WO2011055596A1 - 多孔性フィルムおよび蓄電デバイス - Google Patents

多孔性フィルムおよび蓄電デバイス Download PDF

Info

Publication number
WO2011055596A1
WO2011055596A1 PCT/JP2010/066297 JP2010066297W WO2011055596A1 WO 2011055596 A1 WO2011055596 A1 WO 2011055596A1 JP 2010066297 W JP2010066297 W JP 2010066297W WO 2011055596 A1 WO2011055596 A1 WO 2011055596A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
film
layer
longitudinal direction
width direction
Prior art date
Application number
PCT/JP2010/066297
Other languages
English (en)
French (fr)
Inventor
生駒啓
久万琢也
大倉正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN2010800581461A priority Critical patent/CN102666687A/zh
Priority to JP2010542461A priority patent/JP5732853B2/ja
Priority to US13/508,101 priority patent/US20120219864A1/en
Priority to EP10828156.9A priority patent/EP2500374A4/en
Publication of WO2011055596A1 publication Critical patent/WO2011055596A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • Y10T428/249995Constituent is in liquid form

Definitions

  • the present invention relates to a porous film and an electricity storage device. More specifically, a porous film which can be suitably used for a non-aqueous solvent battery or a separator used in a capacitor, has an excellent electrolyte absorbability, and has excellent battery characteristics and workability when used as a separator, and the porous film
  • the present invention relates to an electricity storage device using as a separator.
  • Non-aqueous solvent batteries such as lithium batteries and lithium ion batteries have a problem that the electrolytic solution used is an organic solvent and is inferior in safety against heat generation of the battery as compared with an aqueous solvent of an aqueous battery. Therefore, conventionally, in order to improve the safety of non-aqueous solvent batteries, particularly lithium ion batteries having a large energy density, a separator using a microporous porous film of an olefin-based material mainly composed of polyethylene has been used.
  • HEV batteries for hybrid vehicles
  • battery for tools have been increased in output, and since they rapidly rise to temperatures higher than 130 ° C., appropriate temperatures (around 130 ° C.)
  • the function to shut down is not always required, and high safety is required.
  • HEV batteries it is important for HEV batteries to be able to guarantee a long service life of 10 years or more and more stringent safety.
  • Patent Documents 1 and 2 propose that a separator using polyethylene is used for a separator for a non-aqueous solvent battery such as a lithium ion battery.
  • Patent Documents 3 and 4 propose a separator using a polypropylene porous film having higher heat resistance than polyethylene.
  • Patent Document 5 also proposes to use a polypropylene non-woven fabric, which is excellent in liquid absorption and heat resistance, and suitable for high output applications such as a large battery as a separator.
  • Patent Document 6 proposes to laminate a porous film using a polyolefin-based porous film and a resin having a high softening point.
  • Patent Document 7 proposes to apply organic particles or inorganic particle layers having a high softening point to the surface of a porous substrate.
  • Japanese Patent Laid-Open No. 11-130899 Japanese Patent Laid-Open No. 11-130900 Japanese Patent Laid-Open No. 01-103634 JP 2008-248231 A JP-A-60-52 JP 2006-269359 A JP 2007-273443
  • Patent Documents 1 and 2 are excellent in long-term stability such as cycle characteristics, but the liquid absorption is low, the electrolyte injection time becomes long, and the battery assembly processability may be reduced. Porosity and air permeability are low, and it is not suitable for high output batteries such as HEV batteries.
  • a separator using polyethylene has a problem in that it is inferior in heat resistance such as heat generation due to a short circuit between the electrodes due to a tendency to shrink at a temperature of 140 ° C. or less for a battery high temperature test.
  • Patent Documents 3 and 4 have low liquid absorbency, the electrolyte injection time becomes long, and the battery assembly processability may be reduced, and the porous film having high liquid absorbency has a high porosity, Due to the high air permeability, the process passability and battery processability may be reduced in a process in which the roll is passed or wound with a high tension that has a low longitudinal strength and a pressure in the thickness direction.
  • Patent Document 5 has a large average pore diameter of about several ⁇ m because it uses a non-woven fabric composed of fibers as a base material, and thus may have a defect due to a through hole. Is very high, suggesting that a micro short circuit is likely to occur, initial failure at the time of winding the battery is likely to occur, and it is not possible to sufficiently compensate for a long life like a HEV battery and more severe safety. Furthermore, as long as the nonwoven fabric is used, the film thickness becomes large and the volume increase is inevitable.
  • Patent Document 6 has a low liquid absorbency, a longer electrolyte injection time, and battery assembly processability may be reduced. Also, since two types of films are laminated, the thickness increases, or Processing cost may be high.
  • Patent Document 7 improves the liquid absorbency by the organic particle or inorganic particle layer, but has a low porosity and low air permeability, and is not suitable for a high output battery such as a HEV battery.
  • the object of the present invention is to solve the above-mentioned problems. That is, it aims at providing the porous film which is excellent in the liquid absorption property of electrolyte solution, and shows the battery characteristic and workability which were excellent when it used as a separator.
  • the object of the present invention is a porous structure in which the electrolyte absorption height in at least one direction in the longitudinal direction or width direction of the film 30 minutes after the start of electrolyte absorption is 10 mm or more and the breaking strength in the longitudinal direction is 65 MPa or more Achieved by film.
  • the porous film of the present invention preferably contains a polyolefin resin.
  • the ratio of the liquid absorption height in the film width direction and the liquid absorption height in the longitudinal direction 30 minutes after the start of the electrolyte solution absorption is preferably 0.7 to 1.3.
  • the porous film of the present invention preferably has an electrolyte solution absorption height of 3 to 60 mm in at least one direction of the film longitudinal direction or width direction one minute after the start of electrolyte solution absorption.
  • the porous film of the present invention has a surface layer with a liquid absorbing layer having an electrolyte liquid absorbing height of 15 to 60 mm in at least one direction in the longitudinal direction or the width direction of the film 30 minutes after the start of the liquid absorption. It is preferable to have a laminated structure in which the layers are provided in the inner layer.
  • the porous film of the present invention preferably has an air permeability resistance of 10 to 400 seconds / 100 ml.
  • the porous film of the present invention preferably has a porosity of 50 to 90%.
  • the ⁇ -crystal forming ability of the polyolefin resin is preferably 50 to 90%.
  • the porous film of the present invention preferably has a breaking strength in the longitudinal direction of 70 MPa or more.
  • the porous film of the present invention is preferably used for an electricity storage device separator.
  • the electricity storage device of the present invention preferably uses the porous film as an electricity storage device separator.
  • the electricity storage device of the present invention is preferably a lithium ion battery.
  • the present invention can provide a porous film that is excellent in electrolyte absorption and exhibits excellent battery characteristics and processability when used as a separator.
  • FIG. 1 is a diagram showing a method for measuring the electrolyte solution absorption height among the characteristics of the porous film of the present invention.
  • the porous film refers to a film that penetrates both surfaces of the film and has air-permeable through holes.
  • the resin contained in the porous film may be any of polyolefin resin, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine resin, etc., but heat resistance, moldability, production cost reduction, chemical resistance From the viewpoints of properties, oxidation resistance and reduction resistance, polyolefin resins are desirable.
  • Examples of the monomer component constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methyl-1-butene, 1-hexene, and 4-methyl.
  • Examples include cyclohexene, styrene, allylbenzene, cyclopentene, norbornene, and 5-methyl-2-norbornene.
  • a polyethylene resin is preferable from the viewpoint of liquid absorbability with a non-aqueous electrolyte, and a polypropylene resin may be insufficient.
  • a polypropylene resin is preferable, and a polyethylene resin may be insufficient.
  • the present invention it is possible to achieve both the heat resistance of the strength of the polypropylene separator and the liquid absorptivity of the nonaqueous electrolytic solution, which is a problem of the separator.
  • the pore structure has a structure that easily absorbs a non-aqueous electrolyte.
  • the pores are connected in a three-dimensional direction.
  • a wet method or a dry method may be used, but a dry method is desirable because the process can be simplified, and in particular, while the film is biaxially oriented to make physical properties uniform and thin. In view of maintaining high strength, it is preferable to use the ⁇ crystal method.
  • the porous resin film constituting the air-permeable film of the present invention is preferably made of a polypropylene resin, particularly a porous film produced by a ⁇ crystal method, in order to realize excellent battery characteristics.
  • a crystallization nucleating agent that selectively forms ⁇ crystals is preferably used as an additive.
  • the ⁇ crystal nucleating agent include various pigment compounds and amide compounds.
  • amide compounds disclosed in JP-A-5-310665 can be preferably used.
  • various pigment compounds and amide compounds can be preferably used.
  • amide compounds for example, amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; carboxylic acids represented by potassium 1,2-hydroxystearate, magnesium benzoate or succinate, magnesium phthalate, etc. Alkali or alkaline earth metal salts; aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; ditriesters or triesters of dibasic or tribasic carboxylic acids; represented by phthalocyanine blue Phthalocyanine pigments; binary compounds composed of organic dibasic acids and Group IIA metal oxides, hydroxides or salts of periodic table; compositions composed of cyclic phosphorus compounds and magnesium compounds.
  • the content of the ⁇ crystal nucleating agent is preferably 0.05 to 0.5 parts by mass, more preferably 0.1 to 0.3 parts by mass when the total amount of the polypropylene resin is 100 parts by mass.
  • the polypropylene resin contained in the porous film of the present invention is preferably composed mainly of an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR) in the range of 2 to 30 g / 10 min. If the MFR is out of the above preferred range, it may be difficult to obtain a biaxially stretched film. More preferably, the MFR is 3 to 20 g / 10 minutes.
  • MFR is an index indicating the melt viscosity of a resin specified in JIS K7210 (1995), and is widely used as a physical property value indicating the characteristics of a polyolefin resin.
  • measurement is performed under condition M of JIS K7210, that is, temperature 230 ° C. and load 2.16 kg.
  • the isotactic index of the isotactic polypropylene resin is preferably 90 to 99.9%.
  • the isotactic index is 90% or more, the crystallinity of the resin is sufficiently high, and the high strength and workability of the porous film can be achieved.
  • a commercially available resin can be used as the isotactic polypropylene resin.
  • a homopolypropylene resin can be used for the porous film of the present invention, and from the viewpoints of stability in the film-forming process, film-forming properties, and uniformity of physical properties, the polypropylene contains an ethylene component, butene, and hexene.
  • a resin obtained by copolymerizing an ⁇ -olefin component such as octene in the range of 5.0% by mass or less may be used.
  • the form of the comonomer introduced into the polypropylene may be either random copolymerization or block copolymerization.
  • the above-mentioned polypropylene resin contains a high melt tension polypropylene in the range of 0.5 to 5.0% by mass from the viewpoint of improving the film forming property.
  • High melt tension polypropylene is a polypropylene resin whose tension in the molten state is increased by mixing a high molecular weight component or a component having a branched structure into the polypropylene resin or by copolymerizing a long-chain branched component with polypropylene.
  • This high melt tension polypropylene is commercially available.
  • polypropylene resins PF814, PF633, and PF611 manufactured by Basell polypropylene resin WB130HMS manufactured by Borealis, and polypropylene resins D114 and D206 manufactured by Dow Chemical can be used.
  • the polypropylene resin contained in the porous film of the present invention has improved void formation efficiency during stretching, and air permeability is improved by increasing the pore diameter. Therefore, 80 to 99.1% by mass of polypropylene and ethylene / ⁇ -olefin copolymer A mixture of 20% to 0.1% by mass of the polymer is preferable. From the viewpoint of realizing high air permeability and high porosity, the addition amount of the ethylene / ⁇ -olefin copolymer is more preferably 0.5 to 10% by mass, and even more preferably 0.8 to 5.0% by mass.
  • examples of the ethylene / ⁇ -olefin copolymer include linear low density polyethylene and ultra-low density polyethylene, and among them, an ethylene / ⁇ -olefin copolymer using a metallocene catalyst is preferable, and in particular, octene- An ethylene / octene-1 copolymer obtained by copolymerizing 1 can be preferably used.
  • examples of the ethylene-octene-1 copolymer include commercially available resins such as “Engage” (registered trademark) (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
  • the ⁇ resin forming ability of the polypropylene resin contained in the film is preferably 50 to 90%.
  • the amount of ⁇ crystal is sufficient at the time of film production and the number of voids formed in the film by utilizing the transition to ⁇ crystal increases, and as a result, the permeability is high.
  • a film can be obtained.
  • the ⁇ crystal forming ability By setting the ⁇ crystal forming ability to 90% or less, coarse pores are hardly formed, and it can be applied as a separator for an electricity storage device.
  • ⁇ crystal forming ability in the range of 50 to 90%, it is preferable to add the above-mentioned ⁇ crystal nucleating agent as well as using a polypropylene resin having a high isotactic index.
  • the ⁇ crystal forming ability is more preferably 60 to 80%. Any preferred lower limit can be combined with any preferred upper limit.
  • the porous film of the present invention has an electrolyte solution absorption height of 10 to 60 mm in at least one direction of the film longitudinal direction or width direction 30 minutes after the start of the solution absorption.
  • the electrolyte absorption height after 30 minutes is less than 10 mm, the battery processability is reduced, and when used as a separator, the electrolyte does not sufficiently and / or uniformly permeate into the separator and output characteristics are reduced.
  • the initial discharge capacity may be reduced, or the cycle characteristics may be reduced.
  • the thickness is more preferably 12 to 60 mm, and further preferably 15 to 60 mm. Any preferred lower limit can be combined with any preferred upper limit.
  • the electrolyte solution absorption height can be controlled by the porosity, average pore diameter, and the like of the obtained porous film, and is increased by increasing the porosity in the range of 60 to 90%, and is decreased by decreasing the porosity.
  • the electrolyte solution absorption height after 30 minutes is determined by the height from the liquid surface of the mixed solvent sucked up after 30 minutes have passed after the sample end is attached to the mixed solvent as shown in FIG.
  • the uniform liquid absorbency to the separator can be evaluated by the electrolyte liquid absorption height after 30 minutes.
  • the porous film of the present invention preferably has an electrolyte solution absorption height of 3 to 60 mm in at least one direction of the film longitudinal direction or width direction one minute after the start of electrolyte solution absorption.
  • the electrolyte absorption height is more preferably 5 to 60 mm, and particularly preferably 10 to 60 mm.
  • the electrolyte solution absorption height can be controlled by the porosity, average pore diameter, and the like of the obtained porous film.
  • the electrolyte solution absorption height after 1 minute is obtained from the height from the liquid surface of the mixed solvent sucked up after 1 minute has passed by attaching the end of the sample to the mixed solvent as shown in FIG.
  • the permeability to the separator immediately after injection of the electrolyte can be evaluated based on the electrolyte absorption height after 1 minute.
  • the breaking strength in the longitudinal direction of the porous film of the present invention is 65 MPa or more. If the pressure is less than 65 MPa, the film may be stretched, wrinkled or broken in the process of processing the electricity storage device using a separator, and handling may be deteriorated.
  • the breaking strength in the longitudinal direction is preferably 70 MPa or more from the viewpoint of workability at the time of winding the battery, and more preferably 75 MPa or more. Further, in the present invention, the higher the breaking strength in the longitudinal direction, the better the handling properties described above, but if it is too high, it will shrink excessively in the width direction in the processing step to the electricity storage device, Since the transmission performance may be inferior, for example, it is preferably 150 MPa or less.
  • the breaking strength in the longitudinal direction can be controlled by the crystallinity of polypropylene, the porosity of the resulting porous film, the orientation state (orientation state in the film plane), and the like. Decreasing the porosity in the range of 50 to 90% increases the breaking strength in the longitudinal direction, and increasing the porosity decreases the breaking strength in the longitudinal direction.
  • the control of the orientation state is important.
  • the planar orientation of the porous film can be increased as the stretching condition is higher or low temperature.
  • a layer excellent in liquid absorbency (liquid absorption layer) and a layer excellent in longitudinal break strength as a separator of a lithium ion battery (strength retaining layer)
  • a method of introducing a carboxyl group on the surface of a layer (strength holding layer) having excellent breaking strength in the longitudinal direction as a separator of a lithium ion battery and a method of introducing a carboxyl group on the surface of a layer (strength holding layer) having excellent breaking strength in the longitudinal direction as a separator of a lithium ion battery.
  • the liquid absorbing layer be a surface layer.
  • a laminated structure of liquid absorbing layer / strength holding layer / liquid absorbing layer is preferable from the viewpoint of improving liquid absorbency and improving cycle characteristics.
  • the characteristics of the liquid absorption layer are as follows: 30 minutes after the start of liquid absorption, the liquid absorption height in at least one of the longitudinal and width directions of the film is 15 to 60 mm, the porosity is 70 to 90%, and air permeability resistance. Is preferably 10 to 300 seconds / 100 ml.
  • the breaking strength in the longitudinal direction is preferably 75 to 150 MPa.
  • the lamination thickness ratio when the laminated structure is the liquid absorbing layer / strength retaining layer / liquid absorbing layer is preferably in the range of 1/2/1 to 1/10/1 from the viewpoint of improving cycle characteristics.
  • a range of / 1 to 1/5/1 is more preferable from the viewpoints of reducing the air resistance and improving the output characteristics. Any preferred lower limit can be combined with any preferred upper limit.
  • the thickness of the porous film of the present invention is preferably 15 to 40 ⁇ m.
  • the thickness is preferably 15 to 40 ⁇ m.
  • the separator resistance does not become too high, and sufficient output characteristics can be secured, and the battery can be sufficiently filled with the positive electrode and negative electrode active materials, and the decrease in energy density can be suppressed.
  • the liquid absorption layer has a liquid absorption height of 15 to 60 mm in at least one direction in the longitudinal direction or the width direction of the film 30 minutes after the start of liquid absorption. .
  • the electrolyte solution absorption height in the width direction after 30 minutes is 20 mm or more.
  • the liquid injection process since the liquid injection process takes a long time including the aging time, it is required to improve the liquid absorption.
  • the electrolytic solution when the electrolytic solution is injected, the electrolytic solution is not completely absorbed into the electrode and separator at first, but accumulates on the bottom surface of the outer can, and gradually depends on the surface tension of the electrode and separator.
  • the liquid absorption layer according to the present invention since the liquid electrolyte is absorbed in the three-dimensional direction, the liquid absorption is accelerated not only by the surface tension of the separator but also from the end face of the separator.
  • the conventional porous film does not absorb liquid in the three-dimensional direction, and takes only a long time because the liquid is absorbed only by the surface tension of the separator.
  • increasing the porosity and average pore diameter facilitates the above structure.
  • the ⁇ -crystal forming ability of the film constituting the liquid absorbing layer can be increased in the range of 70 to 90%,
  • the addition amount of the low density polyethylene in the range of 0.1 to 10% by mass, preferably 3.0 to 7.0% by mass, the average pore diameter is increased together with the porosity.
  • the strength retention layer in the porous film of the present invention preferably has a breaking strength in the longitudinal direction of 70 MPa or more, more preferably 85 MPa or more.
  • Increasing the breaking strength can be achieved by reducing the average pore diameter and increasing the air resistance. However, if the pore diameter is reduced and the air permeability resistance is increased, the separator resistance is increased, and battery characteristics may be insufficient or the liquid absorbability may be lowered.
  • the breaking strength in the longitudinal direction within the above range, the ⁇ crystal-forming ability of the film constituting the strength retaining layer is reduced between 50 and 70%, and the addition amount of high melt tension polypropylene is 0 to 10%. It can be realized by increasing the mass%, preferably in the range of 0 to 2.0 mass%, or by reducing the amount of ultra-low density polyethylene added in the range of 0 to 3.0%.
  • a porous resin film containing a polypropylene resin modified with a terminal carboxyl group is used as a method for introducing a carboxyl group into the surface of a layer having excellent longitudinal determination strength in order to achieve both liquid absorbency and longitudinal breaking strength. And a corona treatment of a porous resin film containing a polypropylene resin having a ⁇ crystal fraction of 50% or more in a carbon dioxide atmosphere. Since a carboxyl group exists stably for a long period of time, a method of laminating a porous resin film containing a polypropylene resin having a modified terminal carboxyl group is preferred.
  • a method of introducing a terminal carboxyl group into a polypropylene resin there is a method of graft copolymerizing a polar monomer having a carboxyl group.
  • the polar monomer having a carboxyl group include (meth) acrylic acid and acid derivatives thereof, and monoolefin dicarboxylic acid, anhydrides and monoesters thereof.
  • (meth) acrylic acid and ester derivatives thereof include, for example, (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth) acrylic Isopropyl acid, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, etc.
  • monoolefin dicarboxylic acids examples include maleic acid, chloromaleic acid, citraconic acid , Itaconic acid, glutaconic acid, 3-methyl-2-pentene diacid, 2-methyl-2-pentene diacid, 2-hexene diacid, and the like.
  • the porous film of the present invention is suitably used for a separator of an electricity storage device, the ratio of the liquid absorption height in the film width direction and the liquid absorption height in the longitudinal direction 30 minutes after the start of the electrolyte solution absorption (width direction / longitudinal direction). ) Of 0.7 to 1.3 is preferable from the viewpoint of absorbing the electrolyte in a well-balanced manner, reducing the internal resistance of the battery, and further improving the output density. This ratio is more preferably 0.8 to 1.2 from the viewpoint of liquid absorbency. Any preferred lower limit can be combined with any preferred upper limit.
  • the air resistance is in the range of 10 to 400 seconds / 100 ml from the viewpoint of reducing the internal resistance of the battery and further improving the output density. preferable.
  • the air resistance is set to 10 seconds / 100ml or more, the porosity does not become too high or the pore diameter does not become too large, the strength is sufficiently maintained, and long-term stability and safety of the battery when used as a separator Sex can be secured.
  • the air resistance is 400 seconds / 100 ml or less, the output characteristics when used as a separator are sufficient.
  • the air permeation resistance is more preferably 10 to 300 seconds / 100 ml, and further preferably 10 to 200 seconds / 100 ml, from the viewpoint of excellent separator characteristics. Any preferred lower limit can be combined with any preferred upper limit.
  • the air permeation resistance is an index of the air permeability of the sheet, and is shown in JIS P 8117 (1998).
  • Air permeation resistance refers to stretching conditions (stretching direction (longitudinal or transverse), stretching method (longitudinal or transverse uniaxial stretching, longitudinal-horizontal or transverse-longitudinal biaxial stretching, simultaneous biaxial stretching, biaxial stretching) Redrawing, etc.), draw ratio, drawing speed, drawing temperature, etc.).
  • stretching conditions stretching direction (longitudinal or transverse)
  • stretching method longitudinal or transverse uniaxial stretching, longitudinal-horizontal or transverse-longitudinal biaxial stretching, simultaneous biaxial stretching, biaxial stretching) Redrawing, etc.
  • draw ratio drawing speed, drawing temperature, etc.
  • the porous film of the present invention preferably has a porosity of 50 to 90%.
  • the porosity is more preferably 50 to 80% from the viewpoint of excellent separator characteristics.
  • the porosity is increased by increasing the ⁇ crystal formation ability within the range of 50 to 90% and the amount of ultra-low density polyethylene added within the range of 0 to 7.0%. If the amount is decreased, the porosity may be reduced.
  • a polypropylene resin constituting the porous film 92 parts by mass of a commercially available homopolypropylene resin having an MFR of 8 g / 10 minutes, 1 part by mass of a commercially available MFR of 2.5 g / 10 minutes and a high melt tension polypropylene resin, also of a commercially available MFR of 8 g / 10 A raw material A in which 0.2 to 0.3 parts by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide is mixed with 7 parts by mass of a polyethylene resin, and mixed in a predetermined ratio using a twin-screw extruder, and 99 parts by mass of commercially available homopolypropylene resin with an MFR of 8 g / 10 min, and 0.1 part by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide with 1 part by mass of a commercially available MFR 2.5 g / 10 min high melt tension poly
  • raw material A alone or 80-90 parts by weight of raw material A and 10-20 parts by weight of maleic anhydride-modified polypropylene resin are dry blended, and raw material B is used for layer B in a single-screw extruder for layer A. And is melt-extruded at 200 to 230 ° C.
  • After removing foreign substances and modified polymer with a filter installed in the middle of the polymer tube it is discharged from the multi-manifold A / B / A composite T die onto the cast drum, and A layer / B layer / A layer A laminated unstretched sheet having the following layer structure is obtained.
  • the surface temperature of the cast drum is preferably 105 to 130 ° C.
  • the end portion of the sheet affects the subsequent stretchability, it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary based on the state of close contact of the entire sheet on the drum.
  • the laminated unstretched sheet obtained is biaxially oriented to form pores in the film.
  • a biaxial orientation method the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction.
  • the simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method in that it is easy to obtain a highly air-permeable film, and in particular, it is possible to stretch in the width direction after stretching in the longitudinal direction. preferable.
  • the temperature at which the laminated unstretched sheet is stretched in the longitudinal direction is controlled.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction is preferably 90 to 135 ° C., more preferably 100 to 120 ° C. Any preferred lower limit can be combined with any preferred upper limit.
  • the draw ratio is 3 to 10 times, more preferably 4 to 7 times, and further preferably 4.5 to 6 times. Any preferred lower limit can be combined with any preferred upper limit.
  • the end of the film is held by a stenter type stretching machine and introduced.
  • the film is then preferably heated to 130 to 155 ° C. and stretched 3 to 12 times in the width direction, more preferably 142 to 155 ° C. and stretched 5 to 10 times in the width direction. Any preferred lower limit can be combined with any preferred upper limit.
  • the transverse stretching speed at this time is preferably 100 to 5,000% / min, more preferably 1,000 to 4,000% / min. Any preferred lower limit can be combined with any preferred upper limit.
  • heat setting is performed in the stenter as it is, and the temperature is preferably not less than the transverse stretching temperature and not more than 163 ° C.
  • the film may be relaxed in the longitudinal direction and / or the width direction of the film.
  • the relaxation rate in the width direction is preferably 7.0 to 12% from the viewpoint of thermal dimensional stability.
  • the obtained porous film may be subjected to a corona treatment in a mixed gas atmosphere of 50% carbon dioxide gas and 50% nitrogen gas.
  • the porous film of the present invention can hold an organic solvent, it can be used as a separator for an electricity storage device that uses an organic solvent as an electrolytic solution. Moreover, since the porous film of this invention has high air permeability, resistance as a separator becomes low and can be preferably used for a lithium ion battery and a lithium ion capacitor among the said electrical storage devices.
  • Examples of the electricity storage device of the present invention include a non-aqueous electrolyte secondary battery using an organic solvent and an electric double layer capacitor.
  • a lithium ion battery is suitable from the balance of battery capacity and output density. Since it can be repeatedly used by charging and discharging, it can be used for power supplies of IT equipment, daily life equipment, hybrid cars, electric cars, and the like.
  • a lithium ion battery is suitable for the above applications because of the balance between battery capacity and output density. Since the electricity storage device using the porous film of the present invention has a high porosity and high air permeability, it can be suitably used for a power source of a hybrid vehicle, an electric vehicle or the like.
  • the film thickness was measured as follows. The film thickness was measured at any five locations using a dial gauge in accordance with JIS K 7130 (1992) A-2 method with 10 films stacked. The average of the five values was divided by 10 to calculate the film thickness per sheet, and that value was taken as the film thickness.
  • each layer was cleaved by the lamination ratio described in the examples and comparative examples to make only each layer, and then the same measurement as that of the porous film was performed.
  • the measurement of the electrolyte solution absorption height in the longitudinal direction was cut to a size of 10 mm in the width direction and 60 mm in the longitudinal direction.
  • the same measurement as in the above method was performed except that the end face in the width direction 2 of the sample was immersed in the mixed solvent 3.
  • the electrolyte solution absorption height in the width direction was cut into a size of 10 mm in the longitudinal direction and 60 mm in the width direction. As shown in FIG.
  • the end surface in the longitudinal direction 2 of the porous film 1 used as a sample is immersed in the mixed solvent 3, and after 1 minute, the height from the liquid surface of the mixed solvent sucked up by capillary action (the liquid absorption height) 5) was measured. Evaluation was performed 10 times per sample, and the average value was defined as the electrolyte solution absorption height. Moreover, about each layer, after cleaving the lamination
  • the measurement of the electrolyte solution absorption height in the longitudinal direction was cut to a size of 10 mm in the width direction and 60 mm in the longitudinal direction.
  • the same measurement as in the above method was performed except that the end face in the width direction 2 of the sample was immersed in the mixed solvent 3.
  • (D) Air resistance (Gurley air permeability) Based on JIS P 8117 (1998) method B, measurement was performed at 23 ° C. and 65% RH (unit: second / 100 ml). The same measurement was performed on the same sample five times at different locations, and the average value of the obtained Gurley air permeability was taken as the air resistance of the sample.
  • Porosity 100 ⁇ (100 (W / ⁇ ) / (9 ⁇ D)) ⁇ in the above formula represents the specific gravity of the film before stretching.
  • the film before stretching was cut at three locations from any location of the sample film, heat-pressed at 280 ° C. and 5 MPa, and then rapidly cooled with water at 25 ° C. to prepare a sheet in which pores were completely erased.
  • the specific gravity ⁇ of this sheet was measured in accordance with JIS K 7112 (1999) D method at 23 ⁇ 1 ° C. and the gradient tube solvent was ethanol / water (2/1).
  • the flat portion on the high temperature side is drawn as a reference.
  • the amount of heat of fusion was calculated from the area of the region surrounded by the baseline and peak. The heat of fusion is calibrated using indium.
  • the ⁇ crystal forming ability is calculated from the ⁇ crystal melting heat ( ⁇ H ⁇ ) and ⁇ crystal melting heat ( ⁇ H ⁇ ) by the following equation.
  • ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100 (G) Battery workability Using a lithium-ion battery automatic winder manufactured by Minato Co., Ltd., the microporous film of the present invention, an aluminum foil with a thickness of 100 ⁇ m, and a copper foil with a thickness of 100 ⁇ m are combined into a film / copper foil / film. / 1 m was rolled up to form an aluminum foil. The number of tests was 100 times.
  • the film was low in rigidity, it was evaluated as NG if the film was stretched, wrinkled, cut, wound or misaligned.
  • a separator film for each example and comparative example was punched out to a diameter of 24.0 mm, and the negative electrode, the separator, and the positive electrode were stacked in this order from the bottom so that the positive electrode active material and the negative electrode active material face each other, and stored in a small stainless steel container with a lid.
  • the container and the lid are insulated, the container is in contact with the negative electrode copper foil, and the lid is in contact with the positive electrode aluminum foil.
  • a mixture of ethylene carbonate and dimethyl carbonate as an organic solvent in a mass ratio of 3: 7 is used, and an electrolytic solution in which LiPF 6 1.0 mol / L is dissolved as an indicator salt is poured into the container.
  • the battery was sealed and aged for 30 minutes after injecting the electrolyte, and batteries were prepared for each of the examples and comparative examples.
  • Each of the fabricated secondary batteries was subjected to a charge / discharge operation in a 25 ° C. atmosphere at a charge of 3 mA to 4.2 V for 1.5 hours and a discharge of 3 mA to 2.7 V, and the discharge capacity was examined. Furthermore, charge / discharge operation is performed with charging at 3mA to 4.2V for 1.5 hours, and discharging at 30mA to 2.7V, and it is obtained by the formula of [(30mA discharge capacity) / (3mA discharge capacity)] x 100. Values were evaluated according to the following criteria. In addition, 20 test pieces were measured, and the average value was evaluated.
  • the positive electrode has a thickness of lithium cobalt oxide (LiCoO 2 ) manufactured by Hosen Co., Ltd. A 40 ⁇ m positive electrode was used and punched out to form a square with a side of 100 mm.
  • LiCoO 2 lithium cobalt oxide
  • the negative electrode was manufactured by using a graphite negative electrode having a thickness of 50 ⁇ m manufactured by Hosen Co., Ltd., and punching it into a square with a side of 105 mm.
  • the separator was produced by punching out a square with a side of 110 mm so that the area was larger than both the positive electrode and the negative electrode.
  • the porous polypropylene film of each example and comparative example was used as the separator.
  • the positive electrode and the negative electrode were arranged so that the active material layers of the positive electrode and the negative electrode were opposed to each other, a separator was sandwiched between them, and a laminate film was further arranged on the exterior portion, followed by three-side sealing.
  • the tip of each tab is pulled out to the outside of the laminate cell, and after filling the electrolyte solution with the laminate cell upright so that the open part is on top, vacuum degassing and immediately after degassing the laminate cell was sealed and aged for 30 minutes after sealing to assemble a single-layer laminated lithium ion secondary battery.
  • Each secondary battery immediately after aging for 30 minutes was charged and discharged under an atmosphere of 25 ° C. with a charge of 150 mA to 4.3 V for 2 hours and a discharge of 150 mA to 2.7 V, and the charge capacity and discharge capacity were examined. .
  • the value obtained by the calculation formula of [(discharge capacity) / (charge capacity)] ⁇ 100 was evaluated according to the following criteria. In addition, 20 test pieces were measured, and the average value was evaluated. However, when one or more batteries were less than 20%, it was evaluated as D regardless of the average value.
  • Cycle characteristics A secondary battery produced in the same manner as the above capacity measurement was aged for 30 minutes, 25 Under an atmosphere of °C, charging / discharging operation was carried out by charging at 150 mA to 4.3 V for 2 hours and discharging at 150 mA to 2.7 V, and the discharge capacity was examined. Furthermore, the same charge / discharge operation was performed 100 times, and the discharge capacity at the 100th time was examined.
  • Electrolyte permeability As the positive electrode, use a positive electrode with a lithium cobalt oxide (LiCoO 2 ) thickness of 40 ⁇ m manufactured by Hosen Co., Ltd. Then, it was punched out to make a square with a side of 100 mm.
  • LiCoO 2 lithium cobalt oxide
  • the negative electrode was manufactured by using a graphite negative electrode having a thickness of 50 ⁇ m manufactured by Hosen Co., Ltd., and punching it into a square with a side of 105 mm.
  • the separator was produced by punching out a square with a side of 110 mm so that the area was larger than both the positive electrode and the negative electrode.
  • the porous polypropylene film of each example and comparative example was used as the separator.
  • the positive electrode and the negative electrode were arranged so that the active material layers of the positive electrode and the negative electrode were opposed to each other, a separator was sandwiched between them, and a laminate film was further arranged on the exterior portion, followed by three-side sealing.
  • the tip of each tab is pulled out to the outside of the laminate cell, and after filling the electrolyte solution with the laminate cell upright so that the open part is on top, vacuum degassing and immediately after degassing the laminate cell was sealed and aged for 1 minute after sealing to assemble a single-layer laminated lithium ion secondary battery.
  • Example 1 First, the following composition was compounded at 300 ° C. by a twin-screw extruder to prepare chips of resins A and B.
  • PP-1 homopolypropylene FLX80E4
  • HMS-PP polypropylene PF-814
  • Basell which is a high melt tension polypropylene resin
  • ethylene-octene- 1 copolymer “Engage” (registered trademark) 8411 (melt index: 18 g / 10 min
  • B chips are supplied to separate single-screw extruders, melt extruded at 220 ° C, foreign matter is removed with a 25 ⁇ m cut sintered filter, and then a multi-manifold A / B / A composite T die is used.
  • Laminated at a thickness ratio of 1/2/1 discharged onto a cast drum whose surface temperature was controlled at 120 ° C., cast on the drum so as to be indirect for 15 seconds, and then using an air knife from the non-drum surface side of the film.
  • the sheet was molded into a sheet shape while being heated and closely adhered by blowing hot air to obtain an unstretched sheet.
  • the obtained unstretched sheet is preheated through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched five times in the longitudinal direction at 105 ° C., and then once cooled. Both ends were introduced into a tenter while being gripped by clips, preheated at 150 ° C., and stretched 7 times in the width direction at 150 ° C.
  • the film was heat-set at 160 ° C. while giving 5% relaxation in the width direction in the tenter, uniformly cooled slowly, and then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 ⁇ m.
  • the obtained porous film has a high liquid absorption of 18.0 mm after 30 minutes in the width direction, an air resistance of 180 seconds / 100 ml, and a porosity of 75%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 70 MPa, and the workability was excellent as A.
  • the A layer is the liquid absorbing layer
  • the B layer is the strength retaining layer
  • the electrolyte liquid absorbing height after 30 minutes in the width direction of the A layer is 20.0 mm
  • the breaking strength in the longitudinal direction is 55 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte solution absorption height was 8.0 mm and the longitudinal breaking strength was 85 MPa.
  • Example 2 A porous film having a thickness of 25 ⁇ m was obtained by performing the same operation as in Example 1 except that the lamination thickness ratio was changed to 1/5/1.
  • the physical property values are shown in Tables 1 and 2.
  • the obtained porous film has a high liquid absorption property of 16.0 mm after 30 minutes in the width direction, an air permeability resistance of 220 seconds / 100 ml, and a porosity of 72%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 74 MPa, and the workability was excellent as A.
  • the A layer is the liquid absorption layer
  • the B layer is the strength retaining layer
  • the electrolyte liquid absorption height after 30 minutes in the width direction of the A layer is 19.0 mm
  • the breaking strength in the longitudinal direction is 52 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte absorption height was 7.5 mm and the longitudinal breaking strength was 88 MPa.
  • Example 3 A porous film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1 except that the lamination thickness ratio was changed to 1/10/1.
  • the physical property values are shown in Tables 1 and 2.
  • the obtained porous film has a high liquid absorption of 14.5 mm after 30 minutes in the width direction, an air permeability resistance of 250 seconds / 100 ml, and a porosity of 69%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 77 MPa, and the workability was excellent as A.
  • the A layer is the liquid absorbing layer
  • the B layer is the strength retaining layer
  • the electrolyte liquid absorbing height after 30 minutes in the width direction of the A layer is 18.0 mm
  • the breaking strength in the longitudinal direction is 50 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte solution absorption height was 8.0 mm and the longitudinal breaking strength was 90 MPa.
  • Example 4 Chips of polypropylene resin A and B are supplied to separate single-screw extruders, melt extruded at 220 ° C, and foreign matter is removed with a 25 ⁇ m cut sintered filter, then a multi-manifold B / A / B composite T A porous film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1 except that a die was used.
  • the physical property values are shown in Tables 1 and 2.
  • the obtained porous film has a high liquid absorption of 12.0 mm after 30 minutes in the width direction, an air permeability resistance of 300 seconds / 100 ml, and a porosity of 74%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 80 MPa, and the workability was excellent as A.
  • the A layer is the liquid absorbing layer
  • the B layer is the strength retaining layer
  • the electrolyte absorbing height after 30 minutes in the width direction of the A layer is 18.0 mm
  • the breaking strength in the longitudinal direction is 55 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte absorption height was 8.5 mm and the longitudinal breaking strength was 89 MPa.
  • Example 5 90 parts by weight of a polypropylene resin A chip and 10 parts by weight of “Yomex” (registered trademark) 1010 (maleic anhydride-modified polypropylene resin) manufactured by Sanyo Chemical Co., Ltd. are used as the single-layer extruder for the A layer, and the polypropylene resin B is used as the B layer.
  • a porous film having a thickness of 25 ⁇ m was obtained by performing the same operation as in Example 1 except that it was supplied to the single screw extruder.
  • the physical property values are shown in Tables 1 and 2.
  • the obtained porous film has a high liquid absorption of 19.0 mm after 30 minutes in the width direction, an air resistance of 350 seconds / 100 ml, and a porosity of 67%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 82 MPa, and the workability was excellent as A.
  • the A layer is a liquid absorbing layer
  • the B layer is a strength retaining layer
  • the electrolyte liquid absorbing height after 30 minutes in the width direction of the A layer is 24.0 mm
  • the breaking strength in the longitudinal direction is 60 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte solution absorption height was 8.0 mm and the longitudinal breaking strength was 87 MPa.
  • Example 6 Except that the porous film obtained in Example 1 was subjected to double-sided corona treatment under a mixed gas atmosphere of 50% carbon dioxide and 50% nitrogen gas under a treatment condition of 40 W ⁇ min / m 2 on one side. Was performed.
  • the obtained porous film has a high liquid absorption of 20.0 mm after 30 minutes in the width direction, air permeability resistance is 210 seconds / 100 ml, and porosity is 73%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 65 MPa, and the workability was excellent as A.
  • the A layer is the liquid absorbing layer
  • the B layer is the strength retaining layer
  • the electrolyte liquid absorbing height after 30 minutes in the width direction of the A layer is 26.0 mm
  • the breaking strength in the longitudinal direction is 50 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte solution absorption height was 9.0 mm and the longitudinal breaking strength was 90 MPa.
  • Example 7 First, the following composition was compounded at 300 ° C. by a twin-screw extruder to prepare resin C and D chips.
  • ⁇ Polypropylene resin C> Shin Nippon Rika Co., Ltd. as a ⁇ crystal nucleating agent was added to 94 parts by mass of homopolypropylene PP-1, 1 part by mass of high melt tension polypropylene resin HMS-PP, and 5 parts by mass of ethylene-octene-1 copolymer PE.
  • IRGANOX registered trademark 1010
  • IRGAFOS registered trademark 168
  • the obtained unstretched sheet is preheated through a group of rolls maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched 4.5 times in the longitudinal direction at 125 ° C., and then once cooled.
  • the two ends were introduced into a tenter while being gripped by clips, preheated at 150 ° C., and stretched 7 times in the width direction at 150 ° C.
  • the film was heat-set at 160 ° C. while giving a relaxation of 5% in the width direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 ⁇ m.
  • the obtained porous film has a high liquid absorption of 10.5 mm after 30 minutes in the width direction, an air resistance of 380 seconds / 100 ml, and a porosity of 58%.
  • the output characteristics were excellent battery characteristics such as C, the breaking strength in the longitudinal direction was as high as 90 MPa, and the workability was excellent as B.
  • the A layer is the liquid absorbing layer
  • the B layer is the strength retaining layer
  • the electrolytic solution absorbing height after 30 minutes in the width direction of the A layer is 16.0 mm
  • the breaking strength in the longitudinal direction is 65 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte solution absorption height was 6.5 mm
  • the longitudinal breaking strength was 95 MPa.
  • Chips made of polypropylene resin A and B are supplied to separate single-screw extruders, melt extruded at 220 ° C, and foreign matter is removed with a 25 ⁇ m cut sintered filter.
  • the obtained unstretched sheet is preheated by passing through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched four times in the longitudinal direction at 110 ° C., and then cooled once.
  • a roll group maintained at 105 ° C.
  • passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference stretched four times in the longitudinal direction at 110 ° C., and then cooled once.
  • the film was heat-set at 163 ° C. while giving a relaxation of 12% in the width direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 ⁇ m.
  • the obtained porous film has a high liquid absorption of 17.0 mm after 30 minutes in the width direction, an air permeability resistance of 250 seconds / 100 ml, and a porosity of 60%.
  • the output characteristics were excellent battery characteristics such as A, the breaking strength in the longitudinal direction was as high as 100 MPa, and the workability was excellent as A.
  • the A layer is the liquid absorbing layer
  • the B layer is the strength retaining layer
  • the electrolyte absorbing height after 30 minutes in the width direction of the A layer is 19.0 mm
  • the breaking strength in the longitudinal direction is 55 MPa
  • the width direction of the B layer After 30 minutes, the electrolyte solution absorption height was 8.0 mm and the longitudinal breaking strength was 110 MPa.
  • Example 9 Cast drum with polypropylene resin B chip supplied to a single screw extruder, melt extruded at 220 ° C, foreign matter removed with a 25 ⁇ m cut sintered filter, and surface temperature controlled to 120 ° C with a T-die The film is cast so as to be indirectly on the drum for 15 seconds, heated to 120 ° C. using an air knife from the non-drum surface side of the film, blown with hot air, and formed into a sheet shape. Obtained.
  • the obtained unstretched sheet is preheated through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched five times in the longitudinal direction at 105 ° C., and then once cooled. Both ends were introduced into a tenter while being gripped by clips, preheated at 150 ° C., and stretched 7 times in the width direction at 150 ° C.
  • the film was heat-set at 160 ° C. while giving a relaxation of 5% in the width direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 ⁇ m. Furthermore, the porous film obtained above was subjected to double-sided corona treatment under a mixed gas atmosphere of 50% carbon dioxide and 50% nitrogen gas under a treatment condition of 40 W ⁇ min / m 2 on one side.
  • Electrolyte absorption height after 30 minutes in the width direction is as high as 10.0mm, air permeability resistance is 390sec / 100ml, porosity is 57%, output characteristics are excellent as C It had battery characteristics, had a high breaking strength of 92 MPa in the longitudinal direction, and had a workability of A.
  • Comparative Example 1 Except for supplying polypropylene resin A to a single screw extruder, performing melt extrusion at 220 ° C., removing foreign matter with a 25 ⁇ m cut sintered filter, and then discharging it from a T-die to a cast drum whose surface temperature was controlled at 120 ° C. The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 ⁇ m.
  • the physical property values are shown in Tables 1 and 2.
  • the obtained porous film has a high liquid absorption of 20.0 mm after 30 minutes in the width direction, air permeability resistance of 90 seconds / 100 ml, and porosity of 80%.
  • the output characteristics were excellent battery characteristics as A, the longitudinal breaking strength was 55 MPa and the strength was insufficient, and the workability was also insufficient as C.
  • Comparative Example 2 Except for supplying polypropylene resin B to a single screw extruder, performing melt extrusion at 220 ° C, removing foreign matter with a 25 ⁇ m cut sintered filter, and then discharging it from a T-die to a cast drum whose surface temperature was controlled at 120 ° C. The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 ⁇ m.
  • the physical property values are shown in Tables 1 and 2.
  • the obtained porous film had a high strength of 90 MPa in the longitudinal direction and excellent workability with A, but the electrolyte absorption height after 30 minutes in the width direction was insufficient at 8.5 mm. The output characteristics were insufficient with D.
  • Comparative Example 3 A commercially available Celgard “Celguard” (registered trademark) 2500 was used as Comparative Example 3. “Celguard” (registered trademark) 2500 is a microporous polypropylene film using a lamellar stretching method.
  • This porous film has a high breaking strength of 120 MPa in the longitudinal direction and excellent workability with A.
  • the liquid absorption height after 30 minutes in the width direction is 5.0 mm and the liquid absorption property is as high as possible.
  • the output characteristics were insufficient with D.
  • the porous film according to the present invention is excellent in the liquid absorbency of the electrolytic solution, and can provide a porous film having excellent battery characteristics and processability when used as a separator.
  • Porous film 2 Longitudinal direction or width direction 3: Mixed solvent 4: Mixed solvent permeation part 5: Electrolyte liquid absorption height

Abstract

本発明の多孔性フィルムは、電解液吸液開始30分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが10~60mmであり、長手方向の破断強度が65MPa以上である。本発明の多孔性フィルムは、電解液の吸液性に優れ、セパレータとして用いた際に優れた電池特性および加工性を示す多孔性フィルムを提供する。

Description

多孔性フィルムおよび蓄電デバイス
 本発明は、多孔性フィルムおよび蓄電デバイスに関する。さらに詳しくは、非水溶媒電池、またはキャパシタに用いられるセパレータに好適に使用できる、電解液の吸液性に優れ、セパレータとして用いた際に優れた電池特性および加工性を示す多孔性フィルムおよびそれをセパレータとして用いた蓄電デバイスに関する。
 リチウム電池やリチウムイオン電池などの非水溶媒電池は、使用する電解液が有機溶媒であり、水系電池の水溶液溶媒と比較して電池の発熱に対して安全性に劣るという問題がある。そのため、従来、非水溶媒電池、中でもエネルギー密度の大きなリチウムイオン電池の安全性を改善するために、ポリエチレンを主とするオレフィン系材料の微孔性多孔膜を用いたセパレータが使用されてきた。
 近年、ハイブリッド自動車(以下、HEV)用電池、工具用電池等のような大型電池は、高出力化が進んでおり、130℃より高い温度に急激に上昇するため適切な温度(130℃前後)でシャットダウンする機能が必ずしも求められず、高安全性が求められる。さらに、HEV用電池では、10年以上もの長寿命と、さらに厳しい安全性を保障できることも重要となる。
 例えば特許文献1,2には、ポリエチレンを用いたセパレータをリチウムイオン電池などの非水溶媒電池用セパレータに使用することが提案されている。
 また、例えば特許文献3、4には、ポリエチレンよりも耐熱性が高いポリプロピレンの多孔性膜を用いたセパレータが提案されている。
 例えば特許文献5には、吸液性、耐熱性に優れ、大型電池のような高出力用途に適しているポリプロピレン不織布をセパレータに用いる提案もされている。
 例えば特許文献6には、ポリオレフィン系多孔性フィルムと高軟化点の樹脂を用いた多孔性フィルムを積層する提案がなされている。
 また、例えば特許文献7には、多孔質基材の表面に高軟化点の有機粒子または無機粒子層を塗布する提案がなされている。
特開平11-130899号公報 特開平11-130900号公報 特開平01-103634号公報 特開2008-248231号公報 特開昭60-52号公報 特開2006-269359号公報 特開2007-273443号公報
 特許文献1,2の技術は、サイクル特性などの長期安定性に優れているが、吸液性が低く、電解質の注液時間が長くなり、電池組立加工性が低下する場合があり、また、空孔率、透気性が低く、HEV用電池のような高出力用電池に適していない。ポリエチレンを用いたセパレータでは電池の高温試験に対しては140℃以下の温度で収縮が生じ易く電極間の短絡による発熱が生じるなど耐熱性に劣ることが問題であった。
 特許文献3、4の技術は、吸液性が低く、電解質の注液時間が長くなり、電池組立加工性が低下する場合があり、また、吸液性の高い多孔膜は、高空孔率、高透気性のため、長手方向の強度が低く、厚み方向への圧力がかかる高い張力でロールを通過させたり巻いたりするようなプロセスでは工程通過性および電池加工性が低下する場合がある。
 特許文献5の技術においては、繊維を構成材料とした不織布を基材としているために数μm程度の大きな平均孔径を有していることから、貫通孔に起因する欠点を有している可能性が非常に高く、微短絡が起こりやすいことが示唆され、電池巻取時の初期不良が起こりやすく、HEV用電池のような長寿命、またさらに厳しい安全性に対しては十分に補償できない。さらに、不織布を用いる限り膜厚が大きくなり体積増加は必至であり、電池の小型軽量化という時代の流れに逆行してしまう問題点もある。
 特許文献6の技術は、吸液性が低く、電解質の注液時間が長くなり、電池組立加工性が低下する場合があり、また、2種類のフィルムを積層するため、厚みが厚くなる、もしくは加工コストが高くなる場合がある。
 特許文献7の技術は、有機粒子または無機粒子層によって吸液性が向上するが、空孔率、透気性が低く、HEV用電池のような高出力用電池に適していない。
 本発明の課題は上記した問題点を解決することにある。すなわち、電解液の吸液性に優れ、セパレータとして用いた際に優れた電池特性および加工性を示す多孔性フィルムを提供することを目的とする。
 本発明の目的は、電解液吸液開始30分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが10mm以上であり、長手方向の破断強度が65MPa以上である多孔性フィルムにより達成される。
 本発明の多孔性フィルムは、ポリオレフィン系樹脂を含むことが好ましい。
本発明の多孔性フィルムは、電解液吸液開始30分後のフィルム幅方向の吸液高さと長手方向の吸液高さの比率が0.7~1.3であることが好ましい。
 本発明の多孔性フィルムは、電解液吸液開始1分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが3~60mmであることが好ましい。
 本発明の多孔性フィルムは、電解液吸液開始30分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが15~60mmである吸液層を表面層に、強度保持層を内層に備えた積層構成を有することが好ましい。
 本発明の多孔性フィルムは、透気抵抗が10~400秒/100mlであることが好ましい。
 本発明の多孔性フィルムは、空孔率が50~90%であることが好ましい。
 本発明の多孔性フィルムにポリオレフィン系樹脂を含む場合に、ポリオレフィン系樹脂のβ晶形成能が50~90%であることが好ましい。
 本発明の多孔性フィルムは、長手方向の破断強度が70MPa以上であることが好ましい。
 本発明の多孔性フィルムは蓄電デバイスセパレータに使用されることが好ましい。
 本発明の蓄電デバイスは上記多孔性フィルムを蓄電デバイスセパレータとして用いることが好ましい。
 本発明の蓄電デバイスはリチウムイオン電池であることが好ましい。
 本発明は、電解液の吸液性に優れ、セパレータとして用いた際に優れた電池特性および加工性を示す多孔性フィルムを提供することができる。
図1は、本発明の多孔性フィルムの特性中、電解液吸液高さの測定方法を示す図である。
 本発明における多孔性フィルムとは、フィルムの両表面を貫通し、透気性を有する貫通孔を有しているフィルムをいう。多孔性フィルムに含有される樹脂は、ポリオレフィン系樹脂、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂などいずれでも構わないが、耐熱性、成形性、生産コストの低減、耐薬品性、耐酸化・還元性などの観点からポリオレフィン系樹脂が望ましい。
 上記ポリオレフィン系樹脂を構成する単量体成分としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、5-エチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。これらの単独重合体や上記単量体成分から選ばれる少なくとも2種以上の共重合体、およびこれら単独重合体や共重合体のブレンド物などが挙げられるが、これらに限定されるわけではない。上記の単量体成分以外にも、例えば、ビニルアルコール、無水マレイン酸などを共重合、グラフト重合しても構わないが、これらに限定されるわけではない。
 上記の中では、参考文献(特開2008-106237号公報)に示されるように非水系電解液との吸液性の観点からはポリエチレン樹脂が好ましく、ポリプロピレン樹脂は不十分となる場合がある。しかし、耐熱性、透気性、空孔率の観点からは、ポリプロピレン樹脂が好ましく、ポリエチレン樹脂では不十分となる場合がある。
 本発明では、ポリプロピレン製セパレータの強みの耐熱性と当該セパレータの課題である非水系電解液の吸液性を両立することができる。ポリプロピレン製セパレータで上記の特性を両立するためには、孔構造が非水系電解液を吸液しやすい構造となっていることが重要であり、具体的には、空孔が3次元方向に連なった構造とすることが好ましく、特にセパレータの長手方向、幅方向に延びた扁平な空孔を含むことが好ましい。
 フィルム中に貫通孔を形成する方法としては、湿式法、乾式法どちらでも構わないが、工程を簡略化できることから乾式法が望ましく、中でもフィルムを二軸配向させ、物性均一化や薄膜でありながら高い強度を維持できるという観点からβ晶法を用いることが好ましい。
 本発明の透気性フィルムを構成する多孔性樹脂フィルムは、優れた電池特性を実現するために、ポリプロピレン樹脂からなることが好ましく、特にβ晶法により製造された多孔フィルムであることが好ましい。
 β晶法を用いてフィルムに貫通孔を形成するためには、ポリプロピレン樹脂中にβ晶を多量に形成させることが重要となるが、そのためにはβ晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いることが好ましい。β晶核剤としては種々の顔料系化合物やアミド系化合物などを挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤としては種々の顔料系化合物やアミド系化合物を好ましく用いることができる。例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジトリエステル類もしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸と周期律表第IIA族金属の酸化物、水酸化物もしくは塩とからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。β晶核剤の含有量としては、ポリプロピレン樹脂全体を100質量部とした場合、0.05~0.5質量部であることが好ましく、0.1~0.3質量部であればより好ましい。
 本発明の多孔性フィルムに含有されるポリプロピレン樹脂は、メルトフローレート(以下、MFRと表記する)が2~30g/10分の範囲のアイソタクチックポリプロピレン樹脂を主たる成分とすることが好ましい。MFRが上記した好ましい範囲を外れると二軸延伸フィルムを得ることが困難となる場合がある。より好ましくは、MFRが3~20g/10分である。ここで、MFRはJIS K 7210 (1995)で規定されている樹脂の溶融粘度を示す指標であり、ポリオレフィン樹脂の特徴を示す物性値として広く用いられているものである。ポリプロピレン樹脂の場合はJIS K 7210の条件M、すなわち温度230℃、荷重2.16kgで測定を行う。
 また、アイソタクチックポリプロピレン樹脂のアイソタクチックインデックスは90~99.9%であれば好ましい。アイソタクチックインデックスが90%以上であると、樹脂の結晶性が十分に高く、多孔性フィルムの高い強度、加工性を達成できる。アイソタクチックポリプロピレン樹脂は市販されている樹脂を用いることができる。
 本発明の多孔性フィルムにはホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を5.0質量%以下の範囲で共重合した樹脂を用いてもよい。なお、ポリプロピレンへのコモノマーの導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。
 また、上記したポリプロピレン樹脂は0.5~5.0質量%の範囲で高溶融張力ポリプロピレンを含有させることが製膜性向上の点で好ましい。高溶融張力ポリプロピレンとは高分子量成分や分岐構造を有する成分をポリプロピレン樹脂中に混合したり、ポリプロピレンに長鎖分岐成分を共重合させたりすることで溶融状態での張力を高めたポリプロピレン樹脂であるが、中でも長鎖分岐成分を共重合させたポリプロピレン樹脂を用いることが好ましい。この高溶融張力ポリプロピレンは市販されており、たとえば、Basell社製ポリプロピレン樹脂PF814、PF633、PF611やBorealis社製ポリプロピレン樹脂WB130HMS、ダウ・ケミカル社製ポリプロピレン樹脂D114、D206を用いることができる。
 本発明の多孔性フィルムに含まれるポリプロピレン樹脂は、延伸時の空隙形成効率が向上し、孔径が拡大することで透気性が向上するため、ポリプロピレン80~99.1質量%とエチレン・α-オレフィン共重合体20~0.1質量%との混合物とすることが好ましい。高透気性、高空孔率を実現する観点から、エチレン・α-オレフィン共重合体の添加量は0.5~10質量%であるとより好ましく、0.8~5.0質量%であればさらに好ましい。ここで、エチレン・α-オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、メタロセン系触媒によるエチレン・α-オレフィン共重合体が好ましく、特にオクテン-1を共重合したエチレン・オクテン-1共重合体を好ましく用いることができる。このエチレン・オクテン-1共重合体は市販されている樹脂、たとえば、ダウ・ケミカル製“Engage(エンゲージ)”(登録商標)(タイプ名:8411、8452、8100など)を挙げることができる。
 本発明の多孔性フィルムはβ晶法により多孔化することが好ましいため、フィルムに含まれるポリプロピレン樹脂のβ晶形成能が50~90%であることが好ましい。β晶形成能を50%以上とすることで、フィルム製造時にβ晶量が十分でα晶への転移を利用してフィルム中に形成される空隙数が多くなり、その結果、透過性の高いフィルムを得ることができる。β晶形成能を90%以下とすることで、粗大孔が形成されにくく、蓄電デバイス用のセパレータとして適用できる。β晶形成能を50~90%の範囲内にするためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用するのはもちろんのこと、上述のβ晶核剤を添加することが好ましい。β晶形成能としては60~80%であればより好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。
 本発明の多孔性フィルムは、電解液吸液開始30分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが10~60mmであることが重要である。30分後の電解液吸液高さが10mm未満の場合、電池加工性が低下するとともに、セパレータとして用いた際、電解液がセパレータ内部に十分におよび/または均一に浸透せずに出力特性が低下する、初期放電容量が低下する、もしくはサイクル特性が低下する場合がある。電池加工性の観点から12~60mmであることがより好ましく、さらに15~60mmが好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。電解液吸液高さは、得られる多孔性フィルムの空孔率、平均孔径などにより制御でき、空孔率を60~90%の範囲で増加せしめることにより高くなり、減少せしめることにより低くなる。30分後の電解液吸液高さとは、図1に示すようにサンプル端部を混合溶媒に付け、30分経過後に、吸い上げられた混合溶媒の液面からの高さによって求められる。30分後の電解液吸液高さにより、セパレータへの均一な吸液性を評価することができる。
 本発明の多孔性フィルムは電解液吸液開始1分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが3~60mmであることが好ましい。1分後の電解液吸液高さを3mm以上とすることで、注液後の電解液浸透時間が十分に短くなり、電池組立工程にて生産性を低下させる要因である電解液注液後のエージング時間を短縮することができ、生産性を向上することができる。電池加工性の観点から5~60mmであることがより好ましく、特に10~60mmが好ましい。電解液吸液高さは、得られる多孔性フィルムの空孔率、平均孔径などにより制御できる。空孔率を60~90%の範囲で増加させることにより電解液吸液高さは高くなり、空孔率を減少させることにより電解液吸液高さは低くなる。1分後の電解液吸液高さとは、図1に示すようにサンプルの端部を混合溶媒に付け、1分経過後に、吸い上げられた混合溶媒の液面からの高さによって求められる。1分後の電解液吸液高さにより、電解液注入直後のセパレータへの浸透性を評価することができる。
 本発明の多孔性フィルムの長手方向の破断強度は、65MPa以上であることが重要である。65MPa未満になると、セパレータを用いた蓄電デバイスへの加工工程において、フィルムが伸びたり、シワが入ったり、破断する場合があり、ハンドリング性が悪化する場合がある。長手方向の破断強度を70MPa以上とすることが、電池巻取時の加工性の観点からより好ましく、75MPa以上がさらに好ましい。また、本発明では、長手方向の破断強度は、高ければ高いほど、上記したハンドリング性に優れる傾向にあるが、あまりに高すぎると、蓄電デバイスへの加工工程において、幅方向に過度に縮んだり、透過性能に劣る場合があるため、例えば、150MPa以下であることが好ましい。長手方向の破断強度は、ポリプロピレンの結晶性、得られる多孔性フィルムの空孔率、配向状態(フィルム面内における配向状態)などにより制御できる。空孔率を50~90%の範囲で減少させることにより長手方向の破断強度は強くなり、空孔率を増加させることにより長手方向の破断強度は弱くなる。ここで、同じ空孔率でも、面配向が高くなるほど長手方向の破断強度を高くすることができるため、その配向状態の制御は重要である。多孔性フィルムの面配向は、例えば、その製膜工程において少なくとも一方向に延伸してフィルムを製造する場合、高倍率もしくは低温度の延伸条件であるほど、高くできる。特に、縦-横逐次二軸延伸法を用いて製造する場合、長手方向の破断強度を高くするためには、縦延伸倍率を好ましくは4~7倍と高くすることが有効である。
 一般に、吸液性と長手方向の破断強度はトレードオフとなることから、本発明においては以下の工夫を行っている。
 例えば、吸液性と長手方向の破断強度を両立させるには、吸液性に優れた層(吸液層)とリチウムイオン電池のセパレータとしての長手方向の破断強度に優れた層(強度保持層)とを積層する方法や、リチウムイオン電池のセパレータとしての長手方向の破断強度に優れた層(強度保持層)にカルボキシル基を表面に導入する方法がある。
 吸液性と長手方向の破断強度を両立させる方法としては吸液性に優れた層(吸液層)と長手方向の破断強度に優れた層(強度保持層)とを積層することが重要であり、さらに、吸液層を表面層とすることが、吸液性を向上する観点から重要である。特に、吸液層/強度保持層/吸液層といった積層構造とすることが、吸液性を向上するとともにサイクル特性を向上する観点から好ましい。吸液層の特性は、電解液吸液開始30分後のフィルム長手方向もしくは幅方向の少なくとも一方向の電解液吸液高さが15~60mm、空孔率が70~90%、透気抵抗が10~300秒/100mlであることが好ましい。強度保持層の特性は、長手方向の破断強度が75~150MPaであることが好ましい。
 積層構成を吸液層/強度保持層/吸液層とした場合の積層厚み比は、1/2/1~1/10/1の範囲が、サイクル特性を向上する観点から好ましく、1/2/1~1/5/1の範囲が、透気抵抗を低減すること、および出力特性を向上する観点からより好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。
 また、本発明の多孔性フィルムの厚みは15~40μmが好ましい。厚みを15μm以上とすることで、負極からのデンドライトの成長を抑制でき、長期安定性、安全性が十分であるとともに、組立時および電池としての使用時に正極、負極の短絡を起こすこともない。厚みを40μm以下とすることで、セパレータ抵抗が高くなりすぎず、十分な出力特性を確保するとともに、正極、負極活物質を十分に電池内に充填することができ、エネルギー密度の減少を抑制できる。
 本発明の多孔性フィルムにおいて、吸液層は、電解液吸液開始30分後のフィルム長手方向もしくは幅方向の少なくとも一方向の電解液吸液高さが15~60mmであることが重要である。また、30分後の幅方向の電解液吸液高さが20mm以上であることが電池加工性の観点から好ましい。電池の組立工程において、注液工程はエージング時間を含めて、長期間かかるために、吸液性を向上されることが求められている。注液工程では、電解液の注液を行った際、最初は、電極、セパレータに電解液が完全に吸液されずに、外装缶の底面にたまり、徐々に、電極、セパレータの表面張力によって吸い上げられ、最終的に完全に吸液する。本発明における吸液層は、電解液の吸液が3次元方向に吸液されるためにセパレータの表面張力による吸液だけではなくセパレータ端面からも吸液されるため吸液が早くなる。一方、従来の多孔性フィルムは、3次元方向に吸液されずに、セパレータの表面張力による吸液だけのため、長期間かかってしまう。上記した本発明のおける吸液層の効果を得るためには、空孔が3次元方向に連なった構造とすることが好ましい。また、空孔率や平均孔径を大きくすることにより上記構造にしやすくなり、具体的には、吸液層を構成するフィルムのβ晶形成能を70~90%の範囲で増加させることや、超低密度ポリエチレンの添加量を0.1~10質量%、好ましくは3.0~7.0質量%の範囲で増加させることにより、空孔率と共に平均孔径も大きくなる。
 また、本発明の多孔性フィルムにおける強度保持層は、長手方向の破断強度が70MPa以上であることが好ましく、85MPa以上がより好ましい。破断強度を高くするためには、平均孔径を小さくし、透気抵抗を高くすることによって達成することができる。ただし、孔径を小さくし、透気抵抗を高くするとセパレータ抵抗が高くなり、電池特性が不十分になったり、吸液性が低下したりする場合があるので注意が必要である。長手方向の破断強度を上記範囲とするためには、強度保持層を構成するフィルムのβ晶形成能を50~70%の間で減少させることや、高溶融張力ポリプロピレンの添加量を0~10質量%、好ましくは0~2.0質量%の範囲で増加させることや、超低密度ポリエチレンの添加量を0~3.0%の範囲で減少させることにより、実現可能である。
 吸液性と長手方向の破断強度を両立させるために長手方向の判断強度に優れた層にカルボキシル基を表面に導入する方法としては、末端カルボキシル基を変性したポリプロピレン樹脂を含んだ多孔性樹脂フィルムを積層する方法、β晶分率が50%以上であるポリプロピレン樹脂を含む多孔性樹脂フィルムを炭酸ガス雰囲気下でコロナ処理を行う方法などがある。カルボキシル基が長期間安定して存在することから、末端カルボキシル基を変性したポリプロピレン樹脂を含んだ多孔性樹脂フィルムを積層する方法が好ましい。ポリプロピレン樹脂に末端カルボキシル基を導入する方法としてはカルボキシル基を有する極性モノマーをグラフト共重合させる方法などがある。カルボキシル基を有する極性モノマーとしては、(メタ)アクリル酸およびその酸誘導体並びにモノオレフィンジカルボン酸、その無水物およびそのモノエステル類が挙げられる。(メタ)アクリル酸およびそのエステル誘導体の具体例としては、例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチルなどが挙げられ、モノオレフィンジカルボン酸としては、例えば、マレイン酸、クロロマレイン酸、シトラコン酸、イタコン酸、グルタコン酸、3-メチル-2-ペンテン・二酸、2-メチル-2-ペンテン・二酸、2-ヘキセン・二酸等が挙げられる。
 本発明の多孔性フィルムは蓄電デバイスのセパレータ用途に好適に用いるため、電解液吸液開始30分後のフィルム幅方向の吸液高さと長手方向の吸液高さの比率(幅方向/長手方向)を0.7~1.3とすることが、電解液をバランスよく吸液でき、電池の内部抵抗を低減でき、さらには出力密度を向上させる観点から好ましい。この比率は吸液性の観点から、0.8~1.2であることがより好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。
 本発明の多孔性フィルムは蓄電デバイスのセパレータ用途に好適に用いるため、透気抵抗が10~400秒/100mlの範囲内であることが、電池の内部抵抗低減、さらには出力密度向上の観点から好ましい。透気抵抗を10秒/100ml以上とすることで空孔率が高くなりすぎたり、孔径が大きくなりすぎることはなく、強度が十分に保てるとともに、セパレータとして用いたとき電池の長期安定性、安全性が確保できる。一方、透気抵抗を400秒/100ml以下とすることでセパレータとして用いた際の出力特性が十分となる。透気抵抗は、セパレータ特性を優れたものとする観点から、より好ましくは10~300秒/100mlであり、さらに好ましくは10~200秒/100mlである。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。ここで、透気抵抗とは、シートの空気透過率の指標であり、JIS P 8117 (1998)に示されるものである。
 透気抵抗は、延伸工程における延伸条件(延伸方向(縦もしくは横)、延伸方式(縦もしくは横の一軸延伸、縦-横もしくは横-縦逐次二軸延伸、同時二軸延伸、二軸延伸後の再延伸など)、延伸倍率、延伸速度、延伸温度など)などにより制御できる。一軸延伸で行う場合に比べ、二軸延伸で行う場合のほうが、透気抵抗が低くなり、延伸倍率を高くすると透気抵抗が低くなり、低くすると透気抵抗が高くなる。
 また、本発明の多孔性フィルムは、空孔率が50~90%であることが好ましい。透気抵抗が10~300秒/100mlの場合、セパレータ特性を優れたものとする観点から空孔率を50~80%とするのがより好ましい。空孔率を50%以上とすることで、セパレータとして用いた際の出力特性が十分となり、90%以下とすることで、電池の長期安定性、安全性が確保でき、強度も十分とできる。空孔率は、β晶形成能を50~90%の範囲内、超低密度ポリエチレンの添加量を0~7.0%の範囲内で増加させることにより、透気性と共に空孔率も大きくなり、添加量を減少させると空孔率は小さくなる場合がある。
 以下に本発明の多孔性フィルムの製造方法の例を具体的に説明する。
 まず、多孔性フィルムを構成するポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂92質量部、同じく市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1質量部、同じく市販のMFR8g/10分ポリエチレン樹脂7質量部にN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.2~0.3質量部を混合し、二軸押出機を使用して予め所定の割合で混合した原料A、およびMFR8g/10分の市販のホモポリプロピレン樹脂99質量部、同じく市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1質量部にN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.1質量部を混合し、二軸押出機を使用して予め所定の割合で混合した原料Bを準備する。
 次に、原料A単体もしくは、原料Aを80~90質量部と無水マレイン酸変性ポリプロピレン樹脂を10~20質量部をドライブレンドし、A層用の単軸押出機に、原料BをB層用の単軸押出機に供給し、200~230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型のA/B/A複合Tダイよりキャストドラム上に吐出し、A層/B層/A層の層構成を有する積層未延伸シートを得る。この際、キャストドラムは表面温度が105~130℃であることが、キャストフィルムのβ晶分率を高く制御する観点から好ましく、115~125℃がより好ましい。この際、特にシートの端部の成形が後の延伸性に影響するため、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態に基づき、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。
 次に得られた積層未延伸シートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、高透気性フィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に長手方向に延伸後、幅方向に延伸することが好ましい。
 具体的な延伸条件としては、まず積層未延伸シートを長手方向に延伸する温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては90~135℃、さらに好ましくは100~120℃の温度を採用することが好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。延伸倍率としては3~10倍、より好ましくは4~7倍であり、さらに4.5~6倍が好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。
 長手方向に延伸後、ステンター式延伸機にフィルム端部を把持させて導入する。そして、好ましくは130~155℃に加熱して幅方向に3~12倍、より好ましくは142~155℃に加熱して幅方向に5~10倍延伸を行う。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。なお、このときの横延伸速度としては100~5,000%/分で行うことが好ましく、1,000~4,000%/分であればより好ましい。いずれの好ましい下限値もいずれの好ましい上限値と組み合わせることができる。ついで、そのままステンター内で熱固定を行うが、その温度は横延伸温度以上163℃以下が好ましい。
 さらに、熱固定時にはフィルムの長手方向および/または幅方向に弛緩させながら行ってもよく、特に幅方向の弛緩率を7.0~12%とすることが、熱寸法安定性の観点から好ましい。
 得られた多孔性フィルムを炭酸ガス50%、窒素ガス50%の混合ガス雰囲気下でコロナ処理を行ってもよい。
 本発明の多孔性フィルムは、有機溶媒を保持することが可能であるために、電解液に有機溶媒を使用する蓄電デバイスのセパレータとして用いることが可能である。また、本発明の多孔性フィルムは、高い透気度を有することからセパレータとしての抵抗が低くなり、上記蓄電デバイスの中でもリチウムイオン電池やリチウムイオンキャパシタに好ましく使用することができる。
 本発明の蓄電デバイスとしては、有機溶媒を使用する非水電解液二次電池や電気二重層キャパシタなどがある。特に電池容量と出力密度のバランスからリチウムイオン電池が好適である。充放電することにより繰り返し使用できることから、IT機器、生活機器、ハイブリッド自動車、電気自動車などの電源に使用することができる。特に上記の用途には、電池容量と出力密度のバランスからリチウムイオン電池が好適である。本発明の多孔性フィルムを用いた蓄電デバイスは、高空孔率かつ高い透気度を有することからハイブリッド自動車、電気自動車などの電源に好適に使用することができる。
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
(A)長手方向の破断強度
 JIS K 7127 (1999、試験片タイプ2)に準じて、(株)オリエンテック製フィルム強伸度測定装置(AMF/RTA-100)を用いて、25℃、65%RHにて破断強度を測定した。具体的には、多孔質フィルムについては、サンプルを長手方向:15cm、幅方向:1cmのサイズに切り出し、原長50mm、引張り速度300mm/分で伸張して、破断強度(単位:MPa)を測定した。同じサンプルについて同様の測定を5回行い、得られた破断強度の平均値を当該サンプルの長手方向の強度とした。また、各層については、実施例および比較例記載の積層比分劈開し、各層のみにした後、多孔質フィルムと同様の測定を行った。多孔性フィルムの積層比は、レザー刃を用いて厚み方向に切断し、切断面を日本電子(株)製JSM-6700Fの電界放射走査電子顕微鏡を用いて10,000倍で表面観察を行い、JEOL PC-SEM 6700のソフトウェア中にある「2点間測長」を用いて各層の厚みを測定する。同じサンプルについて場所を変えて同様の測定を5回行い、得られた厚さの平均値を当該層の厚みとし、これを用いて積層比を算出した。なお、測定条件は下記に示す通りである。
 加速電圧:1kV
 対物絞り:4
 二次電子検出キー:ON
 モード:2
 エミッション:10μm
 オートリセット:OFF
 観察モード:LEM
 スキャンローテーション:0
 ダイナミックフォーカス:0
 なお、劈開方法は、長さ20cmの“セロハンテープ”ニチバン製1.5cm幅CT-15を、上記測定を行う層と異なる層に貼り付け、フィルム厚みの測定を行いながら、測定を行う層と異なる層を剥離することによって行った。
 なお、フィルムの厚みは以下のように測定を行った。フィルム厚みはダイヤルゲージを用い、JIS K 7130 (1992)A-2法に準じて、フィルムを10枚重ねた状態で任意の5ヵ所について厚みを測定した。その5ヵ所の値の平均値を10で割り、1枚あたりのフィルム厚みを算出し、その値をフィルム厚みとした。
 ただし、長手方向については、フィルムロールおよび捲回式電池は、長さの長い方向を長手方向とし、枚葉品およびスタック式電池などの長手方向および幅方向が不明なものについては、上記測定により各方向の測定を行った破断強度の高い方向を長手方向とした。
(B)30分後の電解液吸液高さ
 エチレンカーボネート:ジメチルカーボネート=3:7(質量比)の混合溶媒を容器内に100ml入れた。幅方向の電解液吸液高さの測定は、長手方向:10mm、幅方向:60mmの大きさにカットした。図1に示すようにサンプルとする多孔性フィルム1の長手方向2の端面を混合溶媒3に漬け、30分経過後に、毛細管現象によって吸い上げられた混合溶媒の液面からの高さ(吸液高さ)5を測定した。評価は1サンプルに付き10回測定を行い、その平均値を電解液吸液高さとした。
 また、各層については、実施例および比較例記載の積層比分劈開し、各層のみにした後、多孔質フィルムと同様の測定を行った。
 なお、長手方向の電解液吸液高さの測定は、幅方向:10mm、長手方向:60mmの大きさにカットした。図1に示すようにサンプルの幅方向2の端面を混合溶媒3に漬けた以外は上記方法と同様の測定を行った。
(C)1分後の電解液吸液高さ
 エチレンカーボネート:ジメチルカーボネート=3:7(質量比)の混合溶媒を容器内に100ml入れた。幅方向の電解液吸液高さの測定は、長手方向:10mm、幅方向:60mmの大きさにカットした。図1に示すようにサンプルとする多孔性フィルム1の長手方向2の端面を混合溶媒3に漬け、1分経過後に、毛細管現象によって吸い上げられた混合溶媒の液面からの高さ(吸液高さ)5を測定した。評価は1サンプルに付き10回測定を行い、その平均値を電解液吸液高さとした。また、各層については、実施例および比較例記載の積層比分劈開し、各層のみにした後、多孔質フィルムと同様の測定を行った。
 なお、長手方向の電解液吸液高さの測定は、幅方向:10mm、長手方向:60mmの大きさにカットした。図1に示すようにサンプルの幅方向2の端面を混合溶媒3に漬けた以外は上記方法と同様の測定を行った。
(D)透気抵抗(ガーレー透気度)
 JIS P 8117 (1998)のB法に準拠して、23℃、65%RHにて測定した(単位:秒/100ml)。同じサンプルについて同様の測定を、場所を変えて5回行い、得られたガーレー透気度の平均値を当該サンプルの透気抵抗とした。この際、ガーレー透気度の平均値が7,200秒/100mlを超えるものについては実質的に透気抵抗を有さないものとみなし、無限大(∞)秒/100mlとした。
(E)空孔率
 試料フィルムを3×3cmの正方形に切り取り、電子天秤(島津製作所製電子上皿天秤、UW220H)を用いて質量W(g)測定した。また、ダイアルゲージ式厚み計(JIS B 7503 (1997)、PEACOCK製UPRIGHT DIAL GAUGE(No.25)に5mmφ平型の測定子を取り付け、125g荷重を加えて、厚みを5点測定し、その平均厚みをD(cm)とした。空孔率は、次式より求めた。
   空孔率=100-(100(W/ρ)/(9×D))
 上記式中のρは、延伸前のフィルムの比重を示す。延伸前のフィルムは、試料フィルムの任意の場所から3ヵ所切取り、280℃、5MPaで熱プレスを行い、その後、25℃の水で急冷して、空孔を完全に消去したシートを作成した。このシートの比重ρはJIS K 7112 (1999)のD法に準拠して、23±1℃で勾配管の溶媒はエタノール/水(2/1)で測定した。
(F)β晶形成能
 樹脂またはフィルム5mgをサンプルとしてアルミパンに採取し、示差走査熱量計(DSC)(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で20℃から20℃/分で250℃まで昇温し、そのまま5分間保持する。次いで、20℃/分で25℃まで降温し、そのまま5分間保持する。そして、再度20℃/分で250℃まで昇温し測定を行った。2回目の昇温の際に観察される145~157℃の温度域のポリプロピレンのβ晶融解ピークと158℃以上に観察されるポリプロピレンのα晶融解ピークについて、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、各々の融解熱量を算出した。なお、融解熱量の較正はインジウムを用いて行う。
 β晶形成能はβ晶融解熱量(ΔHβ)、α晶融解熱量(ΔHα)から次式で算出する。
   β晶形成能(%)=〔ΔHβ/(ΔHα+ΔHβ)〕×100
(G)電池の加工性
 (株)皆藤製作所製のリチウムイオン電池自動巻取機を用い、本発明の微多孔フィルムと厚み100μmのアルミニウム箔、厚み100μmの銅箔を、フィルム/銅箔/フィルム/アルミニウム箔となるように重ねて1m巻き取った。なお、試験回数は、100回行った。
 フィルムの剛性が低いためにフィルムが伸びたり、シワが入ったり、切れたり、巻きズレして捲回体の形状が悪いものをNGとして評価した。
 A:NG 0個
 B:NG 1~2個
 C:NG 3個以上
(H)電池特性
 [1]出力特性
 宝泉(株)製の厚みが40μmのリチウムコバルト酸化物(LiCoO)正極を使用し、直径15.9mmの円形に打ち抜き、また、宝泉(株)製の厚みが50μmの黒鉛負極を使用し、直径16.2mmの円形に打ち抜き、次に、各実施例・比較例のセパレータ用フィルムを直径24.0mmに打ち抜いて、正極活物質と負極活物質面が対向するように、下から負極、セパレータ、正極の順に重ね、蓋付ステンレス金属製小容器に収納した。
 容器と蓋とは絶縁され、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内に有機溶媒としてエチレンカーボネートとジメチルカーボネートとを質量比で3:7の割合にて混合したものを用い、これに指示塩としてLiPF1.0mol/Lを溶解した電解液を注入して密閉して、電解液注液後30分間エージングし、各実施例・比較例につき、電池を作製した。
 作製した各二次電池について、25℃の雰囲気下、充電を3mAで4.2Vまで1.5時間、放電を3mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。さらに、充電を3mAで4.2Vまで1.5時間、放電を30mAで2.7Vまでとする充放電操作を行い、[(30mAの放電容量)/(3mAの放電容量)]×100の計算式で得られる値を次の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。
 A:85%以上
 B:80%以上85%未満
 C:75%以上80%未満
 D:75%未満
 [2]容量特性
 正極は宝泉(株)製のリチウムコバルト酸化物(LiCoO)厚みが40μmの正極を使用し、一辺100mmの正方形となるように打ち抜き、作製した。
 負極は宝泉(株)製の厚みが50μmの黒鉛負極を使用し、一辺105mmの正方形となるように打ち抜き、作製した。
 電解質溶液には、有機溶媒としてエチレンカーボネートとジメチルカーボネートとを質量比で3:7の割合にて混合したものを用い、これに指示塩としてLiPF1.0mol/Lを溶解させて使用した。 
 セパレータは、正極、負極電極のいずれよりも面積が広くなるように、一辺110mmの正方形となるように打ち抜き、作製した。ここでセパレータとしては、各実施例・比較例の多孔性ポリプロピレンフィルムを使用した。
 正極電極と負極電極とを、正極、負極の活物質層どうしが互いに対向するように配置し、両者の間にセパレータを挟み、さらに外装部にラミネートフィルムを配置し、三方シールした。各々のタブの先端がラミネートセルの外側に引き出されるようにし、次いで開放部が上になるようにラミネートセルを立てた状態で電解質溶液を充填した後、真空脱気し、脱気直後にラミネートセルを密閉して、密閉後30分間エージングし、単層ラミネート型リチウムイオン二次電池を組み立てた。
 30分間エージング直後の各二次電池について、25℃の雰囲気下、充電を150mAで4.3Vまで2時間、放電を150mAで2.7Vまでとする充放電操作を行い、充電容量および放電容量を調べた。
 [(放電容量)/(充電容量)]×100の計算式で得られる値を次の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。ただし、20%未満となる電池が1個以上ある場合は平均値にかかわらずDと評価した。
 A:90%以上
 B:80%以上90%未満
 C:75%以上80%未満
 D:75%未満
 [3]サイクル特性
 上記の容量測定と同様に作製した二次電池を30分間エージングし、25℃の雰囲気下、充電を150mAで4.3Vまで2時間、放電を150mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。さらに、同様の充放電操作を100回行い、100回目の放電容量を調べた。
 [(100回目の放電容量)/(1回目の放電容量)]×100の計算式で得られる値を以下の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。ただし、20%未満となる電池が1個以上ある場合は平均値にかかわらずCと評価した。
 A:80%以上
 B:75%以上80%未満
 C:75%未満
 [4]電解液の浸透性
 正極は宝泉(株)製のリチウムコバルト酸化物(LiCoO)厚みが40μmの正極を使用し、一辺100mmの正方形となるように打ち抜き、作製した。
 負極は宝泉(株)製の厚みが50μmの黒鉛負極を使用し、一辺105mmの正方形となるように打ち抜き、作製した。
 電解質溶液には、有機溶媒としてエチレンカーボネートとジメチルカーボネートとを質量比で3:7の割合にて混合したものを用い、これに指示塩としてLiPF1.0mol/Lを溶解させて使用した。 
 セパレータは、正極、負極電極のいずれよりも面積が広くなるように、一辺110mmの正方形となるように打ち抜き、作製した。ここでセパレータとしては、各実施例・比較例の多孔性ポリプロピレンフィルムを使用した。
 正極電極と負極電極とを、正極、負極の活物質層どうしが互いに対向するように配置し、両者の間にセパレータを挟み、さらに外装部にラミネートフィルムを配置し、三方シールした。各々のタブの先端がラミネートセルの外側に引き出されるようにし、次いで開放部が上になるようにラミネートセルを立てた状態で電解質溶液を充填した後、真空脱気し、脱気直後にラミネートセルを密閉して、密閉後1分間エージングし、単層ラミネート型リチウムイオン二次電池を組み立てた。
 1分間エージング直後の各二次電池を解体し、セパレータのみを取り出した。取り出したセパレータ全体の写真をとり、得られた画像データをプラネトロン社製Image-ProPlusVer.4.5を用いて画像解析を行った。得られた画像の全面積に対する黒色部(電解液浸透部)の面積割合を算出した。同じ多孔性フィルムにおいて10ヵ所測定し、その平均値を当該サンプルの電解液浸透の面積割合とした。
 A:90%以上
 B:80%以上90%未満
 C:60%以上80%未満
 D:60%未満
 以下、実施例に基づいて本発明をより具体的に説明する。
(実施例1)
 まず、下記の組成を二軸押出機により300℃でコンパウンドして、樹脂A、Bのチップを準備した。
<ポリプロピレン樹脂A>
 住友化学(株)製ホモポリプロピレンFLX80E4(以下、PP-1)を92質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF-814(以下、HMS-PP)を1質量部、エチレン-オクテン-1共重合体であるダウ・ケミカル製“Engage”(登録商標)8411(メルトインデックス:18g/10分、以下、PE)を7質量部に加えて、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製Nu-100)を0.2質量部、さらに酸化防止剤としてチバ・スペシャリティ・ケミカルズ製“IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.15質量部、0.1質量部
<ポリプロピレン樹脂B>
 ホモポリプロピレンPP-1を99質量部、高溶融張力ポリプロピレンHMS-PPを1質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製Nu-100)を0.2質量部、さらに酸化防止剤としてチバ・スペシャリティ・ケミカルズ製“IRGANOX”(登録商標) 1010、 “IRGAFOS”(登録商標) 168を各々0.15質量部、0.1質量部
 ポリプロピレン樹脂AおよびBのチップを、別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のA/B/A複合Tダイにて1/2/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。
 得られた未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、105℃で縦方向に5倍延伸後、一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で幅方向に7倍に延伸した。
 次いで、テンター内で幅方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが18.0mmと高い吸液性を有し、透気抵抗は180秒/100ml、空孔率は75%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度70MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは20.0mm、長手方向の破断強度55MPa、B層の幅方向の30分後の電解液吸液高さは8.0mm、長手方向の破断強度85MPaであった。
(実施例2)
 積層厚み比を1/5/1に変更した以外は実施例1と同様の操作を行い、厚み25μmの多孔性フィルムを得た。各物性値を表1および表2に示した。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが16.0mmと高い吸液性を有し、透気抵抗は220秒/100ml、空孔率は72%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度74MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは19.0mm、長手方向の破断強度52MPa、B層の幅方向の30分後の電解液吸液高さは7.5mm、長手方向の破断強度88MPaであった。
(実施例3)
 積層厚み比を1/10/1に変更した以外は実施例1と同様の操作を行い、厚み25μmの多孔性フィルムを得た。各物性値を表1および表2に示した。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが14.5mmと高い吸液性を有し、透気抵抗は250秒/100ml、空孔率は69%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度77MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは18.0mm、長手方向の破断強度50MPa、B層の幅方向の30分後の電解液吸液高さは8.0mm、長手方向の破断強度90MPaであった。
(実施例4)
 ポリプロピレン樹脂AおよびBのチップを、別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB/A/B複合Tダイを使用した以外は実施例1と同様の操作を行い、厚み25μmの多孔性フィルムを得た。各物性値を表1および表2に示した。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが12.0mmと高い吸液性を有し、透気抵抗は300秒/100ml、空孔率は74%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度80MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは18.0mm、長手方向の破断強度55MPa、B層の幅方向の30分後の電解液吸液高さは8.5mm、長手方向の破断強度89MPaであった。
(実施例5)
 ポリプロピレン樹脂Aのチップ90質量部と三洋化成(株)製“ユーメックス”(登録商標)1010(無水マレイン酸変性ポリプロピレン樹脂)10質量部をA層の単軸押出機に、ポリプロピレン樹脂BをB層の単軸押出機に供給した以外は実施例1と同様の操作を行い、厚み25μmの多孔性フィルムを得た。各物性値を表1および表2に示した。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが19.0mmと高い吸液性を有し、透気抵抗は350秒/100ml、空孔率は67%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度82MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは24.0mm、長手方向の破断強度60MPa、B層の幅方向の30分後の電解液吸液高さは8.0mm、長手方向の破断強度87MPaであった。
(実施例6)
 実施例1で得られた多孔性フィルムを炭酸ガス50%、窒素ガス50%の混合ガス雰囲気下で片面40W・min/m の処理条件で両面コロナ処理を行った以外は実施例1と同様の操作を行った。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが20.0mmと高い吸液性を有し、透気抵抗は210秒/100ml、空孔率は73%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度65MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは26.0mm、長手方向の破断強度50MPa、B層の幅方向の30分後の電解液吸液高さは9.0mm、長手方向の破断強度90MPaであった。
(実施例7)
 まず、下記の組成を二軸押出機により300℃でコンパウンドして、樹脂C、Dのチップを準備した。 
 <ポリプロピレン樹脂C>
 ホモポリプロピレンPP-1を94質量部、高溶融張力ポリプロピレン樹脂HMS-PPを1質量部、エチレン-オクテン-1共重合体PEを5質量部に加えて、β晶核剤として新日本理化(株)製Nu-100を0.1質量部、さらに酸化防止剤としてチバ・スペシャリティ・ケミカルズ製“IRGANOX”(登録商標)1010、 “IRGAFOS”(登録商標)168を各々0.15質量部、0.1質量部
 <ポリプロピレン樹脂D>
 ホモポリプロピレンPP-1を99質量部、高溶融張力ポリプロピレン樹脂HMS-PPを2質量部、β晶核剤として新日本理化(株)製Nu-100を0.1質量部、さらに酸化防止剤としてチバ・スペシャリティ・ケミカルズ製“IRGANOX”(登録商標)1010、 “IRGAFOS”(登録商標)168を各々0.15質量部、0.1質量部
 ポリプロピレン樹脂CおよびDのチップを、別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のC/D/C複合Tダイにて1/2/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。
 得た未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、125℃で縦方向に4.5倍延伸後、一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で幅方向に7倍に延伸した。次いで、テンター内で幅方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが10.5mmと高い吸液性を有し、透気抵抗は380秒/100ml、空孔率は58%であり、出力特性はCと優れた電池特性を有し、長手方向の破断強度90MPaと高い強度を有し、加工性はBと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは16.0mm、長手方向の破断強度65MPa、B層の幅方向の30分後の電解液吸液高さは6.5mm、長手方向の破断強度95MPaであった。
(実施例8)
 ポリプロピレン樹脂AおよびBのチップを、別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のA/B/A複合Tダイにて1/2/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。
 得た未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、110℃で縦方向に4倍延伸後、一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で幅方向に5倍に延伸した。次いで、テンター内で幅方向に12%の弛緩を与えつつ、163℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが17.0mmと高い吸液性を有し、透気抵抗は250秒/100ml、空孔率は60%であり、出力特性はAと優れた電池特性を有し、長手方向の破断強度100MPaと高い強度を有し、加工性はAと優れていた。なお、A層が吸液層、B層が強度保持層であり、A層の幅方向の30分後の電解液吸液高さは19.0mm、長手方向の破断強度55MPa、B層の幅方向の30分後の電解液吸液高さは8.0mm、長手方向の破断強度110MPaであった。
(実施例9)
 ポリプロピレン樹脂Bのチップを、単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイにて、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。
 得られた未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、105℃で縦方向に5倍延伸後、一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で幅方向に7倍に延伸した。
 次いで、テンター内で幅方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。さらに上記で得られた多孔性フィルムを炭酸ガス50%、窒素ガス50%の混合ガス雰囲気下で片面40W・min/mの処理条件で両面コロナ処理を行った
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが10.0mmと高い吸液性を有し、透気抵抗は390秒/100ml、空孔率は57%であり、出力特性はCと優れた電池特性を有し、長手方向の破断強度92MPaと高い強度を有し、加工性はAと優れていた。
(比較例1)
 ポリプロピレン樹脂Aを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出た以外は実施例1と同様の操作を行い、厚み25μmの多孔性フィルムを得た。各物性値を表1および表2に示した。
 得られた多孔性フィルムは、幅方向の30分後の電解液吸液高さが20.0mmと高い吸液性を有し、透気抵抗は90秒/100ml、空孔率は80%であり、出力特性はAと優れた電池特性を有するものの、長手方向の破断強度55MPaと強度が不十分であり、また、加工性もCと不十分であった。
(比較例2)
 ポリプロピレン樹脂Bを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚み25μmの多孔性フィルムを得た。各物性値を表1および表2に示した。
 得られた多孔性フィルムは、長手方向の破断強度90MPaと高い強度を有し、加工性はAと優れていたものの、幅方向の30分後の電解液吸液高さが8.5mmと不十分であり、出力特性はDと不十分であった。
(比較例3)
 市販のCelgard製“セルガード”(登録商標)2500を比較例3とした。なお、“セルガード” (登録商標)2500は、ラメラ延伸法を用いた微多孔ポリプロピレンフィルムである。
 この多孔性フィルムは、長手方向の破断強度120MPaと高い強度を有し、加工性はAと優れているものの、幅方向の30分後の電解液吸液高さが5.0mmと吸液性が不十分であり、出力特性はDと不十分であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明による多孔性フィルムは、電解液の吸液性に優れ、セパレータとして用いた際に優れた電池特性および加工性である多孔性フィルムを提供することができる。
 1:多孔性フィルム
 2:長手方向または幅方向
 3:混合溶媒
 4:混合溶媒浸透部分
 5:電解液吸液高さ

Claims (12)

  1. 電解液吸液開始30分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが10~60mmであり、長手方向の破断強度が65MPa以上である多孔性フィルム。
  2. ポリオレフィン系樹脂を含む請求項1記載の多孔性フィルム。
  3. 電解液吸液開始30分後のフィルム幅方向の吸液高さと長手方向の吸液高さの比率が0.7~1.3である請求項1または2に記載の多孔性フィルム。
  4. 電解液吸液開始1分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが3~60mmである請求項1~3のいずれかに記載の多孔性フィルム。
  5. 多孔性フィルムが、電解液吸液開始30分後のフィルム長手方向または幅方向の少なくとも一方向の電解液吸液高さが15~60mmである吸液層を表面層に、強度保持層を内層に備えた積層構成を有する請求項1~4にいずれかに記載の多孔性フィルム。
  6. 透気抵抗が10~400秒/100mlである請求項1~5のいずれかに記載の多孔性フィルム。
  7. 空孔率が50~90%である請求項1~6のいずれかに記載の多孔性フィルム。
  8. ポリオレフィン系樹脂のβ晶形成能が50~90%である請求項2~7のいずれかに記載の多孔性フィルム。
  9. 長手方向の破断強度が70MPa以上である請求項1~8のいずれかに記載の多孔性フィルム。
  10. 蓄電デバイスセパレータに使用される請求項1~9のいずれかに記載の多孔性フィルム。
  11. 請求項10に記載の多孔性フィルムを蓄電デバイスセパレータとして用いる蓄電デバイス。
  12. 蓄電デバイスがリチウムイオン電池である請求項11に記載の蓄電デバイス。
PCT/JP2010/066297 2009-11-09 2010-09-21 多孔性フィルムおよび蓄電デバイス WO2011055596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800581461A CN102666687A (zh) 2009-11-09 2010-09-21 多孔性膜及蓄电装置
JP2010542461A JP5732853B2 (ja) 2009-11-09 2010-09-21 多孔性フィルムおよび蓄電デバイス
US13/508,101 US20120219864A1 (en) 2009-11-09 2010-09-21 Porous film and electric storage device
EP10828156.9A EP2500374A4 (en) 2009-11-09 2010-09-21 POROUS FILM AND POWER STORAGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009255731 2009-11-09
JP2009-255731 2009-11-09

Publications (1)

Publication Number Publication Date
WO2011055596A1 true WO2011055596A1 (ja) 2011-05-12

Family

ID=43969836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066297 WO2011055596A1 (ja) 2009-11-09 2010-09-21 多孔性フィルムおよび蓄電デバイス

Country Status (6)

Country Link
US (1) US20120219864A1 (ja)
EP (1) EP2500374A4 (ja)
JP (1) JP5732853B2 (ja)
KR (1) KR20120115219A (ja)
CN (1) CN102666687A (ja)
WO (1) WO2011055596A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054932A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリプロピレンフィルム、積層多孔性フィルムおよび蓄電デバイス
JP2014135255A (ja) * 2013-01-11 2014-07-24 Gs Yuasa Corp 蓄電素子及び車載用蓄電池システム
JP2017191772A (ja) * 2017-03-30 2017-10-19 住友化学株式会社 多孔質セパレータ長尺、その捲回体、その製造方法及びリチウムイオン電池
CN108496263A (zh) * 2016-01-25 2018-09-04 株式会社大赛璐 二次电池
US10727463B2 (en) 2016-04-15 2020-07-28 Sumitomo Chemical Company, Limited Long porous separator sheet, method for producing the same, roll, and lithium-ion battery
CN111697189A (zh) * 2020-06-28 2020-09-22 佛山市金辉高科光电材料股份有限公司 聚烯烃微孔基膜及其制备方法、隔膜和电池
WO2020255802A1 (ja) * 2019-06-17 2020-12-24 株式会社クラレ 非水電解質二次電池用セパレータ及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132578A1 (ja) * 2013-02-28 2014-09-04 三洋電機株式会社 非水電解質二次電池
CN104403195A (zh) * 2014-11-20 2015-03-11 深圳市星源材质科技股份有限公司 高浸润性锂离子电池隔膜的原料及隔膜的加工方法
CN104792253A (zh) * 2015-04-10 2015-07-22 超威电源有限公司 一种隔板爬酸高度检测机构
JP6122224B1 (ja) * 2016-04-15 2017-04-26 住友化学株式会社 多孔質セパレータ長尺、その捲回体、多孔質セパレータ長尺の製造方法及び多孔質セパレータの製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052A (ja) 1983-06-15 1985-01-05 Fuji Elelctrochem Co Ltd 非水電解液電池
JPS63199742A (ja) * 1987-02-17 1988-08-18 Toray Ind Inc ポリプロピレン微孔性フイルムの製造方法
JPH01103634A (ja) 1987-06-16 1989-04-20 Toray Ind Inc ポリプロピレン微孔性フイルム及び電池用セパレータ
JPH01221440A (ja) * 1988-02-29 1989-09-04 Toray Ind Inc 微孔性ポリプロピレンフイルム
JPH07118429A (ja) * 1993-10-26 1995-05-09 Tonen Chem Corp ポリプロピレン多孔性フイルムの製法
JPH09255804A (ja) * 1996-01-17 1997-09-30 Tokuyama Corp 微多孔性膜の製造方法
JPH11130899A (ja) 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JPH11130900A (ja) 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JP2006269359A (ja) 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp 非水系電解液二次電池用セパレータおよび非水系電解液二次電池
WO2007046226A1 (ja) * 2005-10-18 2007-04-26 Toray Industries, Inc. 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP2007273443A (ja) 2005-12-22 2007-10-18 Asahi Kasei Chemicals Corp 多層多孔膜およびその製造方法
JP2008106237A (ja) 2006-09-28 2008-05-08 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
JP2008201814A (ja) * 2007-02-16 2008-09-04 Toray Ind Inc 多孔性ポリプロピレンフィルム
JP2008248231A (ja) 2007-03-06 2008-10-16 Toray Ind Inc 多孔性ポリプロピレンフィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243070B1 (ko) * 2005-09-28 2013-03-13 도레이 배터리 세퍼레이터 필름 주식회사 폴리에틸렌 미세 다공막의 제조 방법 및 전지용 세퍼레이터

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052A (ja) 1983-06-15 1985-01-05 Fuji Elelctrochem Co Ltd 非水電解液電池
JPS63199742A (ja) * 1987-02-17 1988-08-18 Toray Ind Inc ポリプロピレン微孔性フイルムの製造方法
JPH01103634A (ja) 1987-06-16 1989-04-20 Toray Ind Inc ポリプロピレン微孔性フイルム及び電池用セパレータ
JPH01221440A (ja) * 1988-02-29 1989-09-04 Toray Ind Inc 微孔性ポリプロピレンフイルム
JPH07118429A (ja) * 1993-10-26 1995-05-09 Tonen Chem Corp ポリプロピレン多孔性フイルムの製法
JPH09255804A (ja) * 1996-01-17 1997-09-30 Tokuyama Corp 微多孔性膜の製造方法
JPH11130899A (ja) 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JPH11130900A (ja) 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JP2006269359A (ja) 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp 非水系電解液二次電池用セパレータおよび非水系電解液二次電池
WO2007046226A1 (ja) * 2005-10-18 2007-04-26 Toray Industries, Inc. 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP2007273443A (ja) 2005-12-22 2007-10-18 Asahi Kasei Chemicals Corp 多層多孔膜およびその製造方法
JP2008106237A (ja) 2006-09-28 2008-05-08 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
JP2008201814A (ja) * 2007-02-16 2008-09-04 Toray Ind Inc 多孔性ポリプロピレンフィルム
JP2008248231A (ja) 2007-03-06 2008-10-16 Toray Ind Inc 多孔性ポリプロピレンフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2500374A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054932A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリプロピレンフィルム、積層多孔性フィルムおよび蓄電デバイス
CN103890062A (zh) * 2011-10-14 2014-06-25 东丽株式会社 多孔性聚丙烯膜、叠层多孔性膜和蓄电装置
CN103890062B (zh) * 2011-10-14 2016-08-17 东丽株式会社 多孔性聚丙烯膜、叠层多孔性膜和蓄电装置
JP2014135255A (ja) * 2013-01-11 2014-07-24 Gs Yuasa Corp 蓄電素子及び車載用蓄電池システム
CN108496263A (zh) * 2016-01-25 2018-09-04 株式会社大赛璐 二次电池
JPWO2017130574A1 (ja) * 2016-01-25 2018-12-20 株式会社ダイセル 二次電池
US10727463B2 (en) 2016-04-15 2020-07-28 Sumitomo Chemical Company, Limited Long porous separator sheet, method for producing the same, roll, and lithium-ion battery
JP2017191772A (ja) * 2017-03-30 2017-10-19 住友化学株式会社 多孔質セパレータ長尺、その捲回体、その製造方法及びリチウムイオン電池
WO2020255802A1 (ja) * 2019-06-17 2020-12-24 株式会社クラレ 非水電解質二次電池用セパレータ及びその製造方法
CN111697189A (zh) * 2020-06-28 2020-09-22 佛山市金辉高科光电材料股份有限公司 聚烯烃微孔基膜及其制备方法、隔膜和电池
CN111697189B (zh) * 2020-06-28 2022-06-28 佛山市金辉高科光电材料股份有限公司 聚烯烃微孔基膜及其制备方法、隔膜和电池

Also Published As

Publication number Publication date
CN102666687A (zh) 2012-09-12
KR20120115219A (ko) 2012-10-17
EP2500374A4 (en) 2015-04-08
EP2500374A1 (en) 2012-09-19
JPWO2011055596A1 (ja) 2013-03-28
US20120219864A1 (en) 2012-08-30
JP5732853B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5732853B2 (ja) 多孔性フィルムおよび蓄電デバイス
US20160099452A1 (en) Laminated porous film, separator for battery, and battery
US8785032B2 (en) Multilayer porous film, separator for batteries, and battery
JP5440171B2 (ja) 蓄電デバイス用セパレータ
US9343719B2 (en) Method for producing laminated porous film, and laminated porous film
JP4734397B2 (ja) 積層多孔性フィルム、それを利用したリチウムイオン電池用セパレータ、および電池
WO2010053172A1 (ja) 積層多孔性フィルム、リチウム電池用セパレータおよび電池
JP5712629B2 (ja) 多孔性フィルムおよび蓄電デバイス
KR102126212B1 (ko) 폴리올레핀 미다공막, 비수전해액계 2차전지용 세퍼레이터, 및 비수전해액계 2차전지
JP5672007B2 (ja) 多孔性ポリプロピレンフィルムロール
JP2011194650A (ja) ポリオレフィン樹脂多孔性フィルム、および電池用セパレータ
JP5699212B2 (ja) 多孔性フィルム、電池用セパレータ、および電池
JP4734396B2 (ja) 積層多孔性フィルム、それを利用したリチウム電池用セパレータおよび電池
JP5251193B2 (ja) 多孔性ポリオレフィンフィルム
JP5768599B2 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
WO2020137336A1 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP5672015B2 (ja) 二軸配向多孔性フィルムおよび蓄電デバイス
JP5434661B2 (ja) 多孔性フィルムおよび蓄電デバイス
JPWO2018164054A1 (ja) ポリオレフィン微多孔膜
JP6135665B2 (ja) ポリオレフィン多孔性フィルムおよび蓄電デバイス
JP2012117047A (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス用セパレータ
JP6232771B2 (ja) 多孔性フィルム、それを利用した電池用セパレータおよび電池
JP2010108922A (ja) 多孔性積層フィルムおよび蓄電デバイス
JP2012089243A (ja) 非水系二次電池用のセパレータ及びそれを用いた非水系二次電池
JPWO2018164055A1 (ja) ポリオレフィン微多孔膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058146.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010542461

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828156

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010828156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010828156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13508101

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127011858

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE