WO2011050614A1 - 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用 - Google Patents

乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用 Download PDF

Info

Publication number
WO2011050614A1
WO2011050614A1 PCT/CN2010/073705 CN2010073705W WO2011050614A1 WO 2011050614 A1 WO2011050614 A1 WO 2011050614A1 CN 2010073705 W CN2010073705 W CN 2010073705W WO 2011050614 A1 WO2011050614 A1 WO 2011050614A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst system
reaction
acetylene
catalyst
chloride
Prior art date
Application number
PCT/CN2010/073705
Other languages
English (en)
French (fr)
Inventor
于志勇
Original Assignee
Yu Zhiyong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Zhiyong filed Critical Yu Zhiyong
Publication of WO2011050614A1 publication Critical patent/WO2011050614A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/08Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated hydrocarbons

Definitions

  • the present invention relates to a catalyst system for the preparation of vinyl chloride from the acetylation of acetylene and its preparation and use. Background technique
  • Vinyl chloride monomer is an important organic synthetic chemical raw material for the production of polyvinyl chloride.
  • Polyvinyl chloride is an important variety of plastics.
  • Acetylene hydrochlorination is an important chemical process for the industrial synthesis of vinyl chloride.
  • Most of the PVC raw materials in China are produced by this reaction.
  • the catalyst used in the reaction is a mercury chloride catalyst supported on activated carbon, and the reaction is a gas-solid reaction.
  • the catalytic reaction carried out in a fixed bed has the characteristics of high catalytic activity, fast reaction speed and intense reaction.
  • the reaction zone is relatively narrow (usually 0.15 m ⁇ 0.7 m)
  • the reaction tropical is difficult to travel
  • the local temperature is difficult to control
  • the mercury chloride in the catalyst is sublimated rapidly, resulting in short catalyst life, high consumption, and great environmental impact.
  • Hazard, while activated carbon is apt to change.
  • the gas-solid reaction uses activated carbon as the carrier.
  • the adsorption capacity of the activated carbon on the catalyst is limited.
  • the mercury chloride catalyst system supported on the activated carbon needs to be heated and activated for 8-12 hours. In use, the catalyst system is easy to be powdered and easy to surface-surface carbon.
  • the liquid-phase catalytic reaction system does not use a solid carrier, has good heat transfer effect, avoids excessive local temperature, reduces catalyst sublimation, thereby prolonging catalyst life and reducing consumption, saving cost and being environmentally friendly. Without the use of activated carbon carrier, it avoids the problems of chalking, compaction, etc., and is easy to operate; the catalyst after use can be recovered and regenerated.
  • Patent US 1812542, US 1934324 and US 3113158 describe the dissolution of copper chloride and chlorine
  • the aqueous solution of cuprous chloride in hydrochloric acid is used as a catalyst to convert acetylene to vinyl chloride.
  • Patent CN1037501 dissolves palladium chloride in N-methylpyrrolidone as a catalyst to effect liquid phase hydrochlorination.
  • SU 165446 and SU 232956 report the acetylene hydrochlorination in dimethylformamide and triethanol hydrochloride solution in the presence of copper chloride, respectively.
  • Acetylene hydrochlorination reaction temperature is relatively high, industrially usually 150 ⁇ 180 ° C, and these patents use common organic solvents or water as a catalyst dispersion system, some solvents have low boiling points, such as water, ethanol; some solvents in The volatilization is severe at the reaction temperature, causing loss of solvent, requiring the addition of cooling equipment, increasing the cost, and limiting the selection of the reaction temperature, and causing environmental pollution. In addition, in the event of a leak in the organic solvent, the pollution is serious and it is easy to cause a fire.
  • An ionic liquid is a substance composed of ions that is liquid at room temperature or near the temperature of use. Its properties can be adjusted by modifying the cation or changing the anion. For example, the melting point, viscosity, density, and hydrophobicity can be changed by changing the structure of the ion. Change it. Summary of the invention
  • the present invention provides a catalyst system for preparing vinyl chloride by hydroacetylation of acetylene, and its preparation and application.
  • the catalyst system for preparing vinyl chloride by hydroacetylation of acetylene provided by the invention comprises a catalyst and a catalyst carrier, wherein the catalyst carrier is an imidazole-based ionic liquid.
  • the catalyst carrier anion is an imidazole-based ionic liquid of chloride ion, bromide ion, hexafluorophosphate or tetrafluoroborate.
  • imidazole-based ionic liquid of chloride ion, bromide ion, hexafluorophosphate or tetrafluoroborate 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl One of -3-methylimidazolium hexafluorophosphate or 1-ethyl-3-methylimidazolium tetrafluorophosphate or a combination of two or more thereof.
  • the catalyst is one of a chloride of gold, platinum, palladium, tin, mercury, copper or ruthenium or a combination of two or more thereof, wherein the concentration of the catalyst in the catalyst system is 0.02 to 1 mol/L.
  • the present invention provides a method of preparing the above catalyst system: according to the concentration, the above The catalyst is dissolved in the above catalyst carrier.
  • the catalyst system further comprises one or a combination of two or more of cesium, potassium or cesium chloride as a cocatalyst, wherein the concentration of the above cocatalyst in the catalyst system is 0.0045 to 0.5 mol/ L.
  • the above catalyst system is prepared by dissolving the above catalyst and the cocatalyst in the above catalyst carrier according to the concentration.
  • the catalyst system for preparing vinyl chloride by the above-mentioned acetylene hydrochlorination to prepare vinyl chloride is prepared by mixing acetylene and hydrogen chloride in a molar ratio of 1:1 to 1:3, and preparing vinyl chloride by hydrochlorination of the above acetylene.
  • the reaction is carried out in the presence of a catalyst system at a reaction temperature of 100 to 200 °C.
  • the above-mentioned acetylene hydrochlorination catalyst system for preparing vinyl chloride to prepare vinyl chloride is prepared by mixing acetylene and hydrogen chloride in a molar ratio of 1:1.2 to 1:1.5, and preparing vinyl chloride by hydrochlorination of the above acetylene.
  • the reaction is carried out in the presence of a catalyst system at a reaction temperature of 150 to 180 °C.
  • the catalyst system provided by the invention has a simple preparation method, and the reaction of acetylene hydrochlorination to prepare vinyl chloride in the presence of the above catalyst system improves the conversion of acetylene and the selectivity of vinyl chloride;
  • the catalyst system can be directly used in the acetylene hydrochlorination reaction, omitting the activation step of the catalyst system in the prior art, and simplifying the process steps of the reaction;
  • the catalyst system has a large stable temperature range and good chemical stability, and the catalyst system is denatured during use to affect the reaction result;
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has no loss during use, and is safe and environmentally friendly;
  • the catalyst system does not contain organic solvents, no flammability, no ignition point, safe to use, ie Preventing leakage accidents and avoiding greater harm;
  • the present invention classifies ionic liquids into four categories according to different cations: [NR 4 ]+ (decyl quaternary ammonium) ionic liquid, [PR 4 ]+ (decyl quaternary phosphonium) ionic liquid, imidazole ionic liquid and pyridine Ionic liquid.
  • Example 1 The invention is further illustrated by the following examples.
  • Example 1 The invention is further illustrated by the following examples.
  • the above catalyst system is directly used in the reaction of acetylene hydrochlorination to produce vinyl chloride.
  • the reaction was carried out and the hydrogen chloride activation time was 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 35-40% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system is stable, no loss, continuous After 720 hours of use, there was no decrease in the conversion of acetylene and the selectivity of vinyl chloride.
  • cuprous chloride was dissolved in 22.9236 g of 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquid, and the concentration of cuprous chloride was 0.92 mol/L. Dissolved in oil at 120 ° C for 2 h.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to produce vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation time of l.lh.
  • the reaction tail gas was analyzed to obtain a conversion of acetylene of 25-35% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the lg platinum tetrachloride was dissolved in 31.3710 g of 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ion liquid, and the platinum tetrachloride concentration was 0.039 mol/L. Dissolved in oil at 120 ° C for 2 h.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of C, and the hydrogen chloride activation time was 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 55-60% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use. During the reaction, the catalyst system was stable and no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the lg of gold trichloride was dissolved in 28.3492 g of 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquid, and the concentration of gold trichloride was 0.075 mol/L. Dissolve lh at a temperature of 100 ° C.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 55-60% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of C, and the hydrogen chloride activation time was 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 53-60% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 35-40% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use. During the reaction, the catalyst system was stable and no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 57-60% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 57-65% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor Pressure, non-volatile, colorless, odorless, with a large stable temperature range, good chemical stability, no degeneration of the catalyst system during the use process and adverse effects on the reaction, and no flammability, no ignition point, Safe to use.
  • the catalyst system was stable and no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the lg gold trichloride was dissolved in 29.6394 g of 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ion liquid, and the concentration of gold trichloride was 0.0719 mol/L. Dissolve lh at a temperature of 100 ° C. Further, 0.3293 g of copper chloride was added, and the concentration of copper chloride was 0.0532 mol/L, and dissolved for 0.5 h.
  • [Bmim]Cl 1-butyl-3-methylimidazolium chloride
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 65-70% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 38-44% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 61-67% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system is stable, no loss, continuous After 720 hours of use, there was no decrease in the conversion of acetylene and the selectivity of vinyl chloride.
  • cuprous chloride was dissolved in 15.2158 g of 1-butyl-3-methylimidazolium chloride [Bmim]Cl ionic liquid, dissolved in oil at 100 ° C for 1 h, and then added 16.3952 g of 1-ethyl -3-methylimidazolium tetrafluorophosphate [Emim] PF 6 ionic liquid and 0.3026 g of potassium chloride were dissolved for 0.5 h, the concentration of cuprous chloride was 0.82 mol/L, and the concentration of potassium chloride was 0.118 mol/L.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 45-50% and a vinyl chloride selectivity of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 44-49% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 35-40% and a selectivity of vinyl chloride of more than 99%.
  • cerium chloride and 0.13 g of cerium chloride were dissolved in 50.22 gl-ethyl-3-methylimidazolium hexafluorophosphate 33.75 ([Emim]PF 6 ) ionic liquid, and the cerium chloride concentration was 0.57 mol/L.
  • concentration of ruthenium chloride is 0.0122 mol/L. Dissolved for 1 h at a temperature of 100 ° C.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 55-62% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 30 to 45% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor Pressure, non-volatile, colorless, odorless, with a large stable temperature range, good chemical stability, no degeneration of the catalyst system during the use process and adverse effects on the reaction, and no flammability, no ignition point, Safe to use.
  • the catalyst system was stable and no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 42-48% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion of acetylene of 10-20% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 37-42% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use. During the reaction, the catalyst system was stable and no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 35-40% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 68-75% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 30 to 45% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of hydroacetylation of acetylene to vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 44-49% and a selectivity of vinyl chloride of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use.
  • the catalyst system was stable and had no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction tail gas was analyzed to obtain an acetylene conversion rate of 47.84% and a vinyl chloride selectivity of more than 99%.
  • the catalyst system was weighed without loss of quality.
  • the catalyst system has almost no vapor pressure, is non-volatile, colorless, odorless, has a large stable temperature range, and has good chemical stability.
  • the catalyst system does not undergo denaturation and adversely affects the reaction during use, and is non-flammable. Sex, no fire, safe to use. During the reaction, the catalyst system was stable and no loss. After continuous use for 720 hours, the conversion of acetylene and the selectivity of vinyl chloride did not decrease.
  • Hydrochloric acid, calcium chloride and copper chloride were dissolved in 600 g of water, the concentration of hydrochloric acid was 11.74 mol/L, the concentration of calcium chloride was 3.19 mol/L, and the concentration of copper chloride was 2.62 mol/L.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to form vinyl chloride.
  • the reaction tail gas was analyzed to obtain an acetylene conversion rate of 34.52% and a vinyl chloride selectivity of 86%.
  • the catalyst system prepared in the above step is used in the reaction of acetylene hydrochlorination to produce vinyl chloride.
  • the reaction was carried out under the conditions of hydrogen chloride activation for 1.5 h.
  • the reaction tail gas was analyzed to obtain a conversion ratio of acetylene of 41% and a selectivity of vinyl chloride of 83%.
  • the catalyst system was weighed before and after the reaction, and the mass loss was 13%. After 240 hours of use of the catalyst system, the acetylene conversion was 31.2% and the vinyl chloride selectivity was 78%.
  • the above-described embodiments are merely preferred embodiments for the purpose of fully illustrating the present invention, and the scope of the present invention is not limited thereto. Equivalent substitutions or modifications made by those skilled in the art based on the present invention are within the scope of the present invention. The scope of the invention is defined by the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用。催化剂体系包括催化剂载体和催化剂,其中催化剂载体为咪唑类离子液体,催化剂为金、铂、钯、锡、汞、铜或铑的氯化物中的一种或其两种以上任意组合。上述催化剂体系的制备方法为将催化剂溶于催化剂载体中。乙炔和氯化氢两种气体混合后在上述催化剂体系存在下进行反应。此制备工艺实现了乙炔氢氯化制备氯乙烯的液相反应,避免催化剂体系的损失,且更加环保和安全。提高了乙炔的转化率和氯乙烯的选择性。

Description

乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用
技术领域
本发明涉及一种乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应 用。 背景技术
氯乙烯单体是重要的有机合成化工原料, 用于生产聚氯乙烯, 聚氯乙 烯是塑料的重要品种。 乙炔氢氯化反应是工业合成氯乙烯的重要化学过程, 我国绝大多数聚氯乙烯原料是通过该反应生产的。 目前该反应釆用的催化 剂是负载在活性炭上的氯化汞催化剂, 反应为气固反应, 在固定床中进行 的催化反应具有催化活性高、 反应速度快、 反应剧烈的特点。 但是, 反应 带比较窄 (通常为 0.15 m ~ 0.7 m)、 反应热带走困难、 局部温度难以控制、 触媒中的氯化汞升华快, 从而导致催化剂使用寿命短、 消耗高、 对环境带 来巨大危害, 同时活性炭易变性。 气固反应使用活性炭为载体, 活性炭对 催化剂的吸附能力有限, 使用前, 负载在活性炭上的氯化汞催化剂体系需 加热活化 8-12小时; 使用中, 催化剂体系易粉化、 易表面积炭, 易板结化, 需要经常翻捣, 造成催化剂流失; 使用后, 催化剂吸附在活性炭上不利于 回 收再生 ( Agnew J.B., et al., Catalyst deactivation in acetylene hydrochlorination, Ind. Eng. Chem. Prod. Res. Dev., 1986, 25:19-22. )。
与传统的固定床反应器相比, 液相催化反应体系不使用固体载体, 传 热效果好, 避免出现局部温度过高, 减少催化剂升华, 从而延长催化剂使 用寿命, 减少消耗, 既节约成本又环保; 不使用活性炭载体, 避免了其带 来的粉化、 板结等问题, 操作简便; 使用后的催化剂可以回收和再生。
乙炔氢氯化反应的液相催化剂体系以前也有报道。 如:
专利 US 1812542, US 1934324和 US 3113158介绍了溶有氯化铜、 氯 化亚铜的盐酸水溶液作为催化剂将乙炔转化为氯乙烯。 专利 CN1037501将 氯化钯溶于 N-甲基吡咯垸酮作为催化剂, 实现液相氢氯化反应。 SU 165446 和 SU 232956分别报道了在氯化铜存在下, 在二甲基甲酰胺和盐酸三乙醇 溶液中的乙炔氢氯化反应。
乙炔氢氯化反应温度较高, 工业上通常为 150 ~ 180°C , 而这些专利使 用的都是普通有机溶剂或者水作为催化剂分散体系, 有的溶剂沸点低, 如 水、 乙醇; 有的溶剂在反应温度下挥发严重, 造成溶剂的损失, 需要增加 冷却设备, 增加成本, 并限制了反应温度的选择, 而且引起环境污染。 此 外, 有机溶剂一旦发生泄露事故, 污染严重, 易引起火灾。
离子液体是在室温或在使用温度附近呈液态的由离子构成的物质, 其 性质可以通过对阳离子修饰或改变阴离子来进行调节, 如熔点、 粘度、 密 度、 疏水性均可通过改变离子的结构而予以改变。 发明内容
为了解决现有技术中乙炔氢氯化制备氯乙烯反应中所存在的问题, 本 发明提供一种乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用。
本发明提供的乙炔氢氯化制备氯乙烯的催化剂体系, 包括催化剂和催 化剂载体, 其中, 催化剂载体为咪唑类离子液体。
作为优选, 上述催化剂载体阴离子为氯离子、 溴离子、 六氟磷酸根或 四氟硼酸根的咪唑类离子液体。 具体可选, 氯化 1-丁基 -3-甲基咪唑、 溴化 1—丁基—3—甲基咪唑、 1-丁基 -3-甲基咪唑四氟硼酸盐、 1-乙基 -3-甲基咪唑六 氟磷酸盐或 1-乙基 -3-甲基咪唑四氟磷酸盐中的一种或其两种以上任意组 合。
上述催化剂为金、 铂、 钯、 锡、 汞、 铜或铑的氯化物中的一种或其两 种以上任意组合,其中,催化剂在所述催化剂体系中的浓度为 0.02~lmol/L。
本发明提供一种制备上述催化剂体系的方法: 按照所述浓度, 将上述 催化剂溶于上述催化剂载体中。
作为优选, 上述催化剂体系, 还包括铋、 钾或铈的氯化物中的一种或 其两种以上任意组合作为助催化剂, 其中, 上述助催化剂在上述催化剂体 系中的浓度为 0.0045~0.5mol/L。
制备上述催化剂体系的方法为: 按照所述浓度, 将上述催化剂和助催 化剂溶于上述催化剂载体中。
釆用上述乙炔氢氯化制备氯乙烯的催化剂体系来制备氯乙烯, 制备步 骤为: 将摩尔比为 1:1至 1:3的乙炔和氯化氢混合后, 在上述乙炔氢氯化制 备氯乙烯的催化剂体系存在下进行反应, 反应温度为 100至 200°C。 作为优 选, 上述乙炔氢氯化制备氯乙烯的催化剂体系来制备氯乙烯的制备步骤为: 将摩尔比为 1:1.2至 1:1.5的乙炔和氯化氢混合后, 在上述乙炔氢氯化制备 氯乙烯的催化剂体系存在下进行反应, 反应温度为 150至 180°C。
本发明所达到的技术效果:
1、 本发明提供的催化剂体系制备方法简单, 在上述催化剂体系存在下 进行乙炔氢氯化制备氯乙烯的反应, 提高了乙炔的转化率和氯乙烯的选择 性;
2、 实现液相反应, 避免以活性炭为载体的气固反应带来热量集中, 从 而抑制了催化剂的挥发;
3、 催化剂体系可直接用于乙炔氢氯化反应中, 省略了现有技术中催化 剂体系的活化步骤, 简化了反应的工艺步骤;
4、 催化剂体系具有较大的稳定温度范围、 较好的化学稳定性, 在使用 过程中避免催化剂体系发生变性而影响反应结果;
5、 催化剂体系几乎没有蒸气压, 不挥发、 无色、 无嗅, 使用过程中无 损失, 且安全环保;
6、 催化剂体系中不含有机溶剂, 无可燃性, 无着火点, 使用安全, 即 使发生泄漏事故也避免造成更大危害;
7、 简化反应设备。 具体实施方式 下面结合附图和具体实施例对本发明作进一步说明, 以使本领域的技 术人员可以更好的理解本发明并能予以实施, 但所举实施例不作为对本发 明的限定。
本发明按阳离子的不同将离子液体分为四类: [NR4]+ (垸基季铵)类 离子液体、 [PR4]+ (垸基季膦) 类离子液体、 咪唑类离子液体和吡啶类离 子液体。
下面通过实施例对本发明作进一步的说明。 实施例 1
( 1 )催化剂体系的制备:
将 3.1928g 的氯化铜溶于 28.1577g 的氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离子液体中, 氯化铜浓度为 0.54mol/L, 在温度为 100°C油洛 中溶解 lh。
( 2 ) 乙炔氢氯化反应:
上述催化剂体系直接用于乙炔氢氯化生成氯乙烯的反应中, 反应配气 的摩尔比为 C2H2/HC1=1/1.7,空速 14mL/mL.h,在 150°C的条件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率在 35-40%, 氯乙 烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。
实施例 2
( 1 )催化剂体系的制备:
将 3.2308g 的氯化亚铜溶于 22.9236g 的氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离子液体中, 氯化亚铜浓度为 0.92mol/L。 在温度为 120°C油 洛中溶解 2h。
( 2 ) 乙炔氢氯化反应:
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.43 , 空速 19mL/mL.h, 在 160°C的 条件下进行反应, 氯化氢活化时间 l.lh。 分析反应尾气, 得到乙炔的转化 率在 25-35%, 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 3
( 1 )催化剂体系的制备:
将 lg四氯化铂溶于 31.3710g氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离 子液体中, 四氯化铂浓度为 0.039mol/L。 在温度为 120°C油洛中溶解 2h。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.2, 空速 6.8mL/mL.h, 在 170°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 55-60% , 氯乙烯选择性大于 99%。 反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 4
( 1 )催化剂体系的制备:
将 lg的三氯化金溶于 28.3492g的氯化 1-丁基 -3-甲基咪唑( [Bmim]Cl ) 离子液体中, 三氯化金浓度为 0.075mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.7 , 空速 llmL/mL.h, 在 170°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 55-60% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 5
( 1 )催化剂体系的制备:
将 3.7768g的氯化汞溶于 25.4221g的氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl 离子液体中, 氯化汞浓度为 0.34mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应 上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 7.5mL/mL.h, 在 159°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 53-60% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 6
( 1 )催化剂体系的制备:
将 1.9112g 的氯化汞溶于 25.4221g 的氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离子液体中, 氯化汞浓度为 0.22mol/L。 在温度为 100°C油洛 中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.33 , 空速 35mL/mL.h, 在 158°C的 条件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化 率在 35-40%, 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 7
( 1 )催化剂体系的制备:
将 3.4372g氯化钯溶于 28.1577g氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离子液体中, 氯化钯浓度为 0.46mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.2, 空速 20mL/mL.h, 在 150°C的条 件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率 在 57-60% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 8
( 1 )催化剂体系的制备:
将 3.7753g氯化汞溶于 25.4221g氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离子液体中, 氯化汞浓度为 0.34mol/L。 在温度为 100°C油洛中溶解 lh, 加 入 0.2692g的氯化钾, 氯化钾浓度为 0.0919mol/L, 溶解 0.5h。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 13mL/ mL.h, 在 159°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 57-65% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 9
( 1 )催化剂体系的制备:
将 lg三氯化金溶于 29.6394g氯化 1-丁基 -3-甲基咪唑 ( [Bmim]Cl ) 离 子液体中, 三氯化金浓度为 0.0719mol/L。 在温度为 100°C油洛中溶解 lh。 再加入 0.3293g氯化铜, 氯化铜浓度为 0.0532mol/L, 溶解 0.5h。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.7 , 空速 llmL/mL.h, 在 170°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 65-70% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 10
( 1 )催化剂体系的制备:
将 3.7324g氯化铜、 1.25g氯化钾、 0.06g氯化铈溶于 30.1385g氯化 1- 丁基 -3-甲基咪唑 [Bmim]Cl 离子液体中, 氯化铜浓度为 0.59mol/L, 氯化钾 浓度为 0.36mol/L, 氯化铈浓度为 0.0045mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1 , 空速 15mL/mL.h, 在 100°C的条件 下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率在 38-44% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 11
( 1 )催化剂体系的制备:
将 0.5g四氯化铂、 3.25g氯化汞溶于 27.8121g氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl 离子液体中, 四氯化铂浓度为 0.028mol/L , 氯化汞浓度为 0.28mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HCl=l/3 , 空速 15mL/mL.h, 在 180°C的条件 下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率在 61-67% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 12
( 1 )催化剂体系的制备:
将 3.0734g氯化亚铜溶于 15.2158g氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl离 子液体中, 在温度为 100°C油洛中溶解 lh, 再加入 16.3952g 1-乙基 -3-甲基 咪唑四氟磷酸盐 [Emim]PF6离子液体和 0.3026g氯化钾, 溶解 0.5h, 氯化亚 铜浓度为 0.82mol/L, 氯化钾浓度为 0.118mol/L。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.7 , 空速 llmL/mL.h, 在 156°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 45-50% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 13
( 1 )催化剂体系的制备:
将 3.1331g的氯化铜溶于 14.0175g的氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl 离子液体中, 在温度为 100°C油洛中溶解 lh, 再加入 18.0318g的 1-乙基 -3- 甲基咪唑四氟磷酸盐( [Emim]PF6 )离子液体和 0.3069g的氯化钾,溶解 0.5h, 氯化铜的浓度为 0.63mol/L, 氯化钾的浓度为 0.121mol/L。
( 2 ) 乙炔氢氯化反应 上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 14mL/mL.h, 在 159°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 44-49% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 14
( 1 )催化剂体系的制备:
将 3.1928g氯化铜溶于 28.1577g溴化 1-丁基 -3-甲基咪唑( [Bmim]Br ) 离子液体中, 氯化铜浓度为 0.58mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.7, 空速 14mL/mL.h, 在 150°C的条 件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率 在 35-40% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 15 ( 1 )催化剂体系的制备:
将 4.0301g氯化铑、 0.13g氯化铋溶于 50.22gl-乙基 -3-甲基咪唑六氟磷 酸盐 33.75 ( [Emim]PF6 ) 离子液体中, 氯化铑浓度为 0.57mol/L, 氯化铋浓 度为 0.0122mol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.2, 空速 25mL/mL.h, 在 180°C的条 件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率 在 55-62% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 16
( 1 )催化剂体系的制备:
将 1.8501g 的氯化汞溶于 42.0789g 的 1-丁基 -3-甲基咪唑四氟硼酸盐 ( [Bmim]BF4 ) 离子液体中, 氯化汞浓度为 0.21mol/L。 在温度为 120°C油 洛中溶解 0.5h。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.33 , 空速 35mL/mL.h, 在 158°C的 条件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率 在 30-45%, 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 17
( 1 )催化剂体系的制备:
将 3.6692g 的氯化汞溶于 12.9799g 的 1-丁基 -3-甲基咪唑四氟硼酸盐 [Bmim]Cl离子液体中, 在温度为 100°C油洛中溶解 lh, 加入 23.4901g的 1- 乙基 -3-甲基咪唑六氟磷酸盐 [Emim]PF6离子液体, 溶解 0.5h,氯化汞浓度为 0.34mol/L„
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 19mL/mL.h, 在 156°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 42-48% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 18
( 1 )催化剂体系的制备:
将 1.8780g 的氯化汞溶于 48.8902g 的 1-乙基 -3-甲基咪唑六氟磷酸盐 ( [Emim]PF6 )离子液体中, 氯化汞浓度为 0.21mol/L。 在温度为 120°C油洛 中溶解 48h。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.33 , 空速 35mL/mL.h, 在 170°C的 条件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率 在 10-20%, 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 19
( 1 )催化剂体系的制备:
将 3.1331g氯化亚锡溶于 14.0175g氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl离 子液体中, 在温度为 100°C油洛中溶解 lh, 再加入 18.0318gl-乙基 -3-甲基 咪唑四氟磷酸盐 ( [Emim]PF6 ) 离子液体和 0.3069g氯化钾, 溶解 0.5h, 氯 化亚锡的浓度为 0.49mol/L, 氯化钾的浓度为 0.122 mol/L。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 14mL/mL.h, 在 159°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 37-42% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 20
( 1 )催化剂体系的制备:
将 0.1497g 三氯化金溶于 36.7gl-乙基 -3-甲基咪唑四氟磷酸盐 ( [Emim]PF6 )离子液体中, 三氯化金浓度为 0.02mol/L。 在温度为 100°C油 洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.7 , 空速 llmL/mL.h, 在 170°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 35-40% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 21
( 1 )催化剂体系的制备:
将 11.07g的氯化汞溶于 26.325g的氯化 1-丁基 -3-甲基咪唑( [Bmim]Cl ) 离子液体中, 氯化汞浓度为 lmol/L。 在温度为 100°C油洛中溶解 lh。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.33 , 空速 35mL/mL.h, 在 158°C的 条件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化 率在 68-75%, 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 22
( 1 )催化剂体系的制备:
将 1.8501g 的氯化汞溶于 42.0789g 的 1-丁基 -3-甲基咪唑四氟硼酸盐 ( [Bmim]BF4 ) 离子液体中, 氯化汞浓度为 0.21mol/L。 在温度为 120°C油 洛中溶解 0.5h。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.33 , 空速 35mL/mL.h, 在 158°C的 条件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率 在 30-45%, 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 23
( 1 )催化剂体系的制备: 将 3.15g的氯化铜溶于 25.393g的氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl离 子液体中, 在温度为 100°C油洛中溶解 lh, 再加入 1.462g的氯化钾, 溶解 0.5h, 氯化铜的浓度为 0.594mol/L, 氯化钾的浓度为 0.5mol/L。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 14mL/mL.h, 在 159°C的条 件下进行反应, 氯化氢活化时间 lh。 分析反应尾气, 得到乙炔的转化率在 44-49% , 氯乙烯选择性大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 实施例 24
( 1 )催化剂体系的制备:
将氯化钙和氯化铜溶于 27.39g氯化 1-丁基 -3-甲基咪唑 [Bmim]Cl中,在 温度为 100°C油洛中溶解 lh, 氯化钙的浓度为 3.19mol/L, 氯化铜的浓度为 2.62mol/L。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 2.4mL/mL . h, 反应温度 65 °C。分析反应尾气,得到乙炔转化率为 47.84%,氯乙烯选择性为大于 99%。
反应后对催化剂体系称重, 没有质量损失。 催化剂体系几乎没有蒸气 压, 不挥发、 无色、 无嗅, 具有较大的稳定温度范围、 较好的化学稳定性, 在使用过程中催化剂体系没有发生变性及对反应造成不利影响, 且无可燃 性, 无着火点, 使用安全。 反应过程中, 催化剂体系稳定、 无损失, 连续 使用 720个小时, 乙炔的转化率和氯乙烯的选择性均无降低。 针对本发明的技术方案所做的对比实验如下:
对比实验 1
( 1 )催化剂体系的制备
在 600g水中溶入盐酸、 氯化钙、 氯化铜, 盐酸浓度为 11.74mol/L, 氯化 钙浓度为 3.19mol/L, 氯化铜浓度为 2.62mol/L。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.5 , 空速 2.4mL/mL . h, 反应温度 65 °C。 分析反应尾气, 得到乙炔转化率为 34.52%, 氯乙烯选择性为 86%。
反应前后对催化剂体系称重, 质量损失 20%。 催化剂体系使用 120小时 后, 乙炔转化率为 24.3%, 氯乙烯选择性为 77%。 对比实验 2
( 1 )催化剂体系的制备:
将 3.4372g 氯化钯溶于 28.1577g N-甲基吡咯垸酮中, 氯化钯浓度为 0.46mol/L。
( 2 ) 乙炔氢氯化反应
上述步骤制备得到的催化剂体系用于乙炔氢氯化生成氯乙烯的反应 中, 反应配气的摩尔比为 C2H2/HC1=1/1.2, 空速 20mL/mL.h, 在 120°C的条 件下进行反应, 氯化氢活化时间 1.5h。 分析反应尾气, 得到乙炔的转化率 在 41%, 氯乙烯选择性 83%。
反应前后对催化剂体系称重, 质量损失 13%。 催化剂体系使用 240小时 后, 乙炔转化率为 31.2%, 氯乙烯选择性为 78%。 以上所述实施例仅是为充分说明本发明而所举的较佳的实施例, 本发 明的保护范围不限于此。 本技术领域的技术人员在本发明基础上所作的等 同替代或变换, 均在本发明的保护范围之内。 本发明的保护范围以权利要 求书为准。

Claims

权利要求书
1. 一种乙炔氢氯化制氯乙烯的催化剂体系, 包括催化剂和催化剂载 体, 其特征在于, 所述催化剂载体为咪唑类离子液体。
2. 根据权利要求 1所述的乙炔氢氯化制备氯乙烯的催化剂体系, 其特 征在于, 所述催化剂载体是阴离子为氯离子、 溴离子、 六氟磷酸根、 四氟 硼酸根或四氟磷酸根的咪唑类离子液体。
3. 根据权利要求 1所述的乙炔氢氯化制备氯乙烯的催化剂体系, 其特 征在于, 所述催化剂载体为氯化 1-丁基 -3-甲基咪唑、 溴化 1-丁基 -3-甲基咪 唑、 1-丁基 -3-甲基咪唑四氟硼酸盐、 1-乙基 -3-甲基咪唑六氟磷酸盐或 1-乙 基 -3-甲基咪唑四氟磷酸盐中的一种或其两种以上任意组合。
4. 根据权利要求 1所述乙炔氢氯化制氯乙烯的催化剂体系, 其特征在 于, 所述催化剂为金、 铂、 钯、 锡、 汞、 铜或铑的氯化物中的一种或其两 种以上任意组合。
5. 根据权利要求 4所述乙炔氢氯化制氯乙烯的催化剂体系,特征在于, 所述催化剂在所述催化剂体系中的浓度为 0.02~lmol/L。
6. 根据权利要求 1所述乙炔氢氯化制氯乙烯的催化剂体系, 其特征在 于, 所述催化剂体系还包括铋、 钾或铈的氯化物中的一种或其两种以上任 意组合作为助催化剂。
7. 根据权利要求 6所述乙炔氢氯化制氯乙烯的催化剂体系, 其特征在 于, 所述助催化剂在所述催化剂体系中的浓度为 0.0045~0.5 mol/L。
8. 制备权利要求 1-5任一项所述乙炔氢氯化制氯乙烯的催化剂体系的 方法, 其特征在于, 按照所述浓度, 将所述催化剂溶解于所述催化剂载体 中。
9. 制备权利要求 7 中所述乙炔氢氯化制备氯乙烯的催化剂体系的方 法, 其特征在于, 按照所述浓度, 将所述催化剂与助催化剂溶解于所述催 化剂载体中。
10.乙炔氢氯化制备氯乙烯, 其特征在于, 釆用权利要求 1所述的乙炔 氢氯化制备氯乙烯的催化剂体系。
PCT/CN2010/073705 2009-10-30 2010-06-09 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用 WO2011050614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910236255.7 2009-10-30
CN2009102362557A CN101716528B (zh) 2009-10-30 2009-10-30 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用

Publications (1)

Publication Number Publication Date
WO2011050614A1 true WO2011050614A1 (zh) 2011-05-05

Family

ID=42431223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073705 WO2011050614A1 (zh) 2009-10-30 2010-06-09 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用

Country Status (2)

Country Link
CN (1) CN101716528B (zh)
WO (1) WO2011050614A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562107A (zh) * 2015-12-21 2016-05-11 王金明 一种正戊烷异构化催化剂
US20160304418A1 (en) * 2011-07-11 2016-10-20 Johnson Matthey Plc Catalyst and method for its preparation
CN110368936A (zh) * 2019-08-09 2019-10-25 美澜催化材料科技(大连)有限公司 一种纳米材料改性铜基负载型乙炔氢氯化催化剂及其制备方法
CN111715268A (zh) * 2020-07-26 2020-09-29 朱丽英 一种以氮掺杂碳材料为载体的催化剂及其制备方法
CN114768883A (zh) * 2022-01-25 2022-07-22 石河子大学 一种Cu-MDPO/AC催化剂及其制备方法和应用

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716528B (zh) * 2009-10-30 2012-10-31 于志勇 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用
EA024479B1 (ru) * 2010-12-22 2016-09-30 Солвей Са Каталитическая система и ее использование для производства винилхлорида гидрохлорированием ацетилена
EA024478B1 (ru) * 2010-12-22 2016-09-30 Солвей Са Каталитическая система и ее использование для производства винилхлорида гидрохлорированием ацетилена
WO2012084642A1 (en) 2010-12-22 2012-06-28 Solvay Sa Manufacture of vinyl chloride by hydrochlorination of acetylene in the presence of a catalytic system consisting of at least one ionic liquid
CN102145303B (zh) * 2011-02-01 2012-10-03 浙江大学 一种环保型氯化汞金属催化剂及其制备方法
CN103391911A (zh) * 2011-02-24 2013-11-13 索维公司 用于氢卤化炔烃并且用于通过炔烃的氢氯化反应来制造氯化烯的方法
CN102389835B (zh) * 2011-09-01 2013-06-05 大连大学 离子液体负载钯催化剂及其应用
EP2617698A1 (en) 2012-06-27 2013-07-24 Solvay Sa Process for the hydrohalogenation of an unsaturated hydrocarbon and for the manufacture of vinyl chloride by hydrochlorination of acetylene
CN104086351B (zh) * 2014-06-30 2016-06-08 浙江大学 一种以氮杂环质子酸离子液体为介质的乙炔氢氯化制氯乙烯的方法
GB201509019D0 (en) 2015-05-27 2015-07-08 Johnson Matthey Plc Process and catalyst
CN106914276A (zh) * 2015-12-24 2017-07-04 于志勇 一种用于乙炔加氯化氢反应的无汞触媒及制备方法
CN106914277A (zh) * 2015-12-24 2017-07-04 于志勇 一种用于乙炔加氯化氢反应的超低氯化汞触媒及制备方法
CN107519872A (zh) * 2017-08-04 2017-12-29 内蒙古大学 一种硼、氮双掺杂的乙炔氢氯化催化剂的制备方法
CN107715919B (zh) * 2017-09-29 2020-10-09 浙江工业大学 一种负载型[PdSClx]x-催化剂及其制备与合成氯乙烯的应用
CN107803225B (zh) * 2017-09-29 2020-08-21 浙江工业大学 一种用于生产氯乙烯的钌催化剂及其制备方法
CN107715915B (zh) * 2017-09-29 2020-07-28 浙江工业大学 一种硫化离子液体络合的钯催化剂及其制备方法与应用
CN109647523B (zh) * 2018-12-25 2021-10-29 南开大学 一种用于固定床乙炔氢氯化制备氯乙烯的无金属催化剂的制备方法及其使用方法
CN110743556B (zh) * 2019-09-29 2020-08-21 浙江工业大学 一种铜基合金催化剂及其制备方法与应用
CN110548458B (zh) * 2019-09-30 2021-12-24 河北美邦工程科技股份有限公司 一种气液相催化反应系统及其使用方法
CN110743618B (zh) * 2019-09-30 2020-10-09 浙江工业大学 一种铝镁硼粉/石墨炔混合载体负载金属催化剂及其制备与应用
CN112473744B (zh) * 2020-11-27 2021-11-30 浙江工业大学 一种前后台两段式组合催化剂及其应用
CN113385202B (zh) * 2021-07-14 2023-02-28 内蒙古瑞翔拓创新材料有限公司 一种环保型合成氯乙烯用无汞催化剂及其制备方法
CN113582812A (zh) * 2021-08-03 2021-11-02 厦门中科易工化学科技有限公司 一种液相催化制备氯乙烯的方法
CN113578390B (zh) * 2021-08-06 2023-05-30 河北美邦工程科技股份有限公司 一种用于乙炔氢氯化反应的低贵金属催化剂的制备方法
CN115626863B (zh) * 2022-10-18 2023-06-23 南京工业大学 一种低含量钌基催化剂用于固定床乙炔氢氯化制氯乙烯反应的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962602A (zh) * 2006-11-22 2007-05-16 陕西师范大学 甲醇与一氧化碳、氧反应制取碳酸二甲酯的方法
CN101514140A (zh) * 2009-04-02 2009-08-26 成都惠恩精细化工有限责任公司 一种乙炔氢氯化反应制备氯乙烯的方法
CN101716528A (zh) * 2009-10-30 2010-06-02 于志勇 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824634A1 (de) * 1988-04-30 1989-11-09 Huels Chemische Werke Ag Verfahren zur herstellung von vinylchlorid durch umsetzung von acetylen mit chlorwasserstoff
CN101249451A (zh) * 2008-04-10 2008-08-27 四川大学 可用于乙炔氢氯化反应的非汞催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962602A (zh) * 2006-11-22 2007-05-16 陕西师范大学 甲醇与一氧化碳、氧反应制取碳酸二甲酯的方法
CN101514140A (zh) * 2009-04-02 2009-08-26 成都惠恩精细化工有限责任公司 一种乙炔氢氯化反应制备氯乙烯的方法
CN101716528A (zh) * 2009-10-30 2010-06-02 于志勇 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304418A1 (en) * 2011-07-11 2016-10-20 Johnson Matthey Plc Catalyst and method for its preparation
US10202320B2 (en) * 2011-07-11 2019-02-12 Johnson Matthey Plc Catalyst and method for its preparation
CN105562107A (zh) * 2015-12-21 2016-05-11 王金明 一种正戊烷异构化催化剂
CN110368936A (zh) * 2019-08-09 2019-10-25 美澜催化材料科技(大连)有限公司 一种纳米材料改性铜基负载型乙炔氢氯化催化剂及其制备方法
CN111715268A (zh) * 2020-07-26 2020-09-29 朱丽英 一种以氮掺杂碳材料为载体的催化剂及其制备方法
CN114768883A (zh) * 2022-01-25 2022-07-22 石河子大学 一种Cu-MDPO/AC催化剂及其制备方法和应用
CN114768883B (zh) * 2022-01-25 2024-02-27 石河子大学 一种Cu-MDPO/AC催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN101716528A (zh) 2010-06-02
CN101716528B (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2011050614A1 (zh) 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用
CN105148989B (zh) 一种多孔固体材料负载型离子液体-金催化剂及其制备和应用
Tao et al. Promoted absorption of CO at high temperature by cuprous‐based ternary deep eutectic solvents
Kemnitz Nanoscale metal fluorides: a new class of heterogeneous catalysts
CN101879464B (zh) 乙炔氢氯化制备氯乙烯的催化剂体系及其制备和应用
CN109158126B (zh) 一种用于催化乙炔氢氯化反应的金属卤酸根离子液体及其应用方法
EP2101916A1 (en) Catalytic hydrochlorination system and process for manufacturing vinyl chloride from acetylene and hydrogen chloride in the presence of this catalytic system
CN102264675A (zh) 1,1-二氯-2,3,3,3-四氟丙烯和2,3,3,3-四氟丙烯的制造方法
WO2018049820A1 (zh) 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途
CN101786022B (zh) 一种制备乙烯基乙炔的催化剂及其应用方法
TW201228725A (en) Catalytic system and its use for the manufacture of vinyl chloride by hydrochlorination of acetylene
WO2012084643A2 (en) Catalytic system and its use for the manufacture of vinyl chloride by hydrochlorination of acetylene
WO2014095982A1 (en) Process for the hydrohalogenation of an unsaturated hydrocarbon
EP0519548B1 (fr) Système catalytique d'hydrochloration et procédé de fabrication de chlorure de vinyle au départ d'acétylène et de chlorure d'hydrogène en présence de ce système catalytique
CN104086351B (zh) 一种以氮杂环质子酸离子液体为介质的乙炔氢氯化制氯乙烯的方法
JP2004528261A (ja) 多成分溶媒系における過酸化水素の直接合成
CN109305986A (zh) 一种贝前列素钠中间体的合成方法
JP5113854B2 (ja) イオン液体でメチルアクロレインを吸収する方法
RU2045336C1 (ru) Каталитическая система для гидрохлорирования ацетилена и способ получения винилхлорида
JP4334338B2 (ja) 超臨界相におけるコロイド−触媒作用によるガス移動
CN106170337B (zh) 提供用于羧酸的转乙烯化的活性钌催化剂溶液的方法
CA2881880C (en) Preparation of trihalide anion exchange resins, reversible adsorption and chlorination reactions using ion exchange resins
US20220220289A1 (en) Hydrogenated nitrile rubber with reduced catalyst impurity
CN113578390A (zh) 一种用于乙炔氢氯化反应的低贵金属催化剂的制备方法
CN112573989A (zh) 不含卤素的环己烷的制备方法及制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10825977

Country of ref document: EP

Kind code of ref document: A1