WO2012063313A1 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
WO2012063313A1
WO2012063313A1 PCT/JP2010/069859 JP2010069859W WO2012063313A1 WO 2012063313 A1 WO2012063313 A1 WO 2012063313A1 JP 2010069859 W JP2010069859 W JP 2010069859W WO 2012063313 A1 WO2012063313 A1 WO 2012063313A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
valve
exhaust
variable
compression ratio
Prior art date
Application number
PCT/JP2010/069859
Other languages
English (en)
French (fr)
Inventor
神山栄一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/069859 priority Critical patent/WO2012063313A1/ja
Priority to JP2012542737A priority patent/JP5472482B2/ja
Priority to US13/881,286 priority patent/US8807100B2/en
Priority to CN2010800699868A priority patent/CN103189623A/zh
Priority to EP10859561.2A priority patent/EP2639430A4/en
Publication of WO2012063313A1 publication Critical patent/WO2012063313A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/041Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine, and more particularly, to a high expansion ratio engine having a supercharger that can be set to an expansion ratio larger than a compression ratio and is rotationally driven by exhaust gas.
  • a high expansion ratio cycle engine in which an expansion ratio is set larger than a compression ratio and a supercharger is provided.
  • a variable valve timing mechanism capable of changing the opening timing of the exhaust valve can be provided.
  • the variable valve timing mechanism is operated so that the opening timing of the exhaust valve is advanced. , Preventing a decrease in the response of the supercharger (see Patent Document 1).
  • the high expansion ratio engine disclosed in the present specification has a problem of maintaining and improving the supercharging response of the supercharger and fuel efficiency performance by maintaining the high expansion ratio.
  • a high expansion ratio engine disclosed in this specification is an engine including a supercharger that can be set to have an expansion ratio larger than a compression ratio and is rotationally driven by exhaust gas.
  • the operating state determining means for determining the operating state of the engine, the plurality of exhaust valves provided for one cylinder, and the opening timing of at least one of the plurality of exhaust valves may be changed.
  • a command is issued to the variable exhaust valve timing mechanism to And a control unit that advances the valve opening timing with respect to the valve opening timing of the other exhaust valves.
  • variable valve timing mechanism advances the valve opening timing of one exhaust valve, so that exhaust gas with high exhaust pressure and high exhaust temperature can be supplied to the supercharger from the exhaust valve that has been quickly opened. Thereby, the supercharging response of a supercharger can be maintained.
  • the other exhaust valves that is, exhaust valves other than the advanced exhaust valve can maintain the expansion ratio and ensure the fuel efficiency.
  • Such a high expansion ratio engine further includes a variable compression ratio mechanism capable of changing a mechanical compression ratio, and a variable intake valve timing mechanism capable of changing a valve closing timing of the intake valve, and the control unit includes the variable The actual compression ratio can be controlled by the compression ratio mechanism and the variable intake valve timing mechanism.
  • control unit can increase the advance amount of the opening timing of the one exhaust valve as the target intake air amount is small.
  • the purpose is to maintain the supercharging response of the supercharger by increasing the advance amount of the exhaust valve and securing the total amount of exhaust energy used to drive the supercharger.
  • the control unit provided in the high expansion ratio engine disclosed in the present specification can reduce the advance amount of the opening timing of the one exhaust valve as the expansion ratio is smaller.
  • Accelerating the opening timing of the exhaust valve will further reduce the expansion ratio, which will affect fuel efficiency. Therefore, when the expansion ratio is small, the advance amount of the valve opening timing of the exhaust valve is reduced so that the expansion ratio is maintained, and the fuel efficiency is maintained.
  • valve closing timing of the intake valve can be changed by the variable intake valve timing mechanism in a direction to improve the compression ratio.
  • the closing timing of the intake valve can be early closed or can be late closed.
  • the compression ratio is increased by delaying the closing timing of the intake valve.
  • the compression ratio is increased by increasing the closing timing of the intake valve.
  • the controller may delay the valve opening timing of the one exhaust valve that advances the valve opening timing when it is determined by the operating state determination means that the acceleration request of the engine has decreased. it can.
  • the control unit determines that the engine acceleration request is reduced by the operating state determination unit.
  • the closing timing of the intake valve can be changed by the variable intake valve timing mechanism in a direction to decrease the compression ratio.
  • the purpose is to improve the expansion ratio again and improve fuel efficiency.
  • the high expansion ratio engine disclosed in this specification can set the expansion ratio larger than the compression ratio, and determines the operating state of the engine in the high expansion ratio engine including a supercharger that is rotationally driven by exhaust gas.
  • Operating state determination means a plurality of exhaust valves provided for one cylinder, and a variable exhaust valve timing mechanism capable of changing a valve opening timing of at least one of the plurality of exhaust valves.
  • the variable exhaust valve timing mechanism A control unit that delays the opening timing of the one exhaust valve from the opening timing of the other exhaust valves as compared to when the supercharger is in a non-supercharging state. Yes.
  • the purpose is to improve the expansion ratio for the purpose of improving fuel consumption. That is, the aim is to achieve both improvement of the expansion ratio and maintenance of the supercharging response.
  • Such a high expansion ratio engine further includes a variable compression ratio mechanism capable of changing the mechanical compression ratio, and a variable intake valve timing mechanism capable of changing the valve closing timing of the intake valve.
  • the actual compression ratio can be controlled by the variable intake valve timing mechanism.
  • controller in the high expansion ratio engine disclosed in the present specification can increase the advance amount of the opening timing of the one exhaust valve as the intake air amount is small.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of an engine according to an embodiment.
  • FIG. 2 is an exploded perspective view of a variable compression ratio mechanism provided in the engine of the embodiment.
  • FIG. 3 is an explanatory view schematically showing a cross section of the engine of the embodiment.
  • FIG. 4 is an explanatory diagram showing a schematic configuration of a variable exhaust valve timing mechanism (variable intake valve timing mechanism).
  • FIG. 5 is an explanatory view showing an exhaust camshaft that drives the exhaust valve.
  • FIG. 6 is an explanatory diagram for explaining the mechanical compression ratio, the actual compression ratio, and the expansion ratio.
  • FIG. 7 is a flowchart illustrating an example of engine control in the embodiment.
  • FIG. 8 is an example of a map for determining the target intake air amount.
  • FIG. 8 is an example of a map for determining the target intake air amount.
  • FIG. 9 is an example of a map for determining a first correction value for correcting the target intake air amount.
  • FIG. 10 is an example of a map for determining a second correction value for correcting the target intake air amount.
  • FIG. 11 is an example of a map for determining the intake valve closing timing and the exhaust valve opening timing with respect to the target intake air amount.
  • FIG. 12 is an example of a map for determining the mechanical compression ratio ( ⁇ expansion ratio) with respect to the target intake air amount.
  • FIG. 13 is an example of a graph showing the relationship between the mechanical compression ratio ( ⁇ expansion ratio) and the exhaust valve opening timing.
  • FIG. 14 is an explanatory diagram showing an example of the relationship between the target intake air amount and the throttle opening.
  • FIG. 15 is an explanatory diagram showing an example of the relationship between the target intake air amount and the waste gate valve opening.
  • FIG. 16 is an explanatory diagram illustrating an example of changes in various parameters in the engine of the comparative example.
  • FIG. 17 is a graph showing an example of valve timing during acceleration.
  • FIG. 18 is an explanatory diagram illustrating an example of changes in various parameters in the engine of the embodiment.
  • FIG. 19 is a flowchart illustrating an example of engine control in the embodiment.
  • FIG. 20 is an example of a map for determining the target intake air amount.
  • FIG. 21 is an example of a map for determining the exhaust valve opening timing with respect to the target intake air amount.
  • FIG. 22 is a graph showing an example of valve timing during acceleration.
  • FIG. 23 is an explanatory diagram illustrating an example of changes in various parameters in the engine of the embodiment.
  • FIG. 1 shows a side sectional view of the engine 100 of this embodiment.
  • the engine 100 is a 4-cylinder spark ignition type.
  • the engine 100 is a high expansion ratio engine that can set an expansion ratio larger than a compression ratio, as will be described in detail later.
  • the engine 100 also includes an exhaust turbocharger 15 that is an example of a supercharger that is rotationally driven by exhaust gas.
  • the engine 100 includes a crankcase 1, a cylinder block 2, a cylinder head 3, and a piston 4.
  • the engine 100 includes a combustion chamber 5, a spark plug 6, an intake valve 7, and an intake port 8 that are disposed at the center of the top surface of the combustion chamber 5.
  • the engine 100 further includes an exhaust valve 9 and an exhaust port 10.
  • the intake port 8 is connected to a surge tank 12 via an intake branch pipe 11, and each intake branch pipe 11 is provided with a fuel injection valve 13 for injecting fuel into the corresponding intake port 8. .
  • the fuel injection valve 13 may be disposed so as to face each combustion chamber 5 instead of being attached to each intake branch pipe 11.
  • a plurality of exhaust valves 12 can be provided for one cylinder. In the present embodiment, two exhaust valves 12 are provided.
  • the surge tank 12 is connected to the outlet of the compressor 15a of the exhaust turbocharger 15 via an intake duct 14, and the inlet of the compressor 15a is connected to an air cleaner via an intake air amount detector 16 using, for example, heat rays.
  • a throttle valve 19 driven by an actuator 18 is disposed in the intake duct 14.
  • the exhaust turbocharger 15 is an example of a supercharger that is rotationally driven by exhaust gas.
  • the intake air amount detector 16 is an example of an intake air amount acquisition unit.
  • the exhaust port 10 is connected to an inlet of an exhaust turbine 15b of an exhaust turbocharger 15 via an exhaust manifold 20, and an outlet of the exhaust turbine 15b is connected to a catalytic converter 22 containing, for example, a three-way catalyst via an exhaust pipe 21. Is done.
  • An air-fuel ratio sensor 23 is disposed in the exhaust pipe 21.
  • a waste gate valve 24 is provided in the vicinity of the exhaust turbine 15 b of the exhaust turbocharger 15.
  • the wastegate valve 24 can acquire information related to the opening, and transmits the information to the electronic control unit 30 described later.
  • the engine 100 includes a variable compression ratio mechanism A as shown in FIG.
  • the variable compression ratio mechanism A is provided at a connecting portion between the crankcase 1 and the cylinder block 2.
  • the variable compression ratio mechanism A is configured such that the volume of the combustion chamber 5 (mechanical compression ratio) when the piston 4 is positioned at the compression top dead center by changing the relative positions of the crankcase 1 and the cylinder block 2 in the cylinder axis direction. Can be changed.
  • the engine 100 includes a variable intake valve timing mechanism B that can change the closing timing of the intake valve 7 in order to change the actual start timing of the compression action.
  • the engine 100 includes a variable exhaust valve timing mechanism C that can change the closing timing of at least one exhaust valve 9.
  • the engine 100 includes an electronic control unit 30.
  • the electronic control unit 30 corresponds to a control unit and also has a function of an operation state determination unit that determines an operation state of the engine.
  • the electronic control unit 30 issues a command to the variable exhaust valve timing mechanism C when the engine 1 is operated at a light load and is determined to be accelerated, and one exhaust valve is opened.
  • the timing is advanced from the opening timing of other exhaust valves.
  • the electronic control unit 30 includes a digital computer and is connected to each other by a bidirectional bus 31.
  • the output signal of the intake air amount detector 16 and the output signal of the air-fuel ratio sensor 23 are input to the input port 35 via corresponding AD converters 37, respectively.
  • the accelerator pedal 40 is connected to an accelerator position sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40.
  • the output voltage of the accelerator position sensor 41 is input to an input port 35 via a corresponding AD converter 37. Is input.
  • crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35.
  • the output port 36 is connected to the spark plug 6, the fuel injection valve 13, the throttle valve drive actuator 18, the variable compression ratio mechanism A, the variable intake valve timing mechanism B, and the variable exhaust valve timing mechanism C through corresponding drive circuits 38. Connected.
  • FIG. 2 is an exploded perspective view of the variable compression ratio mechanism A provided in the engine 100 shown in FIG.
  • FIG. 3 is an explanatory view schematically showing a cross section of the engine 100.
  • a plurality of protrusions 50 spaced from each other are formed below both side walls of the cylinder block 2, and cam insertion holes 51 each having a circular cross section are formed in each protrusion 50. Is formed.
  • a plurality of protrusions 52 are formed on the upper wall surface of the crankcase 1 so as to be fitted between the corresponding protrusions 50 at intervals.
  • Each of these protrusions 52 is also formed with a cam insertion hole 53 having a circular cross section.
  • a pair of camshafts 54 and 55 are provided, and on each camshaft 54 and 55, a circular cam 56 is rotatably inserted into each cam insertion hole 51. It is fixed. These circular cams 56 are coaxial with the rotational axes of the camshafts 54 and 55.
  • an eccentric shaft 57 arranged eccentrically with respect to the rotation axis of each camshaft 54, 55 extends between the circular cams 56 as shown by hatching in FIG.
  • a cam 58 is eccentrically mounted for rotation. As shown in FIG. 2, the circular cams 58 are disposed between the circular cams 56, and the circular cams 58 are rotatably inserted into the corresponding cam insertion holes 53.
  • the relative positions of the crankcase 1 and the cylinder block 2 are determined by the distance between the center of the circular cam 56 and the center of the circular cam 58.
  • the cylinder block 2 moves away from the crankcase 1 as the distance between the center and the center of the circular cam 58 increases.
  • the volume of the combustion chamber 5 when the piston 4 is located at the compression top dead center increases. Therefore, the volume of the combustion chamber 5 when the piston 4 is positioned at the compression top dead center can be changed by rotating the camshafts 54 and 55. Thereby, the mechanical compression ratio can be changed.
  • variable compression ratio mechanism A shows an example, and any type of variable compression ratio mechanism can be used.
  • FIG. 4 shows a variable intake valve timing mechanism B provided for the camshaft 70 for driving the intake valve 7 in FIG.
  • the variable intake valve timing mechanism B includes a cam phase changing unit that is attached to one end of the camshaft 70 to change the cam phase of the camshaft 70.
  • the cam phase changing part of the variable intake valve timing mechanism B will be described.
  • the cam phase changing portion rotates together with the timing pulley 71 rotated in the direction of the arrow by the crankshaft of the engine 100 via the timing belt, the cylindrical housing 72 that rotates together with the timing pulley 71, and the camshaft 70.
  • a rotary shaft 73 that can rotate relative to the cylindrical housing 72, a plurality of partition walls 74 that extend from the inner peripheral surface of the cylindrical housing 72 to the outer peripheral surface of the rotary shaft 73, and the rotary shaft between the partition walls 74.
  • the vane 75 extends from the outer peripheral surface of 73 to the inner peripheral surface of the cylindrical housing 72.
  • An advance hydraulic chamber 76 and a retard hydraulic chamber 77 are formed on both sides of each vane 75, respectively. Yes.
  • the hydraulic oil supply control to the hydraulic chambers 76 and 77 is performed by the hydraulic oil supply control valve 78.
  • the hydraulic oil supply control valve 78 includes hydraulic ports 79 and 80 connected to the hydraulic chambers 76 and 77, a hydraulic oil supply port 82 discharged from the hydraulic pump 81, a pair of drain ports 83 and 84, And a spool valve 85 that performs communication cutoff control between the ports 79, 80, 82, 83, and 84.
  • the cam phase changer can advance or retard the cam phase of the camshaft 70 by a desired amount. That is, the valve opening timing of the intake valve 7 can be arbitrarily advanced or retarded by the cam phase changing unit.
  • variable intake valve timing mechanism B shown in FIGS. 1 and 4 is an example, and various types of variable intake valve timing mechanisms other than the examples shown in FIGS. 1 and 4 can be used.
  • the electronic control unit 30 controls the actual compression ratio by the variable compression ratio mechanism A and the variable intake valve timing mechanism B. As a result, the actual compression ratio can be kept almost constant regardless of the engine load, fuel efficiency can be improved at low load, and output can be acquired at high load. The actual compression ratio will be described in detail later.
  • FIG. 5 is an explanatory view showing an exhaust camshaft 90 in which phase control is performed by the variable exhaust valve timing mechanism C.
  • the exhaust camshaft 90 is configured such that, of the two exhaust valves 9, the opening timing of one exhaust valve can be advanced with respect to the opening timing of the other exhaust valves. Specifically, it has a double structure in which the inner shaft 91 is rotatably fitted in the outer shaft 92. A first cam 93 is fixed to the inner shaft 91 by a fixing pin 94. The first cam 93 is in a state of being exposed to the outside from a groove 92 a provided in the external shaft 92. The first cam 93 can change in phase as the inner shaft 91 rotates relative to the outer shaft 92.
  • a second cam 95 is fixed to the external shaft 92 by press fitting.
  • variable exhaust valve timing mechanism C shown in FIGS. 1 and 4 shows an example, and various types of variable exhaust valve timing mechanisms other than the examples shown in FIGS. 1 and 4 can be used. .
  • variable exhaust valve timing mechanism C similar to the variable intake valve timing mechanism B shown in FIG. That is, the phase control of the first cam 93 fixed to the internal shaft 91 can be performed by the same mechanism as the variable intake valve timing mechanism B that can perform the phase control of the intake valve 7 as described above. Since the operation of the variable exhaust valve timing mechanism C to advance or retard the first cam 93 is the same as that of the variable intake valve timing mechanism B, detailed description thereof is omitted.
  • FIG. 6 (A), (B), and (C) show an engine having a combustion chamber volume of 50 ml and a piston stroke volume of 500 ml for the sake of explanation.
  • the combustion chamber volume represents the volume of the combustion chamber when the piston is located at the compression top dead center.
  • FIG. 6A explains the mechanical compression ratio.
  • FIG. 6B illustrates the actual compression ratio.
  • FIG. 6C explains the expansion ratio.
  • FIG. 7 is a flowchart showing an example of control performed by the electronic control unit 30 when the engine 100 is operated at a light load and it is determined that the engine 100 is accelerating.
  • the control policy is to maintain the expansion ratio and maintain and improve the responsiveness of the exhaust turbocharger 15. This aims to achieve both supercharging response and improved fuel efficiency.
  • steps in the flowchart shown in FIG. 7 can be switched in order based on their properties, and may be processed in parallel. Further, each step is repeatedly performed, and a value acquired in a certain step may be used in another step.
  • step S1 the accelerator position sensor 41 connected to the accelerator pedal 40 reads the accelerator opening ( ⁇ ). Subsequently, in step S2, the electronic control unit 30 calculates the accelerator opening change rate (d ⁇ / dt) and the accelerator opening acceleration (d 2 ⁇ / dt 2 ). In step S3, the engine speed based on the information acquired by the crank angle sensor 42 is read.
  • accelerator opening change rate (d ⁇ / dt) and / or accelerator opening acceleration (d 2 ⁇ / dt 2 ) calculated in this way is equal to or greater than a certain value, it can be determined that the engine 100 is in acceleration. it can. Note that when the change in the transmission output (rpm) or the change in the value calculated by the engine rotation speed x gear ratio is on the + (plus) side, it may be determined that the vehicle is accelerating.
  • the target intake air amount is calculated in consideration of the accelerator opening ( ⁇ ) and the engine speed.
  • the target intake air amount can be calculated based on a map whose example is shown in FIG.
  • a target intake air amount first correction value based on the accelerator opening change rate (d ⁇ / dt) is calculated.
  • the target intake air amount first correction value increases with an increase in the accelerator opening change rate, that is, when the accelerator opening speed exceeds a predetermined value.
  • a target intake air amount second correction value based on the accelerator opening acceleration (d 2 ⁇ / dt 2 ) is calculated. As shown in an example of the map in FIG.
  • the target intake air amount second correction value increases as the accelerator opening acceleration exceeds a predetermined value.
  • the target intake air amount is determined in consideration of the target intake air amount first correction value and the target intake air amount second correction value.
  • the reason why the correction value based on the accelerator opening change rate and the accelerator opening acceleration is taken into account is that the driver's intention is expressed by the operation of the accelerator pedal 40 and transmitted to the engine 100.
  • Whether the engine 100 is lightly loaded can be determined from the target intake air amount and the engine speed. That is, when the target intake air amount and the engine speed are each equal to or less than the predetermined values, it can be determined that the vehicle is in a light load state.
  • step S5 the electronic control unit 30 calculates an advance target value by the variable intake valve timing mechanism B (intake VVT: intake variable ⁇ ⁇ valve timing), and executes advance control.
  • intake VVT intake variable ⁇ ⁇ valve timing
  • advance amount of the valve closing timing of the intake valve 7 is determined based on the target intake air amount.
  • the closing timing of the intake valve 7 is a downward-sloping map in which the advance amount increases as the target intake amount increases.
  • the electronic control unit 30 performs the following control in a state in which the valve closing timing of the intake valve is changed to the side where the compression ratio is lowered by the variable intake valve timing mechanism B. That is, when it is determined that the engine 100 is accelerating, the variable intake valve timing mechanism B changes the valve closing timing of the intake valve 7 in a direction that improves the compression ratio. For example, when the closing timing of the intake valve 7 is retarded to reduce the compression ratio, the closing timing of the intake valve is advanced. This is due to the following reason.
  • the amount of air remaining in the cylinder of the engine 100 increases by changing the closing timing of the intake valve in the direction of improving the compression ratio. As a result, the energy of the exhaust exhausted from the cylinder can be increased, and the response of the exhaust turbocharger 15 can be improved. If the responsiveness of the exhaust turbocharger 15 is improved, the acceleration is improved.
  • the electronic control unit 30 changes the intake valve closing timing to the side where the compression ratio is lowered by the variable intake valve timing mechanism B as follows. Take control. That is, when it is determined that the acceleration request of the engine 100 has decreased, the valve closing timing of the intake valve 7 is changed by the variable intake valve timing mechanism B in a direction to decrease the compression ratio. For example, when the compression ratio is lowered by retarding the closing timing of the intake valve 7, if there is an acceleration request and the advance side is once as described above, the control is again made to the retard side. To do. By improving the expansion rate that has temporarily decreased, the thermal efficiency can be increased and the fuel consumption can be improved.
  • the electronic control unit 30 calculates the exhaust valve phase difference advance angle target value by the variable exhaust valve timing mechanism B in step S7 and executes the advance angle. Specifically, as shown in FIG. 11, the advance amount of the valve opening timing of the exhaust valve 9 is determined based on the target intake air amount. As shown in FIG. 11, the opening timing of the exhaust valve 9 is an upward-sloping map in which the advance amount decreases as the target intake amount increases, in other words, the advance amount increases as the target intake amount decreases. It becomes a map that descends to the left. In FIG. 11, the downward sloping portion of the line segment indicating the exhaust valve opening timing indicates a region where there is clearly no need for supercharging near the idling.
  • the advance angle control of the opening timing of the exhaust valve 9 excludes an extremely low load area such as idling where supercharging is unnecessary. This is intended not to decrease the thermal efficiency of the engine by advancing the opening timing of the exhaust valve when supercharging is not required.
  • the electronic control unit 30 uses the variable exhaust valve timing mechanism C to open the first cam 93 shown in FIG. Is controlled to the advance side. That is, the valve opening timing of one exhaust valve 9 is advanced from the valve opening timing of the other exhaust valves 9. The exhaust pressure 9 and the exhaust temperature supplied to the exhaust turbocharger 15 are increased by the exhaust valve 9 driven by the first cam 93 that opens quickly. As a result, the responsiveness of the exhaust turbocharger 15 can be improved.
  • the opening timing of the exhaust valve driven by the second cam 95 which is a fixed cam, is delayed with respect to the exhaust valve 9 driven by the first cam 93, the expansion ratio is maintained. As a result, it is possible to achieve both the improvement of supercharging response and the improvement of fuel consumption.
  • the electronic control unit 30 increases the advance amount of the valve opening timing of one exhaust valve 9 as the target intake air amount decreases by the variable exhaust valve timing mechanism C. . That is, the advance amount of the valve opening timing of the exhaust valve 9 driven by the first cam 93 is increased.
  • the intake air amount actually measured by the intake air amount detector 16 can be used as the target intake air amount.
  • the valve opening timing of the exhaust valve 9 is advanced to increase the amount of exhaust gas supplied to the exhaust turbocharger 15.
  • the purpose is to improve pay response.
  • the control of the opening timing of the exhaust valve 9 is desirably performed within a range in which the supercharging response and the fuel efficiency are compatible. For this reason, for example, data related to engine unit tests and actual fuel consumption and acceleration feeling in the vehicle are collected in advance, and these data are collected into a map (for example, the map shown in FIG. 11) indicating the valve opening timing characteristics of the exhaust valve. It can be reflected.
  • the electronic control unit 30 opens the one exhaust valve 9 that advances the valve opening timing. Delay the valve timing. Thereby, thermal efficiency is improved by raising again the expansion coefficient which was temporarily reduced. As a result, fuel consumption can be improved.
  • the ignition delay angle control may be performed together.
  • the calculation of the advance angle target value of the exhaust valve 9 may include a corrective measure that reflects the supercharging situation in consideration of the wastegate valve opening change performed in step S9.
  • the electronic control unit 30 can perform control to reduce the advance amount of the opening timing of one exhaust valve 9 as the expansion ratio is smaller based on the map shown in FIG.
  • the advance amount of the valve opening timing of the exhaust valve 9 when the advance amount of the valve opening timing of the exhaust valve 9 is increased, the advance amount can be reduced when the expansion ratio is small. If the opening timing of the exhaust valve 9 is further advanced while the expansion ratio is small, the influence on the deterioration of fuel consumption increases. Therefore, in such a case, the purpose is to reduce the advance amount. Since the expansion ratio substantially coincides with the mechanical compression ratio calculated in step S7 described in detail later, the value acquired in step S7 can be used.
  • the electronic control unit 30 calculates and executes the target mechanical compression ratio in step S7.
  • the mechanical compression ratio is calculated based on a map shown in FIG.
  • the mechanical compression ratio decreases as the target intake air amount increases.
  • the electronic control unit 30 changes the mechanical compression ratio by issuing a command to the variable compression ratio mechanism A.
  • step S8 the electronic control unit 30 calculates and executes the throttle opening target.
  • the throttle opening is calculated based on a map shown in FIG.
  • the electronic control unit 30 repeatedly performs the above control.
  • the engine 100 includes a wastegate valve 24, and the opening degree of the wastegate valve 24 changes with a change in the target intake air amount (step S9). Specifically, when the target intake air amount is large and the actual intake air amount is also large, the opening degree of the waste gate valve 24 is small, and a high supercharging state is obtained.
  • the opening degree of the waste gate valve 24 may be added to the exhaust valve phase difference advance target value in step S6.
  • the intake VVT advance target value calculated in step S5 the exhaust valve phase difference advance target value calculated in step S6, the target mechanical compression ratio calculated in step S7, and the throttle opening calculated in step S8
  • the environmental data is various data considered in order to accurately calculate the mass of air actually introduced into the cylinder of the engine 100.
  • Specific data that can be included in the environmental data includes data related to oil temperature, data related to water temperature, data related to intake air temperature, data related to atmospheric pressure, and data related to intake pipe pressure.
  • FIG. 16 is an explanatory diagram illustrating an example of changes in various parameters in the engine of the comparative example.
  • FIG. 17 is a graph showing an example of valve timing during acceleration in comparison with normal valve timing.
  • FIG. 18 is an explanatory diagram illustrating an example of changes in various parameters in the engine 100 according to the embodiment.
  • the engine of the comparative example whose changes in various parameters are shown in FIG. 16 includes the variable compression ratio mechanism A and the variable intake valve timing mechanism B, but does not include the variable exhaust valve timing mechanism C.
  • Such an engine is controlled to ensure an expansion ratio as much as possible during steady running.
  • the throttle opening of the engine of the comparative example is maintained in the fully open state when the amount of depression of the accelerator pedal is adjusted by the driver's intention except in the extremely light load range. Then, the closing timing (IVC) of the intake valve is controlled. The reason why the throttle opening is adjusted to fully open is to reduce the intake loss and control the air amount.
  • variable compression ratio mechanism and the variable compression ratio mechanism cooperate with each other at an extremely light load or higher, and on the light load side, the mechanical compression ratio is increased and the intake valve is closed late so that the engine is similar to the high load side.
  • the expansion ratio can be set large while maintaining the actual compression ratio. Thereby, thermal efficiency can be improved.
  • the throttle opening is kept fully open above a predetermined engine load.
  • the intake air amount increases as the engine load increases.
  • IVC that is, when the intake valve 7 is closed, the engine load is advanced as the engine load increases. In other words, the control is performed so that the lighter the engine load is, the more retarded it is, and the closing timing is delayed.
  • the mechanical compression ratio decreases as the engine load increases. Furthermore, the mechanical compression ratio is controlled so as to become lower as the engine load becomes higher so that the actual compression ratio becomes constant. The expansion ratio is almost the same as the mechanical compression ratio. Note that EVO, that is, the opening timing of the exhaust valve is constant.
  • the engine 100 of this embodiment includes a variable exhaust valve timing mechanism C.
  • the variable compression ratio mechanism A and the variable intake valve timing mechanism B are provided in common with the comparative example.
  • the valve timing of the engine 100 of the present embodiment will be described with reference to FIG. First, in normal times, the valve opening timing E 1 VO of the exhaust valve 9 driven by the variable first cam 93 and the valve opening timing E 2 VO of the exhaust valve driven by the second cam 95 fixed are equal. I'm doing it. On the other hand, at the time of acceleration, the valve opening timing E 1 VO is advanced from the valve opening timing E 2 VO.
  • the engine 100 of the present embodiment achieves both improvement in maintaining the supercharging response of the exhaust turbocharger 15 and fuel efficiency by maintaining a high expansion ratio.
  • FIG. 19 is a flowchart showing an example of control performed by the electronic control unit 30 when the engine 100 is operated at a load of medium load or higher and is in a normal supercharging operation state in which supercharging by the exhaust turbocharger 15 is performed.
  • FIG. 19 When the engine is operated at a load higher than medium load and is in a regular supercharging operation with supercharging by an exhaust turbocharger, the amount of air in the cylinder is larger than when there is no supercharging, and the supercharging response Is maintained. Therefore, the control strategy is to improve the expansion ratio by controlling the opening timing of the exhaust valve 9 to the retard side.
  • steps in the flowchart shown in FIG. 19 can be switched in order based on their properties, and may be processed in parallel. Further, each step is repeatedly performed, and a value acquired in a certain step may be used in another step.
  • step S21 the accelerator position sensor 41 connected to the accelerator pedal 40 reads the accelerator opening ( ⁇ ).
  • step S22 the engine speed based on the information acquired by the crank angle sensor 42 is read.
  • step S23 a target intake air amount is calculated. Since the calculation of the target intake air amount is performed in the same manner as the process of step S4 in the flowchart shown in FIG. 7, detailed description thereof is omitted.
  • step S24 the electronic control unit 30 determines whether or not the engine is in the supercharging region. Specifically, the map shown in FIG. 20 is referred to, and a determination is made based on whether or not the value obtained from the accelerator opening and the engine speed exceeds a threshold value. It can also be determined from the wastegate valve opening and the intake pipe pressure. Whether or not the engine has a medium load or higher can also be determined from this threshold value.
  • step S24 When it is determined No in step S24, processing from step S25 to step S29 is performed. Since the processing from step S25 to step S29 is performed in the same manner as the processing from step S5 to step S9 in the flowchart shown in FIG. 7, detailed description thereof is omitted.
  • step S30 an exhaust valve phase difference retardation correction value is calculated.
  • the exhaust valve phase difference retardation correction value is calculated based on a map shown in FIG. Specifically, in the supercharging region, the valve opening timing of the exhaust valve 9 is retarded as the target intake amount is large, and the opening timing of the exhaust valve is returned to the advance side as the target intake amount is small.
  • the exhaust valve 9 is opened slowly to increase the expansion ratio and improve fuel efficiency.
  • the target intake air amount is small even in the supercharging state, it is considered that the exhaust energy becomes small. Therefore, the valve opening timing of the exhaust valve 9 is controlled to the advance side to maintain the supercharging response. It is the purpose.
  • step S30 After the process of step S30 is performed, the process of step S31 to step S36 is performed similarly to step S25 to step S29. However, in the calculation of the exhaust valve phase difference advance target value in step S32, the correction value calculated in step S30 is taken into consideration.
  • FIG. 22 is a graph showing an example of valve timing at the time of steady supercharging operation compared with valve timing at the time of non-supercharging and acceleration.
  • FIG. 23 is an explanatory diagram illustrating an example of changes in various parameters in the engine 100 according to the embodiment.
  • the valve opening timing E 1 VO is advanced from the valve opening timing E 2 VO at the time of no supercharging and acceleration.
  • the valve opening timing E 1 VO is retarded and the same timing as the valve opening timing E 2 VO.
  • the throttle opening is kept fully open above a predetermined engine load.
  • the intake air amount increases as the engine load increases.
  • IVC that is, when the intake valve 7 is closed, the engine load is advanced as the engine load increases. In other words, the control is performed so that the lighter the engine load is, the more retarded it is, and the closing timing is delayed.
  • the mechanical compression ratio decreases as the engine load increases. Furthermore, the mechanical compression ratio is controlled so as to become lower as the engine load becomes higher so that the actual compression ratio becomes constant.
  • the normal EVO that is, the opening timing of the exhaust valve 9 is constant. On the other hand, at the time of steady supercharging, it is controlled to the retard side. With such slow opening of the exhaust valve 9, the expansion ratio and the mechanical compression ratio increase.

Abstract

 エンジンは、膨張比を圧縮比よりも大きく設定することができ、排気ガスにより回転駆動される過給機(排気ターボチャージャ)を備える。そして、エンジンの運転状態を判定する運転状態判定手段と、一の気筒に対し設けられた複数の排気弁と、前記複数の排気弁のうち、少なくとも一の排気弁の開弁時期を変更することができる可変排気バルブタイミング機構と、前記運転状態判定手段により、エンジンが軽負荷で運転され、かつ、加速時と判定されると、前記可変排気バルブタイミング機構に指令を発し、前記一の排気弁の開弁時期を他の排気弁の開弁時期よりも進角させる制御部とを備えている。これにより、過給レスポンスと膨張比の維持を図る。

Description

エンジン
 本発明は、エンジン、特に、膨張比を圧縮比よりも大きく設定することができ、排気ガスにより回転駆動される過給機を備えた高膨張比エンジンに関する。
 従来、膨張比を圧縮比よりも大きく設定するとともに過給機を備えた高膨張比サイクルエンジンが知られている。このような高膨張比サイクルエンジンにおいて、排気弁の開弁時期を変更可能な可変バルブタイミング機構を備えることができる。そして、該エンジンは、低中速域及び低負荷域で運転され、且つ加速過渡時であると判定されると、排気弁の開弁時期が進角するように可変バルブタイミング機構を作動させて、過給機のレスポンス低下を防止する(特許文献1参照)。
特開2004-183510号公報
 しかしながら、排気弁の開弁時期を進角させると、過給レスポンスは維持することができるが、その一方で膨張比を低下させることになり、場合によっては高膨張比化の利点を放棄してしまいかねない。高膨張比化の利点の放棄は、燃費性能に影響を与える。
 そこで、本明細書開示の高膨張比エンジンは、過給機の過給レスポンスの維持向上と、高膨張比維持による燃費性能の両立を課題とする。
 かかる課題を解決するために、本明細書開示の高膨張比エンジンは、膨張比を圧縮比よりも大きく設定することができ、排気ガスにより回転駆動される過給機を備えたエンジンであって、エンジンの運転状態を判定する運転状態判定手段と、一の気筒に対し設けられた複数の排気弁と、前記複数の排気弁のうち、少なくとも一の排気弁の開弁時期を変更することができる可変排気バルブタイミング機構と、前記運転状態判定手段により、エンジンが軽負荷で運転され、かつ、加速時と判定されると、前記可変排気バルブタイミング機構に指令を発し、前記一の排気弁の開弁時期を他の排気弁の開弁時期よりも進角させる制御部と、を備えたことを特徴とする。
 可変バルブタイミング機構により、一の排気弁の開弁時期を進角させることにより、早開きした排気弁から排気圧、排気温度の高い排気ガスを過給機に供給することができる。これにより、過給機の過給レスポンスを維持することができる。一方、他の排気弁、すなわち、進角させた排気弁以外の排気弁により、膨張比を維持し、燃費性能を確保することができる。
 このような高膨張比エンジンは、機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の閉弁時期を変更可能な可変吸気バルブタイミング機構と、をさらに備え、前記制御部は、前記可変圧縮比機構及び前記可変吸気バルブタイミング機構とによって、実圧縮比を制御することができる。
 可変圧縮比機構と可変吸気バルブタイミング機構とを備えることにより、低負荷時の燃費向上と、高負荷時の出力獲得が可能となる。
 さらに、本明細書開示の高膨張比エンジンにおける、前記制御部は、目標吸気量が少ないほど、前記一の排気弁の開弁時期の進角量を大きくすることができる。
 筒内への吸気量が少ないときは、筒内で膨張する燃料ガスのエネルギが小さく、過給機の駆動に利用される排気エネルギが小さくなる。そこで、排気弁の進角量を大きくし、過給機の駆動に利用される排気エネルギの総量を確保して、過給機の過給レスポンスを維持しようとする趣旨である。
 本明細書開示の高膨張比エンジンが備える前記制御部は、前記膨張比が小さいほど、前記一の排気弁の開弁時期の進角量を小さくすることができる。
 排気弁の開弁時期を早めると、さらに膨張比を小さくすることになり、燃費性能に影響を与えてしまう。そこで、膨張比が小さいときは、膨張比が維持されるように排気弁の開弁時期の進角量を小さくし、燃費性能を維持する趣旨である。
 前記制御部は、前記可変吸気バルブタイミング機構によって前記圧縮比を低下させる側に吸気弁の閉弁時期を変更した状態において、前記運転状態判定手段により、エンジンが加速時であると判定されたときに、前記可変吸気バルブタイミング機構によって吸気弁の閉弁時期を、前記圧縮比を向上させる方向へ変更することができる。
 エンジンが加速時であると判断されたときに、筒内に貯留される吸気量を増やし、その貯留された空気を過給機に供給して過給機の応答性をさらに高めようとする趣旨である。なお、圧縮比を低下させるために、吸気弁の閉弁時期は、早閉じとすることもできるし、遅閉じとすることもできる。吸気弁を早閉じすることにより圧縮比を低下させた状態を作り出しているときは、吸気弁の閉じ時期を遅くすることにより圧縮比を高める。これとは逆に、吸気弁を遅閉じすることにより圧縮比を低下させた状態を作り出しているときは、吸気弁の閉じ時期を早くすることにより圧縮比を高める。
 前記制御部は、前記運転状態判定手段により、エンジンの加速要求が減少したと判定されたときに、開弁時期を進角させている前記一の排気弁の開弁時期を遅角させることができる。
 エンジンの加速要求が弱まったときは、過給機に求められる仕事量も低下する。このため、このような状況では、燃費効率を重視し、再び膨張比を向上させる趣旨である。
 前記制御部は、前記可変吸気バルブタイミング機構によって前記圧縮比を低下させる側に吸気弁の閉弁時期を変更した状態において、前記運転状態判定手段により、エンジンの加速要求が減少したと判定されたときに、前記可変吸気バルブタイミング機構によって吸気弁の閉弁時期を、前記圧縮比を低下させる方向へ変更することができる。
 前記のようにエンジンが加速時であると判断され、筒内に貯留される吸気量を増やすように吸気弁の閉弁時期が制御されているときに、エンジンの加速要求が減少した場合の措置である。膨張比を再び向上させ、燃費を向上させる趣旨である。
 本明細書開示の高膨張比エンジンは、膨張比を圧縮比よりも大きく設定することができ、排気ガスにより回転駆動される過給機を備えた高膨張比エンジンにおいて、エンジンの運転状態を判定する運転状態判定手段と、一の気筒に対し設けられた複数の排気弁と、前記複数の排気弁のうち、少なくとも一の排気弁の開弁時期を変更することができる可変排気バルブタイミング機構と、前記運転状態判定手段により、エンジンが中負荷以上の負荷で運転され、かつ、前記過給機による過給がされた定常過給運転状態であると判定されると、前記可変排気バルブタイミング機構に指令を発し、前記過給機の無過給状態のときと比較して前記一の排気弁の開弁時期を他の排気弁の開弁時期よりも遅角させる制御部と、を備えている。
 過給時は、無過給時と比較すると、筒内の吸気量が大きくなる。このため、排気弁を遅開きしても、過給機の過給レスポンスに及ぼす影響は小さい。そこで、燃費向上を目的として、膨張比を向上させる趣旨である。すなわち、膨張比の向上と、過給レスポンスの維持の両立を目指す趣旨である。
 このような高膨張比エンジンは、機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の閉弁時期を変更可能な可変吸気バルブタイミング機構と、をさらに備え、前記可変圧縮比機構及び前記可変吸気バルブタイミング機構とによって、実圧縮比を制御することができる。
 可変圧縮比機構と可変吸気バルブタイミング機構とを備えることにより、低負荷時の燃費向上と、高負荷時の出力獲得が可能となる。
 さらに、本明細書開示の高膨張比エンジンにおける前記制御部は、前記吸気量が少ないほど、前記一の排気弁の開弁時期の進角量を大きくすることができる。
 吸気量が少ないときは、筒内の空気を膨張させると、過給機に伝えられる排気エネルギが小さくなるので、排気弁の開き時期を早めて過給レスポンスを向上させる趣旨である。
 本明細書開示のエンジンによれば、過給機の過給レスポンスの維持と、高膨張比維持による燃費性能の両立を図ることができる。
図1は、実施例のエンジンの概略構成を示す説明図である。 図2は、実施例のエンジンが備える可変圧縮比機構の分解斜視図である。 図3は、実施例のエンジンの断面を模式的に示した説明図である。 図4は、可変排気バルブタイミング機構(可変吸気バルブタイミング機構)の概略構成を示す説明図である。 図5は、排気弁を駆動する排気カムシャフトを示す説明図である。 図6は、機械圧縮比、実圧縮比および膨張比を説明するための説明図である。 図7は、実施例におけるエンジンの制御の一例を示すフロー図である。 図8は、目標吸気量を決定するマップの一例である。 図9は、目標吸気量を補正する第1の補正値を決定するマップの一例である。 図10は、目標吸気量を補正する第2の補正値を決定するマップの一例である。 図11は、目標吸気量に対し吸気弁閉弁時期及び排気弁開弁時期を決定するマップの一例である。 図12は、目標吸気量に対し機械圧縮比(≒膨張比)を決定するマップの一例である。 図13は、機械圧縮比(≒膨張比)と排気弁開弁時期との関係を示すグラフの一例である。 図14は、目標吸気量とスロットル開度との関係の一例を示す説明図である。 図15は、目標吸気量とウェストゲートバルブ開度との関係の一例を示す説明図である。 図16は、比較例のエンジンにおける各種パラメータの変化の一例を示す説明図である。 図17は、加速時のバルブタイミングの一例を示すグラフである。 図18は、実施例のエンジンにおける各種パラメータの変化の一例を示す説明図である。 図19は、実施例におけるエンジンの制御の一例を示すフロー図である。 図20は、目標吸気量を決定するマップの一例である。 図21は、目標吸気量に対し排気弁開弁時期を決定するマップの一例である。 図22は、加速時のバルブタイミングの一例を示すグラフである。 図23は、実施例のエンジンにおける各種パラメータの変化の一例を示す説明図である。
 以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。
 図1に本実施例のエンジン100の側面断面図を示す。エンジン100は、4気筒の火花点火式である。このエンジン100は、後に詳述するように、膨張比を圧縮比よりも大きく設定することができる高膨張比エンジンである。また、エンジン100は、排気ガスにより回転駆動される過給機の一例である排気ターボチャージャ15を備えている。
 図1に示すように、エンジン100は、クランクケース1、シリンダブロック2、シリンダヘッド3、ピストン4を備える。また、エンジン100は、燃焼室5、燃焼室5の頂面中央部に配置された点火栓6、吸気弁7、吸気ポート8を備える。さらに、エンジン100は、排気弁9、排気ポート10を備える。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置されている。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に臨むように配置してもよい。ここで、排気弁12は、1気筒に対し、複数装備されることができ、本実施例において、排気弁12は、2個装備されている。
 サージタンク12は吸気ダクト14を介して排気ターボチャージャ15のコンプレッサ15aの出口に連結され、コンプレッサ15aの入口は例えば熱線を用いた吸気量検出器16を介してエアクリーナに連結される。吸気ダクト14内にはアクチュエータ18によって駆動されるスロットル弁19が配置される。排気ターボチャージャ15は、排気ガスにより回転駆動される過給機の一例である。吸気量検出器16は吸気量取得手段の一例である。
 一方、排気ポート10は排気マニホルド20を介して排気ターボチャージャ15の排気タービン15bの入口に連結され、排気タービン15bの出口は排気管21を介して例えば三元触媒を内蔵した触媒コンバータ22に連結される。排気管21内には空燃比センサ23が配置される。排気ターボチャージャ15の排気タービン15bの近傍には、ウェストゲートバルブ24が装備されている。ウェストゲートバルブ24は、その開度に関する情報を取得することができ、その情報を後述する電子制御ユニット30に送信する。
 エンジン100は、図1に示すように、可変圧縮比機構Aを備えている。可変圧縮比機構Aは、クランクケース1とシリンダブロック2との連結部に設けられている。そして、可変圧縮比機構Aは、クランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積(機械圧縮比)を変更することができる。
 また、エンジン100は、実際の圧縮作用の開始時期を変更するために吸気弁7の閉弁時期を変更することができる可変吸気バルブタイミング機構Bを備えている。
 さらに、エンジン100は、少なくとも一の排気弁9の閉弁時期を変更することができる可変排気バルブタイミング機構Cを備えている。
 エンジン100は、電子制御ユニット30を備える。電子制御ユニット30は、制御部に相当し、エンジンの運転状態を判定する運転状態判定手段の機能も備えている。
 電子制御ユニット30は、後に詳述するように、エンジン1が軽負荷で運転され、かつ、加速時と判定されると、可変排気バルブタイミング機構Cに指令を発し、一の排気弁の開弁時期を他の排気弁の開弁時期よりも進角させる。
 電子制御ユニット30は、デジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸気量検出器16の出力信号および空燃比センサ23の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生するアクセルポジションセンサ41が接続され、アクセルポジションセンサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ18、可変圧縮比機構A、可変吸気バルブタイミング機構Bおよび可変排気バルブタイミング機構Cに接続される。
 図2は、図1に示すエンジン100が備える可変圧縮比機構Aの分解斜視図である。図3はエンジン100の断面を模式的に示した説明図である。図2に示すように、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50が形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52が形成されている。これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
 図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔51内に回転可能に挿入される円形カム56が固定されている。これらの円形カム56は各カムシャフト54,55の回転軸線と共軸をなす。一方、各円形カム56間には図3においてハッチングで示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心軸57が延びており、この偏心軸57上に別の円形カム58が偏心して回転可能に取付けられている。図2に示されるように、これら円形カム58は各円形カム56間に配置されており、これら円形カム58は対応する各カム挿入孔53内に回転可能に挿入されている。
 図3(A)に示すような状態から各カムシャフト54,55上に固定された円形カム56を図3(A)において破線の矢印で示される如く回転させると偏心軸57が下方中央に向けて移動する。これにより、円形カム58がカム挿入孔53内において回転し、図3(B)に示されるように偏心軸57が下方中央まで移動すると円形カム58の中心が偏心軸57の下方へ移動する。
 図3(A)と図3(B)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は円形カム56の中心と円形カム58の中心との距離によって定まり、円形カム56の中心と円形カム58の中心との距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大する。従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。これにより、機械圧縮比を変更することができる。
 図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォームギア61,62が取付けられており、これらウォームギア61,62と噛合する歯車63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。なお、図1から図3に示される可変圧縮比機構Aは一例を示すものであっていかなる形式の可変圧縮比機構でも用いることができる。
 図4は、図1において吸気弁7を駆動するためのカムシャフト70に対して設けられている可変吸気バルブタイミング機構Bを示している。図1に示されるように可変吸気バルブタイミング機構Bはカムシャフト70の一端に取付けられてカムシャフト70のカムの位相変更するためのカム位相変更部を備えている。
 可変吸気バルブタイミング機構Bのカム位相変更部について説明する。カム位相変更部はエンジン100のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
 各油圧室76、77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79、80、82、83、84間の連通遮断制御を行うスプール弁85とを具備している。
 カムシャフト70のカムの位相を進角させるとき、図4においてスプール弁85が下方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印X方向に相対回転せしめられる。
 これに対し、カムシャフト70のカムの位相を遅角させるとき、図4においてスプール弁85が上方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印Xと反対方向に相対回転せしめられる。
 回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従ってカム位相変更部によってカムシャフト70のカムの位相を所望の量だけ進角又は遅角させることができる。即ち、カム位相変更部によって吸気弁7の開弁時期を任意に進角又は遅角させることができることになる。
 なお、図1および図4に示される可変吸気バルブタイミング機構Bは一例を示すものであって、図1および図4に示される例以外の種々の形式の可変吸気バルブタイミング機構を用いることができる。電子制御ユニット30は、可変圧縮比機構A及び可変吸気バルブタイミング機構Bとによって、実圧縮比を制御する。これにより、エンジン負荷にかかわらず実圧縮比をほぼ一定に保ち、低負荷時の燃費向上と、高負荷時の出力獲得が可能となる。なお、実圧縮比については後に詳述する。
 つぎに、可変排気バルブタイミング機構Cについて説明する。図5は、可変排気バルブタイミング機構Cによって、位相制御が行われる排気カムシャフト90を示す説明図である。排気カムシャフト90は、2個の排気弁9のうち、一の排気弁の開弁時期を他の排気弁の開弁時期よりも進角させることができるように構成されている。具体的には、内部シャフト91が外部シャフト92内に回転自在に嵌め込まれた二重構造となっている。内部シャフト91には、第1カム93が固定ピン94により固定されている。第1カム93は、外部シャフト92に設けられた溝92aから外部に露出した状態となっている。第1カム93は、内部シャフト91が外部シャフト92に対して回転することにより、位相変化することができる。外部シャフト92には、第2カム95が圧入により固定されている。
 なお、図1および図4に示される可変排気バルブタイミング機構Cは一例を示すものであって、図1および図4に示される例以外の種々の形式の可変排気バルブタイミング機構を用いることができる。
 内部シャフト91には、図4に示した可変吸気バルブタイミング機構Bと同様の可変排気バルブタイミング機構Cが装着される。すなわち、上記のように吸気弁7の位相制御を行うことができる可変吸気バルブタイミング機構Bと同様の機構により、内部シャフト91に固定された第1カム93の位相制御を行うことができる。第1カム93を進角させたい、遅角させたりする可変排気バルブタイミング機構Cの動作は、可変吸気バルブタイミング機構Bと同様であるのでその詳細な説明は省略する。
 次に図6を参照しつつ本明細書において使用されている用語の意味について説明する。なお、図6の(A),(B),(C)には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6の(A),(B),(C)において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
 図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
 図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6(B)に示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
 図6(C)は膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(C)に示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
 つぎに、本実施例の制御の例について、説明する。以下、エンジンの運転状態に応じて場合を分けて説明する。
≪エンジンが軽負荷で運転され、かつ、加速時と判定される場合≫
 図7は、エンジン100が軽負荷で運転され、かつ、加速時と判定される場合の電子制御ユニット30が行う制御の一例を示すフロー図である。エンジンが軽負荷で運転され、かつ、加速時判定される場合、膨張比の維持と排気ターボチャージャ15の応答性の維持、向上がその制御方針となる。これにより、過給レスポンスと、燃費向上の両立を目指す。
 なお、図7に示すフロー図中の各ステップは、その性質に基づいて、順番を入れ換えることができ、また、同時並行的に処理される場合がある。また、各ステップは、繰り返し行われるものであり、あるステップで取得された値が、他のステップで利用される場合がある。
 まず、ステップS1において、アクセルペダル40と連結されたアクセルポジションセンサ41が、アクセル開度(θ)を読み込む。そして、これに引き続き、電子制御ユニット30がステップS2において、アクセル開度変化率(dθ/dt)とアクセル開加速度(dθ/dt)を算出する。また、ステップS3において、クランク角センサ42が取得した情報に基づくエンジン回転数を読み込む。
 このようにして算出したアクセル開度変化率(dθ/dt)及び/またはアクセル開加速度(dθ/dt)が一定値以上であれば、エンジン100が加速時であると判断することができる。なお、トランスミッション出力(rpm)の変化や、エンジン回転数×変速比で算出される値の変化が+(プラス)側の場合は、加速時であると判断するようにしてもよい。
 そして、ステップS4において、アクセル開度(θ)とエンジン回転数とを考慮して目標吸気量を算出する。目標吸気量は、図8にその一例を示すマップに基づいて算出することができる。このとき、アクセル開度変化率(dθ/dt)に基づく目標吸気量第1補正値が算出される。目標吸気量第1補正値は、図9にそのマップの一例を示すようにアクセル開度変化率、すなわち、アクセル開度速度が所定値を越えると、その増加に伴って、大きくなる。さらに、アクセル開加速度(dθ/dt)に基づく目標吸気量第2補正値が算出される。目標吸気量第2補正値は、図10にそのマップの一例を示すようにアクセル開加速度が所定値を越えるとその増加に伴って、大きくなる。目標吸気量は、これらの目標吸気量第1補正値及び目標吸気量第2補正値が考慮されて決定される。このようにアクセル開度変化率やアクセル開加速度に基づく補正値を考慮するのは、運転者の意思は、アクセルペダル40の操作によって表現され、エンジン100に伝達されるためである。
 エンジン100が軽負荷か否かは、目標吸気量とエンジン回転数から判断することができる。すなわち、目標吸気量とエンジン回転数がそれぞれ所定値以下である場合は、軽負荷の状態であると判断することができる。
 電子制御ユニット30は、ステップS5において、可変吸気バルブタイミング機構B(吸気VVT:吸気Variable Valve Timing)による進角目標値を算出し、進角制御を実行する。具体的には、図11に示すように目標吸気量に基づいて吸気弁7の閉弁時期の進角量を決定する。吸気弁7の閉弁時期は、図11に示すように目標吸気量が大きくなるに従って進角量が大きくなる右肩下がりのマップとなる。
 このマップを適用することにより、電子制御ユニット30は、可変吸気バルブタイミング機構Bによって圧縮比を低下させる側に吸気弁の閉弁時期を変更した状態において、以下のような制御を行う。すなわち、エンジン100が加速時であると判定されたときに、可変吸気バルブタイミング機構Bによって吸気弁7の閉弁時期を、圧縮比を向上させる方向へ変更する。例えば、吸気弁7の閉弁時期を遅角させて圧縮比が低下した状態とされているときは、吸気弁の閉弁時期を進角させる。これは、以下の理由による。
 圧縮比を向上させる方向に吸気弁の閉弁時期を変更することにより、エンジン100のシリンダ内に留まる空気量が増す。ひいては、シリンダ内から排気される排気のエネルギが大きくすることができ、排気ターボチャージャ15の応答性を向上させることができるためである。排気ターボチャージャ15の応答性が向上すれば、加速が良好なものとなる。
 一方、図11に示したマップを適用することにより、電子制御ユニット30は、可変吸気バルブタイミング機構Bによって圧縮比を低下させる側に吸気弁の閉弁時期を変更した状態において、以下のような制御を行う。すなわち、エンジン100の加速要求が減少したと判定したときに、可変吸気バルブタイミング機構Bによって吸気弁7の閉弁時期を、圧縮比を低下させる方向へ変更する。例えば、吸気弁7の閉弁時期を遅角させて圧縮比が低下した状態される場合に、加速要求があって上記のように一旦進角側としているときは、再度、遅角側へ制御する。一時的に低下していた膨張率を再び向上させることで、熱効率を上げ、燃費を向上させることができる。
 なお、図11中、吸気弁閉弁時期を示す線分の右肩上がりの部分と、略水平部分は、軽負荷状態において空気量が少ないため、スロットリングを行うことによって吸気量(負荷)を調整することを示している。
 電子制御ユニット30は、ステップS7において可変排気バルブタイミング機構Bによる排気弁位相差進角目標値を算出し、進角実行する。具体的には、図11に示すように目標吸気量に基づいて排気弁9の開弁時期の進角量を決定する。排気弁9の開弁時期は、図11に示すように目標吸気量が大きくなるに従って進角量が小さくなる右肩上がりのマップ、換言すれば、目標吸気量が小さくなるに従って進角量が大きくなる左肩下がりのマップとなる。なお、図11において、排気弁開弁時期を示す線分の右肩下がりの部分は、アイドリング付近で、明らかに過給の必要がない領域を示している。このため、排気弁9の開弁時期の進角制御は、アイドリング等の、過給が不要である、きわめて負荷の低い領域は除外されている。これは、過給が必要でない場合は、排気弁の開弁時期を進角させてエンジンの熱効率を低下させることは行わない意図である。
 エンジン100が軽負荷で運転され、かつ、加速時と判定される場合の基本的な制御として、電子制御ユニット30は、可変排気バルブタイミング機構Cにより図5に示す第1カム93の開弁時期を進角側に制御する。すなわち、一の排気弁9の開弁時期を他の排気弁9の開弁時期よりも進角させる状態とする。早開きする第1カム93によって駆動される排気弁9により、排気ターボチャージャ15へ供給される排気圧、排気温度を上昇させ、この結果、排気ターボチャージャ15の応答性を高めることができる。一方、固定カムである第2カム95により駆動される排気弁の開弁時期が第1カム93により駆動される排気弁9よりも遅れた状態となるため、膨張比が維持される。これにより、過給レスポンスの維持向上と、燃費の維持向上の両立を図ることができる。
 さらに、図11に示したマップを適用することにより、電子制御ユニット30は、可変排気バルブタイミング機構Cによって目標吸気量が少ないほど、一の排気弁9の開弁時期の進角量を大きくする。すなわち、第1カム93によって駆動される排気弁9の開弁時期の進角量を大きくする。ここで、目標吸気量は、吸気量検出器16により実測された吸気量を用いることもできる。
 これは吸気量が小さいほど、排気ターボチャージャ15に供給される排気のエネルギが小さいため、排気弁9の開弁時期を進角して排気ターボチャージャ15に供給される排気の量を増し、過給レスポンスを向上させる趣旨である。なお、排気弁9の開弁時期の制御は、過給レスポンスと、燃費が両立する範囲内で行われることが望ましい。このため、例えば、予めエンジンの単体試験や実際に車両での燃費や加速感に関するデータを収集し、これらのデータを排気弁の開弁時期特性を示すマップ(例えば、図11に示すマップ)に反映させておくことができる。
 一方、図11に示したマップを適用することにより、電子制御ユニット30は、エンジン100の加速要求が減少したと判定したときに、開弁時期を進角させている一の排気弁9の開弁時期を遅角させる。これにより、一時的に低下していた膨張率を再び上げることで熱効率を向上させる。この結果、燃費を向上させることができる。
 なお、排気弁9の開弁時期の進角制御を行うときは、排気エネルギをさらに向上させるため、点火遅角制御を併せて行ってもよい。
 また、排気弁9の進角目標値の算出には、ステップS9で行われるウェストゲートバルブ開度変更を加味した過給状況を反映させた補正措置が含められる場合がある。
 さらに、電子制御ユニット30は、図13に一例を示すマップに基づいて、膨張比が小さいほど、一の排気弁9の開弁時期の進角量を小さくする制御を行うことができる。図11に示したマップを参照して行われる制御において、排気弁9の開弁時期の進角量を大きくした場合に、膨張比が小さいときは、進角量を小さくすることができる。膨張比が小さい状態でさらに排気弁9の開弁時期を進角させることは、燃費の悪化に与える影響が大きくなる。そこで、このような場合には、進角量を小さくする趣旨である。膨張比は、後に詳述するステップS7において算出される機械圧縮比と、ほぼ一致するため、ステップS7で取得する値を用いることができる。
 電子制御ユニット30は、ステップS7において目標機械圧縮比を算出し、実行する。機械圧縮比は、図12に一例を示すマップに基づいて算出される。機械圧縮比は、目標吸気量が大きくなるほど、小さくなる。電子制御ユニット30は、可変圧縮比機構Aに指令を発することにより、機械圧縮比を変更する。
 電子制御ユニット30は、ステップS8において、スロットル開度目標を算出するとともに実行する。スロットル開度は、図14に一例を示すマップに基づいて算出される。
 電子制御ユニット30は、以上のような制御を繰り返し行う。エンジン100は、ウェストゲートバルブ24を備えており、ウェストゲートバルブ24は、目標吸気量の変化に伴って開度が変化する(ステップS9)。具体的には、目標吸気量が大きく、実際の吸気量も大きいときは、ウェストゲートバルブ24の開度は小さくなり、高過給の状態となる。このウェストゲートバルブ24の開度は、ステップS6における排気弁位相差進角目標値に加味されることがある。
 なお、ステップS5で算出される吸気VVT進角目標値、ステップS6で算出される排気弁位相差進角目標値、ステップS7で算出される目標機械圧縮比、ステップS8で算出されるスロットル開度目標には、それぞれ、環境データに基づく補正がかけられる場合がある。ここで、環境データとは、実際にエンジン100のシリンダ内に導入される空気の質量を精度よく算出するために考慮される各種データである。環境データに含むことができる具体的なデータとしては、油温に関するデータ、水温に関するデータ、吸気温に関するデータ、大気圧に関するデータ、さらに、吸気管圧力に関するデータ等である。これらの環境データを考慮することにより、圧縮端における温度を精度よく予測することができ、ノックを回避して良好な燃焼状態を得ることができる。
 以上、制御の一例を示したエンジン100の特徴を、図16乃至図18を参照しつつ説明する。図16は、比較例のエンジンにおける各種パラメータの変化の一例を示す説明図である。図17は、加速時のバルブタイミングの一例を通常時のバルブタイミングと比較して示すグラフである。図18は、実施例のエンジン100における各種パラメータの変化の一例を示す説明図である。
 図16に各種パラメータの変化が示された比較例のエンジンは、可変圧縮比機構A及び可変吸気バルブタイミング機構Bを備えているが、可変排気バルブタイミング機構Cは備えていない。このようなエンジンは、定常走行時において、膨張比をできるだけ確保するように制御される。比較例のエンジンのスロットル開度は、極軽負荷域を除いて、運転者の意思によってアクセルペダルの踏込み量が調整されると、全開状態に保たれる。そして、吸気弁の閉じ時期(IVC)が制御される。スロットル開度が全開に調整されるのは、吸入損失を低減して空気量を制御するためである。
 比較例のエンジンは、極軽負荷以上では、可変圧縮比機構と可変圧縮比機構とが協働し、軽負荷側では機械圧縮比を高めて吸気弁を遅く閉じることで高負荷側と同様の実圧縮比を保ったまま、膨張比を大きく設定することができる。これにより、熱効率を向上させることができる。
 図16によれば、スロットル開度は、所定のエンジン負荷以上では、全開に保たれる。吸気量は、エンジン負荷の増大に伴って大きくなる。IVC、すなわち、吸気弁7の閉じ時期は、エンジン負荷が高負荷に従って進角側となる。換言すれば、エンジン負荷が軽負荷であるほど遅角側となって、閉じるタイミングが遅くなるように制御される。機械圧縮比は、エンジン負荷が高負荷になるに従って低くなる。さらに言えば、機械圧縮比は、実圧縮比が一定となるようにエンジン負荷が高負荷になるに従って低くなるように制御される。膨張比は、機械圧縮比とほぼ同一となる。なお、EVO、すなわち、排気弁の開き時期は、一定である。
 一方、本実施例のエンジン100は、比較例と異なり、可変排気バルブタイミング機構Cを備えている。可変圧縮比機構Aと可変吸気バルブタイミング機構Bを備えている点は、比較例と共通する。本実施例のエンジン100のバルブタイミングを、図17を参照しつつ説明する。まず、通常時において、可変である第1カム93によって駆動される排気弁9の開弁時期EVOと固定である第2カム95によって駆動される排気弁の開弁時期EVOは一致している。これに対し、加速時において、開弁時期EVOは、開弁時期EVOよりも進角させられる。
 このようなバルブタイミングに制御される本実施例のエンジン100の各種パラメータの変化について図18を参照しつつ説明する。図18によれば、加速時のEVOと加速時の実膨張比以外は、比較例のエンジンとほぼ同様のパラメータ変化となる。一の排気弁について加速時のEVOを進角させることにより、加速時の実膨張比は、低下する。図中、実圧縮比よりも実膨張比が下回った、ハッチングで示された領域は、排気弁を早開きすることによって排気ターボチャージャ15のレスポンス向上に用いられたエネルギ量を示している。
 以上説明したように、本実施例のエンジン100は、排気ターボチャージャ15の過給レスポンスの維持向上と、高膨張比維持による燃費性能の両立が図られている。
≪エンジンが中負荷以上の負荷で運転され、かつ、排気ターボチャージャによる過給がされた定常過給運転状態である場合≫
 図19は、エンジン100が中負荷以上の負荷で運転され、かつ、排気ターボチャージャ15による過給がされた定常過給運転状態である場合に、電子制御ユニット30が行う制御の一例を示すフロー図である。エンジンが中負荷以上の負荷で運転され、かつ、排気ターボチャージャによる過給がされた定常過給運転状態である場合、無過給時と比較してシリンダ内の空気量が多く、過給レスポンスは維持される。そこで、排気弁9の開弁時期を遅角側に制御することによる膨張比の向上がその制御方針となる。
 なお、図19に示すフロー図中の各ステップは、その性質に基づいて、順番を入れ換えることができ、また、同時並行的に処理される場合がある。また、各ステップは、繰り返し行われるものであり、あるステップで取得された値が、他のステップで利用される場合がある。
 まず、ステップS21において、アクセルペダル40と連結されたアクセルポジションセンサ41が、アクセル開度(θ)を読み込む。また、ステップS22において、クランク角センサ42が取得した情報に基づくエンジン回転数を読み込む。ステップS23では、目標吸気量を算出する。この目標吸気量の算出は、図7に示したフロー図におけるステップS4の処理と同様に行われるため、その詳細な説明は省略する。
 電子制御ユニット30は、ステップS24では、エンジンが過給領域であるか否かを判定する。具体的には、図20に一例を示すマップを参照し、アクセル開度及びエンジン回転数から得られる値が閾値を越えたか否かで判断する。なお、ウェストゲートバルブ開度や吸気管圧力によって判断することもできる。エンジンが中負荷以上であるか否かも、この閾値により判断することができる。
 ステップS24でNoと判断したときは、ステップS25からステップS29の処理を行う。ステップS25からステップS29の処理は、図7に示したフロー図におけるステップS5からステップS9の処理と同様に行われるため、その詳細な説明は省略する。
 ステップS24でYesと判断したときは、ステップS30へ進む。ステップS30では、排気弁位相差遅角補正値が算出される。この排気弁位相差遅角補正値は、図21に一例を示すマップに基づいて算出される。具体的には、過給領域において、目標吸気量が大きいほど排気弁9の開弁時期を遅角させ、目標吸気量が小さいほど排気弁の開弁時期を進角側へ戻すように制御される。排気ターボチャージャ15が過給状態にあるときは、シリンダ内の空気量が多く、過給レスポンスは維持し易いため、排気弁9を遅開きして膨張比をあげ、燃費を向上させる趣旨である。一方、過給状態にあっても目標吸気量が小さくなるような場合は、排気エネルギが小さくなると考えられるので、排気弁9の開弁時期を進角側へ制御して過給レスポンスを維持する趣旨である。
 ステップS30の処理が行われた後は、ステップS25からステップS29と同様にステップS31からステップS36の処理が行われる。ただし、ステップS32における排気弁位相差進角目標値の算出では、ステップS30で算出された補正値が考慮される。
 以上、制御の一例を示したエンジン100の特徴を、図22、図23を参照しつつ説明する。図22は、定常過給運転時のバルブタイミングの一例を無過給時及び加速時のバルブタイミングと比較して示すグラフである。図23は、実施例のエンジン100における各種パラメータの変化の一例を示す説明図である。
 図17によれば、無過給時及び加速時において、開弁時期EVOは、開弁時期EVOよりも進角させられる。これに対し、定常過給運転時では、開弁時期EVOは、遅角され、開弁時期EVOと同じタイミングとされている。
 このようなバルブタイミングに制御される本実施例のエンジン100の各種パラメータの変化について図23を参照しつつ説明する。図23によれば、スロットル開度は、所定のエンジン負荷以上では、全開に保たれる。吸気量は、エンジン負荷の増大に伴って大きくなる。IVC、すなわち、吸気弁7の閉じ時期は、エンジン負荷が高負荷に従って進角側となる。換言すれば、エンジン負荷が軽負荷であるほど遅角側となって、閉じるタイミングが遅くなるように制御される。機械圧縮比は、エンジン負荷が高負荷になるに従って低くなる。さらに言えば、機械圧縮比は、実圧縮比が一定となるようにエンジン負荷が高負荷になるに従って低くなるように制御される。通常時のEVO、すなわち、排気弁9の開き時期は、一定である。これに対し、定常過給時は、遅角側に制御されている。このような排気弁9の遅開きに伴って、膨張比は、機械圧縮比は大きくなる。
 このように、中負荷以上の負荷で運転され、かつ、排気ターボチャージャによる過給がされた定常過給運転状態において、実膨張比を大きく設定することにより、燃費向上が図られている。
 上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。
1…クランクケース
2…シリンダブロック
3…シリンダヘッド
4…ピストン
5…燃焼室
7…吸気弁
9…排気弁
A…可変圧縮比機構
B…可変吸気バルブタイミング機構
C…可変排気バルブタイミング機構
15…排気ターボチャージャ

Claims (10)

  1.  膨張比を圧縮比よりも大きく設定することができ、排気ガスにより回転駆動される過給機を備えたエンジンであって、
     エンジンの運転状態を判定する運転状態判定手段と、
     一の気筒に対し設けられた複数の排気弁と、
     前記複数の排気弁のうち、少なくとも一の排気弁の開弁時期を変更することができる可変排気バルブタイミング機構と、
     前記運転状態判定手段により、エンジンが軽負荷で運転され、かつ、加速時と判定されると、前記可変排気バルブタイミング機構に指令を発し、前記一の排気弁の開弁時期を他の排気弁の開弁時期よりも進角させる制御部と、
    を、備えたエンジン。
  2.  機械圧縮比を変更可能な可変圧縮比機構と、
     吸気弁の閉弁時期を変更可能な可変吸気バルブタイミング機構と、
    をさらに備え、
     前記制御部は、前記可変圧縮比機構及び前記可変吸気バルブタイミング機構とによって、実圧縮比を制御する請求項1記載のエンジン。
  3.  前記制御部は、目標吸気量が少ないほど、前記一の排気弁の開弁時期の進角量を大きくする請求項1又は2記載のエンジン。
  4.  前記制御部は、前記膨張比が小さいほど、前記一の排気弁の開弁時期の進角量を小さくする請求項1乃至3のいずれか一項記載のエンジン。
  5.  前記制御部は、前記可変吸気バルブタイミング機構によって前記圧縮比を低下させる側に吸気弁の閉弁時期を変更した状態において、前記運転状態判定手段により、エンジンが加速時であると判定されたときに、
     前記可変吸気バルブタイミング機構によって吸気弁の閉弁時期を、前記圧縮比を向上させる方向へ変更することを特徴とする請求項2乃至4のいずれか一項記載のエンジン。
  6.  前記制御部は、前記運転状態判定手段により、エンジンの加速要求が減少したと判定されたときに、
     開弁時期を進角させている前記一の排気弁の開弁時期を遅角させることを特徴とした請求項1乃至5のいずれか一項記載のエンジン。
  7.  前記制御部は、前記可変吸気バルブタイミング機構によって前記圧縮比を低下させる側に吸気弁の閉弁時期を変更した状態において、前記運転状態判定手段により、エンジンの加速要求が減少したと判定されたときに、
     前記可変吸気バルブタイミング機構によって吸気弁の閉弁時期を、前記圧縮比を低下させる方向へ変更することを特徴とする請求項5記載のエンジン。
  8.  膨張比を圧縮比よりも大きく設定することができ、排気ガスにより回転駆動される過給機を備えた高膨張比エンジンにおいて、
     エンジンの運転状態を判定する運転状態判定手段と、
     一の気筒に対し設けられた複数の排気弁と、
     前記複数の排気弁のうち、少なくとも一の排気弁の開弁時期を変更することができる可変排気バルブタイミング機構と、
     前記運転状態判定手段により、エンジンが中負荷以上の負荷で運転され、かつ、前記過給機による過給がされた定常過給運転状態であると判定されると、前記可変排気バルブタイミング機構に指令を発し、前記過給機の無過給状態のときと比較して前記一の排気弁の開弁時期を他の排気弁の開弁時期よりも遅角させる制御部と、
    を、備えたエンジン。
  9.  機械圧縮比を変更可能な可変圧縮比機構と、
     吸気弁の閉弁時期を変更可能な可変吸気バルブタイミング機構と、
    をさらに備え、
     前記制御部は、前記可変圧縮比機構及び前記可変吸気バルブタイミング機構とによって、実圧縮比を制御する請求項8記載のエンジン。
  10.  筒内への吸気量を取得する吸気量取得手段を備え、
     前記制御部は、前記吸気量が少ないほど、前記一の排気弁の開弁時期の進角量を大きくする請求項8又は9記載のエンジン。
PCT/JP2010/069859 2010-11-08 2010-11-08 エンジン WO2012063313A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/069859 WO2012063313A1 (ja) 2010-11-08 2010-11-08 エンジン
JP2012542737A JP5472482B2 (ja) 2010-11-08 2010-11-08 エンジン
US13/881,286 US8807100B2 (en) 2010-11-08 2010-11-08 Engine
CN2010800699868A CN103189623A (zh) 2010-11-08 2010-11-08 发动机
EP10859561.2A EP2639430A4 (en) 2010-11-08 2010-11-08 ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069859 WO2012063313A1 (ja) 2010-11-08 2010-11-08 エンジン

Publications (1)

Publication Number Publication Date
WO2012063313A1 true WO2012063313A1 (ja) 2012-05-18

Family

ID=46050495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069859 WO2012063313A1 (ja) 2010-11-08 2010-11-08 エンジン

Country Status (5)

Country Link
US (1) US8807100B2 (ja)
EP (1) EP2639430A4 (ja)
JP (1) JP5472482B2 (ja)
CN (1) CN103189623A (ja)
WO (1) WO2012063313A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907992B1 (en) * 2012-10-09 2019-05-01 Toyota Jidosha Kabushiki Kaisha Internal combustion engine provided with variable compression ratio mechanism
JP6015853B2 (ja) * 2013-04-23 2016-10-26 日産自動車株式会社 内燃機関の制御装置及び制御方法
JP6384390B2 (ja) * 2015-04-02 2018-09-05 アイシン精機株式会社 内燃機関の制御ユニット
DE102015111441B4 (de) * 2015-07-15 2021-03-04 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verstelleinrichtung für eine Brennkraftmaschine mit variablem Verdichtungsverhältnis
JP6597699B2 (ja) * 2017-04-11 2019-10-30 トヨタ自動車株式会社 内燃機関
DE102018217117A1 (de) * 2018-10-08 2020-04-09 Volkswagen Aktiengesellschaft Verfahren zur Ladedruckregelung einer Verbrennungskraftmaschine
CN114046191B (zh) * 2021-11-17 2022-09-30 吉林大学 一种发动机可变气门正时装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331534A (ja) * 1989-06-27 1991-02-12 Mazda Motor Corp エンジンの吸排気タイミング制御装置
JP2004183510A (ja) 2002-11-29 2004-07-02 Mitsubishi Motors Corp 高膨張比サイクルエンジン
JP2008128227A (ja) * 2006-11-18 2008-06-05 Shuichi Kitamura 超高効率4サイクル内燃機関
JP2009057958A (ja) * 2007-08-06 2009-03-19 Nissan Motor Co Ltd エンジン
JP2009074366A (ja) * 2007-09-18 2009-04-09 Toyota Motor Corp 内燃機関の可変動弁装置
JP2009115035A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp 火花点火式内燃機関
JP2009162113A (ja) * 2008-01-07 2009-07-23 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512943C2 (sv) 1998-10-05 2000-06-12 Saab Automobile Förbränningsmotor
JP3302719B2 (ja) 1992-05-26 2002-07-15 マツダ株式会社 ターボ過給機付エンジンの制御装置
DE102004028972B4 (de) * 2004-06-16 2007-03-29 Bayerische Motoren Werke Ag Steuervorrichtung für Brennkraftmaschinen mit einem Aufladesystem
DE202006020694U1 (de) 2006-09-07 2009-06-18 Mahle International Gmbh Verstellbare Nockenwelle
US7769527B2 (en) 2007-08-06 2010-08-03 Nissan Motor Co., Ltd. Internal combustion engine
DE102007042053A1 (de) 2007-09-05 2009-03-12 Mahle International Gmbh Kolbenmotor
JP4747158B2 (ja) 2007-12-11 2011-08-17 本田技研工業株式会社 位相制御手段を備える動弁装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331534A (ja) * 1989-06-27 1991-02-12 Mazda Motor Corp エンジンの吸排気タイミング制御装置
JP2004183510A (ja) 2002-11-29 2004-07-02 Mitsubishi Motors Corp 高膨張比サイクルエンジン
JP2008128227A (ja) * 2006-11-18 2008-06-05 Shuichi Kitamura 超高効率4サイクル内燃機関
JP2009057958A (ja) * 2007-08-06 2009-03-19 Nissan Motor Co Ltd エンジン
JP2009074366A (ja) * 2007-09-18 2009-04-09 Toyota Motor Corp 内燃機関の可変動弁装置
JP2009115035A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp 火花点火式内燃機関
JP2009162113A (ja) * 2008-01-07 2009-07-23 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2639430A4

Also Published As

Publication number Publication date
US20130213035A1 (en) 2013-08-22
US8807100B2 (en) 2014-08-19
CN103189623A (zh) 2013-07-03
JP5472482B2 (ja) 2014-04-16
EP2639430A4 (en) 2014-03-26
EP2639430A1 (en) 2013-09-18
JPWO2012063313A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP4259545B2 (ja) 火花点火式内燃機関
JP5177303B2 (ja) 火花点火式内燃機関
JP4858618B2 (ja) 火花点火式内燃機関
JP5472482B2 (ja) エンジン
US8392095B2 (en) Spark ignition type internal combustion engine
JP4259546B2 (ja) 火花点火式内燃機関
JP4259569B2 (ja) 火花点火式内燃機関
JP4788747B2 (ja) 火花点火式内燃機関
US8322315B2 (en) Spark ignition type internal combustion engine
JP4631848B2 (ja) 火花点火式内燃機関
JP4849188B2 (ja) 火花点火式内燃機関
US8352157B2 (en) Spark ignition type internal combustion engine
WO2009060789A1 (ja) 火花点火式内燃機関
RU2439351C2 (ru) Двигатель внутреннего сгорания с искровым зажиганием
JP2009008016A (ja) 火花点火式内燃機関
WO2011070686A1 (ja) 火花点火式内燃機関
JP2008274962A (ja) 火花点火式内燃機関
JP5321422B2 (ja) 火花点火式内燃機関
US8596233B2 (en) Spark ignition type internal combustion engine
JP5041167B2 (ja) エンジンの制御装置
JP2009185759A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542737

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010859561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE