WO2011054703A1 - Verfahren zur handhabung von wässrigen methansulfonsäurelösungen - Google Patents

Verfahren zur handhabung von wässrigen methansulfonsäurelösungen Download PDF

Info

Publication number
WO2011054703A1
WO2011054703A1 PCT/EP2010/066181 EP2010066181W WO2011054703A1 WO 2011054703 A1 WO2011054703 A1 WO 2011054703A1 EP 2010066181 W EP2010066181 W EP 2010066181W WO 2011054703 A1 WO2011054703 A1 WO 2011054703A1
Authority
WO
WIPO (PCT)
Prior art keywords
msa
steel
steels
devices
aqueous
Prior art date
Application number
PCT/EP2010/066181
Other languages
English (en)
French (fr)
Inventor
Stefan Fassbender
Peter Petersen
Arnulf Lauterbach
Günter Renz
Frieder Borgmeier
Peter Kolb
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to DK10768963.0T priority Critical patent/DK2496726T3/da
Priority to CA2779546A priority patent/CA2779546C/en
Priority to ES10768963T priority patent/ES2897482T3/es
Priority to PL10768963T priority patent/PL2496726T3/pl
Priority to BR112012010092-0A priority patent/BR112012010092B1/pt
Priority to AU2010314193A priority patent/AU2010314193B2/en
Priority to MX2012004857A priority patent/MX2012004857A/es
Priority to CN201080047140.4A priority patent/CN102575329B/zh
Priority to KR1020127012598A priority patent/KR101818095B1/ko
Priority to JP2012537344A priority patent/JP5832438B2/ja
Priority to RU2012122587/04A priority patent/RU2012122587A/ru
Priority to EP10768963.0A priority patent/EP2496726B1/de
Publication of WO2011054703A1 publication Critical patent/WO2011054703A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes

Definitions

  • the present invention relates to a method for handling aqueous solutions of methanesulfonic acid in austenitic steel devices having a chromium content of 15 to 22 wt.% And a nickel content of 9 to 15 wt.%.
  • Methanesulfonic acid (H3CSO3H, MSA) is a strong organic acid used in a variety of different processes, including galvanic processes, chemical synthesis, detergents, and tertiary mineral oil production.
  • MSA can be produced by various processes, for example by
  • Chlorine compounds such as chloride contains.
  • WO 00/31027 discloses a method of oxidizing dimethyl disulfide with nitric acid to MSA, wherein the nitrogen oxides formed are reacted with O 2 again to nitric acid and this is returned to the process.
  • CN 1 810 780 A discloses a process in which ammonium sulfite and / or ammonium bisulfite with dimethyl sulfate to
  • Ammonium methanesulfonate and ammonium sulfate is reacted.
  • the ammonium sulfate can be precipitated with Ca 2+ as CaSC.
  • MSA can be released with sulfuric acid and worked up, again precipitating CaSC.
  • EP 906 904 A2 discloses a process in which sodium sulfite is reacted with dimethyl sulfate. From the resulting mixture MSA can be released after acidification with concentrated sulfuric acid. The last three mentioned methods have the advantage that the resulting MSA is virtually free of chlorine compounds.
  • the object of the invention was therefore to find cheaper, lower alloyed steels for the production of such building parts, which still have a good corrosion resistance to aqueous MSA solutions.
  • a method of handling aqueous solutions of methanesulfonic acid (MSA) having a concentration of 50 to 99 wt.% MSA and a total chlorine content of less than 50 mg / kg in apparatuses wherein the aqueous MSA solution has steel surfaces in Contact is found, wherein the steel is austenitic steels having a chromium content of 15 to 22 wt.% And a nickel content of 9 to 15 wt.%.
  • the process of the present invention relates to handling of aqueous solutions of methanesulfonic acid (H3CSO3H, MSA) in devices in which the aqueous MSA solution is in contact with steel surfaces.
  • the aqueous MSA solutions in this case have a concentration of 50 to 99 wt.% MSA with respect to the sum of all components of the aqueous solution.
  • the concentration is preferably 55 to 90% by weight, more preferably 60 to 80% by weight and most preferably about 70% by weight.
  • the aqueous MSA solutions may contain, in addition to water and MSA, customary secondary constituents and / or impurities.
  • the total content of chlorine in the aqueous MSA solution is less than 50 mg / kg, preferably less than 25 mg / kg and most preferably less than 10 mg / kg.
  • the chlorine may, for example, be chlorine in the form of chloride ions or chlorine bound in organic compounds.
  • MSA solutions having such a low total chlorine content can be prepared according to methods known to those skilled in the art, for example by oxidation of dimethyl disulfide using nitric acid by the method disclosed by WO 00/31027, or from ammonium sulfite and / or ammonium hydrogen sulfite by reaction with
  • the aqueous MSA solution may also contain sulfate ions as an impurity.
  • the amount of sulfate ions should, however, generally be less than 300 mg / kg, preferably less than 200 mg / kg, more preferably less than 100 mg / kg and in particular less than 30 mg / kg.
  • Transport or use of MSA solutions It is preferably the storage and / or transport of aqueous MSA solutions.
  • the devices may be any type of device used in the handling of aqueous MSA solutions, provided they have steel surfaces that can be contacted by the aqueous MSA solutions.
  • the devices may be composed of such steels in their entirety, but may of course include other materials. For example, it may be devices made of a different material or a different steel, which are lined with the steel according to the invention.
  • the devices may be closed or open devices, for example devices selected from the group of tanks, storage containers, rail tank cars, tanker trucks, tank containers,
  • Reaction boilers dosing devices, pipelines, flanges, pumps or measuring and control components, trays, drums, devices for galvanizing, components of boilers such as flow breakers, stirrers or metering tubes act.
  • the steel surfaces which are in contact with the aqueous MSA solution are surfaces of austenitic steels with a
  • austenitic steel is known to the person skilled in the art, for example from “Römpp Online, Version 3.5, Georg Thieme Verlag 2009".
  • the preferred chromium content is 16 to 20 wt.%, The preferred Ni content 10 to 14 wt.%.
  • the steel also comprises manganese, in an amount of 1 to 3 wt.%.
  • the steels used according to the invention may contain 1 to 5% by weight of molybdenum, preferably 1 to 5 to 4, particularly preferably 2 to 3% by weight.
  • the steels may contain 0.1 to 2 wt.% Titanium, preferably 0.5 to 1 wt.%.
  • these may be steels which comprise the elements indicated below (in each case in% by weight):
  • Contact is usually less than 40 ° C, without the invention should be limited to this temperature.
  • the temperature is 10 to 40 °, preferably 15 to 30 ° C and for example about ambient temperature.
  • test duration was 7 days, the temperature 23 ° C. For steel No. 4, the test duration was 1 day.
  • Corrosion rate [mm / a] 87600 * ⁇ m / A * p * t, where ⁇ m is the mass change of the sheet [g], A is the area of the sheet [cm 2 ], p is the density of the steel [g / cm 3 ] and t represents the duration of the experiment [h].
  • the factor 87600 is used to convert from cm / h to mm / a. The results are shown in Figures 1 and 2.
  • Figure 1 shows the corrosion rates (CR) in mm / year for steels # 1 ( Figure 1 a), 2 ( Figure 1 b), and 3 ( Figure 1 c).
  • the experiments show that only with the Methansulfonsauren, which have a low content of total chlorine in all experiments low corrosion rates are achieved.
  • MSA3 shows with the steel no. 1 and 3 are passable results, but not with steel no. 2.
  • the corrosion rate is about 0.01 mm / a, and when using steels no. 2 and 3, well below 0.01 mm / a.
  • Figure 2 shows corrosion rates (CR) in mm / year for not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Handhabung von wässrigen Lösungen von Methansulfonsäure in Vorrichtungen aus austenitischen Stählen mit einem Chromgehalt von 15 bis 22 Gew. % und einem Nickelgehalt von 9 bis 15 Gew. %.

Description

Verfahren zur Handhabung von wässrigen Methansulfonsäurelösungen
Die vorliegende Erfindung betrifft ein Verfahren zur Handhabung von wässrigen Lösungen von Methansulfonsaure in Vorrichtungen aus austenitischen Stählen mit einem Chromgehalt von 15 bis 22 Gew. % und einem Nickelgehalt von 9 bis 15 Gew. %.
Methansulfonsäure (H3CSO3H, MSA) ist eine starke organische Säure, welche für eine Vielzahl verschiedener Prozesse eingesetzt wird, beispielsweise für galvanische Prozesse, in der chemischen Synthese, in Reinigungsmitteln oder zur tertiären Erdölförderung.
MSA kann nach verschiedenen Prozessen hergestellt werden, beispielsweise durch
Oxidation von Methanthiol mittels C gefolgt von Hydrolyse, wie beispielsweise von US 3,626,004 offenbart. Alternativ kann auch Dimethyldisulfid mit Cb oxidiert werden. Die Verfahren führen zu MSA, welche trotz Reinigung noch signifikante Mengen an
Chlorverbindungen, beispielsweise Chlorid enthält.
WO 00/31027 offenbart ein Verfahren, Dimethyldisulfid mit Salpetersäure zu MSA zu oxidieren, wobei die gebildeten Stickoxide mit O2 wieder zu Salpetersäure umgesetzt und diese in den Prozess zurückgeführt wird. CN 1 810 780 A offenbart ein Verfahren, bei denen Ammoniumsulfit und/oder Ammoniumhydrogensulfit mit Dimethylsulfat zu
Ammoniummethansulfonat und Ammoniumsulfat umgesetzt wird. Das Ammoniumsulfat lässt sich mit Ca2+ als CaSC ausfällen. Aus dem verbliebenen Ca(CHsS03)2 lässt sich mit Schwefelsäure MSA freisetzen und aufarbeiten, wobei abermals CaSC ausfällt. EP 906 904 A2 offenbart ein Verfahren, bei dem man Natriumsulfit mit Dimethylsulfat umsetzt. Aus der erhaltenen Mischung kann MSA nach ansäuern mit konzentrierter Schwefelsäure freigesetzt werden. Die drei letztgenannten Verfahren haben den Vorteil, dass die erhaltene MSA praktisch frei von Chlorverbindungen ist.
Als Säure kann MSA naturgemäß Metalle angreifen. Niedrig legierte Stähle sind
üblicherweise nicht stabil gegenüber MSA. WO 2006/092439 A1 untersucht das
Korrosionsverhalten von niedrig legiertem Stahl für Druckbehälter (Werkstoffnummer 1.0425, ca. 0,3 % Cr, ca. 0,3 % Ni, 0,8 bis 1 ,4 % Mn) in 70 %-iger MSA. Der Stahl wird von MSA zwar in deutlich geringerem Maße als von Salzsäure angegriffen, aber es ist der Zusatz von Korrosionsinhibitoren erforderlich, um den Metallabtrag auf ein akzeptables Maß zu senken.
Als Werkstoffe zum Umgang mit Methansulfonsäure werden in einschlägigen Broschüren Polyethylen, Polypropylen, Polyester, Polystyrol, Glas Email, Keramiken, Tantal oder Zirkonium vorgeschlagen. Weiterhin wurde auch die Verwendung von Stahl der
Werkstoffnummern 1 .4539 und 1 .4591 vorgeschlagen ( Broschüre Lutropur® MSA,„Die „grüne" Säure für Reiniger", Ausgabe 10/2005, BASF SE, Ludwigshafen). Bei derartigen Stählen handelt es sich um hochlegierte Chrom-Nickelstähle (1 .4539 ca. 20 % Cr, ca. 25 % Ni; 1.4591 ca. 33 % Cr, ca. 31 % Ni).
Als Werkstoff für Vorrichtungen zur Handhabung von MSA, beispielsweise zum Lagern und/oder Transport, ist die Verwendung von Stahl mit einer ausreichenden Beständigkeit gegen MSA in hohem Maße wünschenswert, weil man nur so vermeiden kann, Behälter, Apparaturen und Rohrleitungen mit Innenauskleidungen aus korrosionsfesten Werkstoffen zu versehen. Bei den oben genannten Stählen handelt es sich um sehr teure und schwer zu beschaffende SpezialStähle. Werkstücke aus diesen Stählen sind dementsprechend teuer, und die Verwendung derartiger Stähle für größere Bauteile, wie beispielsweise Tanks ist daher unwirtschaftlich.
Aufgabe der Erfindung war es daher, billigere, niedriger legierte Stähle zur Herstellung derartiger Bausteile zu finden, welche gleichwohl noch eine gute Korrosionsbeständigkeit gegenüber wässrigen MSA-Lösungen aufweisen.
Dementsprechend wurde ein Verfahren zur Handhabung von wässrigen Lösungen von Methansulfonsäure (MSA) mit einer Konzentration von 50 bis 99 Gew. % MSA und einem Gesamtgehalt an Chlor von weniger als 50 mg/kg in Vorrichtungen, bei denen die wässrige MSA-Lösung mit Stahloberflächen in Kontakt ist, gefunden, wobei es sich bei dem Stahl um austenitische Stähle mit einem Chromgehalt von 15 bis 22 Gew. % und einem Nickelgehalt von 9 bis 15 Gew. % handelt.
Zu der Erfindung ist im Einzelnen das Folgende auszuführen:
Das erfindungsgemäße Verfahren betrifft Handhabung die von wässrigen Lösungen von Methansulfonsäure (H3CSO3H, MSA) in Vorrichtungen, bei denen die wässrige MSA-Lösung mit Stahloberfächen in Kontakt ist. Die wässrigen MSA-Lösungen weisen hierbei eine Konzentration von 50 bis 99 Gew. % MSA bezüglich der Summe aller Bestandteile der wässrigen Lösung auf. Bevorzugt beträgt die Konzentration 55 bis 90 Gew. %, besonders bevorzugt 60 bis 80 Gew. % und ganz besonders bevorzugt ca. 70 Gew. %. Die wässrigen MSA-Lösungen können darüber hinaus neben Wasser und MSA noch übliche Nebenbestandteile und/oder Verunreinigungen enthalten.
Erfindungsgemäß beträgt der Gesamtgehalt an Chlor in der wässrigen MSA-Lösung weniger als 50 mg/kg, bevorzugt weniger als 25 mg/kg und ganz besonders bevorzugt weniger als 10 mg/kg. Bei dem Chlor kann es sich beispielsweise um Chlor in Form von Chloridionen oder in organischen Verbindungen gebundenes Chlor handeln. MSA-Lösungen mit einem derartig niedrigen Gesamt-Chlorgehalt können gemäß dem Fachmann bekannten Verfahren hergestellt werden, beispielsweise durch Oxidation von Dimethyldisulfid mittels Salpetersäure mittels des von WO 00/31027 offenbarten Verfahrens, oder aus Ammoniumsulfit und/oder Ammoniumhydrogensulfit durch Umsetzung mit
Dimethylsulfat.
Die wässrige MSA-Lösung kann darüber hinaus noch Sulfationen als Verunreinigung enthalten. Die Menge der Sulfationen sollte aber in der Regel weniger als 300 mg/kg, bevorzugt weniger als 200 mg/kg, besonders bevorzugt weniger als 100 mg/kg und insbesondere weniger als 30 mg/kg betragen.
Der Begriff„Handhabung" soll alle Arten des Umganges mit wässrigen MSA-Lösungen in Vorrichtungen umfassen, um zwar während des gesamten Produktflusses von der
Herstellung bis zur Verwendung. Es kann sich insbesondere um die Lagerung, den
Transport oder die Verwendung von MSA-Lösungen handeln. Bevorzugt handelt es sich um die Lagerung und/oder den Transport von wässrigen MSA-Lösungen.
Bei den Vorrichtungen kann es sich um alle Arten von Vorrichtungen handeln, welche im Zuge der Handhabung von wässrigen MSA-Lösungen eingesetzt werden, vorausgesetzt, sie weisen Oberflächen aus Stahl auf, mit denen die wässrigen MSA-Lösungen in Kontakt kommen können. Die Vorrichtungen können hierbei in ihrer Gesamtheit aus derartigen Stählen bestehen, sie können aber selbstverständlich noch andere Materialien umfassen. Beispielsweise kann es sich um Vorrichtungen aus einem anderen Material bzw. einem anderen Stahl handeln, welche mit dem erfindungsgemäßen Stahl ausgekleidet sind.
Bei den Vorrichtungen kann es um geschlossene oder offene Vorrichtungen handeln, beispielsweise um Vorrichtungen ausgewählt aus der Gruppe von Tanks, Lagerbehältern, Kessel von Eisenbahn-Kesselwagen, Kessel von Tanklastwagen, Tankcontainern,
Reaktionskesseln, Dosiervorrichtungen, Rohrleitungen, Flanschen, Pumpen oder Mess- und Regelbauteile, Wannen, Fässern, Vorrichtungen zum Galvanisieren, Einbauteile von Kesseln wie Strömungsbrecher, Rührer oder Dosierrohre handeln.
Erfindungsgemäß handelt es sich bei den Stahloberflächen, welche mit der wässrigen MSA- Lösung in Kontakt stehen, um Oberflächen aus austenitischen Stählen mit einem
Chromgehalt von 15 bis 22 Gew. % und einem Nickelgehalt von 9 bis 15 Gew. %.
Der Begriff„austenitischer Stahl" ist dem Fachmann bekannt, beispielsweise aus„Römpp Online, Version 3.5, Georg Thieme Verlag 2009". Der bevorzugte Chromgehalt beträgt 16 bis 20 Gew. %, der bevorzugte Ni-Gehalt 10 bis 14 Gew. %.
In der Regel umfasst der Stahl darüber hinaus Mangan, und zwar in einer Menge von 1 bis 3 Gew. %.
Darüber hinaus können die erfindungemäß verwendeten Stähle 1 bis 5 Gew. % Molybdän, bevorzugt 1 ,5 bis 4, besonders bevorzugt 2 bis 3 Gew. % enthalten.
Weiterhin können die Stähle 0,1 bis 2 Gew. % Titan enthalten, bevorzugt 0,5 bis 1 Gew. %.
Insbesondere kann es sich um Stähle handeln, welche die nachfolgend angegebenen Elemente umfassen (Angaben jeweils in Gew. %):
Figure imgf000005_0001
Die Temperatur der MSA, die während der Handhabung mit der Stahloberfläche in
Berührung steht beträgt in der Regel weniger als 40°C, ohne dass die Erfindung damit auf diese Temperatur beschränkt sein soll. Bevorzugt beträgt die Temperatur 10 bis 40°, bevorzugt 15 bis 30°C und beispielsweise etwa Umgebungstemperatur.
Die vorliegenden Beispiele sollen die Erfindung näher illustrieren:
Verwendete Materialien:
Für die nachfolgenden Versuche wurden Lösungen von jeweils 70 Gew. % MSA in Wasser eingesetzt. Die Herstellverfahren für die jeweils verwendete MSA sind in Tabelle 1 zusammengestellt, in Tabelle 2 die analytischen Daten. Herstellungsverfahren
MSA 1 Oxidation von Dimethyldisulfid gemäß WO 00/31027
MSA 2 Reaktion von (N^^SOs N^HSOs mit (CH3)2S02, Fällung von Sulfat mit
Ca(OH)2, gefolgt von H2SO4 Behandlung
MSA 3 Oxidation von Dimethyldisulfid mit C gefolgt von Hydrolyse
MSA 4 Oxidation von Dimethyldisulfid mit Cb gefolgt von Hydrolyse (anderer Hersteller)
MSA 5 Oxidation von CH3SH mit Cb gefolgt von Hydrolyse
Tab. 1 Herstellung der verwendeten MSA
Figure imgf000006_0001
Tab. 2: Analytische Daten
Für die Versuche wurden die in Tabelle 3 angegebenen Stahlsorten eingesetzt. Bei den Stählen Nr. 1 , 2 und 3 handelt es sich um austenitische Stähle, bei Nr. V4 um einen martensitischen Stahl (Vergleichsversuch).
Shl Ntar.
WerkstoffDichte
C Mn Si P Cr Ni N Mo Ti nummer [g/cm3]
1 1.4301 / 18.0-
0.08 2.0 0.75 0.045 10.5 0.1 - 304 7,92 20.0
2
1.4401 / 16.0- 10.0-
7,98 0.08 2.0 0.75 0.045 0.1 2-3 - 316 18.0 14.0
3 1.4571 / < < 16.5- 10.5- 2.0- <
7,98 < 2.0 < 1.0 - 316Ti 0.08 0.045 18.5 13.5 2.5 0.70
V 4 1.4006 / 12,0 -
7,7 0, 15 1 1 0,04 - - - - 420 14,0
Tab. 3 Eingesetzte Stahlsorten
Durchführung der Versuche:
Die Tests in einem 1 -Liter-Glaskolben mit flachem Boden unter Rühren vorgenommen, um die Strömung von MSA zu simulieren. Zur Befestigung wurden Testbleche der oben genannten Stahlsorten eingesetzt (20 mm x 50 mm x 1 mm), mit einer 5 mm-Bohrung versehen, im Ultraschallbad gereinigt, mittels eines Stickstoffgasstromes getrocknet und gewogen. Die Bleche wurden mit einer Halterung aus Teflon in den Kolben gehängt und der Kolben verschlossen. Die MSA im Kolben wurde mittels eines Magnetrührers mit 750 Upm gerührt. Nach Beendigung der Versuche wurde die Bleche aus dem Probegefäß
herausgenommen, mit vollständig entsalztem Wasser abgespült, mit einem Fließpapier vorsichtig abgewischt (zur Entfernung grober Korrosionsprodukte), erneut mit vollständig entsalztem Wasser gespült getrocknet und gewogen. Die Versuchsdauer betrug jeweils 7 Tage, die Temperatur 23°C. Bei Stahl Nr. 4 betrug die Versuchsdauer 1 Tag.
Aus der Massendifferenz wurde jeweils die Korrosionsgeschwindigkeit in mm Abtrag/Jahr gemäß nachfolgender Formel berechnet:
Korrosionsgeschwindigkeit [mm/a] = 87600 * Äm / A * p * t , wobei Äm die Massenänderung des Bleches [g], A die Fläche des Bleches [cm2], p die Dichte des Stahls [g/cm3] und t die Versuchsdauer [h] darstellt. Der Faktor 87600 dient zur Umrechnung von cm/h auf mm/a. Die Ergebnisse sind in Abbildungen 1 und 2 zusammengestellt.
Abbildung 1 zeigt die Korrosionsgeschwindigkeiten (CR) in mm/Jahr für die Stähle Nr. 1 (Abb. 1 a), 2 (Abb. 1 b), und 3 (Abb. 1 c). Die Versuche zeigen dass nur mit den Methansulfonsauren, welche einen geringen Gehalt an Gesamtchlor aufweisen bei allen Versuchen niedrige Korrosionsraten erzielt werden. MSA3 zeigt zwar mit den Stählen nr. 1 und Nr. 3 passable Ergebnisse, nicht aber mit Stahl Nr. 2. Für MSA 1 und Stahl Nr. 1 liegt die Korrosionsrate bei etwa 0,01 mm/a, bei Verwendung der Stähle Nr. 2 und 3 deutlich unter 0,01 mm/a.
Abbildung 2 zeigt Korrosionsgeschwindigkeiten (CR) in mm/Jahr für den nicht
erfindungsgemäßen martensitischen Stahl Nr. V4. Der Vergleichsversuch zeigt dass die Korrosionsgeschwindigkeit bei allen Methansulfonsäuren größer ist als 0,1 mm/a, wobei interessanterweise bei Stahl Nr. 4 MSA 3, MSA 4 und MSA 5 mit höherem Chlorgehalt etwas besser abschneiden als die Chlor-armen MSA 1 und MSA 2. Korrosionsraten von mehr als 0,1.

Claims

Patentansprüche
Verfahren zur Handhabung von wässrigen Lösungen von Methansulfonsäure (MSA) mit einer Konzentration von 50 bis 99 Gew. % MSA und einem Gesamtgehalt an Chlor von weniger als 50 mg/kg in Vorrichtungen, bei denen die wässrige MSA-Lösung mit Stahloberflächen in Kontakt ist, dadurch gekennzeichnet, dass es sich bei dem Stahl um austenitische Stähle mit einem Chromgehalt von 15 bis 22 Gew. % und einem Nickelgehalt von 9 bis 15 Gew. % handelt.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Stähle weiterhin 1 bis 5 Gew. % Molybdän enthalten.
Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Stähle weiterhin 0,1 bis 2 Gew. % Titan enthalten.
Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Temperatur der MSA im Zuge der Handhabung weniger als 40°C beträgt.
Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Konzentration der MSA in der wässrigen Lösung 60 bis 80 Gew. % beträgt.
Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei den Vorrichtungen um Vorrichtungen ausgewählt aus der Gruppe von Tanks, Lagerbehältern, Kessel von Eisenbahn-Kesselwagen, Kessel von Tanklastwagen, Tankcontainern, Reaktionskesseln, Dosiervorrichtungen, Rohrleitungen, Flanschen, Pumpen oder Mess- und Regelbauteilen handelt.
PCT/EP2010/066181 2009-11-03 2010-10-26 Verfahren zur handhabung von wässrigen methansulfonsäurelösungen WO2011054703A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DK10768963.0T DK2496726T3 (da) 2009-11-03 2010-10-26 Fremgangsmåde til håndtering af vandige methansulfonsyreopløsninger ved hjælp af rustfrit stål
CA2779546A CA2779546C (en) 2009-11-03 2010-10-26 Method for handling aqueous methanesulfonic acid solutions
ES10768963T ES2897482T3 (es) 2009-11-03 2010-10-26 Método de manipulación de soluciones acuosas de ácido metanosulfónico por medio de acero inoxidable
PL10768963T PL2496726T3 (pl) 2009-11-03 2010-10-26 Sposób postępowania z wodnymi roztworami kwasu metanosulfonowego z użyciem stali nierdzewnej
BR112012010092-0A BR112012010092B1 (pt) 2009-11-03 2010-10-26 Uso de aços inoxidáveis austeníticos
AU2010314193A AU2010314193B2 (en) 2009-11-03 2010-10-26 Method for handling aqueous methanesulfonic acid solutions
MX2012004857A MX2012004857A (es) 2009-11-03 2010-10-26 Proceso para el manejo de soluciones acuosas de acido metanosulfonico.
CN201080047140.4A CN102575329B (zh) 2009-11-03 2010-10-26 处理甲磺酸水溶液的方法
KR1020127012598A KR101818095B1 (ko) 2009-11-03 2010-10-26 메탄설폰산 수용액의 취급 방법
JP2012537344A JP5832438B2 (ja) 2009-11-03 2010-10-26 メタンスルホン酸水性溶液を取り扱う方法
RU2012122587/04A RU2012122587A (ru) 2009-11-03 2010-10-26 Способ обращения с водными растворами метансульфокислоты
EP10768963.0A EP2496726B1 (de) 2009-11-03 2010-10-26 Verfahren zur handhabung von wässrigen methansulfonsäurelösungen mittels rostfreier stahl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09174853 2009-11-03
EP09174853.3 2009-11-03

Publications (1)

Publication Number Publication Date
WO2011054703A1 true WO2011054703A1 (de) 2011-05-12

Family

ID=43629440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/066181 WO2011054703A1 (de) 2009-11-03 2010-10-26 Verfahren zur handhabung von wässrigen methansulfonsäurelösungen

Country Status (18)

Country Link
US (1) US8728253B2 (de)
EP (1) EP2496726B1 (de)
JP (1) JP5832438B2 (de)
KR (1) KR101818095B1 (de)
CN (1) CN102575329B (de)
AU (1) AU2010314193B2 (de)
BR (1) BR112012010092B1 (de)
CA (1) CA2779546C (de)
CL (1) CL2012001154A1 (de)
DK (1) DK2496726T3 (de)
ES (1) ES2897482T3 (de)
MX (1) MX2012004857A (de)
MY (1) MY156183A (de)
PL (1) PL2496726T3 (de)
PT (1) PT2496726T (de)
RU (1) RU2012122587A (de)
TW (1) TWI487801B (de)
WO (1) WO2011054703A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015191A1 (en) 2016-07-18 2018-01-25 Basf Se Low corrosion alkane sulfonic acids for condensation reactions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319444A1 (en) 2013-12-20 2016-11-03 Greene Lyon Group, Inc. Method and apparatus for recovery of noble metals, including recovery of noble metals from plated and/or filled scrap
US11136681B2 (en) 2015-06-24 2021-10-05 Greene Lyon Group, Inc. Selective removal of noble metals using acidic fluids, including fluids containing nitrate ions
FR3070686B1 (fr) * 2017-09-01 2019-08-30 Arkema France Acide sulfonique faiblement colore
FR3070687B1 (fr) 2017-09-01 2019-11-22 Arkema France Procede de preparation d'acide sulfonique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626004A (en) 1967-12-07 1971-12-07 Pennwalt Corp Method of preparing alkyl sulfonyl chloride
JPH04120250A (ja) * 1990-09-12 1992-04-21 Tokuyama Soda Co Ltd 脂肪族スルホン酸を含む有機溶媒の収納容器
JPH07278854A (ja) * 1994-04-06 1995-10-24 Tosoh Corp 金属材料の腐蝕防止方法
EP0906904A2 (de) 1997-10-04 1999-04-07 Grillo-Werke AG Verfahren zur Herstellung von Methansulfonsäure
WO2000031027A1 (de) 1998-11-25 2000-06-02 Basf Aktiengesellschaft Verfahren zur herstellung von alkansulfonsäuren
US6120619A (en) * 1998-01-26 2000-09-19 Elf Atochem, S.A. Passivation of stainless steels in organosulphonic acid medium
CN1810780A (zh) 2005-01-26 2006-08-02 河北亚诺化工有限公司 一种制备甲基磺酸的方法
WO2006092439A1 (de) 2005-03-04 2006-09-08 Basf Aktiengesellschaft Mikrokapselpulver

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960671A (en) * 1974-06-17 1976-06-01 Rohm And Haas Company Quinones as corrosion inhibitor in distilling alkanoic acids
EP0062136B1 (de) * 1981-03-30 1985-09-25 Pennwalt Corporation Verfahren zur Herstellung von wasserfreien Alkansulfonsäuren
JPS58184094A (ja) * 1982-04-21 1983-10-27 Kobe Steel Ltd 肉盛溶接用帯状電極
JPH07100842B2 (ja) * 1987-04-17 1995-11-01 株式会社日立製作所 耐応力腐食割れ性に優れた原子炉炉心部材
US4895977A (en) * 1988-12-12 1990-01-23 Pennwalt Corporation Purification of alkanesulfonic acids using ozone
JP2002241900A (ja) * 1997-08-13 2002-08-28 Sumitomo Metal Ind Ltd 耐硫酸腐食性と加工性に優れたオーステナイト系ステンレス鋼
CN1224775A (zh) * 1998-01-26 1999-08-04 埃勒夫阿托化学有限公司 有机磺酸介质中的不锈钢的钝化
JP2000336061A (ja) 1999-03-24 2000-12-05 Kanegafuchi Chem Ind Co Ltd 改質された有機酸溶液
FR2796941B1 (fr) * 1999-07-27 2001-09-14 Atofina Purification d'acides alcanesulfoniques
US6428676B1 (en) * 2000-11-08 2002-08-06 Enthone Inc. Process for producing low alpha lead methane sulfonate
JP2003238520A (ja) * 2002-02-21 2003-08-27 Mitsubishi Chemicals Corp スルホン酸の製造方法及びそれを利用したアミド化合物の製造方法
JP3736631B2 (ja) * 2002-05-10 2006-01-18 新日鐵住金ステンレス株式会社 耐硫酸腐食性および耐孔食性に優れたケミカルタンク用鋼
EP1944282B1 (de) * 2005-11-01 2016-06-29 Asahi Kasei Chemicals Corporation Verfahren zur herstellung von isobuten und tertiärem butanol
JP2009538338A (ja) 2006-05-22 2009-11-05 イーラン ファーマスーティカルズ、インコーポレイテッド 治療用、農業用及び食品添加用化合物のポリマー複合体の調製

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626004A (en) 1967-12-07 1971-12-07 Pennwalt Corp Method of preparing alkyl sulfonyl chloride
JPH04120250A (ja) * 1990-09-12 1992-04-21 Tokuyama Soda Co Ltd 脂肪族スルホン酸を含む有機溶媒の収納容器
JPH07278854A (ja) * 1994-04-06 1995-10-24 Tosoh Corp 金属材料の腐蝕防止方法
EP0906904A2 (de) 1997-10-04 1999-04-07 Grillo-Werke AG Verfahren zur Herstellung von Methansulfonsäure
US6120619A (en) * 1998-01-26 2000-09-19 Elf Atochem, S.A. Passivation of stainless steels in organosulphonic acid medium
WO2000031027A1 (de) 1998-11-25 2000-06-02 Basf Aktiengesellschaft Verfahren zur herstellung von alkansulfonsäuren
CN1810780A (zh) 2005-01-26 2006-08-02 河北亚诺化工有限公司 一种制备甲基磺酸的方法
WO2006092439A1 (de) 2005-03-04 2006-09-08 Basf Aktiengesellschaft Mikrokapselpulver

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Römpp Online", 2009, GEORG THIEME VERLAG
ARKEMA: "Arkema Methanesulfonic Acid - Cleaning and Descaling", APPLICATION INFORMATION, 10 January 2007 (2007-01-10), pages 1 - 4, XP002627165, Retrieved from the Internet <URL:www.arkema-inc.com/literature/pdf/987.pdf> *
GAUR, ET AL: "Corrosion of metals and alloys in methanesulfonic acid", BRITISH CORROSION JOURNAL, vol. 34, no. 1, 1999 - 1999, uk, XP009145687, ISSN: 0007-0599 *
See also references of EP2496726A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015191A1 (en) 2016-07-18 2018-01-25 Basf Se Low corrosion alkane sulfonic acids for condensation reactions

Also Published As

Publication number Publication date
CN102575329B (zh) 2017-03-08
CL2012001154A1 (es) 2012-08-17
KR20120101391A (ko) 2012-09-13
TWI487801B (zh) 2015-06-11
US20110108120A1 (en) 2011-05-12
JP5832438B2 (ja) 2015-12-16
BR112012010092A2 (pt) 2016-05-31
PT2496726T (pt) 2021-11-19
BR112012010092B1 (pt) 2018-06-05
AU2010314193B2 (en) 2016-07-07
CA2779546A1 (en) 2011-05-12
KR101818095B1 (ko) 2018-01-12
JP2013510109A (ja) 2013-03-21
PL2496726T3 (pl) 2022-01-31
CN102575329A (zh) 2012-07-11
DK2496726T3 (da) 2021-12-06
RU2012122587A (ru) 2013-12-10
US8728253B2 (en) 2014-05-20
AU2010314193A1 (en) 2012-05-03
MX2012004857A (es) 2012-09-07
MY156183A (en) 2016-01-15
EP2496726B1 (de) 2021-09-08
EP2496726A1 (de) 2012-09-12
ES2897482T3 (es) 2022-03-01
TW201139700A (en) 2011-11-16
CA2779546C (en) 2018-11-06

Similar Documents

Publication Publication Date Title
EP2496726B1 (de) Verfahren zur handhabung von wässrigen methansulfonsäurelösungen mittels rostfreier stahl
DE4013974C1 (de)
EP0334410B1 (de) Nickel-Chrom-Molybdän-Legierung
EP0657556A1 (de) Austenitische Legierungen und deren Verwendung
DE102005023729A1 (de) Korrosionsschutzmittel und Verfahren zu dessen stromfreier Applikation
DE60111925T2 (de) Korrosionsbeständige austenitische legierung
DE10392186T5 (de) Auf Nickel-basierende Legierung mit herausragender Korrosionsbeständigkeit gegen superkritische Wasser-Umgebungen, die anorganische Säuren enthalten
DE19963522B4 (de) Legierungsstahl mit überlegener Korrosionsbeständigkeit gegen Alkalimetalloxide enthaltende Salzschmelzen
EP3607100B1 (de) Verfahren zum entfernen von fluorid aus einer zinkhaltigen lösung bzw. suspension, entfluoridierte zinksulfat-lösung und deren verwendung sowie verfahren zur herstellung von zink und von fluorwasserstoff bzw. flusssäure
EP0001972B1 (de) Verfahren zur Herstellung von Hydroxylammoniumsalzen in Reaktionsgefässen aus Edelstahl
EP0200862B1 (de) Verwendung einer gegen hochkonzentrierte Schwefelsäure und Oleum beständigen Eisen-Chrom-Nickel-Legierung
EP0723029B1 (de) Nickellegierung
WO2015150387A1 (de) Zweistufen-vorbehandlung von aluminium umfassend beize und passivierung
EP0249792B1 (de) Verwendung einer chromhaltigen Nickellegierung
WO2023168467A1 (de) Verfahren zur entfernung eisenoxidischer ablagerungen
CH682661A5 (de) Verfahren zur Reduktion aromatischer Nitroverbindungen mit Hilfe dreiwertiger Titanverbindungen.
DE19628816A1 (de) Verfahren zur Herstellung von Parawolframat
DE3815456A1 (de) Waessrige loesung zur oxidation, entkeimung und desodorierung sowie verfahren zur herstellung dieser loesung
ZA200700114B (en) Austenitic stainless steel composition and use thereof for the production of structural parts for land transport means and containers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047140.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10768963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010314193

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/004857

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2779546

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12012500874

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2010314193

Country of ref document: AU

Date of ref document: 20101026

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201002005

Country of ref document: TH

REEP Request for entry into the european phase

Ref document number: 2010768963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010768963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012537344

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127012598

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4719/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012122587

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010092

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010092

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120427