JP4259545B2 - 火花点火式内燃機関 - Google Patents

火花点火式内燃機関 Download PDF

Info

Publication number
JP4259545B2
JP4259545B2 JP2006165967A JP2006165967A JP4259545B2 JP 4259545 B2 JP4259545 B2 JP 4259545B2 JP 2006165967 A JP2006165967 A JP 2006165967A JP 2006165967 A JP2006165967 A JP 2006165967A JP 4259545 B2 JP4259545 B2 JP 4259545B2
Authority
JP
Japan
Prior art keywords
compression ratio
mechanical compression
intake valve
load
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006165967A
Other languages
English (en)
Other versions
JP2007332870A (ja
Inventor
大輔 秋久
栄一 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006165967A priority Critical patent/JP4259545B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US12/227,238 priority patent/US8109243B2/en
Priority to RU2009101025/06A priority patent/RU2404368C2/ru
Priority to PCT/JP2007/058218 priority patent/WO2007145020A1/en
Priority to EP07741654.3A priority patent/EP2027378B1/en
Priority to CN2007800221854A priority patent/CN101466933B/zh
Priority to BRPI0712778A priority patent/BRPI0712778B1/pt
Priority to KR1020087028227A priority patent/KR101021449B1/ko
Publication of JP2007332870A publication Critical patent/JP2007332870A/ja
Application granted granted Critical
Publication of JP4259545B2 publication Critical patent/JP4259545B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/041Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • F02D13/023Variable control of the intake valves only changing valve lift or valve lift and timing the change of valve timing is caused by the change in valve lift, i.e. both valve lift and timing are functionally related
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は火花点火式内燃機関に関する。
機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の開弁時期および閉弁時期を個別に制御可能な可変バルブタイミング機構とを具備しており、機関負荷が低くなるほど吸気弁の閉弁時期を吸気下死点から離れる方向に移動せしめると共に機械圧縮比を高くするようにした火花点火式内燃機関が公知である(例えば特許文献1を参照)。この内燃機関ではアイドリング運転時に吸気弁は吸気上死点をかなり過ぎてから開弁せしめられ、短かい開弁期間を経て閉弁せしめられる。
特開2002−285876号公報
さて、一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って車両走行時における熱効率を向上させるためには、即ち燃費を向上させるには機関低負荷運転時における熱効率を向上させることが必要となる。ところで内燃機関では膨張比が大きくなればなるほど膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、従って膨張比が大きくなるほど熱効率が向上する。一方、機械圧縮比を高くすると膨張比が高くなる。従って車両走行時における熱効率を向上させるためには機関低負荷運転時における機械圧縮比を可能な限り高くして、機関低負荷運転時に最大の膨張比を得られるようにすることが好ましいことになる。
ところで機械圧縮比を高くすると吸気上死点における燃焼室容積が小さくなり、斯くして吸気弁を吸気上死点に対し早く開弁しすぎると吸気弁がピストン頂面と干渉してしまうという問題を生ずる。従って機械圧縮比を高くしたときにはこのような問題を生じないように吸気弁をピストンとの干渉が生じない不干渉領域において開弁させるようにしなければならない。この場合、吸気上死点後に吸気弁が開弁するときには通常吸気弁とピストンとの干渉は生じず、吸気弁とピストンとの干渉が生ずるのは吸気弁が吸気上死点前に開弁するときである。従って吸気弁とピストンとが干渉しないようにするには吸気弁を吸気上死点前の不干渉領域内で開弁させるか或いは吸気上死点後に開弁させることが必要となる。
ところでこの場合、吸気弁を吸気上死点後に開弁させると吸気弁が開弁するまで燃焼室内は負圧となり、斯くしてポンピング損失が発生する。従って上述の公知の内燃機関におけるようにアイドリング運転時に吸気上死点をかなり過ぎてから吸気弁を開弁させるようにした場合にはかなりのポンピング損失が発生することになる。
さて、前述したように車両走行時における熱効率を向上させるためには機関低負荷運転時に最大の膨張比が得られるように機械圧縮比を可能な限り高くすることが好ましい。しかしながらこのときポンピング損失が発生して熱効率が低下してしまうのでは機械圧縮比を高くした意味が半減してしまう。
本発明の目的は、熱効率を高めるために機械圧縮比を高くしたときに吸気弁とピストンとの干渉を阻止しつつポンピング損失の発生を阻止して高い熱効率を得ることのできる火花点火式内燃機関を提供することにある。
本発明によれば上記目的を達成するために、機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の開弁時期および閉弁時期を個別に制御可能な可変バルブタイミング機構とを具備しており、機関負荷が低くなるほど吸気弁の閉弁時期を吸気下死点から離れる方向に移動せしめることによって要求負荷に応じた量の吸入空気が燃焼室内に供給され、機関低負荷運転時には20以上の最大の膨張比が得られるように機械圧縮比を最大にすると共に、少くとも機械圧縮比が最大とされている期間中は吸気弁の開弁時期をほぼ吸気上死点であってピストンとの干渉が生じない吸気上死点の不干渉領域内の目標開弁時期に維持するようにしている。
吸気弁とピストンとの干渉を阻止しつつ車両走行時における熱効率を大巾に向上することができ、斯くして良好な燃費を得ることができる。
図1に火花点火式内燃機関の側面断面図を示す。
図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
サージタンク12は吸気ダクト14を介して排気ターボチャージャ15のコンプレッサ15aの出口に連結され、コンプレッサ15aの入口は例えば熱線を用いた吸入空気量検出器16を介してエアクリーナに連結される。吸気ダクト14内にはアクチュエータ18によって駆動されるスロットル弁19が配置される。
一方、排気ポート10は排気マニホルド20を介して排気ターボチャージャ15の排気タービン15bの入口に連結され、排気タービン15bの出口は排気管21を介して例えば三元触媒を内蔵した触媒コンバータ22に連結される。排気管21内には空燃比センサ23が配置される。
一方、図1に示される実施例ではクランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられており、更に実際の圧縮作用の開始時期を変更するために吸気弁7の閉弁時期を制御可能でありかつ吸気弁7の開弁時期も個別に制御可能な可変バルブタイミング機構Bが設けられている。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器16の出力信号および空燃比センサ23の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ18、可変圧縮比機構Aおよび可変バルブタイミング機構Bに接続される。
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3は図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50が形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52が形成されており、これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔51内に回転可能に挿入される円形カム56が固定されている。これらの円形カム56は各カムシャフト54,55の回転軸線と共軸をなす。一方、各円形カム56間には図3においてハッチングで示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心軸57が延びており、この偏心軸57上に別の円形カム58が偏心して回転可能に取付けられている。図2に示されるようにこれら円形カム58は各円形カム56間に配置されており、これら円形カム58は対応する各カム挿入孔53内に回転可能に挿入されている。
図3(A)に示すような状態から各カムシャフト54,55上に固定された円形カム56を図3(A)において実線の矢印で示される如く互いに反対方向に回転させると偏心軸57が下方中央に向けて移動するために円形カム58がカム挿入孔53内において図3(A)の破線の矢印に示すように円形カム56とは反対方向に回転し、図3(B)に示されるように偏心軸57が下方中央まで移動すると円形カム58の中心が偏心軸57の下方へ移動する。
図3(A)と図3(B)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は円形カム56の中心と円形カム58の中心との距離によって定まり、円形カム56の中心と円形カム58の中心との距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォームギア61,62が取付けられており、これらウォームギア61,62と噛合する歯車63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。なお、図1から図3に示される可変圧縮比機構Aは一例を示すものであっていかなる形式の可変圧縮比機構でも用いることができる。
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70に対して設けられている可変バルブタイミング機構Bを示している。図4に示されるように可変バルブタイミング機構Bはカムシャフト70の一端に取付けられてカムシャフト70のカムの位相を変更するためのカム位相変更部B1と、カムシャフト70および吸気弁7のバルブリフタ24間に配置されてカムシャフト70のカムの作用角を異なる作用角に変更して吸気弁7に伝達するカム作用角変更部B2から構成されている。なお、図4にカム作用角変更部B2については側面断面図と平面図とが示されている。
まず初めに可変バルブタイミング機構Bのカム位相変更部B1について説明すると、このカム位相変更部B1は機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
各油圧室76,77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79,80,82,83,84間の連通遮断制御を行うスプール弁85とを具備している。
カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が下方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印X方向に相対回転せしめられる。
これに対し、カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が上方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印Xと反対方向に相対回転せしめられる。
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従ってカム位相変更部B1によってカムシャフト70のカムの位相を所望の量だけ進角又は遅角させることができる。即ち、カム位相変更部B1によって吸気弁7の開弁時期を任意に進角又は遅角させることができることになる。
次に可変バルブタイミング機構Bのカム作用角変更部B2について説明すると、このカム作用角変更部B2はカムシャフト70と平行に並列配置されかつアクチュエータ91によって軸線方向に移動せしめられる制御ロッド90と、カムシャフト70のカム92と係合しかつ制御ロッド90上に形成された軸線方向に延びるスプライン93に摺動可能に嵌合せしめられている中間カム94と、吸気弁7を駆動するためにバルブリフタ24と係合しかつ制御ロッド90上に形成された螺旋状に延びるスプライン95に摺動可能に嵌合する揺動カム96とを具備しており、揺動カム96上にはカム97が形成されている。
カムシャフト90が回転するとカム92によって中間カム94が常に一定の角度だけ揺動せしめられ、このとき揺動カム96も一定の角度だけ揺動せしめられる。一方、中間カム94および揺動カム96は制御ロッド90の軸線方向には移動不能に支持されており、従って制御ロッド90がアクチュエータ91によって軸線方向に移動せしめられたときに揺動カム96は中間カム94に対して相対回転せしめられることになる。
中間カム94と揺動カム96との相対回転位置関係によりカムシャフト70のカム92が中間カム94と係合しはじめたときに揺動カム86のカム97がバルブリフタ24と係合しはじめる場合には図5(B)においてaで示されるように吸気弁7の開弁期間およびリフトは最も大きくなる。これに対し、アクチュエータ91によって揺動カム96が中間カム94に対して図4の矢印Y方向に相対回転せしめられると、カムシャフト70のカム92が中間カム94に係合した後、暫らくしてから揺動カム96のカム97がバルブリフタ24と係合する。この場合には図5(B)においてbで示されるように吸気弁7の開弁期間およびリフト量はaに比べて小さくなる。
揺動カム96が中間カム94に対して図4の矢印Y方向に更に相対回転せしめられると図5(B)においてcで示されるように吸気弁7の開弁期間およびリフト量は更に小さくなる。即ち、アクチュエータ91により中間カム94と揺動カム96の相対回転位置を変更することによって吸気弁7の開弁期間を任意に変えることができる。ただし、この場合、吸気弁7のリフト量は吸気弁7の開弁期間が短かくなるほど小さくなる。
このようにカム位相変更部B1によって吸気弁7の開弁時期を任意に変更することができ、カム作用角変更部B2によって吸気弁7の開弁期間を任意に変更することができるのでカム位相変更部B1とカム作用角変更部B2との双方によって、即ち可変バルブタイミング機構Bによって吸気弁7の開弁時期と開弁期間とを、即ち吸気弁7の開弁時期と閉弁時期とを任意に変更することができることになる。
なお、図1および図4に示される可変バルブタイミング機構Bは一例を示すものであって、図1および図4に示される例以外の種々の形式の可変バルブタイミング機構を用いることができる。
次に図6を参照しつつ本願において使用されている用語の意味について説明する。なお、図6の(A),(B),(C)には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6の(A),(B),(C)において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6(B)に示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
図6(C)は膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(C)に示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
次に図7および図8を参照しつつ本発明において最も基本となっている特徴について説明する。なお、図7は理論熱効率と膨張比との関係を示しており、図8は本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。
図8(A)は吸気弁が下死点近傍で閉弁し、ほぼ圧縮下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図8(A)に示す例でも図6の(A),(B),(C)に示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図8(A)からわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。即ち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
図7における実線は実圧縮比と膨張比とがほぼ等しい場合の、即ち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、即ち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
一方、このような状況下で本発明者は機械圧縮比と実圧縮比とを厳密に区分して理論熱効率を高めることについて検討し、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことを見い出したのである。即ち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギーが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図7の破線は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比を低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図7の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図8(B)は可変圧縮比機構Aおよび可変バルブタイミング機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
図8(B)を参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、可変バルブタイミング機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図8(A)に示される通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図8(B)に示される場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
前述したように一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って車両走行時における熱効率を向上させるためには、即ち燃費を向上させるには機関低負荷運転時における熱効率を向上させることが必要となる。一方、図8(B)に示される超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関低負荷運転時には図8(B)に示す超高膨張比サイクルとし、機関高負荷運転時には図8(A)に示す通常のサイクルとするようにしている。これが本発明が基本としている特徴である。
図9は機関回転数の低い定常運転時における運転制御全般について示している。以下この図9を参照しつつ運転制御全般について説明する。
図9には機関負荷に応じた機械圧縮比、膨張比、吸気弁7の閉弁時期、実圧縮比、吸入空気量、スロットル弁17の開度およびポンピング損失の各変化が示されている。なお、本発明による実施例では触媒コンバータ22内の三元触媒によって排気ガス中の未燃HC,COおよびNOxを同時に低減しうるように通常燃焼室5内における平均空燃比は空燃比センサ23の出力信号に基いて理論空燃比にフィードバック制御されている。
さて、前述したように機関高負荷運転時には図8(A)に示される通常のサイクルが実行される。従って図9に示されるようにこのときには機械圧縮比が低くされるために膨張比は低く、図9において実線で示されるように吸気弁7の閉弁時期は早められている。また、このときには吸入空気量は多く、このときスロットル弁17の開度は全開又はほぼ全開に保持されているのでポンピング損失は零となっている。
一方、図9に示されるように機関負荷が低くなるとそれに伴って機械圧縮比が増大され、従って膨張比も増大される。またこのときには実圧縮比がほぼ一定に保持されるように図9において実線で示される如く機関負荷が低くなるにつれて吸気弁7の閉弁時期が遅くされる。なお、このときにもスロットル弁17は全開又はほぼ全開状態に保持されており、従って燃焼室5内に供給される吸入空気量はスロットル弁17によらずに吸気弁7の閉弁時期を変えることによって制御されている。このときにもポンピング損失は零となる。
このように機関高負荷運転状態から機関負荷が低くなるときには実圧縮比がほぼ一定のもとで吸入空気量が減少するにつれて機械圧縮比が増大せしめられる。即ち、吸入空気量の減少に比例してピストン4が圧縮上死点に達したときの燃焼室5の容積が減少せしめられる。従ってピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例して変化していることになる。なお、このとき燃焼室5内の空燃比は理論空燃比となっているのでピストン4が圧縮上死点に達したときの燃焼室5の容積は燃料量に比例して変化していることになる。
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機械圧縮比が燃焼室5の構造上限界となる限界機械圧縮比に達すると、機械圧縮比が限界機械圧縮比に達したときの機関負荷L1よりも負荷の低い領域では機械圧縮比が限界機械圧縮比に保持される。従って機関低負荷運転時には機械圧縮比は最大となり、膨張比も最大となる。別の言い方をすると本発明では機関低負荷運転時に最大の膨張比が得られるように機械圧縮比が最大にされる。また、このとき実圧縮比は機関中高負荷運転時とほぼ同じ実圧縮比に維持される。
一方、図9において実線で示されるように吸気弁7の閉弁時期は機関負荷が低くなるにつれて燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期まで遅らされ、吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域では吸気弁7の閉弁時期が限界閉弁時期に保持される。吸気弁7の閉弁時期が限界閉弁時期に保持されるともはや吸気弁7の閉弁時期の変化によっては吸入空気量を制御しえないので他の何らかの方法によって吸入空気量を制御する必要がある。
図9に示される実施例ではこのとき、即ち吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域ではスロットル弁17によって燃焼室5内に供給される吸入空気量が制御される。ただし、スロットル弁17による吸入空気量の制御が行われると図9に示されるようにポンピング損失が増大する。
なお、このようなポンピング損失が発生しないように吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域ではスロットル弁17を全開又はほぼ全開に保持した状態で機関負荷が低くなるほど空燃比を大きくすることもできる。このときには燃料噴射弁13を燃焼室5内に配置して成層燃焼させることが好ましい。
図9に示されるように機関低回転時には機関負荷にかかわらずに実圧縮比がほぼ一定に保持される。このときの実圧縮比は機関中高負荷運転時の実圧縮比に対してほぼ±10パーセントの範囲内とされ、好ましくは±5パーセントの範囲内とされる。なお、本発明による実施例では機関低回転時の実圧縮比はほぼ10±1、即ち、9から11の間とされる。ただし、機関回転数が高くなると燃焼室5内の混合気に乱れが発生するためにノッキングが発生しずらくなり、従って本発明による実施例では機関回転数が高くなるほど実圧縮比が高くされる。
一方、前述したように図8(B)に示す超高膨張比サイクルでは膨張比が26とされる。この膨張比は高いほど好ましいが20以上であればかなり高い理論熱効率を得ることができる。従って本発明では膨張比が20以上となるように可変圧縮比機構Aが形成されている。
また、図9に示される例では機械圧縮比は機関負荷に応じて連続的に変化せしめられている。しかしながら機械圧縮比は機関負荷に応じて段階的に変化させることもできる。
一方、図9において破線で示すように機関負荷が低くなるにつれて吸気弁7の閉弁時期を早めることによってもスロットル弁17によらずに吸入空気量を制御することができる。従って、図9において実線で示される場合と破線で示される場合とをいずれも包含しうるように表現すると、本発明による実施例では吸気弁7の閉弁時期は、機関負荷が低くなるにつれて、燃焼室内に供給される吸入空気量を制御しうる限界閉弁時期L2まで吸気下死点BDCから離れる方向に移動せしめられることになる。
次に、図8(B)に示される高膨張比サイクルが実行される低負荷運転時に焦点を当てて吸気弁7の開弁時期について説明する。
図10(A)は機関低負荷運転時において機械圧縮比が最も高いときの吸気弁7のリフト変化と、排気弁9のリフト変化と、吸気弁7又は排気弁9がピストン4と干渉する限界を示すピストン干渉ラインを示しており、図10(A)において排気弁9のリフト曲線がピストン干渉ラインと交錯すると排気弁9はピストン4と干渉し、吸気弁7のリフト曲線がピストン干渉ラインと交錯すると吸気弁7はピストン4と干渉することになる。
従って図10(A)において吸気弁7がピストン4に干渉することのない吸気弁7の開弁時期に対する不干渉領域θはほぼ吸気上死点(TDC)以後となる。従って本発明では吸気弁7の開弁時期はこの不干渉領域θ内に設定されている。
一方、吸気弁7を吸気上死点後に開弁させると吸気弁7が開弁するまで燃焼室5内は負圧となり、斯くしてポンピング損失が発生する。このポンピング損失は吸気弁7の開弁時期が吸気上死点から遅らされれば遅らされるほど大きくなる。従って本発明では吸気弁7の目標開弁時期はほぼ圧縮上死点、好ましくは不干渉領域θ内において吸気上死点よりも少し前に維持されている。
また、機関低負荷運転時において機械圧縮比が最も高いときには燃焼室5内に供給すべき吸入空気量は少量となり、従ってこのとき図10(A)において実線で示されるように吸気弁7の閉弁時期はかなり遅らされるか、或いは図10(A)において破線で示されるように吸気弁7の閉弁時期はかなり早められる。なお、本発明による実施例では排気弁9の閉弁時期はほぼ吸気上死点に固定されている。
一方、図10(B)は機関中高速中高負荷運転時の或る運転状態における吸気弁7のリフト変化と、排気弁9のリフト変化と、ピストン干渉ラインとを示している。機関中高負荷運転時には機械圧縮比が小さくなるために、ピストン干渉ラインは上昇し、従ってこのときにはピストン4との干渉に注意を払う必要はない。また、図10(B)に示される運転状態のときには吸気弁7の開弁時期は吸気上死点(TDC)よりもかなり前となり、吸気弁7の閉弁時期は図10(A)において実線で示される場合に比べれば早められ、図10(A)において破線で示される場合に比べれば遅くされる。
ところで上述したように図10(B)で示される運転状態のときには吸気弁7の開弁時期は吸気上死点よりもかなり前となり、一方、図10(A)で示される運転状態のときには吸気弁7の開弁時期はほぼ吸気上死点となる。従って機関の運転状態が図10(B)に示される運転状態から図10(A)に示される運転状態に変化したときには吸気弁7の開弁時期を遅くしなければならず、機関の運転状態が図10(A)に示される運転状態から図10(B)に示される運転状態に変化したときには吸気弁7の開弁時期を早めなければならない。
一方、機関の運転状態が図10(B)に示される運転状態から図10(A)に示される運転状態に変化したときには吸気弁7の閉弁時期を変化させることによって燃焼室5内に供給すべき吸入空気量を減少させると共に機械圧縮比が大きくされ、機関の運転状態が図10(A)に示される運転状態から図10(B)に示される運転状態に変化したときには同様に吸気弁7の閉弁時期を変化させることによって燃焼室5内に供給すべき吸入空気量を増大させると共に機械圧縮比が小さくされる。
ところが上述したように燃焼室5内に供給すべき吸入空気量を減少させると共に機械圧縮比が大きくされる場合において、吸入空気量が十分に減少しないうちに、即ち吸入空気量が多い間に機械圧縮比が大きくされると実圧縮比が高くなり、斯くしてノッキングが発生することになる。一方、上述したように燃焼室5内に供給すべき吸入空気量を増大させると共に機械圧縮比が小さくされる場合において、機械圧縮比が低下しない間に吸入空気量が増大されると実圧縮比が高くなり、斯くしてノッキングが発生することになる。
本発明による実施例ではこのようなノッキングの発生を阻止するために可変圧縮比機構Aの作動と可変バルブタイミング機構Bの作動との間にタイムラグを持たせてある。次にこのことについて、機関低負荷運転時に吸気弁7のリフト量が図10(A)において実線で示されるようなリフト量とされる場合を例にとって図11および図12を参照しつつ説明する。
図11は、機関の運転状態が図10(B)に示される運転状態から図10(A)に示される運転状態に変化したときの吸気弁7の開弁時期IOの変化と、吸気弁7の閉弁時期ICの変化と、機械圧縮比の変化とを示している。なお、図11において(B)は図11(B)に示される運転状態のときを示しており、(A)は図11(A)に示される運転状態のときを示している。
なお、図11は、機関の運転状態が図10(B)に示される運転状態から図10(A)に示される運転状態に変化したときに、可変バルブタイミング機構Bによって吸気弁7の開弁時期IOの変更動作と閉弁時期ICの変更動作とが同時に開始され、同時に完了させるようにした場合を示している。
図11を参照すると、機関の運転状態が図10(B)に示される中高速中高負荷運転から図10(A)に示される低負荷運転に移行したときに、(I)に示される例では吸気弁7の開弁時期IOが不干渉領域B内の目標開弁時期になった後に機械圧縮比の変更動作即ち、増大動作が開始される。一方、(II)に示される例では吸気弁7の開弁時期IOの変更動作が開始された後であって吸気弁7の開弁時期IOが不干渉領域θ内の目標開弁時期になる前に機械圧縮比の変更動作、即ち増大動作が開始される。また、(III)に示される例では吸気弁7の開弁時期IOの変更動作が開始されたときに機械圧縮比の変更動作が開始されるがこのときの機械圧縮比の変更速度は遅くされている。
図11の(I),(II),(III)で示される機械圧縮比の変更動作を包括的に表現すると、機関の運転状態が図10(B)に示される中高速中高負荷運転から図10(A)に示される低負荷運転に移行したときに、吸気弁7の開弁時期IOが不干渉領域θ内の目標開弁時期になった後に機械圧縮比が最大となるように吸気弁7の開弁時期IOの変更動作に対して機械圧縮比の変更動作が遅くらされる。
このように吸気弁7の開弁時期IOの変更動作に対して機械圧縮比の変更動作が遅らされると燃焼室5内に供給される吸入空気量が減少しないうちに機械圧縮比が高くされることはなく、斯くしてノッキングが発生するのを阻止することができる。
図12は、機関の運転状態が図10(A)に示される運転状態から図10(B)に示される運転状態に変化したときの吸気弁7の開弁時期IOの変化と、吸気弁7の閉弁時期ICの変化と、機械圧縮比の変化とを示している。なお、図11において(A)は図11(A)に示される運転状態のときを示しており、(B)は図11(B)に示される運転状態のときを示している。
なお、図12も図11と同様に、機関の運転状態が図10(A)に示される運転状態から図10(B)に示される運転状態に変化したときに、可変バルブタイミング機構Bによって吸気弁7の開弁時期IOの変更動作と閉弁時期ICの変更動作とが同時に開始され、同時に完了させるようにした場合を示している。
図12を参照すると、機関の運転状態が図10(A)に示される低負荷運転から図10(B)に示される中高速中高負荷運転に移行したときに、(I)に示される例では機械圧縮比が機関運転状態に応じた目標機械圧縮比まで低下した後に吸気弁7の開弁時期IOの変更動作が開始される。一方、(II)に示される例で機械圧縮比が機関運転状態に応じた目標機械圧縮比まで低下する途中で吸気弁7の開弁時期IOの変更動作が開始される。また、(III)に示される例でも機械圧縮比が機関運転状態に応じた目標機械圧縮比まで低下する途中で吸気弁7の開弁時期IOの変更動作が開始されるが、この例では吸気弁7の開弁時期IOの変更動作が開始されたときに機械圧縮比の変更速度、即ち低下速度が遅くされる。
図12の(I),(II),(III)で示される機械圧縮比の変更動作を包括的に表現すると、機関の運転状態が図10(A)に示される低負荷運転から図10(B)に示される中高速中高負荷運転に移行したときに、機械圧縮比を低下させる機械圧縮比の変更動作が開始された後に吸気弁7の開弁時期IOの変更動作を開始するようにしている。
このように機械圧縮比の変更動作が開始された後に吸気弁の開弁時期の変更動作が開始されると機械圧縮比が高いときに燃焼室5内に供給される吸入空気量が増大されることはなく、斯くしてノッキングが発生するのを阻止することができる。
図13は機関負荷の変化量が少なく、従って吸気弁7の開弁時期IO、吸気弁7の閉弁時期ICおよび機械圧縮比の変更量が少ないときを示している。このときには図13に示されるように吸気弁7の開弁時期IOの変更動作、吸気弁7の閉弁時期ICの変更動作および機械圧縮比の変更動作が同時に開始され、ほぼ同時に完了する。
図14を参照すると、吸気弁7の目標開弁時期IOは機関負荷Lおよび機関回転数Nの関数として図14(A)に示すようなマップの形で予めROM32内に記憶されている。また、要求吸入空気量を燃焼室5内に供給するのに必要な吸気弁7の目標閉弁時期ICが機関負荷Lおよび機関回転数Nの関数として図14(B)に示すようなマップの形で予めROM32内に記憶されている。
一方、図14(D)は各機関回転数N1,N2,N3,N4(N1<N2<N3<N4)に対する目標実圧縮比と機関負荷Lとの関係を示している。前述したように図14(D)のN1で示される如く機関低回転時には機関負荷Lにかかわらずに目標実圧縮比がほぼ一定に保持されており、目標実圧縮比は機関回転数が高くなるほど高くされる。なお、実圧縮比をこの目標実圧縮比とするのに必要な機械圧縮比CRが機関負荷Lおよび機関回転数Nの関数として図14(C)に示すようなマップの形で予めROM32内に記憶されている。
次に図15を参照しつつ運転制御ルーチンについて説明する。
図15を参照すると、まず初めにステップ100において機関負荷Lが図9に示される負荷L2よりも高いか否かが判別される。L≧L2のときにはステップ101に進んで図14(A)に示すマップから吸気弁7の開弁時期IOが算出され、図14(B)に示すマップから吸気弁7の閉弁時期ICが算出される。次いでステップ104に進む。これに対し、ステップ100においてL<L2であると判別されたときにはステップ102に進んで吸気弁7の閉弁時期が限界閉弁時期とされ、次いでステップ103において吸入空気量がスロットル弁19により制御される。次いでステップ104に進む。
ステップ104では機関負荷Lが図9に示される負荷L1よりも低いか否かが判別される。L≧L1のときにはステップ105に進んで図14(C)に示すマップから機械圧縮比CRが算出される。次いでステップ107に進む。一方、ステップ104においてL<L1であると判断されたときにはステップ106に進んで機械圧縮比CRが限界機械圧縮比とされる。次いでステップ107に進む。
ステップ107では機関負荷の変化量ΔLの絶対値|ΔL|が設定値XLよりも大きいか否かが判別される。|ΔL|>XLであるときにはステップ108に進んで機関負荷の変化量ΔLが負であるか否かが判別される。ΔL<0のとき、即ち機関負荷が設定値XL以上低下したときにはステップ109に進んで図11に示される如く吸気弁7の開弁時期IOおよび閉弁時期ICが変化するように可変バルブタイミング機構Bが駆動され、図11の(I),(II),(III)のいずれかの変化パターンでもって、即ち吸気弁7の開弁時期IOおよび閉弁時期ICの変更動作に対し遅れて機械圧縮比が変化するように可変圧縮比機構Aが駆動される。
これに対しステップ108においてΔL≧0であると判別されたとき、即ち機関負荷が設定値XL以上増大したときにはステップ110に進んで図12の(I),(II),(III)のいずれかの変化パターンでもって機械圧縮比が変化するように可変圧縮比機構Aが駆動され、図12に示される如く機械圧縮比の変更動作に対し遅れて吸気弁7の開弁時期IO、および閉弁時期ICが変化するように可変バルブタイミング機構Bが駆動される。
一方、ステップ107において|ΔL|≦XLであると判別されたとき、即ち機関負荷の変化量ΔLが小さいときにはステップ111に進んで図13に示されるように吸気弁7の開弁時期IOの変更動作、吸気弁7の閉弁時期ICの変更動作および機械圧縮比の変更動作が同時に開始され、ほぼ同時に完了するように可変圧縮比機構Aおよび可変バルブタイミング機構Bが駆動される。
火花点火式内燃機関の全体図である。 可変圧縮比機構の分解斜視図である。 図解的に表した内燃機関の側面断面図である。 可変バルブタイミング機構を示す図である。 吸気弁および排気弁のリフト量を示す図である。 機械圧縮比、実圧縮比および膨張比を説明するための図である。 理論熱効率と膨張比との関係を示す図である。 通常のサイクルおよび超高膨張比サイクルを説明するための図である。 機関負荷に応じた機械圧縮比等の変化を示す図である。 吸気弁と排気弁のリフト量を示す図である。 吸気弁の開弁時期IOと閉弁時期ICおよび機械圧縮比の変化を示す図である。 吸気弁の開弁時期IOと閉弁時期ICおよび機械圧縮比の変化を示す図である。 吸気弁の開弁時期IOと閉弁時期ICおよび機械圧縮比の変化を示す図である。 吸気弁の開弁時期IOのマップ等を示す図である。 運転制御を行うためのフローチャートである。
符号の説明
1 クランクケース
2 シリンダブロック
3 シリンダヘッド
4 ピストン
5 燃焼室
7 吸気弁
A 可変圧縮比機構
B 可変バルブタイミング機構

Claims (20)

  1. 機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の開弁時期および閉弁時期を個別に制御可能な可変バルブタイミング機構とを具備しており、機関負荷が低くなるほど吸気弁の閉弁時期を吸気下死点から離れる方向に移動せしめることによって要求負荷に応じた量の吸入空気が燃焼室内に供給され、機関低負荷運転時には20以上の最大の膨張比が得られるように機械圧縮比を最大にすると共に、少くとも機械圧縮比が最大とされている期間中は吸気弁の開弁時期をピストンとの干渉が生じない吸気上死点の不干渉領域内の目標開弁時期に維持するようにした火花点火式内燃機関。
  2. 機関低負荷運転時における実圧縮比が機関中高負荷運転時と同じ実圧縮比とされる請求項1に記載の火花点火式内燃機関。
  3. 機関低回転時には機関負荷にかかわらずに上記実圧縮比が機関中高負荷運転時の実圧縮比に対して±10%の範囲内とされる請求項1に記載の火花点火式内燃機関。
  4. 機関回転数が高くなるほど上記実圧縮比が高くされる請求項3に記載の火花点火式内燃機関。
  5. 機関の運転状態が中高速中高負荷運転から機械圧縮比が最大とされる低負荷運転に移行したときには、吸気弁の開弁時期が上記不干渉領域内の目標開弁時期になった後に機械圧縮比が最大となるように吸気弁の開弁時期の変更動作に対して機械圧縮比の変更動作が遅らされる請求項1に記載の火花点火式内燃機関。
  6. 機関の運転状態が中高速中高負荷運転から機械圧縮比が最大とされる低負荷運転に移行したときには、吸気弁の開弁時期が上記不干渉領域内の目標開弁時期になった後に機械圧縮比の変更動作が開始される請求項5に記載の火花点火式内燃機関。
  7. 機関の運転状態が中高速中高負荷運転から機械圧縮比が最大とされる低負荷運転に移行したときには、吸気弁の開弁時期の変更動作が開始された後であって吸気弁の開弁時期が上記不干渉領域内の目標開弁時期になる前に機械圧縮比の変更動作が開始される請求項5に記載の火花点火式内燃機関。
  8. 機関の運転状態が中高速中高負荷運転から機械圧縮比が最大とされる低負荷運転に移行したときには、機械圧縮比の変更速度が遅くされる請求項5に記載の火花点火式内燃機関。
  9. 機械圧縮比が最大とされている低負荷運転から中高速中高負荷運転に機関の運転状態が移行したときには、機械圧縮比を低下させる機械圧縮比の変更動作が開始された後に吸気弁の開弁時期の変更動作を開始するようにした請求項1に記載の火花点火式内燃機関。
  10. 機械圧縮比が最大とされている低負荷運転から中高速中高負荷運転に機関の運転状態が移行したときには、機械圧縮比が機関運転状態に応じた目標機械圧縮比まで低下した後に吸気弁の開弁時期の変更動作が開始される請求項9に記載の火花点火式内燃機関。
  11. 機械圧縮比が最大とされている低負荷運転から中高速中高負荷運転に機関の運転状態が移行したときには、機械圧縮比が機関運転状態に応じた目標機械圧縮比まで低下する途中で吸気弁の開弁時期の変更動作が開始される請求項9に記載の火花点火式内燃機関。
  12. 機械圧縮比が最大とされている低負荷運転から中高速中高負荷運転に機関の運転状態が移行したときには、吸気弁の開弁時期の変更動作が開始されたときに機械圧縮比の変更速度が遅くされる請求項9に記載の火花点火式内燃機関。
  13. 吸気弁の閉弁時期は、機関負荷が低くなるにつれて、燃焼室内に供給される吸入空気量を制御しうる限界閉弁時期まで吸気下死点から離れる方向に移動せしめられる請求項1に記載の火花点火式内燃機関。
  14. 吸気弁の閉弁時期が上記限界閉弁時期に達したときの機関負荷よりも負荷の高い領域では燃焼室内に供給される吸入空気量が機関吸気通路内に配置されたスロットル弁によらずに吸気弁の閉弁時期を変えることによって制御される請求項13に記載の火花点火式内燃機関。
  15. 吸気弁の閉弁時期が上記限界閉弁時期に達したときの機関負荷よりも負荷の高い領域ではスロットル弁が全開状態に保持される請求項14に記載の火花点火式内燃機関。
  16. 吸気弁の閉弁時期が上記限界閉弁時期に達したときの機関負荷よりも負荷の低い領域では機関吸気通路内に配置されたスロットル弁によって燃焼室内に供給される吸入空気量が制御される請求項13に記載の火花点火式内燃機関。
  17. 吸気弁の閉弁時期が上記限界閉弁時期に達したときの機関負荷よりも負荷の低い領域では負荷が低くなるほど空燃比が大きくされる請求項13に記載の火花点火式内燃機関。
  18. 吸気弁の閉弁時期が上記限界閉弁時期に達したときの機関負荷よりも負荷の低い領域では吸気弁の閉弁時期が上記限界閉弁時期に保持される請求項13に記載の火花点火式内燃機関。
  19. 上記機械圧縮比は機関負荷が低くなるにつれて限界機械圧縮比まで増大せしめられる請求項1に記載の火花点火式内燃機関。
  20. 上記機械圧縮比が上記限界機械圧縮比に達したときの機関負荷よりも負荷の低い領域では機械圧縮比が上記限界機械圧縮比に保持される請求項19に記載の火花点火式内燃機関。
JP2006165967A 2006-06-15 2006-06-15 火花点火式内燃機関 Expired - Fee Related JP4259545B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006165967A JP4259545B2 (ja) 2006-06-15 2006-06-15 火花点火式内燃機関
RU2009101025/06A RU2404368C2 (ru) 2006-06-15 2007-04-09 Двигатель внутреннего сгорания с зажиганием искрового типа
PCT/JP2007/058218 WO2007145020A1 (en) 2006-06-15 2007-04-09 Spark ignition type internal combustion engine
EP07741654.3A EP2027378B1 (en) 2006-06-15 2007-04-09 Spark ignition type internal combustion engine
US12/227,238 US8109243B2 (en) 2006-06-15 2007-04-09 Spark ignition type internal combustion engine
CN2007800221854A CN101466933B (zh) 2006-06-15 2007-04-09 火花点火式内燃发动机
BRPI0712778A BRPI0712778B1 (pt) 2006-06-15 2007-04-09 motor de combustão interna do tipo de ignição de centelha
KR1020087028227A KR101021449B1 (ko) 2006-06-15 2007-04-09 불꽃 점화식 내연기관

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165967A JP4259545B2 (ja) 2006-06-15 2006-06-15 火花点火式内燃機関

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008207047A Division JP2008274962A (ja) 2008-08-11 2008-08-11 火花点火式内燃機関

Publications (2)

Publication Number Publication Date
JP2007332870A JP2007332870A (ja) 2007-12-27
JP4259545B2 true JP4259545B2 (ja) 2009-04-30

Family

ID=38279565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165967A Expired - Fee Related JP4259545B2 (ja) 2006-06-15 2006-06-15 火花点火式内燃機関

Country Status (8)

Country Link
US (1) US8109243B2 (ja)
EP (1) EP2027378B1 (ja)
JP (1) JP4259545B2 (ja)
KR (1) KR101021449B1 (ja)
CN (1) CN101466933B (ja)
BR (1) BRPI0712778B1 (ja)
RU (1) RU2404368C2 (ja)
WO (1) WO2007145020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127599B2 (en) 2011-04-08 2015-09-08 Toyota Jidosha Kabushiki Kaisha Control system for multi-fuel internal combustion engine

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450026B2 (ja) * 2007-07-12 2010-04-14 トヨタ自動車株式会社 火花点火式内燃機関
WO2010079624A1 (ja) * 2009-01-07 2010-07-15 トヨタ自動車株式会社 エンジン制御装置
DE112009004622B4 (de) * 2009-04-02 2014-01-16 Toyota Jidosha Kabushiki Kaisha Motorsteuerungssystem
US9309816B2 (en) * 2009-12-16 2016-04-12 Toyota Jidosha Kabushiki Kaisha Variable compression ratio V-type internal combustion engine
CN101929364B (zh) * 2010-07-28 2012-05-23 清华大学 当量比缸内直喷汽油机抗爆震压缩着火的扩散燃烧方法
CN103180556B (zh) * 2011-04-15 2015-06-10 丰田自动车株式会社 发动机的控制装置
JP2013151911A (ja) * 2012-01-25 2013-08-08 Toyota Motor Corp 内燃機関
US20130276756A1 (en) * 2012-04-18 2013-10-24 Ford Global Technologies, Llc Reducing intake manifold pressure during cranking
EP2851539B1 (en) * 2012-05-17 2017-03-08 Nissan Motor Co., Ltd. Control device and control method for internal combustion engine
BR112015025244B1 (pt) * 2013-04-23 2022-02-01 Nissan Motor Co., Ltd Dispositivo de controle de motor de combustão interna e método de controle de um motor de combustão interna
CN103233789B (zh) * 2013-05-17 2016-08-31 朱譞晟 应用二冲程阿特金森循环的多模全顶置气门二冲程内燃机
EP2837804A1 (en) * 2013-08-13 2015-02-18 Caterpillar Motoren GmbH & Co. KG Operating internal combustion engines
JP6027516B2 (ja) * 2013-10-23 2016-11-16 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US9885292B2 (en) * 2014-06-27 2018-02-06 Nissan Motor Co., Ltd. Control device for compression ratio variable internal combustion engine
WO2016016206A1 (de) * 2014-07-29 2016-02-04 Fev Gmbh Vcr-steuerung und miller-prozess bei einer hubkolbenbrennkraftmaschine
DE102015216293A1 (de) * 2015-08-26 2017-03-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Hubkolben-Verbrennungsmotors mit VCR-Steller
CN106089454A (zh) * 2016-06-28 2016-11-09 重庆大学 电动复合增压可变压缩比汽油发动机系统
DE102018212247A1 (de) * 2018-07-24 2020-01-30 Volkswagen Aktiengesellschaft Verfahren zum Steuern und/oder Regeln des Betriebs eines Verbrennungsmotors, insbesondere eines Verbrennungsmotors eines Kraftfahrzeugs, insbesondere zumindest teilweise arbeitend nach dem Miller-Verfahren
DE102020110771A1 (de) 2020-04-21 2021-10-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschinenanordnung, insbesondere eines Fahrzeugs
CN111622836B (zh) * 2020-06-05 2021-11-19 张家陶 一种半径可调的发动机曲轴

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402798B2 (ja) * 2000-03-15 2010-01-20 日産自動車株式会社 内燃機関の制御装置
JP3979081B2 (ja) 2001-01-16 2007-09-19 日産自動車株式会社 内燃機関の燃焼制御システム
JP2003232233A (ja) 2001-12-06 2003-08-22 Nissan Motor Co Ltd 内燃機関の制御装置
JP4135394B2 (ja) 2002-04-26 2008-08-20 日産自動車株式会社 内燃機関の制御装置
JP4096700B2 (ja) * 2002-11-05 2008-06-04 日産自動車株式会社 内燃機関の可変圧縮比装置
US6938593B2 (en) * 2003-11-13 2005-09-06 Ford Global Technologies, Llc Computer readable storage medium for use with engine having variable valve actuator
JP4170893B2 (ja) * 2003-12-17 2008-10-22 本田技研工業株式会社 自在動弁系と可変圧縮機構を備えた内燃機関を制御する装置
JP2005220754A (ja) * 2004-02-03 2005-08-18 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関
US7167789B1 (en) * 2005-05-16 2007-01-23 Walt Froloff Variable compression ratio internal combustion engine
JP4415787B2 (ja) 2004-08-13 2010-02-17 日産自動車株式会社 レシプロ式内燃機関
JP4407493B2 (ja) 2004-11-22 2010-02-03 マツダ株式会社 4サイクルガソリンエンジンの吸排気制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127599B2 (en) 2011-04-08 2015-09-08 Toyota Jidosha Kabushiki Kaisha Control system for multi-fuel internal combustion engine
DE112011105137B4 (de) * 2011-04-08 2020-04-16 Toyota Jidosha Kabushiki Kaisha Steuersystem für einen Mehrkraftstoff-Verbrennungszylinder

Also Published As

Publication number Publication date
EP2027378A1 (en) 2009-02-25
RU2009101025A (ru) 2010-07-20
BRPI0712778B1 (pt) 2018-09-25
CN101466933A (zh) 2009-06-24
US20100163001A1 (en) 2010-07-01
KR20090005198A (ko) 2009-01-12
JP2007332870A (ja) 2007-12-27
KR101021449B1 (ko) 2011-03-15
CN101466933B (zh) 2012-09-05
EP2027378B1 (en) 2016-07-20
RU2404368C2 (ru) 2010-11-20
WO2007145020A1 (en) 2007-12-21
US8109243B2 (en) 2012-02-07
BRPI0712778A2 (pt) 2012-09-04

Similar Documents

Publication Publication Date Title
JP4259545B2 (ja) 火花点火式内燃機関
JP4305477B2 (ja) 火花点火式内燃機関
JP4428442B2 (ja) 火花点火式内燃機関
JP2007303423A (ja) 火花点火式内燃機関
JP4450024B2 (ja) 火花点火式内燃機関
JP4259546B2 (ja) 火花点火式内燃機関
JP4450025B2 (ja) 火花点火式内燃機関
JP4788747B2 (ja) 火花点火式内燃機関
JP4631848B2 (ja) 火花点火式内燃機関
JP4367549B2 (ja) 火花点火式内燃機関
JP4367550B2 (ja) 火花点火式内燃機関
JP4367548B2 (ja) 火花点火式内燃機関
JP4367551B2 (ja) 火花点火式内燃機関
JP4450026B2 (ja) 火花点火式内燃機関
JP4725561B2 (ja) 火花点火式内燃機関
JP2009008016A (ja) 火花点火式内燃機関
JP5082938B2 (ja) 火花点火式内燃機関
JP2008274962A (ja) 火花点火式内燃機関
JP4367547B2 (ja) 火花点火式内燃機関
JP4930337B2 (ja) 火花点火式内燃機関
JP4911144B2 (ja) 火花点火式内燃機関
JP4420105B2 (ja) 火花点火式内燃機関
JP2011117418A (ja) 火花点火式内燃機関
JP2010024856A (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4259545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees