JPH10312918A - 磁石およびボンディッド磁石 - Google Patents

磁石およびボンディッド磁石

Info

Publication number
JPH10312918A
JPH10312918A JP10166104A JP16610498A JPH10312918A JP H10312918 A JPH10312918 A JP H10312918A JP 10166104 A JP10166104 A JP 10166104A JP 16610498 A JP16610498 A JP 16610498A JP H10312918 A JPH10312918 A JP H10312918A
Authority
JP
Japan
Prior art keywords
magnet
phase
type
atomic
tbcu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10166104A
Other languages
English (en)
Inventor
Tetsuto Yoneyama
哲人 米山
Tomomi Yamamoto
智実 山本
Tetsuya Hidaka
徹也 日高
Akira Fukuno
亮 福野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP10166104A priority Critical patent/JPH10312918A/ja
Publication of JPH10312918A publication Critical patent/JPH10312918A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】 【課題】 安価で、しかも高保磁力、高角形比、高エネ
ルギー積の磁石を提供する。 【解決手段】 R(Rは希土類元素の1種以上、R中の
Sm比率は50原子%以上)、T(Fe、またはFeお
よびCo)、NおよびM(Zrであるか、Zrの一部を
Ti、V、Cr、Nb、Hf、Ta、Mo、W、Al、
CおよびPの1種以上で置換したもの)を含有する磁石
であり、R量は4〜8原子%、N量は10〜20原子
%、M量は2〜10原子%、残部が実質的にTである。
磁石中には、R、TおよびNを主体とし、TbCu7
型、Th2 Zn17型およびTh2 Ni17型の1種以上の
結晶相を含む硬質磁性相と、bcc構造のT相からなる
軟質磁性相とが存在し、軟質磁性相の平均結晶粒径が5
〜60nmであり、軟質磁性相の割合が10〜60体積%
である。この構成により、高保磁力が得られ、角形比が
高くなり、高い最大エネルギー積が実現する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、希土類窒化磁石とボン
ディッド磁石とに関する。
【0002】
【従来の技術】高性能希土類磁石としては、Sm−Co
系磁石やNd−Fe−B系磁石が実用化されているが、
近年、新規な希土類磁石の開発が盛んに行なわれてい
る。
【0003】例えば、Sm2 Fe17結晶にNが侵入型に
固溶したSm−Fe−N系の希土類窒化磁石が提案され
ており、Sm2 Fe172.3 付近の組成で、4πIs =
15.4kG、Tc =470℃、HA =14Tの基本物性
が得られること、Znをバインダとするメタルボンディ
ッド磁石として10.5MGOeの(BH)max が得られるこ
と、また、Sm2 Fe17金属間化合物へのNの導入によ
り、キュリー温度が大幅に向上して熱安定性が改良され
たことが報告されている(Paper No.S1.3 at theSixth
International Symposium on Magnetic Anisotropy and
Coercivity inRare Earth-Transition Metal Alloys,P
ittsburgh,PA,October 25,1990.(Proceedings Book:Car
negie Mellon University,Mellon Institute,Pittsburg
h,PA 15213,USA) )。
【0004】上記報告のボンディッド磁石に用いられて
いる磁石粒子は、ほぼ単結晶粒子となる程度の粒径を有
するものであり、その保磁力発生機構はニュークリエー
ションタイプである。このため、磁気特性が粒子の表面
状態の影響を受け易い。すなわち、粉砕時の機械的衝撃
や粒子の酸化等により磁石粒子表面には欠陥が生じ、こ
の欠陥により磁壁が発生するが、ニュークリエーション
タイプの磁石では結晶粒内に磁壁のピンニングサイトが
ないため容易に磁壁移動が起こるので、保磁力が劣化し
易い。
【0005】希土類窒化磁石の改良に関して、特開平3
−16102号公報では、2相分離型のRe−Fe−N
−H−M系磁石を提案している。Reは希土類元素であ
り、Mは、Li、Na、K、Mg、Ca、Sr、Ba、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、
Mn、Pd、Cu、Ag、Zn、B、Al、Ga、I
n、C、Si、Ge、Sn、Pb、Biの元素およびこ
れらの元素ならびに希土類元素の酸化物、フッ化物、炭
化物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、
塩化物、硝酸塩のうち少なくとも1種である。同公報で
は、M添加によりSm−Co系やNd−Fe−B系でみ
られるような2相分離型の微構造を形成させ、これによ
り、焼結磁石やボンディッド磁石のようなバルク磁石と
したときにも粉体のときと同様な高い磁気特性を引き出
すことを目的としている。具体的には、粒子境界部にM
の含有量が多い相を有し、粒子中心部にはMの含有量が
少ないか、または、Mを含有しない相を有する2相分離
型のバルク磁石を製造している。同公報では、溶解法や
液体急冷法などによって母合金を製造し、母合金を粗粉
砕した後、窒化水素化し、さらに微粉砕して、焼結磁石
またはボンディッド磁石としている。Mの添加は、微粉
砕の直前に行なうことが特に有効であるとされている。
【0006】同公報の記述は焼結磁石を主体としている
が、ボンディッド磁石に適用できる旨の記述もある。同
公報の実施例では、Sm8.9 Fe75.415.50.2 合金
粉末(粒径20〜38μm )にZnを8モル%添加して
回転ボールミルで微粉砕した後、430℃で1.5時間
焼鈍して、Sm8.2 Fe69.514.30.05Zn8.0 組成
の微粉体とし、この微粉体を用いて圧縮粉体成形ボンデ
ィッド磁石を作製している。同公報ではボンディッド磁
石作製の際にこのような微粉体を用いるため、酸化の影
響により安定した磁石特性を得ることが難しく、また、
磁石の高密度化も難しいという問題がある。また、Sm
とFeとの比率は化学量論組成であるSm2 Fe17(1
0.5原子%Sm)にほぼ等しくSmを多量に使用する
ため、低コスト化が難しい。
【0007】Sm−Fe−N系磁石を低コストで製造す
るためには、高価な希土類元素の含有量を低減すること
が有効であるが、希土類元素量を減らすと、特にSm/
(Sm+Fe)を10原子%以下とした場合には、α−
Fe相の析出が多くなって保磁力が著しく低くなってし
まうため、磁石としての安定性が不十分となる。
【0008】J.Magn.Magn.Mater.124(1993)1-4には、メ
カニカルアロイ法を用いて作製した希土類元素量が7原
子%と少ないSm−Fe系合金を窒化した磁石が報告さ
れている。この磁石は、Sm2 Fe17x 相とα−Fe
相とからなるものであり、保磁力は約3.9 kOeと低
い。メカニカルアロイ法では酸化が生じやすいため、希
土類元素のような酸化しやすい金属を扱う工法としては
工業的に採用しにくい。
【0009】
【発明が解決しようとする課題】本発明の目的は、安価
で、しかも高保磁力、高角形比、高最大エネルギー積の
磁石を提供することである。
【0010】
【課題を解決するための手段】このような目的は、下記
(1)〜(9)のいずれかの構成により達成される。 (1)R(Rは希土類元素の1種以上であり、R中のS
m比率は50原子%以上である)、T(TはFe、また
はFeおよびCoである)、NおよびM(Mは、Zrで
あるか、Zrの一部をTi、V、Cr、Nb、Hf、T
a、Mo、W、Al、CおよびPから選択される少なく
とも1種の元素で置換したものである)を含有し、Rを
4〜8原子%、Nを10〜20原子%、Mを2〜10原
子%含有し、残部が実質的にTであり、R、TおよびN
を主体とし、TbCu7 型、Th2 Zn17型およびTh
2 Ni17型から選択される少なくとも1種の結晶相を含
む硬質磁性相と、bcc構造のT相からなる軟質磁性相
とを有し、軟質磁性相の平均結晶粒径が5〜60nmであ
り、軟質磁性相の割合が10〜60体積%である磁石。 (2)角形比Hk / iHc が15%以上である上記
(1)の磁石。 (3)液体急冷法により製造した急冷合金に、窒化処理
を施して製造された上記(1)または(2)の磁石。 (4)液体急冷法において、溶湯状合金に対する冷却基
体表面の速度を45m/s 以上として製造された上記
(3)の磁石。 (5)窒化処理を施す前の急冷合金に、組織構造制御の
ための熱処理を施して製造された上記(3)または
(4)の磁石。 (6)水素を含む雰囲気中で組織構造制御のための熱処
理を施した後、急冷合金中の水素を放出させることによ
り、TbCu7 型、Th2 Zn17型およびTh2 Ni17
型から選択される少なくとも1種の結晶相とbcc構造
のT相とを析出させ、次いで、窒化処理を施して製造さ
れた上記(5)の磁石。 (7)組織構造制御のための熱処理を施す前の急冷合金
が、TbCu7 型の結晶相を有する上記(6)の磁石。 (8)R中のSm比率が80原子%以上であり、硬質磁
性相がTbCu7 型結晶相を含み、X線回折において、
TbCu7 型結晶相の最大ピークが2θ=42.00〜
42.50°の範囲にある上記(1)〜(7)のいずれ
かの磁石。 (9)上記(1)〜(8)のいずれかの磁石の粉末とバ
インダとを含有するボンディッド磁石。
【0011】
【作用および効果】従来のSm−Fe−N系磁石では、
希土類元素含有量が少なくなるとα−Fe相が多量に析
出して高保磁力が得られなくなっていたが、本発明の磁
石では、Smを主体とするRの含有量を少なくした上で
元素Mを上記所定量添加し、さらにN量を上記範囲(1
0〜20原子%)とすることにより、上述した微細な組
織構造を出現させて高保磁力を得ることができ、かつ角
形比が高くなって最大エネルギー積が向上する。この場
合の角形比とは、Hk / iHc を意味する。なお、 iH
c は保磁力であり、Hk は、磁気ヒステリシスループの
第2象限において磁束密度が残留磁束密度の90%にな
るときの外部磁界強度である。Hk が低いと高い最大エ
ネルギー積が得られない。Hk / iHc は、磁石性能の
指標となるものであり、磁気ヒステリシスループの第2
象限における角張りの度合いを表わす。iHc が同等で
あってもHk / iHc が大きいほど磁石中のミクロ的な
保磁力の分布がシャープとなるため、着磁が容易とな
り、かつ着磁ばらつきも少なくなり、また、最大エネル
ギー積が高くなる。そして、磁石使用時の外部からの減
磁界や自己減磁界の変化に対する磁化の安定性が良好と
なり、磁石を含む磁気回路の性能が安定したものとな
る。本発明の磁石ではHk / iHc として15%以上が
容易に得られ、18%以上、さらには20%以上とする
こともできる。なお、Hk / iHc は、通常、45%程
度以下である。また、Hk としては、1kOe 以上が容易
に得られ、1.5kOe 以上、さらには2kOe 以上とする
こともできる。なお、Hk は、通常、4kOe 程度以下で
ある。また、ボンディッド磁石とした場合には、20〜
50%程度の高いHk / iHc を得ることが可能であ
る。
【0012】このように本発明では、高価なRの使用量
を減らした上で高保磁力、高角形比および高い最大エネ
ルギー積を得ることができるので、低価格で高性能な磁
石が実現する。
【0013】上述したJ.Magn.Magn.Mater.124(1993)1-4
には、焼鈍後のα−Fe相の結晶粒径が20〜55nmで
あった旨の記述があるが、同文献記載の磁石は本発明で
用いる元素Mを含まず、メカニカルアロイ法によりα−
Fe相を形成している。このため、α−Fe相の結晶粒
径が小さいにもかかわらず高保磁力が得られていないと
考えられる。
【0014】また、上述した特開平3−16102号公
報には、本発明で用いる元素Mを使った実施例もある
が、いずれも焼結磁石であり、しかも、磁石の組織構造
も本発明とは異なる。また、希土類元素の比率が化学量
論組成とほぼ等しいため、低コスト化が難しい。
【0015】電気学会研究会資料MAG-93-244〜253 に
は、「Sm−Fe−Co−V系窒化化合物とそのボンデ
ィッド磁石の磁気特性」についての報告が記載されてい
る。このボンディッド磁石は、以下の工程を経て作製さ
れている。まず、Sm2 (Fe0.9 Co0.117-xx
(x=0〜2.0)合金を溶解鋳造し、溶体化処理後、
ジョークラッシャーで30μm 程度まで粉砕する。次い
で窒化処理を行なった後、ジェットミルにより3〜5μ
m 程度に微粉砕する。次いで、エポキシ樹脂のバインダ
と混合して磁界中で圧縮成形し、ボンディッド磁石とす
る。
【0016】同報告では、x=0〜1.0ではTh2
17型の結晶構造となり、x=1.5ではTbCu7
の結晶構造となっている。溶体化処理後の粉末のX線回
折チャートでは、すべての組成においてα−(Fe,C
o)のピークは認められないが、常圧での窒化処理後に
は、α−(Fe,Co)のピークが認められ、xが大き
くなるにしたがってこのピークが小さくなり、x=1.
5ではα−(Fe,Co)のピークは認められない。こ
のことから、同報告ではV置換がα−(Fe,Co)の
析出を抑える効果があるとしている。x=1.5で窒化
処理温度を600℃としたとき、微粉砕後の粉末の保磁
力Hcjが256kA/m(約3.2 kOe)となっているが、
この保磁力は磁石材料としては十分とはいえない。同報
告では、TbCu7 型相を利用してはいるが、R含有量
が化学量論組成と同じであって、しかも高保磁力は得ら
れておらず、本発明のように微細なbcc構造T相を析
出させて保磁力を向上させる技術思想はみられない。
【0017】JMEPEG(1993)2,219-224 には、液体急冷法
を用い、TbCu7 型相を利用して、22 kOeを超える
保磁力を得たことが報告されている。しかし、同報告で
用いている合金の組成はSm15Fe85であり、化学量論
組成であるSm2 Fe17よりもSm過剰であり、かつ元
素Mを含んでいない。すなわち、同報告には、R含有量
を少なくし、かつ元素Mを添加することにより、安価で
高性能な窒化磁石を得るという本発明の技術思想はみら
れない。
【0018】特開平6−172936号公報には、一般
式R1x R2yz100-x-y-z (ただし、R1は希土
類元素から選ばれる少なくとも1種の元素、R2は原子
半径が0.156〜0.174nmである元素から選ばれ
る少なくとも1種の元素、Aは、H、C、NおよびPか
ら選ばれる少なくとも1種の元素、MはFeおよびCo
から選ばれる少なくとも1種の元素を示し、x、y、z
は原子%でそれぞれx≧2、y≧0.01、4≦x+y
≦20、0≦z≦20を示す)にて表わされ、主相がT
bCu7 型結晶構造を有し、かつ前記主相中に占める前
記Mが前記主相中のAを除くすべての元素の総量の90
原子%以上である磁性材料が記載されている。また、M
の総量の20原子%以下がT(TはSi、Ti、Al、
Ga、V、Ta、Mo、Nb、Cr、W、MnおよびN
iから選ばれる少なくとも1種の元素)で置換され得る
旨が記載されている。
【0019】同公報記載の磁性材料は、TbCu7 型の
主相を有する点では本発明の磁石に類似するが、同公報
には、この主相とα−Fe相等の軟質磁性相とを併存さ
せるという本発明の技術思想はみられず、α−Fe相の
増加に伴なって保磁力が著しく低下する旨の記載がある
だけである。また、同公報記載の磁性材料は、主相中の
Fe+Coの比率が90原子%以上と高いが、この比率
は本発明における好ましい範囲を上回る。また、同公報
記載の実施例のうち窒化磁石のものでは、希土類元素が
Sm主体となっておらず、NdやPrが主体となってい
る。また、窒化磁石の実施例では窒素量が本発明に比べ
少なくなっている。同公報記載の実施例ではボンディッ
ド磁石を作製しているが、このものの磁気特性は、本発
明の実施例のボンディッド磁石よりも著しく低い。
【0020】特開平6−342706号公報は、本出願
の基礎出願の出願後に公開されたものである。同公報に
は、一般式Rxz Coy Fe100-x-y-z (ただし、R
は希土類元素の群から選ばれる少なくとも1種の元素、
Aは、H、N、CおよびPの群から選ばれる少なくとも
1種の元素、x、y、zは原子%でそれぞれ4≦x≦2
0、0.01≦y≦20、z≦20を示す)にて表わさ
れ、主相がTbCu7型結晶構造を有し、かつ前記主相
中のFeおよびCoが前記主相中のAを除くすべての元
素の総量の90原子%以上である磁性材料が記載されて
いる。また、FeがM元素(MはTi、Cr、V、M
o、W、Mn、Ag、Cu、Zn、Nb、Ta、Ni、
Sn、Ga、Alの群から選ばれる少なくとも1種の元
素)で一部置換され得る旨が記載されている。
【0021】同公報記載の磁性材料は、TbCu7 型の
主相を有する点では本発明の磁石に類似するが、同公報
には、この主相とα−Fe相等の軟質磁性相とを併存さ
せるという本発明の技術思想はみられず、Zrを添加す
る旨の記述もない。また、同公報記載の実施例のうち窒
化磁石のものでは、窒素含有量が本発明に比べ少なくな
っている。また、同公報記載の磁性材料は、主相中のF
e+Coの比率が90原子%以上と高いが、この比率は
本発明における好ましい範囲を上回る。同公報記載の実
施例ではボンディッド磁石を作製しているが、このもの
の磁気特性は、本発明の実施例のボンディッド磁石より
も著しく低い。
【0022】特開平6−330252号公報は、本出願
の基礎出願の出願後に公開されたものである。同公報に
は、原子%で、Y、ランタニド元素の1種または2種以
上の希土類金属(R)2〜7%、N1〜15%、残部F
eからなり、少なくとも硬磁性の希土類化合物相と軟磁
性の鉄相との2相の金属組織を有し、かつ前記相のそれ
ぞれが500nm以下の結晶粒サイズを有する粉末状の希
土類磁石材料が記載されており、また、Feの一部をZ
rで置換し得ること、希土類化合物相がTh2Zn
17型、ThMn12型またはTbCu7 型の結晶構造をも
つことが記載されている。
【0023】同公報記載の磁石材料は、硬磁性相と軟磁
性相とを有する点で本発明の磁石に類似しているが、軟
磁性相の結晶粒サイズの上限は500nmであり、本発明
に比べ大きい。同公報において軟磁性相の具体的サイズ
が記載されているのは、実施例3だけである。実施例3
の磁石材料の軟磁性相のサイズは10〜50nmであり、
本発明範囲と重なる。しかし、この磁石材料の組成はN
3.1 Fe86.0Ti7. 83.1 であり、SmおよびZr
を含まず、また、N量が本発明範囲を下回る。しかも、
この磁石材料の硬磁性相はThMn12であり、本発明の
磁石とは全く異なる。この他の実施例では、軟磁性相の
具体的サイズの記述はなく、しかも、Zrを添加した実
施例はない。また、すべての実施例においてN量は6原
子%以下となっており、本発明範囲を下回る。同公報に
は、これらの実施例の磁石材料が極めて高い磁気特性を
示した旨の記述があるが、本発明者らの実験によれば、
これらの磁石材料では高特性は得られず、特に、角形比
が不十分となる。
【0024】特開平6−279915号公報は、本出願
の基礎出願の出願後に公開されたものである。同公報に
は、成分組成がRx Fe100-(x+y+z)yz で表わさ
れ、平均粉末粒径が10〜200μm であり、前記Rは
Y、ランタニド元素の1種または2種以上の希土類金属
からなり、前記Mは、V、Ti、Moの1種または2種
以上からなり、前記AはN、Cの1種または2種からな
り、前記x、y、zは原子百分率で下記の範囲5≦x≦
15、1≦y≦20、1≦z≦25である希土類磁石材
料が記載されている。同公報には磁石材料にZrを添加
する旨の記載はなく、また、軟質磁性相についての記載
もない。結晶粒サイズについては、急冷薄帯の結晶粒が
50〜100nm程度であった旨の記述があるだけであ
る。
【0025】特開平7−66021号公報は、本出願の
基礎出願の出願後に公開されたものである。同公報に
は、一般式R1x R2yz Cou Fe100-x-y-z-u
(ただし、R1は希土類元素から選ばれる少なくとも1
種の元素、R2は原子半径が0.156〜0.174nm
である元素から選ばれる少なくとも1種の元素、Aは、
C、NおよびPから選ばれる少なくとも1種の元素を示
し、x、y、z、uは原子%でそれぞれ2≦x、0≦
y、4≦x+y≦20、0≦z≦20、0.01≦y+
uを示す)にて表され、主相がTbCu7 型結晶構造を
有し、かつα−Fe相または(FeCo)相のX線主回
折ピーク強度が主相のそれの0.01〜5倍である永久
磁石が記載されている。そして、R2として、Sc、Z
rおよびHfの群から選ばれる少なくとも1種の元素が
例示されている。
【0026】同公報記載の磁石は、TbCu7 型の主相
およびα−Fe相を有し、両相の交換結合により磁気特
性を向上させる点では本発明の磁石に類似する。しか
し、同公報にはα−Fe相の比率の記載はない。α−F
e相と主相とのX線主回折ピーク強度の比は、両者の体
積比率と完全に相関するわけではなく、例えばα−Fe
相の結晶粒径や結晶化度などによって変動するため、同
公報記載の永久磁石中におけるα−Fe相の体積比率は
不明である。同公報実施例の銅ロールによる急速冷却
(周速度40m/s )を利用したボンディッド磁石(表
3)およびメカニカルアロイイングを利用したボンディ
ッド磁石(表4)のいずれにおいても、Zr量およびN
量が本発明範囲を下回っていることから、前述した角形
比Hk / iHcが低くなり、そのために最大エネルギー
積が低くなると考えられる。実際、表3および表4で
は、本発明の実施例に比べ最大エネルギー積が著しく低
く、また、残留磁束密度も低くなっている。
【0027】特開平7−118815号公報は、本出願
の基礎出願の出願後に公開されたものである。同公報に
は、一般式R1x R2yz Cou Fe100-x-y-z-u
(ただし、R1は希土類元素から選ばれる少なくとも1
種の元素、R2はZr、HfおよびScから選ばれる少
なくとも1種の元素、Aは、C、NおよびPから選ばれ
る少なくとも1種の元素を示し、x、y、z、uは原子
%でそれぞれ2≦x、4≦x+y≦20、0≦z≦2
0、0≦u≦70を示す)にて表され、主相がTbCu
7 型結晶構造を有し、かつCuKα線を用いたX線回折
パターン(角分解能0.02°以下)におけるTbCu
7 型相の主反射強度をIp とし、α−Fe相の主反射強
度をIFeとしたとき、TbCu7 型相の主反射強度の半
値幅が0.8°以下で、IFe/(IFe+Ip )が0.4
以下である磁性合金を含む永久磁石が記載されている。
【0028】同公報記載の永久磁石は、TbCu7 型の
主相およびα−Fe相を有する点では本発明の磁石に類
似する。しかし、同公報にはα−Fe相の比率の記載は
なく、上記のように、X線回折における主反射強度の比
Fe/(IFe+Ip )からは、両相の体積比率を求める
ことはできない。同公報の実施例では、N量が本発明範
囲を下回っていることから、前述した角形比Hk / iH
c が低くなり、そのために最大エネルギー積が低くなる
と考えられる。また、同公報実施例の銅ロールによる急
速冷却(周速度40m/s )を利用したボンディッド磁石
では、本発明の実施例に比べ残留磁束密度が低くなって
いる。
【0029】
【具体的構成】
<磁石の組織構造>本発明の磁石は、R、T、Nおよび
Mを含み、主相である硬質磁性相と微細な軟質磁性相と
を含む複合組織を有する。
【0030】硬質磁性相はR、TおよびNを主体とし、
六方晶系のTbCu7 型、菱面体晶系のTh2 Zn17
および六方晶系のTh2 Ni17型から選択される少なく
とも1種の結晶構造をもち、これらの結晶構造に窒素が
侵入した構造である。硬質磁性相は、通常、TbCu7
型結晶相またはTh2 Zn17型結晶相またはこれらの2
相が混在した構成となるが、Smよりも重希土類側の希
土類元素を含む場合には、Th2 Ni17型結晶相が存在
することもある。Rは主としてThサイトおよびTbサ
イトに、Tは主としてZnサイト、NiサイトおよびC
uサイトに存在すると考えられるが、Tの一部がThサ
イトおよびTbサイトに存在する場合もある。Mは、元
素によっても異なるが、主としてZnサイト、Niサイ
トおよびCuサイトに存在すると考えられるが、Thサ
イトおよびTbサイトに存在する場合もある。また、M
は、軟質磁性相であるbcc構造T相に入ることもあ
る。
【0031】硬質磁性相中において、原子比T/(R+
T+M)は、好ましくは90%未満であり、より好まし
くは75〜87%である。T/(R+T+M)が小さす
ぎると飽和磁化および残留磁束密度が低くなり、大きす
ぎると最大エネルギー積が低くなる。
【0032】軟質磁性相はbcc構造のT相であり、実
質的にα−Fe相であるか、α−Fe相のFeの一部が
Co、M、R等で置換されたものであると考えられる。
【0033】本発明の磁石では、軟質磁性相の平均結晶
粒径が5〜60nmであるとき高保磁力が得られる。磁石
中には、結晶磁気異方性が高い硬質磁性相と飽和磁化が
高い軟質磁性相とが存在し、軟質磁性相が微細であるた
め両相の界面が多くなって交換異方性が生じ、高保磁力
が得られると考えられる。軟質磁性相の平均結晶粒径が
小さすぎると飽和磁化が低くなってしまい、大きすぎる
と保磁力および角形性が低くなってしまう。なお、軟質
磁性相の平均結晶粒径は、好ましくは5〜40nmであ
り、また、硬質磁性相の結晶構造がTbCu7 型である
とき、より高性能な磁石となる。
【0034】軟質磁性相は一般に不定形であり、透過型
電子顕微鏡により確認することができる。軟質磁性相の
平均結晶粒径は、磁石断面の画像解析により算出する。
まず、磁石断面の測定対象領域中に含まれている軟質磁
性相について、結晶粒の数nおよび各結晶粒の断面積の
合計Sを、画像解析により算出する。そして、軟質磁性
相の結晶粒1個あたりの平均断面積S/nを算出し、面
積がS/nである円の直径Dを平均結晶粒径とする。す
なわち、平均結晶粒径Dは、 式 π(D/2)2 =S/n から求める。なお、測定対象領域は、nが50以上とな
るように設定することが好ましい。
【0035】硬質磁性相の平均結晶粒径は、好ましくは
5〜500nm、より好ましくは5〜100nmである。硬
質磁性相の平均結晶粒径が小さすぎる場合には結晶性が
不十分であり、高保磁力が得られにくい。一方、硬質磁
性相の平均結晶粒径が大きすぎると、窒化処理に要する
時間が長くなる傾向がある。硬質磁性相の平均結晶粒径
は、軟質磁性相の平均結晶粒径と同様にして算出する。
【0036】磁石中における軟質磁性相の割合は、10
〜60体積%、好ましくは10〜36体積%である。軟
質磁性相の割合が低すぎても高すぎても良好な磁石特性
が得られなくなり、特に最大エネルギー積が低くなる。
軟質磁性相の割合は、磁石断面の透過型電子顕微鏡写真
を用いて、いわゆる面積分析法により求める。この場
合、断面積比が体積比となる。
【0037】<磁石の組成限定理由>次に、本発明の磁
石の組成限定理由を説明する。
【0038】Rの含有量は4〜8原子%、好ましくは4
〜7原子%である。Nの含有量は10〜20原子%、好
ましくは12〜18原子%、より好ましくは15原子%
超18原子%以下、さらに好ましくは15.5〜18原
子%である。Mの含有量は2〜10原子%、好ましくは
2.5〜5原子%である。そして、残部が実質的にTで
ある。
【0039】Rの含有量が少なすぎると、保磁力が低く
なる。一方、Rの含有量が多すぎるとbcc構造T相の
量が少なくなって磁石特性が低くなり、また、高価なR
を多量に使用することになるため、安価な磁石が得られ
なくなる。Sm以外のRとしては、Y、La、Ce、P
r、Nd、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu等の1種以上を用いることができる。本
発明の磁石の硬質磁性相は、Th2 Zn17型、Th2
17型、TbCu7 型の結晶構造に窒素が侵入した構成
であり、このような硬質磁性相ではRがSmであるとき
に最も高い結晶磁気異方性を示す。Smの比率が低いと
結晶磁気異方性が低下し保磁力も低下するため、R中の
Sm比率は50原子%以上、好ましくは70原子%以上
とする。
【0040】N含有量が少なすぎると、キュリー温度の
上昇、保磁力の向上、角形比の向上、飽和磁化の向上お
よび最大エネルギー積の向上が不十分となり、N含有量
が多すぎると、残留磁束密度が低下する傾向を示すと共
に角形比が低くなって最大エネルギー積も低くなる。N
含有量はガス分析法などにより測定することができる。
【0041】元素Mは、前述した微細な複合組織を実現
するために添加される。元素Mが含まれないと、合金製
造時に軟質磁性相の粗大な結晶粒が析出するため、最終
的に軟質磁性相の平均結晶粒径が比較的小さくなったと
しても、高保磁力が得られなくなる。Mの含有量が少な
すぎると、軟質磁性相の平均結晶粒径が小さい磁石が得
られにくくなる。一方、Mの含有量が多すぎると、飽和
磁化が低くなってしまう。Mは、Zrであるか、Zrの
一部をTi、V、Cr、Nb、Hf、Ta、Mo、W、
Al、CおよびPから選択される少なくとも1種の元素
で置換したものである。Zrを置換する元素としては、
Al、CおよびPの少なくとも1種が好ましく、特にA
lが好ましい。本発明においてZrを必須とするのは、
組織構造制御に特に有効であり、また、角形比向上に有
効だからである。また、Alは、急冷合金の窒化を容易
にする効果も示すため、Al添加により、窒化処理に要
する時間を短縮することができる。なお、磁石中のZr
含有量は、好ましくは2〜4.5原子%、より好ましく
は3〜4.5原子%である。これは、MとしてZrだけ
を用いる場合でも他の元素と併用する場合でも同様であ
る。Zr含有量が少ないと高保磁力と高角形比とが共に
は得られず、また、Zr含有量が多すぎると飽和磁化お
よび残留磁束密度が低くなってしまう。
【0042】上記各元素を除いた残部が実質的にTであ
る。Tは、Feであるか、あるいはFeおよびCoであ
る。Coの添加は特性を向上させるが、T中のCoの比
率は50原子%以下であることが好ましい。Coの比率
が50原子%を超えると残留磁束密度が低くなってしま
う。
【0043】<X線回折>本発明の磁石の硬質磁性相が
TbCu7 型結晶相を含む場合、Cu−Kα線を用いた
X線回折におけるTbCu7 型結晶相の最大ピークの強
度をIH 、軟質磁性相の最大ピークの強度をIS とした
とき、IS /IH は、好ましくは0.4〜2.0、より
好ましくは0.7〜1.8である。IS /IH が0.4
〜2.0であれば高い角形比を示し、IS /IH が0.
7〜1.8であればさらに高い角形比が得られる。IS
/IH が小さすぎても大きすぎても、最大エネルギー積
が低くなる傾向となる。
【0044】後述する製造方法において、急冷合金に組
織構造制御のための熱処理を施して微細なbcc構造T
相を析出させる場合、熱処理前の急冷合金のIS /IH
は、好ましくは0.4以下、より好ましくは0.25以
下である。このように、急冷直後のIS /IH を小さく
し、熱処理によりIS /IH を増大させる、すなわち熱
処理によりbcc構造T相の析出を促す構成とすること
により、微細なbcc構造T相を組織中に分散させるこ
とが容易となり、高い磁石特性が容易に実現する。
【0045】なお、R中のSm比率が80原子%以上で
あるとき、Cu−Kα線を用いたX線回折におけるTb
Cu7 型結晶相の最大ピークは、2θ=42.00〜4
2.50°の範囲にあることが好ましい。最大ピークの
位置が前記範囲から外れると、高特性を得ることが難し
くなる。具体的には、最大ピークの位置が2θ=42.
00°未満であると、残留磁束密度が低下する傾向を示
し、2θ=42.50°を超えていると、キュリー温度
の上昇、保磁力の向上、角形比の向上、飽和磁化の向上
および最大エネルギー積の向上が不十分となる。
【0046】<製造方法>次に、本発明の磁石の製造に
適した方法を説明する。
【0047】この方法では、R、TおよびMを含む急冷
合金を液体急冷法により製造し、この急冷合金に窒化処
理を施して磁石化する。
【0048】液体急冷法では、R、TおよびMを含有す
る溶湯状合金を急速に冷却することにより急冷合金を得
る。用いる液体急冷法は特に限定されず、単ロール法、
双ロール法、アトマイズ法等の各種方法から適宜選択す
ればよいが、量産性が高く、急冷条件の再現性が良好で
あることから、通常、単ロール法を用いることが好まし
い。単ロール法を用いる場合の急冷条件は特に限定され
ず、好ましい組織構造が得られるように、合金の組成な
どに応じて適宜設定すればよいが、通常、CuまたはC
u合金の冷却ロールを用い、ロール周速は、好ましくは
10m/s 以上、より好ましくは30m/s 以上、さらに好
ましくは45m/s 以上、特に好ましくは55m/s 以上、
最も好ましくは65m/s 以上とする。ロール周速を適当
な値とすることにより、急冷合金が微結晶状態または非
晶質状態に近くなり、その後の熱処理により任意の結晶
粒径が実現可能となり、窒化も容易となる。このため、
高保磁力、高残留磁束密度、高角形比、高最大エネルギ
ー積の磁石が得られる。なお、ロール周速は、通常、1
20m/s 以下とすることが好ましい。ロール周速が速す
ぎると、溶湯状合金とロール周面との接触が悪くなって
熱移動が効果的に行なわれなくなる。このため、実効冷
却速度は遅くなってしまう。単ロール法により得られる
急冷合金は、通常、薄帯状である。薄帯の厚さは特に限
定されないが、好ましくは8〜200μm 、より好まし
くは10〜60μm である。厚さが8μm 未満の薄帯は
作製することが困難であり、厚すぎる薄帯では、十分な
冷却速度を得ることが困難である。
【0049】急冷合金の組織構造は、実質的に単相また
は微細な複合組織である多結晶であるか、実質的にアモ
ルファス相であることが好ましい。急冷合金が多結晶で
ある場合、TbCu7 型、Th2 Zn17型およびTh2
Ni17型のうちいずれか、またはこれらの2種以上の結
晶相を含み、通常、さらにbcc構造のT相を含むが、
アモルファス相を含むこともある。bcc構造のT相の
割合が低いか、実質的にT相が含まれない場合には、他
の結晶相は実質的にTbCu7 型である。
【0050】所定の平均結晶粒径を有するbcc構造T
相を含む複合組織構造とするために、通常、急冷合金に
組織構造制御のための熱処理を施す。この熱処理におけ
る処理温度は、好ましくは400〜800℃、より好ま
しくは600〜800℃であり、処理時間は処理温度に
もよるが、通常、0.1〜300時間程度とする。この
熱処理は、不活性ガス雰囲気等の非酸化性雰囲気、還元
性雰囲気、真空中等で行なうことが好ましい。この熱処
理により、微細なbcc構造T相が析出し、また、Tb
Cu7 型、Th2 Zn17型およびTh2 Ni17型の少な
くとも1種の結晶相が析出することもある。
【0051】組織構造制御のための熱処理を、水素ガス
を含む雰囲気中で施すことも好ましい。この熱処理で
は、急冷合金に水素を吸蔵させることにより、R、Tお
よびMを含む結晶を、bcc構造T相とR水素化物相と
に分解する。このときの処理温度は、好ましくは350
〜950℃、より好ましくは500〜800℃とし、処
理時間は、好ましくは0.1〜10時間、より好ましく
は0.5〜5時間とする。雰囲気中の水素ガスの圧力
は、0.1〜10気圧、特に0.5〜2気圧とすること
が好ましい。このときの雰囲気は、水素ガスだけに限ら
ず、水素ガスと不活性ガスとの混合雰囲気であってもよ
い。この場合の不活性ガスとしては、例えばHeまたは
Ar、あるいはこれらの混合ガスなどを用いることがで
きる。なお、分解温度まで昇温する前に、80〜300
℃、特に200〜250℃にて、0.1〜1時間、特に
0.25〜0.5時間程度水素を吸蔵させることによ
り、その後の分解反応が十分かつ迅速に進行する。
【0052】水素吸蔵後、減圧雰囲気中で熱処理を施
し、急冷合金から水素を放出させる。水素放出により、
Th2 Zn17型およびTh2 Ni17型の少なくとも1種
の結晶相と微細なbcc構造T相とを含む複合組織が形
成され、TbCu7 型結晶相が形成されることもある。
このときの処理温度は、好ましくは300〜900℃、
より好ましくは450〜850℃とし、処理時間は、好
ましくは0.05〜5時間、より好ましくは0.25〜
3時間とする。処理時の圧力は、好ましくは1×10-2
Torr以下、より好ましくは1×10-3Torr以下とする。
水素放出のための熱処理は、水素吸蔵のための熱処理後
に、降温せずに続いて行なうことが好ましい。これによ
り高い生産性が得られる。
【0053】水素ガスを利用するこのような熱処理は、
bcc構造T相の割合が低いか、bcc構造T相が実質
的に含まれていない急冷合金に対して特に有効である。
【0054】組織構造制御のための熱処理後、急冷合金
に窒化処理を施す。窒化処理では、窒素ガス雰囲気中で
急冷合金に熱処理を施す。この処理により、TbCu7
型、Th2 Zn17型、Th2 Ni17型の結晶中に窒素原
子が侵入して侵入型の固溶体が形成され、硬質磁性相と
なる。窒化処理の際の処理温度は、好ましくは350〜
700℃、より好ましくは350〜600℃であり、処
理時間は、好ましくは0.1〜300時間である。窒素
ガスの圧力は、0.1気圧程度以上とすることが好まし
い。なお、窒化処理に高圧窒素ガスを用いたり、窒素ガ
ス+水素ガスを用いたり、アンモニアガスを用いたりす
ることもできる。
【0055】窒化処理は、通常、薄帯状や薄片状、粒状
の急冷合金を粉砕した後に施すが、均一な窒化が可能で
あれば、急冷合金を粉砕しないで窒化処理を施してもよ
い。
【0056】本発明の磁石の形状に特に制限はなく、薄
帯状や粒状等のいずれであってもよい。ボンディッド磁
石等の磁石製品に適用する場合には、所定の粒径にまで
粉砕して磁石粒子とする。
【0057】ボンディッド磁石に適用する場合、磁石粒
子の平均粒子径は、通常、10μm以上とすることが好
ましいが、十分な耐酸化性を得るためには、平均粒子径
を好ましくは30μm 以上、より好ましくは50μm 以
上、さらに好ましくは70μm 以上とすることがよい。
また、この程度の粒子径とすることにより、高密度のボ
ンディッド磁石とすることができる。平均粒子径の上限
は特にないが、通常、1000μm 程度以下であり、好
ましくは250μm 以下である。なお、この場合の平均
粒子径とは、篩別により求められた重量平均粒子径D50
を意味する。重量平均粒子径D50は、径の小さな粒子か
ら重量を加算していって、その合計重量が全粒子の合計
重量の50%となったときの粒子径である。
【0058】ボンディッド磁石は、磁石粒子をバインダ
で結合して作製される。本発明の磁石は、プレス成形を
用いるコンプレッションボンディッド磁石、あるいは射
出成形を用いるインジェクションボンディッド磁石のい
ずれにも適用することができる。バインダとしては、各
種樹脂を用いることが好ましいが、金属バインダを用い
てメタルボンディッド磁石とすることもできる。樹脂バ
インダの種類は特に限定されず、エポキシ樹脂やナイロ
ン等の各種熱硬化性樹脂や各種熱可塑性樹脂から目的に
応じて適宜選択すればよい。金属バインダの種類も特に
限定されない。また、磁石粒子に対するバインダの含有
比率や成形時の圧力等の各種条件にも特に制限はなく、
通常の範囲から適当に選択すればよい。ただし、結晶粒
の粗大化を防ぐために、高温の熱処理が必要な方法は避
けることが好ましい。
【0059】
【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
【0060】<実施例1:添加元素による比較>下記表
1に示される磁石粉末を作製した。
【0061】まず、合金インゴットを溶解により製造
し、各インゴットを小片に砕いた。得られた小片を石英
ノズルに入れて高周波誘導加熱により溶解して溶湯状と
し、単ロール法により急冷して、厚さ約30μm 、幅5
mmの薄帯状の急冷合金とした。冷却ロールにはBe−C
uロールを用い、その周速度は50m/s とした。X線回
折および透過型電子顕微鏡による観察の結果、急冷合金
は、TbCu7 型結晶相とbcc構造α−Fe相とを含
む多結晶複合組織であり、さらにアモルファス相も含む
ものであることが確認された。
【0062】次に、Arガス雰囲気中で、急冷合金に組
織構造制御のための熱処理を施した。熱処理は、720
℃にて0.5〜1.5時間行なった。熱処理後にX線
(Cu−Kα線)回折および透過型電子顕微鏡による観
察を行なったところ、TbCu7 型結晶相とbcc構造
α−Fe相とを含む多結晶複合組織となっており、アモ
ルファス相は実質的に消失していた。磁石粉末No. 10
2に用いた急冷合金の熱処理後のX線回折チャートを図
1の最上段に示す。
【0063】次に、結晶化した合金を約150μm 以下
の径まで粉砕し、1気圧の窒素ガス雰囲気中で450℃
にて窒化処理を施し、磁石粉末とした。各磁石粉末の窒
化処理時間を表1に示す。窒化処理後の磁石粉末No. 1
02のX線回折チャートを図1に示す。なお、参考のた
めに、窒化処理時間を10時間、15時間、20時間と
したときのX線回折チャートを図1に併記する。
【0064】図1では、窒化処理後も結晶構造は保たれ
ているが、窒化処理によりTbCu7 型結晶相のピーク
の低角度側へのシフトが認められる。したがって、窒素
原子が結晶格子に侵入型に固溶して、結晶格子の膨張が
生じていることがわかる。
【0065】表1に、各磁石粉末の急冷直後(熱処理
前)のIS /IH と、窒化処理後のIS /IH とを示
す。また、窒化処理後にTbCu7 型結晶相の最大ピー
クの位置を調べ、この最大ピークが2θ=42.00〜
42.50°の範囲にある場合を○とし、この範囲から
外れている場合を×とした。
【0066】各磁石粉末について、透過型電子顕微鏡に
より組織観察を行ない、α−Fe相の平均結晶粒径およ
び磁石粉末中のα−Fe相の比率を求めた。結果を表1
に示す。磁石粉末No. 102の透過型電子顕微鏡写真
を、図2に示す。図2では、濃度の高い結晶粒がα−F
e相である。
【0067】これらの磁石粉末の組成、残留磁束密度
(Br)、保磁力( iHc )、角形比(Hk / iHc
)、最大エネルギー積{(BH)m}を測定した。結
果を表1に示す。
【0068】
【表1】
【0069】表1に示される結果から、本発明の効果が
明らかである。すなわち、元素Mを含み、α−Fe相の
平均結晶粒径が所定範囲にある本発明の磁石粉末では、
R含有量が少なくても高保磁力が得られている。これに
対し、Mを含まない磁石粉末No. 109では、保磁力が
極めて小さくなっている。
【0070】また、表1から、添加元素MとしてZrを
必須とすることによる効果が明らかである。すなわち、
Zr以外の元素を単独で添加した場合、角形比が不十分
であり、最大エネルギー積が著しく低くなっている。ま
た、N含有量が本発明範囲を下回る場合にも、角形比が
低く、最大エネルギー積が著しく低くなることがわか
る。このように角形比Hk / iHc が15%を下回る
と、磁石使用時の外部からの減磁界や自己減磁界のわず
かな変化によって磁化が大きく変化してしまい、磁石を
含む磁気回路の性能が安定しなくなる。
【0071】また、化学量論組成であるSm2 Fe17
窒化には60時間程度が必要であったが、本発明におけ
る組成域では窒化に要する時間が1/3程度以下まで短
縮されることがわかる。そして、Al添加により、窒化
処理時間をさらに短縮できることがわかる。
【0072】なお、磁石粉末No. 101〜108ではα
−Fe結晶の粒径が比較的揃っていた。これに対し、磁
石粉末No. 109では粗大なα−Fe結晶粒が多数認め
られ、粒径分布が広くなっていた。上記各磁石粉末にお
いて、主相であるTbCu7型結晶相の平均結晶粒径
は、約10〜100nmであった。また、透過型電子顕微
鏡により主相中のT濃度T/(R+T+M)を調べたと
ころ、80〜85%の範囲にあった。
【0073】<実施例2:R量および軟質磁性相の比率
による比較>表2に示す組成の磁石粉末を作製した。作
製条件は、組織構造制御のための熱処理を700〜75
0℃にて0.5〜1時間行ない、熱処理後に約80μm
以下の径まで粉砕し、窒化処理を表中に示す時間行なっ
た以外は、実施例1の各磁石粉末と同様とした。
【0074】これらの磁石粉末について、実施例1と同
様な測定を行なった。結果を表2に示す。
【0075】
【表2】
【0076】表2から、R含有量が4〜8原子%で、軟
質磁性相の比率が10体積%以上のとき、特に高い残留
磁束密度および最大エネルギー積が得られ、角形比も高
くなることがわかる。
【0077】なお、上記各磁石粉末において、主相であ
るTbCu7 型結晶相の平均結晶粒径は、約10〜10
0nmであった。また、透過型電子顕微鏡により主相中の
T濃度T/(R+T+M)を調べたところ、80〜85
%の範囲にあった。
【0078】<実施例3:R中のSm比率による比較>
表3に示す組成の磁石粉末を作製した。作製条件は、実
施例2の各磁石粉末と同様とした。
【0079】これらの磁石粉末について、実施例1と同
様な測定を行なった。結果を表3に示す。
【0080】
【表3】
【0081】表3から、R中のSm比率が50原子%以
上のとき、高特性が得られることがわかる。
【0082】なお、上記各磁石粉末において、主相であ
るTbCu7 型結晶相の平均結晶粒径は、約10〜10
0nmであった。また、透過型電子顕微鏡により主相中の
T濃度T/(R+T+M)を調べたところ、80〜85
%の範囲にあった。
【0083】<実施例4:N含有量による比較>表4に
示す組成の磁石粉末を作製した。作製条件は、実施例2
の各磁石粉末と同様としたが、窒化処理条件は、処理温
度450〜480℃、処理時間1〜20時間の範囲内に
おいて変更した。
【0084】これらの磁石粉末について、実施例1と同
様な測定を行なった。結果を表4に示す。
【0085】
【表4】
【0086】表4から、N含有量が10〜20原子%、
特に12〜18原子%、さらに15原子%超18原子%
以下のとき、高特性、特に高角形比および高最大エネル
ギー積が得られることがわかる。
【0087】なお、上記各磁石粉末において、主相であ
るTbCu7 型結晶相の平均結晶粒径は、約10〜10
0nmであった。また、透過型電子顕微鏡により主相中の
T濃度T/(R+T+M)を調べたところ、80〜85
%の範囲にあった。
【0088】<実施例5:Co含有量による比較>表5
に示す組成の磁石粉末を作製した。作製条件は、実施例
2の各磁石粉末と同様とした。
【0089】これらの磁石粉末について、実施例1と同
様な測定を行なった。結果を表5に示す。
【0090】
【表5】
【0091】表5から、Coを適量添加することにより
高特性が得られることがわかる。
【0092】なお、上記各磁石粉末において、主相であ
るTbCu7 型結晶相の平均結晶粒径は、約10〜10
0nmであった。また、透過型電子顕微鏡により主相中の
T濃度T/(R+T+M)を調べたところ、80〜85
%の範囲にあった。
【0093】<実施例6:軟質磁性相の平均粒径による
比較>表6に示す組成の磁石粉末を作製した。作製条件
は、実施例2の各磁石粉末と同様としたが、冷却ロール
の周速度は5〜80m/s の範囲、組織構造制御のための
熱処理条件は、処理温度700〜750℃の範囲、処理
時間0.5〜5時間の範囲において変更した。
【0094】これらの磁石粉末について、実施例1と同
様な測定を行なった。結果を表6に示す。
【0095】
【表6】
【0096】表6から、軟質磁性相の平均粒径が5〜6
0nm、特に5〜40nmのとき、高特性が得られることが
わかる。
【0097】なお、上記各磁石粉末において、主相であ
るTbCu7 型結晶相の平均結晶粒径は、約10〜10
0nmであった。また、透過型電子顕微鏡により主相中の
T濃度T/(R+T+M)を調べたところ、80〜85
%の範囲にあった。
【0098】<実施例7:製造方法による比較>実施例
1と同様にして、表7に示す磁石粉末No. 701を作製
した。また、比較のために、液体急冷法に替えて溶解鋳
造法を利用し、鋳造後に1100℃で16時間の溶体化
処理を施した以外は磁石粉末No. 701と同様にして、
磁石粉末No. 702を作製した。これらの磁石粉末につ
いて、実施例1と同様な観察および測定を行なった。結
果を表7に示す。
【0099】
【表7】
【0100】表7から、溶解鋳造法を用いた場合には粗
大なα−Fe結晶粒が析出して、高保磁力が得られない
ことがわかる。
【0101】なお、磁石粉末No. 701において、主相
であるTbCu7 型結晶相の平均結晶粒径は、約10〜
100nmであった。また、透過型電子顕微鏡により主相
中のT濃度T/(R+T+M)を調べたところ、80〜
85%の範囲にあった。
【0102】<実施例8:製造方法および結晶型による
比較>表8に示す磁石粉末を作製した。まず、実施例1
と同様にして急冷合金を作製した。ただし、冷却ロール
の周速度は40m/s とした。急冷合金の結晶相はTbC
7 型であり、α−Fe相は実質的に認められなかっ
た。急冷合金を1気圧の水素ガス雰囲気中において70
0℃で1時間熱処理し、次いで真空中において700℃
で1時間加熱することにより脱水素処理を行なった。脱
水素処理後にX線回折を行なったところ、主としてTh
2 Zn17型の結晶相とα−Fe相との生成が認められ
た。脱水素処理後、実施例1と同様にして粉砕して窒化
処理を施し、磁石粉末とした。これらの磁石粉末につい
て、実施例1と同様な観察および測定を行なった。結果
を表8に示す。
【0103】
【表8】
【0104】表8から、水素中で熱処理してα−Fe相
を析出させることにより、高保磁力の磁石粉末が得られ
ることがわかる。
【0105】なお、上記各磁石粉末において、主相であ
るTh2 Zn17型結晶相の平均結晶粒径は、約10〜1
00nmであった。また、透過型電子顕微鏡により主相中
のT濃度T/(R+T+M)を調べたところ、80〜8
5%の範囲にあった。
【0106】<実施例9:添加元素の組み合わせ>表9
に示す組成の磁石粉末を作製した。作製条件は、実施例
2の各磁石粉末と同様とした。
【0107】これらの磁石粉末について、実施例1と同
様な測定を行なった。結果を表9に示す。
【0108】
【表9】
【0109】表9から、Zrと他の元素とを併用した場
合でも、高特性が得られることがわかる。
【0110】なお、上記各磁石粉末において、主相であ
るTbCu7 型結晶相の平均結晶粒径は、約10〜10
0nmであった。また、透過型電子顕微鏡により主相中の
T濃度T/(R+T+M)を調べたところ、80〜85
%の範囲にあった。
【0111】<実施例10:ボンディッド磁石>上記各
実施例で作製した磁石粉末から表10に示す組成のもの
を選択し、また、平均粒子径の比較的小さな磁石粉末も
作製し、これらをそれぞれエポキシ樹脂と混合した後、
プレス成形し、さらに硬化のための熱処理を施してコン
プレッションボンディッド磁石とした。エポキシ樹脂は
磁石粉末100重量部に対し2〜3重量部とした。プレ
ス成形時の圧力保持時間は10秒間とし、印加圧力は1
0000kgf/cm2 とした。また、樹脂硬化のための熱処
理は、150℃にて1時間行なった。これらのボンディ
ッド磁石について、実施例1と同様に磁気特性を測定し
た。結果を表10に示す。
【0112】
【表10】
【0113】表10に示されるボンディッド磁石は等方
性のものであるが、11〜13MGOe超と極めて高い最大
エネルギー積を示すことがわかる。また、磁石粉末の平
均粒子径を40μm 程度と小径にした場合、Nd−Fe
−B系ボンディッド磁石では十分な磁石特性が得られな
いが、本発明では小径の磁石粉末を用いた場合でも高特
性のボンディッド磁石が得られるので、本発明の磁石粉
末は特に薄物磁石の製造に好適である。
【0114】なお、表10に示す組成以外の磁石粉末を
用いて作製したボンディッド磁石でも、用いた磁石粉末
の磁気特性に応じた磁気特性が得られた。
【0115】<実施例11:冷却ロール周速度による比
較>冷却ロールの周速度を変えて磁石粉末を作製し、こ
れらの磁気特性を調べた。急冷後の熱処理は、600〜
750℃、1〜2時間の範囲から冷却速度に応じて最適
な条件を選択し、窒化処理は450℃で10時間行な
い、その他の条件は組成を含め磁石粉末No. 110と同
じとした。結果を図3に示す。
【0116】図3から、冷却ロールの周速度が45m/s
以上のときに特に良好な磁気特性が得られることがわか
り、保磁力については周速度が速いほど高くなることが
わかる。
【0117】以上の実施例から、本発明の効果が明らか
である。
【図面の簡単な説明】
【図1】組織構造制御のための熱処理を施した後の急冷
合金のX線回折チャートおよび窒化処理後の急冷合金の
X線回折チャートである。
【図2】結晶構造を表わす図面代用写真であって、磁石
粉末の透過型電子顕微鏡写真である。
【図3】冷却ロールの周速度と磁石特性との関係を表わ
すグラフである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 福野 亮 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 R(Rは希土類元素の1種以上であり、
    R中のSm比率は50原子%以上である)、T(TはF
    e、またはFeおよびCoである)、NおよびM(M
    は、Zrであるか、Zrの一部をTi、V、Cr、N
    b、Hf、Ta、Mo、W、Al、CおよびPから選択
    される少なくとも1種の元素で置換したものである)を
    含有し、Rを4〜8原子%、Nを10〜20原子%、M
    を2〜10原子%含有し、残部が実質的にTであり、 R、TおよびNを主体とし、TbCu7 型、Th2 Zn
    17型およびTh2 Ni17型から選択される少なくとも1
    種の結晶相を含む硬質磁性相と、bcc構造のT相から
    なる軟質磁性相とを有し、軟質磁性相の平均結晶粒径が
    5〜60nmであり、軟質磁性相の割合が10〜60体積
    %である磁石。
  2. 【請求項2】 角形比Hk / iHc が15%以上である
    請求項1の磁石。
  3. 【請求項3】 液体急冷法により製造した急冷合金に、
    窒化処理を施して製造された請求項1または2の磁石。
  4. 【請求項4】 液体急冷法において、溶湯状合金に対す
    る冷却基体表面の速度を45m/s 以上として製造された
    請求項3の磁石。
  5. 【請求項5】 窒化処理を施す前の急冷合金に、組織構
    造制御のための熱処理を施して製造された請求項3また
    は4の磁石。
  6. 【請求項6】 水素を含む雰囲気中で組織構造制御のた
    めの熱処理を施した後、急冷合金中の水素を放出させる
    ことにより、TbCu7 型、Th2 Zn17型およびTh
    2 Ni17型から選択される少なくとも1種の結晶相とb
    cc構造のT相とを析出させ、次いで、窒化処理を施し
    て製造された請求項5の磁石。
  7. 【請求項7】 組織構造制御のための熱処理を施す前の
    急冷合金が、TbCu7 型の結晶相を有する請求項6の
    磁石。
  8. 【請求項8】 R中のSm比率が80原子%以上であ
    り、硬質磁性相がTbCu7 型結晶相を含み、X線回折
    において、TbCu7 型結晶相の最大ピークが2θ=4
    2.00〜42.50°の範囲にある請求項1〜7のい
    ずれかの磁石。
  9. 【請求項9】 請求項1〜8のいずれかの磁石の粉末と
    バインダとを含有するボンディッド磁石。
JP10166104A 1994-07-12 1998-05-29 磁石およびボンディッド磁石 Withdrawn JPH10312918A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10166104A JPH10312918A (ja) 1994-07-12 1998-05-29 磁石およびボンディッド磁石

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18277694 1994-07-12
JP7943195 1995-03-10
JP6-182776 1995-03-10
JP7-79431 1995-03-10
JP10166104A JPH10312918A (ja) 1994-07-12 1998-05-29 磁石およびボンディッド磁石

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7197001A Division JP2898229B2 (ja) 1994-07-12 1995-07-10 磁石、その製造方法およびボンディッド磁石

Publications (1)

Publication Number Publication Date
JPH10312918A true JPH10312918A (ja) 1998-11-24

Family

ID=27303015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10166104A Withdrawn JPH10312918A (ja) 1994-07-12 1998-05-29 磁石およびボンディッド磁石

Country Status (1)

Country Link
JP (1) JPH10312918A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077223A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 磁性材料及びそれを用いたモータ
WO2017086268A1 (ja) 2015-11-19 2017-05-26 住友電気工業株式会社 希土類磁石の製造方法、及び希土類磁石
WO2017090635A1 (ja) 2015-11-24 2017-06-01 住友電気工業株式会社 希土類磁石、及び希土類磁石の製造方法
EP3534382A1 (en) * 2018-02-28 2019-09-04 Daido Steel Co.,Ltd. Sm-fe-n magnet material and sm-fe-n bonded magnet
US10632533B2 (en) 2016-01-28 2020-04-28 Murata Manufacturing Co., Ltd. Raw material for magnet, which comprises Sm—Fe binary alloy as main component, method for producing the same, and magnet
JP2021086898A (ja) * 2019-11-27 2021-06-03 株式会社豊田自動織機 磁石用粉末の製造方法及び磁石用粉末

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077223A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 磁性材料及びそれを用いたモータ
WO2017086268A1 (ja) 2015-11-19 2017-05-26 住友電気工業株式会社 希土類磁石の製造方法、及び希土類磁石
WO2017090635A1 (ja) 2015-11-24 2017-06-01 住友電気工業株式会社 希土類磁石、及び希土類磁石の製造方法
US10632533B2 (en) 2016-01-28 2020-04-28 Murata Manufacturing Co., Ltd. Raw material for magnet, which comprises Sm—Fe binary alloy as main component, method for producing the same, and magnet
EP3534382A1 (en) * 2018-02-28 2019-09-04 Daido Steel Co.,Ltd. Sm-fe-n magnet material and sm-fe-n bonded magnet
CN110211759A (zh) * 2018-02-28 2019-09-06 大同特殊钢株式会社 Sm-Fe-N磁体材料和Sm-Fe-N粘结磁体
CN110211759B (zh) * 2018-02-28 2021-08-10 大同特殊钢株式会社 Sm-Fe-N磁体材料和Sm-Fe-N粘结磁体
US11742121B2 (en) 2018-02-28 2023-08-29 Daido Steel Co., Ltd. Sm—Fe—N magnet material and Sm—Fe—N bonded magnet
JP2021086898A (ja) * 2019-11-27 2021-06-03 株式会社豊田自動織機 磁石用粉末の製造方法及び磁石用粉末

Similar Documents

Publication Publication Date Title
US5750044A (en) Magnet and bonded magnet
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
JP3143156B2 (ja) 希土類永久磁石の製造方法
US6290782B1 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP2001189206A (ja) 永久磁石
US20040025974A1 (en) Nanocrystalline and nanocomposite rare earth permanent magnet materials and method of making the same
JP3311907B2 (ja) 永久磁石材料、永久磁石及び永久磁石の製造方法
JP3549382B2 (ja) 希土類元素・鉄・ボロン系永久磁石およびその製造方法
JP3317646B2 (ja) 磁石の製造方法
JP2705985B2 (ja) 磁性材料、それから成る磁石及びそれらの製造方法
JP2513994B2 (ja) 永久磁石
JP2898229B2 (ja) 磁石、その製造方法およびボンディッド磁石
JPH1053844A (ja) 希土類−鉄−ボロン系磁石合金及びその製造法並びに該希土類−鉄−ボロン系磁石合金を用いたボンド磁石
JP2665590B2 (ja) 希土類―鉄―ボロン系磁気異方性焼結永久磁石原料用合金薄板並びに磁気異方性焼結永久磁石原料用合金粉末,及び磁気異方性焼結永久磁石
JP2853838B2 (ja) 希土類永久磁石の製造方法
JP3560387B2 (ja) 磁性材料とその製造法
JP2853839B2 (ja) 希土類永久磁石の製造方法
JPH10312918A (ja) 磁石およびボンディッド磁石
JP2000003808A (ja) 硬磁性材料
JP3856869B2 (ja) 樹脂含有圧延シート磁石およびその製造方法
JP3645312B2 (ja) 磁性材料と製造法
JP3784085B2 (ja) 安定した保磁力を有する磁性材料およびその製法
JP2003213384A (ja) 永久磁石合金及びボンド磁石
JPH045739B2 (ja)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001