WO2011040126A1 - 磁性材料及びそれを用いたモータ - Google Patents

磁性材料及びそれを用いたモータ Download PDF

Info

Publication number
WO2011040126A1
WO2011040126A1 PCT/JP2010/063612 JP2010063612W WO2011040126A1 WO 2011040126 A1 WO2011040126 A1 WO 2011040126A1 JP 2010063612 W JP2010063612 W JP 2010063612W WO 2011040126 A1 WO2011040126 A1 WO 2011040126A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
iron
magnetic
phase
powder
Prior art date
Application number
PCT/JP2010/063612
Other languages
English (en)
French (fr)
Inventor
又洋 小室
祐一 佐通
啓幸 鈴木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/390,738 priority Critical patent/US20120145944A1/en
Publication of WO2011040126A1 publication Critical patent/WO2011040126A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a magnetic material in which the amount of use of heavy rare earth elements is reduced, and a motor using the magnetic material.
  • Patent Documents 1 to 5 disclose rare earth sintered magnets containing conventional fluorine compounds or acid fluorine compounds.
  • Patent Document 6 discloses mixing a fine powder (1 to 20 ⁇ m) of a rare earth fluorine compound with NdFeB powder.
  • Patent Documents 7 and 8 describe an example in which Sm 2 Fe 17 is fluorinated.
  • the above-mentioned conventional invention is a reaction of a compound containing fluorine with a Nd-Fe-B based magnet material or a Sm-Fe based material, and in particular, the reaction of fluorine with Sm 2 Fe 17 to introduce a fluorine atom.
  • the effects of lattice expansion and Curie temperature rise are disclosed.
  • the Curie temperature of the disclosed SmFeF material is as low as 155 ° C., and the value of the magnetization is unknown.
  • the coercive force is increased by using a fluoride containing a heavy rare earth element.
  • the above-mentioned fluoride is not a reaction for fluorinating the main phase, and it is a heavy rare earth element that reacts or diffuses with the main phase. Since such heavy rare earth elements are expensive, the reduction of heavy rare earth elements is an issue.
  • Light rare earth elements which are less expensive than heavy rare earth elements, are elements of Sc, Y and atomic numbers 57 to 62, and some of the elements are used in magnet materials. The most mass-produced material among iron-based magnets other than oxides is the Nd 2 Fe 14 B-based material, but addition of heavy rare earth elements is essential for securing heat resistance.
  • R 2 Fe 17 (R is a earth element) -based alloy has a low Curie temperature (Tc), but a compound in which carbon or nitrogen penetrates is applied to various magnetic circuits because the Curie temperature is high.
  • Tc Curie temperature
  • the main phase volume of the magnet occupying in the volume of magnetic powder is 50%, the Curie temperature (Curie point) of the main phase is 200 ° C. or more, and the saturation magnetic flux density is 1.0 T (Tesla) or more at around 20 ° C.
  • a high-performance magnet can be provided by the coercivity being 10 kOe or more and the crystal structure of the main phase being stable up to 200 ° C., and the grain boundaries other than the main phase or the different phase of the surface stabilize or improve the magnetic characteristics. .
  • ferromagnetism two types, ferromagnetism, a ferromagnetic compound composed of one or more rare earth elements including fluorine, iron, and yttrium, and ferromagnetic iron containing fluorine, carbon, nitrogen, hydrogen or boron
  • a magnetic material which is composed of a phase and in which a fluoride or an acid fluoride is formed in part of the grain boundary or surface of the ferromagnetic phase is used.
  • interstitial elements are arranged at interstitial positions or penetration positions of Fe, and by making the arrangement have anisotropy or directionality, high crystal magnetic anisotropy and high magnetic moment Reconcile.
  • anisotropy of the antiferromagnetic coupling or the orbit of the rare earth element is utilized to make the coercive force high.
  • the residual magnetic flux density is increased by forming Fe n F m (n, m is a positive integer), which is an iron-fluorine binary compound capable of ferromagnetic coupling with the matrix phase, as a second phase other than the matrix phase. .
  • a concentration gradient of fluorine is provided in a magnetic powder or the like, iron or iron is a constituent element, and a parent phase having larger crystal magnetic anisotropy than iron-fluorine binary compound is magnetically
  • the high performance magnet can be realized by bonding to.
  • the fluorine concentration in the iron-fluorine binary alloy is 0.1 to 15 atomic percent, and the fluorine concentration in the matrix is 5 to 13 atomic percent.
  • acid-fluorine compounds containing impurities are formed, but the fluorine concentration in the iron-fluorine binary alloy is smaller than that of the matrix phase having high crystal magnetic anisotropy on average.
  • the fluorine atoms in the iron-fluorine binary alloy easily form a phase containing an impurity element such as an acid fluoride at grain boundaries etc.
  • mass production using a fluorine-containing gas, ion or solution In the process, the average fluorine concentration of each of the grain boundaries and the matrix phase grains and the iron-fluorine binary alloy phase is different.
  • the fluorine concentration at the outermost surface excluding the protective film is different from the fluorine concentration at the central portion, and the fluorine concentration at the surface is lower than that at the central portion.
  • a third element such as a transition metal element or a different intruding element is added or The addition of elements for improving the consistency of the lattice constant to improve the consistency of the element, the formation of the grain boundary phase, and the formation of the ordered phase as the nonferromagnetic heterophase.
  • the fluorine-containing ferromagnetic material uses at least one transition metal element such as iron or manganese. It is divided into two types, substitutional and interstitial, depending on the arrangement of fluorine atoms. Since the ionic radius of the fluorine atom is smaller than the ionic radius of the transition metal element, local distortion occurs because the interatomic distance is expanded and contracted by introduction of the fluorine atom in both the substitution type and the penetration type.
  • the strain accompanying the displacement of the interatomic position affects the wave function of the electron, and various physical properties such as magnetic properties, electrical properties, mechanical properties, thermodynamic properties, specific heat, and superconductivity change.
  • a magnetic material when fluorine is introduced into iron, the iron-iron atomic distance expands and contracts, and the volume per iron atom increases on average. Such volume increase affects the wave function around iron atoms, and the magnetic moment of iron increases.
  • fluorine is introduced into pure iron at the penetration position, the magnetic moment of about 5% iron is increased by the introduction of 4 atomic% of fluorine.
  • the introduction of fluorine at not only the magnetic moment but also the deformation of the lattice changes the magnetocrystalline anisotropic energy.
  • the oxygen content is reduced to make the main phase volume ratio 50% or more, and the oxy-fluorine compound It is necessary to suppress the growth of oxides and oxides to 50% or less of the total volume of magnetic powder. It is effective to use a method of fluorination after hydrogen reduction or nitriding or carbonization of magnetic powder, or reduction with hydrogen gas after fluorination. Further, fluorination at a temperature as low as possible is also necessary to suppress the decomposition of the main phase, and fluorination at 200 to 500 ° C. is desirable.
  • the Curie temperature of the main phase becomes 300 ° C. or more by setting the content to 10% or less, if possible.
  • the fluorine concentration in one particle of the main phase containing fluorine is 0.01 atomic% to 20 atomic%.
  • the volume of the iron-fluorine binary compound is made smaller than the volume of the main phase, and the iron-fluorine binary compound is formed while maintaining the coercive force. It is possible to increase the residual magnetic flux density and the Curie temperature by
  • the saturation magnetic flux density of the main phase in order to set the saturation magnetic flux density of the main phase to 1.0 T (Tesla) or more at around 20 ° C., it is necessary to suppress the growth of fluoride or acid fluoride having a small magnetization value. If the powder surface is oxidized before the fluorination treatment, it is desirable to remove the oxide as much as possible because the acid fluoride tends to grow, and if it is grown as an oxide layer on the surface, the layer thickness is 1 ⁇ m or less is desirable. Further, the introduction of fluorine expands and contracts the distance between iron and iron atoms, between iron and rare earth atoms, and between rare earth and rare earth atoms, and changes the magnetic moment of iron and rare earth elements before and after introduction.
  • the arrangement of iron-iron fluorine atoms increases magnetization by increasing the distance between iron atoms and increasing the magnetic moment of iron. Therefore, it is effective to make the amount of fluorine introduced into the main phase larger than the amount of fluorine introduced into phases other than the main phase, and to make the concentration of intruding fluorine 0.01 to 20 atomic percent in the main phase desirable.
  • To increase the magnetization of the main phase add Co to 0.1 to 20 atomic percent Fe (iron), or place fluorine with carbon, nitrogen, or hydrogen at the penetration position to achieve magnetization of 0.05 T or more An increase is obtained.
  • the concentration of fluorine to be intruded is from 0.001 atomic% to 30 atomic%. It is necessary to increase the directionality energy and reduce the amount of iron that is not magnetically coupled to the main phase, which can be the place of magnetization reversal. Iron or iron-fluorine compounds within 1 ⁇ m can be magnetically bonded to the main phase (mother phase) through grain boundaries or the third phase, but they can be separated from the main phase interface by more than 1 ⁇ m.
  • the volume of iron in which the crystal orientation relationship is not recognized be as small as possible, and 20% or less with respect to the volume of the main phase is desirable, and when it exceeds 20%, it becomes difficult to obtain a coercive force of 10 kOe.
  • it is effective to prevent oxidation, to use a crystal structure stabilizing element, and to form an Fe—F binary compound.
  • the crystal structure of the main phase is rhombohedral, hexagonal such as CaCu 5- type structure, tetragonal such as ThMn 12- type structure, orthorhombic or cubic, and plural crystal structures of these, depending on the type and composition of the constituting elements Have.
  • the fluorine atom concentration should be optimized. , Adding a third element to fix the fluorine at the penetration position, reducing the oxygen concentration, and coating the crystal grain or powder surface with a fluoride, acid fluoride, nitride, carbide or metal to suppress oxidation.
  • rhombohedral crystals hexagonal crystals, tetragonal crystals, orthorhombic crystals or cubic crystals in which a fluorine atom has penetrated by mixing nitrogen, carbon or chlorine, which is an interstitial element other than fluorine, with fluorine, It can be stabilized up to ° C.
  • a phase effective as a phase other than the main phase is iron-fluorine or iron-carbon or iron-carbon having a tetragonal or cubic crystal structure, iron containing iron nitrogen, two or more of these interstitial elements, and the phase with the main phase
  • the residual magnetic flux density is increased by 0.01 T to 0.1 T.
  • Some irons have a specific orientation relationship with the main phase to enhance ferromagnetic coupling and further increase the residual magnetic flux density.
  • the fluorides and acid fluorides that grow on grain boundaries and powder surfaces contain fluorine and oxygen at higher concentrations than the main phase, and have a cubic, hexagonal, orthorhombic, or other structure.
  • the rare earth elements of the main phase improve the magnetic properties as a plurality of types, a concentration gradient of the rare earth element appears in the main phase, and the magnetocrystalline anisotropy of a part of the main phase increases.
  • a plurality of rare earth elements are also diffused in part of the fluoride and acid fluoride. These fluorides and acid fluorides contribute to the oxidation prevention or the coercive force increase of the main phase. Further, by adding a transition metal element to the main phase, it is possible to achieve both stabilization of the crystal structure and improvement of the coercive force. In this case, part of the transition metal element diffuses into fluoride, acid fluoride, iron, and iron-fluorine compound.
  • condition (1) of the following conditions 1) to 6) (1) setting the main phase volume to 50% of the volume of magnetic powder. 2)
  • the Curie temperature (Curie point) of the main phase is 200 ° C. or higher.
  • the saturation magnetic flux density of the main phase should be 1.0 T (Tesla) or more at around 20 ° C. 4)
  • Coercivity should be 10 kOe or more.
  • the crystal structure of the main phase is stable up to 200 ° C. 6) To form another phase at grain boundaries or surfaces other than the main phase to stabilize or improve the magnetic properties.
  • Fluorine-containing magnet material satisfying, as the ferromagnetic material A ⁇ Re l (Fe q M r) m I n ⁇ + B ⁇ Fe x I y ⁇ (1)
  • Re is one or more rare earth elements including Y (yttrium), Fe is iron, M is one or more transition metal elements, I is only fluorine, or fluorine and nitrogen or fluorine and carbon or fluorine or hydrogen , Fluorine and boron
  • l, m, n, q, r, x, y are positive integers, m> n, m> l, x> y, q> r ⁇ 0.
  • At least one of Re, Fe, M and at least one of I other than fluorine represented by the formula (1) other than the ferromagnetic phase represented by the above formula is a fluoride or acid contained for diffusion or reaction It is necessary for fluoride to grow on grain boundaries or part of the surface, and the fluorine concentration of the fluoride or acid fluoride is higher than the fluorine concentration in ferromagnetism.
  • a part of fluorine atoms is disposed at the penetration position of the crystal lattice in any of the two types of ferromagnetic phases, and a part of the fluorine atoms form a fluorine compound other than the formula (1)
  • the fluorine compound contains at least one or more of Re, Fe, and M shown in (1), and the concentration gradient associated with the diffusion of these constituent elements is powder, film or calcined. Seen in the body.
  • Equation (1) A ⁇ LRe l (Fe q M r) m I n ⁇ + B ⁇ Fe x I y ⁇ (2)
  • LRe is a light rare earth element containing one or more yttrium (Y), Fe is iron, M is a transition metal element, I is only fluorine, or fluorine and nitrogen or fluorine and carbon or fluorine and hydrogen, fluorine and boron ,
  • l, m, n, q, r, x, y are positive integers, m> n, m> l, x> y, r ⁇ 0.
  • gas fluorination using gas species containing fluorine As means for fluorination, gas fluorination using gas species containing fluorine, a method using diffusion or reaction using a solution or slurry containing fluoride, a method using plasma, ion implantation, sputtering, vapor deposition, etc.
  • the main phase containing at least one of the rare earth elements containing Y has a higher concentration of fluorine disposed at the penetration position than iron, and n> y in the formulas (1) and (2). It is believed that the inclusion of the rare earth element containing Y makes it easy to trap fluorine atoms in the lattice.
  • the material system is the examples 1, 3, 6, 7, 8, 9, 13, 18, 21 of the Sm-Fe-N-F system, and the examples 2, 20, 23, 29, 30 of the Sm-Fe-F system. , 31, 32, 33, 34, 36, 37, 39, 41, Example 24 of Sm-Fe-Al-F system, Example 25, 26 of Sm-Fe-Ti-F system, Sm-Fe-Mg.
  • Example 27 in the F-F system Example 35 in the Sm-Fe-MnF system, Example 38 in the Sm-Pr-Fe-N-F system, Example 4, 40 in the Nd-Fe-F system, Nd-Fe Examples 5 and 12 of the -F-N system, Examples 10 and 11 of the Nd-Fe-BF system, and Examples 14 and 19 of the Nd-Fe-Ti-F system, Y-Fe-Al-F system
  • Example 15 Ce-Fe-C-F system Example 16 La-Fe-N-F system
  • Example 22 L -Fe-Mn-F systems are described in Example 28.
  • 100 g of ammonium fluoride powder is mixed with 100 g of Sm 2 Fe 17 N 3 magnetic powder which is less oxidizable than Sm 2 Fe 17 having a particle diameter of 1 to 10 ⁇ m.
  • the mixed powder is inserted into a reaction vessel and heated by an external heater.
  • Ammonium fluoride is thermally decomposed by heating to generate NH 3 and a fluorine-containing gas.
  • a part of N atoms in the magnetic powder is replaced with F (fluorine) at 200 to 600 ° C. by this fluorine-containing gas.
  • N At a heating temperature of 400 ° C., a part of N is replaced with F, and Sm 2 Fe 17 (N, F) 3 in which fluorine or nitrogen is disposed at an entry position in the Th 2 Zn 17 or Th 2 Ni 17 structure grows .
  • Sm 2 Fe 17 (N, F) 3 in which fluorine or nitrogen is disposed at an entry position in the Th 2 Zn 17 or Th 2 Ni 17 structure grows .
  • Ar gas is substituted for oxidation prevention.
  • F By replacing F with N, the lattice volume of the compound expands locally, and the magnetic moment of Fe increases.
  • N or F atoms are arranged at a position different from the penetration position before the reaction.
  • the magnetic powder containing such Sm 2 Fe 17 (N, F) 3 contains 0.1 atomic% to 12 atomic% of fluorine, and the main phase in the vicinity of the grain boundary in the magnetic powder and the main phase in the grain are The fluorine concentration differs by about 0.1 to 5%.
  • An oxygen-containing fluoride (SmF 3 , FeF 2 or the like) grows in part of the grain boundary or grain boundary triple point.
  • the basic magnetic properties of such a magnetic powder are a Curie temperature of 400 ° C. to 600 ° C., a saturation magnetic flux density of 1.4 to 1.9 T, and by molding the magnetic powder, a magnet with a residual magnetic flux density of 1.5 T can be created.
  • Magnetic powder whose increase in magnetic moment can be confirmed by the introduction of fluorine is, except for Sm 2 Fe 17 N 3 , Re l Fe m N n (Re is a rare earth element, l, m and n are positive integers), Re l Fe m C n (Re is a rare earth element, l, m, n is a positive integer), Re l Fe m B n (Re is a rare earth element, l, m, n is a positive integer), Re l Fe m (Re is a rare earth element , L and m are positive integers).
  • An acid fluoride containing Re grows as a result of reducing the main phase on the grain boundaries or powder surface of such magnetic powder, and the oxygen concentration in the main phase is reduced.
  • the impurities contain oxygen, carbon, hydrogen and silicon, sulfur and metal elements such as copper, nickel, manganese and cobalt, the magnetic properties do not change significantly.
  • a deposition source in a vacuum vessel to evaporate Fe.
  • the degree of vacuum is 1 ⁇ 10 -4 Torr or less, and Fe is evaporated in a container by resistance heating to produce particles with a particle diameter of 100 nm.
  • An alcohol solution containing the components of SmF 2-3 is applied to the surface of the Fe particles and dried at 200 ° C. to form a fluoride film having an average film thickness of 1 to 10 nm on the surface of the Fe particles.
  • the Fe particles coated with the fluoride film are mixed with ammonium fluoride (NH 4 F) and heated by an external heater.
  • the heating temperature is 800.degree. C., and after heating and holding at 800.degree. C. for 1 hour or more, quenching is performed at 50.degree.
  • a powder having an oxygen concentration of 100 to 2000 ppm is obtained.
  • a part of fluorine atoms is arranged by moving the atomic position of Fe to the tetrahedral or octahedral interstitial position of the unit cell of Fe.
  • nitrogen and hydrogen intrude into the Fe particles or fluoride film because ammonium fluoride is used.
  • carbon and hydrogen in the alcohol solution or oxygen atoms are also mixed into the Fe particles or the fluoride film.
  • the concentration distribution of fluorine atoms is seen from the surface of the quenched powder toward the center, and the fluorine concentration tends to be higher on the outer peripheral side of the quenched powder than the center, such as SmF 3 or SmOF at grain boundaries or part of the powder surface.
  • the compound grows.
  • the growth of the acid fluoride is a result of diffusion of oxygen in the magnetic powder before the fluorination treatment, and the oxygen concentration in the magnetic powder can be reduced.
  • the magnetic properties of the magnet obtained by compression molding or sintering this powder are a residual magnetic flux density of 1.3-1.5 T, a coercive force of 20-30 kOe, and a Curie temperature of 480 ° C. It is applicable to a magnetic circuit.
  • 100 g of an ammonium fluoride powder having an average particle diameter of 0.1 ⁇ m is mixed with 100 g of a Sm 2 Fe 17 N 3 magnetic powder having a particle diameter of 1 to 10 ⁇ m coated with 0.5 wt% of an alcohol solution in which SmF fluoride is swollen.
  • the mixed powder is inserted into a reaction vessel and heated by an external heater.
  • Ammonium fluoride is thermally decomposed by heating to generate NH 3 and a fluorine-containing gas.
  • a part of N atoms in the magnetic powder is replaced with F (fluorine) at 200 to 600 ° C. by this fluorine-containing gas.
  • N At a heating temperature of 300 ° C., part of N is replaced with F, and Sm 2 Fe 17 (N, F) 3 or Sm 2 Fe 17 (N, F) 2 grows with SmOF formation on the powder surface.
  • Sm 2 Fe 17 (N, F) 3 or Sm 2 Fe 17 (N, F) 2 grows with SmOF formation on the powder surface.
  • Ar gas is substituted for oxidation prevention.
  • F By replacing F with N, the lattice volume of the compound expands and the magnetic moment of Fe increases.
  • some N or F atoms are arranged at a position different from the penetration position before the reaction.
  • Such magnetic powder containing Sm 2 Fe 17 (N, F) 3 contains 0.5 atomic percent to 12 atomic percent of fluorine, has a Curie temperature of 400 ° C. to 600 ° C., and a saturation magnetic flux density of 1.4 to 1 It exhibits magnetic properties of 9 T, and by molding magnetic powder in an ammonium fluoride atmosphere at 400 ° C., a magnet with a residual magnetic flux density of 1.5 T can be produced.
  • Re l Fe m N n Re is a rare earth element of CaCu 5 structure and tetragonal, l, m, n are positive integers
  • Re l Co m N n Re is a rare earth element, l, m, n is a positive integer
  • Re l Mn m N n Re is a rare earth element, l, m, n is a positive integer
  • Re l Cr m N n Re is a rare earth element, l, m and n are positive integers
  • Re l Mn m O n Re is a rare earth element and l and m, n are positive integers).
  • a compound in which a part of such fluorine atoms is disposed at the entry position of the lattice can be prepared as a thin film, a thick film, a sintered body, or a foil other than magnetic powder, and grain boundaries inside these fluorine-containing ferromagnetic materials Also, even if oxygen, carbon or a metal element is contained as a growth or impurity of Re-containing acid fluoride on the surface of the magnetic powder, the magnetic characteristics do not change greatly.
  • amorphous Fe powder After hydrogen reduction of amorphous Fe powder with an average particle size of 1 ⁇ m to remove surface oxygen, it is mixed with a fluoride-swelled NdF alcohol solution with a composition close to that of NdF 3.1-3.5 , and amorphous on the surface Form a high quality NdF-based film.
  • the average film thickness after coating and drying is 10 nm.
  • This amorphous fluoride-coated Fe powder is mixed with ammonium fluoride powder, heated at 600 ° C. for 10 hours, and aged at 200 ° C., whereby fluorine and nitrogen atoms diffuse from the surface of the Fe powder, and An anisotropic lattice can be confirmed in the unit cell of the atomic arrangement of nitrogen. Some fluorine and nitrogen atoms are regularly arranged to increase the magnetic moment of Fe. In addition, a part of Nd also diffuses into the Fe powder.
  • a magnetic field is applied to such powder at a temperature of 100 ° C. or less, and a load of 1 t / cm 2 is applied to produce a temporary compact.
  • the powder of the Th 2 Zn 17 structure can be sintered by heat-molding the temporary molded body in ammonium fluoride gas. Before sintering, magnetic powder can be oriented by a magnetic field to produce an anisotropic magnet, and the magnetic properties at 20 ° C. show a residual magnetic flux density of 1.5 T and a coercive force of 25 kOe.
  • Nd 2 Fe 17 F 2 partially contacts the acid fluoride at grain boundaries or surfaces, and cubic or rhombohedral NdOF can be confirmed in the acid fluoride, and some acid fluorine compounds are ordered It was a phase. Also, the Curie temperature is 490 ° C. at a fluorine and nitrogen ratio of approximately 1: 1.
  • the amorphous shaped Fe powder After reducing the hydrogen of the amorphous shaped Fe powder having an average particle diameter of 0.1 ⁇ m to remove oxygen on the surface, it is mixed with an NdF alcohol solution to form an amorphous NdF film on the surface.
  • the average film thickness is 1-10 nm.
  • This amorphous fluoride coated Fe powder is mixed with ammonium fluoride powder, heated at 400 ° C. for 100 hours, kept at 200 ° C. for 10 hours and aged, whereby fluorine and nitrogen atoms diffuse from the surface of Fe powder.
  • Some fluorine and nitrogen atoms are regularly arranged to increase the Fe atom spacing, thereby increasing the magnetic moment of Fe.
  • a part of Fe forms an ordered phase Fe 16 F 2 phase with fluorine.
  • part of Nd also diffuses into the Fe powder, and Nd 2 Fe 17 (N, F) 3 grows.
  • a magnetic field is applied to such powder at a temperature of 100 ° C. or less, and a load of 1 t / cm 2 is applied to produce a temporary compact.
  • a load of 1 t / cm 2 is applied to produce a temporary compact.
  • thermal forming of this temporary formed body by irradiating an electromagnetic wave in ammonium fluoride gas, it is possible to sinter a powder containing a ferromagnetic phase having a Th 2 Zn 17 structure and a tetragonal crystal structure.
  • magnetic powder Before sintering, magnetic powder can be oriented by a magnetic field to produce an anisotropic magnet, and the magnetic properties at 20 ° C. show a residual magnetic flux density of 1.5 T and a coercive force of 25 kOe.
  • NdOF partially grows to reduce the oxygen concentration in the main phase.
  • the Curie temperature is 490 ° C. at a fluorine and nitrogen ratio of approximately 1: 1.
  • amorphous shaped Fe powder After reducing the surface oxygen by hydrogen reduction of amorphous shaped Fe powder having an average particle diameter of 0.1 ⁇ m, the powder is mixed with a SmF-based alcohol solution to form an amorphous SmF-based film on the surface.
  • the average film thickness is 20 nm.
  • This amorphous fluoride coated Fe powder is mixed with ammonium fluoride powder, heated at 400 ° C. for 100 hours, kept at 200 ° C. for 10 hours and aged, whereby fluorine and nitrogen atoms diffuse from the surface of Fe powder.
  • Some fluorine and nitrogen atoms are regularly arranged to increase the Fe atom spacing, thereby increasing the magnetic moment of Fe. Moreover, a part of Sm also diffuses into the Fe powder, and Sm 2 Fe 17 (N, F) 3 grows with the acid fluoride at grain boundaries or on the surface.
  • a magnetic field is applied to such powder at a temperature of 100 ° C. or less, and a load of 1 t / cm 2 is applied to produce a temporary compact.
  • the temporary formed body is impregnated with a SmF-based alcohol solution, the alcohol content is dried and removed, and heat forming is performed by irradiating an electromagnetic wave in an ammonium fluoride gas, thereby obtaining a ferromagnetic structure having a Th 2 Zn 17 structure and a tetragonal crystal structure.
  • the powder containing the phase can be sintered. Before sintering, magnetic powder can be oriented by a magnetic field to produce an anisotropic magnet, and the magnetic properties at 20 ° C.
  • a fluorine-rich phase is formed at grain boundaries, and the matrix contains fluorine and nitrogen.
  • the concentration of fluorine at grain boundaries and near the surface is higher than the concentration of fluorine at grain centers, and the lattice constant also tends to be large. This indicates that the Curie temperature of the grain boundary or surface or the magnetocrystalline anisotropy energy is higher on the outer peripheral side or on the surface than on the grain center.
  • a part of fluorine combines with oxygen to form an acid fluoride, whereby the oxygen concentration inside the Fe powder is reduced.
  • the Curie temperature is 490 ° C. when the ratio of fluorine and nitrogen is about 1: 1, and the Curie temperature tends to be higher as the concentration of fluorine in the matrix is higher.
  • This amorphous Sm fluoride coated Fe powder is mixed with ammonium fluoride powder, heated at 400 ° C. for 100 hours, kept at 200 ° C. for 10 hours and aged, whereby fluorine and nitrogen atoms are removed from the surface of the Fe powder.
  • a magnetic field is applied to such powder at a temperature of 100 ° C. or less, and a load of 1 t / cm 2 is applied to produce a temporary compact.
  • the temporary formed body is impregnated with a SmF-based alcohol solution, the alcohol content is dried and removed, and heat forming is performed by irradiating an electromagnetic wave in an ammonium fluoride gas, thereby obtaining a ferromagnetic structure having a Th 2 Zn 17 structure and a tetragonal crystal structure.
  • the powder containing the phase can be sintered.
  • An anisotropic magnet can be prepared by orienting and sintering magnetic powder with a magnetic field before sintering, and the magnetic properties at 20 ° C.
  • a fluorine rich phase and an Fe rich phase are formed, and the matrix phase contains fluorine and nitrogen.
  • crystal grains having a tetragonal structure ordered phase such as Fe 16 F 2 or Fe 16 (F, N) 2 phase or Fe 16 (F, N, C) 2 phase smaller than main phase grains grow
  • acid fluoride (SmOF) with high fluorine concentration grows.
  • a part of fluorine combines with oxygen or carbon or nitrogen to form an acid fluoride containing carbon or nitrogen.
  • the Curie temperature is 510 ° C.
  • A be the volume ratio of the main phase to the entire bulk
  • B be the phase mainly composed of Fe—F which is ferromagnetic iron.
  • the Fe-F phase contains bcc and bct structures.
  • a and B are determined by mapping of SEM-EDX (energy dispersive X-ray spectroscopy) or TEM-EDX, mapping analysis of EBSP (electron backscattering pattern), X-ray diffraction, or the like.
  • a and B can be controlled by changing parameters such as sintering conditions, fluorination conditions, and temporary forming conditions, and an example thereof is shown in FIG. 6 (1).
  • the Fe--F phase volume fraction B tends to increase as the main phase volume fraction A increases, the Fe--F phase volume fraction B becomes about 5% of the main phase volume fraction A. If the Fe-F phase volume fraction B is less than 20%, the growth of the Fe-F phase contributes to the increase of the residual magnetic flux density Br, but if the Fe-F phase volume fraction B exceeds 50%, the coercivity decreases significantly, Hard to be a magnet material. This is because the Fe-F phase becomes soft and magnetic due to the growth of the Fe-F phase, in which the Fe-F phase volume fraction B increases and the ferromagnetic coupling with the main phase is weak, and the coercivity decreases. It shows.
  • the main phase volume ratio A increases, the residual magnetic flux density Br also tends to increase.
  • the required residual flux density Br is 0.7T.
  • Magnets having a residual magnetic flux density of 0.7 T have already been mass-produced even with NdFeB-based and SmFeN-based magnets, but the mass-produced magnet has not achieved 0.7 T at a main phase volume ratio of 50%.
  • the main phase has a structure similar to the Th 2 Zn 17 structure containing fluorine as in this example
  • the main phase volume is increased as shown in FIG. 6 (2) due to the increase in residual magnetic flux density due to the magnetic moment increase effect.
  • a residual magnetic flux density of 0.75 T can be obtained at a rate of 0.5, which contributes to the reduction in size and weight of various parts and products through weight reduction and size reduction of the magnet.
  • the coercivity shows a low value when the main phase volume ratio is small, and the magnetic powder is separated in the compact, and the magnetically isolated magnetic powder or the oxidized magnetic powder is present because the coercive force is small.
  • a magnetic circuit such as a motor requires a coercive force of 10 kOe because a magnetic field in the direction opposite to the magnetization direction of the magnet is applied.
  • the main phase volume ratio A needs to be 0.5 or more.
  • a coercivity of 10 kOe and a residual magnetic flux density of 0.7 T or more are one of the indicators for production, and in order to satisfy this indicator, it is necessary to set the main phase volume ratio A to 0.5 or more.
  • the characteristics with a coercive force of 10 kOe and a residual magnetic flux density of 0.7 T or more are values necessary for magnetic circuit application also in bulk sintered magnets and thin film magnets. In order to satisfy the above values, not only sintered magnets but also thin-film magnets, bonded magnets, pressure-molded magnets, and magnets prepared by an electrochemical method from solution, the main phases rare earth elements, iron and fluorine It is necessary to make the volume fraction of ferromagnetic phase contained 0.5 or more.
  • Phases other than the main phase include the above-mentioned Fe-F phase, fluoride and acid fluoride.
  • Fe-F phase since the Fe-F phase is a ferromagnetic phase, it greatly affects the magnetic properties of the main phase, and the exchange coupling between the main phase and the Fe-F phase acts to improve the magnetic properties of the magnet.
  • the Fe-F phase increases, the magnetization of the main phase is easily reversed when a magnetic field opposite to the magnetization direction is applied to the magnet, so the Fe-F volume ratio is 0.5 (50%) It is desirable to make it less than.
  • fluoride or acid fluoride or rare earth oxide, iron oxide, iron fluoride grow on the grain boundary or powder surface, and the fluorine concentration is at the grain boundary or surface where the fluorine-containing compound is growing than the grain center. Get higher.
  • a fluorine-containing compound acts to reduce the oxygen concentration in the ferromagnetic phase, thereby enhancing the structural stability of the fluorine-containing ferromagnetic phase and increasing the coercivity.
  • High Curie temperature can be achieved without using heavy rare earth elements.
  • Sinterable by forming a fluorine rich phase at grain boundaries.
  • a bonded magnet in which magnetic powder is fixed in resin can be produced.
  • the nitrogen or fluorine atoms are partially regularly arranged in the main phase or the iron-rich phase.
  • Acid fluoride grows near grain boundaries and suppresses oxidation of the main phase.
  • the size, direction, Curie temperature and magnetic moment of the magnetic anisotropy can be controlled by the ratio (N, C, F) of atoms to the penetration position, and the anisotropic magnetic field reaches 25 MA / m.
  • the degree of order of the parent phase or the Fe rich phase changes depending on the ratio of interstitial atoms, and the magnetic properties change.
  • Various transition metals and rare earth elements can be added as the third element in order to stabilize the structure of the main phase in which fluorine is arranged at the penetration position.
  • Such a magnet can be prepared not only for materials containing Sm, Fe and F but also for all other rare earth elements including yttrium, and at least two phases grow as a ferromagnetic phase.
  • the two ferromagnetic phases are a phase containing a rare earth element containing Y having a large crystal magnetic anisotropy and a ferromagnetic iron rich in iron.
  • oxides containing iron and rare earth elements, fluorides or oxyfluorides grow, but they have magnetization smaller than that of the two types of ferromagnetic phases, and their volume is also Less than the two phases. If the example is arranged including these examples, it can be expressed as follows.
  • the ferromagnetic material is composed of a phase having at least two kinds of compositions, and the main composition of the ferromagnetic material is In correspondence with the two types of phases shown in the following equations, A ⁇ Re l (Fe q M r) m I n ⁇ + B ⁇ Fe x I y ⁇
  • the ferromagnetic phase is constituted by the formula, where A and B are respectively a phase composed of Re, Fe, I for powder, bulk sintered body or whole thin film, and a phase composed of Fe and I Volume fraction, one or more rare earth elements in which Re represents Y, Fe is iron, M is a transition metal element, I is only fluorine, or fluorine and nitrogen or fluorine and carbon or fluorine and hydrogen, fluorine and boron, A ⁇ 0.5 (50% or more of the magnetic material), A>B> 0, l, m, n, q,
  • ferromagnetic iron In such a ferromagnetic material, at least a part of ferromagnetic iron is ferromagnetically coupled to the main phase to increase the residual magnetic flux density.
  • a partial concentration of fluorine is diffused from the fluoride formed on the grain boundary or surface to the main phase, whereby a concentration gradient of fluorine is formed from the grain surface or grain boundary toward the grain center, and the lattice constant and lattice volume are also Change.
  • the lattice volume of the main phase is a lattice containing rare earth elements, iron and fluorine, it is larger than the lattice volume of body-centered cubic system or body-centered tetragonal system of fluorine-containing ferromagnetic iron.
  • the grain surface or the part containing high fluorine concentration at grain boundaries has large crystal magnetic anisotropy
  • the high fluorine concentration part and the low fluorine concentration part at the grain center part have a part of crystal lattice continuous.
  • the integrity of the grid is verified. This indicates that the lattice volume or lattice strain changes in a similar crystal structure in one crystal grain or magnetic powder, and the crystal magnetic anisotropy of the phase having a large lattice volume due to the introduction of fluorine. Higher properties lead to increased coercivity, increased residual magnetic flux density, and increased Curie temperature.
  • part of the fluorine atoms disposed at the entry position has a long-period structure in which they are regularly arranged, which further stabilizes the crystal structure and is less likely to be thermally decomposed, and the transition metal element is added to the main phase to form a Curie temperature.
  • the stability of the crystal structure is confirmed up to 800 ° C. higher than that.
  • N or F atoms are arranged at a position different from the penetration position before the reaction.
  • the magnetic powder containing such Sm 2 Fe 17 (N, F) 3 contains 0.5 atomic percent to 5 atomic percent of fluorine, and has a Curie temperature of 400 ° C. (0.5% fluorine) to 600 ° C. %, And saturation magnetic flux density of 1.4 (0.5% fluorine) to 1.7 T (5% fluorine), and the residual magnetic flux can be obtained by shaping the magnetic powder in an ammonium hydrogen fluoride atmosphere at 400 ° C. A magnet with a density of 1.6 T can be created.
  • Magnetic powder whose increase in magnetic moment can be confirmed by the introduction of fluorine is not limited to Sm 2 Fe 17 N 3 but may be Re l (Fe, Co) m N n (Re is a rare earth element, l, m and n are positive integers), Re l (Fe, Co) m N n (Re is a rare earth element, l, m, n is a positive integer), Re l (Mn, Cr) m N n (Re is a rare earth element, l, m, n is positive Integer), Re l (CrNi) m N n (Re is a rare earth element, l, m, n is a positive integer), Re l (Mn, Cr) m O n (Re is a rare earth element, l and m, n is These fluorine-containing compounds, which are positive integers), are formed together with near nonmagnetic fluorides and acid fluorides.
  • 10 g of ammonium hydrogen fluoride powder is mixed with 200 g of powder grown by mixing Sm 2 Fe 17 N 3 of 5 ⁇ m in particle diameter with 1 volume% of iron in the same powder as a main phase.
  • the mixed powder is inserted into a reaction vessel and heated by an external heater. The heating causes thermal decomposition of ammonium hydrogen fluoride to generate NH 3 and a fluorine-containing gas.
  • the oxidation phase on the surface of the magnetic powder is removed, and the oxygen concentration becomes 70 ppm.
  • a part of N atoms in the magnetic powder is replaced with F (fluorine) at 200 ° C. by a fluorine-containing gas.
  • the heating temperature is 300 ° C.
  • part of N is replaced with F, and Sm 2 Fe 17 (N, F) 3 grows.
  • an ordered phase such as Fe 16 F 2 grows in the Fe-rich phase having the bcc or bct structure.
  • the cooling rate after heating and holding is 1 ° C./min, some of the N and F atoms are regularly arranged, and Fe 16 (F, N) 2 or the like grows.
  • the surface of the magnetic powder is irradiated with fluorine ions, and the fluorine concentration at the penetration position is increased to increase the magnetic moment by about 5%.
  • the irradiation dose is 5 ⁇ 10 16 / cm 2 .
  • the position of the magnetic powder is changed to irradiate 50% or more of the surface of the magnetic powder.
  • Irradiation may be performed several times by changing the irradiation amount and the irradiation energy.
  • the concentration of fluorine after irradiation becomes maximum at a depth of 0.1 to 3 ⁇ m from the surface of the magnetic powder to the center of the magnetic powder than the outermost surface of the magnetic powder.
  • a magnetic field of 1 T may be applied to enhance anisotropy during irradiation.
  • F By replacing F with N, expansion of the c axis of the main phase and the Fe-rich phase expands the lattice volume of the tetragonal system, and the magnetic moment of Fe increases by about 10%.
  • some N or F atoms are arranged at a position different from the penetration position before the reaction.
  • the maximum value of fluorine concentration is at a depth of 1-1.3 ⁇ m from the surface, and nitrogen is higher at the surface.
  • the magnetic powder containing such Sm 2 Fe 17 (N, F) 3 contains 4 atomic percent to 9 atomic percent of fluorine, and the distribution of the lattice constant in the depth direction is as shown in FIG.
  • the lattice constant is large at a depth of more than 1 ⁇ m from the surface layer where the fluorine concentration is high, and the unit cell volume is also large.
  • This magnetic powder exhibits magnetic characteristics with a Curie temperature of 420 ° C. (4% fluorine) to 650 ° C.
  • Such an increase in lattice constant indicates that a fluorine atom is disposed at a tetrahedral or octahedral position entry position, which contributes to an increase in the magnetic moment of iron atoms.
  • magnetic particles can be confirmed an increase in the magnetic moment by the injection of gas or fluorine ions containing fluorine atom in addition to Sm 2 Fe 17 N 3, Re l Co m N n (Re is a rare earth element, l, m, n is a positive integer, Re l Mn m N n (Re is a rare earth element, l, m, n is a positive integer), Re l Cr m N n (Re is a rare earth element, l, m, n is positive (Integer), Re l Mn m O n (Re is a rare earth element, and l and m, n are positive integers).
  • the crystal structure of the magnetic substance in which a part of fluorine atoms is disposed at the penetration position is a metastable phase, and therefore, the phase transition to the stable phase is caused by heating.
  • the phase transition is plural, and at least one phase transition proceeds at 300 ° C to 400 ° C.
  • this phase transition temperature it is possible to form a main phase ordered with an element arranged at another intrusion position, add a plurality of rare earth elements, or a fluoride which is matched with the ordered phase at grain boundaries.
  • 10 g of ammonium hydrogen fluoride powder is mixed with 200 g of powder having Nd 2 Fe 14 B of 5 ⁇ m in particle diameter as the main phase.
  • the mixed powder is inserted into a container which does not react directly with the magnetic powder and heated by an external heater.
  • the heating causes thermal decomposition of ammonium hydrogen fluoride to generate NH 3 and a fluorine-containing gas.
  • the oxidation phase on the surface of the magnetic powder is removed by this gas generation, and the oxygen concentration becomes 120 ppm.
  • a part of B atoms in the magnetic powder is replaced with F (fluorine) at 400 ° C. by a fluorine-containing gas.
  • the surface of the magnetic powder is irradiated with fluorine ions, and the fluorine concentration at the penetration position is increased to increase the magnetic moment by about 3%.
  • the irradiation dose is 1 ⁇ 10 16 / cm 2 .
  • the position of the magnetic powder is changed to irradiate 50% or more of the surface of the magnetic powder. Irradiation may be performed several times by changing the irradiation amount and the irradiation energy.
  • the concentration of fluorine after irradiation becomes maximum at a depth of 0.1 to 3 ⁇ m from the surface of the magnetic powder to the center of the magnetic powder than the outermost surface of the magnetic powder.
  • a magnetic field of 1 T may be applied to enhance anisotropy during irradiation.
  • F By replacing F with B, expansion of the c-axis of the main phase and the Fe-rich phase expands the lattice volume of tetragonal crystal and increases the magnetic moment of Fe by about 5%.
  • N or F atoms are arranged at a position different from the penetration position before the reaction.
  • Such magnetic powder containing Nd 2 Fe 14 (B, F) contains 1 atomic% to 5 atomic% of fluorine and has a Curie temperature of 320 ° C. (1% fluorine) to 380 ° C. (5% fluorine), saturated It exhibits magnetic characteristics with a magnetic flux density of 1.61 (1% fluorine) to 1.72 T (5% fluorine), and magnetic particles are molded in an ammonium hydrogen fluoride atmosphere at 400 ° C. to form a magnet with a residual magnetic flux density of 1.7 T. It can be created.
  • the magnetic powder is Nd 2 Fe 14 (B, F ) which increase can be confirmed in the magnetic moment by the injection of gas or fluorine ions containing fluorine atom in addition, Re l Co m B n ( Re is a rare earth element, l , M, n are positive integers, Re l Mn m B n (Re is a rare earth element, l, m, n is a positive integer), Re l Cr m B n (Re is a rare earth element, l, m, n Is a positive integer), Re l (Mn, Al) m B n (Re is a rare earth element, l and m, n are positive integers).
  • the magnetic properties of such magnetic powder do not change significantly even if oxygen, carbon or metal elements are contained as acid fluoride growth or impurities at grain boundaries inside the powder or on the surface of the magnetic powder, and the magnetic properties of some Fe atoms are not changed.
  • the following effects can be confirmed as the moment increases. 1) increase of internal magnetic field, 2) increase of crystal magnetic anisotropy, 3) change of direction of magnetic anisotropy, 4) increase of electric resistance, 5) change of temperature coefficient of saturation magnetic flux density, 6) magnetostriction 7) change in heat quantity associated with phase transition, 8) phase transition related to movement of fluorine atom position when heated above the Curie temperature, etc.
  • a magnet made of Nd 2 Fe 14 (B, F) structure as a main phase and having a bcc or bct structure containing fluorine and having a ferromagnetic iron grown thereon is used as a laminated electromagnetic steel sheet, laminated amorphous or compacted iron When making it adhere
  • FIG. 5 shows a schematic view of a cross section perpendicular to the axial direction of the motor.
  • the motor is composed of a rotor 100 and a stator 2.
  • the stator is composed of a core back 5 and teeth 4.
  • coils 8a, 8b and 8c (three-phase winding U
  • a coil group of the phase winding 8a, the V-phase winding 8b, and the W-phase winding 8c) is inserted.
  • a rotor insertion portion 10 into which the rotor is inserted is secured at the center of the shaft from the tip 9 of the teeth 4, and the rotor 100 is inserted at this position.
  • a fluorine-containing magnet subjected to surface treatment such as plating is inserted on the outer peripheral side of the rotor 100, and a portion with less iron fluoride (less than 5% of average fluorine atom concentration in iron) 200 and a lot of iron fluoride (The average fluorine concentration in iron is 5% to 10%) 201 and 202.
  • the areas of portions 201 and 202 where the fluorine concentration in the iron phase constituting the magnet is 5 to 10 atomic% are different, and the larger the area of the magnetic field strength to which the reverse magnetic field is applied by the magnetic field design Increase the magnetic force and residual magnetic flux density.
  • the amount of rare earth elements used can be reduced by increasing the amount of iron fluoride on the outer peripheral side of the sintered magnet as described above.
  • the above-mentioned fluorine treatment can also be applied to the soft magnetic part of the magnetic circuit, and it is possible to increase the saturation magnetic flux density to 2.4-2.6 T, various motors and magnetic heads for hard disks, MRI, electron microscope, superconductivity It is applicable to measuring instruments, such as an instrument.
  • 10 g of ammonium hydrogen fluoride powder is mixed with 200 g of powder having Nd 2 Fe 19 B with a particle diameter of 1 ⁇ m as a main phase.
  • the mixed powder is inserted into a container which does not react directly with the magnetic powder and heated by an external heater.
  • the heating causes thermal decomposition of ammonium hydrogen fluoride to generate NH 3 and a fluorine-containing gas.
  • the oxidation phase on the surface of the magnetic powder is removed by this gas generation, and the oxygen concentration becomes 120 ppm.
  • a part of B atoms in the magnetic powder is replaced with F (fluorine) at 400 ° C. by a fluorine-containing gas.
  • a phase in which at least two elements of fluorine, oxygen, nitrogen and boron are regularly arranged is formed in part of the main phase or the grain boundary phase.
  • the growth of such a regular phase contributes to the increase of residual magnetic flux density and the increase of coercivity, and it is analyzed from diffraction experiments that it has about twice the lattice constant of iron of bcc structure, and the value of the lattice constant is It has been found to be in the range of 0.57 nm to 0.65 nm.
  • the surface of the magnetic powder is irradiated with fluorine ions in a low oxygen atmosphere, and the fluorine concentration at the penetration position is increased to increase the magnetic moment by about 3%.
  • the irradiation dose is 5 ⁇ 10 16 / cm 2 .
  • the lattice constant is different between the inside (central portion) of the magnetic powder and the surface by changing the position of the magnetic powder to irradiate 20% or more of the surface area to the whole surface of the magnetic powder, and the lattice constant becomes smaller inside. That is, the lattice volume is large near the surface of the magnetic powder or grain boundary, and the lattice volume inside tends to be smaller than the vicinity of the grain boundary or the surface.
  • the lattice volume of the parent phase and the ferromagnetic iron tends to be smaller in the magnetic powder interior with lower fluorine concentration.
  • Irradiation may be performed several times by changing the irradiation amount and the irradiation energy.
  • the concentration of fluorine after irradiation becomes maximum at a depth of 0.1 to 3 ⁇ m from the surface of the magnetic powder to the center of the magnetic powder than the outermost surface of the magnetic powder.
  • a magnetic field of 5 T may be applied to enhance the anisotropy during irradiation.
  • F By replacing F with B, the c-axis of the main phase and the Fe-rich phase is elongated, the lattice volume of tetragonal crystals is expanded, and the magnetic moment of Fe is increased by about 5%.
  • N or F atoms are arranged at a position different from the penetration position before the reaction.
  • the fluorine atom disposed at the entry position has a larger number of atoms than the fluorine atom disposed at an atom position other than the entry position, and the atom configuration other than the entry position forms a compound with a rare earth element different from the main phase or iron.
  • Such magnetic powder containing Nd 2 Fe 19 (B, F) contains 1 atomic% to 3 atomic% of fluorine, and the Curie temperature is 480 ° C. (1% fluorine) to 530 ° C.
  • the increase in residual magnetic flux density is due to the increase in the magnetic moment of iron due to the regular arrangement of the elements arranged at the above-mentioned entry position, and the fluorine atoms located at the entry position of octahedron position or tetrahedron position are interatomic atoms of ferromagnetic iron Since the crystal magnetic anisotropy is increased due to the anisotropic arrangement of the penetration positions while the distance is extended, a magnet having a high energy product of 45 MGOe to 65 MGOe can be obtained. In order to enhance the corrosion resistance and thermal stability of these fluorine-containing magnets, they are applied to various magnetic circuits after plating, painting, resin coating treatment and the like. Such an increase in the magnetocrystalline anisotropy and the Curie temperature and the magnetization can also be achieved by introducing chlorine into the penetration position.
  • ammonium hydrogen fluoride powder 100 g is mixed with 200 g of powder having Nd 1 Fe 19 having a particle diameter of 1 ⁇ m as a main phase.
  • the mixed powder is inserted into a container which does not react directly with the magnetic powder and heated by an external heater.
  • the heating causes thermal decomposition of ammonium hydrogen fluoride to generate NH 3 and a fluorine-containing gas.
  • F fluorine
  • the oxidation phase on the surface of the magnetic powder is removed, and the oxygen concentration becomes 50 ppm.
  • F fluorine
  • the heating temperature is 600 ° C., part of Fe is replaced with F, and FeF 2 or FeF 3 grows.
  • the lattice volume of Fe 16 F 2 , Fe 16 (F, C) 2 , Fe 16 (F, N) 2 etc. is in the order of 0.15 to 0.25 nm 3
  • the phase grows, and part of the fluoride becomes an acid fluoride of fcc structure.
  • a phase in which at least two elements of fluorine, oxygen, nitrogen and carbon are regularly arranged is formed in part of the main phase or the grain boundary phase.
  • the growth of such a regular phase contributes to an increase in residual magnetic flux density and an increase in coercivity.
  • F By arranging F at the penetration position, the axes of the main phases Nd 1 Fe 19 F 1-3 and the Fe-rich phase are anisotropically stretched, and the lattice volume of tetragonal crystal and hexagonal crystal expands, and the magnetism of Fe The moment is increased by about 5%.
  • some N or F atoms are arranged at a position different from the penetration position before the reaction.
  • the fluorine atom disposed at the entry position has a larger number of atoms than the fluorine atom disposed at an atom position other than the entry position, and the atom configuration other than the entry position forms a compound with iron different from the main phase.
  • Such Nd 1 Fe 19 (N, F ) 1-3 or magnetic powder containing Nd 1 Fe 19 F 1-3 is a Curie temperature of 530 ° C., shows the magnetic characteristics of the saturation magnetic flux density 1.8 T, the magnetic powder By heating at 1000 ° C. in an ammonium hydrogen fluoride atmosphere, it can be made by sintering a magnet with a residual magnetic flux density of 1.7 T.
  • the increase of the residual magnetic flux density is due to the increase of the magnetic moment of iron due to the regular arrangement of the elements arranged at the above-mentioned entry position, and the fluorine atom located at the entry position of octahedron position or tetrahedron position As it extends, the anisotropic alignment of the penetration sites increases the magnetocrystalline anisotropy.
  • a part of fluoride in which fluorine in the vicinity of the grain boundary is not intruded and aligned contributes to high coercivity by antiferromagnetic coupling with the parent phase, so that a magnet with high energy product of 55 MGOe to 70 MGOe can be obtained.
  • antiferromagnetic coupling depends on the application direction of the magnetic field during heat treatment or magnetization, and a left-right asymmetry component can be seen in the demagnetization curve. This asymmetrical component disappears by heating below the Curie point.
  • 200 g of powder consisting mainly of Sm 2 Fe 17 N 3 with a particle size of 5 ⁇ m is mixed with 200 cc of an alcohol solution of PrF 3 in composition, placed in a stainless steel container, and mechanically alloyed with stainless steel balls to use Sm 2 Fe 17 N 3 Incorporate fluorine into the main phase. It was confirmed by mass spectrometry that fluorine was incorporated into the main phase after 30 hours of mechanical aloinizing. The fluorine concentration was different at the center and outside of the powder, being higher at the outside, and the average fluorine concentration of the whole powder was 5-10 atomic%. This concentration depends on the concentration of PrF 3 in alcohol and mechanical alloying conditions, such as ball diameter, ball to powder volume ratio, rotational speed, type of solvent, and impurities in the solvent.
  • the fluorine atom forms not only a penetration position but also a substitution position or an acid fluoride, and by introducing fluorine at a concentration of 0.1 atomic% or more, one of the following effects can be confirmed. 1) increase of internal magnetic field, 2) increase of magnetocrystalline anisotropy, 3) change of direction of magnetic anisotropy, 4) increase of electrical resistance, 5) change of temperature coefficient of saturation magnetic flux density, 6) magnetic Changes in resistance, 7) change in heat quantity accompanying phase transition, 8) phase transition related to movement of fluorine atom position when heated above the Curie temperature, etc.
  • the crystal structure of the magnetic substance in which a part of fluorine atoms is disposed at the penetration position is a metastable phase, and therefore, the phase transition to the stable phase is caused by heating.
  • the number of phase transitions is multiple, and at least one phase transition proceeds at 300 ° C. to 600 ° C.
  • this phase transition temperature it is possible to form a main phase ordered with an element arranged at another intrusion position, add a plurality of rare earth elements, or a fluoride which is matched with the ordered phase at grain boundaries.
  • it is effective to form an acid fluoride and these techniques make it possible to make the phase transition temperature and the Curie temperature approximately the same.
  • iron of bcc or bct structure is grown on Sm 2 Fe 17 N 3 powder as the main phase by vacuum heat treatment at 500 ° C., and then mechanical alling is performed using a solvent in which the above fluoride is swollen.
  • Fe 8 F, Fe 16 F 2 , Fe 4 F, Fe 3 F, Fe 2 F and fluorides in which nitrogen, carbon or oxygen is disposed in part of them are formed.
  • Fe 8 F and Fe 16 F 2 have a bct structure, and in Fe 16 F 2 , a period about twice that of Fe 8 F is observed in electron diffraction or an X-ray diffraction pattern.
  • this approximately double period has a lattice constant in the range of 0.57 nm to 0.65 nm analyzed from diffraction experiments.
  • Fe 4 F has a structure close to fcc, and these three compounds exhibit ferromagnetism, and the magnetic moment at 20 ° C. has a value exceeding 2.5 Bohr magneton, and the magnetic flux density is increased.
  • fluorides in which impurities such as oxygen are mixed with Fe 3 F and Fe 2 F, which are a trace amount grow.
  • the coercivity increase effect due to the change in coupling can be realized, and it is possible to achieve both high residual magnetic flux density and high coercivity.
  • the average composition was adjusted to NdFe 11 TiF 0.1, and the concentration of NdF 3 in alcohol, the ball diameter which is mechanical alloying conditions, the volume ratio of balls to powder, the rotation speed, the type of solvent, and the impurities in the solvent were adjusted.
  • Fluorine atoms form not only penetration positions but also substitution positions and acid fluorides, but the lattice constant of body-centered tetragonal crystals tends to increase.
  • the lattice constants and Curie points of body-centered tetragonal crystals of the main phase are shown in Nos. 1 and 2 of Table 1.
  • the lattice constant is represented by the a-axis and c-axis for body-centered tetragonal crystals, and the unit is angstrom.
  • the Curie point is represented by Tc and the unit is K (Kelvin).
  • the introduction of fluorine increases the length of the c-axis from 4.91 to 4.95 A (angstrom), and the unit cell volume increases. Along with this, Tc rises from 547K to 558K.
  • NdFe 11 TiF 0.2 produced with a mechanical alloying time of 200 hours further extends the c-axis and raises Tc.
  • the phases formed other than body-centered tetragonal crystals of the main phase have cubic or rhombohedral fluorides or acid fluorides and structures other than tetragonal crystals such as Nd 3 Fe 29, and the volume of the phases other than the main phase Is less than 20% by volume with respect to the main phase, and phases other than some of the main phases have consistency at the interface with the main phase and stabilize the crystal structure of the main phase, and the residual magnetic flux density is 1. This ratio is necessary to achieve 2 T or more and a coercive force of 10 kOe or more.
  • the values of the lattice constant and Tc for material systems other than NdFe 11 Ti are shown in Table 1 numbers 9 to 59.
  • the introduction of fluorine raises Tc in comparison with the lattice constant and Tc of the main phase not containing fluorine.
  • the c-axis also increases for any major phase.
  • the reason why the c-axis extends can be presumed to be that part of the fluorine atoms intrude into the gaps of the structure composed of rare earth elements or iron atoms, and the extension of the c-axis increases the crystal magnetic anisotropy energy.
  • the magnetic force can also be increased.
  • the alignment of fluorine is observed, and in SmFe 15 MnF 1.1 (No. 17)
  • the fluorine is arranged in a part between Sm-Fe, between Fe-Fe, and between atoms between Fe-Mn, and local lattice distortion occurs, resulting in an increase of the Curie temperature. Expansion of the lattice due to the introduction of similar lattice strain is observed in the fluorine-containing compounds of the material composition of No. 18 to No. 59.
  • the axial length of at least one of the lattice constants of the main phase fluorine compound shown in Table 1 is longer than the longest axial length of the lattice constant of ferromagnetic iron containing fluorine.
  • the lattice volume of the main phase is larger than 250 cubic angstroms, and larger than 23.6 to 220 cubic angstroms which is the lattice volume of ferromagnetic iron containing fluorine.
  • the lattice volume expands unidirectionally or isotropically by the penetration of fluorine, and the change in the density of states of electrons due to the high electronegativity of fluorine atoms increases the magnetocrystalline anisotropy and the Curie temperature And it is considered that the increase in magnetization is realized.
  • 100 g of powder containing YFe 6 Al 6 as the main phase with a particle size of 0.1 ⁇ m is mixed with 200 cc of alcohol solution containing YF 2 crystalline fluoride with a composition of 0.01 ⁇ m in particle diameter, and applied to a stainless steel container coated with YF 2 Then, a metastable compound is grown by diffusion or reaction in the vicinity of the surface of YF 2 fluorine from the surface of YFe 6 Al 6 main phase by mechanical alloying using stainless steel balls coated with YF 2 having a diameter of about 100 ⁇ m.
  • the amount of fluorine atoms constituting the fluoride or acid fluoride is smaller than the amount of fluorine atoms disposed at the entry position
  • a powder is used in which the oxygen concentration is 500 ppm or less and Fe is increased by 0.1 to 5 atomic% from the composition of YFe 6 Al 6 .
  • heat treatment at 500 ° C. for 10 hours was attempted using an atmosphere containing 1% of fluorine.
  • YFe 6 Al 6 F grew, and elongation of the a-axis and c-axis could be confirmed.
  • Tc Curie temperature
  • 100 g of powder consisting mainly of Ce 2 Fe 17 C with a particle size of 1 ⁇ m is mixed with 200 cc of an amorphous fluoride alcohol solution of CeF 2 composition, and placed in a fluoride coated stainless steel container.
  • the metastable compound is grown by diffusion or reaction in the vicinity of the surface of fluorine of CeF 2 from the surface of the Ce 2 Fe 17 C main phase by mechanical alloying using a stainless steel ball coated with.
  • the amount of fluorine atoms constituting the fluoride or acid fluoride is smaller than the amount of fluorine atoms disposed at the entry position
  • a powder is used in which the oxygen concentration is 1000 ppm or less and the amount of Fe is increased by 0.1 to 5 atomic%.
  • heat treatment at 400 ° C. for 10 hours was attempted using an atmosphere containing 1% of fluorine.
  • Ce 2 Fe 17 CF 0.1 was grown, and elongation of the lattice constant was confirmed.
  • the Curie temperature (Tc) of Ce 2 Fe 17 CF 0.1 obtained from the temperature dependency of the magnetization was increased from a temperature (297 K) where no fluorine was introduced to 412 K.
  • the axial length increase of the lattice constant and the increase of the Curie point due to the introduction of fluorine can be confirmed also for other rare earth iron materials, and the results are shown in Table 3.
  • a sintered magnet or a bonded magnet to a magnet applied product (a rotating machine, a hard disk, a magnetic resonance device, etc.) which is required to have heat resistance.
  • 100 g of powder consisting mainly of La 2 Fe 17 N with a particle size of 100 nm is mixed with 100 cc of an amorphous fluoride alcohol solution having a composition of LaF 2 and placed in a fluoride coated stainless steel container.
  • a metastable compound is grown by diffusion or reaction in the vicinity of the surface of fluorine of LaF 2 from the surface of the La 2 Fe 17 N main phase by mechanical alloying using a stainless ball coated with.
  • the concentration of fluorine atoms constituting the above-mentioned fluoride or acid fluoride is determined by the concentration of fluorine atoms arranged at the entry position of the matrix. Also high.
  • the phase in which the fluorine atom is at the penetration position is the main phase, and the main phase volume is larger than that of the other fluorine-substituted phase or acid fluoride.
  • a sintered magnet a fluorine compound having a crystal structure different from that of the main phase grows in part of grain boundaries.
  • An oxygen-containing oxy-fluorine compound grows at part of the grain boundary triple point.
  • oxides, fluorides or acid fluorides other than organic materials can be used as the binder, and the heat resistance of the magnet is improved by using the inorganic binder.
  • a Sm-F based solution is applied to a 100 nm thick iron foil and then heat treated.
  • the purity of the iron foil is 99.8%.
  • the Sm—F-based solution exhibits an amorphous structure, so the X-ray diffraction pattern differs from the crystalline pattern, and contains one or more peaks with a half-width of 1 degree or more.
  • After applying a 0.1 wt% solution to the iron foil it is heated and maintained at 600 ° C. for 10 hours in an atmosphere in which ammonium fluoride is evaporated, and then quenched.
  • the iron foil and the fluoride react with each other to obtain an iron foil containing Sm and fluorine.
  • fluorine When heat-treated at a temperature higher than 600 ° C., fluorine hardly forms an iron rare earth fluorine ternary compound, stable fluorides and acid fluorides grow, and improvement of magnetic properties becomes difficult.
  • 100 g of powder consisting mainly of NdFe 11 Ti with a particle size of 100 nm is mixed with 100 cc of an alcohol solution containing 10 wt% of ground powder of NdF 3 and placed in a stainless steel container in which fluoride is coated and diffused.
  • Fluorine is incorporated into the NdFe 11 Ti main phase by mechanical alloying using a stainless steel ball having fluoride formed on the surface by fluoride surface treatment. After 200 hours of mechanical alloying, it was confirmed by mass spectrometry that fluorine was taken in the main phase.
  • the fluorine concentration was different at the center and the outside of the powder, and tended to be higher at the outside.
  • the average composition was adjusted to be NdFe 11 TiF 1, and the concentration of NdF 3 in alcohol, the ball diameter which is mechanical alloying conditions, the volume ratio of balls to powder, the rotation speed, the type of solvent, and the impurities in the solvent were adjusted.
  • Fluorine atoms form not only entry positions but also substitution positions of hexagonal crystals and acid fluorides, but the lattice constant of body-centered tetragonal crystals tends to increase.
  • fluorination proceeds further, NdFe 11 TiF 2 and NdFe 11 TiF 3 grow, and the fluorine concentration is higher than the concentration of the rare earth element. It has a high concentration, and part of the fluorine forms rare earth fluorides other than the mother phase, rare earth acid fluorides, iron fluorides, and iron fluorides.
  • the mechanical alloying conditions and the crystal grain size are adjusted so that the phase other than the main phase is in the range of 0.1 to 20% by volume.
  • the growth of the ferromagnetic tetragonal Fe-F binary alloy phase makes it possible to increase the residual magnetic flux density.
  • the content of the ferromagnetic iron-fluorine alloy and the fluorine-containing phase other than the main phase is preferably 0.1 to 10% by volume.
  • a powder containing the fluorine-containing phase other than the main phase can be heat-formed after magnetic orientation to obtain a compact with a density of 95-98% It becomes an anisotropic magnet with a magnetic flux density of 1.0 to 1.8 T and a coercive force of 15 to 40 kOe.
  • a powder having Sm 2 Fe 17 having a particle diameter of 5 ⁇ m as a main phase is temporarily formed in a magnetic field of 10 kOe, and then the formed body is inserted into a vacuum heating device and heat sintered at 1200 ° C. for 5 hours. After sintering, ammonium fluoride gas is introduced into an aging chamber adjacent to the heating chamber at around 1000 ° C. to diffuse fluorine from the outside of the sintered body.
  • the fluorine concentration is different at the center and the outside of the sintered body, and is higher at the outside, and the average fluorine concentration of the whole sintered body is It was 1-15 atomic percent.
  • This concentration depends on the partial pressure of the gas obtained by the thermal decomposition of ammonium fluoride (NH 4 F) and the aging fluorination temperature. It also depends on the particle size of the powder and the density of the sintered body.
  • the fluorine atom forms not only a penetration position but also a substitution position or an acid fluoride, and by introducing fluorine at a concentration of 0.1 atomic% or more, one of the following effects can be confirmed. 1) increase of internal magnetic field, 2) increase of magnetocrystalline anisotropy, 3) change of direction of magnetic anisotropy, 4) increase of electrical resistance, 5) change of temperature coefficient of saturation magnetic flux density, 6) magnetic Changes in resistance, 7) change in heat quantity accompanying phase transition, 8) phase transition related to movement of fluorine atom position when heated above the Curie temperature, etc.
  • the crystal structure of the magnetic substance in which a part of fluorine atoms is disposed at the penetration position is a metastable phase, and therefore, the phase transition to the stable phase is caused by heating.
  • the number of phase transitions is multiple, and at least one phase transition proceeds at 400 ° C. to 900 ° C.
  • Fe 8 F, Fe 16 F 2 , Fe 4 F, Fe 3 F, Fe are obtained by the fluorination treatment as described above. 2 F and fluorides in which nitrogen, carbon or oxygen is disposed in part of these are formed.
  • Fe 8 F and Fe 16 F 2 have a bct structure, and in Fe 16 F 2 , a period about twice that of Fe 8 F is observed in electron diffraction or an X-ray diffraction pattern. It has been found that this approximately double period has a lattice constant in the range of 0.57 nm to 0.65 nm analyzed from diffraction experiments.
  • Fe 4 F has a structure close to fcc, and these three compounds exhibit ferromagnetism, and the magnetic moment at 20 ° C. has a value exceeding 2.5 Bohr magneton, and the magnetic flux density is increased. Furthermore, fluorides in which impurities such as oxygen are mixed with Fe 3 F and Fe 2 F, although in a small amount, grow.
  • Fe 8 F, Fe 16 F 2 and Fe 4 F in a high coercivity magnetic material, it is possible to increase the residual magnetic flux density in the magnet material by exchange coupling with the matrix phase. In soft magnetic materials it is possible to increase the saturation flux density.
  • these fluorides are mixed with impurities such as carbon, oxygen, hydrogen and nitrogen, the magnetic properties can be secured, so there is no practical problem.
  • a powder having Sm 2 Fe 19 as a main phase with a particle diameter of 1 ⁇ m is temporarily molded in a magnetic field of 10 kOe, and then a temporary compact is inserted into a vacuum heating device, and after hydrogen reduction, heat sintering is performed at 1100 ° C. for 5 hours. After sintering, in order to inject ammonium fluoride gas at around 900 ° C., it moves to the aging chamber adjacent to the heating chamber without being exposed to the air to diffuse fluorine from the outside of the sintered body.
  • the fluorine concentration differs between the center and the outside of the sintered body, and the outside is higher, and the whole sintered body
  • the average fluorine concentration of H 2 was 1-12 atomic%, and it was confirmed that nitrogen and hydrogen contained at a concentration lower than the fluorine concentration.
  • the concentration of these elements depends on the partial pressure of the gas obtained by thermal decomposition of ammonium fluoride (NH 4 F) and the aging fluorination temperature. It also depends on the particle size of the powder and the density of the sintered body.
  • the fluorine atom forms not only a penetration position but also a substitution position or an acid fluoride, and by introducing fluorine at a concentration of 0.01 atomic% or more, it is possible to confirm one of the following effects.
  • the phase transition to the stable phase is caused by heating.
  • the number of phase transitions is multiple, and at least one phase transition proceeds at 400 ° C. to 900 ° C.
  • Fe 8 (F, N), Fe 16 (F, N) 2 Fe is obtained by the fluorination treatment as described above. 4 (F, N), Fe 3 (F, N), Fe 2 (F, N), or a fluoride in which nitrogen, carbon or oxygen is disposed in part of these is formed.
  • Fe 8 (F, N) and Fe 16 (F, N) 2 have a bct structure, and in Fe 16 (F, N) 2 , the period is about twice that of Fe 8 (F, N) Are observed by electron beam diffraction or X-ray diffraction pattern. It has been found that this approximately double period has a lattice constant in the range of 0.57 nm to 0.65 nm analyzed from diffraction experiments. Further, Fe 4 (F, N) has a structure close to fcc, and these three compounds exhibit ferromagnetism, and the magnetic moment at 20 ° C. has a value exceeding 2.5 Bohr magneton, and the magnetic flux density increases.
  • Fe 8 (F, N), Fe 16 (F, N) 2 , Fe 4 (F, N) into a high coercivity magnetic material, the magnetic material and the parent phase It is possible to increase the residual magnetic flux density by exchange coupling, and it is possible to increase the saturation magnetic flux density in the soft magnetic material.
  • the Fe n F m N l compounds (n, m and l are positive integers) whose unit cell volume is expanded compared to bcc Fe are not only strong in magnetic moment but also due to increase in anisotropic energy and ferromagnetism.
  • the coercivity increase effect due to the change of exchange coupling to magnetism can be realized, and it is possible to achieve both a high remanent magnetic flux density and a high coercivity, and similar improvement of the magnetic properties is realized by Re n Fe m , Re n Co m (Re
  • the rare earth elements n and m are integers, and a plurality of metals other than Fe and Co or metalloid elements (Cu, Al, Zr, Ti, Mn, Cr, Mo, Ca, Bi, Ta, Mg, Si , B, C), and the fluorination treatment of the sintered body or temporary formed body).
  • the fluorination treatment of the sintered body or temporary formed body even if these fluorides are mixed with impurities such as carbon, oxygen, hydrogen and the like, the magnetic characteristics can be secured, and there is no problem in practical use.
  • 100 g of powder consisting mainly of La (Fe 0.9 Si 0.1 Al 0.01 ) 13 with a particle diameter of 100 nm is mixed with 100 cc of an alcohol solution containing 10 wt% of ground powder of LaF 3 and put in a stainless steel container coated with fluoride After the heat reduction in a hydrogen atmosphere, fluorine is introduced into the La (Fe 0.9 Si 0.1 Al 0.01 ) 13 main phase by mechanical alloying using stainless steel balls having fluorides formed on the surface by fluoride surface treatment. After 200 hours of mechanical alloying, it was confirmed by mass spectrometry that fluorine was taken in the main phase.
  • the fluorine concentration was different at the center and the outside of the powder, and tended to be higher at the outside.
  • the average composition is La (Fe 0.9 Si 0.1 Al 0.01 ) 13 F so that the concentration of LaF 3 in the alcohol, the ball diameter which is the mechanical alloying conditions, the ball to powder volume ratio, the rotational speed, the type of solvent, The impurities in the solvent were adjusted.
  • the fluorine atom forms not only the position of penetration but also the substitution position of the main phase and the acid fluoride.
  • fluorination proceeds further, and La (Fe 0.9 Si 0.1 Al 0.01 ) 13 F 2 and La (Fe 0.9 Si 0.1 Al 0.01 ) 13 F 3 grows, the fluorine concentration is higher than the concentration of rare earth elements, and some fluorine forms rare earth fluorides or rare earth acid fluorides or iron fluorides or iron fluorides other than the mother phase doing.
  • the mechanical alloying conditions and the crystal grain size were adjusted so that the phase other than the main phase was in the range of 0.1 to 20% by volume, and it was confirmed that the change in magnetic entropy was increased by the introduction of fluorine.
  • the fluorine-containing phase and the hard magnetic material can be combined to form a magnetic material having a magnetic cooling effect.
  • the powder of Sm 2 Fe 17.2 is heated in a hydrogen stream using a heat treatment furnace to hydrogenate a part of the powder.
  • the powder is pulverized utilizing the embrittlement of the powder due to hydrogen content to obtain a powder having an average powder diameter of 5 ⁇ m.
  • Hydrogen disproportionation recombination may be used to add anisotropy to the powder.
  • 100 g of this powder is heated and held in a gas atmosphere in which ammonium fluoride NH 4 F is sublimed without being exposed to the atmosphere. After heating and holding, acid fluorides and oxides formed on the powder surface etc. are reduced by the addition of CaH 2 .
  • the heating temperature is in the range of 150 ° C. to 1000 ° C., and the optimum temperature is 300 ° C. to 700 ° C.
  • This treatment causes Sm 2 Fe 17.1 F 1-3 to grow with the fluorine-containing iron and the acid fluoride.
  • the matrix is Sm 2 Fe 17.1 F 1-3 , and the fluorine concentration is higher on the outer peripheral side in the matrix than the center of the powder on average.
  • a phase different from the oxide or acid fluoride or fluoride main phase containing fluorine is grown on the powder surface, and in the above Sm 2 Fe 17.1 F 1-3 , Fe of bcc structure, bct structure Ferromagnetic phase with a crystal structure different from the main phase such as Fe-F phase, SmOF, SmF 3 , Fe 2 O 3 , Fe 3 O 4 , Sm 2 O 3, etc.
  • a phase thought to be a nonmagnetic phase grows.
  • the volume of the Sm 2 Fe 17.1 F 1-3 with respect to the whole powder was 70 to 90%, and the ferromagnetic phase was 95%.
  • these magnetic properties are different in composition from fluorine concentration gradient, composition of additives, impurities, etc., fluorine atom position and order, crystal structure including lattice constant, and crystal structure different from the main phase having an interface with the main phase. It has been confirmed that it changes depending on the phase of the loss.
  • the increase of the saturation magnetic flux density and the Curie temperature can be confirmed also by the measurement of the temperature dependency of the magnetization even in the composition of Sm 2 Fe 17.1 F 0.1 , and the increase of the lattice constant by the fluorine atom can also be confirmed by the X-ray diffraction pattern measurement.
  • the magnetocrystalline anisotropy energy obtained from a single crystal of Sm 2 Fe 17.1 F 0.1 is also confirmed increasing effect due to introduction of fluorine.
  • Materials in which any one of such magnetization increase, Curie temperature (Tc) increase and crystal magnetic anisotropy energy increase can be observed are CeFeF, PrFeF, NdFeF, PmFeF, EuFeF, GdFeF, TbFeF other than the above-mentioned SmFeF system. , DyFeF, HoFeF, ErFeF, TmFeF, YbFeF, LuFeF, YFeF, etc.
  • Re 2 Fe 17 (represents Re as a rare earth element containing Y) (Re 2 Fe 17 F 0.1-3 ) or ReFe 12 (ReFe 12 F 0.1) -3 ), ReFe 15-19 (ReFe 15-19 F 0.1-3 ) system, Re 3 Fe 29 (Re 3 Fe 29 F 0.1-3 ) system, and among these series, some of Fe atoms are Composition replaced with transition metal elements including Co, Ti, Al, Mn, Mg, Si, and Cu other than Fe and part of fluorine atoms replaced with H, C, B, N, O, Cl It is.
  • 100 g of SmFe 11 Al powder with a particle size of about 1 ⁇ m is mixed with 10 g of ammonium fluoride (NHF 4 ) powder and evacuated and heated. During heating, CaH 2 is added to suppress the progress of oxidation on the surface of SmFe 11 Al powder.
  • the heat treatment temperature is 300 ° C., and the holding time is 5 hours. After heating, quenching and fluoridated SmFe 11 Al powder are taken out from the heat treatment furnace. By this heat treatment, fluorine-containing reactive gas is generated from ammonium fluoride (NHF 4 ), and SmFe 11 AlF 0.1-3 powder can be prepared.
  • a fluorine such as SmF 3 , SmOF, AlF 2 , Al 2 O 3 , SmO 2 , Fe 2 O 3 , Fe 3 O 4 , SmH 2 Oxides or acid fluorides, oxides, and hydrides grow.
  • the bcc structure includes a deformed bcc structure due to a lattice strain, etc., and the a-axis and c-axis lattice constants differ by 0.01-1%, and a bcc structure that is difficult to judge as bct from diffraction experiments is included.
  • the fluorine concentration of the matrix is higher on the outer peripheral side than the powder center, and a part of the powder surface is in contact with a fluoride or acid fluoride containing a higher concentration of fluorine than the matrix.
  • This magnet can be applied to embedded magnet type motor and surface magnet motor, and voice coil motor, stepping motor, AC servo motor, linear motor, power steering, drive motor for electric car, spindle motor, actuator, undulator for synchrotron radiation, polarized magnet It can be applied to fan motors, permanent magnet type MRIs, electroencephalographs, etc.
  • a part or all of Al instead of Al is used in addition to SmFe 11 Al powder.
  • the fluorine introduction effect is also confirmed in a fluorine compound of SmFe 11.1-30 or a fluorine compound containing a transition element, which has a higher Fe content than SmFe 11 Al.
  • the particle size of SmFe 11 Al powder is 20 ⁇ m or less, and the gas used for fluorination can use various gases containing fluorine, and the reducing agent during heating is other than CaH 2 Hydride can be used.
  • 100 g of SmFe 11 Ti powder with a particle size of about 0.5 ⁇ m is mixed with 10 g of ammonium fluoride (NHF 4 ) powder and evacuated and heated. During heating, CaH 2 is added to suppress the progress of oxidation on the surface of SmFe 11 Ti powder.
  • the heat treatment temperature is 200 ° C., and the holding time is 10 hours. After heating, quenching and fluorination SmFe 11 Ti powder are taken out from the heat treatment furnace. By this heat treatment, fluorine-containing reactive gas is generated from ammonium fluoride (NHF 4 ), and SmFe 11 TiF 0.1-3 powder can be prepared.
  • the fluorine concentration is different between the central portion and the outer peripheral portion of the crystal grain or powder, and the outer peripheral portion has a higher fluorine concentration than the central portion. This is because fluorine diffuses from the outer peripheral portion. Even if it is SmFe 11 TiF 0.1 in the central part, it is possible to use SmFe 11 TiF 3 in the outer peripheral part. When the holding time of the heat treatment is set to 20 hours, the difference in fluorine concentration between the central portion and the outer peripheral side becomes small, and SmFe 11 TiF 0.3 at the central portion and SmFe 11 TiF 3 at the outer peripheral portion can be obtained.
  • the fluorine concentration and concentration gradient can be adjusted according to the retention time, gas partial pressure, gas species and the like according to the characteristics.
  • Fluoride such as SmF 3 , SmOF, TiF 2 , Ti 2 O 3 , SmO 2 , Fe 2 O 3 , Fe 3 O 4 , TiN, etc.
  • acid fluorides, oxides and nitrides grow.
  • the lattice volume is larger at the outer peripheral side or the surface of the particle containing the high concentration of fluorine or near the interface, and the anisotropic energy tends to be larger than the particle center.
  • the saturation magnetization increased by 35%
  • the Curie temperature increased by 250 ° C.
  • the uniaxial magnetic anisotropy energy (Ku) increased by 20%. This powder was inserted into a mold and compression-molded at a temperature of 400 ° C.
  • a partially sintered molded body composed of SmFe 11 TiF 0.1-3 crystal grains.
  • the magnetic properties of this molded body were a residual magnetic flux density of 1.6 T, a coercive force of 35 kOe, and a Curie temperature of 835 K.
  • various heat molding processes such as impact compression molding, electric current molding, rapid heat molding, and heat molding by electromagnetic waves can be adopted for producing a molded body.
  • a CF-based or HF-based gas or solution containing hot water may be used as the fluorination treatment.
  • the magnet exhibiting the above magnetic characteristics can be applied to various motors such as home electric appliances / industrial magnet motors, railway magnet motors, electric car drive motors, HDD spindles, VCM motors, etc., and magnetic circuits such as medical devices and measuring devices. Contributes to reducing the size and weight of the magnetic circuit or improving the efficiency.
  • Iron powder with a particle size of 100 nm was produced by vacuum evaporation.
  • An iron powder prepared in a deposition chamber is mixed with an alcohol solution in which a composition close to SmF 3 is swelled and Ti is added at 1% by weight without being exposed to the atmosphere, SmF containing Ti with a coverage of 90% on the powder surface
  • Three films are formed with a thickness of 1 to 10 nm.
  • the fluoride-coated iron powder is heated and held at 500 ° C. with CaH 2 and then cooled at an average cooling rate of 10 ° C./min or more. After cooling, it was subjected to aging treatment at 200 ° C. for 10 hours, and cooled at an average cooling rate of 20 ° C./min.
  • Sm, Fe, F, and Ti diffused and reacted to grow SmFe 11 TiF 0.01-2 having a tetragonal crystal structure.
  • a concentration gradient is observed for fluorine, Sm, and Ti in the powder, and the concentration gradient of fluorine is the largest, and at the atomic concentration ratio where Sm is 1, the fluorine is 0.01 at the central portion and 2 at the outer peripheral portion there were.
  • the concentration gradient tended to decrease as the aging time was further lengthened.
  • acid fluorides are higher than SmFe 11 TiF 0.01-2 but the magnetic properties are determined by the interface with SmFe 11 TiF 0.01-2 and this SmFe 11 TiF 0.01-2 , the growth phase near the interface There, the SmF 3 fluorides, acid fluorides or oxides such SmOF such, some of the carbides to form an interface having consistent with the crystal lattice of the matrix phase.
  • the SmFe 11 TiF 0.01-2 powder containing the coated portion grew 55% of the SmFe 11 TiF 0.01-2 with respect to the entire volume, and the near iron nonmagnetic non-magnetic portion of the coated portion When removed, it exhibits magnetic characteristics with a saturation magnetic flux density of 190 emu / g, a coercive force of 35 kOe, and a Curie temperature of 825 K, and the magnetic anisotropy tends to be larger on the surface or on the outer peripheral side of the grain than in the grain center.
  • the magnetic powder was mixed with a resin material, oriented in a magnetic field, and compression molded to form a bonded magnet.
  • the volume of the magnetic powder occupied in the bonded magnet was 80%, and a bonded magnet with a residual magnetic flux density of 1.25 T and a coercive force of 34 kOe was obtained.
  • the bonded magnet was applied to an embedded magnet motor, and as a result of measuring the induced voltage waveform after magnetization, it showed a higher induced voltage than other NdFeB-based or SmFeN-based rare earth bonded magnets.
  • Re n Fe m F l (Re is a rare earth element containing Y, Fe is iron, F is fluorine, n, m and l are positive integers) or other transition elements (M) are added to Re n Fe, M)
  • m F 1 is a magnet material which has a lower rare earth content and improved magnetic properties than conventional bonded magnets, and can be applied to various magnetic circuits.
  • a magnet material having a residual magnetic flux density of more than 1.2 T and a coercive force of 25 kOe or more is a main phase represented by Re n (Fe, M) m F l as described above, and is a fluorine compound of the main phase
  • the concentration of the transition element M to be added is smaller than that of iron (Fe), with the fluoride or acid fluoride necessary for forming H.
  • the composition close to SmF 3.5 is swelled without exposing the iron foil to the atmosphere, and an alcohol solution to which 1 wt% of Mg is added And an Mg-containing SmF 3.1 film with a coverage of 95% on the powder surface to a thickness of 1 to 10 nm.
  • the fluoride-coated iron powder is heated and held at 400 ° C. with CaH 2 and then cooled at an average cooling rate of 20 ° C./min or more. After cooling, it was subjected to aging treatment at 300 ° C. for 10 hours, and cooled at an average cooling rate of 30 ° C./min.
  • the contained fluorine concentration can be increased, but the number of fluorine atoms that do not enter the tetragonal lattice increases, and Sm 2 Fe 17 F 3 or Sm Fe 5 F 1 -4 etc. also grow.
  • SmFe 11 MgF 0.1-4 foils prepared at a heating temperature of 400 ° C fluorides such as SmF 3 not having tetragonal structure, acid fluorides or oxides such as SmOF, carbides, etc. and iron having a bcc or bct structure grow Do.
  • the lattice volume of iron of bcc and bct structures is smaller than the main phase SmFe 11 MgF 0.1-4 lattice volume.
  • Interface fluorine concentration is more of these fluorides and acid fluorides higher than SmFe 11 MgF 0.1-4, the determines the magnetic properties and SmFe 11 MgF 0.1-4 and the SmFe 11 MgF 0.1-4 , Growth phase near the interface, and iron of bcc and bct structures.
  • the SmFe 11 MgF 0.1-4 foil including coated portion grew 65% with respect to the total volume of SmFe 11 MgF 0.1-4, close to the non-magnetic low iron concentration of the coated portion When the portion was removed, magnetic characteristics of a saturation magnetic flux density of 200 emu / g, a coercive force of 30 kOe, and a Curie temperature of 815 K were exhibited.
  • Iron 50% manganese powder (Fe-50% Mn powder) with a particle size of 100 nm was prepared by vacuum evaporation.
  • the Fe-50% Mn powder prepared in the deposition chamber swells the composition close to LaF 3 and is mixed with an alcohol solution to which 1 wt% of Co is added without being exposed to the atmosphere, and the coverage is 90% Co on the powder surface.
  • the fluoride-coated Fe-50% Mn powder is heated and held at 300 ° C. together with CaH 2 and cooled at an average cooling rate of 10 ° C./min or more. After cooling, it was subjected to aging treatment at 200 ° C.
  • the thus prepared La (Fe, Co) 11 MnF 0.01-2 powder grows with fluorides such as LaF 3 not having a tetragonal crystal structure, acid fluorides such as LaOF, oxides, carbides, hydrides, etc.
  • the fluorine concentration of these fluorides and acid fluorides is higher than that of La (Fe, Co) 11 MnF 0.01-2 .
  • What determines the magnetic properties are La (Fe, Co) 11 MnF 0.01-2 and the La (Fe, Co) 11 interface with the MnF 0.01-2, growth phase near the interface.
  • La (Fe, Co) 11 MnF 0.01-2 Including coated portion La (Fe, Co) 11 MnF 0.01-2 the powdered La (Fe, Co) 11 MnF 0.01-2 grew 51% relative to the total volume, further LaMn 11 F and La 2 Mn 17 F 2 grows as a ferromagnetic phase.
  • a compound composed of such a rare earth element, Mn and fluorine most of the magnetic moment of Mn is ferromagnetically coupled and has high magnetic anisotropy energy.
  • magnetic characteristics of a saturation magnetic flux density of 170 emu / g, a coercive force of 31 kOe, and a Curie temperature of 754 K were exhibited.
  • the magnetic powder is mixed with a nonmagnetic fluoride material, oriented in a magnetic field, and subjected to heat compression molding so that the fluoride is plastically deformed and a high electric resistance bonded magnet in which the fluoride is a binder can be formed.
  • the volume of the magnetic powder in the bonded magnet of the fluoride binder (MgF 2 ) was 90%, and a bonded magnet having a residual magnetic flux density of 1.21 T and a coercive force of 30 kOe was obtained.
  • the bonded magnet was applied to an embedded magnet motor, and as a result of measuring the induced voltage waveform after magnetization, it showed a higher induced voltage than that of a bonded magnet consisting of a main phase containing a rare earth element such as other NdFeB or SmFeN. .
  • Re n (Fe, M) m F l (where n, m is a positive integer and l is a positive number) to which a transition element (M) is added is composed of the element M, Re and fluorine (F) It can be applied to various magnetic circuits as a magnet material which has less rare earth content and improved magnetic properties than conventional bonded magnets, with the growth of a ferromagnetic compound different from the main phase.
  • the ferromagnetic compound different from the main phase is Re x M y F z (Re is a rare earth element, M is a transition metal element, F is fluorine, x, y and z are positive numbers, 0 ⁇ x ⁇ y, z ⁇ y) It is a fluoride represented, and one part has mother phase ferromagnetic coupling.
  • Iron and SmF 3 and Sm are mixed to make a target having a composition of Sm 2.3 Fe 17 F 4 .
  • the target is placed in a sputtering apparatus, and the surface of the target is sputtered with Ar ions to form a SmFeF-based thin film on the substrate.
  • the composition of the film formed by sputtering was Sm 2 Fe 17 F 2 .
  • Ta was selected as the base and capped with Ta for preventing oxidation.
  • the film formed on the substrate is heat-treated in ammonium fluoride (NH 4 F) decomposition gas.
  • the heat treatment temperature is 300 ° C., and the holding time is 1 hour.
  • the composition of the thin film after the heat treatment was changed from Sm 2 Fe 17 F 2 to Sm 2 Fe 17 F 3 and it was confirmed that the magnetic characteristics were improved as the fluorine concentration increased.
  • the magnetic properties of the Sm 2 Fe 17 F 3 film are a residual magnetic flux density of 1.5 T, a coercive force of 35 kOe, and a Curie temperature of 770 K, which have magnetic properties applicable to magnetic recording media.
  • a fluoride such as SmF 3 , SmF 2 , or FeF 2 having a structure different from that of the main phase at grain boundaries or interfaces, or an acid fluoride such as SmOF or iron oxide is grown to an electron beam with a diameter of 2 nm. It is confirmed from the analysis of the electron beam diffraction image used.
  • a film having a residual magnetic flux density of more than 1.4 T and a Curie temperature of more than 700 K is Re n (Fe, M) m F l as described above (where Re is a rare earth element containing Y, Fe is iron) , M is a transition element, F is fluorine, n, m and l are positive numbers), and is a main phase having a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, etc.
  • the concentration of the transition element M to be added contributes to the improvement of the stability of the crystal structure and is less than iron (Fe) Is desirable for securing the residual magnetic flux density, and the underlayer and the capping layer can obtain substantially the same characteristics even if metals other than Ta, or fluorides, nitrides, carbides, and oxides are used.
  • the Re n (Fe, M) m F l, oxygen, hydrogen, nitrogen, carbon, boron or trace metal impurities no characteristic problem also contain as impurities.
  • Iron and SmF 3 and Sm are mixed, and two kinds of targets of Sm 2.3 Fe 17 F 6 composition and Sm 2 Fe 17 are created.
  • the two targets are placed in a sputtering apparatus, and the surfaces of the two targets are alternately sputtered with Ar ions to form a thin film in which SmFeF-based thin films and SmFe-based films are multi-layered on the substrate.
  • the film thickness of the SmFeF-based thin film was 2 nm, and the film thickness of the SmFe-based film was 3 nm.
  • the multilayer film was heat treated at 200 ° C., and optimization of the film forming conditions and the heat treatment conditions was advanced so that the composition of the entire film became Sm 2 Fe 17 F 2 .
  • the composition of the thin film after heat treatment becomes a composition of Sm 2 Fe 17 F 2 to Sm 2 Fe 17 F 2.5 , and as the fluorine concentration increases, coercivity increase, residual magnetic flux density increase, saturation magnetic flux density increase, coercivity temperature coefficient It was confirmed that the magnetic characteristics such as decrease, residual magnetic flux density decrease, and Curie temperature rise were improved.
  • the magnetic properties of the Sm 2 Fe 17 F 2.5 film are a residual magnetic flux density of 1.45 T, a coercive force of 32 kOe, and a Curie temperature of 750 K, and has magnetic properties applicable to magnetic recording media. Fluoride such as SmF 3 , SmF 2 , FeF 2 etc.
  • iron oxide is confirmed from the analysis of electron beam diffraction images using an electron beam with a diameter of 1 nm.
  • a film having a residual magnetic flux density of more than 1.4 T and a Curie temperature of more than 700 K is Re n (Fe, M) m F l as described above (where Re is a rare earth element containing Y, Fe is iron) , M is a transition element, F is fluorine, n, m and l are positive numbers), and is a main phase having a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic or cubic.
  • the film forms fluorides or acid fluorides and oxides that grow when forming the main phase fluorine compound, and Ti, Al, Ga, Ge, Bi, Ta, Cr, Mn, Zr, Mo to be added.
  • the concentrations of transition elements M such as Hf, Cu, Pd, Mg, Si, Co, Ni, Nb, etc. contribute to the improvement of the stability of the crystal structure, and less than iron (Fe) to secure the residual magnetic flux density.
  • the underlayer or capping layer is a metal other than W or a fluoride or nitride Carbides, almost the same characteristics can be obtained even if an oxide.
  • the Re n (Fe, M) m F 1 contains oxygen, hydrogen, nitrogen, carbon, boron or a trace metal impurity as an impurity. You may use chlorine.
  • a solution obtained by swelling a composition near SmF 3 with ethanol as a solvent and a solution containing iron ions are alternately applied on a substrate.
  • the coating film thickness per layer is 1 to 2 nm.
  • the crystal structure of the monolayer film immediately after application is nearly amorphous.
  • the substrate used an iron plate.
  • the total thickness of the film in which the Sm-rich layer and the Fe-rich layer are stacked is about 1 mm.
  • the film is heated at 350 ° C. for 1 hour while applying a magnetic field in one direction to crystallize.
  • Sm 2 Fe 17 F 2 is a fluoride such as SmOF, Fe 2 O 3 , FeF 2 , FeF 3 , acid Grows with fluoride or oxide / carbide. Stabilize Sm 2 Fe 17 F 2 to grow more Sm 2 Fe 17 F 2 , Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Nb, Cu, Bi, Pd, Pt, etc.
  • a transition element is added as an ion in a solvent to 0.01 to 1 wt% of any of the above two solutions.
  • the Sm 2 Fe 17 F 2 has a rhombohedral Th 2 Zn 17 or hexagonal Th 2 Ni 17 structure, and the fluorine atom has a 9e site of the rhombohedral Th 2 Zn 17 or a hexagonal Th 2 Ni 17 structure It is arranged at 6 h site, and either a-axis length or c-axis length expands by introducing fluorine atom, and increase of lattice volume by fluorine introduction is 0.1 to 5%, or increase of lattice strain is 0.1 to We can confirm 15%.
  • An Sm 2 Fe 17 F 2 film exhibits anisotropy by an applied magnetic field, and its magnetic properties are a residual magnetic flux density of 1.65 T, a coercive force of 32 kOe, a Curie temperature of 780 K, and a small magnetic circuit including a magnetic recording medium and a motor.
  • a film having a residual magnetic flux density of more than 1.5 T and a Curie temperature of more than 600 K is Re n (Fe, M) m F l as described above (where Re is a rare earth element containing Y and Fe is iron) , M is a transition element, F is fluorine, n, m and l are positive numbers), crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, cubic or Laves phase (Laves Phase)
  • the main phase has a fluoride or acid fluoride, an oxide is formed on the film, which is grown when the main phase fluorine compound is formed, and a fluorine atom and iron-iron arranged between iron and iron atoms.
  • a fluorine atom which forms a compound with a rare earth element or oxygen without being arranged between atoms is recognized, and Ti, Al, Ga, Ge, Bi, Ta, Cr, Mn, Zr, Mo, Hf, Cu, Pd, Mg to be added
  • the concentration of the transition element M such as, Si, Co, Ni, Nb, has a crystal structure Contributing to improve stability, it is desirable for the residual magnetic flux density ensuring less than iron (Fe).
  • the Re n (Fe, M) m F 1 contains oxygen, hydrogen, nitrogen, carbon, boron or a trace metal impurity as an element to be located at an impurity or an entry position. And F may be substituted for chlorine.
  • SmF 3 and Sm 2 Fe 17 chips were disposed on an iron target, and the number of chips was adjusted to obtain a Sm 2 Fe 24 F film.
  • a Sm-Fe-F based film was formed with a thickness of 1 ⁇ m on a glass substrate by Ar gas. During sputtering, a magnetic field was applied to the substrate to add magnetic anisotropy to the film. After film formation, heat diffusion was performed at 400 ° C. to form a hard magnetic film. In this film, a ferromagnetic phase having a crystal structure of a ThMn 12 type structure is grown, and some fluorine atoms are arranged at the penetration position.
  • fluorides such as SmOF, Fe 2 O 3 , FeF 2 , FeF 3 , acid fluorides or oxides, and carbides are grown with a particle diameter of 1 to 100 nm.
  • a transition element such as, Sr, W, Ca, etc. is disposed on a target as an alloy tip with iron, and added to the Sm—Fe—F film in the range of 0.001 to 1 at%.
  • the magnetic properties of the formed film are a residual magnetic flux density of 1.6 T, a coercive force of 35 kOe, and a Curie temperature of 790 K, and has magnetic properties applicable to a magnetic recording medium, a magnetic film of a magnetic head, and a small magnetic circuit including a motor.
  • a sputtering film having a residual magnetic flux density of more than 1.5 T and a Curie temperature of more than 700 K is Re n (Fe, M) m F l as described above (where Re is a rare earth element containing Y, Fe is Iron, M is a main phase having a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, cubic, etc.
  • F is fluorine
  • n, m and l are positive numbers
  • a fluoride or acid fluoride, an oxide, and an iron or iron fluorine binary alloy phase having a bcc or bct structure, which grow when forming a main phase fluorine compound, are formed on the film,
  • a fluorine atom to be arranged and a fluorine atom forming a compound with a rare earth element or oxygen without being arranged between iron and iron atoms are recognized, and fluorine is used for both exchange coupling in a ferromagnetic substance and superexchange interaction in a ferrimagnetic substance.
  • the introduction effect is recognized.
  • the concentration of the transition element M to be added such as Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Pd, Pt, Bi, Sr, W, Ca, has a crystal structure It is desirable for the residual magnetic flux density to be secured that it contributes to the improvement of the stability of Fe and is less than iron (Fe). There is no problem with the characteristics even if the Re n (Fe, M) m F 1 contains oxygen, hydrogen, nitrogen, carbon, boron, or a trace metal impurity as an impurity. Chlorine, phosphorus, sulfur, or a mixture of these elements with fluorine.
  • a solution obtained by swelling a composition near SmF 4 with ethanol as a solvent and a solution containing iron ions are alternately applied on a substrate.
  • the coating thickness per layer is 10 to 20 nm.
  • the crystal structure of the monolayer film immediately after application is near amorphous and partially crystalline.
  • the substrate was a glass plate.
  • the total thickness of the film in which the layer rich in Sm and fluorine and the layer rich in Fe are stacked is about 1 mm.
  • the film is heated at 400 ° C. for 1 hour with application of a magnetic field in one direction of magnitude of 10 kOe to crystallize the amorphous or metastable phase.
  • Sm 2 Fe 17 F 3 is a fluoride such as SmOF, Fe 2 O 3 , FeF 2 , FeF 3, and so on. Grow with oxides, oxides and carbides. Stabilize Sm 2 Fe 17 F 3 in order to grow Sm 2 Fe 17 F 3 a lot, Ti, V, Co, Cr, Mn, Cu, Zn, Ga, Ge, As, etc. Transition elements in the solvent 0.1 to 1 wt% as an ion is added to any of the above two solutions.
  • the above Sm 2 Fe 17 F 3 has a rhombohedral Th 2 Zn 17 or hexagonal Th 2 Ni 17 structure, and part of fluorine atoms is a rhombohedral Th 2 Zn 17 9 e site or a hexagonal Th 2 Ni It is disposed at the 6h site of the 17 structure, and introduction of a fluorine atom causes expansion of either the a-axis length or the c-axis length, and an increase in lattice volume by fluorine introduction can be confirmed by 0.1 to 7%.
  • Such an increase in lattice volume increases the magnetic moment of iron atoms on average by 5 to 10%, increases the magnetocrystalline anisotropy energy by about 50%, and increases the Curie temperature (Curie point) by 200.degree.
  • An Sm 2 Fe 17 F 3 film exhibits anisotropy due to an applied magnetic field, and its magnetic properties are 298 K, residual magnetic flux density 1.63 T, coercive force 35 kOe, Curie temperature 795 K, small size including magnetic recording medium and motor It has magnetic properties applicable to magnetic circuits.
  • a film prepared using a solution having a residual magnetic flux density of more than 1.5 T and a Curie temperature of more than 750 K as described above has Re n (Fe, M) m F 1 (where Re contains Y) as described above
  • Rare earth elements Fe is iron, M is a transition element, F is fluorine, n, m and l are positive numbers and n ⁇ l ⁇ m) hexagonal, rhombohedral, tetragonal, orthorhombic, cubic
  • the main phase has a crystal structure such as crystal phase, and the film forms a regular phase or irregular phase fluoride or acid fluoride, an oxide which is grown when forming the main phase fluorine compound, iron-
  • the arrangement between fluorine atoms and iron-iron atoms which are not arranged between iron atoms and fluorine atoms which form a compound with rare earth elements or oxygen or between rare earth atoms and iron atoms is recognized, and the interface of some main phases
  • the concentration of transition elements M such as Ti, V, Co, Cr, Mn, Cu, Zn, Ga, Ge, As which are added contributes to the improvement of the stability of the crystal structure and is less than iron (Fe). Is desirable for securing residual magnetic flux density. There is no problem with the characteristics even if the Re n (Fe, M) m F 1 contains oxygen, hydrogen, nitrogen, carbon or trace metal impurities as impurities, and chlorine instead of fluorine of F is used. Or you may use phosphorus and sulfur.
  • a target in which SmF 3 and Sm 2 Fe 17 chips were disposed on an iron target was placed in a sputtering apparatus.
  • a mixed gas of Ar and fluorine was injected into the apparatus to try reactive sputtering.
  • fluorides such as SmOF, Sm (O, F, C), Fe 2 O 3 , FeF 2 , FeF 3 , acid fluorides or oxides, carbides, hydrides have a particle size of 0. .1 to 100 nm were grown.
  • Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Pd, Pt, Sr, W stabilize SmFe 24 F 3 in order to grow Sm Fe 24 F 3 a lot
  • one or more kinds of transition elements such as Fe, Ca, etc. are arranged on the target as an alloy chip with iron, and added to the Sm—Fe—F film in the range of 0.001 to 1 at%.
  • the resulting film is heat-treated at 300 ° C. to grow crystal grains to an average crystal grain size of 10 to 100 nm.
  • heat treatment is performed at a temperature higher than 500 ° C., the structure of SmFe 24 F 3 changes, and fluorides and acid fluorides in the vicinity of the grain boundaries grow to lower the coercive force.
  • the substrate material it is possible to form a film whose magnetization direction is oriented in the substrate plane or in the direction perpendicular to the substrate.
  • the magnetic properties of SmFe 24 F 3 have a residual magnetic flux density of 1.7 T, a coercive force of 35 kOe, and a Curie temperature of 820 K, and is applied to magnetic recording media, magnetic memories such as MRAM, magnetic films of magnetic heads, and small magnetic circuits including motors and motors. Have magnetic properties.
  • a sputtering film having a residual magnetic flux density of more than 1.6 T and a Curie temperature of more than 700 K can be obtained by adding Re n (Fe, M) m F 1 (where Re is a rare earth element containing Y, Fe as described above).
  • the Fe-rich compound or alloy phase is a main phase having a crystal structure such as hexagonal crystal, rhombohedral crystal, tetragonal crystal, orthorhombic crystal or cubic crystal as the alloy phase, which depends on the fluorine concentration.
  • Iron and iron fluoride binary alloy phases of bcc or bct structure are formed in the film, which has different crystal structure, and the film grows when forming the main phase fluorine compound.
  • the fluorine atom which forms a compound with a rare earth element or oxygen is recognized, and either of the fluorine introduction effect is recognized in both the exchange coupling in the ferromagnetic material and the superexchange interaction in the ferrimagnetic material.
  • concentration of transition element M such as Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Pd, Pt, Sr, W, Ca, etc., stabilizes the crystal structure.
  • Re n (Fe, M) m F 1 contains oxygen, hydrogen, nitrogen, carbon, boron, or a trace metal impurity as an impurity. Chlorine, phosphorus, sulfur, or a mixture of these elements with fluorine.
  • SmFe 11 MnF and SmFeMn 11 F 2 grow, and a composite magnetic material in which the former is ferromagnetic and the latter is ferrimagnetic is obtained.
  • fluorides and acids having different lattice constants and crystal structures from SmFe 11 MnF and SmFeMn 11 F 2 such as SmF 3 , SmOF, MnF 2 and FeF 2 at grain boundaries or interfaces. Fluoride grows.
  • a part of the fluorine atoms contained in SmFe 11 MnF and SmFeMn 11 F 2 are arranged at the penetration position to expand the crystal lattice, and in the former, the magnetic moment increases and the Curie temperature rises by about 250 ° C. due to the introduction of fluorine. In the latter, the difference in magnetic moment depending on the atomic site of Mn is increased, and the magnetization is increased by 20%.
  • the magnetic property of the magnetic film of the SmFe 11 Mn 5 F 2 composition is that the demagnetization curve depends on the direction of the magnetic field during cooling due to the occurrence of exchange coupling between the two phases due to cooling in a magnetic field. It had a high coercive force characteristic of a magnetic force of 35 kOe.
  • the magnetic phase is composed of at least two phases of Re u Fe v M w F a and Re x Fe y M z F b ,
  • Re is a rare earth element including Y
  • Fe is iron
  • M is transition such as Mn or Cr.
  • F is fluorine
  • u, v, w, a, x, y, z, b are positive numbers
  • magnetic coupling can be confirmed by the fact that there is a difference of 0.5 kOe or more in coercive force comparing the case of employing cooling in the magnetic field and the case of cooling without magnetic field, and in the growth of the two phases.
  • Re u Fe v of the magnetic phase M w F a or Re x Fe y M z F major phase only any one phase of b represents the hard magnetic properties even when made, various magnetic circuits as a magnet material Applicable to In these main phases, the magnetoresistive effect, the magnetostrictive effect, the thermoelectric effect, and the magnetism are accompanied by the large change of the electronic state by controlling u, v, w, a, x, y, z, b. The effects of refrigeration, magnetic heating, magnetic field induced structural phase transition or superconductivity are shown.
  • a 2 ⁇ m thick iron foil is thermally reduced in hydrogen gas to remove surface oxides. Fluorine ions are implanted into this iron foil at a temperature of 150.degree. The injection amount is 1 ⁇ 10 16 / cm 2 .
  • a bcc or bct structure with a lattice constant of 0.2865-0.295 was confirmed in iron after injection, and the concentration of fluorine was higher in the center or inside of the foil than in the outermost surface, and the lattice volume also tended to be large. This injection increases the saturation magnetization of the iron foil by about 5%.
  • This increase in saturation magnetization is due to the fluorine atoms penetrating into tetrahedral or octahedral sites of the body-centered cubic lattice.
  • an alcohol solution in which the SmF 3 composition is swelled is coated and dried to a film thickness of 10 nm on this fluorine-injected iron foil, and then heat treated at 400 ° C. for 5 hours to diffuse Sm and fluorine. Sm and fluorine diffuse to the center of the iron foil to increase anisotropy.
  • Bcc iron, bct iron and Sm 2 Fe 17 F grow on the iron foil, and fluorine is placed at the interstitial or substitutional position of iron and Sm 2 Fe 17 , resulting in an increase in lattice distortion, It was confirmed from the peak position and peak width of the X-ray diffraction pattern that the interplanar spacing increased.
  • the Sm 2 Fe 17 powder is ground to a particle size of about 1 ⁇ m and reduced at 500 ° C. in a hydrogen stream.
  • a pressure of 0.5 t / cm 2 is applied to the oxide-removed Sm 2 Fe 17 powder in a magnetic field of 10 kOe to form a preform.
  • the interstices of the preform are impregnated with an alcohol solution in which the SmF 3.1 composition swells.
  • a SmF-based amorphous film is formed on the surface of the Sm 2 Fe 17 powder. This is heated and dried in a hydrogen stream to crystallize a part of the amorphous film while suppressing oxidation.
  • the surface of the Sm 2 Fe 17 powder is fluorinated by irradiating an electromagnetic wave in a hydrogen gas flow to generate heat in the fluoride.
  • Pressure can be applied during fluorination to form a high density compact, and the magnetic properties are: residual magnetic flux density 1.6 T, coercivity 25 kOe, Curie temperature 720 K, magnetic recording medium, magnetic film of magnetic head, motor
  • magnetic properties are: residual magnetic flux density 1.6 T, coercivity 25 kOe, Curie temperature 720 K, magnetic recording medium, magnetic film of magnetic head, motor
  • a molded product having a residual magnetic flux density of 1.6 T and a Curie temperature of 700 K as described above is Re n (Fe, M) m F l as described above (where Re is a rare earth element containing Y, Fe is iron, M is a transition element, F is fluorine, n, m and l are positive numbers, n ⁇ 0.11 (n + m), and the Re content is less than 11 atomic% based on 100% of Re, Fe and M And the Fe-rich compound is a main phase having a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, cubic, etc.
  • Fluoride or acid fluoride, oxide, and iron or iron fluorine binary alloy phase of bcc or bct structure which has different crystal structure depending on concentration and grows in forming a main phase fluorine compound in the compact Are formed and arranged between iron and iron atoms, and fluorine atoms and iron-iron A fluorine atom which forms a compound with a rare earth element or oxygen without being disposed between the atoms is recognized, and either of the fluorine introduction effect is recognized in both the exchange coupling in the ferromagnetic substance and the superexchange interaction in the ferrimagnetic substance.
  • the fluorine concentration tends to be higher on the particle outer peripheral side on average than the particle center, and the lattice volume also tends to be larger on the outer peripheral side of the particles than in the central portion. Since the magnetic anisotropy is large on the grain outer peripheral side, a difference is observed in the domain wall width of the magnetic domain structure. When the main phase fluoride is heated to over 600 ° C., some grains change in structure to become a more stable fluoride and iron alloy phase.
  • the concentration of the transition element M is the stability of the crystal structure Contribute to improvement.
  • the Re n (Fe, M) m F 1 contains oxygen, hydrogen, nitrogen, carbon, boron, or trace metal impurities as impurities, and there is no problem with M and Re elements. Some of them may be localized at grain boundaries or surfaces, and may be chlorine, phosphorus, sulfur, or a mixture of these elements and fluorine instead of fluorine in F.
  • Re n (Co, M) m F 1 (where Re is Y, a rare earth element containing Y, Co is cobalt, M is one or more types) using Co instead of iron used in the above-mentioned ferromagnetic fluoride Transition elements, F is fluorine, n, m and l are positive numbers n ⁇ 0.11 (n + m), and the Re content is less than 11 atomic% when the sum of Re, Co and M is 100%)
  • the effect of increasing the coercivity, increasing the magnetization or increasing the Curie temperature can be obtained by the introduction of fluorine.
  • the Sm 2 Fe 17 powder is ground to a particle size of about 0.5 ⁇ m and reduced at 500 ° C. in a stream of ammonia.
  • the oxide is removed, and a partially nitrided Sm 2 Fe 17 powder is subjected to a pressure of 0.5 t / cm 2 in a magnetic field of 10 kOe to form a preform.
  • the interstices of the preform are impregnated with an alcohol solution in which the PrF 3.1 composition has swelled. By this impregnation treatment, a PrF-based amorphous film is formed on the surface of the Sm 2 Fe 17 N 1-3 powder.
  • the surface of the Sm 2 Fe 17 powder is fluorinated by irradiating an electromagnetic wave in a hydrogen gas flow to generate heat in the fluoride.
  • pressure can be applied to form a high density compact, and a part of Pr and Sm exchange reaction proceeds by diffusion.
  • PrF 3 , PrOF, and Pr 2 O 3 grow on the magnetic powder surface, and (Sm, Pr) 2 Fe 17 (N, F) 1-3 grows on the outer peripheral portion of the crystal grain in the magnetic powder.
  • the central portion of the crystal grain has a lower fluorine concentration and Pr concentration than the outer peripheral portion and a smaller lattice constant, and the unit cell or lattice volume tends to be smaller on the inner peripheral portion on average than the outer peripheral portion of the crystal grain.
  • fluorides, acid fluorides, and oxides containing the above-mentioned rare earth elements, Fe, Fe-F of bcc, fcc structure, or iron-based alloys thereof may be added to grain boundaries or part of the surface.
  • the phase containing the rare earth elements and nitrogen, carbon, oxygen, etc. grows.
  • the lattice constant of these Fe-based alloys is smaller than (Sm, Pr) 2 Fe 17 (N, F) 1-3 of the matrix, and the lattice volume of the Fe-based alloy is smaller than that of the matrix.
  • the magnetic properties of magnetic powder are residual magnetic flux density 190 emu / g, coercivity 25 kOe, Curie temperature 730 K, and it has magnetic properties applicable to small magnetic circuits including motors, so surface magnet motors, embedded magnet motors, polar anisotropy
  • the present invention can be applied to magnet motors such as magnet motors, radial ring magnet motors, axial gap magnet motors, and linear magnet motors.
  • magnetic particles having a residual magnetic flux density of 190 emu / g and a Curie temperature exceeding 700 K are Re n (Fe, M) m (N, F) l as described above (where Re is a rare earth element containing Y, Fe Is iron, M is a transition element, N is nitrogen, F is fluorine, n, m and l are positive numbers n ⁇ 0.11 (n + m), Re content is Re, and the sum of Fe and M is 100%. (Less than 11 at.%)), And the alloy phase has a crystal structure such as hexagonal crystal, rhombohedral crystal, tetragonal crystal, orthorhombic crystal, or cubic crystal.
  • a main phase which has a different crystal structure and an ordered / irregular structure depending on the fluorine concentration, and the formed body has a fluoride or acid fluoride, an oxide, and an oxide or fluoride which grow when forming the main phase fluorine compound.
  • Iron or iron-fluorine binary alloy with bcc or bct or fcc structure Fluorine atoms which are arranged between iron and iron atoms and fluorine atoms which are not arranged between iron and iron atoms and which form a compound with rare earth elements or oxygen are recognized, and the distribution change of the density of electronic states in the ferromagnetic material
  • fluorine concentration tends to be higher on the grain outer peripheral side on average than the grain center, and the lattice volume also tends to be larger on the outer circumference side of the grain than the central part.
  • n ⁇ 0.11 the concentration of the rare earth element becomes high, the cost of the raw material for the material becomes expensive, and the residual magnetic flux density is lowered.
  • the optimum n is 0.01 ⁇ n ⁇ 0.11.
  • n ⁇ 0.01 the coercivity decreases and the residual magnetic flux density also decreases.
  • the nitrogen-containing fluoride of the main phase is heated to 650 ° C. or higher, some of the crystal grains change their structure to become a more stable fluoride or nitride and iron alloy phase.
  • transition elements M such as Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Sr, W, Ca, etc.
  • M transition elements
  • the M element is localized at grain boundaries and surfaces. Instead of fluorine in F, chlorine, phosphorus, sulfur, or a mixture of these elements and fluorine may be used.
  • An alloy of Sm 2.1 Fe 17 is prepared by vacuum melting and subjected to hydrogen grinding to obtain Sm 2 Fe 17 powder with a particle size of about 10 ⁇ m.
  • the powder is heated to 300 ° C. in a gas decomposed CaH 2 and NH 4 F and held for 5 hours. By this heat treatment, Sm 2 Fe 17 F 0.1-3 is grown.
  • the Sm 2 Fe 17 F 0.1-3 is inserted into a mold of a thermoforming apparatus and extruded at 400 ° C. under a load of 3 t / cm 2 . By plastic deformation of the powder during heat forming, the orientation direction of Sm 2 Fe 17 F 0.1-3 is aligned, and a highly anisotropic magnetic material or magnetic powder is obtained.
  • Sm 2 Fe 17 F 0.1 is surfaced from Sm 2.1 Fe 17 surface by mechanical alloying using a mixed slurry of powder of SmF 3 with an average diameter of 10 nm and alcohol. -3 can grow.
  • a compression molded bonded magnet having a residual magnetic flux density of 1.3 T and a coercive force of 25 kOe can be obtained at 20 volume% of resin.
  • the volume of the binder material can be further reduced by converting the resin binder to a fluoride such as MgF 2 which is an inorganic binder, and the residual magnetic flux density and energy product increase.
  • the main phase composition of the magnetic powder satisfying the magnetic properties of the bonded magnet is RexFeyFz (Re is a rare earth element containing Y, Fe is iron, F is fluorine, x, y and z are positive numbers and y> (x + z)) Or a fluorine-containing iron having a bcc or bct structure in which part of the fluorine atom is located at the penetration position of the main phase and a grain boundary or part of the surface, and an acid fluoride such as SmOF, a fluoride such as SmF 3 or FeF 2 Alternatively, nonmagnetic or ferrimagnetic oxides or hydrides such as Fe 2 O 3 and SmO 2 are grown, the fluorine concentration is the highest for the acid fluoride or fluoride, and the lattice volume of the main phase is bcc or bct.
  • the crystal grains or magnetic particles that make up the magnet have orientation in the a-axis or c-axis direction, and the volume of the main phase is 30% or more of the entire bonded magnet, preferably 50% to 9%. By setting it to 0%, a high residual magnetic flux density can be realized, and various gases containing fluorine can be used in addition to ammonium fluoride in the fluorination.
  • the main phase constituting the magnetic powder for bonded magnet is RexMyFz (Re is a rare earth element including Y, M is Co, an alloy of Fe and Co, F is fluorine, fluorine and carbon and nitrogen, oxygen, oxygen), in addition to the basic composition of RexFeyFz. Boron, chlorine, phosphorus, sulfur, a mixture with chlorine or chlorine, x, y and z may be positive numbers and y> (x + z)).
  • a sintered magnet containing Nd 2 Fe 14 B as a main phase is pulverized to form magnetic powder of 3 to 10 ⁇ m in diameter, mixed with a slurry in which FeF 2 powder of 0.5 ⁇ m in average diameter is mixed with alcohol,
  • the mechanical alloying is carried out with a hydride coated stainless steel ball. After mechanical alloying, part of the surface of Nd 2 Fe 14 B powder is fluorinated, and heat treatment at 300 ° C. further grows Nd 2 Fe 17 F phase and bcc or bct iron, and the Curie temperature is higher than immediately after mechanical alloying Rises, and the residual magnetic flux density increases.
  • the increase in the magnetic flux density is due to the growth of the N- 2 Fe 17 F phase with a high Curie point with iron by the above-mentioned mechanical alloy (mechanical alloying) and subsequent heat treatment.
  • fluorides such as FeF 3 , NdF 3 , NdF 2
  • acid fluorides such as NdOF, (Nd, Fe) OF or Nd 2 O 3 , Fe 2 O 3 on the powder surface , Oxides such as Fe 3 O 4 grow.
  • the fluorine concentration of Nd 2 Fe 17 F is increased by exposing the powder to a gas containing fluorine such as ammonium fluoride, fluorine and hydrogen fluoride during heat treatment after mechanical alloying, and Nd 2 Fe 17 F 2-3 is a powder. It grows on the surface and the Curie temperature rises to 710K.
  • a gas containing fluorine such as ammonium fluoride, fluorine and hydrogen fluoride during heat treatment after mechanical alloying
  • Curie temperature to grow high and anisotropy is large hard magnetic phase than Nd 2 Fe 14 magnetically coupled to the B Nd 2 Fe 14 B, inhibit the magnetization reversal of the Nd 2 Fe 14 B, It contributes to the reduction of thermal demagnetization, and it is possible to improve heat resistance without adding heavy rare earth elements, and the powder center is an iron-rich phase with soft magnetic characteristics, and the magnetic anisotropy is high on the outer circumference side and the Curie temperature
  • By growing a high hard magnetic material and adding magnetic coupling between the iron-rich phase and the hard magnetic material it is possible to make a hard magnetic material capable of reducing the amount of rare earth elements used.
  • light rare earth fluoride is grown by solution treatment on the surface of a fluorine-containing iron-fluorine alloy powder having a magnetic flux density higher than that of pure iron, and fluorine and light rare earth elements are diffused by heat treatment in hydrogen or fluorine containing gas.
  • RexFeyFz Re is a light rare earth element, Fe is iron, F is fluorine, x, y and z are positive numbers and y> (x + z)
  • acid fluoride can be grown on the outer peripheral side of the powder, residual magnetic flux A magnet material with a density of 1.8 T is obtained.
  • ferromagnetic coupling can be provided between a plurality of ferromagnetic phases different in crystal structure and composition to improve the magnetic properties, and fluorine is contained in at least one ferromagnetic phase, and the fluorine concentration is in the crystal grains.
  • fluorine is contained in at least one ferromagnetic phase, and the fluorine concentration is in the crystal grains.
  • There is a concentration gradient and some fluorine atoms form a compound of rare earth element and iron, some fluorine atoms are arranged in iron, and the electron's state density because of the high electronegativity of fluorine
  • the distribution and the electric field gradient are biased, and the physical property values such as the magnetic property and the electric property are changed to improve the magnetic property, and the residual magnetic flux density of 1.8 T is realized.
  • the effect of introducing fluorine appears in magnetic transformation at an internal magnetic field or at a low temperature, the magnetoresistance effect, the magnetic heat generation effect, the magnetic heat absorption effect, and the superconducting characteristics.
  • An alloy target of Sm 2 Fe 17 is prepared at a purity of 99.9%, one side of the target is water-cooled, and one side is sputtered.
  • the film was formed at ° C. Before sputtering, the substrate surface is cleaned by cleaning and reverse sputtering.
  • the composition of the formed film was Sm 2 Fe 17 F 2 , and the lattice constant increased compared to the Sm 2 Fe 17 film, and the increase of the Curie temperature, the saturation magnetic flux density, and the magnetic anisotropy energy was observed.
  • the orientation of the Sm 2 Fe 17 F 2 film depends on the substrate temperature and the film formation rate, a film of c-axis orientation is obtained under the above conditions, and has an easy magnetization axis in the plane.
  • the Sm 2 Fe 17 F 2 is epitaxially grown on the MgO substrate, but when this film is heated at 400 ° C. for 1 hour, it was confirmed by the XRD pattern that Smc 3 and fluorine-containing bcc or bct structure iron grow. .
  • the iron of the bcc or bct structure containing fluorine is 1 to 20% higher than the saturation magnetization of pure iron, so that ferromagnetic coupling is provided between these fluorine-containing ferromagnetic iron and the fluorine compound as the main phase. It is possible to increase the residual magnetic flux density.
  • Such fluorine-containing iron is a metastable phase and changes to FeF 2 when heated, but in order to stabilize the metastable phase up to a high frequency, it contacts an acid fluoride having a lattice constant of 5.4 to 5.9 nm. Stabilizing the structure, stabilizing by adding carbon and nitrogen, and growing with bcc are effective means. By such means, fluorine-containing iron is less likely to undergo structural change at 400 ° C.
  • the Sm 2 Fe 17 F 2 film grown on the MgO substrate is heat-treated at 400 ° C. for 1 hour, and its magnetic properties are a residual magnetic flux density of 1.55 T and a coercive force of 26 kOe.
  • a material having a residual magnetic flux density of 1.4 T or more and a coercive force of 20 kOe or more is confirmed by the following similar materials other than the above Sm 2 Fe 17 F 2 . That is, it is a composition in which the ferromagnetic phase of the main phase is at least one RexFeyFz (Re is a rare earth element containing Y, Fe is iron, F is fluorine, x, y and z are positive numbers and y> (x + z)) Fluoride-containing iron having bcc or bct structure, which is formed in magnetic powder or crystal grains, part of fluorine atoms is disposed at the penetration position of the main phase, and part of grain boundary or surface, and acid fluoride such as SmOF Fluorides such as SmF 3 and FeF 2 or oxides such as nonmagnetic or ferrimagnetic and antiferromagnetic such as Fe 2 O 3 and SmO 2 are grown, and the fluorine concentration is the highest with the above
  • the lattice volume of the main phase is larger than that of bcc or bct iron-fluorine alloy, and the above magnetic characteristics can be realized with a material having orientation in the a-axis or c-axis direction in crystal grains or magnetic powder constituting the magnet.
  • F may be fluorine or a mixture of fluorine and fluorine with carbon, nitrogen, oxygen, boron, chlorine, phosphorus, sulfur, hydrogen, or chlorine, and various gas species containing fluorine or chlorine can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 磁粉の体積に占める磁石の主相体積を50%とし、前記主相のキュリー温度(キュリー点)が200℃以上、かつ飽和磁束密度が20℃付近で1.0T(テスラ)以上であり、かつ保磁力が10kOe以上、かつ主相の結晶構造が200℃まで安定であり、かつ主相以外の粒界あるいは表面の異相が磁気特性を安定化または向上させている磁性材料。この磁性材料は、フッ素,鉄、及びイットリウムを含む1種または複数の希土類元素から構成された強磁性化合物と、フッ素,炭素,窒素,水素またはホウ素を含有する強磁性鉄の2種類の強磁性相から構成され、前記強磁性相の粒界あるいは表面の一部にはフッ化物や酸フッ化物が形成される。

Description

磁性材料及びそれを用いたモータ
 本発明は、重希土類元素の使用量を削減した磁性材料及び、その磁性材料を用いたモータに関する。
 特許文献1~5には、従来のフッ素化合物あるいは酸フッ素化合物を含む希土類焼結磁石が開示されている。また、特許文献6には、希土類フッ素化合物の微粉末(1から20μm)をNdFeB粉と混合することが開示されている。また、特許文献7,8にはSm2Fe17をフッ化している例が記載されている。
特開2003-282312号公報 特開2006-303436号公報 特開2006-303435号公報 特開2006-303434号公報 特開2006-303433号公報 米国特許出願公開第2005/0081959号明細書 Magnetic improvement of R2Fe17 compounds due to the addition of fluorine, Journal of Materials Science Letters, Volume 16, Number 20, 1658-1661 Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. III. Gd2Fe17Z3 (Z=C,N,O,F), Phys. Rev. B 53, 3296-3303 (1996)
 上記従来の発明は、Nd-Fe-B系磁石材料やSm-Fe系材料にフッ素を含有する化合物を反応させたものであり、特にフッ素をSm2Fe17に反応させてフッ素原子の導入による格子膨張及びキュリー温度の上昇効果が開示されている。しかし、開示されているSmFeF系材料のキュリー温度は155℃と低く、磁化の値は不明である。Nd-Fe-B系磁石では、重希土類元素を含有するフッ化物を使用することで保磁力を増加させている。上記フッ化物は主相をフッ化させる反応ではなく、主相と反応あるいは拡散するのは重希土類元素である。このような重希土類元素は高価であるため、重希土類元素の低減が課題である。重希土類元素よりも低価格である軽希土類元素は、Sc,Yおよび原子番号57から62の元素であり、その一部の元素は磁石材料に使用されている。酸化物以外の鉄系磁石で最も多く量産されている材料がNd2Fe14B系であるが、耐熱性確保のために重希土類元素の添加が必須である。
 またSm2Fe17N系磁石は焼結ができず一般にはボンド磁石として使用されるため、性能の面での欠点がある。R2Fe17(Rは土類元素)系合金は、キュリー温度(Tc)が低いが、炭素あるいは窒素が侵入した化合物ではキュリー温度が高くなることから、各種磁気回路に適用されている。このような侵入型化合物の磁石においてフッ素原子が侵入した材料を磁石として量産するためには、母相であるフッ素含有強磁性化合物の粉末に対する成長比率を高くして磁気特性を確保することが必要である。
 磁粉の体積に占める磁石の主相体積を50%とし、前記主相のキュリー温度(キュリー点)が200℃以上、かつ飽和磁束密度が20℃付近で1.0T(テスラ)以上であり、かつ保磁力が10kOe以上、かつ主相の結晶構造が200℃まで安定であり、かつ主相以外の粒界あるいは表面の異相が磁気特性を安定化または向上させていることにより高性能磁石を提供できる。
 具体的には、フッ素,鉄、及びイットリウムを含む1種または複数の希土類元素から構成された強磁性化合物と、フッ素,炭素,窒素,水素またはホウ素を含有する強磁性鉄の2種類の強磁性相から構成され、前記強磁性相の粒界あるいは表面の一部にフッ化物や酸フッ化物が形成された磁性材料を用いる。
 軽希土類元素と鉄から構成される磁粉あるいは鉄粉にフッ素含有膜を形成,熱処理,成形することで、高保磁力,高磁束密度を実現する磁粉を提供でき、前記粉を固めた成形体を回転機に適用することにより、低鉄損,高誘起電圧を可能とし、種々の回転機やハードディスクのボイスコイルモータを含む高エネルギー積を必要とする磁気回路に適用できる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明に係るフッ素(黒丸)及び窒素(白丸)の濃度分布を示す図(1)である。 本発明に係るフッ素(黒丸)及び窒素(白丸)の濃度分布を示す図(2)である。 本発明に係る格子定数の深さ方向の分布を示す図である。 本発明に係るXRDパターンの図である。 本発明に係るモータ断面の図である。 本発明に係る磁気特性と主相体積率との関係を示す図である。
 磁石の残留磁束密度を高くするためには飽和磁束密度も高くする必要がある。飽和磁束密度を高くしてかつ高保磁力を確保するためには、磁石母相の結晶磁気異方性エネルギーなどの異方性を高めることも必要である。まず、飽和磁束密度を高くするためにFeの格子間位置あるいは侵入位置に侵入型元素を配置し、この配置に異方性あるいは方向性をもたせることで、高結晶磁気異方性と高磁気モーメントを両立させる。磁気異方性を高めるために反強磁性結合あるいは希土類元素の軌道の異方性を利用し、高保磁力とする。また、母相と強磁性結合可能な鉄フッ素二元化合物であるFenm(n、mは正の整数)を母相以外の第二相として形成することにより、残留磁束密度を増加させる。
 これはフッ素がbcc構造の鉄の侵入位置に配置することによる鉄原子の磁気モーメント増加効果を利用している。特にFe8FあるいはFe162は平均磁気モーメントが2.5から3.0ボーア磁子を有していることから、これらの化合物と母相が強磁性結合することにより、1.5T以上2.5T未満の高残留磁束密度を確保することが可能となる。
 このような鉄フッ素二元化合物を形成させるために磁粉などにフッ素の濃度勾配を設け、鉄あるいは鉄を構成元素とし鉄フッ素二元化合物よりも結晶磁気異方性が大きな母相とを磁気的に結合させることにより高性能磁石が実現できる。鉄フッ素二元合金内のフッ素濃度は0.1から15原子%であり、母相内のフッ素濃度は5から13原子%である。これらの強磁性相以外に不純物を含有する酸フッ素化合物などが形成されるが、平均的に高結晶磁気異方性をもつ母相よりも鉄フッ素二元合金内のフッ素濃度の方が少ない。
 これは鉄フッ素二元合金内のフッ素原子は粒界などで容易に酸フッ化物など不純物元素を含有する相を形成するためであり、フッ素を含有するガス,イオンあるいは溶液を使用する通常の量産工程では、粒界と母相粒内及び鉄フッ素二元合金相のそれぞれの平均フッ素濃度は異なる。また上記相構成の粉あるいは成形体ならびに焼結体では保護膜を除いた最表面のフッ素濃度と中心部のフッ素濃度は異なり、表面のフッ素濃度を中心部よりも低くすることで、鉄フッ素二元合金の割合を変えた磁石を作製することで表層部の鉄原子の磁気モーメントを増加させ残留磁束密度を増加させることが可能である。また、主相とフッ素含有鉄の強磁性相の体積率を高めるためには粒界あるいは粉末表面にフッ化物あるいは酸フッ化物の形成により強磁性相内の酸素濃度を低減することが必要になる。尚、上記のような侵入位置にフッ素原子を配置させた強磁性体の温度などに対する構造安定性を高めるために、遷移金属元素や異種侵入元素などの第3元素を添加したり、母相との整合性を高めるための格子定数の整合性向上元素の添加ならびに粒界相の形成、強磁性ではない異相としての規則相の形成が挙げられる。
 フッ素を含有する強磁性材料の性能を高くするためには、強磁性を示すフッ素含有化合物あるいは合金の磁粉または磁石に占める体積率を高くすることが必要である。フッ素を含有する強磁性材料は鉄あるいはマンガンなどの遷移金属元素を少なくとも1種使用する。フッ素の原子配置によって置換型と侵入型の2つに分けられる。フッ素原子のイオン半径は遷移金属元素のイオン半径よりも小さいため、置換型および侵入型のどちらの場合でもフッ素原子の導入による原子間距離が伸縮するため、局所的な歪が発生する。このような原子間位置の変位に伴う歪が電子の波動関数に影響し、磁気特性,電気特性,機械的性質,熱力学的性質,比熱,超電導など種々の物性が変化する。磁性材料では鉄にフッ素が導入された場合、鉄-鉄原子間距離が伸縮し平均的に鉄一原子あたりの体積が増加する。このような体積増加は鉄原子周囲の波動関数に影響し、鉄の磁気モーメントが増加する。純鉄にフッ素を侵入位置に導入すると4原子%のフッ素導入により約5%鉄の磁気モーメントが増加する。フッ素の侵入位置導入は磁気モーメントだけでなく、格子の変形を生じるため結晶磁気異方性エネルギーが変化する。
 これは鉄の容易磁化方向と困難軸方向とのエネルギー差が変化することであり、フッ素の侵入位置導入により一軸磁気異方性が増加する。磁石においてフッ素を主相に含有させて使用するためには、上記鉄の場合を考慮して次の事項を満足させる必要がある。1)磁粉の体積に占める主相体積を50%とすること。2)主相のキュリー温度(キュリー点)が200℃以上であること。3)主相の飽和磁束密度が20℃付近で1.0T(テスラ)以上であること。4)保磁力が10kOe以上であること。5)主相の結晶構造が200℃まで安定なこと。6)主相以外の粒界あるいは表面に異相を形成し、磁気特性を安定化または向上させること。前記1)から6)について全て満足させる形態を以下に説明する。
 主相がRenFeml(Reは希土類元素、n,m,lは正の整数)の場合、主相体積率を50%以上にするために、酸素含有量を低減し酸フッ素化合物や酸化物の成長を磁粉全体の50%以下の体積に抑えることが必要である。水素還元や磁粉の窒化、炭化の後にフッ化する手法やフッ化後に水素ガスなどで還元することが有効である。またできるだけ低温でフッ化することも主相の分解を抑制させるために必要であり、200~500℃でフッ化させることが望ましい。次に主相のキュリー温度を高めるためには、主相のフッ素濃度分布を制御し、さらに主相が分解しないように、フッ素を含有しない強磁性相の割合を50%以下にすることが望ましく、できれば10%以下にすることによりキュリー温度は300℃以上となる。フッ素を含有する主相の一粒子内でのフッ素濃度は0.01原子%から20原子%である。主相よりもキュリー温度の高い鉄-フッ素二元系化合物を主相近傍に形成させ、両者間に強磁性結合が作用することで、主相のキュリー温度は10℃以上上昇する。鉄-フッ素二元系化合物のみでは硬磁気特性を示さないため、主相の体積よりも鉄-フッ素二元系化合物の体積を小さくし、保磁力は維持させながら鉄-フッ素二元系化合物形成により残留磁束密度やキュリー温度を増加させることが可能である。
 次に主相の飽和磁束密度を20℃付近で1.0T(テスラ)以上にするために、磁化の値が小さいフッ化物や酸フッ化物の成長を抑制することが必要である。フッ化処理の前に粉末表面が酸化していると、酸フッ化物が成長しやすいため、酸化物はできるだけ除去することが望ましく表面に酸化物層として成長している場合、層の厚さは1μm以下が望ましい。またフッ素の導入により鉄-鉄原子間または鉄-希土類原子間,希土類-希土類原子間の距離が伸縮し、導入前後での鉄や希土類元素の磁気モーメントが変化する。鉄-鉄間のフッ素原子の配置は鉄原子間距離を拡大し鉄の磁気モーメントを増加させることにより磁化が増加する。したがって主相以外の相へのフッ素導入よりも主相へのフッ素導入量を大きくすることが有効であり、侵入配置するフッ素濃度を主相において0.01原子%から20原子%にすることが望ましい。主相の磁化増加にはCoを0.1から20原子%Fe(鉄)に対して添加すること、あるいは炭素や窒素、または水素と共にフッ素を侵入位置に配置することにより0.05T以上の磁化増加が得られる。
 保磁力については、結晶磁気異方性エネルギーを高め、磁化反転サイトとなるような場所を少なくすることが必要であり、侵入配置するフッ素濃度を0.001原子%から30原子%で結晶磁気異方性エネルギーを増大させ、磁化の反転場所となりうる主相と磁気的に結合していない鉄の量を少なくすることが必要である。主相(母相)と粒界や第3相を介して1μm以内にある鉄あるいは鉄フッ素化合物は磁気的に結合させることが可能であるが、主相界面と1μmよりも離れて主相との結晶方位関係が認められない鉄の体積はできるだけ少ないことが必要であり主相の体積に対して20%以下が望ましく、20%を超えると保磁力10kOeを得ることは困難となる。次に主相の結晶構造を安定にするためには、酸化を防止すること、結晶構造安定化元素を使用することならびにFe-F二元化合物を形成することなどが有効である。
 主相の結晶構造は構成する元素の種類及び組成により菱面体晶、CaCu5型構造などの六方晶、ThMn12型構造などの正方晶,斜方晶あるいは立方晶、ならびにこれらの複数の結晶構造を有する。この主相の結晶構造を安定とするためには、構成している元素配置が容易に他の配置に変化することを抑制することが必要であり、そのためにはフッ素原子濃度を適正化すること、フッ素を侵入位置に固定する第3元素を添加すること、酸素濃度を低減すること、結晶粒あるいは粉末表面に酸化を抑制するフッ化物,酸フッ化物,窒化物,炭化物または金属で被覆すること、フッ素以外の侵入型元素である窒素,炭素あるいは塩素をフッ素と混合して配置させることによりフッ素原子が侵入した菱面体晶,六方晶,正方晶,斜方晶あるいは立方晶結晶は500から900℃まで安定化可能である。
 次に主相以外の相として有効な相は、正方晶あるいは立方晶構造の鉄フッ素あるいは鉄炭素,鉄窒素二元あるいはこれらの複数の侵入型元素を含有する鉄であり、主相との強磁性結合により前記鉄が5%形成されることにより残留磁束密度が0.01Tから0.1T増加する。一部の鉄は主相と特定の方位関係をもつことにより強磁性結合が高められ、さらに残留磁束密度は増加する。粒界や粉表面に成長するフッ化物や酸フッ化物には主相よりも高濃度のフッ素や酸素が含有し、立方晶,六方晶,斜方晶などの構造を有する。主相の希土類元素が複数の種類として磁気特性を向上させる場合には、主相に希土類元素の濃度勾配が現れ、主相の一部の結晶磁気異方性が増加する。このフッ化物や酸フッ化物の一部にも複数の希土類元素が拡散する。これらのフッ化物や酸フッ化物は主相の酸化防止または保磁力増加に寄与する。また主相に遷移金属元素を添加することにより結晶構造の安定化ならびに保磁力向上を両立できる。この場合、遷移金属元素の一部がフッ化物や酸フッ化物あるいは鉄、鉄-フッ素化合物に拡散する。
 上記のことから、次の1)から6)の条件(1)磁粉の体積に占める主相体積を50%とすること。2)主相のキュリー温度(キュリー点)が200℃以上であること。3)主相の飽和磁束密度が20℃付近で1.0T(テスラ)以上であること。4)保磁力が10kOe以上であること。5)主相の結晶構造が200℃まで安定なこと。6)主相以外の粒界あるいは表面に異相を形成し、磁気特性を安定化または向上させること。)を満足するフッ素含有磁石材料は、強磁性材料として
  A{Rel(Feqr)mn}+B{Fexy}       (1)
であり、ReがY(イットリウム)を含む1種または複数の希土類元素、Feは鉄、Mは1種以上の遷移金属元素、Iはフッ素のみあるいは、フッ素及び窒素またはフッ素及び炭素あるいはフッ素及び水素、フッ素及びホウ素、A≧0.5(非磁性相を含む磁粉に対し50%以上)、A>B>0、l,m,n,q,r,x,yは正の整数であり、m>n,m>l,x>y,q>r≧0となる。
 さらに、上記式で表せる強磁性相以外でかつ(1)式で示されるRe,Fe,M及びフッ素以外のIの中の少なくとも1種は拡散や反応のために含有されているフッ化物あるいは酸フッ化物が粒界または表面の一部に成長し、前記フッ化物あるいは酸フッ化物のフッ素濃度が強磁性中のフッ素濃度よりも高いことが必要である。(1)式において2種類の強磁性相のいずれにもフッ素原子の一部が結晶格子の侵入位置に配置しており、また一部のフッ素原子は(1)式以外のフッ素化合物を形成しており、このフッ素化合物には(1)で示されるRe,Fe,Mのうちの少なくとも1種以上の元素を含有しており、これらの構成元素の拡散に伴う濃度勾配が粉末、膜あるいは焼結体にみられる。
 尚、(1)で示される組成の強磁性材料に不可避的に含有する酸素,リン,硫黄,銅,ニッケル,マンガン,銅,ケイ素などの不純物が結晶構造を維持しながら含有していても問題はない。また、(1)式においてReは軽希土類元素を使用する方が資源保護と磁気特性向上の両立を実現でき、材料コストを低減できる。この場合、(1)式は、
  A{LRel(Feqr)mn}+B{Fexy}       (2)
となり、LReが1種または複数のイットリウム(Y)を含む軽希土類元素、Feは鉄、Mは遷移金属元素、Iはフッ素のみあるいは、フッ素及び窒素またはフッ素及び炭素あるいはフッ素及び水素、フッ素及びホウ素、A≧0.5(非磁性相を含む磁粉に対し50%以上)、A>B>0、l,m,n,q,r,x,yは正の整数であり、m>n,m>l,x>y,r≧0となる。
 フッ化の手段としては、フッ素を含有するガス種を利用したガスフッ化、フッ化物を含有する溶液またはスラリーを用い拡散または反応を利用する方法、プラズマを利用する方法、イオン注入,スパッタリング,蒸着など種々ある。主相の体積率を大きくすることで磁気特性が確保できるため、フッ化の進行及び主相内部の酸化抑制が必要である。Yを含む希土類元素の少なくとも1種を含む主相の方が鉄よりも侵入位置に配置するフッ素濃度が高く、(1)および(2)式においてn>yとなる。Yを含む希土類元素が含有することによりフッ素原子を格子内にトラップし易くなると考えられる。
 このような侵入位置へフッ素を配置させるためには主相内の酸素をできるだけ少なくすることが望ましく、主相の粒界あるいは表面にフッ化物を形成して還元することが主相に含有する酸素除去手段として有効である。すなわち、主相内部の酸化を抑制しながらフッ化を進行させるためには粒界あるいは表面に酸素を含有するReF3などのフッ化物あるいはReOFなどの酸フッ化物(ReはYを含む希土類元素)を成長させることである。
 以下、実施例を説明する。材料系はSm-Fe-N-F系が実施例1,3,6,7,8,9,13,18,21、Sm-Fe-F系が実施例2,20,23,29,30,31,32,33,34,36,37,39,41、Sm-Fe-Al-F系が実施例24、Sm-Fe-Ti-F系が実施例25,26、Sm-Fe-Mg-F系が実施例27、Sm-Fe-MnF系が実施例35、Sm-Pr-Fe-N-F系が実施例38、Nd-Fe-F系が実施例4,40、Nd-Fe-F-N系が実施例5,12、Nd-Fe-B-F系が実施例10,11、Nd-Fe-Ti-F系が実施例14,19、Y-Fe-Al-F系が実施例15、Ce-Fe-C-F系が実施例16、La-Fe-N-F系が実施例17、La-Fe-Si-Al-F系が実施例22、La-Fe-Mn-F系が実施例28に記載されている。
 本実施例では、磁石材料の作製工程ならびに作製した磁石の磁気特性について説明する。粒径1~10μmのSm2Fe17よりも酸化しにくいSm2Fe173磁粉100gにフッ化アンモニウム粉100gを混合する。この混合粉を反応容器に挿入し外部ヒータで加熱する。加熱によりフッ化アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このフッ素含有ガスにより200~600℃で磁粉内のN原子の一部がF(フッ素)で置換され始まる。加熱温度400℃の場合、Nの一部がFで置換され、Th2Zn17あるいはTh2Ni17構造にフッ素や窒素が侵入位置に配置したSm2Fe17(N,F)3が成長する。加熱保持後の冷却速度を1℃/minとすることにより、NとF原子の一部は規則配列する。反応終了後、酸化防止のためにArガスで置換する。FがNと置換することにより、化合物の格子体積が局所的に膨張し、Feの磁気モーメントが増加する。
 また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。このようなSm2Fe17(N,F)3を含有する磁粉は、フッ素を0.1原子%から12原子%含有し、磁粉内の粒界近傍の主相と粒内の主相とではフッ素濃度が約0.1から5%異なる。粒界あるいは粒界三重点の一部には酸素を含有するフッ化物(SmF3,FeF2など)が成長する。
 このような磁粉の基本磁気物性は、キュリー温度が400℃~600℃、飽和磁束密度1.4~1.9Tであり、磁粉を成形することで残留磁束密度1.5Tの磁石を作成できる。フッ素の導入により磁気モーメントの増加が確認できる磁粉はSm2Fe173以外に、RelFemn(Reは希土類元素,l,m,nは正の整数),RelFemn(Reは希土類元素,l,m,nは正の整数),RelFemn(Reは希土類元素、l,m,nは正の整数),RelFem(Reは希土類元素、l及びmは正の整数)である。このような磁粉の粒界あるいは粉表面にはReを含有する酸フッ化物が主相を還元した結果として成長し、主相の酸素濃度が低減される。また、不純物として酸素,炭素,水素やケイ素,硫黄や銅,ニッケル,マンガン,コバルトなどの金属元素が含有していても磁気特性は大きく変化しない。
 真空容器内に蒸着源を配置し、Feを蒸発させる。真空度は1×10-4Torr以下であり抵抗加熱により容器内にFeを蒸発させ、粒径100nmの粒子を作製する。このFe粒子表面にSmF2-3の組成成分を含有するアルコール溶液を塗布し、200℃で乾燥することにより、Fe粒表面に平均膜厚1~10nmのフッ化物膜が形成される。このフッ化物膜が被覆されたFe粒子をフッ化アンモニウム(NH4F)と混合し、外部ヒータにより加熱する。加熱温度は800℃であり1時間以上800℃で加熱保持後、50℃以下に最高100℃/分の冷却速度で急冷する。Feの蒸発から急冷までの一連の工程を大気開放せずに処理することにより、酸素濃度が100~2000ppmの粉が得られる。
 フッ素原子の一部はFeの単位格子の四面体あるいは八面体格子間位置にFeの原子位置を移動させて配置する。フッ化アンモニウムを使用するため、フッ素以外に窒素や水素がFe粒またはフッ化物膜中に侵入する。またアルコール溶液中の炭素や水素または酸素原子もFe粒またはフッ化物膜中に混入する。前記急冷粉を200℃で10時間時効することにより、Th2Zn17構造がフッ素の導入により膨張した構造あるいはCaCu5構造のSm1-2Fe14-202-3の化合物が成長する。フッ素原子の濃度分布が急冷粉の表面から中心方向にみられ、中心よりも急冷粉の外周側でフッ素濃度が高くなる傾向を示し、粒界あるいは粉表面の一部にSmF3あるいはSmOFなどの化合物が成長する。酸フッ化物の成長はフッ化処理前の磁粉内の酸素が拡散した結果であり、磁粉内の酸素濃度を低減できる。この粉末を圧縮成形あるいは焼結して得た磁石の磁気特性は残留磁束密度が1.3-1.5T、保磁力20-30kOeであり、キュリー温度が480℃となり、モータや医療機器など各種磁気回路に適用できる。
 SmF系フッ化物を膨潤させたアルコール液を0.5wt%塗布した粒径1~10μmのSm2Fe173磁粉100gに平均粒径0.1μmフッ化アンモニウム粉100gを混合する。この混合粉を反応容器に挿入し外部ヒータで加熱する。加熱によりフッ化アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このフッ素含有ガスにより200~600℃で磁粉内のN原子の一部がF(フッ素)で置換され始まる。加熱温度300℃の場合、Nの一部がFで置換され、Sm2Fe17(N,F)3あるいはSm2Fe17(N,F)2が粉末表面のSmOF形成とともに成長する。加熱保持後の冷却速度を1℃/minとすることにより、NとF原子の一部は規則配列する。反応終了後、酸化防止のためにArガスで置換する。FがNと置換することにより、化合物の格子体積が膨張し、Feの磁気モーメントが増加する。また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。
 このようなSm2Fe17(N,F)3を含有する磁粉は、フッ素を0.5原子%から12原子%含有し、キュリー温度が400℃~600℃、飽和磁束密度1.4~1.9Tの磁気特性を示し、磁粉を400℃のフッ化アンモニウム雰囲気中で成形することで残留磁束密度1.5Tの磁石を作成できる。
 磁粉の表面から質量分析計によりフッ素及び窒素について測定した結果を図1に示す。黒丸がフッ素、白丸が窒素濃度に対応する。磁粉表面から約1.25μmの深さでフッ素濃度が最大となり、窒素濃度は表面の方が低い傾向を示しており、フッ素と窒素の濃度分布は深さ方向に対して異なることがわかる。300℃の加熱によりフッ素導入と共に窒素原子が内部に拡散し、窒素はフッ素よりも粉の中心部まで拡散するものと推定している。表面に窒素よりもフッ素濃度が高い相の形成により、窒素原子よりも多いフッ素原子が侵入配置した化合物を形成でき残留磁束密度を増加させることが可能となった。
 フッ素の導入により磁気モーメントの増加が確認できる磁粉はSm2Fe173以外に、CaCu5構造や正方晶のRelFemn(Reは希土類元素、l,m,nは正の整数)あるいはRelComn(Reは希土類元素、l,m,nは正の整数),RelMnmn(Reは希土類元素、l,m,nは正の整数),RelCrmn(Reは希土類元素、l,m,nは正の整数),RelMnmn(Reは希土類元素、l及びm,nは正の整数)である。このようなフッ素原子の一部が格子の侵入位置に配置した化合物は磁粉以外にも薄膜,厚膜,焼結体,箔体で作製可能であり、これらのフッ素含有強磁性材料内部の粒界や磁粉表面でReを含有する酸フッ化物の成長や不純物として酸素,炭素や金属元素が含有していても磁気特性は大きく変化しない。
 平均粒径が1μmの不定形形状Fe粉を水素還元し、表面の酸素を除去した後、NdF3.1-3.5に近い組成のフッ化物を膨潤させたNdF系アルコール溶液と混合し、表面に非晶質のNdF系膜を形成する。塗布乾燥後の平均膜厚は10nmである。この非晶質フッ化物が被覆されたFe粉をフッ化アンモニウム粉と混合し600℃で10時間加熱後、200℃で時効することにより、Fe粉表面からフッ素及び窒素原子が拡散しかつフッ素や窒素の原子配列が単位格子で異方性のある格子が確認できる。一部のフッ素及び窒素原子は規則的に配列しFeの磁気モーメントを増加させる。またNdの一部もFe粉内に拡散する。
 このような粉末に100℃以下で磁界印加し、1t/cm2の荷重を加え、仮成形体を作製する。この仮成形体をフッ化アンモニウムガス中で加熱成形することにより、Th2Zn17構造の粉末を焼結させることができる。焼結前に磁場により磁粉を配向させ、異方性磁石を作製でき、20℃での磁気特性が、残留磁束密度1.5T、保磁力25kOeを示す。焼結によりNd2Fe172が酸フッ化物と部分的に粒界または表面で接触し、酸フッ化物には立方晶あるいは菱面体晶のNdOFが確認でき、一部の酸フッ素化合物は規則相であった。また、フッ素及び窒素の比率がほぼ1:1において、キュリー温度は490℃である。
 平均粒径が0.1μmの不定形形状Fe粉を水素還元し、表面の酸素を除去した後、NdF系アルコール溶液と混合し、表面に非晶質のNdF系膜を形成する。平均膜厚は1-10nmである。この非晶質フッ化物が被覆されたFe粉をフッ化アンモニウム粉と混合し400℃で100時間加熱後、200℃で10時間保持し時効することにより、Fe粉表面からフッ素及び窒素原子が拡散しかつフッ素や窒素の原子配列が単位格子で異方性のある格子が確認できる。一部のフッ素及び窒素原子は規則的に配列しFe原子間隔を広げることにより、Feの磁気モーメントを増加させる。Feの一部はフッ素と規則相であるFe162相を形成する。またNdの一部もFe粉内に拡散し、Nd2Fe17(N,F)3が成長する。
 このような粉末に100℃以下で磁界印加し、1t/cm2の荷重を加え、仮成形体を作製する。この仮成形体をフッ化アンモニウムガス中で電磁波を照射した加熱成形を実施することにより、Th2Zn17構造及び正方晶構造の強磁性相を含有する粉末を焼結させることができる。焼結前に磁場により磁粉を配向させ、異方性磁石を作製でき、20℃での磁気特性が、残留磁束密度1.5T,保磁力25kOeを示す。焼結後の粒界三重点には一部NdOFが成長し主相の酸素濃度を低減している。また、フッ素及び窒素の比率がほぼ1:1において、キュリー温度は490℃である。
 平均粒径が0.1μmの不定形形状Fe粉を水素還元し、表面の酸素を除去した後、SmF系アルコール溶液と混合し、表面に非晶質のSmF系膜を形成する。平均膜厚は20nmである。この非晶質フッ化物が被覆されたFe粉をフッ化アンモニウム粉と混合し400℃で100時間加熱後、200℃で10時間保持し時効することにより、Fe粉表面からフッ素及び窒素原子が拡散しかつフッ素や窒素の原子配列が単位格子で異方性のある格子が確認できる。一部のフッ素及び窒素原子は規則的に配列しFe原子間隔を広げることにより、Feの磁気モーメントを増加させる。またSmの一部もFe粉内に拡散し、Sm2Fe17(N,F)3が粒界または表面の酸フッ化物を伴って成長する。
 このような粉末に100℃以下で磁界印加し、1t/cm2の荷重を加え、仮成形体を作製する。この仮成形体にSmF系アルコール溶液を含浸させ、アルコール分を乾燥除去後、フッ化アンモニウムガス中で電磁波を照射した加熱成形を実施することにより、Th2Zn17構造及び正方晶構造の強磁性相を含有する粉末を焼結させることができる。焼結前に磁場により磁粉を配向させ、異方性磁石を作製でき、20℃での磁気特性が、残留磁束密度1.5T、保磁力30kOeを示す。粒界にはフッ素リッチ相が形成され、母相はフッ素及び窒素が含有する。粒界及び表面近傍のフッ素濃度は粒中心のフッ素濃度よりも高く、格子定数も大きい傾向がある。これは、粒界あるいは表面のキュリー温度や結晶磁気異方性エネルギーが粒中心よりも外周側あるいは表面の方が高いことを示している。また一部のフッ素は酸素と結合して酸フッ化物を形成することでFe粉内部の酸素濃度が低減される。フッ素及び窒素の比率がほぼ1:1において、キュリー温度は490℃であり、母相のフッ素濃度が高くなるほどキュリー温度は高くなる傾向を示す。
 平均粒径が0.1μmの不定形形状Sm2Fe18粉を水素還元し、表面の酸素を除去した後、SmF3組成に近い透明なSmF系アルコール溶液と混合し、表面に非晶質のSmF系膜(Sm:F=1:3)を形成する。平均被覆膜厚は20nmである。この非晶質Smフッ化物が被覆されたFe粉をフッ化アンモニウム粉と混合し400℃で100時間加熱後、200℃で10時間保持し時効することにより、Fe粉表面からフッ素及び窒素原子が拡散しかつフッ素や窒素の原子配列が単位格子で異方性のある格子が確認できる。一部のフッ素及び窒素原子あるいは炭素原子は規則的に配列しFe原子間隔を広げることにより、Feの磁気モーメントを増加させる。またフッ化物中のSmの一部もFe粉内に拡散し、主相のTh2Zn17構造を主とするSm2Fe17(N,F)3及び正方晶あるいは立方晶を主とするFe-F二元合金相が成長する。
 このような粉末に100℃以下で磁界印加し、1t/cm2の荷重を加え、仮成形体を作製する。この仮成形体にSmF系アルコール溶液を含浸させ、アルコール分を乾燥除去後、フッ化アンモニウムガス中で電磁波を照射した加熱成形を実施することにより、Th2Zn17構造及び正方晶構造の強磁性相を含有する粉末を焼結させることができる。焼結前に磁場により磁粉を配向させ、焼結することで異方性磁石を作製でき、20℃での磁気特性が、残留磁束密度1.6T、保磁力30kOeを示す。粒界にはフッ素リッチ相及びFeリッチ相が形成され、母相はフッ素及び窒素が含有する。粒界近傍に正方晶構造の規則相であるFe162あるいはFe16(F,N)2相またはFe16(F,N,C)2相が主相結晶粒よりも小さい結晶粒が成長し、粒界にはフッ素濃度が高い酸フッ化物(SmOF)が成長する。また一部のフッ素は酸素あるいは炭素や窒素と結合して炭素や窒素を含有する酸フッ化物を形成する。主相のフッ素及び窒素の比率がほぼ10:1において、キュリー温度は510℃であり、母相のフッ素濃度が高くなるほどキュリー温度は高くなる傾向を示す。バルク全体に対する主相の体積率をA、強磁性鉄であるFe-Fを主とする相をBとする。Fe-F相はbccやbct構造を含んでいる。AとBはSEM-EDX(エネルギー分散型X線分光)やTEM-EDXのマッピングあるいはEBSP(電子後方散乱パターン)のマッピング分析およびX線回折などにより求められる。
 焼結条件,フッ化条件,仮成形条件などのパラメータを変えることによりAやBを制御でき、その一例を図6(1)に示す。主相体積率Aが増加するとFe-F相体積率Bも増加する傾向にあるが、Fe-F相体積率Bは主相体積率Aの約5%になっている。Fe-F相体積率Bが20%未満ではFe-F相の成長は残留磁束密度Brの増加に寄与するが、Fe-F相体積率Bが50%を超えると保磁力の低下が著しく、磁石材料になりにくい。これはFe-F相体積率Bが増加して主相と強磁性的な結合が弱いFe-F相の成長によりFe-F相が軟磁気的になるために、保磁力が低下することを示している。
 図6(2)に示すように主相体積率Aが増加すると残留磁束密度Brも増加する傾向にある。モータなどの磁気回路への本磁石適用を考慮すると、必要な残留磁束密度Brは0.7Tである。NdFeB系やSmFeN系磁石でも0.7Tの残留磁束密度を有する磁石は既に量産されているが、主相体積率50%では前記量産磁石で0.7Tを達成していない。本実施例のような主相がフッ素を含有するTh2Zn17構造と類似構造が主である場合、磁気モーメント増加効果による残留磁束密度の増加により、図6(2)のように主相体積率0.5において残留磁束密度0.75Tが得られ、磁石の軽量化,小型化を通した各種部品,製品の小型軽量化に寄与できる。
 また、保磁力は主相体積率が小さい場合に低い値を示しており、磁粉が成形体において離れており、磁気的に孤立した磁粉あるいは表面が酸化した磁粉があるために保磁力が小さいと考えられる。モータなどの磁気回路では磁石の着磁方向とは逆方向の磁界が付加されるため保磁力10kOeが必要とされる。保磁力10kOeを確保するためには図6(3)に示すように、主相体積率Aを0.5以上にする必要がある。保磁力10kOeおよび残留磁束密度0.7T以上が製品化の指標の一つであり、この指標を満足するためには主相体積率Aを0.5以上にすることが必要である。保磁力10kOe、残留磁束密度0.7T以上の特性はバルク焼結磁石及び薄膜磁石においても磁気回路適用のために必要な値である。前記値を満足させるためには焼結磁石だけではなく、薄膜磁石,ボンド磁石,加圧成形磁石及び溶液から電気化学的な手法で作製した磁石において、主相である希土類元素と鉄及びフッ素を含有する強磁性相体積率を0.5以上にする必要がある。
 主相以外の相としては、前記Fe-F相,フッ化物,酸フッ化物がある。このうちFe-F相は強磁性相であるため主相の磁気的性質に大きく影響し、主相とFe-F相の間に交換結合が作用することにより磁石の磁気特性が向上するが、Fe-F相が多くなると着磁方向とは逆の磁界が磁石に印加された場合に容易に主相の磁化が反転するようになるため、Fe-F体積率は0.5(50%)未満とすることが望ましい。またフッ化物や酸フッ化物または希土類酸化物,鉄酸化物,鉄フッ化物が粒界あるいは粉末表面に成長し、フッ素濃度は粒中心部よりもフッ素含有化合物が成長している粒界あるいは表面で高くなる。このようなフッ素含有化合物は強磁性相の酸素濃度を低減する働きがあり、フッ素含有強磁性相の構造安定性を高め、保磁力を増大させる。
 さらに、本磁石の特徴は以下に示す。1)重希土類元素を使用せず高いキュリー温度が達成できる。2)粒界にフッ素リッチ相を形成して焼結可能である。3)磁粉を樹脂中で固定したボンド磁石を作製できる。4)窒素あるいはフッ素原子が一部規則的に主相あるいは鉄リッチ相に配列する。5)粒界近傍に酸フッ化物が成長し主相の酸化を抑制する。6)侵入位置への原子の比率(N,C,F)により磁気異方性の大きさ、方向,キュリー温度,磁気モーメントが制御でき、異方性磁界は25MA/mに達する。7)侵入原子の比率により、母相あるいはFeリッチ相の規則度が変化し、磁気物性が変わる。8)フッ素が侵入位置に配列した主相の構造を安定にするため、第3元素として種々の遷移金属や希土類元素を添加することが可能である。
 このような磁石は、Sm,Fe及びFを含有する材料だけでなく、他のイットリウムを含む全ての希土類元素について作製可能であり、強磁性相として少なくとも2種類の相が成長する。この2種類の強磁性相は結晶磁気異方性が大きなYを含む希土類元素を含有する相と鉄が多い強磁性鉄である。この2種類の強磁性相以外に鉄や希土類元素を含有する酸化物、フッ化物あるいは酸フッ化物が成長するが、これらは前記2種類の強磁性相の磁化よりも小さい磁化でありその体積も前記2相よりも少ない。これらの例も含めて実施例を整理すると、次のように表せる。すなわち上記強磁性材料はフッ素及び鉄を含有し、一部のフッ素原子を含有した磁性材料において、強磁性材料が少なくとも2種類の組成をもつ相から構成されており、強磁性材料の主組成は次式で示す前記2種類の相に対応させて、
  A{Rel(Feqr)mn}+B{Fexy
という式で強磁性相が構成されており、ここでA,Bは粉末,バルク焼結体あるいは薄膜全体に対するRe,Fe,Iから構成される相、及びFeとIから構成される相のそれぞれの体積率、ReがYを含む1種または複数の希土類元素、Feは鉄、Mは遷移金属元素、Iはフッ素のみあるいは、フッ素及び窒素またはフッ素及び炭素あるいはフッ素及び水素、フッ素及びホウ素、A≧0.5(磁石材料の50%以上)、A>B>0、l,m,n,q,r,x,yは正の整数であり、m>n,m>l,x>y,q>r≧0で表記でき、粒界または表面の一部にフッ化物や酸フッ化物が形成され、前記フッ化物あるいは酸フッ化物のフッ素濃度が強磁性中のフッ素濃度よりも高い。
 このような強磁性体は強磁性鉄の少なくとも一部が主相と強磁性的に結合し、残留磁束密度を増加させている。また、粒界あるいは表面に形成したフッ化物から主相に一部のフッ素が拡散することでフッ素の濃度勾配が粒表面あるいは粒界から粒中心部に向かって形成され、格子定数や格子体積も変化する。ここで主相の格子体積は希土類元素、鉄及びフッ素を含有した格子であるため、フッ素含有強磁性鉄の体心立方晶あるいは体心正方晶の格子体積よりも大きい。
 また、粒表面あるいは粒界の高フッ素濃度を含有する部分は大きな結晶磁気異方性を有し、かつ高フッ素濃度部と粒中心部の低フッ素濃度部とは結晶格子の一部が連続的であり格子の整合性が確認される。これは一つの結晶粒または磁性粉のなかの、類似している結晶構造において、格子体積あるいは格子歪が変化していることを示しており、フッ素導入による格子体積が大きな相の結晶磁気異方性が高いことが保磁力の増大、残留磁束密度増加、キュリー温度上昇につながっている。また、侵入位置に配置したフッ素原子の一部は規則配列した長周期構造をもつことにより、さらに結晶構造を安定化させ熱分解しにくくなり、遷移金属元素を主相に添加することによりキュリー温度よりも高い800℃まで結晶構造の安定性を確認している。
 粒径1μmのSm2Fe173磁粉100gに粒径0.01μmのフッ化水素アンモニウム粉10gを混合する。この混合粉を反応容器に挿入し外部ヒータで加熱する。加熱によりフッ化水素アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このガス発生により前記磁粉表面の酸化相は除去され、酸素濃度は100ppm以下となる。フッ素含有ガスにより200℃で磁粉内のN原子の一部がF(フッ素)で置換され始まる。加熱温度200℃の場合、Nの一部がFで置換され、Sm2Fe17(N,F)3がSmF3やSmOFとともに成長する。同時にFeリッチ相にはFe162などの規則相が成長する。加熱保持後の冷却速度を1℃/minとすることにより、NとF原子の一部は規則配列し、Fe16(F,N)2などが成長する。反応終了後、酸化防止のためにArガスで置換する。反応中に異方性を高めるために1T以上の磁場を印加しても良い。FがNと置換することにより、主相及びFeリッチ相の格子体積が膨張し、Feの磁気モーメントが約10%増加する。
 また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。このようなSm2Fe17(N,F)3を含有する磁粉は、フッ素を0.5原子%から5原子%含有し、キュリー温度が400℃(0.5%フッ素)~600℃(5%フッ素)、飽和磁束密度1.4(0.5%フッ素)~1.7T(5%フッ素)の磁気特性を示し、磁粉を400℃のフッ化水素アンモニウム雰囲気中で成形することで残留磁束密度1.6Tの磁石を作成できる。フッ素の導入により磁気モーメントの増加が確認できる磁粉はSm2Fe173以外に、Rel(Fe,Co)mn(Reは希土類元素、l,m,nは正の整数),Rel(Fe,Co)mn(Reは希土類元素、l,m,nは正の整数),Rel(Mn,Cr)mn(Reは希土類元素、l,m,nは正の整数),Rel(CrNi)mn(Reは希土類元素、l,m,nは正の整数),Rel(Mn,Cr)mn(Reは希土類元素、l及びm,nは正の整数)であり、これらのフッ素含有化合物は非磁性に近いフッ化物や酸フッ化物とともに形成される。
 このような磁粉には粉末内部の粒界や磁粉表面で酸フッ化物の成長や不純物として酸素、炭素や金属元素が含有していても磁気特性は大きく変化せず、磁気モーメントの増大に伴い下記効果を確認できる。1)内部磁場の増加、2)結晶磁気異方性の増加、3)磁気異方性の方向の変化、4)電気抵抗の増加、5)飽和磁束密度の温度係数の変化、6)磁気抵抗の変化、7)相転移に伴う熱量の変化、8)キュリー温度以上に加熱した場合のフッ素原子位置の移動に関連した相転移等である。
 粒径5μmのSm2Fe173を主相とし1体積%の鉄が同一粉に混合して成長している粉200gにフッ化水素アンモニウム粉10gを混合する。この混合粉を反応容器に挿入し外部ヒータで加熱する。加熱によりフッ化水素アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このガス発生により前記磁粉表面の酸化相は除去され、酸素濃度は70ppmとなる。フッ素含有ガスにより200℃で磁粉内のN原子の一部がF(フッ素)で置換され始まる。加熱温度300℃の場合、Nの一部がFで置換され、Sm2Fe17(N,F)3が成長する。同時にbcc構造あるいはbct構造をもつFeリッチ相にはFe162などの規則相が成長する。加熱保持後の冷却速度を1℃/minとすることにより、NとF原子の一部は規則配列し、Fe16(F,N)2などが成長する。反応終了後、フッ素イオンを磁粉表面に照射し、さらに侵入位置のフッ素濃度を高濃度とし、磁気モーメントを約5%増加させる。照射量は5×1016/cm2である。照射中、磁粉の位置を変えて磁粉表面に50%以上照射する。照射量と照射エネルギーを変えて複数回照射してもよい。照射後のフッ素の濃度は磁粉最表面よりも磁粉表面から磁粉中心方向に0.1から3μmの深さで最大となる。照射中に異方性を高めるために1Tの磁場を印加しても良い。FがNと置換することにより、主相及びFeリッチ相のc軸が伸びることにより正方晶の格子体積が膨張し、Feの磁気モーメントが約10%増加する。また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。
 フッ素と窒素濃度の分析例を図2に示す。黒丸がフッ素、白丸が窒素濃度に対応する。フッ素濃度の最大値は表面から1-1.3μmの深さにあり、窒素は表層ほど高い。このようなSm2Fe17(N,F)3を含有する磁粉は、フッ素を4原子%から9原子%含有し、その格子定数の深さ方向の分布は図3に示すようになる。フッ素濃度が高い表層から1μmを超える深さで格子定数が大きく、単位胞体積も大きい。この磁粉はキュリー温度が420℃(4%フッ素)~650℃(9%フッ素)、飽和磁束密度1.5(4%フッ素)~1.8T(9%フッ素)の磁気特性を示し、磁粉を400℃のフッ化水素アンモニウム雰囲気中で成形することで残留磁束密度1.7Tの磁石を作成できる。
 また本実施例と同一条件で純度99%の鉄粉を処理すると、図4のように処理前後のXRDパターンは矢印で示す回折角度に回折ピークが見られる。回折角度が小さい位置に半値幅の大きくかつ強度が小さいピークが観測され、鉄の面間隔が伸びていることがわかる。すなわち、処理により鉄の格子定数は延びることが明らかであり、その変化は約3.7%の伸びである。このような格子定数の増加はフッ素原子が四面体位置あるいは八面体位置の侵入位置に配置していることを示すものであり、鉄原子の磁気モーメント増加に寄与する。上記のように、フッ素原子を含むガスあるいはフッ素イオンの注入により磁気モーメントの増加が確認できる磁粉はSm2Fe173以外に、RelComn(Reは希土類元素、l,m,nは正の整数),RelMnmn(Reは希土類元素、l,m,nは正の整数),RelCrmn(Reは希土類元素、l,m,nは正の整数),RelMnmn(Reは希土類元素、l及びm,nは正の整数)である。
 このような磁粉には粉末内部の粒界や磁粉表面で酸フッ化物の成長や不純物として酸素,炭素,ホウ素や金属元素が含有していても磁気特性は大きく変化せず、磁気モーメントの増大に伴い下記効果を確認できる。1)内部磁場の増加、2)結晶磁気異方性の増加、3)磁気異方性の方向の変化、4)電気抵抗の増加、5)飽和磁束密度の温度係数の変化、6)磁気抵抗の変化、7)相転移に伴う熱量の変化、8)キュリー温度以上に加熱した場合のフッ素原子位置の移動に関連した相転移等である。上記のようにフッ素原子の一部が侵入位置に配置した磁性体の結晶構造は準安定相であるため加熱により安定相に相転移する。相転移は複数であり、少なくとも一つの相転移は300℃から400℃で進行する。この相転移温度を高温側にするために、他の侵入位置に配置する元素と規則化した主相を形成したり、複数の希土類元素を添加したり、粒界に規則相と整合するフッ化物あるいは酸フッ化物を形成することが有効であり、これらの手法により相転移温度とキュリー温度をほぼ同じにすることが可能である。
 粒径5μmのNd2Fe14Bを主相とする粉200gにフッ化水素アンモニウム粉10gを混合する。この混合粉を磁粉と直接反応しない容器に挿入し外部ヒータで加熱する。加熱によりフッ化水素アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このガス発生により前記磁粉表面の酸化相は除去され、酸素濃度は120ppmとなる。フッ素含有ガスにより400℃で磁粉内のB原子の一部がF(フッ素)で置換され始まる。加熱温度400℃の場合、Bの一部がFで置換され、Nd2Fe14(B,F)が成長する。同時にbcc構造あるいはbct構造をもつFeリッチ相には格子定数がbcc構造の鉄のおおよそ2倍でかつ格子体積が鉄よりも5-15%ほど大きな格子体積をもったFe162などの規則相が成長し、fcc構造のNdリッチ相の一部はfcc構造の酸フッ化物となる。加熱保持後の冷却速度を1℃/minとすることにより、BとF原子の一部は規則配列し、Fe16(F,B)2などが成長する。
 反応終了後、フッ素イオンを磁粉表面に照射し、さらに侵入位置のフッ素濃度を高濃度とし、磁気モーメントを約3%増加させる。照射量は1×1016/cm2である。照射中、磁粉の位置を変えて磁粉表面に50%以上照射する。照射量と照射エネルギーを変えて複数回照射してもよい。照射後のフッ素の濃度は磁粉最表面よりも磁粉表面から磁粉中心方向に0.1から3μmの深さで最大となる。照射中に異方性を高めるために1Tの磁場を印加しても良い。FがBと置換することにより、主相及びFeリッチ相のc軸が伸びることにより正方晶の格子体積が膨張し、Feの磁気モーメントが約5%増加する。
 また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。このようなNd2Fe14(B,F)を含有する磁粉は、フッ素を1原子%から5原子%含有し、キュリー温度が320℃(1%フッ素)~380℃(5%フッ素)、飽和磁束密度1.61(1%フッ素)~1.72T(5%フッ素)の磁気特性を示し、磁粉を400℃のフッ化水素アンモニウム雰囲気中で成形することで残留磁束密度1.7Tの磁石を作成できる。
 上記のように、フッ素原子を含むガスあるいはフッ素イオンの注入により磁気モーメントの増加が確認できる磁粉はNd2Fe14(B,F)以外に、RelComn(Reは希土類元素、l,m,nは正の整数),RelMnmn(Reは希土類元素、l,m,nは正の整数),RelCrmn(Reは希土類元素、l,m,nは正の整数),Rel(Mn,Al)mn(Reは希土類元素、l及びm,nは正の整数)である。このような磁粉には粉末内部の粒界や磁粉表面で酸フッ化物の成長や不純物として酸素、炭素や金属元素が含有していても磁気特性は大きく変化せず、一部のFe原子の磁気モーメントの増大に伴い下記効果を確認できる。1)内部磁場の増加、2)結晶磁気異方性の増加、3)磁気異方性の方向の変化、4)電気抵抗の増加、5)飽和磁束密度の温度係数の変化、6)磁歪の変化、7)相転移に伴う熱量の変化、8)キュリー温度以上に加熱した場合のフッ素原子位置の移動に関連した相転移等である。上記のようにして作製したNd2Fe14(B,F)構造を主相とし、フッ素を含有するbccあるいはbct構造の強磁性鉄が成長した磁石を積層電磁鋼板,積層アモルファスあるいは圧粉鉄と接着させて回転子を作製する場合、あらかじめ磁石を挿入する位置に配置する。
 図5にモータの軸方向に垂直な断面の模式図を示す。モータは回転子100と固定子2から構成され、固定子にはコアバック5とティース4からなり、ティース4間のコイル挿入位置7には、コイル8a,8b,8c(3相巻線のU相巻線8a,V相巻線8b,W相巻線8c)のコイル群が挿入されている。ティース4の先端部9よりシャフト中心には回転子が入る回転子挿入部10が確保され、この位置に回転子100が挿入される。回転子100の外周側にはめっきなどの表面処理を施したフッ素含有磁石が挿入されており、鉄フッ化物が少ない部分(鉄中平均フッ素原子濃度5%未満)200と鉄フッ化物が多いフッ化部分(鉄中平均フッ素濃度5%-10%)201,202から構成されている。磁石を構成する鉄相中フッ素濃度が5から10原子%である部分201及び202の面積は異なり、磁界設計により逆磁界が印加される磁界強度が大きい方を広い面積でフッ化物処理して保磁力及び残留磁束密度を高めている。このように焼結磁石の外周側で鉄フッ化物を多くすることにより、希土類元素の使用量を少なくすることができる。尚上記フッ素処理は磁気回路の軟磁性部にも適用でき、飽和磁束密度を2.4-2.6Tに高めることが可能であり、各種モータやハードディスク用磁気ヘッド,MRI,電子顕微鏡,超伝導機器などの計測機器に適用可能である。
 粒径1μmのNd2Fe19Bを主相とする粉200gにフッ化水素アンモニウム粉10gを混合する。この混合粉を磁粉と直接反応しない容器に挿入し外部ヒータで加熱する。加熱によりフッ化水素アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このガス発生により前記磁粉表面の酸化相は除去され、酸素濃度は120ppmとなる。フッ素含有ガスにより400℃で磁粉内のB原子の一部がF(フッ素)で置換され始まる。加熱温度400℃の場合、Bの一部がFで置換され、Nd2Fe19(B,F)あるいはNd2Fe17+n(B,F)が成長する(nは0から10)。同時にbcc構造あるいはbct構造をもつFeリッチ相にはFe162やFe16(F,C)2,Fe16(F,N)2,Fe16(F,H)2どの格子体積が0.15から0.25nm3の規則相が成長し、fcc構造のNdリッチ相の一部はfcc構造の酸フッ化物となる。加熱保持後の冷却速度を1℃/minとすることにより、BとF原子の一部は規則配列し、Fe16(F,B)2などが成長する。
 このように磁粉あるいは結晶粒にはフッ素,酸素,窒素,硼素のうち少なくとも2種類の元素が規則配列した相が主相あるいは粒界相の一部に形成される。このような規則相の成長は残留磁束密度の増加や保磁力増加に寄与し、bcc構造の鉄の約2倍の格子定数を有することが回折実験から解析されており、その格子定数の値は0.57nmから0.65nmの範囲であることが判明している。
 反応終了後、低酸素雰囲気においてフッ素イオンを磁粉表面に照射し、さらに侵入位置のフッ素濃度を高濃度とし、磁気モーメントを約3%増加させる。照射量は5×1016/cm2である。照射中、磁粉の位置を変えて磁粉表面全体に対し20%以上の表面積に照射することにより、磁粉内部(中心部)と表面とでは格子定数が異なり、内部の方が格子定数は小さくなる。すなわち、磁粉表面または粒界近傍で格子体積は大きく、内部の格子体積は粒界近傍や表面よりも小さくなる傾向を示す。すなわちフッ素濃度の低い磁粉内部の方が母相及び強磁性鉄の格子体積が小さくなる傾向を示す。照射量と照射エネルギーを変えて複数回照射してもよい。照射後のフッ素の濃度は磁粉最表面よりも磁粉表面から磁粉中心方向に0.1から3μmの深さで最大となる。照射中に異方性を高めるために5Tの磁場を印加しても良い。FがBと置換することにより、主相及びFeリッチ相のc軸が伸び、正方晶の格子体積が膨張し、Feの磁気モーメントが約5%増加する。
 また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。侵入位置に配置するフッ素原子は侵入位置以外の原子位置に配置するフッ素原子よりもその原子数が多く、侵入位置以外の原子配置は主相とは異なる希土類元素や鉄との化合物を形成する。このようなNd2Fe19(B,F)を含有する磁粉は、フッ素を1原子%から3原子%含有し、キュリー温度が480℃(1%フッ素)~530℃(3%フッ素)、飽和磁束密度1.7(1%フッ素)~1.8T(3%フッ素)の磁気特性を示し、磁粉をフッ化水素アンモニウム雰囲気中600℃で加熱成形することで残留磁束密度1.7Tの磁石を作成できる。残留磁束密度の増加は上記侵入位置に配置する元素の規則配列による鉄の磁気モーメント増加が寄与しており、八面体位置あるいは四面体位置の侵入位置に配置したフッ素原子が強磁性鉄の原子間距離を広げるとともに、侵入位置の異方的配列により、結晶磁気異方性が増加するため、45MGOeから65MGOeのエネルギー積の高い磁石が得られる。これらのフッ素含有磁石の耐食性及び熱安定性を高めるため、めっきや塗装、樹脂被覆処理などを施して種々の磁気回路に適用される。尚、このような結晶磁気異方性とキュリー温度及び磁化の増加は塩素の侵入位置への導入によっても達成できる。
 粒径1μmのNd1Fe19を主相とする粉200gにフッ化水素アンモニウム粉100gを混合する。この混合粉を磁粉と直接反応しない容器に挿入し外部ヒータで加熱する。加熱によりフッ化水素アンモニウムが熱分解し、NH3やフッ素含有ガスが発生する。このガス発生により前記磁粉表面の酸化相は除去され、酸素濃度は50ppmとなる。フッ素含有ガスにより600℃で磁粉内の侵入位置にF(フッ素)が配置し始める。加熱温度600℃の場合、Feの一部がFで置換され、FeF2あるいはFeF3が成長する。同時にbcc構造あるいはbct構造をもつFeリッチ相にはFe162やFe16(F,C)2,Fe16(F,N)2などの格子体積が0.15から0.25nm3の規則相が成長し、フッ化物の一部はfcc構造の酸フッ化物となる。加熱保持後の冷却速度を1℃/minとすることにより、F原子の一部は規則配列し、Fe16(F,N)2などが成長しやすくなる。
 このように磁粉あるいは結晶粒にはフッ素,酸素,窒素,炭素のうち少なくとも2種類の元素が規則配列した相が主相あるいは粒界相の一部に形成される。このような規則相の成長は残留磁束密度の増加や保磁力増加に寄与する。Fが侵入位置に配置することにより、主相であるNd1Fe191-3及びFeリッチ相の軸が異方的に伸び、正方晶や六方晶の格子体積が膨張し、Feの磁気モーメントが約5%増加する。また、一部のNあるいはF原子は反応前の侵入位置とは異なる位置に配置する。侵入位置に配置するフッ素原子は侵入位置以外の原子位置に配置するフッ素原子よりもその原子数が多く、侵入位置以外の原子配置は主相とは異なる鉄との化合物を形成する。このようなNd1Fe19(N,F)1-3あるいはNd1Fe191-3を含有する磁粉は、キュリー温度が530℃、飽和磁束密度1.8Tの磁気特性を示し、磁粉をフッ化水素アンモニウム雰囲気中の1000℃で加熱することで残留磁束密度1.7Tの磁石を焼結して作成できる。残留磁束密度の増加は上記侵入位置に配置する元素の規則配列による鉄の磁気モーメント増加が寄与しており、八面体位置あるいは四面体位置の侵入位置に配置したフッ素原子が鉄の原子間距離を広げるとともに、侵入位置の異方的配列により、結晶磁気異方性が増加する。
 また粒界近傍のフッ素が侵入配列していないフッ化物の一部は母相と反強磁性結合により高保磁力に寄与するため、55MGOeから70MGOeのエネルギー積の高い磁石が得られる。このような反強磁性結合は熱処理時あるいは着磁時の磁界の印加方向に依存し、減磁曲線に左右非対称成分が見られる。この非対称成分はキュリー点以下の加熱により消失する。
 粒径5μmのSm2Fe173を主相とする粉200gを組成がPrF3のアルコール溶液200ccに混合し、ステンレス容器に入れ、ステンレスボールを用いてメカニカルアロイングによりSm2Fe173主相にフッ素を取り入れる。メカニカルアロイニング30時間後主相にフッ素が取り込まれることを質量分析により確認した。フッ素濃度は粉の中心及び外側では異なり、外側の方が高く、粉全体の平均フッ素濃度は5-10原子%であった。この濃度はアルコール中のPrF3の濃度やメカニカルアロイニング条件である、ボール径,ボールと粉の体積比,回転速度,溶媒の種類,溶媒中不純物に依存する。
 フッ素原子は侵入位置だけでなく、置換位置や酸フッ化物を形成し、濃度が0.1原子%以上のフッ素導入により次の効果のいずれかの効果を確認できる。即ち1)内部磁場の増加、2)結晶磁気異方性の増加、3)磁気異方性の方向の変化、4)電気抵抗の増加、5)飽和磁束密度の温度係数の変化、6)磁気抵抗の変化、7)相転移に伴う熱量の変化、8)キュリー温度以上に加熱した場合のフッ素原子位置の移動に関連した相転移等である。
 上記のようにフッ素原子の一部が侵入位置に配置した磁性体の結晶構造は準安定相であるため加熱により安定相に相転移する。相転移回数は複数であり、少なくとも一つの相転移は300℃から600℃で進行する。この相転移温度を高温側にするために、他の侵入位置に配置する元素と規則化した主相を形成したり、複数の希土類元素を添加したり、粒界に規則相と整合するフッ化物あるいは酸フッ化物を形成することが有効であり、これらの手法により相転移温度とキュリー温度をほぼ同じにすることが可能である。
 また、Sm2Fe173を主相とする粉にbccあるいはbct構造の鉄を500℃の真空熱処理により成長させた後、上記のようなフッ化物が膨潤した溶媒を使用してメカニカルアリングすることにより、Fe8F,Fe162,Fe4F,Fe3F,Fe2Fやこれらの一部に窒素や炭素あるいは酸素が配置したフッ化物が形成される。これらのフッ化物において、Fe8FやFe162はbct構造をもち、Fe162ではFe8Fの約2倍の周期が電子線回折やX線回折パターンで観察される。この約2倍の周期は回折実験から解析される格子定数が0.57nmから0.65nmの範囲であることが判明している。またFe4Fはfccに近い構造をもち、これら3つの化合物は強磁性を示し、20℃において磁気モーメントが2.5ボーア磁子を超える値をもつため磁束密度が増加する。さらに微量であるがFe3F,Fe2Fに酸素などの不純物が混合したフッ化物が成長する。上記の強磁性化合物であるFe8F,Fe162,Fe4Fを高保磁力磁性材料中に成長させることにより、磁石材料では母相との交換結合により残留磁束密度を増加させることが可能であり、軟磁性材料では飽和磁束密度を増加させることが可能である。bccのFeに比べ単位胞体積が膨張したFenm化合物(n,mは正の整数)は、磁気モーメントの増加以外に、異方性エネルギーの増加や強磁性から反強磁性への交換結合の変化による保磁力増加効果が実現でき、高残留磁束密度と高保磁力を両立することが可能である。
 粒径1μmのNdFe11Tiを主相とする粉200gを組成がNdF3のアルコール溶液200ccに混合し、ステンレス容器に入れ、ステンレスボールを用いてメカニカルアロイングによりNdFe11Ti主相にフッ素を取り入れる。メカニカルアロイニング100時間後主相にフッ素が取り込まれることを質量分析により確認した。フッ素濃度は粉の中心及び外側では異なり、外側の方が高い傾向を示した。平均の組成はNdFe11TiF0.1となるようにアルコール中のNdF3の濃度やメカニカルアロイニング条件であるボール径,ボールと粉の体積比,回転速度,溶媒の種類,溶媒中不純物を調整した。フッ素原子は侵入位置だけでなく、置換位置や酸フッ化物を形成するが、体心正方晶の格子定数は増加する傾向を示す。主相の体心正方晶の格子定数及びキュリー点を表1の番号1及び2に示す。格子定数は体心正方晶のためa軸及びc軸で表され、単位はオングストロームである。またキュリー点はTcで表され単位はK(ケルビン)である。フッ素導入によりc軸の長さが4.91から4.95A(オングストローム)に伸び、単位胞体積が増加する。これに伴い、Tcが547Kから558Kに上昇している。
 上記条件の中でメカニカルアロイング時間を200時間にして作製したNdFe11TiF0.2はさらにc軸が伸びTcが上昇する。Ndの一部をPrで置換した系(番号4)、Feの一部をCoで置換した系(番号5)、Alを添加した系(番号6)、さらに炭素(C)を添加した系(番号7,8)においてもc軸の伸びとTc上昇効果を確認できた。主相の体心正方晶以外に形成される相は、立方晶や菱面体晶のフッ化物あるいは酸フッ化物及びNd3Fe29などの正方晶以外の構造をもっており、主相以外の相の体積は主相に対して20体積%以下であり、一部の主相以外の相は主相との界面で整合性をもち、主相の結晶構造を安定化させており、残留磁束密度1.2T以上かつ保磁力10kOe以上となるために必要な比率である。NdFe11Ti以外の材料系に対して格子定数及びTcの値を表1の番号9から59に示す。フッ素を導入していない主相の格子定数及びTcと比較してフッ素導入によりTcが上昇する。またc軸はいずれの主相に対しても増加する。c軸が伸びる理由は、フッ素原子の一部が希土類元素や鉄原子で構成する構造の隙間に侵入するためと推定でき、c軸が伸びることにより結晶磁気異方性エネルギーが増加するために保磁力も大きくすることが可能である。
 また、一部のフッ素原子は、侵入位置に配置しない化合物を形成するとともに、粒界近傍にフッ化物や酸フッ化物が成長する。SmFe11Ti(番号9)にフッ素を添加したSmFe11TiF0.1(番号10)でキュリー温度が上昇し、さらにAlを添加してSmFe11TiAl0.01F(番号11)でキュリー温度が621Kとなる。TiやAl添加によりSmFe11Tiの結晶構造が安定化すると考えられる。SmFe12MnF0.1(番号15)はフッ素の一部が侵入型位置に配置し、SmFe13MnF0.5(番号16)ではフッ素の配列に異方性がみられ、SmFe15MnF1.1(番号17)ではSm-Fe間、Fe-Fe間及びFe-Mn間の原子間の一部にフッ素が配列し、局所的な格子歪が生じる結果キュリー温度が上昇する。同様な格子歪の導入による格子の膨張が番号18から番号59の材料組成のフッ素含有化合物にみられる。表1に示す主相フッ素化合物の格子定数の少なくとも1つの軸長はフッ素を含有する強磁性鉄の格子定数の最長の軸長よりも長い。また、主相の格子体積は250立方オングストロームよりも大きく、フッ素を含有する強磁性鉄の格子体積である23.6~220立方オングストロームよりも大きい。主相はフッ素の侵入によりその格子体積が一方向あるいは等方的に膨張し、フッ素原子の高電気陰性度による電子の状態密度分布の変化によって、結晶磁気異方性の増加、キュリー温度の上昇及び磁化増加を実現していると考えられる。
Figure JPOXMLDOC01-appb-T000001
 粒径0.1μmのYFe6Al6を主相とする粉100gを組成が粒径0.01μmのYF2結晶質フッ化物を含有するアルコール溶液200ccに混合し、YF2を塗布したステンレス容器に入れ、直径約100μmのYF2が塗布されたステンレスボールを用いてメカニカルアロイングによりYFe6Al6主相表面からのYF2フッ素が拡散または表面近傍での反応により準安定な化合物が成長する。フッ素の一部はFeあるいはCeとのフッ化物または酸フッ化物を形成するが、上記フッ化物や酸フッ化物を構成するフッ素原子の量は、侵入位置に配置するフッ素原子の量よりも少なくなるように、酸素濃度500ppm以下とし、FeをYFe6Al6の組成から0.1から5原子%多くした粉を用いている。メカニカルアロイングを100時間実施後、フッ素を1%含有する雰囲気を用い、500℃、10時間の熱処理を試みた。その結果YFe6Al6Fが成長し、a軸とc軸の伸びが確認できた。また磁化の温度依存性から求めたYFe6Al6Fのキュリー温度(Tc)はフッ素を導入しない温度(310K)から389Kへと上昇していることを確認した。
 このようなフッ素導入によるc軸の軸長増加とキュリー点の上昇は、Y以外の希土類元素を含有しない鉄系材料でも確認でき、その結果を表2の101から117に示した。キュリー点が上昇することにより、耐熱性が要求される磁石応用製品(回転機,ハードディスク,磁気共鳴装置など)に焼結磁石やボンド磁石として適用可能である。さらにFeを含有しないSmMn4Al8化合物において、フッ素ガス雰囲気中で500℃の熱処理を10時間実施することでフッ素が導入される。このフッ化処理により、a軸及びc軸の軸長が増加し、キュリー点が上昇する。その結果を表2の119から123に示す。フッ素導入により、結晶磁気異方性エネルギーが約10~50%増加することにより磁気異方性の方向と大きさが変化する。このようなフッ素導入は、Mn原子間距離を0.1から10%増加させ、一部のMn原子のスピンが強磁性的に結合するようになる。またこのようなMn原子間距離の増加は、磁気熱量効果を増加させ、磁気冷凍材料に適用可能である。
Figure JPOXMLDOC01-appb-T000002
 粒径1μmのCe2Fe17Cを主相とする粉100gを組成がCeF2の非晶質フッ化物アルコール溶液200ccに混合し、フッ化物を塗布したステンレス容器に入れ、直径約100μmのフッ化物が塗布されたステンレスボールを用いてメカニカルアロイングによりCe2Fe17C主相表面からCeF2のフッ素が拡散または表面近傍での反応により準安定な化合物が成長する。フッ素の一部はFeあるいはCeとのフッ化物または酸フッ化物を形成するが、上記フッ化物や酸フッ化物を構成するフッ素原子の量は、侵入位置に配置するフッ素原子の量よりも少なくなるように、酸素濃度1000ppm以下とし、Feを0.1から5原子%多くした粉を用いている。メカニカルアロイングを100時間実施後、フッ素を1%含有する雰囲気を用い、400℃,10時間の熱処理を試みた。その結果Ce2Fe17CF0.1が成長し、格子定数の伸びが確認できた。また磁化の温度依存性から求めたCe2Fe17CF0.1のキュリー温度(Tc)はフッ素を導入しない温度(297K)から412Kへと上昇していることを確認した。
 このようなフッ素導入による格子定数の軸長増加とキュリー点の上昇は、他の希土類鉄系材料でも確認でき、その結果を表3に示した。キュリー点が上昇することにより、耐熱性が要求される磁石応用製品(回転機,ハードディスク,磁気共鳴装置など)に焼結磁石やボンド磁石として適用可能である。
Figure JPOXMLDOC01-appb-T000003
 粒径100nmのLa2Fe17Nを主相とする粉100gを組成がLaF2の非晶質フッ化物アルコール溶液100ccに混合し、フッ化物を塗布したステンレス容器に入れ、直径約100μmのフッ化物が塗布されたステンレスボールを用いてメカニカルアロイングによりLa2Fe17N主相表面からLaF2のフッ素が拡散または表面近傍での反応により準安定な化合物が成長する。フッ素の一部はFeあるいはLaとのフッ化物または酸フッ化物を形成するが、上記フッ化物や酸フッ化物を構成するフッ素原子の濃度は、母相の侵入位置に配置するフッ素原子の濃度よりも高い。
 このような高フッ素濃度化合物は非磁性であるが、母相へのフッ素供給減となると同時に母相中酸素を除去する還元効果があるため、結晶磁気異方性が増加しキュリー温度も高くなる。またFe組成を0.1から5原子%多くした粉を用いることにより母相よりもフッ素濃度が少ないFe-F二元系合金を形成することにより母相とFe-F二元系合金の強磁性結合による0.1から0.2Tの残留磁束密度の上昇を実現できる。メカニカルアロイングを100時間実施後、フッ素を1%含有する雰囲気を用い、400℃,10時間の熱処理し400℃から室温まで急冷を試みた。その結果La2Fe17NF0.1が成長し、c軸の伸びが確認できた。また磁化の温度依存性から求めたCe2Fe17NF0.1のキュリー温度(Tc)はフッ素を導入しない温度(321K)から452Kへと上昇していることを確認した。このようなフッ素導入によるc軸の軸長増加とキュリー点の上昇は、他の希土類鉄窒素系材料にフッ素を導入した材料粉,希土類鉄炭素系材料にフッ素を導入した材料あるいは遷移金属フッ化物でも確認できる。
 いずれの材料系においてもフッ素原子が侵入位置にある相が主相であり、主相体積は他のフッ素置換相あるいは酸フッ化物よりも大きい。キュリー点が上昇することにより、耐熱性が要求される磁石応用製品(回転機,ハードディスク,磁気共鳴装置など)に焼結磁石やボンド磁石として適用可能である。焼結磁石では、粒界の一部に主相と結晶構造が異なるフッ素化合物が成長する。粒界三重点の一部には酸素を含有する酸フッ素化合物が成長している。また、ボンド磁石ではバインダに有機材料以外の酸化物やフッ化物あるいは酸フッ化物を使用することができ無機バインダとすることにより磁石の耐熱性が向上する。
 厚さ100nmの鉄箔体にSm-F系溶液を塗布後熱処理する。鉄箔体の純度は99.8%である。Sm-F系溶液は非晶質構造を示しているため、X線回折パターンは結晶質のパターンとは異なり、半値幅1度以上のピークが1本以上含まれている。鉄箔体に対して0.1wt%の溶液を塗布後、フッ化アンモニウムを蒸発させた雰囲気中で600℃に10時間、加熱保持後、急冷する。この処理により鉄箔とフッ化物が反応しSm及びフッ素を含有する鉄箔が得られる。600℃よりも高温で熱処理した場合、フッ素は鉄希土類フッ素三元化合物を形成しにくくなり、安定なフッ化物や酸フッ化物が成長するようになり、磁気特性の向上は困難となる。
 600℃で熱処理した場合、鉄箔中には、Sm2Fe17Fx(X=1から3)及びSmOFやSmF3が成長し、六方晶及び立方晶が混合した構造をもった箔体となる。六方晶が主相でかつフッ素が侵入位置あるいは置換位置に配置した場合に保磁力が20~25kOeとなり、キュリー温度は400~600℃となる。このように軟磁性を示す鉄箔体を上記工程により硬磁性材に変えることが可能である。上記処理はマスク材料を使用することにより、鉄箔体を局所的に硬磁気特性にすることも可能である。本工程で作製した鉄箔体を適当数積層し、磁石体にすることが可能である。尚、鉄の一部にフッ素が侵入することで鉄原子の間隔が平均的に伸びることにより正方晶が形成され、飽和磁束密度が2.1~2.5Tに増加させることが可能になり、同一磁性体の中で結晶構造が異なる高飽和磁束密度材料と高磁気異方性材料が強磁性結合をもった磁石が得られ、鉄箔体では磁石の高残留磁束密度(1.5T~1.9T)と軟磁性鉄の高磁束密度化を局所的に併せ持った鉄箔体ならびに積層体を得ることができる。この積層体を回転機やボイスコイルモータに使用することにより部品の小型軽量化に寄与できる。
 粒径100nmのNdFe11Tiを主相とする粉100gをNdF3の粉砕粉を10wt%含有するアルコール溶液100ccに混合し、フッ化物を塗布拡散させたステンレス容器に入れ、水素雰囲気で加熱還元後、フッ化物表面処理によりフッ化物を表面に形成したステンレスボールを用いてメカニカルアロイングによりNdFe11Ti主相にフッ素を取り入れる。メカニカルアロイニング200時間後主相にフッ素が取り込まれることを質量分析により確認した。フッ素濃度は粉の中心及び外側では異なり、外側の方が高い傾向を示した。平均の組成はNdFe11TiF1となるようにアルコール中のNdF3の濃度やメカニカルアロイニング条件であるボール径、ボールと粉の体積比、回転速度、溶媒の種類、溶媒中不純物を調整した。フッ素原子は侵入位置だけでなく、六方晶の置換位置や酸フッ化物を形成するが、体心正方晶の格子定数は増加する傾向を示す。得られた粉末をさらにフッ化アンモニウムガス中で400℃にて加熱することにより、さらにフッ化が進行し、NdFe11TiF2やNdFe11TiF3が成長し、フッ素濃度が希土類元素の濃度よりも高い濃度をもち、かつ一部のフッ素が母相以外の希土類フッ化物や希土類酸フッ化物あるいは鉄フッ化物、鉄酸フッ化物を形成している。
 主相以外の相は0.1~20体積%の範囲になるようにメカニカルアロイニング条件や結晶粒径を調整する。主相以外の相として、強磁性の正方晶Fe-F二元合金相が成長することにより、残留磁束密度の増加が可能である。この強磁性鉄フッ素合金及び主相以外のフッ素含有相は0.1~10体積%であることが望ましい。主相以外のフッ素含有相は400℃で硬度が低下することから、主相以外のフッ素含有相を含む粉末を磁界配向後加熱成形することにより密度95-98%の成形体が得られ、残留磁束密度1.0~1.8T、保磁力15~40kOeの異方性磁石となる。
 粒径5μmのSm2Fe17を主相とする粉を10kOeの磁場中にて仮成形後、真空加熱装置に仮成形体を挿入し、1200℃で5時間加熱焼結させる。焼結後、1000℃近傍でフッ化アンモニウムガスを加熱室に隣接する時効室に導入し、焼結体の外側からフッ素を拡散させる。波長分散型X線分光分析や二次イオン質量分析などによってフッ素濃度を分析した結果、フッ素濃度は焼結体の中心及び外側では異なり、外側の方が高く、焼結体全体の平均フッ素濃度は1-15原子%であった。この濃度はフッ化アンモニウム(NH4F)を加熱分解させたガスの分圧及び時効フッ化温度に依存する。また粉末の粒度と焼結体の密度にも依存する。
 フッ素原子は侵入位置だけでなく、置換位置や酸フッ化物を形成し、濃度が0.1原子%以上のフッ素導入により次の効果のいずれかの効果を確認できる。即ち1)内部磁場の増加、2)結晶磁気異方性の増加、3)磁気異方性の方向の変化、4)電気抵抗の増加、5)飽和磁束密度の温度係数の変化、6)磁気抵抗の変化、7)相転移に伴う熱量の変化、8)キュリー温度以上に加熱した場合のフッ素原子位置の移動に関連した相転移等である。
 上記のようにフッ素原子の一部が侵入位置に配置した磁性体の結晶構造は準安定相であるため加熱により安定相に相転移する。相転移回数は複数であり、少なくとも一つの相転移は400℃から900℃で進行する。Sm2Fe17を主相とする粉にbccあるいはbct構造の鉄を成長させた後、上記のようなフッ化処理により、Fe8F,Fe162,Fe4F,Fe3F,Fe2Fやこれらの一部に窒素や炭素あるいは酸素が配置したフッ化物が形成される。これらのフッ化物において、Fe8FやFe162はbct構造をもち、Fe162ではFe8Fの約2倍の周期が電子線回折やX線回折パターンで観察される。この約2倍の周期は回折実験から解析される格子定数が0.57nmから0.65nmの範囲であることが判明している。
 またFe4Fはfccに近い構造をもち、これら3つの化合物は強磁性を示し、20℃において磁気モーメントが2.5ボーア磁子を超える値をもつため磁束密度が増加する。さらに微量であるがFe3F、Fe2Fに酸素などの不純物が混合したフッ化物が成長する。上記の強磁性化合物であるFe8F、Fe162、Fe4Fを高保磁力磁性材料中に成長させることにより、磁石材料では母相との交換結合により残留磁束密度を増加させることが可能であり、軟磁性材料では飽和磁束密度を増加させることが可能である。bccのFeに比べ単位胞体積が膨張したFenm化合物(n,mは正の整数)は、磁気モーメントの増加以外に、異方性エネルギーの増加や強磁性から反強磁性への交換結合の変化による保磁力増加効果が実現でき、高残留磁束密度と高保磁力を両立することが可能であり、同様の磁気特性向上はRenFem,RenCom(Reは希土類元素、n及びmは整数でありこの母相に複数のFe、Co以外の金属元素を含有させた相)の焼結体あるいは仮成形体のフッ化処理によって実現できる。尚、これらのフッ化物には炭素、酸素、水素及び窒素などの不純物が混合していても磁気特性は確保できることから、実用上の問題はない。
 粒径1μmのSm2Fe19を主相とする粉を10kOeの磁場中にて仮成形後、真空加熱装置に仮成形体を挿入し、水素還元後1100℃で5時間加熱焼結させる。焼結後、900℃近傍でフッ化アンモニウムガスを注入するために加熱室に隣接する時効室に大気に曝すことなく移動し、焼結体の外側からフッ素を拡散させる。波長分散型X線分光分析や二次イオン質量分析などによってフッ素,窒素濃度を分析した結果、フッ素濃度は焼結体の中心及び外側では異なり、外側の方が高濃度であり、焼結体全体の平均フッ素濃度は1-12原子%であり、フッ素濃度よりも低濃度で窒素及び水素が含有することを確認した。これらの元素濃度はフッ化アンモニウム(NH4F)を加熱分解させたガスの分圧及び時効フッ化温度に依存する。また粉末の粒度と焼結体の密度にも依存する。
 フッ素原子は侵入位置だけでなく、置換位置や酸フッ化物を形成し、濃度が0.01原子%以上のフッ素導入により次の効果のいずれかの効果を確認できる。即ち1)純鉄より高い内部磁場、2)結晶磁気異方性の増加、3)結晶磁気異方性の方向の変化、4)磁気抵抗の増加、5)飽和磁束密度の温度係数の変化、6)保磁力の増加、7)相転移に伴う熱量の変化、8)キュリー温度以上に加熱した場合のフッ素原子位置の移動に関連した相転移等である。上記のようにフッ素及び窒素原子の一部が侵入位置に配置した磁性体の結晶構造は準安定相であるため加熱により安定相に相転移する。相転移回数は複数であり、少なくとも一つの相転移は400℃から900℃で進行する。Sm2Fe19を主相とする粉にbccあるいはbct構造の鉄を成長させた後、上記のようなフッ化処理により、Fe8(F,N),Fe16(F,N)2,Fe4(F,N),Fe3(F,N),Fe2(F,N)やこれらの一部に窒素や炭素あるいは酸素が配置したフッ化物が形成される。これらのフッ化物において、Fe8(F,N)やFe16(F,N)2はbct構造をもち、Fe16(F,N)2ではFe8(F,N)の約2倍の周期が電子線回折やX線回折パターンで観察される。この約2倍の周期は回折実験から解析される格子定数が0.57nmから0.65nmの範囲であることが判明している。またFe4(F,N)はfccに近い構造をもち、これら3つの化合物は強磁性を示し、20℃において磁気モーメントが2.5ボーア磁子を超える値をもつため磁束密度が増加する。
 上記の強磁性化合物であるFe8(F,N),Fe16(F,N)2,Fe4(F,N)を高保磁力磁性材料中に成長させることにより、磁石材料では母相との交換結合により残留磁束密度を増加させることが可能であり、軟磁性材料では飽和磁束密度を増加させることが可能である。bccのFeに比べ単位胞体積が膨張したFenml化合物(n,m,lは正の整数)は、磁気モーメントの増加以外に、異方性エネルギーの増加や強磁性から反強磁性への交換結合の変化による保磁力増加効果が実現でき、高残留磁束密度と高保磁力を両立することが可能であり、同様の磁気特性向上はRenFem,RenCom(Reは希土類元素、n及びmは整数でありこの母相に複数のFe,Co以外の金属あるいは半金属元素(Cu,Al,Zr,Ti,Mn,Cr,Mo,Ca,Bi,Ta,Mg,Si,B,C)を含有させた相)の焼結体あるいは仮成形体のフッ化処理によって実現できる。尚、これらのフッ化物には炭素,酸素,水素などの不純物が混合していても磁気特性は確保できることから、実用上の問題はない。
 粒径100nmのLa(Fe0.9Si0.1Al0.01)13を主相とする粉100gをLaF3の粉砕粉を10wt%含有するアルコール溶液100ccに混合し、フッ化物を塗布拡散させたステンレス容器に入れ、水素雰囲気で加熱還元後、フッ化物表面処理によりフッ化物を表面に形成したステンレスボールを用いてメカニカルアロイングによりLa(Fe0.9Si0.1Al0.01)13主相にフッ素を取り入れる。メカニカルアロイニング200時間後主相にフッ素が取り込まれることを質量分析により確認した。
 フッ素濃度は粉の中心及び外側では異なり、外側の方が高い傾向を示した。平均の組成はLa(Fe0.9Si0.1Al0.01)13Fになるようにアルコール中のLaF3の濃度やメカニカルアロイニング条件であるボール径,ボールと粉の体積比,回転速度,溶媒の種類,溶媒中不純物を調整した。フッ素原子は侵入位置だけでなく、主相の置換位置や酸フッ化物を形成する。得られた粉末をさらにフッ化アンモニウムガス中で400℃にて加熱することにより、さらにフッ化が進行し、La(Fe0.9Si0.1Al0.01)132やLa(Fe0.9Si0.1Al0.01)133が成長し、フッ素濃度が希土類元素の濃度よりも高い濃度をもち、かつ一部のフッ素が母相以外の希土類フッ化物や希土類酸フッ化物あるいは鉄フッ化物,鉄酸フッ化物を形成している。
 主相以外の相は0.1~20体積%の範囲になるようにメカニカルアロイニング条件や結晶粒径を調整し、磁気エントロピー変化がフッ素導入により増加することを確認した。このフッ素含有相と硬質磁性材料を複合化し、磁気冷却効果を有する磁石材料が作成できる。
 Sm2Fe17.2の粉末について熱処理炉を使用して水素気流中で加熱し粉末中の一部を水素化する。水素含有により粉末が脆化することを利用して粉砕し、平均粉末径5μmの粉末が得られる。水素不均化再結合を利用して粉末に異方性を付加してもよい。この粉末100gを大気にさらさずにフッ化アンモニウムNH4Fを昇華させたガス雰囲気中で加熱保持する。加熱保持後CaH2添加により粉末表面などに形成される酸フッ化物や酸化物を還元する。加熱温度は150℃から1000℃の範囲であり、最適な温度は300℃から700℃である。
 フッ素を含有するガス以外に、水素による還元反応を進行させることにより、フッ化が粉末内部にまで進行し易くなる。この処理によりSm2Fe17.11-3がフッ素含有鉄及び酸フッ化物と共に成長する。フッ化処理した粉末は、母相がSm2Fe17.11-3であり、フッ素濃度は平均的に粉末の中心部よりも外周側の方が母相内で高い。また、粉末表面には酸化物や酸フッ化物またはフッ化物のいずれかフッ素を含有する主相とは異なる相が成長し、上記Sm2Fe17.11-3ではbcc構造のFe、bct構造のFe-F相、SmOF,SmF3,Fe23,Fe34,Sm23など主相と異なる結晶構造を有する強磁性相及び磁化が主相の1/10以下の弱磁性あるいは非磁性相と考えられる相が成長する。Sm2Fe17.11-3の粉末全体に対する体積は70から90%であり、強磁性相は95%であった。上記フッ化処理により、磁化の増加,キュリー温度(Tc)上昇,結晶磁気異方性エネルギーの増加が確認できた。Sm2Fe17.11-3の飽和磁束密度は1.7T,キュリー温度795K、結晶磁気異方性エネルギーKuは15MJ/m3であった。
 尚、これらの磁気物性はフッ素濃度勾配,添加物,不純物などの組成、フッ素原子位置や規則度、格子定数を含めた結晶構造、及び主相との界面を有する主相とは異なる結晶構造をもった相により変化することを確認している。飽和磁束密度とキュリー温度の増加はSm2Fe17.10.1の組成においても磁化の温度依存性測定から確認でき、フッ素原子による格子定数の増大もX線回折パターン測定により確認できる。またSm2Fe17.10.1の単結晶から求めた結晶磁気異方性エネルギーもフッ素導入による増大効果を確認している。このような磁化の増加、キュリー温度(Tc)上昇、結晶磁気異方性エネルギーの増加のいずれかが観測できた材料は、上記SmFeF系以外にCeFeF,PrFeF,NdFeF,PmFeF,EuFeF,GdFeF,TbFeF,DyFeF,HoFeF,ErFeF,TmFeF,YbFeF,LuFeF,YFeFなどRe2Fe17(ReをYを含む希土類元素として示す)系(Re2Fe170.1-3)やReFe12系(ReFe120.1-3),ReFe15-19(ReFe15-190.1-3)系,Re3Fe29(Re3Fe290.1-3)系があり、これらの系列の中でFe原子の一部をFe以外のCoやTi,Al,Mn,Mg,Si,Cuを含む遷移金属元素で置き換えた組成やフッ素原子の一部をH,C,B,N,O,Clで置き換えた系である。
 粒径約1μmのSmFe11Al粉末100gをフッ化アンモニウム(NHF4)粉10gと混合し真空排気後加熱する。加熱中CaH2を加えSmFe11Al粉末表面の酸化進行を抑制する。熱処理温度は300℃、保持時間は5時間である。加熱後急冷しフッ化したSmFe11Al粉末を熱処理炉から取り出す。本熱処理によりフッ化アンモニウム(NHF4)からフッ素含有反応性ガスが発生し、SmFe11AlF0.1-3粉末を作成できる。SmFe11AlF0.1-3粉末表面あるいは粉末内の粒界や粒内にはSmF3やSmOF、AlF2,Al23,SmO2,Fe23,Fe34,SmH2などのフッ化物あるいは酸フッ化物,酸化物,水素化物が成長する。
 母相の体心正方晶(bct構造)にフッ素原子が導入された結晶が成長していることをX線回折パターンあるいは電子顕微鏡による制限視野電子線回折パターンの解析から確認した。フッ素導入により体心正方晶の格子体積は増加する。母相以外の強磁性相としてbccあるいはbct構造の鉄フッ素化合物あるいはフェリ磁性のフェライトも成長する。前記bcc構造には格子歪みなどによる変形したbcc構造も含み、a軸とc軸の格子定数が0.01-1%異なり回折実験からはbctと判断困難なbcc構造を含んでいる。母相のフッ素濃度は粉末中心よりも外周側の方が高く、粉末表面の一部は母相よりも高濃度のフッ素を含有するフッ化物あるいは酸フッ化物と接触している。フッ化処理前後の粉末について磁気特性を評価した結果、飽和磁化が15%増加し、キュリー温度が200℃上昇、一軸磁気異方性エネルギー(Ku)が30%増加することが分かった。この粉末を金型に挿入、磁場印加後500℃で0.5t/cm2の荷重で圧縮成形し、SmFe11AlF0.1-3結晶粒から構成され、一部焼結している成形体を得た。この成形体の磁気特性は、残留磁束密度1.5T,保磁力31kOe,キュリー温度795Kであった。
 この磁石を埋め込み磁石型モータ,表面磁石モータに適用でき、ボイスコイルモータ,ステッピングモータ,ACサーボモータ,リニアモータ,パワーステアリング,電気自動車用駆動モータ,スピンドルモータ,アクチュエータ,放射光用アンジュレータ,偏光磁石,ファンモータ,永久磁石型MRI,脳波計などに適用できる。本実施例のように母相へのフッ素導入による磁化増加,キュリー温度上昇,磁気異方性エネルギー上昇の効果が得られる材料として、SmFe11Al粉以外にAlの代わりにAlの一部または全てを他のSi,Ga,Ge,Tiなどの遷移元素を使用したもの、Smの代わりにSmの一部または全てをYを含む希土類元素あるいはMnを使用したものが挙げられる。さらに、SmFe11AlよりもFe含有量が多い、SmFe11.1-30のフッ素化合物または遷移元素を含有するフッ素化合物においてもフッ素導入効果を確認している。また、SmFe11Al粉末の粒径は20μm以下であれば同様の効果が確認でき、フッ化に使用したガスはフッ素を含有する種々のガスを利用でき、加熱中の還元剤はCaH2以外の水素化物を使用できる。
 粒径約0.5μmのSmFe11Ti粉末100gをフッ化アンモニウム(NHF4)粉10gと混合し真空排気後加熱する。加熱中CaH2を加えSmFe11Ti粉末表面の酸化進行を抑制する。熱処理温度は200℃、保持時間は10時間である。加熱後急冷しフッ化したSmFe11Ti粉末を熱処理炉から取り出す。本熱処理によりフッ化アンモニウム(NHF4)からフッ素含有反応性ガスが発生し、SmFe11TiF0.1-3粉末を作成できる。SmFe11TiF0.1-3粉末は結晶粒あるいは粉の中心部と外周部とでフッ素濃度が異なり、外周部の方が中心部よりもフッ素濃度が高い。これは外周部からフッ素が拡散していくためである。中心部でSmFe11TiF0.1であっても外周部ではSmFe11TiF3とすることが可能である。前記熱処理の保持時間を20時間にすると中心部と外周側のフッ素濃度差は小さくなり、中心部でSmFe11TiF0.3、外周部でSmFe11TiF3とすることが可能であり、目的とする磁気特性に合わせてフッ素濃度および濃度勾配を保持時間、ガス分圧、ガス種などにより調整できる。SmFe11TiF0.1-3粉末表面あるいは粉末内の粒界や粒内にはSmF3やSmOF,TiF2,Ti23,SmO2,Fe23,Fe34,TiNなどのフッ化物あるいは酸フッ化物,酸化物,窒化物が成長する。
 母相の体心正方晶(bct構造)にフッ素原子が導入された結晶が成長していることをX線回折パターンあるいは電子線回折パターンから確認した。フッ素導入により体心正方晶の格子体積は増加する。母相以外の強磁性相として格子歪みをもったbccあるいはbct構造の鉄フッ素二元合金も成長する。母相のフッ素濃度は粉末中心よりも外周側の方が高く、粉末表面の一部は母相よりも高濃度のフッ素を含有するフッ化物あるいは酸フッ化物と接触している。このため、母相が構成する結晶粒において、高濃度のフッ素を含有する粒子外周側あるいは表面、界面近傍の方が格子体積が大きく、粒子中心部よりも異方性エネルギーが大きい傾向をもつ。フッ化処理前後の粉末について磁気特性を評価した結果、飽和磁化が35%増加し、キュリー温度が250℃上昇、一軸磁気異方性エネルギー(Ku)が20%増加することが分かった。この粉末を金型に挿入、磁場印加後400℃で1t/cm2の荷重で圧縮成形し、SmFe11TiF0.1-3結晶粒から構成され、一部焼結している成形体を得た。この成形体の磁気特性は、残留磁束密度1.6T,保磁力35kOe,キュリー温度835Kであった。成形体の作成には上記のような加熱成形以外に、衝撃圧縮成形,通電成形,急速加熱成形,電磁波による加熱成形などの各種加熱成形工程が採用できる。また、フッ化処理として、フッ化アンモニウム以外にフッ素を含湯するCF系あるいはHF系ガスあるいは溶液を使用できる。
 上記磁気特性を示す磁石は、家電・産業用磁石モータ,鉄道用磁石モータ,電気自動車駆動用モータ,HDD用スピンドル・VCMモータなどの各種モータや、医療機器,計測機器などの磁気回路に適用でき、磁気回路の小型軽量化あるいは高性能化高効率化に寄与する。
 粒径100nmの鉄粉を真空蒸着により作成した。蒸着室内で作成した鉄粉は大気に曝さずに、SmF3に近い組成物を膨潤させTiが1重量%添加されたアルコール溶液と混合され、粉表面に被覆率90%でTiを含有するSmF3膜を厚さ1から10nmで形成する。このフッ化物被覆鉄粉をCaH2とともに500℃で加熱保持後平均10℃/分以上の冷却速度で冷却する。冷却後200℃で10時間時効処理を施し、平均20℃/分の冷却速度で冷却した。その結果、Sm,Fe,F,Tiが拡散反応し、正方晶構造のSmFe11TiF0.01-2が成長した。粉末中でのフッ素、Sm、及びTiには濃度勾配が見られ、フッ素の濃度勾配が最も大きく、Smを1とした原子濃度比でフッ素は中心部で0.01となり、外周部で2であった。時効時間をさらに長くすることでこの濃度勾配は小さくなる傾向を示した。
 このようにして作成したSmFe11TiF0.01-2粉には正方晶構造ではないSmF3などのフッ化物やSmOFなどの酸フッ化物あるいは酸化物,炭化物などが成長し、フッ素濃度はこれらのフッ化物や酸フッ化物の方がSmFe11TiF0.01-2よりも高いが磁気特性を決定しているのはSmFe11TiF0.01-2及びこのSmFe11TiF0.01-2との界面、界面近傍の成長相であり、前記SmF3などのフッ化物やSmOFなどの酸フッ化物あるいは酸化物、炭化物の一部は母相の結晶格子と整合性をもった界面を形成する。被覆された部分を含めたSmFe11TiF0.01-2粉にはSmFe11TiF0.01-2が全体の体積に対して55%成長し、被覆された部分のうちの鉄濃度の少ない非磁性に近い部分を除去すると、飽和磁束密度190emu/g,保磁力35kOe,キュリー温度825Kの磁気特性を示し、磁気異方性が表面あるいは結晶粒外周側が結晶粒中心よりも大きい傾向を示す。この磁粉を樹脂材料と混合後、磁場中配向させ、圧縮成形することでボンド磁石を作成した。ボンド磁石に占める磁粉の体積は80%であり、残留磁束密度1.25T,保磁力34kOeのボンド磁石を得た。
 このボンド磁石を埋め込み磁石モータに適用し、着磁後誘起電圧波形を測定した結果、他のNdFeB系あるいはSmFeN系希土類ボンド磁石よりも高い誘起電圧を示した。このことからRenFeml(ReはYを含む希土類元素、Feは鉄、Fはフッ素、n,m,lは正の整数)あるいは他の遷移元素(M)を添加したRen(Fe,M)mlは従来のボンド磁石よりも希土類含有量を少なくしかつ磁気特性を向上させた磁石材料であり、種々の磁気回路に適用できる。残留磁束密度が1.2Tを超え、かつ保磁力が25kOe以上となる磁石材料は、前記のようなRen(Fe,M)mlで示される主相であって、主相のフッ素化合物を形成する際に必要なフッ化物または酸フッ化物を伴い、添加する遷移元素Mの濃度は鉄(Fe)よりも少ないことが望ましい。
 厚さ2μmの鉄箔体を水素雰囲気で加熱還元し表面酸化膜を除去した後、鉄箔体を大気に曝さずにSmF3.5に近い組成物を膨潤させMgが1重量%添加されたアルコール溶液と混合され、粉表面に被覆率95%でMgを含有するSmF3.1膜を厚さ1から10nmで形成する。このフッ化物被覆鉄粉をCaH2とともに400℃で加熱保持後平均20℃/分以上の冷却速度で冷却する。冷却後300℃で10時間時効処理を施し、平均30℃/分の冷却速度で冷却した。その結果、Sm,Fe,F,Mgが拡散反応し、正方晶構造のSmFe11MgF0.1-4が成長した。箔体中でのフッ素、Sm、及びMgには濃度勾配が見られ、フッ素の濃度勾配が最も大きく、Smを1とした原子濃度比でフッ素は中心部で0.1となり、外周部で3から4であった。時効時間をさらに長くすることでこの濃度勾配は小さくなる傾向を示した。
 加熱温度を400℃から600℃に高温側にすると含有するフッ素濃度を高くすることができるが、正方晶の格子間に侵入しないフッ素原子が増加し、Sm2Fe173やSmFe51-4なども成長する。加熱温度400℃で作成したSmFe11MgF0.1-4箔体には正方晶構造ではないSmF3などのフッ化物やSmOFなどの酸フッ化物あるいは酸化物、炭化物などとbccやbct構造の鉄が成長する。bccやbct構造の鉄の格子体積は主相のSmFe11MgF0.1-4格子体積よりも小さい。フッ素濃度はこれらのフッ化物や酸フッ化物の方がSmFe11MgF0.1-4よりも高く、磁気特性を決定しているのはSmFe11MgF0.1-4及びこのSmFe11MgF0.1-4との界面、界面近傍の成長相及びbccやbct構造の鉄である。被覆された部分を含めたSmFe11MgF0.1-4箔体にはSmFe11MgF0.1-4が全体の体積に対して65%成長し、被覆された部分のうちの鉄濃度の少ない非磁性に近い部分を除去すると、飽和磁束密度200emu/g,保磁力30kOe,キュリー温度815Kの磁気特性を示した。
 粒径100nmの鉄50%マンガン粉(Fe-50%Mn粉)を真空蒸着により作成した。蒸着室内で作成したFe-50%Mn粉は大気に曝さずに、LaF3に近い組成物を膨潤させCoが1重量%添加されたアルコール溶液と混合され、粉表面に被覆率90%でCoを含有するLaF3膜を厚さ1から10nmで形成する。このフッ化物被覆Fe-50%Mn粉をCaH2とともに300℃で加熱保持後平均10℃/分以上の冷却速度で冷却する。冷却後200℃で10時間時効処理を施し、平均20℃/分の冷却速度で冷却した。その結果、Mn,Fe,F,Coが拡散反応し、正方晶構造のLa(Fe,Co)11MnF0.01-2が成長した。粉末中でのフッ素、Mn、及びCoには濃度勾配が見られ、フッ素の濃度勾配が最も大きく、Laを1とした原子濃度比でフッ素は中心部で0.01となり、外周部で2であった。時効時間をさらに長くすることでこの濃度勾配は小さくなる傾向を示した。
 このようにして作成したLa(Fe,Co)11MnF0.01-2粉には正方晶構造ではないLaF3などのフッ化物やLaOFなどの酸フッ化物あるいは酸化物,炭化物,水素化物などが成長し、フッ素濃度はこれらのフッ化物や酸フッ化物の方がLa(Fe,Co)11MnF0.01-2よりも高い。磁気特性を決定しているのはLa(Fe,Co)11MnF0.01-2及びこのLa(Fe,Co)11MnF0.01-2との界面、界面近傍の成長相である。被覆された部分を含めたLa(Fe,Co)11MnF0.01-2粉にはLa(Fe,Co)11MnF0.01-2が全体の体積に対して51%成長し、さらにLaMn11FやLa2Mn172が強磁性相として成長する。このような希土類元素とMn及びフッ素で構成された化合物はMnの磁気モーメントの大部分が強磁性結合し、高い磁気異方性エネルギーを有するようになる。被覆された部分のうち非磁性に近い部分を除去すると、飽和磁束密度170emu/g,保磁力31kOe,キュリー温度754Kの磁気特性を示した。この磁粉を非磁性フッ化物材料と混合後、磁場中配向させ、加熱圧縮成形することでフッ化物が塑性変形しフッ化物がバインダである高電気抵抗のボンド磁石を作成できる。フッ化物バインダ(MgF2)のボンド磁石に占める磁粉の体積は90%であり、残留磁束密度1.21T,保磁力30kOeのボンド磁石を得た。このボンド磁石を埋め込み磁石モータに適用し、着磁後誘起電圧波形を測定した結果、他のNdFeB系あるいはSmFeN系などの希土類元素を含有する主相から成るボンド磁石よりも高い誘起電圧を示した。
 上記のように、遷移元素(M)を添加したRen(Fe,M)ml(n,mは正の整数、lは正の数)は元素MとReとフッ素(F)から構成される主相とは別の強磁性化合物の成長を伴い、従来のボンド磁石よりも希土類含有量を少なくしかつ磁気特性を向上させた磁石材料として各種磁気回路に適用可能である。前記主相とは別の強磁性化合物は、Rexyzで(Reは希土類元素、Mは遷移金属元素、Fはフッ素、x,y,zは正数、0≦x<y,z<y)表わされるフッ化物であり、その一部は母相強磁性結合を有している。
 鉄とSmF3及びSmを混合し、Sm2.3Fe174の組成にしたターゲットを作成する。このターゲットをスパッタリング装置内に設置し、Arイオンによりターゲットの表面をスパッタすることで基板にSmFeF系の薄膜を形成する。スパッタリングによって作成した膜の組成はSm2Fe172であった。膜中に菱面体晶あるいは六方晶の結晶構造からなる結晶粒を形成させるために、下地にはTaを選択し酸化防止のためにTaでキャッピングした。スパッタリング膜を200から300℃の温度範囲に加熱し10時間保持後、菱面体晶の結晶が成長していることをX線回折パターンあるいは電子顕微鏡を使用した制限視野電子線回折像の解析から確認でき、フッ素原子の一部がTh2Zn17構造やTh2Ni17構造の9eあるいは6hサイトに侵入していることを確認した。Sm2Fe172のフッ素濃度を高くするために、基板に形成した前記膜をフッ化アンモニウム(NH4F)分解ガス中で熱処理する。熱処理温度は300℃で保持時間は1時間である。熱処理後の薄膜の組成はSm2Fe172からSm2Fe173の組成になり、フッ素濃度の増加に伴い磁気特性が向上することを確認した。Sm2Fe173膜の磁気特性は、残留磁束密度1.5T,保磁力35kOe,キュリー温度770Kであり、磁気記録媒体に応用できる磁気特性をもつ。膜中には粒界あるいは界面などに主相とは異なる構造をもったSmF3,SmF2,FeF2などのフッ化物あるいはSmOFなどの酸フッ化物あるいは酸化鉄の成長を直径2nmの電子線を用いた電子線回折像の解析から確認している。
 上記のような残留磁束密度1.4Tを超え、キュリー温度が700Kを超える膜は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数)で示される六方晶,菱面体晶,正方晶,斜方晶などの結晶構造を有する主相であって、膜には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物が形成され、添加する遷移元素Mの濃度は、結晶構造の安定性向上に寄与し、鉄(Fe)よりも少ないことが残留磁束密度確保のために望ましく、下地層やキャッピング層はTa以外の金属あるいはフッ化物,窒化物,炭化物,酸化物であってもほぼ同等の特性が得られる。尚、前記Ren(Fe,M)mlには、不純物として酸素,水素,窒素,炭素,ホウ素あるいは微量金属不純物が含有していても特性上の問題はない。
 鉄とSmF3及びSmを混合し、Sm2.3Fe176の組成にしたターゲットおよびSm2Fe17の二種類のターゲットを作成する。この二枚のターゲットをスパッタリング装置内に設置し、Arイオンにより二枚のターゲットの表面を交互にスパッタすることで基板にSmFeF系の薄膜とSmFe系膜を多層にした薄膜を形成する。SmFeF系薄膜の膜厚が2nm,SmFe系膜の膜厚が3nmであった。この多層膜を200℃で熱処理し,膜全体の組成がSm2Fe172となるように膜形成条件や熱処理条件の最適化を進めた。この膜中に菱面体晶あるいは六方晶の結晶構造からなる結晶粒を形成させるために、下地にはW(タングステン)を選択し酸化防止のためにWでキャッピングした。熱処理後の膜には菱面体晶の結晶が成長していることをX線回折パターンあるいは電子顕微鏡を使用した制限視野電子線回折像の解析から確認できた。Sm2Fe172のフッ素濃度を高くするために、基板に形成した前記膜表面にさらにSmF3膜のようなフッ化物を含有するアルコール液を塗布することで成長させ、熱処理する。熱処理温度は350℃で保持時間は1時間である。熱処理後の薄膜の組成はSm2Fe172からSm2Fe172.5の組成になり、フッ素濃度の増加に伴い、保磁力増加,残留磁束密度増加,飽和磁束密度増加,保磁力温度係数減少,残留磁束密度減少,キュリー温度上昇など磁気特性が向上することを確認した。Sm2Fe172.5膜の磁気特性は、残留磁束密度1.45T,保磁力32kOe,キュリー温度750Kであり、磁気記録媒体に応用できる磁気特性をもつ。膜中には粒界あるいは界面などに主相とは異なる構造をもったSmF3,SmF2,FeF2などのフッ化物あるいはSmOFなどの酸フッ化物あるいはFe23,Fe34などの酸化鉄の成長を直径1nmの電子線を用いた電子線回折像の解析から確認している。
 上記のような残留磁束密度1.4Tを超え、キュリー温度が700Kを超える膜は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数)で示される六方晶,菱面体晶,正方晶,斜方晶,立方晶などの結晶構造を有する主相であって、膜には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物、酸化物が形成され、添加するTi,Al,Ga,Ge,Bi,Ta,Cr,Mn,Zr,Mo,Hf,Cu,Pd,Mg,Si,Co,Ni,Nbなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与し、鉄(Fe)よりも少ないことが残留磁束密度確保のために望ましく、下地層やキャッピング層はW以外の金属あるいはフッ化物,窒化物,炭化物,酸化物であってもほぼ同等の特性が得られる。尚、前記Ren(Fe,M)mlには、不純物として酸素,水素,窒素,炭素,ホウ素あるいは微量金属不純物が含有していても特性上の問題はなく、Fのフッ素に代わって塩素を使用しても良い。
 エタノールを溶媒としてSmF3近傍の組成物を膨潤させた溶液及び鉄イオンを含有する溶液を使用し、基板上に交互に塗布する。一層当たりの塗布膜厚は1から2nmである。塗布直後の単層膜の結晶構造は非晶質に近い。基板は鉄板を使用した。Smが多い層とFeが多い層が積層した膜全体の厚さは約1mmである。この膜を350℃で1時間、一方向への磁場を印加しながら加熱し、結晶化させる。加熱により非晶質構造を構成する元素が拡散し、準安定な結晶質に相転移を起こし、Sm2Fe172がSmOFやFe23,FeF2,FeF3などのフッ化物、酸フッ化物あるいは酸化物、炭化物を伴って成長する。Sm2Fe172を多く成長させるためにSm2Fe172を安定化させる、Al,Ga,Ge,Co,Ti,Mg,Co,Mn,Nb,Cu,Bi,Pd,Ptなどの遷移元素を溶媒中にイオンとして0.01から1wt%上記二種類のいずれかの溶液に添加する。上記Sm2Fe172は、菱面体晶Th2Zn17あるいは六方晶Th2Ni17構造をもち、フッ素原子が菱面体晶Th2Zn17の9eサイト、あるいは六方晶Th2Ni17構造の6hサイトに配置し、フッ素原子の導入によりa軸長あるいはc軸長のいずれかが膨張し、フッ素導入による格子体積の増加が0.1から5%、あるいは格子歪の増加が0.1から15%確認できる。このような格子体積や格子歪の増加により、鉄原子の磁気モーメント増加や結晶磁気異方性エネルギーの増加,キュリー温度(キュリー点)上昇,交換結合エネルギーの増加のいずれかが観測できる。Sm2Fe172膜は印加磁場により異方性が発現し、その磁気特性は残留磁束密度1.65T,保磁力32kOe,キュリー温度780Kであり、磁気記録媒体や、モータを含む小型磁気回路に応用できる磁気特性をもつ。
 上記のような残留磁束密度1.5Tを超え、キュリー温度が600Kを超える膜は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数)で示される六方晶,菱面体晶,正方晶,斜方晶,立方晶あるいはラーベス相(Laves Phase)などの結晶構造を有する主相であって、膜には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物、酸化物が形成され、鉄-鉄原子間に配置するフッ素原子及び鉄-鉄原子間に配置せず希土類元素や酸素と化合物を形成するフッ素原子が認められ、添加するTi,Al,Ga,Ge,Bi,Ta,Cr,Mn,Zr,Mo,Hf,Cu,Pd,Mg,Si,Co,Ni,Nbなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与し、鉄(Fe)よりも少ないことが残留磁束密度確保のために望ましい。尚、前記Ren(Fe,M)mlには、不純物あるいは侵入位置へ配置する元素として酸素,水素,窒素,炭素,ホウ素あるいは微量金属不純物が含有していても特性上の問題はなく、Fのフッ素に代わって塩素を使用しても良い。
 鉄のターゲット上にSmF3及びSm2Fe17チップを配置し、チップ数を調整してSm2Fe24F膜を得た。Arガスにより、ガラス基板上に1μmの厚さでSm-Fe-F系膜を形成した。スパッタリング中は基板に磁界を印加し、膜に磁気異方性を付加した。膜形成後、400℃に加熱拡散させ、硬質磁性膜を作成した。この膜には結晶構造がThMn12型構造の強磁性相が成長し、一部のフッ素原子は侵入位置に配列している。また上記加熱処理により、膜中には、SmOFやFe23,FeF2,FeF3などのフッ化物、酸フッ化物あるいは酸化物、炭化物が粒径1から100nmで成長する。Sm2Fe24Fを多く成長させるためにSm2Fe24Fを安定化させる、Al,Ga,Ge,Co,Ti,Mg,Co,Mn,Cr,Nb,Cu,Bi,Pd,Pt,Bi,Sr,W,Caなどの遷移元素をターゲット上に鉄との合金チップとして配置し、0.001から1at%の範囲でSm-Fe-F膜に添加する。作成した膜の磁気特性は残留磁束密度1.6T,保磁力35kOe,キュリー温度790Kであり、磁気記録媒体や、磁気ヘッドの磁性膜、モータを含む小型磁気回路に応用できる磁気特性をもつ。
 上記のような残留磁束密度1.5Tを超え、キュリー温度が700Kを超えるスパッタリング膜は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数)で示される六方晶,菱面体晶,正方晶,斜方晶,立方晶などの結晶構造を有する主相であって、膜には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物,酸化物及びbccあるいはbct構造の鉄や鉄フッ素二元合金相が形成され、鉄-鉄原子間に配置するフッ素原子及び鉄-鉄原子間に配置せず希土類元素や酸素と化合物を形成するフッ素原子が認められ、強磁性体での交換結合及びフェリ磁性体での超交換相互作用の両者にフッ素導入効果が認められる。また、添加するAl,Ga,Ge,Co,Ti,Mg,Co,Mn,Cr,Nb,Cu,Bi,Pd,Pt,Bi,Sr,W,Caなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与し、鉄(Fe)よりも少ないことが残留磁束密度確保のために望ましい。尚、前記Ren(Fe,M)mlには、不純物として酸素,水素,窒素,炭素,ホウ素、あるいは微量金属不純物が含有していても特性上の問題はなく、Fのフッ素に代わって塩素,リン,硫黄、あるいはこれらの元素とフッ素との混合であっても良い。
 エタノールを溶媒としてSmF4近傍の組成物を膨潤させた溶液及び鉄イオンを含有する溶液を使用し、基板上に交互に塗布する。一層当たりの塗布膜厚は10から20nmである。塗布直後の単層膜の結晶構造は非晶質に近く一部結晶質が成長している。基板はガラス板を使用した。Sm及びフッ素が多い層とFeが多い層が積層した膜全体の厚さは約1mmである。この膜を400℃で1時間、10kOeの大きさの一方向への磁場を印加しながら加熱し、非晶質または準安定相を結晶化させる。加熱により準安定相を構成する元素が拡散し、より安定な結晶質に相転移を起こし、Sm2Fe173がSmOFやFe23,FeF2,FeF3などのフッ化物、酸フッ化物あるいは酸化物、炭化物を伴って成長する。Sm2Fe173を多く成長させるためにSm2Fe173を安定化させる、Ti,V,Co,Cr,Mn,Cu,Zn,Ga,Ge,Asなどの遷移元素を溶媒中にイオンとして0.1から1wt%上記二種類のいずれかの溶液に添加する。上記Sm2Fe173は、菱面体晶Th2Zn17あるいは六方晶Th2Ni17構造をもち、フッ素原子の一部が菱面体晶Th2Zn17の9eサイト、あるいは六方晶Th2Ni17構造の6hサイトに配置し、フッ素原子の導入によりa軸長あるいはc軸長のいずれかが膨張し、フッ素導入による格子体積の増加が0.1から7%確認できる。このような格子体積の増加により、鉄原子の磁気モーメントが平均して5から10%増加し、結晶磁気異方性エネルギーが約50%増加し、キュリー温度(キュリー点)が200℃上昇する。Sm2Fe173膜は印加磁場により異方性が発現し、その磁気特性は298Kで残留磁束密度1.63T,保磁力35kOe,キュリー温度795Kであり、磁気記録媒体や、モータを含む小型磁気回路に応用できる磁気特性をもつ。
 上記のような残留磁束密度1.5Tを超え、キュリー温度が750Kを超える溶液を用いて作成した膜は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数でn<l<m)で示される六方晶,菱面体晶,正方晶,斜方晶,立方晶などの結晶構造を有する主相であって、膜には主相のフッ素化合物を形成する際に成長する規則相あるいは不規則相のフッ化物または酸フッ化物、酸化物が形成され、鉄-鉄原子間に配置するフッ素原子及び鉄-鉄原子間に配置せず希土類元素や酸素と化合物を形成するフッ素原子あるいは希土類原子と鉄原子間への配置が認められ、一部の主相の界面では強磁性結合及び超交換相互作用が働くことが保磁力増加に寄与している。また、添加するTi,V,Co,Cr,Mn,Cu,Zn,Ga,Ge,Asなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与し、鉄(Fe)よりも少ないことが残留磁束密度確保のために望ましい。尚、前記Ren(Fe,M)mlには、不純物として酸素,水素,窒素,炭素、あるいは微量金属不純物が含有していても特性上の問題はなく、Fのフッ素に代わって塩素やリン、硫黄を使用しても良い。
 鉄のターゲット上にSmF3及びSm2Fe17チップを配置したターゲットをスパッタ装置内に設置した。装置内にArとフッ素の混合ガスを注入し、反応性スパッタリングを試みた。その結果、Ar-2%F2ガスを使用し圧力1mTorr,基板温度250℃、一方向に30kOeの磁場印加でスパッタした膜厚約1μmのSm-Fe-F膜には、SmFe243が成長していることを確認し、斜方晶および正方晶の成長を確認した。粒界や表面の一部に、SmOF、Sm(O,F,C)やFe23,FeF2,FeF3などのフッ化物、酸フッ化物あるいは酸化物,炭化物,水素化物が粒径0.1から100nmで成長していた。SmFe243を多く成長させるためにSmFe243を安定化させる、Al,Ga,Ge,Co,Ti,Mg,Co,Mn,Cr,Nb,Cu,Bi,Pd,Pt,Sr,W,Caなどの遷移元素をターゲット上に鉄との合金チップとして一種または複数種配置し、0.001から1at%の範囲でSm-Fe-F膜に添加する。作成した膜を300℃で熱処理することにより結晶粒を成長させ平均結晶粒径を10から100nmとした。500℃よりも高温で熱処理するとSmFe243の構造が変化し、粒界近傍のフッ化物や酸フッ化物が成長し、保磁力が低下する。基板材料の選択により容易磁化方向を基板面内あるいは基板に垂直な方向に配向した膜を作成できる。SmFe243の磁気特性は残留磁束密度1.7T,保磁力35kOe,キュリー温度820Kであり、磁気記録媒体や、MRAMなどの磁気メモリーや磁気ヘッドの磁性膜,モータを含む小型磁気回路に応用できる磁気特性をもつ。
 上記のような残留磁束密度1.6Tを超え、キュリー温度が700Kを超えるスパッタリング膜は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数でn<0.1(n+m)、Re含有量がRe,FeとMの和の10原子%未満)で示されるFeリッチ化合物あるいは合金相であり、前記Feリッチ化合物は合金相が六方晶,菱面体晶,正方晶,斜方晶,立方晶などの結晶構造を有する主相であって、フッ素濃度に依存して異なる結晶構造をもち、膜には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物、酸化物及びbccあるいはbct構造の鉄や鉄フッ素二元合金相が形成され、鉄-鉄原子間に配置するフッ素原子及び鉄-鉄原子間に配置せず希土類元素や酸素と化合物を形成するフッ素原子が認められ、強磁性体での交換結合及びフェリ磁性体での超交換相互作用の両者にフッ素導入効果のいずれかがが認められる。また、添加するAl,Ga,Ge,Co,Ti,Mg,Co,Mn,Cr,Nb,Cu,Bi,Pd,Pt,Sr,W,Caなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。尚、前記Ren(Fe,M)mlには、不純物として酸素,水素,窒素,炭素,ホウ素、あるいは微量金属不純物が含有していても特性上の問題はなく、Fのフッ素に代わって塩素,リン,硫黄、あるいはこれらの元素とフッ素との混合であっても良い。
 鉄-50%マンガン合金をターゲットに用い、この合金ターゲットの上にSmF3チップ及びSmMnチップを載せて、Arガスを用い、2mTorrのガス圧、スパッタリング速度0.1μm/分でSmFe11Mn52組成の合金膜を形成する。この合金膜を1×10-6Torrの真空中で磁場30kOeを印加し500℃,1時間保持し、20℃まで急冷し、冷却中も磁場を印加する。急冷後の膜には、SmFe11MnF及びSmFeMn112が成長し、前者が強磁性、後者がフェリ磁性を示す複合磁性材料が得られる。このような二種類の磁性相いがいに粒界あるいは界面にはSmF3,SmOF,MnF2,FeF2などのSmFe11MnF及びSmFeMn112とは格子定数や結晶構造が異なるフッ化物や酸フッ化物が成長する。SmFe11MnF及びSmFeMn112に含有するフッ素原子の一部は侵入位置に配置し、結晶格子を膨張させ、前者では、磁気モーメントが増加しキュリー温度がフッ素導入により約250℃上昇する。また後者ではMnの原子サイトに依存する磁気モーメントの差が大きくなり、磁化が20%増加する。SmFe11Mn52組成の磁性膜の磁気特性は、磁場中冷却による上記二相間の交換結合の発現により、減磁曲線は冷却中の磁場方向に依存し、残留磁束密度1.3T,保磁力35kOeの高保磁力特性であった。
 このような残留磁束密度1.3Tと保磁力25kOeを満足できる材料として、以下のように記述できる。即ち、磁性相がReuFevwa及びRexFeyzbの少なくとも二相から構成され、ReがYを含む希土類元素、Feが鉄、MがMnやCrなどの遷移金属元素、Fがフッ素、u,v,w,a,x,y,z,bは正数であり、u<v,w<v,0≦x<z,y<z,w<zという条件で、かつフッ素原子の一部が鉄あるいはM原子を主とする格子内の侵入位置に配置しており、少なくとも二相間には磁気的な結合が存在する。磁気的な結合とは、前記磁場中冷却を採用した場合と無磁場冷却の場合とを比較して保磁力に0.5kOe以上の差があることで確認可能であり、上記二相の成長には、フッ化物や酸フッ化物の粒界あるいは表面での成長を伴っており、フッ素濃度が粒界のフッ化物や酸フッ化物の方が主相よりも高い。このようなフッ素の導入による磁気的結合は他の磁気物性にも影響するため、硬質磁性材料だけでなく、磁気比熱を利用した磁気冷凍器の冷媒,磁気発電効果材料として応用可能である。
 尚、上記磁性相のReuFevwaあるいはRexFeyzbのいずれか一相のみから主相が構成される場合でも硬質磁気特性を示し、磁石材料として各種磁気回路に適用できる。またこれらの主相には、u,v,w,a,x,y,z,bを制御することにより電子状態が大きく変化することに伴い、磁気抵抗効果,磁気歪効果,熱電効果,磁気冷凍効果,磁気発熱効果,磁界誘起構造相転移あるいは超伝導特性を示す。
 厚さ2μmの鉄箔を水素ガス中で加熱還元し、表面の酸化物を除去する。この鉄箔にフッ素イオンを150℃の温度で注入する。注入量は1×1016/cm2である。注入後の鉄には格子定数0.2865~0.295のbccあるいはbct構造が確認でき、最表面よりも箔体中心部または内部においてフッ素濃度が高く、格子体積も大きい傾向を示した。この注入により鉄箔の飽和磁化は約5%増加する。この飽和磁化の増加はフッ素原子が体心立方格子の四面体あるいは八面体位置に侵入するためである。さらにこのフッ素注入鉄箔にSmF3組成物が膨潤されたアルコール溶液を10nmの膜厚で塗布乾燥後、400℃で5時間熱処理し、Sm及びフッ素を拡散させる。Sm及びフッ素が鉄箔中心部まで拡散し、異方性が増加する。鉄箔にはbccの鉄、bctの鉄及びSm2Fe17Fが成長し、フッ素が鉄及びSm2Fe17の格子間侵入位置あるいは置換位置に配置し、その結果、格子歪みが増加し、面間隔が増加していることをX線回折パターンのピーク位置やピーク幅から確認した。
 また電子顕微鏡の観察より、粒界の一部にフッ化物や酸フッ化物が母相の平均粒径よりも小さい粒径で成長していることを確認した。前記bccやbctの鉄の格子よりも、Sm2Fe17Fのフッ素導入による格子体積の膨張量が大きく、格子体積も大きい。この格子体積の増大に伴い、鉄原子の磁気モーメントの増大,磁気異方性エネルギーの増大,キュリー温度の上昇が磁化測定及び磁化の温度依存性の測定から明らかになった。このようなフッ素注入あるいはフッ素と窒素、フッ素と塩素を注入した鉄箔体を積層して厚さを所望の仕様に調整し種々の磁気回路に使用できる。
 Sm2Fe17粉を粒径約1μmに粉砕し、500℃において水素気流中で還元する。酸化物が除去されたSm2Fe17粉を磁場10kOe中で0.5t/cm2の圧力を付加し、仮成形体を作成する。仮成形体の隙間にSmF3.1組成物が膨潤したアルコール溶液を含浸させる。この含浸処理によりSm2Fe17粉表面にはSmF系非晶質膜が形成させる。これを水素気流中で加熱乾燥させ、酸化を抑えながら非晶質膜の一部を結晶化させる。さらに水素気流中で電磁波を照射し、フッ化物を発熱させることによりSm2Fe17粉表面をフッ化する。フッ化中に圧力を印加して高密度成形体を作成でき、磁気特性は、残留磁束密度1.6T,保磁力25kOe,キュリー温度720Kであり、磁気記録媒体や、磁気ヘッドの磁性膜,モータを含む小型磁気回路に応用できる磁気特性をもつ。
 上記のような残留磁束密度1.6T、キュリー温度が700Kを超える成形体は、前記のようなRen(Fe,M)ml(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、n,m,lは正の数でn<0.11(n+m)、Re含有量がRe,FeとMの和を100%とした時の11原子%未満)で示されるFeリッチ化合物あるいは合金相であり、前記Feリッチ化合物は合金相が六方晶,菱面体晶,正方晶,斜方晶,立方晶などの結晶構造を有する主相であって、フッ素濃度に依存して異なる結晶構造をもち、成形体には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物,酸化物及びbccあるいはbct構造の鉄や鉄フッ素二元合金相が形成され、鉄-鉄原子間に配置するフッ素原子及び鉄-鉄原子間に配置せず希土類元素や酸素と化合物を形成するフッ素原子が認められ、強磁性体での交換結合及びフェリ磁性体での超交換相互作用の両者にフッ素導入効果のいずれかが認められ、フッ素濃度が粒中心よりも粒外周側の方が平均的に高く、格子体積も粒の外周側の方が中心部よりも大きい傾向がある。粒外周側において磁気異方性が大きいことから、磁区構造の磁壁幅に違いがみられる。主相のフッ化物は600℃以上に加熱すると、一部の結晶粒は構造を変えて、より安定なフッ化物と鉄合金相になる。
 このような構造変化を抑制するためには添加元素を使用することが有効である。添加可能なAl,Ga,Ge,Co,Ti,Mg,Co,Mn,Cr,Nb,Cu,Pd,Pt,Bi,Sr,W,Caなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。尚、前記Ren(Fe,M)mlには、不純物として酸素,水素,窒素,炭素,ホウ素、あるいは微量金属不純物が含有していても特性上の問題はなく、MやRe元素の一部は粒界や表面に偏在化し、Fのフッ素に代わって塩素,リン,硫黄、あるいはこれらの元素とフッ素との混合であっても良い。また、上記強磁性フッ化物で使用している鉄の代わりにCoを使用したRen(Co,M)ml(ここでReはYを含む希土類元素、Coはコバルト、Mは一種類以上の遷移元素、Fはフッ素、n,m,lは正の数でn<0.11(n+m)、Re含有量がRe,CoとMの和を100%とした時の11原子%未満)で示されるCoリッチ化合物あるいは合金相においてもフッ素導入による保磁力増加,磁化増加あるいはキュリー温度上昇のいずれかの効果が得られる。
 Sm2Fe17粉を粒径約0.5μmに粉砕し、500℃においてアンモニア気流中で還元する。酸化物が除去され、表面の一部が窒化したSm2Fe17粉を磁場10kOe中で0.5t/cm2の圧力を付加し、仮成形体を作成する。仮成形体の隙間にPrF3.1組成物が膨潤したアルコール溶液を含浸させる。この含浸処理によりSm2Fe171-3粉表面にはPrF系非晶質膜が形成させる。これを水素気流中で加熱乾燥させ、酸化を抑えながら非晶質膜の一部を結晶化させる。さらに水素気流中で電磁波を照射し、フッ化物を発熱させることによりSm2Fe17粉表面をフッ化する。フッ化中に圧力を印加して高密度成形体を作成でき、一部PrとSmの交換反応が拡散により進行する。磁粉表面にはPrF3やPrOF,Pr23が成長し、磁粉内の結晶粒外周部には(Sm,Pr)2Fe17(N,F)1-3が成長する。結晶粒中心部は外周部よりもフッ素濃度及びPr濃度が低く、格子定数も小さく、単位胞あるいは格子体積は結晶粒外周部よりも内周部の方が平均的に小さくなる傾向を示す。結晶粒界あるいは表面の一部には、上記希土類元素を含有するフッ化物や酸フッ化物,酸化物以外に、bcc,bctあるいはfcc構造のFe,Fe-F,またはこれらの鉄基合金に微量の希土類元素や窒素,炭素,酸素などを含有する相が成長する。これらのFe基合金の格子定数は前記母相の(Sm,Pr)2Fe17(N,F)1-3よりも小さく、格子体積もFe基合金の方が母相よりも小さい。
 磁粉の磁気特性は、残留磁束密度190emu/g,保磁力25kOe,キュリー温度730Kであり、モータを含む小型磁気回路に応用できる磁気特性をもつため、表面磁石モータ、埋め込み磁石モータ、極異方性磁石モータ、ラジアルリング磁石モータ、アキシャルギャップ磁石モータ、リニア磁石モータなどの磁石モータに適用できる。上記のような残留磁束密度190emu/g、キュリー温度が700Kを超える磁粉は、前記のようなRen(Fe,M)m(N,F)l(ここでReはYを含む希土類元素、Feは鉄、Mは遷移元素、Nは窒素、Fはフッ素、n,m,lは正の数でn<0.11(n+m)、Re含有量がRe,FeとMの和を100%とした時の11原子%未満)で示されるFeリッチ化合物あるいは合金相であり、前記Feリッチ化合物は合金相が六方晶,菱面体晶,正方晶,斜方晶,立方晶などの結晶構造を有する主相であって、フッ素濃度に依存して異なる結晶構造及び規則・不規則構造をもち、成形体には主相のフッ素化合物を形成する際に成長するフッ化物または酸フッ化物,酸化物及びbccあるいはbctやfcc構造の鉄や鉄フッ素二元合金相が形成され、鉄-鉄原子間に配置するフッ素原子及び鉄-鉄原子間に配置せず希土類元素や酸素と化合物を形成するフッ素原子が認められ、強磁性体での電子状態密度の分布変化による交換結合にフッ素導入効果が認められ、フッ素濃度が粒中心よりも粒外周側の方が平均的に高く、格子体積も粒の外周側の方が中心部よりも大きい傾向がある。n≧0.11になると希土類元素濃度が高くなり、材料の原料費が高価となるとともに、残留磁束密度が低下する。最適なnは0.01<n<0.11である。n≦0.01の場合には保磁力が減少し残留磁束密度も低下する。この材料では粒外周側において磁気異方性が大きいことから、磁区構造の磁壁幅に違いがみられる。主相の窒素含有フッ化物は650℃以上に加熱すると、一部の結晶粒は構造を変えて、より安定なフッ化物や窒化物と鉄合金相になる。
 このような構造変化を抑制するためには添加元素を使用することが有効である。添加可能なAl,Ga,Ge,Co,Ti,Mg,Co,Mn,Cr,Nb,Cu,Bi,Sr,W,Caなどの遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。尚、前記Ren(Fe,M)m(N,F)lには、不純物として酸素,水素,炭素,ホウ素、あるいは微量金属不純物が含有していても特性上の問題はなく、一部のM元素は粒界や表面に偏在化している。Fのフッ素に代わって塩素,リン,硫黄、あるいはこれらの元素とフッ素との混合であっても良い。
 Sm2.1Fe17の合金を真空溶解によって作成し水素粉砕することで粒径約10μmのSm2Fe17粉を得る。この粉末をCaH2及びNH4Fを分解させたガス中で300℃に加熱し、5時間保持する。この熱処理により、Sm2Fe170.1-3が成長する。このSm2Fe170.1-3を加熱成形装置の金型に挿入し、400℃で3t/cm2の荷重で押し出し加工する。加熱成形中に粉が塑性変形することでSm2Fe170.1-3の配向方向がそろい、異方性の高い磁性体あるいは磁粉が得られる。CaH2及びNH4Fを分解させたガス中で加熱する代わりにSmF3の平均径10nmの粉とアルコールとの混合スラリーを使用してメカニカルアロイによりSm2.1Fe17表面からSm2Fe170.1-3を成長できる。異方性磁粉を用いて有機樹脂材料と混合し磁場中加熱圧縮成形した結果、樹脂20体積%で、残留磁束密度1.3T,保磁力25kOeの圧縮成形ボンド磁石を得ることができる。このようなボンド磁石は、樹脂バインダを無機バインダであるMgF2などのフッ化物にすることでさらにバインダ材の体積を少なくすることができ、残留磁束密度やエネルギー積が増加する。
 前記ボンド磁石の磁気特性を満足する磁粉の主相組成はRexFeyFz(ReはYを含む希土類元素、Feは鉄、Fはフッ素、x,y,zは正数でy>(x+z))であり、フッ素原子の一部が主相の侵入位置に配置し、粒界または表面の一部にbccあるいはbct構造のフッ素含有鉄、及びSmOFなどの酸フッ化物、SmF3,FeF2などのフッ化物あるいはFe23,SmO2などの非磁性あるいはフェリ磁性の酸化物または水素化物が成長しており、フッ素濃度は前記酸フッ化物あるいはフッ化物で最も高く、主相の格子体積はbccやbctの鉄フッ素合金よりも大きく、磁石を構成する結晶粒あるいは磁粉にa軸あるいはc軸方向に配向性があり、前記主相の体積がボンド磁石全体の30%以上で望ましくは50%から90%にすることで、高残留磁束密度を実現でき、フッ化の際にフッ化アンモニウム以外にもフッ素を含有する種々のガスを使用できる。前記ボンド磁石用磁粉を構成する主相はRexFeyFzの基本組成以外に、RexMyFz(ReはYを含む希土類元素、MはCo,FeとCoの合金、Fはフッ素やフッ素と炭素や窒素、酸素,硼素,塩素,リン,硫黄,水素との混合あるいは塩素、x,y,zは正数でy>(x+z))であって良い。
 Nd2Fe14Bを主相とする焼結磁石を粉砕し、粉末径3から10μmの磁粉を作成し、平均粒径0.5μmのFeF2粉がアルコールと混合されたスラリーと混合し、フッ化物でコートされたステンレスボールによりメカニカルアロイを実施する。メカニカルアロイの後、Nd2Fe14B粉の表面の一部はフッ化され、さらに300℃の熱処理によりNd2Fe17F相及びbccあるいはbctの鉄が成長し、メカニカルアロイ直後よりもキュリー温度が上昇し、残留磁束密度が増加する。磁束密度の増加は、上記メカニカルアロイ(メカニカルアロイング)及びその後の熱処理により、キュリー点の高いNd2Fe17F相が鉄を伴って成長するためである。
 このような強磁性相以外に、粉の表面にはFeF3,NdF3,NdF2などのフッ化物やNdOF,(Nd,Fe)OFなどの酸フッ化物あるいはNd23,Fe23,Fe34などの酸化物が成長する。強磁性相は、Nd2Fe14B,Nd2Fe17Fx(X=0.01から2)及び鉄であり、これらの一部の強磁性相間には強磁性結合が働き、残留磁束密度を増加させる。Nd2Fe17Fのフッ素濃度は、メカニカルアロイ後の熱処理時にフッ化アンモニウム,フッ素,フッ化水素などフッ素を含有するガスに粉を曝すことにより増加し、Nd2Fe172-3が粉表面に成長しキュリー温度が710Kに上昇する。Nd2Fe14Bに磁気的に結合してNd2Fe14Bよりもキュリー温度が高くかつ磁気異方性が大きい硬質磁性相を成長させることにより、Nd2Fe14Bの磁化反転の抑止、熱減磁の低減に寄与し、重希土類元素を添加せずに耐熱性を高めることが可能であり、粉末中心が軟磁気特性の鉄リッチ相でその外周側に磁気異方性が高くキュリー温度の高い硬質磁性材料を成長させ鉄リッチ相と硬質磁性材料間に磁気的な結合を付加することで、希土類元素の使用量を削減できる硬質磁性材料を作成可能である。すなわち、純鉄よりも高い磁束密度を示すフッ素を含有する鉄フッ素合金粉の表面に軽希土類フッ化物を溶液処理により成長させ、水素あるいはフッ素含有ガス中熱処理により、フッ素及び軽希土類元素を拡散させ、RexFeyFz(Reは軽希土類元素、Feは鉄、Fはフッ素、x,y,zは正数でy>(x+z))および酸フッ化物を粉の外周側に成長させることができ、残留磁束密度1.8Tの磁石材料が得られる。
 本実施例のように結晶構造及び組成が異なる複数の強磁性相間に強磁性結合を付与させて磁気特性を向上でき、少なくとも一つの強磁性相にフッ素が含有し、フッ素濃度は結晶粒の中で濃度勾配があり、一部のフッ素原子は希土類元素と鉄との化合物を形成し、一部のフッ素原子は鉄中に配置しており、フッ素の高い電気陰性度のために電子の状態密度分布や電場勾配に偏りが生じ、磁気特性や電気特性などの物性値が変化し、磁気特性を向上させており、残留磁束密度1.8Tを実現している。このような磁気物性の変化に対応して、内部磁場や低温での磁気変態,磁気抵抗効果,磁気発熱効果,磁気吸熱効果,超電導特性にフッ素の導入効果が表れる。
 純度99.9%でSm2Fe17の合金ターゲットを作成し、ターゲットの片面を水冷し、片側をスパッタする。スパッタリング時にAr-2%SF6-1%F2ガスを使用し、到達真空度1×10-5Torr、スパッタ中ガス圧1mTorrで10nm/分の速度でMgO(100)基板上に基板温度250℃で膜形成した。スパッタ前に基板表面は洗浄及び逆スパッタにより清浄化している。作成した膜組成はSm2Fe172であり、Sm2Fe17膜よりも格子定数が増加し、キュリー温度や飽和磁束密度、及び磁気異方性エネルギーの増加が見られた。またSm2Fe172膜の配向性は基板温度や膜形成速度に依存するが、上記条件ではc軸配向の膜が得られ、面内に磁化容易軸を有していた。MgO基板にSm2Fe172がエピタキシャル成長しているが、この膜を400℃で1時間加熱すると、SmF3やフッ素を含有するbccあるいはbct構造の鉄が成長することをXRDパターンにより確認した。フッ素を含有する上記bccあるいはbct構造の鉄は、純鉄の飽和磁化よりも1から20%高いため、これらのフッ素含有強磁性鉄と主相であるフッ素化合物との間に強磁性結合をもたせることにより、残留磁束密度を高くすることが可能である。
 このようなフッ素含有鉄は準安定相であり加熱するとFeF2に変化するが、準安定相を高音まで安定にするために、格子定数が5.4から5.9nmの酸フッ化物と接触して構造を安定化させること、炭素や窒素を添加して安定化すること、bccを伴って成長させることなどが有効な手段である。このような手段により、フッ素含有鉄は400℃で構造変化を起こしにくくなる。上記MgO基板に成長したSm2Fe172膜は、400℃で1時間熱処理し、磁気特性は、残留磁束密度1.55T,保磁力26kOeである。スパッタ中のガス圧を高くしてSm2Fe172.5を形成し、450℃の熱処理を施すことで、平均粒径50nmの膜が形成でき、粒界の一部にフッ化物やbcc及びbct構造の鉄が成長し、残留磁束密度1.60T,保磁力31kOeの高保磁力膜が得られた。
 このような残留磁束密度1.4T以上、保磁力20kOeを超える材料は上記Sm2Fe172以外にも類似する次のような材料で確認している。即ち、主相の強磁性相が1種以上RexFeyFz(ReはYを含む希土類元素、Feは鉄、Fはフッ素、x,y,zは正数でy>(x+z))で示される組成で磁粉または結晶粒に形成されており、フッ素原子の一部が主相の侵入位置に配置し、粒界または表面の一部にbccあるいはbct構造のフッ素含有鉄、及びSmOFなどの酸フッ化物、SmF3,FeF2などのフッ化物あるいはFe23,SmO2などの非磁性あるいはフェリ磁性,反強磁性などの酸化物が成長しており、フッ素濃度は前記酸フッ化物あるいはフッ化物で最も高く、主相の格子体積はbccやbctの鉄フッ素合金よりも大きく、磁石を構成する結晶粒あるいは磁粉にa軸あるいはc軸方向に配向性がある材料で上記磁気特性を実現できる。尚Fはフッ素の代わりに、フッ素やフッ素と炭素や窒素,酸素,硼素,塩素,リン,硫黄,水素との混合あるいは塩素であって良く、フッ素や塩素を含有する種々のガス種を利用できる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 2 固定子
 4 ティース
 5 コアバック
 7 コイル挿入位置
 8 コイル
 9 先端部
 10 回転子挿入部
 100 回転子

Claims (11)

  1.  フッ素,鉄、及びイットリウムを含む1種または複数の希土類元素から構成された強磁性化合物と、フッ素,炭素,窒素,水素またはホウ素を含有する強磁性鉄の2種類の強磁性相から構成され、
     前記強磁性相の粒界あるいは表面の一部にフッ化物や酸フッ化物が形成されていることを特徴とする磁性材料。
  2.  少なくとも以下の式で示す強磁性化合物及び強磁性鉄の2種類の相をもつ強磁性相から構成され、
      A{Rel(Feqr)mn}+B{Fexy
    (A:粉末,バルク焼結体あるいは薄膜全体に対するRe,Fe,Iから構成される相の体積率、
     B:粉末,バルク焼結体あるいは薄膜全体に対するFeとIから構成される相の体積率、
     Re:イットリウムを含む1種または複数の希土類元素、
     Fe:鉄、
     M:遷移金属元素、
     I:フッ素のみ、フッ素及び窒素,フッ素及び炭素,フッ素及び水素、またはフッ素及びホウ素のいずれか、
     A≧0.5(磁性材料の50%以上)、
     A>B>0、
     l,m,n,q,r,x,yは正の整数、
     m>n,m>l,x>y,q>r≧0)
     前記強磁性相の粒界または表面の一部にフッ化物または酸フッ化物が形成され、
     前記フッ化物または酸フッ化物のフッ素濃度が、前記強磁性相のフッ素濃度よりも高いことを特徴とする磁性材料。
  3.  前記強磁性鉄に含まれる元素の一部が、前記強磁性化合物の格子の侵入位置に配列していることを特徴とする請求項1に記載の磁性材料。
  4.  前記強磁性相の粒界または表面近傍のフッ素原子濃度が、内部のフッ素原子濃度と異なることを特徴とする請求項1に記載の磁性材料。
  5.  前記強磁性相の粒界または表面近傍の格子定数が、内部の格子定数と異なることを特徴とする請求項1に記載の磁性材料。
  6.  前記強磁性相の粒界または表面近傍に存在する所定の元素に関する侵入位置の濃度が、内部の濃度と異なることを特徴とする請求項1に記載の磁性材料。
  7.  前記強磁性鉄は鉄フッ素二元合金であり、前記鉄フッ素二元合金は複数の結晶構造を有していることを特徴とする請求項1に記載の磁性材料。
  8.  前記強磁性鉄は体心正方晶の鉄フッ素化合物であり、前記体心正方晶の格子定数が0.57nmから0.65nmであることを特徴とする請求項1に記載の磁性材料。
  9.  前記強磁性鉄は体心正方晶の鉄フッ素化合物であり、鉄とフッ素原子が規則配列していることを特徴とする請求項1に記載の磁性材料。
  10.  前記強磁性鉄は体心正方晶の鉄フッ素化合物であり、前記強磁性化合物の格子体積が前記強磁性鉄の格子体積よりも大きいことを特徴とする請求項1に記載の磁性材料。
  11.  請求項1に記載の磁性材料を回転子に用いたことを特徴とするモータ。
PCT/JP2010/063612 2009-09-30 2010-08-11 磁性材料及びそれを用いたモータ WO2011040126A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/390,738 US20120145944A1 (en) 2009-09-30 2010-08-11 Magnetic material and motor obtained using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-225895 2009-09-30
JP2009225895A JP5130270B2 (ja) 2009-09-30 2009-09-30 磁性材料及びそれを用いたモータ

Publications (1)

Publication Number Publication Date
WO2011040126A1 true WO2011040126A1 (ja) 2011-04-07

Family

ID=43825960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063612 WO2011040126A1 (ja) 2009-09-30 2010-08-11 磁性材料及びそれを用いたモータ

Country Status (3)

Country Link
US (1) US20120145944A1 (ja)
JP (1) JP5130270B2 (ja)
WO (1) WO2011040126A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141192A1 (ja) * 2011-04-14 2012-10-18 株式会社日立製作所 磁石材料
WO2012154741A1 (en) * 2011-05-09 2012-11-15 Metamagnetics, Inc. Magnetic grain boundary engineered ferrite core materials

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055345B2 (ja) * 2009-11-30 2012-10-24 株式会社日立製作所 強磁性化合物磁石
EP2745298B1 (en) 2011-08-17 2019-12-11 Regents of the University of Minnesota Technique and system for forming iron nitride permanent magnet
JP5759869B2 (ja) * 2011-11-04 2015-08-05 株式会社日立製作所 鉄系磁性材料及びその製造方法
JP5960476B2 (ja) * 2012-03-30 2016-08-02 株式会社ケーヒン 磁気異方性塑性加工品及びその製造方法と、それを用いた電磁装置
JP2013211300A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 磁性材料及びその製造方法
CN107919201B (zh) 2013-02-07 2020-10-23 明尼苏达大学董事会 氮化铁永磁体和形成氮化铁永磁体的技术
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
TWI618272B (zh) * 2013-08-19 2018-03-11 應用材料股份有限公司 用於金屬導電性強化的磁場導引式晶體方向系統
JP6142792B2 (ja) 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
CN106165027A (zh) 2014-03-28 2016-11-23 明尼苏达大学董事会 包含涂覆的纳米颗粒的氮化铁磁性材料
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
KR101719871B1 (ko) * 2014-07-14 2017-03-24 한양대학교 산학협력단 중희토류 원소를 포함하지 않는 R-Fe-B계 소결자석 및 이의 제조방법
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
EP3177752A1 (en) 2014-08-08 2017-06-14 Regents of the University of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
EP3178099A4 (en) * 2014-08-08 2018-04-18 Regents of the University of Minnesota Multilayer iron nitride hard magnetic materials
JP6522462B2 (ja) * 2014-08-30 2019-05-29 太陽誘電株式会社 コイル部品
JP6105047B2 (ja) * 2014-09-19 2017-03-29 株式会社東芝 永久磁石、モータ、発電機、車、および永久磁石の製造方法
EP3226262B1 (en) * 2014-11-28 2020-11-04 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US11453057B2 (en) * 2016-03-04 2022-09-27 National Institute Of Advanced Industrial Science And Technology Samarium-iron-nitrogen alloy powder and method for producing same
WO2019151244A1 (ja) * 2018-01-30 2019-08-08 Tdk株式会社 永久磁石
KR102398932B1 (ko) * 2018-08-31 2022-05-16 주식회사 엘지화학 자석 분말의 제조 방법 및 자석 분말
JP6928270B2 (ja) 2018-09-26 2021-09-01 日亜化学工業株式会社 磁性粉末およびその製造方法
CN109243745B (zh) * 2018-10-19 2020-08-04 广东省稀有金属研究所 一种耐高温耐腐蚀单晶磁粉及其制备方法与应用
CN109273184B (zh) * 2018-10-19 2020-08-04 广东省稀有金属研究所 一种低成本耐腐蚀的单晶磁粉及其制备方法与应用
JP7226778B2 (ja) * 2019-02-27 2023-02-21 国立研究開発法人物質・材料研究機構 SmZrFeCo磁性化合物およびその製造方法
CN110047637B (zh) * 2019-03-20 2020-10-16 兰州大学 一种高频用2:17型稀土类-铁-氮系复合磁性材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186010A (ja) * 1995-08-23 1997-07-15 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
JP2001093713A (ja) * 1999-09-14 2001-04-06 Peking Univ 多元系希土類−鉄格子浸入型永久磁石材料、およびそれからなる永久磁石、ならびにそれらの製造方法
JP2005209669A (ja) * 2004-01-20 2005-08-04 Hitachi Ltd 希土類磁石及びそれを用いた磁気回路
JP2007194599A (ja) * 2005-12-22 2007-08-02 Hitachi Ltd 低損失磁石とそれを用いた磁気回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312918A (ja) * 1994-07-12 1998-11-24 Tdk Corp 磁石およびボンディッド磁石
JP4415980B2 (ja) * 2006-08-30 2010-02-17 株式会社日立製作所 高抵抗磁石およびそれを用いたモータ
JP4961454B2 (ja) * 2009-05-12 2012-06-27 株式会社日立製作所 希土類磁石及びこれを用いたモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186010A (ja) * 1995-08-23 1997-07-15 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
JP2001093713A (ja) * 1999-09-14 2001-04-06 Peking Univ 多元系希土類−鉄格子浸入型永久磁石材料、およびそれからなる永久磁石、ならびにそれらの製造方法
JP2005209669A (ja) * 2004-01-20 2005-08-04 Hitachi Ltd 希土類磁石及びそれを用いた磁気回路
JP2007194599A (ja) * 2005-12-22 2007-08-02 Hitachi Ltd 低損失磁石とそれを用いた磁気回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141192A1 (ja) * 2011-04-14 2012-10-18 株式会社日立製作所 磁石材料
WO2012154741A1 (en) * 2011-05-09 2012-11-15 Metamagnetics, Inc. Magnetic grain boundary engineered ferrite core materials
CN103765524A (zh) * 2011-05-09 2014-04-30 变磁公司 磁性晶界工程化的铁氧体磁芯材料
US9117565B2 (en) 2011-05-09 2015-08-25 Metamagnetics, Inc. Magnetic grain boundary engineered ferrite core materials

Also Published As

Publication number Publication date
JP5130270B2 (ja) 2013-01-30
US20120145944A1 (en) 2012-06-14
JP2011077223A (ja) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5130270B2 (ja) 磁性材料及びそれを用いたモータ
Cui et al. Current progress and future challenges in rare-earth-free permanent magnets
JP5247754B2 (ja) 磁性材料及びその磁性材料を用いたモータ
JP4900121B2 (ja) フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
Lewis et al. Perspectives on permanent magnetic materials for energy conversion and power generation
EP1383143B1 (en) Method of producing a solid material for magnet
US20110278976A1 (en) Permanent magnet and method of manufacturing the same, and motor and power generator using the same
US20130162089A1 (en) Sintered Magnet Motor
JP6163258B2 (ja) 希土類永久磁石粉末、それを含む接着性磁性体及び当該接着性磁性体を応用した素子
US20130252004A1 (en) Rare earth-iron-nitrogen-based alloy material, method for producing rare earth-iron-nitrogen-based alloy material, rare earth-iron-based alloy material, and method for producing rare earth-iron-based alloy material
JP5501828B2 (ja) R−t−b系希土類永久磁石
JP2001093713A (ja) 多元系希土類−鉄格子浸入型永久磁石材料、およびそれからなる永久磁石、ならびにそれらの製造方法
CN108352250B (zh) Nd-Fe-B系磁铁的晶界改性方法、以及经该方法处理后的晶界改性体
WO2012029738A1 (ja) 焼結磁石
WO2011068107A1 (ja) 軽希土類磁石及び磁気デバイス
US8764917B2 (en) Ferromagnetic compound magnet
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
JP2008127648A (ja) 希土類異方性磁石粉末の製造方法
AU4696593A (en) Permanent magnet material containing a rare-earth element, iron, nitrogen and carbon
Burzo et al. Magnetic materials for technical applications
CN112992456A (zh) Mn-Bi-Sb基磁性物质及其制造方法
JP2020161681A (ja) 永久磁石及び回転機
WO2017191790A1 (ja) 希土類永久磁石及びその製造方法
Martínez-Sánchez et al. Enhancing Magnetic Properties of τ–Mn 53.3 Al 45 C 1.7 through Sintering with Fe 58.5 Co 31.5 X 10 Alloys
Mirtaheri et al. Advances in Developing Permanent Magnets with Less or No Rare-Earth Elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13390738

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820246

Country of ref document: EP

Kind code of ref document: A1