図6】本発明に適用される可変バルブタイミング機構の他の例について説明するための模式図である。
【図7】従来の高膨張比サイクルエンジンの一例について説明する指圧線図である。
【図8】従来の高膨張比サイクルエンジンの他の例について説明する指圧線図である。
【符号の説明】
1 エンジン
5 吸気弁
7 排気弁
13 ターボチャージャ(過給機)
14 ETV(ドライブバイワイヤ式スロット弁)
30 VVT(吸気側可変バルブタイミング機構)
40 ECU(制御手段)
41 加速過渡時判定手段
42 運転速度領域判定手段
50 VVT(排気側可変バルブタイミング機構)
60 運転状態判定手段

Claims (2)

  1. 膨張比を圧縮比よりも大きく設定するとともに過給機を備えた高膨張比サイクルエンジンにおいて、
    エンジンの運転状態を判定する運転状態判定手段と、
    該エンジンの排気弁の開弁時期を変更可能な可変バルブタイミング機構と、
    該可変バルブタイミング機構の作動を制御する制御手段とをそなえ、
    該運転状態判定手段により、該エンジンが低中速域及び低負荷域で運転され、且つ該エンジンが加速過渡時であると判定されると、該制御手段により、該排気弁の開弁時期が進角するように該可変バルブタイミング機構の作動が制御されることを特徴とする、高膨張比サイクルエンジン。
  2. 該エンジンの吸気弁の閉弁時期を変更可能な吸気側可変バルブタイミング機構をそなえ、
    該運転状態判定手段により、該エンジンの加速過渡時が判定される、又は、該エンジンの運転速度領域が中低速域であると判定されると、該制御手段により吸気量が増大するように該吸気側可変バルブタイミング機構の作動が制御される
    ことを特徴とする、請求項1記載の高膨張比サイクルエンジン。
JP2002348818A 2002-11-29 2002-11-29 高膨張比サイクルエンジン Expired - Fee Related JP4151395B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348818A JP4151395B2 (ja) 2002-11-29 2002-11-29 高膨張比サイクルエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348818A JP4151395B2 (ja) 2002-11-29 2002-11-29 高膨張比サイクルエンジン

Publications (2)

Publication Number Publication Date
JP2004183510A true JP2004183510A (ja) 2004-07-02
JP4151395B2 JP4151395B2 (ja) 2008-09-17

Family

ID=32751630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348818A Expired - Fee Related JP4151395B2 (ja) 2002-11-29 2002-11-29 高膨張比サイクルエンジン

Country Status (1)

Country Link
JP (1) JP4151395B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112256A1 (en) * 2005-04-14 2006-10-26 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
JP2007278272A (ja) * 2006-03-13 2007-10-25 Nissan Motor Co Ltd 可変膨張比エンジン
JP2008101485A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp 内燃機関の制御装置
JP2008215327A (ja) * 2007-03-08 2008-09-18 Hitachi Ltd 内燃機関の可変動弁装置及び制御装置
WO2011055629A1 (ja) 2009-11-05 2011-05-12 トヨタ自動車株式会社 エンジンの吸気装置
WO2011111236A1 (ja) 2010-03-11 2011-09-15 トヨタ自動車株式会社 内燃機関の弁駆動装置
WO2012063313A1 (ja) 2010-11-08 2012-05-18 トヨタ自動車株式会社 エンジン
EP2846036A1 (en) 2013-08-09 2015-03-11 Aisin Seiki Kabushiki Kaisha Engine control mechanism
JP2016138475A (ja) * 2015-01-26 2016-08-04 トヨタ自動車株式会社 リーンバーンエンジン
CN113357023A (zh) * 2021-06-22 2021-09-07 重庆长安汽车股份有限公司 一种可变气门正时系统瞬态控制方法、装置及米勒循环发动机

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112256A1 (en) * 2005-04-14 2006-10-26 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
US7627417B2 (en) 2005-04-14 2009-12-01 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
JP2007278272A (ja) * 2006-03-13 2007-10-25 Nissan Motor Co Ltd 可変膨張比エンジン
JP2008101485A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp 内燃機関の制御装置
JP2008215327A (ja) * 2007-03-08 2008-09-18 Hitachi Ltd 内燃機関の可変動弁装置及び制御装置
WO2011055629A1 (ja) 2009-11-05 2011-05-12 トヨタ自動車株式会社 エンジンの吸気装置
US9086021B2 (en) 2009-11-05 2015-07-21 Toyota Jidosha Kabushiki Kaisha Intake apparatus of engine
WO2011111236A1 (ja) 2010-03-11 2011-09-15 トヨタ自動車株式会社 内燃機関の弁駆動装置
EP2639430A1 (en) * 2010-11-08 2013-09-18 Toyota Jidosha Kabushiki Kaisha Engine
EP2639430A4 (en) * 2010-11-08 2014-03-26 Toyota Motor Co Ltd ENGINE
JP5472482B2 (ja) * 2010-11-08 2014-04-16 トヨタ自動車株式会社 エンジン
US8807100B2 (en) 2010-11-08 2014-08-19 Toyota Jidosha Kabushiki Kaisha Engine
WO2012063313A1 (ja) 2010-11-08 2012-05-18 トヨタ自動車株式会社 エンジン
EP2846036A1 (en) 2013-08-09 2015-03-11 Aisin Seiki Kabushiki Kaisha Engine control mechanism
JP2016138475A (ja) * 2015-01-26 2016-08-04 トヨタ自動車株式会社 リーンバーンエンジン
WO2016120926A1 (en) 2015-01-26 2016-08-04 Toyota Jidosha Kabushiki Kaisha Lean-burn engine
US10408141B2 (en) 2015-01-26 2019-09-10 Toyota Jidosha Kabushiki Kaisha Lean-burn engine
CN113357023A (zh) * 2021-06-22 2021-09-07 重庆长安汽车股份有限公司 一种可变气门正时系统瞬态控制方法、装置及米勒循环发动机
CN113357023B (zh) * 2021-06-22 2022-09-06 重庆长安汽车股份有限公司 一种可变气门正时系统瞬态控制方法、装置及米勒循环发动机

Also Published As

Publication number Publication date
JP4151395B2 (ja) 2008-09-17

Similar Documents

Publication Publication Date Title
EP1848885B1 (en) Control method and control apparatus for internal combustion engine
JP4525517B2 (ja) 内燃機関
JP4475221B2 (ja) エンジン
US8036806B2 (en) Variable valve actuation system of internal combustion engine and control apparatus of internal combustion engine
US7520260B2 (en) Multistage fuel-injection internal combustion engine
EP1980734B1 (en) Internal combustion engine having variable valve lift mechanism
US7451739B2 (en) Ignition timing control system and method for internal combustion engine, and engine control unit
US20060169246A1 (en) Method of controlling premix compression self-igniting internal combustion engine
JP4089408B2 (ja) 高圧縮比サイクルエンジン
US8695544B2 (en) High expansion ratio internal combustion engine
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JPH06129271A (ja) 4サイクルエンジン
US10480434B2 (en) Control device for internal combustion engine
JP4666162B2 (ja) 内燃機関の燃料噴射制御装置
JP4151395B2 (ja) 高膨張比サイクルエンジン
JP4677844B2 (ja) エンジンのバルブタイミング制御装置
JP2003193872A (ja) 自己着火エンジンの制御装置
CN111810290A (zh) 具有气门系统的二冲程发动机以及用于控制发动机的方法
JP4089407B2 (ja) 高膨張比サイクルエンジン
US7204215B2 (en) Valve characteristic controller and control method for internal combustion engine
JP2004183512A (ja) 高膨張比サイクルエンジン
JP2004076638A (ja) 内燃機関の吸気弁駆動制御装置
JP3771101B2 (ja) 内燃機関の制御装置
JP4419800B2 (ja) エンジン始動装置
JP4647112B2 (ja) 4サイクルガソリンエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R151 Written notification of patent or utility model registration

Ref document number: 4151395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees