WO2011052732A1 - オレフィン類の製造方法 - Google Patents

オレフィン類の製造方法 Download PDF

Info

Publication number
WO2011052732A1
WO2011052732A1 PCT/JP2010/069314 JP2010069314W WO2011052732A1 WO 2011052732 A1 WO2011052732 A1 WO 2011052732A1 JP 2010069314 W JP2010069314 W JP 2010069314W WO 2011052732 A1 WO2011052732 A1 WO 2011052732A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
amount
temperature
alcohol
catalyst
Prior art date
Application number
PCT/JP2010/069314
Other languages
English (en)
French (fr)
Inventor
慎吾 高田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to ES10826862.4T priority Critical patent/ES2685072T3/es
Priority to US13/504,662 priority patent/US9000248B2/en
Priority to JP2011538501A priority patent/JP5221773B2/ja
Priority to EP10826862.4A priority patent/EP2495227B1/en
Priority to CN201080048811.9A priority patent/CN102596858B/zh
Publication of WO2011052732A1 publication Critical patent/WO2011052732A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for producing olefins, and more particularly to a method for producing long-chain olefins by liquid phase dehydration reaction of a long-chain aliphatic primary alcohol.
  • Patent Document 1 discloses a method for producing an olefin compound by dehydration reaction of a secondary alcohol in the gas phase at a reaction temperature of 300 to 400 ° C. in the presence of zirconium oxide.
  • the gas phase reaction typified by the method described in Patent Document 1
  • olefination under high-temperature conditions tends to cause both branching by alkyl rearrangement and olefin quantification, resulting in a problem of reduced product yield.
  • Patent Document 2 discloses a method for producing an olefin compound by dehydration of a primary alcohol in a liquid phase using trifluoromethanesulfonic acid as a dehydration catalyst.
  • the homogeneous acid catalyst used in the liquid phase reaction typified by the method described in Patent Document 2 is generally corrosive, and there is a concern about elution of metal from the reactor.
  • branching by alkyl rearrangement and olefin quantification are likely to occur simultaneously as in the reaction under the high temperature conditions described above, and the yield of the product is problematic.
  • Patent Document 3 discloses a method for producing diisopropyl ether in which isopropyl alcohol is reacted at 150 to 300 ° C. using a sulfonic acid group-containing ion exchange resin as a catalyst.
  • the dehydration reaction of alcohol can occur in parallel with both intramolecular dehydration and intermolecular dehydration.
  • the production of ether by intermolecular dehydration has priority, so that it is difficult to produce olefins efficiently.
  • An object of the present invention is to provide a method for producing a long-chain olefin with high yield and high selectivity by a liquid-phase dehydration reaction of a long-chain aliphatic primary alcohol.
  • the liquid phase reaction refers to a reaction below the boiling point of the raw alcohol, that is, below the temperature at which the liquid phase exists.
  • the present inventor conducted a liquid phase dehydration reaction of a long-chain aliphatic primary alcohol at a relatively low temperature of 280 ° C. or lower in the presence of a solid acid catalyst having a weak acid strength typified by alumina or aluminum phosphate.
  • a solid acid catalyst having a weak acid strength typified by alumina or aluminum phosphate.
  • the present invention is a method for producing olefins by liquid phase dehydration reaction of an aliphatic primary alcohol having 12 to 24 carbon atoms in the presence of a solid acid catalyst.
  • a method for producing olefins wherein the acid amount calculated from the ammonia desorption amount at a desorption temperature of 300 ° C. or lower is 70% or more of the total acid amount measured by the desorption method (NH 3 -TPD). To do.
  • long chain olefins can be produced with high yield and high selectivity by liquid phase dehydration reaction of long chain aliphatic primary alcohols.
  • a dehydration reaction is performed in a liquid phase at a relatively low temperature using a solid acid catalyst having a weak acid strength, energy consumption is small, and branching by alkyl rearrangement and olefin enormous increase are combined. Hateful.
  • the alcohol used as a raw material in the present invention is an aliphatic primary alcohol having 12 to 24 carbon atoms. Considering that the reaction temperature in the present invention is not higher than the boiling point of the raw alcohol, the carbon number of the raw alcohol is preferably 12-20, more preferably 14-20, and still more preferably 16-20. Specific examples of the raw material alcohol include 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 1-nonadecanol, 1-eicosanol and the like. These raw material alcohols can be used alone or in combination of two or more.
  • Solid acid catalyst used in the present invention has an acid amount calculated from an ammonia desorption amount at a desorption temperature of 300 ° C. or less out of the total acid amount measured by the ammonia temperature-programmed desorption method (NH 3 -TPD) (The weak acid amount is 70% or more, and the ratio of the weak acid amount is large and the catalyst has a low acid strength as a whole.
  • NH 3 -TPD ammonia temperature-programmed desorption method
  • the ammonia temperature-programmed desorption method is a method in which ammonia is adsorbed on a solid catalyst, and then the temperature is continuously increased by controlling the temperature at a constant rate of temperature to measure the amount of desorbed ammonia and the desorption temperature. is there.
  • Ammonia adsorbed at weak acid points out of solid catalyst acid points desorbs at low temperatures
  • ammonia adsorbed at strong acid points desorbs at high temperatures, so measure the acid amount and acid strength of the catalyst. be able to.
  • the measurement by the ammonia temperature-programmed desorption method can be performed using, for example, a catalyst analyzer (trade name: fully automatic temperature-programmed desorption device TPD-1At, manufactured by Nippon Bell Co., Ltd.).
  • TPD ammonia temperature-programmed desorption
  • a generally performed measuring method can be used. For example, after pre-processing, NH 3 adsorption processing, and vacuum processing are sequentially performed under the following conditions, TPD measurement is performed.
  • Pretreatment heating at 20 minutes 200 ° C. in helium for 1 hour hold NH3 adsorption treatment: 50 ° C., suction vacuum treatment for 10 minutes NH 3 at 2.7 kPa: 50 ° C., 4 hours TPD measurement: helium gas 50ml Circulation at a speed of 5 min / min.
  • the amount of weak acid is calculated from the ammonia desorption amount in the temperature range from the start of measurement to the desorption temperature of 300 ° C., and ammonia desorption in the temperature range until the desorption temperature exceeds 300 ° C. and all ammonia is desorbed.
  • the amount of strong acid is calculated from the amount, and the total is defined as the total acid amount.
  • the ratio of the weak acid amount to the total acid amount is calculated by the following formula.
  • Ratio of weak acid amount (%) weak acid amount (mmol / g) / total acid amount (mmol / g) ⁇ 100
  • the ratio of the weak acid amount in the solid acid catalyst is preferably 80% or more, more preferably 90% or more, still more preferably 93% or more, and particularly preferably 95% or more.
  • the upper limit is preferably 100%. The higher the ratio of the weak acid amount in the solid acid catalyst, the more the alkyl rearrangement and dimerization that occur at the strong acid point of the solid acid catalyst can be suppressed, and the yield of the desired olefins can be improved.
  • the weak acid amount in the solid acid catalyst satisfies the above-mentioned ratio of the weak acid amount in the solid acid catalyst, and the absolute amount is preferably 0.01 mmol / g or more, more preferably 0.05 mmol / g or more, and 0.1 mmol / g. The above is more preferable.
  • the solid acid catalyst that can be used in the present invention is not particularly limited as long as the ratio of the weak acid amount is 70% or more, and preferred specific examples include alumina and aluminum phosphate.
  • the amount of the solid acid catalyst to be used is not particularly limited, but from the viewpoint of the reaction rate, it is preferably 0.1 to 200% by mass with respect to the raw material alcohol in the suspension bed reaction, preferably 0.5 to 100 More preferably, it is more preferably 1 to 50% by weight. Since the method of the present invention performs the reaction at a relatively low temperature, no side reaction is observed even when the amount of the catalyst used is increased, and the reaction time can be appropriately adjusted by increasing or decreasing the amount of the catalyst.
  • the reaction in the method of the present invention is a dehydration condensation reaction of alcohol, and if the by-produced water stays in the system, the reaction rate may decrease. Therefore, from the viewpoint of improving the reaction rate, nitrogen is introduced into the reaction system under stirring, usually under a reduced pressure of about 0.03 to 0.09 MPa or at normal pressure, and the reaction is carried out while removing the generated water from the system. It is preferable.
  • the reaction temperature is not higher than the boiling point of the raw alcohol, from 160 to 300 ° C, more preferably from 200 to 290 ° C, and more preferably from 240 to 280 ° C from the viewpoint of reaction rate and suppression of side reactions such as alkyl rearrangement and multimerization. Is more preferable.
  • the alcohol conversion rate and the conversion rate of the ether as the reaction intermediate are each preferably 95% or more, more preferably 97% or more, and still more preferably 98%. It is preferable that the time is as described above. Such a reaction time may vary depending on the reaction temperature, the type of solid acid catalyst, the amount used, and the like, but in the suspension bed reaction, preferably about 0.1 to 20 hours, more preferably 0.5 to About 10 hours, more preferably about 1 to 5 hours.
  • LHSV liquid space velocity
  • LHSV liquid space velocity
  • the alcohol conversion rate and the conversion rate of ether as a reaction intermediate usually reach 80% or more, preferably 90% or more, and the yield of olefins is usually 90% or more. Moreover, the production rates of the branched olefin and dimerization product contained in the olefins are usually 5% or less, respectively.
  • an olefin having a purity of 95% or more can be obtained by distillation-purifying only the olefin from the reaction product obtained as described above.
  • the olefins having a purity of 95% or more are useful as raw materials or intermediate raw materials for organic solvents, softeners, sizing agents and the like.
  • Example 1 In a flask equipped with a stirrer, 1-octadecanol (trade name: Calcoal 8098, Kao Corporation, boiling point: 336 ° C.) 50.0 g (0.19 mol), ⁇ -alumina as a solid acid catalyst (STREM Chemicals, Inc.) 1.5g (3.0% by mass with respect to the raw material alcohol) was charged and nitrogen was circulated in the system at 280 ° C. with stirring (nitrogen flow rate: 50 mL / min) for 5 hours. Reaction was performed.
  • 1-octadecanol trade name: Calcoal 8098, Kao Corporation, boiling point: 336 ° C.
  • ⁇ -alumina as a solid acid catalyst STREM Chemicals, Inc.
  • the ⁇ -alumina used as the solid acid catalyst was previously prepared by the ammonia thermal desorption method using a catalyst analyzer (trade name: fully automatic thermal desorption apparatus TPD-1At, manufactured by Nippon Bell Co., Ltd.). When the ratio of the weak acid amount was measured under the measurement conditions, it was 92.5%.
  • ⁇ Measurement conditions> Preprocessing
  • NH 3 adsorption treatment Using pretreated ⁇ -alumina, NH 3 was adsorbed at 50 ° C. and 2.7 kPa for 10 minutes.
  • the solution was diluted with hexane, then gas chromatograph analyzer (trade name: HP6890, manufactured by HEWLETT PACKARD), [column: Ultra ALLOY-1 capillary column 30.0 m ⁇ 250 ⁇ m (trade name, Frontier Laboratories, Inc.) Product), detector: hydrogen flame ion detector (FID), injection temperature: 300 ° C., detector temperature: 350 ° C., He flow rate: 4.6 mL / min], and the product was quantified.
  • the alcohol conversion was 100%
  • the ether production rate was 0.1%
  • the yield of all olefins was 99.9%.
  • the yield of branched olefins by rearrangement was 0%
  • the yield of dimerized olefins was 1.6%
  • the selectivity for linear monomer olefins (octadecene) was 98.3%. .
  • Comparative Example 1 using a catalyst having a weak acid content of 67%, although the yield of all olefins was high, branching by alkyl rearrangement occurred, and the yield of branched olefins was as high as 59.1%. . Olefin dimerization has also occurred, and the selectivity of linear monomer olefin (octadecene) was as low as 35.9%.
  • Comparative Example 2 in which the reaction temperature was lowered, branching due to alkyl rearrangement and dimerization of olefins could be suppressed as compared with Comparative Example 1, but the ether production rate was as high as 23.9% and the yield of olefins was low. It was a thing.
  • Example 6 the target linear monomer olefin could be produced with high yield and high selectivity.
  • Example 2 by increasing the amount of catalyst compared to Example 1, the reaction rate could be improved without loss of yield due to side reactions.
  • Example 3 to 5 it was found that olefination proceeded efficiently even when the reaction temperature was changed to 300, 260, and 240 ° C.
  • Example 6 even if it changed to the catalyst whose ratio of weak acid amount is 96%, it turned out that olefination advances selectively and efficiently.
  • long-chain olefins can be produced with high yield and high selectivity by liquid phase dehydration reaction of long-chain aliphatic primary alcohols. it can.
  • olefins can be produced with high yield and high selectivity.
  • the obtained olefins are useful as direct or intermediate raw materials in the fields of organic solvents, surfactants, fiber oils, softeners, cosmetics, pharmaceuticals, lubricating oils and the like. More specifically, for example, it is used in the form of a cream, gel, lotion, solution, emulsion or the like as a component of hair cosmetics such as shampoo, rinse, treatment, conditioner, cosmetics for skin, shower bath. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 固体酸触媒の存在下、炭素数12~24の脂肪族第一級アルコールの液相脱水反応によりオレフィン類を製造する方法であって、前記固体酸触媒が、アンモニア昇温脱離法(NH3-TPD)により測定された全酸量のうち、脱離温度300℃以下におけるアンモニア脱離量から算出された酸量が70%以上である、オレフィン類の製造方法。

Description

オレフィン類の製造方法
 本発明はオレフィン類の製造方法に関し、特に、長鎖脂肪族第一級アルコールの液相脱水反応により長鎖オレフィン類を製造する方法に関する。
 気相でのアルコールの脱水反応によるオレフィン化合物の製造方法は既に知られている。例えば特許文献1には、酸化ジルコニウムの存在下、反応温度300~400℃、気相での第二級アルコールの脱水反応によるオレフィン化合物の製造方法が開示されている。
 しかしながら、この特許文献1記載の方法に代表される気相反応では、原料を全て気化させる必要があり、特に高沸点のアルコールに関してはエネルギーの消費が大きく、コスト的にも不利であると言える。更に、高温条件でのオレフィン化は、アルキル転位による分岐化及びオレフィンの多量化を併発しやすく、生成物の収率低下が問題となる。
 これに対し、濃硫酸やスルホン酸等の均一系酸触媒を用いた液相反応でのアルコールの脱水によるオレフィン化合物の製造方法も知られている。なお、液相反応とは、原料アルコールの沸点以下、即ち液相が存在する温度以下での反応のことを指す。例えば特許文献2には、脱水触媒としてトリフルオロメタンスルホン酸を使用して、液相での第一級アルコールの脱水によるオレフィン化合物の製造方法が開示されている。
 しかしながら、この特許文献2記載の方法に代表される液相反応において使用される均一系酸触媒は、一般的に腐食性があり、反応器からの金属分溶出が懸念される。また廃触媒の中和処理等、コスト的に不利な点がある。更に、強酸点を有する触媒を用いたオレフィン化では、前述の高温条件下における反応と同様、アルキル転位による分岐化及びオレフィンの多量化を併発しやすく、生成物の収率低下が問題となる。
 上述した理由から、固体酸触媒を用いた低温かつ液相でのアルコールの脱水によるオレフィン化が望まれている。
 ところが、低温条件でのアルコールの脱水反応では、一般的に、分子間脱水が優先してエーテルが生成することが知られている。例えば特許文献3では、スルホン酸基含有イオン交換樹脂を触媒として使用して、イソプロピルアルコールを150~300℃で反応させるジイソプロピルエーテルの製造方法が開示されている。
 このように、アルコールの脱水反応は条件次第で分子内脱水及び分子間脱水の双方が並行して起こり得る。特に比較的低温でのアルコールの脱水反応では、分子間脱水によるエーテルの生成が優先することから、効率的なオレフィンの製造は困難とされている。
特開昭61-53230号公報 特表2008-538206号公報 特開平9-157200号公報
 本発明の課題は、長鎖脂肪族第一級アルコールの液相脱水反応にて、高収率かつ高選択的に長鎖オレフィン類を製造する方法を提供することにある。なお、液相反応とは、原料アルコールの沸点以下、即ち液相が存在する温度以下での反応のことを指す。
 本発明者は、アルミナやリン酸アルミニウムに代表される酸強度の弱い固体酸触媒の存在下で、280℃以下の比較的低温で長鎖脂肪族第一級アルコールの液相脱水反応を行ったところ、当初はエーテルを主成分とする混合物が得られるが、更に原料アルコールが消費された後も同条件にて継続して反応させると、予想外にエーテルが分解してオレフィン類が得られることを見出した。
 すなわち、本発明は、固体酸触媒の存在下、炭素数12~24の脂肪族第一級アルコールの液相脱水反応によりオレフィン類を製造する方法であって、前記固体酸触媒が、アンモニア昇温脱離法(NH3-TPD)により測定された全酸量のうち、脱離温度300℃以下におけるアンモニア脱離量から算出された酸量が70%以上である、オレフィン類の製造方法を提供する。
 本発明の方法によれば、長鎖脂肪族第一級アルコールの液相脱水反応にて、高収率かつ高選択的に長鎖オレフィン類を製造することができる。本発明の方法は、酸強度の弱い固体酸触媒を用いて比較的低温で脱水反応を液相中で行うため、エネルギー消費量が少なく、しかもアルキル転位による分岐化及びオレフィンの多量化を併発しにくい。
[原料アルコール]
 本発明において原料として用いられるアルコールは、炭素数12~24の脂肪族第一級アルコールである。本発明における反応温度が原料アルコールの沸点以下であることを考慮すると、原料アルコールの炭素数は、12~20が好ましく、14~20がより好ましく、16~20が更に好ましい。
 原料アルコールの具体例としては、1-ドデカノール、1-トリデカノール、1-テトラデカノール、1-ペンタデカノール、1-ヘキサデカノール、1-ヘプタデカノール、1-オクタデカノール、1-ノナデカノール、1-エイコサノール等が挙げられる。
 これらの原料アルコールは、単独で又は二種以上を組み合わせて用いることができる。
[固体酸触媒]
 本発明に用いられる固体酸触媒は、アンモニア昇温脱離法(NH3-TPD)により測定された全酸量のうち、脱離温度300℃以下におけるアンモニア脱離量から算出された酸量(弱酸量)が70%以上のものであり、弱酸量の割合が多く全体として酸強度の低い触媒である。
 アンモニア昇温脱離法とは、固体触媒にアンモニアを吸着させた後、一定の昇温速度に制御して連続的に昇温させて、脱離するアンモニア量及び脱離温度を測定する方法である。固体触媒の酸点のうち弱い酸点に吸着しているアンモニアは低温で脱離し、強い酸点に吸着しているアンモニアは高温で脱離することから、触媒の酸量や酸強度を測定することができる。アンモニア昇温脱離法による測定は、例えば触媒分析装置(商品名:全自動昇温脱離装置TPD-1At、日本ベル株式会社製)を用いて行うことができる。上記の酸点の量は、ZSM-5型ゼオライト(エクソンモービルカタリスト社製、商品名:JRC-Z5-25H)のhighピーク(観測される2種のピークのうち、高温側のピーク)を0.99mmol/gとしてこれに対する相対的な量として測定する。ピークの検出は、質量スペクトルにおけるアンモニアのm/e=17のフラグメントでアンモニアを定量することにより行う。
 TPD(アンモニア昇温脱離)の測定法としては、一般的に行われる測定法を用いることができる。例えば、以下のような条件で前処理、NH3吸着処理、真空処理を順に行った後、TPD測定を行う。
  前処理:ヘリウム中200℃まで20分で昇温、1時間保持
  NH3吸着処理:50℃、2.7kPaで10分間NH3を吸着
  真空処理:50℃、4時間処理
  TPD測定:ヘリウムガスを50ml/minで流通、昇温速度5℃/minで600℃まで昇温
 本発明では、測定開始から脱離温度300℃までの温度範囲におけるアンモニア脱離量から弱酸量を算出し、脱離温度300℃を超えすべてのアンモニアが脱離するまでの温度範囲におけるアンモニア脱離量から強酸量を算出し、その合計を全酸量と定義している。全酸量に対する弱酸量の割合は次式により計算される。
  弱酸量の割合(%)=弱酸量(mmol/g)/全酸量(mmol/g)×100
 固体酸触媒における弱酸量の割合は、80%以上が好ましく、90%以上がより好ましく、93%以上が更に好ましく、95%以上が特に好ましい。上限は100%が好ましい。固体酸触媒における弱酸量の割合が高いほど、固体酸触媒の強酸点で起きるアルキル転位や二量化を抑制して、目的とするオレフィン類の収率を向上させることができる。
 固体酸触媒における弱酸量は、前述の固体酸触媒における弱酸量の割合を満たし、かつその絶対量は0.01mmol/g以上が好ましく、0.05mmol/g以上がより好ましく、0.1mmol/g以上が更に好ましい。
 本発明に用いることができる固体酸触媒は、弱酸量の割合が70%以上のものであれば特に限定されないが、好ましい具体例としてはアルミナやリン酸アルミニウム等を挙げることができる。
 固体酸触媒の使用量は、特に制限されるものではないが、反応速度の観点から、懸濁床反応においては、原料アルコールに対して0.1~200質量%が好ましく、0.5~100質量%がより好ましく、1~50質量%が更に好ましい。本発明の方法は比較的低温で反応を行うため触媒の使用量を増加させても副反応の併発は見られず、触媒量を増減させることで反応時間を適宜調整することができる。
[オレフィン化反応]
 本発明の方法における反応はアルコールの脱水縮合反応であり、副生した水が系内に滞留すると反応速度が低下するおそれがある。したがって、反応速度向上の観点から、撹拌下、通常0.03~0.09MPa程度の減圧下又は常圧で反応系内に窒素を導入し、生成する水を系外に除去しながら反応を行うことが好ましい。
 反応温度は、反応速度の観点及びアルキル転位や多量化等の副反応抑制の観点から、原料アルコールの沸点以下であり、160~300℃が好ましく、200~290℃がより好ましく、240~280℃が更に好ましい。
 反応時間としては、目的とするオレフィン類の収率の観点から、アルコール転化率及び反応中間体であるエーテルの転化率がそれぞれ好ましくは95%以上、より好ましくは97%以上、更に好ましくは98%以上になるような時間であることが好ましい。そのような反応時間は、反応温度及び固体酸触媒の種類やその使用量等によって変動し得るが、懸濁床反応においては、好ましくは0.1~20時間程度、より好ましくは0.5~10時間程度、更に好ましくは1~5時間程度である。固定床反応においては、LHSV(液空間速度)0.1~5.0/hが好ましく、0.2~3.5/hがより好ましく、0.3~2.0/hが更に好ましい。
 本発明の方法では、酸強度の弱い固体酸触媒を用いて比較的低温で行うアルコールの脱水反応であることから、まず分子間脱水によりエーテルが生成する。アルコール共存下においては、エーテルからのオレフィン化速度が遅いため、アルコールがほぼ完全に転化するまでは高収率でエーテルが生成する。そして、アルコールが消費された後にはエーテルからのオレフィン化速度が大きく向上し、効率よくオレフィン類を生成することが可能となる。
 このように、本発明の方法では、原料アルコールから一度エーテルを経由してオレフィン類を生成しているため反応に若干の時間を要するが、酸強度の弱い固体酸触媒を用いて低温で反応させているため、アルキル転位による分岐化及びオレフィンの多量化を併発しにくいという利点がある。更に脱水反応を液相で行うことができるため、エネルギー消費量を少なく済ませることができる。しかも、触媒量を増加させても副反応の併発は見られないことから、反応時間の問題は触媒量の調整により回避可能である。
 本発明の製造方法によれば、アルコール転化率及び反応中間体であるエーテルの転化率が通常80%以上、好ましくは90%以上に達し、しかもオレフィン類の収率は、通常90%以上となる。またオレフィン類に含まれる分岐オレフィン及び二量化体の生成率は、それぞれ通常5%以下となる。
 本発明においては、上記のようにして得られた反応生成物から、オレフィン類のみを蒸留精製することにより、純度95%以上のオレフィン類を得ることができる。
 この純度95%以上のオレフィン類は、有機溶剤、柔軟剤、サイズ剤等の原料又は中間原料として有用である。
実施例1
 撹拌装置付きフラスコに、1-オクタデカノール(商品名:カルコール8098、花王株式会社製、沸点:336℃)50.0g(0.19モル)、固体酸触媒としてγ-アルミナ(STREM Chemicals,Inc.社製)1.5g(原料アルコールに対して3.0質量%)を仕込み、撹拌下、280℃にて窒素を系内に流通させながら(窒素流通量:50mL/min)、5時間、反応を行った。なお、固体酸触媒として用いたγ-アルミナについて、あらかじめ触媒分析装置(商品名:全自動昇温脱離装置TPD-1At、日本ベル株式会社製)を用いてアンモニア昇温脱離法により以下の測定条件で弱酸量の割合を測定したところ92.5%であった。
<測定条件>
(前処理)
 TPD測定用セル内に0.10g精秤したγ-アルミナを、ヘリウム中200℃まで20分で昇温、1時間保持した。
(NH3吸着処理)
 前処理したγ-アルミナを用いて、50℃、2.7kPaで10分間NH3を吸着させた。
(真空処理)
 NH3吸着処理後のγ-アルミナを、50℃、10-6Paで4時間、TPD測定用セル内で真空処理して物理吸着しているアンモニアを脱離させた。
(TPD測定)
 前記触媒分析装置に真空処理後のγ-アルミナを配置し、該装置内にヘリウムを50ml/minで流通させ、昇温速度5℃/minで600℃まで昇温した。酸点の量は、ZSM-5型ゼオライト(エクソンモービルカタリスト社製、商品名:JRC-Z5-25H)のhighピーク(観測される2種のピークのうち、高温側のピーク)を0.99mmol/gとしてこれに対する相対的な量として決定した。
 反応終了後の溶液はヘキサンにより希釈した後、ガスクロマトグラフ分析装置(商品名:HP6890、HEWLETT PACKARD社製)、[カラム:Ultra ALLOY-1キャピラリーカラム30.0m×250μm(商品名、フロンティア・ラボ株式会社製)、検出器:水素炎イオン検出器(FID)、インジェクション温度:300℃、ディテクター温度:350℃、He流量:4.6mL/分]を用いて分析し、生成物を定量した。
 その結果、アルコール転化率は100%、エーテル生成率は0.1%、全オレフィン類の収率は99.9%であった。オレフィン類のうち、転位による分岐オレフィンの収率は0%、二量化オレフィンの収率は1.6%であり、直鎖単量体オレフィン(オクタデセン)の選択率は98.3%であった。
 なお、アルコール転化率、エーテル生成率、各収率、及び直鎖単量体オレフィン選択率は、以下の式により算出した。
 アルコール転化率(%)=100-[残存アルコール量(モル)/原料アルコール仕込み量(モル)]×100
 エーテル生成率(%)=[生成エーテル量(モル)×2/原料アルコール仕込み量(モル)]×100
 オレフィン類の収率(%)=[(分岐オレフィン量(モル)+直鎖単量体オレフィン量(モル)+二量化オレフィン量(モル)×2)/原料アルコール仕込み量(モル)]×100
 分岐オレフィンの収率(%)=[分岐オレフィン量(モル)/原料アルコール仕込み量(モル)]×100
 二量化オレフィンの収率(%)=[二量化オレフィン量(モル)×2/原料アルコール仕込み量(モル)]×100
 直鎖単量体オレフィン選択率(%)=[直鎖単量体オレフィン量(モル)/全オレフィン類量(モル)]×100
 反応条件及び結果を表1にまとめて示す。
実施例2~6及び比較例1~3
 反応条件を表1に示すように変更したこと以外は、実施例1と同様にして反応を行い、測定を行った。反応条件及び結果を表1及び2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 弱酸量の割合が67%の触媒を用いた比較例1では、全オレフィン類の収率は高いものの、アルキル転位による分岐化が起きており、分岐オレフィンの収率が59.1%と高かった。また、オレフィンの二量化も起きており、直鎖単量体オレフィン(オクタデセン)の選択率は35.9%と低いものであった。
 反応温度を下げた比較例2では、比較例1に比べてアルキル転位による分岐化やオレフィンの二量化を抑制できたが、エーテル生成率が23.9%と高く、オレフィン類の収率は低いものであった。
 また、弱酸量の割合が63%の触媒を用いた比較例3では、エーテル生成率が36.1%と高く、しかもアルキル転位による分岐化及びオレフィンの二量化も起きており、直鎖単量体オレフィンの選択率は32.9%と低いものであった。
 したがって、比較例1~3では、副生成物が多く、目的とする直鎖単量体オレフィンを高収率かつ高選択的に製造することができなかった。
 これに対し、実施例1~6では、いずれも目的とする直鎖単量体オレフィンを高収率かつ高選択的に製造することができた。
 特に、実施例2では、実施例1よりも触媒量を増やすことで、副反応による収率の損失なく反応速度を向上できた。
 また、実施例3~5では、反応温度を300、260、240℃と変更しても、オレフィン化が効率よく進行することがわかった。
 また、実施例6では、弱酸量の割合が96%の触媒に変更しても、オレフィン化が選択性及び効率よく進行することがわかった。
 以上の結果から明らかなように、本発明の方法によれば、長鎖脂肪族第一級アルコールの液相脱水反応にて、高収率かつ高選択的に長鎖オレフィン類を製造することができる。
 本発明によれば、高収率かつ高選択的にオレフィン類を製造することができる。得られたオレフィン類は、有機溶剤、界面活性剤、繊維油剤、柔軟剤、化粧品、医薬品、潤滑油等の分野における直接又は中間原料として有用である。より具体的には、例えば、シャンプー、リンス、トリートメント、コンディショナー等の毛髪用化粧料、皮膚用化粧料、シャワー浴剤等の成分として、クリーム、ゲル、ローション、溶液、エマルジョン等の形態で使用することができる。

Claims (5)

  1.  固体酸触媒の存在下、炭素数12~24の脂肪族第一級アルコールの液相脱水反応によりオレフィン類を製造する方法であって、前記固体酸触媒が、アンモニア昇温脱離法(NH3-TPD)により測定された全酸量のうち、脱離温度300℃以下におけるアンモニア脱離量から算出された酸量が70%以上である、オレフィン類の製造方法。
  2.  反応温度が160~300℃である、請求項1に記載のオレフィン類の製造方法。
  3.  前記固体酸触媒が、アルミナ又はリン酸アルミニウムである、請求項1又は2に記載のオレフィン類の製造方法。
  4.  前記脂肪族第一級アルコールの炭素数が16~20である、請求項1~3のいずれかに記載のオレフィン類の製造方法。
  5.  前記固体酸触媒の使用量が、前記脂肪族第一級アルコールに対して1~50質量%である、請求項1~4のいずれかに記載のオレフィン類の製造方法。
PCT/JP2010/069314 2009-10-30 2010-10-29 オレフィン類の製造方法 WO2011052732A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10826862.4T ES2685072T3 (es) 2009-10-30 2010-10-29 Método para producir olefinas
US13/504,662 US9000248B2 (en) 2009-10-30 2010-10-29 Method for manufacturing olefins
JP2011538501A JP5221773B2 (ja) 2009-10-30 2010-10-29 オレフィン類の製造方法
EP10826862.4A EP2495227B1 (en) 2009-10-30 2010-10-29 Method for manufacturing olefins
CN201080048811.9A CN102596858B (zh) 2009-10-30 2010-10-29 烯烃类的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-250630 2009-10-30
JP2009250630 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052732A1 true WO2011052732A1 (ja) 2011-05-05

Family

ID=43922154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069314 WO2011052732A1 (ja) 2009-10-30 2010-10-29 オレフィン類の製造方法

Country Status (7)

Country Link
US (1) US9000248B2 (ja)
EP (1) EP2495227B1 (ja)
JP (1) JP5221773B2 (ja)
CN (1) CN102596858B (ja)
ES (1) ES2685072T3 (ja)
MY (1) MY156179A (ja)
WO (1) WO2011052732A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077723A1 (ja) * 2010-12-08 2012-06-14 住友化学株式会社 アルコールからオレフィンを製造するための触媒及びオレフィンの製造方法、並びに、ポリオレフィン及びオレフィンオキサイド
JP2012232944A (ja) * 2011-05-02 2012-11-29 Kao Corp α−オレフィンの製造方法
JP2013203705A (ja) * 2012-03-28 2013-10-07 Kao Corp オレフィンの製造方法
JP2013203704A (ja) * 2012-03-28 2013-10-07 Kao Corp オレフィンの製造方法
WO2014112522A1 (ja) * 2013-01-15 2014-07-24 花王株式会社 内部オレフィンの製造方法
WO2014175359A1 (ja) 2013-04-23 2014-10-30 花王株式会社 オレフィンの製造方法
WO2015098415A1 (ja) 2013-12-27 2015-07-02 花王株式会社 内部オレフィンスルホン酸塩の製造方法
WO2017209114A1 (ja) 2016-05-31 2017-12-07 花王株式会社 界面活性剤組成物
US9968914B2 (en) 2012-12-26 2018-05-15 Kao Corporation Method for producing olefin
WO2019053956A1 (ja) 2017-09-12 2019-03-21 花王株式会社 オレフィンの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718259A (zh) * 2013-03-15 2020-09-29 3M创新有限公司 用于制备生物基醇的(甲基)丙烯酸酯及其聚合物的方法
CN103333038B (zh) * 2013-07-19 2015-07-15 沈阳市宏城精细化工厂 一种生产长碳链α线性烯烃的方法
CN104193571B (zh) * 2014-07-23 2016-03-30 上海欧勒奋生物科技有限公司 一种由天然醇或酯制备长碳链烯烃的方法及其设备
CN112079707B (zh) * 2020-09-23 2021-06-01 中国科学院大连化学物理研究所 一种钴盐催化氧化伯醇制备羧酸及联产α-烯烃的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153230A (ja) * 1984-08-24 1986-03-17 Sumitomo Chem Co Ltd 末端に二重結合を有する化合物の製造方法
JPH06105323A (ja) 1992-09-24 1994-04-15 Matsushita Electric Ind Co Ltd 肌色検出回路および撮像装置
JPH09157200A (ja) 1995-12-08 1997-06-17 Cosmo Sogo Kenkyusho:Kk ジイソプロピルエーテルの製造方法
JP2008503453A (ja) * 2004-06-19 2008-02-07 アルキミカ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 無水アルキルホスホン酸類を用いた、アルコール類から水の脱離によるアルケン類の製造方法
JP2008538206A (ja) 2005-03-16 2008-10-16 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 脂肪アルコールの脱水方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE705179C (de) * 1930-05-02 1941-04-21 I G Farbenindustrie Akt Ges Verfahren zur Herstellung von Sulfonierungserzeugnissen
DE583564C (de) * 1931-02-07 1933-09-06 I G Farbenindustrie Akt Ges Verfahren zur Herstellung von hoehermolekularen Olefinen
US4264752A (en) * 1979-08-08 1981-04-28 Union Carbide Corporation Radiation-curable acrylated urethane polycarbonate compositions
US4234752A (en) * 1979-09-28 1980-11-18 Phillips Petroleum Company Dehydration of alcohols
JP2976396B2 (ja) * 1991-02-04 1999-11-10 三井化学株式会社 脱水反応用γ−アルミナ触媒およびこの触媒を用いるオレフィン類の製造方法
WO2001044145A1 (en) 1999-12-14 2001-06-21 Fortum Oil And Gas Oy Method for the manufacture of olefins
DE10152267A1 (de) 2001-10-20 2003-04-30 Cognis Deutschland Gmbh Verfahren zur Herstellung von Poly-alpha-Olefinen
FI121425B (fi) * 2006-06-14 2010-11-15 Neste Oil Oyj Prosessi perusöljyn valmistamiseksi
DE102008005721C5 (de) * 2008-01-23 2012-04-19 Sasol Germany Gmbh Verfahren zur Herstellung eines Latentwärmespeichermaterials
JP5136151B2 (ja) * 2008-03-27 2013-02-06 東ソー株式会社 エチレンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153230A (ja) * 1984-08-24 1986-03-17 Sumitomo Chem Co Ltd 末端に二重結合を有する化合物の製造方法
JPH06105323A (ja) 1992-09-24 1994-04-15 Matsushita Electric Ind Co Ltd 肌色検出回路および撮像装置
JPH09157200A (ja) 1995-12-08 1997-06-17 Cosmo Sogo Kenkyusho:Kk ジイソプロピルエーテルの製造方法
JP2008503453A (ja) * 2004-06-19 2008-02-07 アルキミカ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 無水アルキルホスホン酸類を用いた、アルコール類から水の脱離によるアルケン類の製造方法
JP2008538206A (ja) 2005-03-16 2008-10-16 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 脂肪アルコールの脱水方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATALYSIS SOCIETY OF JAPAN: "Kogyo Shokubai Hanno Hen 2", SHOKUBAI KOZA, vol. 8, 1985, pages 277 - 282, XP008159965 *
H. MULDER ET AL.: "Dehydration of alcohols in the presence of carbonyl compounds and carboxylic acids in a Fischer-Tropsch hydrocarbons matrix", APPLIED CATALYSIS A: GENERAL, 2006, pages 36 - 40, XP008155919 *
JOHN B. BUTT ET AL.: "CATALYSIS OF ALCOHOL AND ETHER DEHYDRATION ON GAMMA-ALUMINA", I&EC FUNDAMENTALS, vol. 6, no. 3, 1967, pages 325 - 333, XP008155956 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077723A1 (ja) * 2010-12-08 2012-06-14 住友化学株式会社 アルコールからオレフィンを製造するための触媒及びオレフィンの製造方法、並びに、ポリオレフィン及びオレフィンオキサイド
WO2012077724A1 (ja) * 2010-12-08 2012-06-14 出光興産株式会社 オレフィン製造用触媒及びオレフィンの製造方法
US9732012B2 (en) 2010-12-08 2017-08-15 Sumitomo Chemical Company, Limited Method for producing olefin
JP2012232944A (ja) * 2011-05-02 2012-11-29 Kao Corp α−オレフィンの製造方法
JP2013203705A (ja) * 2012-03-28 2013-10-07 Kao Corp オレフィンの製造方法
JP2013203704A (ja) * 2012-03-28 2013-10-07 Kao Corp オレフィンの製造方法
US9968914B2 (en) 2012-12-26 2018-05-15 Kao Corporation Method for producing olefin
CN104918902A (zh) * 2013-01-15 2015-09-16 花王株式会社 内部烯烃的制造方法
WO2014112522A1 (ja) * 2013-01-15 2014-07-24 花王株式会社 内部オレフィンの製造方法
JP2014224107A (ja) * 2013-04-23 2014-12-04 花王株式会社 オレフィンの製造方法
WO2014175359A1 (ja) 2013-04-23 2014-10-30 花王株式会社 オレフィンの製造方法
WO2015098415A1 (ja) 2013-12-27 2015-07-02 花王株式会社 内部オレフィンスルホン酸塩の製造方法
WO2017209114A1 (ja) 2016-05-31 2017-12-07 花王株式会社 界面活性剤組成物
WO2019053956A1 (ja) 2017-09-12 2019-03-21 花王株式会社 オレフィンの製造方法
US11078129B2 (en) 2017-09-12 2021-08-03 Kao Corporation Method for producing olefin

Also Published As

Publication number Publication date
EP2495227B1 (en) 2018-07-04
US9000248B2 (en) 2015-04-07
MY156179A (en) 2016-01-15
US20120220808A1 (en) 2012-08-30
EP2495227A1 (en) 2012-09-05
CN102596858A (zh) 2012-07-18
JPWO2011052732A1 (ja) 2013-03-21
ES2685072T3 (es) 2018-10-05
JP5221773B2 (ja) 2013-06-26
CN102596858B (zh) 2015-08-19
EP2495227A4 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5221773B2 (ja) オレフィン類の製造方法
Murphy et al. Catalytic dehydration of methyl lactate: Reaction mechanism and selectivity control
EP3453695A1 (en) A process for the production of olefins and use thereof
JP5763406B2 (ja) α−オレフィンの製造方法
KR20190019060A (ko) 이소프로필 알코올의 제조 방법 및 불순물이 저감된 이소프로필 알코올
Bordoloi et al. Catalytic properties of WOx/SBA-15 for vapor-phase Beckmann rearrangement of cyclohexanone oxime
EP2990395B1 (en) Method for producing olefin
JP6185848B2 (ja) 内部オレフィンの製造方法
KR20010099707A (ko) 알파,알파-측쇄 카복실산의 제조방법
Hua et al. H/D exchange reaction between isobutane and acidic USY zeolite: a mechanistic study by mass spectrometry and in situ NMR
CN107175126B (zh) 一种Zn/无粘剂ZSM-11分子筛催化剂的制备方法
JP5336239B2 (ja) オレフィン二量体の製造方法、オレフィン二量体
JP2015504090A (ja) トリメチルアミンおよびエチレンオキシドからの水酸化コリンの製造方法
EP2563748B1 (en) Method of preparing alkene compound
CN111233638A (zh) 一种封端乙二醇二甲醚的合成方法
Tsuji et al. Gas-phase catalytic Beckmann rearrangement over crystalline BPO4 of dehydration ability
CN112023979A (zh) 合成2-叔丁基苯胺催化剂及其制备方法和应用
Wang et al. In situ FTIR spectroscopy study to reveal Ga-modified ZSM-5 for boosting isobutene amination
Truitt et al. In-situ NMR studies of isobutane activation and exchange in zeolite beta
JP2000169863A (ja) 炭化水素の異性化方法
CN103934035B (zh) 一种叔丁醇脱水制备异丁烯的催化剂及其制备方法
Fukui et al. Alkylation of Benzene with Ethylene by the Metal Sulfate Supported on the Silica-Alumina Catalyst
CN110372004B (zh) 一种zsm-5分子筛微观铝分布的调控方法及应用
JP4025373B2 (ja) カルボン酸の製造方法
Abidin et al. Synthesis of acrolein from glycerol using fepo4 catalyst in liquid phase dehydration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048811.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538501

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12012500831

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13504662

Country of ref document: US

Ref document number: 2010826862

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001995

Country of ref document: TH

Ref document number: 3754/DELNP/2012

Country of ref document: IN