WO2011068107A1 - 軽希土類磁石及び磁気デバイス - Google Patents
軽希土類磁石及び磁気デバイス Download PDFInfo
- Publication number
- WO2011068107A1 WO2011068107A1 PCT/JP2010/071427 JP2010071427W WO2011068107A1 WO 2011068107 A1 WO2011068107 A1 WO 2011068107A1 JP 2010071427 W JP2010071427 W JP 2010071427W WO 2011068107 A1 WO2011068107 A1 WO 2011068107A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- fluorine
- rare earth
- iron
- light rare
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
- C22C1/0441—Alloys based on intermetallic compounds of the type rare earth - Co, Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/04—Nanocrystalline
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to a magnet material in which the amount of heavy rare earth elements used is reduced while maintaining a high Curie temperature and high saturation magnetization, and a magnetic device using the same.
- a magnetic device refers to a device that utilizes the direction of spin of electrons.
- Patent Documents 1 to 5 disclose conventional rare earth sintered magnets containing a fluorine compound or an oxyfluorine compound.
- Patent Document 6 discloses mixing rare earth fluorine compound fine powder (1 to 20 ( ⁇ m)) with NdFeB powder.
- Patent Documents 7 to 9 show a method for manufacturing a bonded magnet.
- Patent Document 10 shows application of nitrogen-added rare earth magnet fine particles to a magnetic recording medium.
- Patent Document 11 discloses a tunnel magnetoresistive element, a magnetic head, and a magnetic memory. However, none of the materials according to the present invention is used.
- a magnet obtained by reacting a fluorine-containing compound with an Nd-Fe-B magnet material particularly a magnet having increased coercive force by using a fluoride containing fluorine and heavy rare earth elements.
- the fluoride is not a reaction for fluorinating the main phase, but it is a heavy rare earth element that reacts or diffuses with the main phase. Since such heavy rare earth elements are expensive, reduction of heavy rare earth elements is an issue.
- Light rare earth elements, which are less expensive than heavy rare earth elements are elements having atomic numbers 57 to 63, and some of the elements are used in magnet materials.
- the most mass-produced material of iron-based magnets other than oxides is the Nd 2 Fe 14 B system.
- an R 2 Fe 17 (R is a light rare earth element) -based alloy has a low Curie temperature, but it is known that a compound having carbon or nitrogen intruded into this alloy has a Curie temperature as high as about 500 ° C. At present, it is desired to find an inexpensive intruding element that improves the performance as a magnet.
- the inventors provide a light rare earth magnet composed of (a) a light rare earth element having a light element additive and (b) iron or cobalt, and a magnetic device to which the magnet is applied.
- any one of the Curie temperature, the saturation magnetization, and the coercive force of the light rare earth magnet can be increased as compared with the conventional one.
- the figure which shows the crystal structure example of the magnetic material which concerns on this invention The figure explaining the lattice constant and saturation magnetization of the magnetic material which concern on this invention. The figure explaining the lattice constant and saturation magnetization of the magnetic material which concern on this invention. The figure explaining the local electron number of the magnetic material which concerns on this invention. The figure explaining the local magnetic moment of the magnetic material which concerns on this invention. The figure which shows the total electron spin state density of the magnetic material which added nitrogen. The figure which shows the all-electron spin state density of the magnetic material which added the fluorine. The figure which shows the structural example of the magnetic-recording medium using the magnetic material which concerns on this invention. The figure which shows the structural example of the magnetic sensor using the magnetic material which concerns on this invention. The figure which shows the simple structural example of the magnetic sensor using the magnetic material which concerns on this invention. The figure which shows the simple structural example of the motor using the magnetic material which concerns on this invention.
- FIGS. 4 and 5 the local electron number N elec and the local magnetic moment M around each atom were examined, and the results shown in FIGS. 4 and 5 were obtained.
- FIGS. 4 and 5 attention was paid to Fe atoms.
- the labels 2c, 3d, 6f, and 6h are attached to the Fe atoms that are equivalent in site symmetry in the crystal.
- FIGS. 4 and 5 compare the results when the additive is N (nitrogen) and F (fluorine).
- N nitrogen
- F fluorine
- the sites (6f, 6h) where the difference is recognized are sites adjacent to the additive X. That is, additive X was found to change the local magnetic moment of the Fe atom adjacent to it. When F (fluorine) was added, a large increase was observed in the magnetic moment at the sites of 6f and 6h compared to the case where the additive was N (nitrogen).
- FIG. 6 shows the calculation result of the total electron spin state density when the additive is N (nitrogen)
- FIG. 7 shows the calculation result of the total electron spin state density when the additive is F (fluorine).
- the horizontal axis represents energy (eV)
- the vertical axis represents total spin state density (DOS).
- a region having a positive state density above the state density of zero
- a region having a negative state density below the state density of zero
- the essential difference between these electronic states is that N (2p) and Fe (3d) are mixed in FIG.
- the magnetic moment of the Fe atom is higher in the Fe atom in which the ionic bond is formed with the additive than in the Fe atom in which the covalent bond is formed.
- the additive forms an ionic bond with an adjacent Fe atom such as an F atom
- the 3p level is -8.6 (eV).
- the energy difference between Fe (3d) -Cl (3p) was 1.1 (eV), and an increase in magnetic moment due to ionic bonding was observed.
- the inventors need that the energy difference between the p-orbital level of the additive and the d-orbital level of the F atom be about 1 (eV) or more in order to increase the magnetic moment due to the formation of ionic bonds. I think.
- the inventors have a composition in which the Fe content relative to the light rare earth element R is higher than the conventional composition (R 2 Fe 14 X composition) (R 2 Fe 17 X 3 composition: R is a light rare earth element, Fe is iron, It is considered effective to use X as a light element, preferably fluorine or chlorine. More generally, consider R 2 Fe 17 X i composition (R is light rare earth element, Fe is iron, X is light element, i is 1, 2, 3) and is valid.
- R x Fe y F z composition (R is a light rare earth element, Fe is iron, F is fluorine, x, y, and z are natural numbers) is more anisotropic than a fluorine-free compound. This is because all values of sexual energy, Curie point, and saturation magnetization become high.
- Light rare earth elements R are La (lanthanum: atomic number 57), Ce (cerium: atomic number 58), Pr (praseodymium: atomic number 59), Nd (neodymium: atomic number 60), Pm (promethium: atomic number) 61), Sm (samarium: atomic number 62), Eu (europium: atomic number 63) are possible.
- Example 1 An example of generating magnetic powder is shown below.
- An Sm-F-based solution is applied to an iron foil body having a thickness of 100 (nm) and then heat-treated. The purity of the iron foil body is 99.8%.
- the Sm-F solution having the SmF 3 composition shows an amorphous structure. For this reason, unlike the crystalline pattern, the X-ray diffraction pattern includes one or more peaks having a half-value width of 1 degree or more.
- After applying 0.1 (wt%) Sm-F solution to the iron foil body it is heated and held in an atmosphere of 600 ° C. in which ammonium fluoride is evaporated, and then rapidly cooled.
- the iron foil and fluoride react to obtain an iron foil containing Sm and fluorine.
- heat treatment is performed at a temperature higher than the heat treatment temperature (600 ° C.) described above, it becomes difficult for fluorine to form iron rare earth fluorine ternary compounds, and stable fluorides and oxyfluorides are grown. As a result, it is difficult to improve the magnetic characteristics.
- FIG. 1 shows an example of a hexagonal crystal structure.
- the hexagonal crystal is the main phase and the fluorine is disposed at the penetration position or the substitution position, the coercive force is 20 to 25 (kOe) and the Curie temperature is 400 to 600 ° C.
- the coercive force is 20 to 25 (kOe) and the Curie temperature is 400 to 600 ° C.
- it can change to a hard magnetic material by giving the process mentioned above to the iron foil body which shows soft magnetism.
- FIG. 2 shows the analysis results of the main phase structure when various elements are added to Sm.
- the hexagonal lattice constant was 0.84 (nm) to 0.95 (nm) for the a axis and 1.24 to 1.35 (nm) for the c axis.
- saturation magnetization was measured, it showed a high value exceeding 1.6 (T). In either case, the saturation magnetization obtained a larger value when adding fluorine than when adding nitrogen.
- T 1.6
- the composition of the magnet (light rare earth magnets), R 2 Fe 17 X i composition (R is light rare earth element, Fe is iron, X is fluorine or chlorine, i is 1, 2, 3) by a High Curie temperature, high saturation magnetization and high coercivity can be realized.
- the magnetic device can be reduced in size and weight and the manufacturing cost can be reduced.
- magnetic devices include bonded magnets (magnets formed by mixing magnet powder and nylon resin, rubber, additives, etc.), rotating machines, and voice coil motors.
- the rotating machine includes, for example, a pump, a compressor, a fan, a blower, a turbine, and an engine.
- Example 2 In this example, a case where the magnetic powder having the composition structure according to Example 1 is applied to a magnetic layer of a magnetic recording medium will be described.
- a magnetic recording medium is also an example of a magnetic device. Examples of the magnetic recording medium include a magnetic tape, a magnetic disk, a magneto-optical disk, and a magnetic memory (a memory in which memory cells in which both sides of an insulating layer are sandwiched between ferromagnetic layers are arranged in a matrix).
- Magnetic powder having a high Curie temperature, a high saturation magnetization, and a high coercive force can be obtained by subjecting the SmFe-based particles contained in this dispersion to a fluorination treatment with a fluorine compound in the dispersion.
- FIG. 8 shows an example of a cross-sectional structure of the magnetic tape.
- the lower nonmagnetic layer 11 is laminated on one main surface of the base film 10, and the magnetic layer 12 is laminated on the main surface opposite to the base film 10 side of the lower nonmagnetic layer 11.
- magnetic powder having the composition structure according to Example 1 is used for the magnetic layer 12.
- a backcoat layer 13 is formed on the main surface of the base film 10 opposite to the lower nonmagnetic layer 11 side. That is, the magnetic tape shown in FIG. 8 has a laminated structure in which the backcoat layer 13, the base film 10, the lower nonmagnetic layer 11 and the magnetic layer 12 are laminated in this order.
- the magnetic tape thus formed was about 5% stronger than the magnetic tape in which nitrogen was added to the magnetic layer 12.
- Example 3 In this example, a case where the magnetic powder having the composition structure according to Example 1 is applied to a magnetic sensor will be described.
- a magnetic sensor is also an example of a magnetic device. Examples of the magnetic sensor include a magnetic head and a current sensor.
- FIG. 9 shows an example of a cross-sectional structure of a tunnel magnetoresistive element (TMR element).
- the TMR element 50 shown in FIG. 9 has a structure in which an underlayer 51, an antiferromagnetic layer 52, a magnetization fixed layer 53, a tunnel barrier layer 54, a magnetization free layer 55, and a cap layer 56 are sequentially stacked.
- magnetic particles having the composition structure according to Example 1 are used for the magnetization fixed layer 53. That is, a ferromagnetic thin film having high coercive force and high saturation magnetization and a high energy product is used.
- a TMR element with a simplified cross-sectional structure can be manufactured. Simplification of the structure saves material.
- Example 4 In this example, a case where the magnetic powder having the composition structure according to Example 1 is applied to a magnetic circuit will be described.
- a magnetic circuit is also an example of a magnetic device. Examples of the magnetic circuit include a motor, an MRI (Magnatic Resonance Image), an electron microscope, a superconducting device, and a medical device.
- a vapor deposition source is disposed in a vacuum vessel, and Fe is evaporated.
- Fe is evaporated in the container by resistance heating in a vacuum degree of 1 ⁇ 10 ⁇ 4 (Torr) or less to produce particles having a particle diameter of 100 (nm).
- An alcohol solution containing SmF 2-3 composition (subscript means 2 or 3 fluorine atoms. The same applies to other compositions) is applied to the Fe particle surface and dried at 200 ° C. Then, a fluoride film having an average film thickness of 1 to 10 (nm) can be formed on the Fe grain surface.
- the Fe particles coated with the fluoride film are mixed with ammonium fluoride (NH 4 F) and heated by an external heater.
- NH 4 F ammonium fluoride
- the heating temperature is 800 ° C. After heating and holding at 800 ° C for 1 hour or more, rapidly cool to 50 ° C or less at a maximum cooling rate of 100 ° C / min.
- magnetic powder having an oxygen concentration of 100 to 2000 (ppm) can be obtained.
- Some of the fluorine atoms are arranged at positions between tetrahedral lattices or octahedral lattices of the unit lattice of Fe.
- ammonium fluoride nitrogen and hydrogen in addition to fluorine enter the Fe particles or fluoride film.
- Fig. 11 shows a schematic diagram of a cross section perpendicular to the axial direction of the motor.
- the motor includes a rotor 100 and a stator 101.
- the stator 101 includes a core back 102 and a plurality of teeth 103.
- a coil group of coils 105a, 105b, and 105c (a U-phase winding 105a of a three-phase winding, a V-phase winding 105b, and a W-phase winding 105c) is inserted at a coil insertion position 104 between the teeth 103.
- a rotor insertion portion 107 is secured on the shaft center side from the tip portion 106 of the teeth 103, and the rotor 110 is inserted at this position.
- a magnet is inserted on the outer peripheral side of the rotor 110, and a fluorinated portion (less than 5% of average fluorine atom concentration in iron) 111 having less iron fluoride and a fluorinated portion having more iron fluoride (average fluorine concentration in iron). (5% -10%) 112 and 113.
- the areas of the fluorinated portions 112 and 113 having a fluorine concentration of 5 to 10 atomic% in the iron phase constituting the magnet are different.
- fluoride treatment is performed so that the area of the magnetic field strength to which a reverse magnetic field is applied (fluorinated part 112) is larger than the smaller area (fluorinated part 113), thereby increasing the coercive force and residual magnetic flux density. .
- the amount of rare earth elements used can be reduced by increasing the amount of iron fluoride on the outer peripheral side of the sintered magnet.
- the saturation magnetic flux density can be increased to 2.4-2.6 (T) by applying fluorination to the soft magnetic part of the magnetic circuit.
- Example 5 Next, another example of generation of magnetic powder will be shown.
- 100 g of SmFe 11 Al powder having a particle size of about 1 ( ⁇ m) is mixed with 10 g of ammonium fluoride (NHF 4 ) powder and heated after evacuation.
- CaH 2 is added to suppress the progress of oxidation on the powder surface having the SmFe 11 Al composition.
- the heat treatment temperature is 300 ° C. and the holding time is 5 hours. After heating, it is quenched and the fluorinated powder of SmFe 11 Al composition is taken out from the heat treatment furnace.
- a fluorine-containing reactive gas is generated from ammonium fluoride (NHF 4 ), and a powder having a composition of SmFe 11 AlF 0.1-3 is produced.
- SmF 3 , SmOF, AlF 2 , Al 2 O 3 , SmO 2 , Fe 2 O 3 , Fe 3 O 4 , SmH are present on the surface of the powder having the composition of SmFe 11 AlF 0.1-3 or in the grain boundaries and grains in the powder.
- Fluoride or oxyfluoride, oxide, hydride such as 2 grows.
- the lattice constants of the a-axis and c-axis are different by 0.01-1%, and the bcc structure, which is difficult to determine as a bct structure, is included from the diffraction experiment.
- the fluorine concentration of the mother phase is higher on the outer peripheral side than the powder center, and a part of the powder surface is in contact with a fluoride or oxyfluoride containing a higher concentration of fluorine than the mother phase.
- the saturation magnetization after the fluorination treatment increased by 15% compared to before the fluorination treatment
- the Curie temperature increased by 200 ° C
- the uniaxial magnetic anisotropy energy (Ku) was found to increase by 30%.
- a magnetic field is applied, and then compression-molded with a load of 0.5 (t / cm 2 ) at 500 ° C., a part of the grains composed of SmFe 11 AlF 0.1-3 composition is formed. It was possible to obtain a molded body in which is sintered.
- the magnetic properties of this molded product were a residual magnetic flux density of 1.5 (T), a coercive force of 31 (kOe), and a Curie temperature of (795 K).
- This magnet is an embedded magnet type motor, surface magnet motor, voice coil motor, stepping motor, AC servo motor, linear motor, power steering, electric vehicle drive motor, spindle motor, actuator, synchrotron undulator, deflecting magnet, fan It can be applied to motors, permanent magnet MRI, electroencephalographs and other magnetic devices.
- the following materials can be obtained as an effect of increasing the magnetization by introducing fluorine into the matrix, increasing the Curie temperature, and increasing the magnetic anisotropy energy.
- the following materials can be obtained as an effect of increasing the magnetization by introducing fluorine into the matrix, increasing the Curie temperature, and increasing the magnetic anisotropy energy.
- a material in which a part or all of Al uses a transition element such as Si, Ga, Ge, or Ti instead of Sm, there is a material using a rare earth element containing Y or Mn for a part or all of Sm.
- the inventors have confirmed the effect of introducing fluorine even in a fluorine compound containing SmFe 11.1-30 or a transition compound containing a transition element, which has a higher Fe content than the powder of SmFe 11 Al composition.
- the same effect could be confirmed if the particle size of the SmFe 11 Al composition powder was 20 ( ⁇ m) or less.
- a gas used for fluorination various gases containing fluorine can be used, and a hydride other than CaH 2 can be used as a reducing agent during heating.
- Example 6 Subsequently, another example of generation of magnetic powder will be shown.
- 100 g of SmFe 11 Ti powder having a particle size of about 0.5 ( ⁇ m) is mixed with 10 g of ammonium fluoride (NHF 4 ) powder and heated after evacuation.
- CaH 2 is added to suppress the progress of oxidation on the powder surface of the SmFe 11 Ti composition.
- the heat treatment temperature is 200 ° C. and the holding time is 10 hours.
- the powder is rapidly cooled and fluorinated, and the powder of SmFe 11 Ti composition is taken out from the heat treatment furnace.
- a fluorine-containing reactive gas is generated from ammonium fluoride (NHF 4 ), and a powder having a composition of SmFe 11 TiF 0.1-3 can be prepared.
- the fluorine concentration is different between the central portion and the outer peripheral portion of the crystal grains or powder, and the fluorine concentration is higher in the outer peripheral portion than in the central portion. This is because fluorine diffuses from the outer periphery. Therefore, even if the composition of the central portion is SmFe 11 TiF 0.1 , the composition of the outer peripheral portion can be SmFe 11 TiF 3 .
- the heat treatment holding time described above is 20 hours, the difference in fluorine concentration between the central portion and the outer peripheral side is reduced.
- the composition of the central part can be SmFe 11 TiF 0.3 and the composition of the outer peripheral part can be SmFe 11 TiF 3 . Therefore, the fluorine concentration and concentration gradient of each part in the magnetic powder can be adjusted by the heat treatment holding time, gas partial pressure, gas type, etc. in accordance with the intended magnetic characteristics.
- SmF 3 , SmOF, TiF 2 , Ti 2 O 3 , SmO 2 , Fe 2 O 3 , and Fe 3 O 4 are present on the surface of the powder having the SmFe 11 TiF 0.1-3 composition or on the grain boundaries and grains in the powder.
- Fluoride such as TiN or oxyfluoride, oxide, nitride grows.
- the inventors confirmed from the X-ray diffraction pattern or electron beam diffraction pattern that crystals having fluorine atoms introduced into the body-centered tetragonal crystal (bct structure) of the parent phase were growing. With the introduction of fluorine, the lattice volume of the body-centered tetragonal crystal increases.
- an iron-fluorine binary alloy having a lattice strain and a bcc structure or a bct structure also grows.
- the fluorine concentration of the parent phase is higher on the outer peripheral side than on the powder center. Accordingly, a part of the powder surface comes into contact with a fluoride or oxyfluoride containing a higher concentration of fluorine than the parent phase. For this reason, in the crystal grains constituting the parent phase, the lattice volume is larger on the outer peripheral side or on the surface or in the vicinity of the interface of the particles containing a high concentration of fluorine than the central part, and the anisotropic energy is higher than the central part of the particle. Tend to be large.
- the powder after the fluorination treatment has a 35% increase in saturation magnetization and a Curie temperature of 250 ° C compared to the powder before the fluorination treatment.
- Sexual energy (Ku) was found to increase by 20%.
- the powder after fluorination treatment is inserted into a mold, a magnetic field is applied, and compression molding is performed at 400 ° C. with a load of 1 (t / cm 2 ), the powder is composed of crystal grains of SmFe 11 TiF 0.1-3 composition. A molded body partially sintered was obtained.
- the magnetic properties of this molded product were a residual magnetic flux density of 1.6 (T), a coercive force of 35 (kOe), and a Curie temperature of 835 (K).
- thermoforming processes such as impact compression molding, electric current molding, rapid heating molding, and thermoforming using electromagnetic waves can be adopted for forming the molded body.
- the fluorination treatment can use a CF-based or HF-based gas or solution containing fluorine in addition to ammonium fluoride.
- the magnets having the above-mentioned magnetic characteristics include home appliance magnet motors, industrial magnet motors, railway magnet motors, electric vehicle drive motors, HDD (Hard Disk Drive) spindle motors, voice coil motors, etc.
- the present invention can be applied to motors, medical equipment, measuring equipment, other magnetic circuits, and magnetic devices including these. By adopting the magnet according to the embodiment, the magnetic device can be reduced in size, weight, performance, and efficiency.
- iron powder having a particle size of 100 (nm) is prepared by vacuum deposition.
- the iron powder prepared in the deposition chamber is swollen with a composition close to SmF 3 without being exposed to the atmosphere, and is mixed with an alcohol solution to which 1% by weight of Ti is added.
- an SmF 3 film containing Ti with a powder surface coverage of 90% is formed with a thickness of 1 to 10 (nm).
- the fluoride-coated iron powder is heated and held at 500 ° C. together with CaH 2 and then cooled at an average cooling rate of 10 ° C./min or more. After cooling, aging treatment was performed at 200 ° C.
- SmFe 11 TiF 0.01-2 composition powder including the coated part, SmFe 11 TiF 0.01-2 grows 55% with respect to the total volume of the powder.
- the magnetic flux density is 190 (emu / g)
- the coercive force is 35 (kOe)
- the Curie temperature is 825 (K). It was confirmed that the magnetic anisotropy tends to be larger on the surface or on the outer peripheral side of the crystal grains than on the center of the crystal grains.
- this magnetic powder After mixing this magnetic powder with a resin material, it was oriented in a magnetic field and compression molded to create a bonded magnet.
- the volume of the magnetic powder in the bonded magnet was 80%, the residual magnetic flux density was 1.25 (T), and the coercive force was 34 (kOe).
- T residual magnetic flux density
- kOe coercive force
- R x Fe y F z (R is a rare earth element including Y, Fe is iron, F is fluorine, x, y, z are natural numbers) powder or other transition element M added R x (Fe, M)
- the powder having the y F z composition is a magnet material having a rare earth element content lower than that of a conventional bonded magnet and having improved magnetic properties, and thus can be applied to various magnetic circuits and magnetic devices.
- the main phase of the magnet material is R x (Fe, M) y F It is z composition, and it is desirable that the concentration of the transition element M to be added is less than that of iron (Fe) with the fluoride or oxyfluoride necessary for forming the main phase fluorine compound.
- Example 8 In this embodiment, a surface oxide film is removed by heating and reducing an iron foil having a thickness of 2 ( ⁇ m) in a hydrogen atmosphere. Thereafter, the composition close to SmF 3.5 is swollen without exposing the iron foil to the atmosphere, and mixed with an alcohol solution to which 1 wt% of Mg is added. As a result, an SmF 3.1 film containing Mg with a coverage of 95% is formed on the powder surface with a thickness of 1 to 10 (nm). Next, this fluoride-coated iron powder is heated and held at 400 ° C. together with CaH 2 and then cooled at an average cooling rate of 20 ° C./min or more. After rapid cooling, it was aged at 300 ° C.
- the SmFe 11 MgF 0.1-4 foil body prepared at a heating temperature of 400 ° C. in the aging treatment includes fluorides such as SmF 3 which is not a tetragonal structure, oxyfluorides such as SmOF or oxides, carbides, and the bcc structure.
- Bct structure iron grows.
- the lattice volume of Bcc or bct structure iron is smaller than the volume of the main phase SmFe 11 MgF 0.1-4 lattice.
- the fluorine concentration of these fluorides and oxyfluorides is higher than that of SmFe 11 MgF 0.1-4 .
- to determine the magnetic properties are iron growth phase and bcc structure or bct structure of the interface or the vicinity of the interface between SmFe 11 MgF 0.1-4 and the SmFe 11 MgF 0.1-4.
- SmFe 11 MgF 0.1-4 foil body including the coated portion SmFe 11 MgF 0.1-4 grew 65% with respect to the entire volume.
- the saturation magnetic flux density is 200 (emu / g)
- the coercive force is 30 (kOe)
- the Curie temperature is 815 (K). It was possible to produce magnetic powder showing the magnetic properties of.
- iron 50% manganese powder (Fe-50% Mn powder) having a particle size of 100 (nm) is prepared by vacuum deposition.
- a composition close to LaF 3 is swollen and mixed with an alcohol solution to which 1 wt% Co is added.
- a LaF 3 film containing Co with a coverage of 90% is formed on the powder surface with a thickness of 1 to 10 (nm).
- This fluoride-coated Fe-50% Mn powder was heated and held at 300 ° C. with CaH 2 and then cooled at an average cooling rate of 10 ° C./min or more.
- La (Fe, Co) 11 MnF 0.01-2 powder prepared in this way grows fluorides such as LaF 3 that are not tetragonal structures, oxyfluorides such as LaOF, oxides, carbides, hydrides, etc. did.
- the fluorine concentration is higher for La (Fe, Co) 11 MnF 0.01-2 for fluorides and oxyfluorides that do not have a tetragonal structure.
- La (Fe, Co) 11 MnF 0.01-2 grew 51% relative to the total volume
- Ya further LaMn 11 F La 2 Mn 17 F 2 grows as a ferromagnetic phase.
- a compound composed of Mn and fluorine most of the magnetic moment of Mn is ferromagnetically coupled and has high magnetic anisotropy energy.
- the magnetic properties were such that the saturation magnetic flux density was 170 (emu / g), the coercive force was 31 (kOe), and the Curie temperature was 754 (K).
- this magnetic powder is mixed with a non-magnetic fluoride material, it is oriented in a magnetic field, and when the fluoride is plastically deformed by heat compression molding, a high electrical resistance bond magnet in which the fluoride becomes a binder can be created.
- the volume of the magnetic powder in the bond magnet of the fluoride binder (MgF 2 ) was 90%, the residual magnetic flux density was 1.21 (T), and the coercive force was 30 (kOe).
- the induced voltage waveform was measured. As a result, a higher induced voltage than a bond magnet composed of a main phase containing other rare earth elements such as NdFeB or SmFeN is obtained. It was confirmed to show.
- R x (Fe, M) y F z (x and y are natural numbers, z is a positive number) added with the transition element M is a main phase composed of the element M, the rare earth element R, and the fluorine F. It can be applied to various magnetic devices as a magnet material having a rare earth content lower than that of a conventional bonded magnet and having improved magnetic properties, accompanied by growth of a ferromagnetic compound different from the above.
- the ferromagnetic compound different from the main phase described above is R x M y F z (R is a rare earth element, M is a transition metal element, F is fluorine, x, y, z is a positive number, 0 ⁇ x ⁇ y, Fluoride represented by z ⁇ y), part of which has a ferromagnetic coupling in the parent phase.
- Example 10 iron, SmF 3 and Sm are mixed to produce a target having an Sm 2.3 Fe 17 F 4 composition.
- This target is placed in a sputtering apparatus, and the surface of the target is sputtered with Ar ions to form an SmFeF-based thin film on the substrate.
- the composition of the film prepared by sputtering was Sm 2 Fe 17 F 2 .
- Ta was selected as the underlayer and capped with Ta to prevent oxidation.
- the sputtering film was heated to a temperature range of 200 to 300 ° C. and held for 10 hours.
- the sputtering film formed on the substrate is heat-treated in an ammonium fluoride (NH 4 F) decomposition gas.
- the heat treatment temperature is 300 ° C.
- the holding time is 1 hour.
- the composition of the thin film after the heat treatment changed from Sm 2 Fe 17 F 2 to Sm 2 Fe 17 F 3 , and it was confirmed that the magnetic properties were improved as the fluorine concentration was increased.
- the magnetic properties of the Sm 2 Fe 17 F 3 film are a residual magnetic flux density of 1.5 (T), a coercive force of 35 (kOe), and a Curie temperature of 770 (K).
- the Sm 2 Fe 17 F 3 film has magnetic characteristics that can be applied to a magnetic recording medium.
- a film having a residual magnetic flux density exceeding 1.4 (T) and a Curie temperature exceeding 700 (K) is R x (Fe, M) y F z (R is a rare earth element including Y, Fe is iron) , M is a transition element smaller than the electronegativity of fluorine (4.0) and has an electronegativity of 3 or less, F is fluorine, x, y, z are positive numbers), hexagonal crystal, rhombohedral crystal It is formed as a fluoride or oxyfluoride that grows when a main phase fluorine compound having a crystal structure such as tetragonal or orthorhombic is formed.
- the concentration of the transition element M to be added contributes to the improvement of the stability of the crystal structure and is preferably less than the concentration of iron (Fe) in order to ensure the residual magnetic flux density. Even if the underlayer and the capping layer are a metal other than Ta, or a fluoride, nitride, carbide, or oxide, substantially the same characteristics can be obtained. Even if R x (Fe, M) y F z contains oxygen, hydrogen, nitrogen, carbon, boron or trace metal impurities as impurities, there is no problem in characteristics.
- Example 11 iron, SmF 3 and Sm are mixed to produce two types of targets, Sm 2.3 Fe 17 F 6 composition target and Sm 2 Fe 17 composition target.
- the two targets are set in a sputtering apparatus, and the surfaces of the two targets are alternately sputtered by Ar ions.
- a thin film in which an SmFeF-based thin film and an SmFe-based film are formed in multiple layers on the substrate is formed.
- the thickness of the SmFeF-based thin film was 2 (nm), and the thickness of the SmFe-based film was 3 (nm).
- This multilayer film was heat-treated at 200 ° C., and optimization of film formation conditions and heat treatment conditions were advanced so that the composition of the entire film was Sm 2 Fe 17 F 2 .
- W tungsten
- W was selected as the underlayer and capped with W to prevent oxidation. It was confirmed from analysis of an X-ray diffraction pattern or a limited-field electron diffraction image using an electron microscope that rhombohedral crystals were grown on the sputtered film after the heat treatment.
- an alcohol solution containing a fluoride such as an SmF 3 film is applied to the surface of the sputtering film and heat-treated.
- the heat treatment temperature is 350 ° C. and the holding time is 1 hour.
- the composition of the thin film after the heat treatment was changed from Sm 2 Fe 17 F 2 to Sm 2 Fe 17 F 2.5 .
- the magnetic properties have been improved, such as an increase in coercivity, an increase in residual magnetic flux density, an increase in saturation magnetic flux density, a decrease in coercivity temperature coefficient, a decrease in residual magnetic flux density, and an increase in Curie temperature. It was.
- the magnetic properties of the Sm 2 Fe 17 F 2.5 film have a residual magnetic flux density of 1.45 (T), a coercive force of 32 (kOe), and a Curie temperature of 750 (K), and have magnetic properties applicable to magnetic recording media. Grain boundaries in films of fluorides such as SmF 3 , SmF 2 , and FeF 2 , or acid fluorides such as SmOF, or iron oxides such as Fe 2 O 3 and Fe 3 O 4 , which have a structure different from the main phase Alternatively, the growth at the interface or the like was confirmed by analysis of an electron beam diffraction image using an electron beam having a diameter of 1 nm.
- a film having a residual magnetic flux density exceeding 1.4 (T) and a Curie temperature exceeding 700 (K) is R x (Fe, M) y F z (R is a rare earth element including Y, and Fe is iron. , M is a transition element, F is fluorine, x, y, z are positive numbers), and the main phase fluorine compound having a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic or cubic It is formed as a fluoride or oxyfluoride or an oxide that grows when forming.
- transition element M such as Ti, Al, Ga, Ge, Bi, Ta, Cr, Mn, Zr, Mo, Hf, Cu, Pd, Mg, Si, Co, Ni, Nb to be added is stable in the crystal structure. It is desirable to ensure the residual magnetic flux density that it is less than iron (Fe). Even if the underlayer and the capping layer are made of a metal other than W (tungsten), or a fluoride, nitride, carbide, or oxide, substantially the same characteristics can be obtained. Even if R x (Fe, M) y F z contains oxygen, hydrogen, nitrogen, carbon, boron or trace metal impurities as impurities, there is no problem in characteristics. Chlorine may be used instead of fluorine.
- Example 12 In this embodiment, ethanol is used as a solvent and a solution obtained by swelling a composition in the vicinity of SmF 3 and a solution containing iron ions are used and alternately applied onto a substrate.
- the coating thickness per layer is 1 to 2 (nm).
- the crystal structure of the single layer film immediately after coating is almost amorphous.
- An iron plate was used as the substrate.
- the total thickness of the film in which the Sm-rich layer and the Fe-rich layer are laminated is about 1 (mm).
- This film is heated and crystallized at 350 ° C. for 1 hour while applying a magnetic field in one direction. Heating diffuses the elements that make up the amorphous structure, causing a phase transition in the metastable crystalline material.
- Sm 2 Fe 17 F 2 are, SMOF and Fe 2 O 3, FeF 2, FeF 3 fluoride such acid fluorides or oxides thereof, to grow with a carbide. Transition of Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Nb, Cu, Bi, Pd, Pt, etc. that stabilize Sm 2 Fe 17 F 2 to grow a lot of Sm 2 Fe 17 F 2
- the element is added as 0.01 to 1 (wt%) ions to either of the two types of solutions described above.
- Sm 2 Fe 17 F 2 has a rhombohedral Th 2 Zn 17 or hexagonal Th 2 Ni 17 structure.
- the fluorine atoms are arranged at the 9e site of rhombohedral Th 2 Zn 17 or the 6h site of hexagonal Th 2 Ni 17 structure.
- By introducing fluorine atoms either the a-axis length or the c-axis length expands.
- the increase in lattice volume due to the introduction of fluorine can be confirmed from 0.1 to 5%, or the increase in lattice strain can be confirmed from 0.1 to 15%.
- any of an increase in magnetic moment of iron atoms, an increase in magnetocrystalline anisotropy energy, an increase in Curie temperature (Curie point), and an increase in exchange coupling energy can be observed.
- the Sm 2 Fe 17 F 2 film exhibits anisotropy by the applied magnetic field, and its magnetic properties are a residual magnetic flux density of 1.65 (T), a coercive force of 32 (kOe), and a Curie temperature of 780 (K).
- This magnetic characteristic can be applied to a small magnetic circuit including a magnetic recording medium and a motor. Residual magnetic flux density exceeds 1.5 (T) and Curie temperature exceeds 600 (K).
- R x (Fe, M) y F z R is a rare earth element including Y, Fe is iron, M is Transitional elements, F is fluorine, x, y, z are positive numbers
- R x (Fe, M) y F z R is a rare earth element including Y, Fe is iron, M is Transitional elements, F is fluorine, x, y, z are positive numbers
- It is formed as a fluoride or oxyfluoride or oxide that grows when forming a phase fluorine compound. Fluorine atoms arranged between iron-iron atoms and fluorine atoms forming a compound with rare earth elements or oxygen are recognized although not arranged between iron-iron atoms.
- the concentration of transition element M such as Ti, Al, Ga, Ge, Bi, Ta, Cr, Mn, Zr, Mo, Hf, Cu, Pd, Mg, Si, Co, Ni, Nb to be added is stable in the crystal structure. Contributes to improved performance.
- the concentration of the transition element M is lower than the concentration of iron (Fe).
- R x (Fe, M) y F z has no problem in characteristics even if it contains oxygen, hydrogen, nitrogen, carbon, boron, or a trace metal impurity as an impurity or an element disposed at an intrusion position. . Further, chlorine may be used instead of fluorine.
- Example 13 a chip having SmF 3 and Sm 2 Fe 17 composition is placed on an iron target and placed in a sputtering apparatus. Ar gas was injected into the apparatus and sputtered to form an Sm—Fe—F-based film with a thickness of 1 ( ⁇ m) on the glass substrate. An Sm 2 Fe 24 F film is obtained by adjusting the number of chips. During sputtering, a magnetic field was applied to the substrate, and magnetic anisotropy was added to the formed sputtering film. After forming the sputtering film, the element was diffused by heating to 400 ° C. to prepare a hard magnetic film.
- a ferromagnetic phase having a crystal structure of ThMn 12 type is grown on this film, and some fluorine atoms are arranged at the intrusion positions.
- fluoride, oxyfluoride, oxide, or carbide such as SmOF, Fe 2 O 3 , FeF 2 , or FeF 3 grows with a particle size of 1 to 100 nm in the sputtering film by heat treatment.
- Sm 2 Fe 24 F which stabilize Sm 2 Fe 24 F to grow a lot of Sm 2 Fe 24 F
- Transition elements such as Sr, W, and Ca are arranged on the target as an alloy chip with iron and added to the Sm-Fe-F film in the range of 0.001 to 1 (at%).
- the magnetic properties of the prepared film are a residual magnetic flux density of 1.6 (T), a coercive force of 35 (kOe), and a Curie temperature of 790 (K). This magnetic characteristic can be applied to a small magnetic circuit including a magnetic recording medium, a magnetic film of a magnetic head, and a motor.
- the sputtering film having a residual magnetic flux density exceeding 1.5 (T) and a Curie temperature exceeding 700 (K) is R x (Fe, M) y F z (R is a rare earth element including Y, Fe is Iron, M is a transition element, F is fluorine, x, y, z are positive numbers), and the main phase fluorine having a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, cubic It is formed as a fluoride or oxyfluoride that grows when forming a compound, an oxide, and an iron or iron-fluorine binary alloy phase having a bcc structure or a bct structure.
- Fluorine atoms arranged between iron and iron atoms, and fluorine atoms forming a compound with rare earth elements and oxygen but not arranged between iron and iron atoms are recognized.
- the effect of introducing fluorine is recognized in both the exchange coupling in the ferromagnetic material and the superexchange interaction in the ferrimagnetic material.
- the concentration of transition elements M such as Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Pd, Pt, Bi, Sr, W, and Ca is added to the crystal structure. Contributes to the improvement of stability.
- the concentration of the transition element M is preferably less than the concentration of iron (Fe) in order to ensure the residual magnetic flux density.
- R x (Fe, M) y F z has no problem in characteristics even if oxygen, hydrogen, nitrogen, carbon, boron, or trace metal impurities are contained as impurities. Further, instead of fluorine, chlorine, phosphorus, sulfur, or a mixture of these elements and fluorine may be used.
- Example 14 In this embodiment, a solution obtained by swelling a composition in the vicinity of SmF 4 using ethanol as a solvent and a solution containing iron ions are alternately applied onto a substrate.
- the coating thickness per layer is 10 to 20 (nm).
- the crystal structure of the single layer film immediately after coating is almost amorphous, and a part of the crystal is grown.
- a glass plate was used as the substrate.
- the total thickness of the Sm and fluorine rich layer and the Fe rich layer is about 1 (mm).
- This coating film is heated at 400 ° C. for 1 hour while applying a magnetic field in one direction with a magnitude of 10 (kOe). By this heating, the amorphous or metastable phase is crystallized.
- Sm 2 Fe 17 F 3 is a fluoride such as SmOF, Fe 2 O 3 , FeF 2 , FeF 3 , and acid fluoride. Grows with oxides, oxides or carbides. For many grow Sm 2 Fe 17 F 3, Ti to stabilize the Sm 2 Fe 17 F 3, V , Co, Cr, Mn, Cu, Zn, Ga, Ge, transition element M, such as As, 0.1 It is added to one of the two types of solutions described above as 1 (wt%) ions.
- Sm 2 Fe 17 F 3 has a rhombohedral Th 2 Zn 17 or hexagonal Th 2 Ni 17 structure, and a part of fluorine atoms are rhombohedral Th 2 Zn 17 9e sites or hexagonal Th 2 Ni 17. Located at 6h site of structure.
- fluorine atoms either the a-axis length or the c-axis length expands.
- An increase in the lattice volume due to the introduction of fluorine is confirmed from 0.1 to 7%. This increase in lattice volume increases the magnetic moment of iron atoms by an average of 5 to 10%, increases the magnetocrystalline anisotropy energy by about 50%, and increases the Curie temperature (Curie point) by 200 ° C.
- the Sm 2 Fe 17 F 3 film exhibits anisotropy by the applied magnetic field, and its magnetic properties are 1.63 (T) residual magnetic flux density at 298 (K), 35 (kOe) coercive force, and 795 Curie temperature ( K).
- This magnetic characteristic can be applied to a small magnetic circuit including a magnetic recording medium and a motor.
- a film prepared using a solution having a residual magnetic flux density exceeding 1.5 (T) and a Curie temperature exceeding 750 (K) is R x (Fe, M) y F z (where R is a rare earth element including Y, Fe is iron, M is a transition element, F is fluorine, x, y, z is a positive number and x ⁇ z ⁇ y), such as hexagonal, rhombohedral, tetragonal, orthorhombic, cubic, etc. It is formed as a regular phase or irregular phase fluoride or oxyfluoride or oxide that grows when a main phase fluorine compound having a crystal structure is formed.
- the action of ferromagnetic coupling and superexchange interaction at the interface of some main phases contributes to an increase in coercivity.
- the concentration of transition elements M such as Ti, V, Co, Cr, Mn, Cu, Zn, Ga, Ge, and As added contributes to improvement of the stability of the crystal structure.
- the concentration of the transition element M is preferably less than the concentration of iron (Fe) in order to ensure the residual magnetic flux density.
- R x (Fe, M) y F z has no problem in characteristics even if oxygen, hydrogen, nitrogen, carbon, or trace metal impurities are contained as impurities. Chlorine, phosphorus, or sulfur may be used instead of fluorine.
- Example 15 SmF 3 and Sm 2 Fe 17 chips are placed on an iron target and installed in a sputtering apparatus.
- a mixed gas of Ar and fluorine was injected into the apparatus, and reactive sputtering was attempted.
- Ar-2% F 2 gas was used, and a pressure of 1 (mTorr), a substrate temperature of 250 ° C., and a magnetic field of 30 (kOe) in one direction were applied.
- mTorr a pressure of 1
- a substrate temperature of 250 ° C. a substrate temperature of 250 ° C.
- kOe magnetic field of 30
- Fluoride, oxyfluoride or oxide, carbide, hydride such as SmOF, Sm (O, F, C), Fe 2 O 3 , FeF 2 , FeF 3, etc. are part of the grain boundary or surface. It grew from 0.1 to 100 (nm). For many grow SmFe 24 F 3, Al to stabilize the SmFe 24 F 3, Ga, Ge , Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Pd, Pt, Sr, W, One or more transition elements such as Ca are arranged as an alloy chip with iron on the target and added to the Sm-Fe-F film in the range of 0.001 to 1 (at%). The prepared film was heat-treated at 300 ° C. to grow crystal grains, and the average crystal grain size was adjusted to 10 to 100 (nm).
- the structure of SmFe 24 F 3 is changed, and fluorides and oxyfluorides in the vicinity of the grain boundaries grow and the coercive force decreases.
- the magnetic properties of SmFe 24 F 3 are a residual magnetic flux density of 1.7 (T), a coercive force of 35 (kOe), and a Curie temperature of 820 (K). This magnetic characteristic can be applied to a small magnetic circuit including a magnetic recording medium, a magnetic memory such as an MRAM, a magnetic film of a magnetic head, and a motor.
- the sputtering film having a residual magnetic flux density exceeding 1.6 (T) and a Curie temperature exceeding 700 (K) is R x (Fe, M) y F z (R is a rare earth element including Y, Fe is Iron, M is a transition element, F is fluorine, x, y, z is a positive number x ⁇ 0.1 (x + y), R content is less than 10 atomic% of the sum of R, Fe and M) Fe-rich compound or alloy phase.
- the Fe-rich compound is a main phase in which the alloy phase has a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, or cubic, and has a different crystal structure depending on the fluorine concentration.
- a fluoride or oxyfluoride, an oxide, and an iron or iron-fluorine binary alloy phase having a bcc structure or a bct structure which are grown when forming a fluorine compound as a main phase are formed. Fluorine atoms arranged between iron and iron atoms, and fluorine atoms forming a compound with rare earth elements and oxygen but not arranged between iron and iron atoms are recognized.
- Example 16 an iron-50% manganese alloy is used as the target.
- An SmF 3 chip and an SmMn chip are placed on the alloy target and placed in the sputtering apparatus.
- Ar gas is injected into the apparatus and sputtering is performed at a gas pressure of 2 (mTorr) and a sputtering rate of 0.1 ( ⁇ m / min)
- an alloy film of SmFe 11 Mn 5 F 2 composition is formed.
- a 30 (kOe) magnetic field is applied to the alloy film in a vacuum of 1 ⁇ 10 ⁇ 6 (Torr), held at 500 ° C. for 1 hour, and then rapidly cooled to 20 ° C. A magnetic field is applied even during cooling.
- SmFe 11 MnF and SmFeMn 11 F 2 grew on the film after quenching.
- the former shows ferromagnetism and the latter shows ferrimagnetism. That is, the cooled film becomes a composite magnetic material.
- fluorides and acid fluorides having different lattice constants and crystal structures from SmFe 11 MnF and SmFeMn 11 F 2 such as SmF 3 , SmOF, MnF 2 and FeF 2 are used.
- the chemical grows.
- SmFe 11 MnF and SmFeMn 11 F 2 are arranged at the intrusion position, and the crystal lattice is expanded.
- SmFe 11 MnF increases the magnetic moment.
- the Curie temperature rises by about 250 ° C due to the introduction of fluorine.
- SmFeMn 11 F 2 increases the magnetic moment difference depending on the atomic site of Mn and increases the magnetization by 20%.
- the demagnetization curve depends on the direction of the magnetic field during cooling due to the above-described exchange coupling between the two phases caused by cooling in the magnetic field. As a result, high coercive properties with a residual magnetic flux density of 1.3 (T) and a coercive force of 35 (kOe) can be obtained.
- a material that can satisfy the residual magnetic flux density of 1.3 (T) and the coercive force of 25 (kOe) can be described as follows. That is, magnetic phase is composed of at least two phases of the R u Fe v M w F a and R x Fe y M z F b , transition of the rare earth element R comprises Y, Fe is iron, M and Mn and Cr Metal element, F is fluorine, u, v, w, a, x, y, z, b are positive numbers, and u ⁇ v, w ⁇ v, 0 ⁇ x ⁇ z, y ⁇ z, w ⁇ z Under certain conditions, a part of the fluorine atoms is arranged at an intrusion position in a lattice mainly composed of iron or M atoms, and a magnetic coupling exists between at least two phases.
- the presence or absence of magnetic coupling can be confirmed by comparing the coercive force with a difference of 0.5 (kOe) or more by comparing the case of cooling in a magnetic field and the case of cooling without applying a magnetic field.
- the growth of SmFe 11 MnF and SmFeMn 11 F 2 is accompanied by growth at the grain boundary or surface of fluoride or oxyfluoride, and the fluoride concentration or oxyfluoride at the grain boundary is higher than the main phase.
- Magnetic coupling due to the introduction of fluorine also affects other magnetic properties. For this reason, it can be applied not only to hard magnetic materials but also to refrigerants and magnetic power generation effect materials for magnetic refrigerators using magnetic specific heat.
- the magnetic phase R u Fe v M w F a or R x Fe y M z F major phase only any one phase of b represents the hard magnetic properties even when made, various magnetic circuits as magnet material Applicable to.
- these main phases have a magnetoresistive effect, magnetostrictive effect, thermoelectric effect, magnetic refrigeration effect, as the electronic state changes greatly by controlling u, v, w, a, x, y, z, b. It exhibits magnetic heating effect, magnetic field induced structural phase transition or superconducting properties.
- an iron foil having a thickness of 2 ( ⁇ m) is heated and reduced in hydrogen gas to remove surface oxides.
- Fluorine ions are implanted into this iron foil at a temperature of 150 ° C.
- the injection amount is 1 ⁇ 10 16 (/ cm 2 ).
- the bcc structure or bct structure having a lattice constant of 0.2865 to 0.295 can be confirmed in the iron after implantation. There was a tendency that the fluorine concentration was higher and the lattice volume was larger at the center or inside of the foil than the outermost surface. This implantation increases the saturation magnetization of the iron foil by about 5%.
- This increase in saturation magnetization is due to the fluorine atoms entering the tetrahedral or octahedral positions of the body-centered cubic lattice.
- an alcohol solution in which the SmF 3 composition is swollen is applied to an iron foil into which fluorine has been injected with a film thickness of 10 (nm). After drying, heat treatment is performed at 400 ° C. for 5 hours to diffuse Sm and fluorine. Sm and fluorine diffuse to the center of the iron foil, increasing the anisotropy.
- fluorine is disposed at an interstitial penetration position or substitution position of the iron and Sm 2 Fe 17 .
- the amount of expansion of the lattice volume by introduction of fluorine in the Sm 2 Fe 17 F composition is larger and the lattice volume is larger than that of the iron lattice having the Bcc structure or the bct structure.
- the lattice volume increases, the magnetic moment of iron atoms, the magnetic anisotropy energy, and the Curie temperature increase are clarified from the measurement of magnetization and the temperature dependence of magnetization. If such a fluorine injection or an iron foil body into which fluorine and nitrogen or fluorine and chlorine are injected is laminated and the thickness is adjusted to a desired specification, it can be used for various magnetic circuits.
- Example 18 In this example, Sm 2 Fe 17 powder is pulverized until the particle size becomes about 1 ( ⁇ m) and reduced in a hydrogen stream at 500 ° C. Thereafter, the Sm 2 Fe 17 powder from which the oxide has been removed is placed in a magnetic field of 10 (kOe), and a pressure of 0.5 (t / cm 2 ) is applied to prepare a temporary molded body. The gap between the temporary molded bodies is impregnated with an alcohol solution in which the SmF 3.1 composition is swollen. By this impregnation treatment, an SmF-based amorphous film is formed on the surface of the Sm 2 Fe 17 powder.
- a high-density molded body can be prepared by applying pressure during fluorination. Its magnetic properties are a residual magnetic flux density of 1.6 (T), a coercive force of 25 (kOe), and a Curie temperature of 720 (K). This magnetic characteristic can be applied to a small magnetic circuit including a magnetic recording medium, a magnetic film of a magnetic head, and a motor.
- a molded body having a residual magnetic flux density of 1.6 (T) and a Curie temperature exceeding 700 (K) is R x (Fe, M) y F z (R is a rare earth element including Y, Fe is iron, M is a transition element, F is fluorine, x, y, z are positive numbers, x ⁇ 0.11 (x + y), and the R content is less than 11 atomic% when the sum of R, Fe, and M is 100%) Fe-rich compound or alloy phase shown.
- the Fe-rich compound is a main phase in which the alloy phase has a crystal structure such as hexagonal, rhombohedral, tetragonal, orthorhombic, or cubic, and has a different crystal structure depending on the fluorine concentration.
- fluoride or oxyfluoride that grows when the fluorine compound of the main phase is formed, oxide, and iron or iron-fluorine binary alloy phase of bcc structure or bct structure are formed between the iron and iron atoms.
- Fluorine atoms that are not arranged between fluorine atoms and iron-iron atoms but form a compound with rare earth elements or oxygen are recognized. Either the fluorine coupling effect is observed in both the exchange coupling in the ferromagnetic material and the superexchange interaction in the ferrimagnetic material.
- the fluorine concentration tends to be higher on the outer peripheral side of the grain than the center of the grain, and the lattice volume tends to be larger on the outer peripheral side of the grain than the center. Since the magnetic anisotropy is large on the grain outer peripheral side, a difference is seen in the domain wall width of the magnetic domain structure.
- Example 19 In this example, Sm 2 Fe 17 powder is pulverized until the particle size becomes about 0.5 ( ⁇ m), and then reduced at 500 ° C. in a stream of ammonia. The oxide is removed by the reduction, and Sm 2 Fe 17 powder having a part of the surface nitrided is obtained. This powder is placed in a magnetic field of 10 (kOe), and a pressure of 0.5 (t / cm 2 ) is applied to prepare a temporary molded body. The gap between the temporary molded bodies is impregnated with an alcohol solution in which the PrF 3.1 composition is swollen. By this impregnation treatment, a PrF-based amorphous film is formed on the surface of the Sm 2 Fe 17 N 1-3 powder.
- the Sm 2 Fe 17 N 1-3 powder is heated and dried in a hydrogen stream, and a part of the amorphous film is crystallized while suppressing oxidation. Furthermore, electromagnetic waves are irradiated in a hydrogen stream to cause the fluoride to generate heat. Thereby, the surface of the Sm 2 Fe 17 powder is fluorinated. When pressure is applied during fluorination, a high-density molded body can be produced. In addition, a part of Pr and Sm exchange reaction proceeds by diffusion. PrF 3 , PrOF, and Pr 2 O 3 grow on the surface of the magnetic powder, and (Sm, Pr) 2 Fe 17 (N, F) 1-3 grows on the outer periphery of the crystal grains in the magnetic powder.
- the central part of the crystal grains has a lower fluorine concentration and Pr concentration than the outer peripheral part, the lattice constant is also smaller, and the unit cell or lattice volume tends to be smaller on the inner peripheral part on the average than the outer peripheral part of the crystal grains.
- the grain boundaries or part of the surface may include bcc, bct or fcc Fe, Fe-F, or these iron-based alloys.
- a phase containing a trace amount of rare earth elements, nitrogen, carbon, oxygen and the like grows.
- the lattice constants of these Fe-based alloys are smaller than the parent phase (Sm, Pr) 2 Fe 17 (N, F) 1-3 , and the lattice volume of the Fe-based alloys is smaller than that of the parent phase.
- the magnetic properties of the magnetic powder are a residual magnetic flux density of 190 (emu / g), a coercive force of 25 (kOe), and a Curie temperature of 730 (K).
- This magnetic characteristic can be applied to a small magnetic circuit including a motor.
- This magnetic characteristic can also be applied to a magnet motor such as a surface magnet motor, an embedded magnet motor, a polar anisotropic magnet motor, a radial ring magnet motor, an axial gap magnet motor, or a linear magnet motor.
- Magnetic powder having a residual magnetic flux density of 190 (emu / g) and a Curie temperature exceeding 700 (K) is R x (Fe, M) y (N, F) z (R is a rare earth element including Y, Fe is iron, M is a transition element, N is nitrogen, F is fluorine, x, y, z are positive numbers, x ⁇ 0.11 (x + y), and the R content is 100% of the sum of R, Fe, and M Fe-rich compound or alloy phase represented by less than 11 atomic%).
- Fe-rich compounds are main phases whose crystal phases are hexagonal, rhombohedral, tetragonal, orthorhombic, cubic, etc., and have different crystal structures and regular / irregularities depending on the fluorine concentration. It has a structure.
- a fluoride or oxyfluoride, an oxide, and an iron or iron-fluorine binary alloy phase having a bcc structure, a bct structure, or an fcc structure are formed on the formed body.
- Fluorine atoms arranged between iron and iron atoms, and fluorine atoms forming a compound with rare earth elements and oxygen but not arranged between iron and iron atoms are recognized. The effect of introducing fluorine into the exchange coupling due to the change in the distribution of electronic density of states in the ferromagnet is observed.
- Fluorine concentration tends to be higher on the outer circumference side of the grain than the grain center on average, and the lattice volume tends to be larger on the outer circumference side of the grain than the center part.
- x 0.11
- the rare earth element concentration increases, the raw material cost of the material increases, and the residual magnetic flux density decreases.
- a desirable value of x is 0.01 ⁇ x ⁇ 0.11.
- x ⁇ 0.01 the coercive force decreases and the residual magnetic flux density also decreases.
- This material has a large magnetic anisotropy on the outer peripheral side of the grain. For this reason, a difference is seen in the domain wall width of a magnetic domain structure.
- the nitrogen-containing fluoride of the main phase When the nitrogen-containing fluoride of the main phase is heated to 650 ° C. or higher, some crystal grains change their structure and become a more stable fluoride or nitride and iron alloy phase. In order to suppress such a structural change, it is effective to use an additive element.
- the concentration of transition elements M such as Al, Ga, Ge, Co, Ti, Mg, Co, Mn, Cr, Nb, Cu, Bi, Sr, W, and Ca that can be added contributes to the improvement of the stability of the crystal structure. .
- R x (Fe, M) y (N, F) z has no problem in characteristics even if oxygen, hydrogen, carbon, boron, or trace metal impurities are contained as impurities.
- Some M elements are unevenly distributed at grain boundaries and surfaces. Instead of fluorine, chlorine, phosphorus, sulfur or a mixture of these elements and fluorine may be used.
- an Sm 2.1 Fe 17 alloy is prepared by vacuum melting and hydrogen pulverized to obtain Sm 2 Fe 17 powder having a particle size of about 10 ( ⁇ m).
- This powder is heated to 300 ° C. in a gas obtained by decomposing CaH 2 and NH 4 F and held for 5 hours. By this heat treatment, Sm 2 Fe 17 F 0.1-3 grows.
- This Sm 2 Fe 17 F 0.1-3 is inserted into a mold of a thermoforming apparatus and extruded at 400 ° C. with a load of 3 (t / cm 2 ).
- the orientation direction of Sm 2 Fe 17 F 0.1-3 is aligned and a highly anisotropic magnetic material or magnetic powder is obtained.
- a mixed slurry of powder and alcohol with an average diameter of SmF 3 of 10 (nm) is used to mechanically alloy Sm 2.1 Fe 17 from the surface.
- 2 Fe 17 F 0.1-3 can be grown.
- resin 20 volume%), residual magnetic flux density 1.3 (T), and coercive force 25 (kOe).
- a shaped bonded magnet can be created.
- Such a bond magnet can further reduce the volume of the binder material and increase the residual magnetic flux density and energy product by using a resin binder such as MgF 2 which is an inorganic binder.
- the main phase composition of the magnetic powder that satisfies the magnetic properties of the bond magnet is R x Fe y F z (R is a rare earth element including Y, Fe is iron, F is fluorine, x, y, and z are positive numbers, y> (x + z)).
- a part of the fluorine atoms is arranged at the intrusion position of the main phase, and a fluorine-containing iron having a bcc structure or a bct structure and an acid fluoride such as SmOF, SmF 3 , FeF 2, etc.
- a fluorine-containing iron having a bcc structure or a bct structure and an acid fluoride such as SmOF, SmF 3 , FeF 2, etc.
- Non-magnetic or ferrimagnetic oxides or hydrides such as fluoride, Fe 2 O 3 , SmO 2 are growing.
- the fluorine concentration is highest with oxyfluoride or fluoride.
- the lattice volume of the main phase is larger than that of the iron-fluorine alloy having the bcc structure and the bct structure, and the crystal grains or magnetic particles constituting the magnet have an orientation in the a-axis or c-axis direction.
- High residual magnetic flux density can be realized by setting the volume of the main phase to 30% or more of the entire bonded magnet, desirably 50% to 90%.
- various gases containing fluorine can be used in addition to ammonium fluoride.
- Main phase constituting the magnetic powder for bonded magnet in addition to the basic composition of R x Fe y F z, R x M y F z (R is a rare earth element including Y, M is Co, Fe and Co alloys, F is Fluorine or a mixture of fluorine and carbon, nitrogen, oxygen, boron, chlorine, phosphorus, sulfur, hydrogen, or chlorine, x, y, z are positive numbers, and y> (x + z)) may be used.
- Example 21 a sintered magnet having Nd 2 Fe 14 B as a main phase is pulverized to produce magnetic powder having a powder diameter of 3 to 10 ( ⁇ m). Thereafter, FeF 2 powder having an average particle size of 0.5 ( ⁇ m) is mixed with a slurry mixed with alcohol, and mechanical alloying is performed with a stainless steel ball coated with fluoride. After the mechanical alloy, part of the surface of the Nd 2 Fe 14 B powder is fluorinated. Furthermore, by heat treatment at 300 ° C., iron of Nd 2 Fe 17 F phase and bcc structure or bct structure grows on the surface of Nd 2 Fe 14 B powder.
- the Curie temperature rises immediately after the mechanical alloy, and the residual magnetic flux density increases.
- the increase in magnetic flux density is because the Nd 2 Fe 17 F phase having a high Curie point grows with iron by mechanical alloying (mechanical alloying) and subsequent heat treatment.
- fluorides such as FeF 3 , NdF 3 and NdF 2 , acid fluorides such as NdOF and (Nd, Fe) OF, or Nd 2 O 3 and Fe 2 Oxides such as O 3 and Fe 3 O 4 grow.
- Nd 2 Fe 17 F fluorine concentration of ammonium fluoride in the heat treatment after mechanical alloying fluorine, increased by exposing the powder to a gas containing fluorine such as hydrogen fluoride, is Nd 2 Fe 17 F 2-3 Grows on the powder surface and the Curie temperature rises to 710 (K).
- Nd 2 Fe 14 magnetically coupled to B Nd 2 Fe 14 Curie temperature is higher than B, and, by growing the magnetic anisotropy is larger hard magnetic phase, the magnetization reversal of the Nd 2 Fe 14 B Suppression and reduction of thermal demagnetization can be realized.
- heat resistance can be improved without adding heavy rare earth elements.
- an iron-rich phase with soft magnetic properties at the center of the powder and a hard magnetic material with a high magnetic anisotropy and a high Curie temperature are grown on the outer peripheral side to add magnetic coupling between the iron-rich phase and the hard magnetic material.
- Rx Fe y F z (R is light rare earth element, Fe is iron, F is fluorine, x, y, z are positive numbers and y> (x + z)) and oxyfluoride powder It is possible to grow on the outer peripheral side. Thereby, a magnet material having a residual magnetic flux density of 1.8 (T) can be created.
- magnetic properties can be improved by providing ferromagnetic coupling between a plurality of ferromagnetic phases having different crystal structures and compositions. That is, in this example, at least one ferromagnetic phase contains fluorine, has a gradient of fluorine concentration in the crystal grains, some fluorine atoms form a compound of rare earth element and iron, and some The fluorine atoms are arranged in iron, and due to the high electronegativity of fluorine, the physical state values such as magnetic properties and electrical properties are changed by causing a bias in the state density distribution and electric field gradient of electrons. This improves the magnetic characteristics and realizes a residual magnetic flux density of 1.8 (T). Corresponding to such changes in magnetic properties, the effect of introducing fluorine appears in the internal magnetic field, magnetic transformation at low temperature, magnetoresistance effect, magnetic heat generation effect, magnetic endothermic effect, and superconducting properties.
- Example 22 an alloy target of Sm 2 Fe 17 with a purity of 99.9% is prepared, one side of the target is water-cooled, and one side is sputtered.
- Ar-2% SF 6 -1% F 2 gas is used, the ultimate vacuum is 1x10 -5 (Torr), the gas pressure during sputtering is 1 (mTorr), and MgO ( 100) was formed on the substrate at a substrate temperature of 250 ° C. Note that the substrate surface is cleaned and cleaned by reverse sputtering before sputtering.
- the prepared film composition was Sm 2 Fe 17 F 2 , and the lattice constant increased more than that of the Sm 2 Fe 17 film, and the Curie temperature, saturation magnetic flux density, and magnetic anisotropy energy were increased. Further, although the orientation of the Sm 2 Fe 17 F 2 film depends on the substrate temperature and the film formation rate, a c-axis oriented film was obtained under the above conditions, and had an easy axis of magnetization in the plane. Sm 2 Fe 17 F 2 is epitaxially grown on the MgO substrate. When this film is heated at 400 ° C. for 1 hour, it is confirmed by XRD pattern that iron of bcc structure or bct structure containing SmF 3 or fluorine grows. did.
- Fluorine-containing bcc or bct structure iron is 1 to 20% higher than the saturation magnetization of pure iron. Therefore, it is possible to increase the residual magnetic flux density by providing a ferromagnetic coupling between the fluorine-containing ferromagnetic iron and the fluorine compound as the main phase.
- fluorine-containing iron is a metastable phase and changes to FeF 2 when heated.
- the structure should be stabilized by contacting with an oxyfluoride having a lattice constant of 5.4 to 5.9 (nm), or by adding carbon or nitrogen, bcc It is effective to grow with a structure. By such means, it becomes difficult for the fluorine-containing iron to undergo structural changes at 400 ° C.
- y> (x + z)) in the composition of the magnetic powder or the crystal grains a part of the fluorine atoms are arranged at the penetration position of the main phase, and a bcc structure or a part of the grain boundary or surface Fluorine-containing iron with bct structure and acid fluorides such as SmOF, fluorides such as SmF 3 and FeF 2 or non-magnetic or ferrimagnetic and antiferromagnetic oxides such as Fe 2 O 3 and SmO 2 are grown.
- the fluorine concentration is the highest in oxyfluoride or fluoride, the lattice volume of the main phase is larger than the iron-fluorine alloy of the bcc structure or the bct structure, and the crystal grains or magnetic particles constituting the magnet are in the a-axis or c-axis direction.
- This can be realized with an oriented material.
- fluorine, fluorine or a mixture of fluorine and carbon nitrogen, oxygen, boron, chlorine, phosphorus, sulfur, hydrogen, or chlorine may be used, and various gas species containing fluorine or chlorine can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
従来よりも磁気特性の高い磁石を実現する。(a)軽元素の添加物を有する軽希土類元素と(b)鉄又はコバルトとで構成された軽希土類磁石を提供する。ここで、軽元素として、そのp軌道準位が鉄又はコバルトのd軌道準位より1eV以上深くなるものを使用する。
Description
本発明は、高キュリー温度と高飽和磁化を維持しつつ、重希土類元素の使用量を削減した磁石材料とそれを応用した磁気デバイスに関する。磁気デバイスは、電子のスピンの向きを利用するデバイスをいう。
特許文献1~5には、従来のフッ素化合物あるいは酸フッ素化合物を含む希土類焼結磁石が開示されている。また、特許文献6には、希土類フッ素化合物の微粉末(1から20(μm))をNdFeB粉と混合することが開示されている。しかし、いずれの特許文献にも、鉄フッ素二元系侵入型化合物に関する記載はない。また、特許文献7~9には、ボンド磁石の作製方法が示されている。特許文献10には窒素添加の希土類磁石微粒子の磁気記録媒体への応用が示されている。特許文献11にはトンネル磁気抵抗素子、磁気ヘッド及び磁気メモリが示されている。しかし、いずれにも本発明に係る材料は用いられていない。
前述した特許文献には、Nd-Fe-B系磁石材料にフッ素を含有する化合物を反応させた磁石、特にフッ素及び重希土類元素を含有するフッ化物を使用することで保磁力を増加させた磁石が開示されている。上記フッ化物は主相をフッ化させる反応ではなく、主相と反応あるいは拡散するのは重希土類元素である。このような重希土類元素は高価であるため、重希土類元素の低減が課題である。重希土類元素よりも低価格である軽希土類元素は、原子番号57から63の元素であり、その一部の元素は磁石材料に使用されている。酸化物以外の鉄系磁石で最も多く量産されている材料がNd2Fe14B系である。しかし、これらの材料は、キュリー温度(Tc)が312℃と低いのが弱点であり、耐熱性確保のために重希土類元素の添加が必須である。例えばR2Fe17(Rは軽希土類元素)系合金はキュリー温度が低いが、この合金に炭素又は窒素を侵入させた化合物ではキュリー温度が500℃程度まで高くなることが知られている。現在、磁石としての性能を向上させるような安価な侵入元素の発見が望まれている。
発明者らは、(a)軽元素の添加物を有する軽希土類元素と(b)鉄又はコバルトとで構成させた軽希土類磁石及び当該磁石を応用した磁気デバイスを提供する。
本発明により、軽希土類磁石のキュリー温度、飽和磁化、保磁力のいずれか一つを従来比して高めることができる。
以下、図面に基づいて、本発明の実施の形態を説明する。なお、後述する装置構成や処理動作の内容は一例であり、実施の形態と既知の技術との組み合わせや置換により他の実施の形態を実現することもできる。
(基本構造)
発明者らは、フッ素原子の侵入により、炭素や窒素を侵入させる場合に比して、Feの磁気モーメントが増加し、飽和磁化を高くできることを発見した。また、発明者らは、塩素原子の添加によっても、フッ素原子を添加する場合と同様に、飽和磁化を高くできる効果があることを発見した。また、フッ素原子や塩素原子をCoに添加することによっても、飽和磁化が高くできることを発見した。
発明者らは、フッ素原子の侵入により、炭素や窒素を侵入させる場合に比して、Feの磁気モーメントが増加し、飽和磁化を高くできることを発見した。また、発明者らは、塩素原子の添加によっても、フッ素原子を添加する場合と同様に、飽和磁化を高くできる効果があることを発見した。また、フッ素原子や塩素原子をCoに添加することによっても、飽和磁化が高くできることを発見した。
例えば図1に示す構造のR2Fe17X3組成(Rは軽希土類元素、Feは鉄、Xは添加物)の磁性材料に対して、その電子スピン状態を第一原理で計算したところ、R=Sm(サマリウム:原子番号62)に対して図2の結果を得た。図2には、六方晶の結晶構造における最安定な格子定数a(nm)とc(nm)、その場合の飽和磁化Ms(T)をまとめて示す。格子定数の望ましい範囲は、a=0.84~0.95(nm)、c=1.24~1.35(nm)であった。図2の場合、添加物がF(フッ素)のとき飽和磁化が最大になった。同様に、R=Nd(ネオジム:原子番号60)に対して図3の結果を得た。図3の場合も、添加物がF(フッ素)のとき飽和磁化が大きくなった。このように、軽希土類元素Rの種類によらず、添加物がF(フッ素)の場合に磁化の増大が確認された。
このメカニズムを理解するために、各原子周辺の局所電子数Nelecと局所磁気モーメントMを調べたところ、それぞれ図4及び図5の結果を得た。図4及び図5では、Fe原子に着目した。結晶内のサイトの対称性で等価なFe原子に対し、図1に示したように2c、3d、6f、6hのラベルを付した。なお、図4及び図5は、添加物がN(窒素)の場合とF(フッ素)の場合の結果を対比的に表している。図4に示すように、局所電子数については、添加物の違いがFe原子のサイトに認められなかった。これに対し、図5に示すように、局所磁気モーメントについては、添加物の違いが6fと6hのサイトで認められた。違いが認められたサイト(6f、6h)は、添加物Xに隣接するサイトである。すなわち、添加物Xは、それに隣接したFe原子の局所磁気モーメントを変化させることが分かった。F(フッ素)を添加すると、添加物がN(窒素)の場合に比して、6fと6hのサイトにおける磁気モーメントに大きな増加が認められた。
そこで、F(フッ素)原子が局所磁気モーメントに与える効果を、その電子構造から考察した。図6は、添加物がN(窒素)の場合の全電子スピン状態密度の計算結果を示し、図7は、添加物がF(フッ素)の場合の全電子スピン状態密度の計算結果を示す。なお、図6及び図7の横軸はエネルギー(eV)であり、縦軸は全スピン状態密度(DOS)である。また、状態密度が正の領域(状態密度ゼロよりも上側)が上向きスピンに対応し、状態密度が負の領域(状態密度ゼロよりも下側)が下向きスピンに対応する。これらの電子状態の本質的な違いは、図6ではN(2p)とFe(3d)が混成しているのに対して、図7ではF(2p)とFe(3d)が分離している点である。この違いは、原子のエネルギー準位の違いに起因している。実際、Fe原子の3d準位は-7.5(eV)であるのに対し、N原子の2p準位は-7.1(eV)、F原子の2p準位は-11.1(eV)である。このため、Fe(3d)-N(2p)間は0.4(eV)と準位が近い一方で、Fe(3d)-F(2p)間は3.6(eV)と離れている。そのため、結晶内では、N(窒素)を添加する場合に状態密度が混成したのに対し、F(フッ素)を添加した場合には状態密度が分離したといえる。F(フッ素)の添加でエネルギー準位が分離したということは、F原子は隣接したFe原子との間にイオン結合を形成したことに対応する。他方、N(窒素)の添加でエネルギー準位が混成したということは、N原子は隣接したFe原子との間に共有結合を形成したことに対応する。
従って、Fe原子の磁気モーメントは、添加物とイオン結合が形成されたFe原子の方が、共有結合が形成されたFe原子より増大することが分かる。このメカニズムによれば、F原子のように隣接したFe原子との間でイオン結合を形成する添加物であれば、同様の磁気モーメントの増大効果が期待される。例えばCl(塩素)原子の場合、3p準位は-8.6(eV)である。このため、Fe(3d)-Cl(3p)間のエネルギー差は1.1(eV)となり、イオン結合による磁気モーメントの増大が認められた。発明者らは、イオン結合の形成による磁気モーメントの増大には、添加物のp軌道準位とF原子のd軌道準位とのエネルギー差が約1(eV)以上であることが必要であると考える。
ところで、軽希土類元素と鉄から構成される磁粉あるいは鉄粉から出発して3元系化合物にすると、保磁力と飽和磁化の両方を高める効果がある。発明者らは、従来型組成(R2Fe14X組成)よりも、軽希土類元素Rに対するFe含有量を高めた組成(R2Fe17X3組成: Rは軽希土類元素、Feは鉄、Xは軽元素、望ましくはフッ素又は塩素)とすることが有効であると考える。より一般的には、R2Fe17Xi組成(Rは軽希土類元素、Feは鉄、Xは軽元素、iは1、2、3)が有効であると考える。その理由は、RxFeyFz組成(Rは軽希土類元素、Feは鉄、Fはフッ素、x、y、zは自然数)で表示されるフッ素化合物は、フッ素未含有化合物よりも異方性エネルギー、キュリー点及び飽和磁化の全ての値が高くなるためである。なお、軽希土類元素Rは、La(ランタン:原子番号57)、Ce(セリウム:原子番号58)、Pr(プラセオジム:原子番号59)、Nd(ネオジム:原子番号60)、Pm(プロメチウム:原子番号61)、Sm(サマリウム:原子番号62)、Eu(ユウロピウム:原子番号63)の元素が可能である。
[実施例1]
以下に、磁粉の生成例を示す。厚さ100(nm)の鉄箔体に、Sm-F系溶液を塗布した後、熱処理する。鉄箔体の純度は99.8%である。SmF3組成のSm-F系溶液は非晶質構造を示している。このため、X線回折パターンには、結晶質のパターンとは異なり、半値幅1度以上のピークが1本以上含まれる。鉄箔体に対して、0.1(wt%)のSm-F系溶液を塗布した後、フッ化アンモニウムを蒸発させた600℃の雰囲気中で10時間加熱保持し、その後、急速に冷却する。この処理により、鉄箔とフッ化物が反応しSm及びフッ素を含有する鉄箔が得られる。因みに、前述した熱処理温度(600℃)よりも高温で熱処理すると、フッ素は鉄希土類フッ素三元化合物を形成し難くなり、安定したフッ化物や酸フッ化物を成長させるようになる。結果的に、磁気特性の向上が困難となる。
以下に、磁粉の生成例を示す。厚さ100(nm)の鉄箔体に、Sm-F系溶液を塗布した後、熱処理する。鉄箔体の純度は99.8%である。SmF3組成のSm-F系溶液は非晶質構造を示している。このため、X線回折パターンには、結晶質のパターンとは異なり、半値幅1度以上のピークが1本以上含まれる。鉄箔体に対して、0.1(wt%)のSm-F系溶液を塗布した後、フッ化アンモニウムを蒸発させた600℃の雰囲気中で10時間加熱保持し、その後、急速に冷却する。この処理により、鉄箔とフッ化物が反応しSm及びフッ素を含有する鉄箔が得られる。因みに、前述した熱処理温度(600℃)よりも高温で熱処理すると、フッ素は鉄希土類フッ素三元化合物を形成し難くなり、安定したフッ化物や酸フッ化物を成長させるようになる。結果的に、磁気特性の向上が困難となる。
600℃で熱処理した場合、鉄箔中には、Sm2Fe17Fi(i=1~3)及びSmOFやSmF3が成長し、六方晶及び立方晶が混合した構造を有する箔体となる。図1は、六方晶の構造例を示している。六方晶が主相である場合に、フッ素を侵入位置又は置換位置に配置すると、保磁力は20~25(kOe)となり、キュリー温度は400~600℃となる。このように、軟磁性を示す鉄箔体に、前述した工程を施すことにより、硬磁性材に変えることが可能である。
Sm-Fの代わりにSm-Clを用いる場合でも、塩素がフッ素と同様の働きを示した。図2に、Smに様々な元素を添加した場合における主相構造の解析結果を示す。六方晶の格子定数は、a軸が0.84(nm)~0.95(nm)、c軸が1.24~1.35(nm)となった。飽和磁化を測定したところ、1.6(T)を超える高い値を示した。いずれの場合も、フッ素を添加する方が窒素を添加する方よりも飽和磁化として大きな値を得た。赤外分光で振動解析を行った結果、フッ素を添加した場合でも70(cm-1)以上の正常な振動が得られ、不安定な構造ではないことが分かった。同様に、希土類元素がNdの場合にも、図3に示すように、Nd-FやNd-Nは高飽和磁化を示す。
以上の通り、磁石(軽希土類磁石)の組成を、R2Fe17Xi組成(Rは軽希土類元素、Feは鉄、Xはフッ素又は塩素、iは1、2、3)とすることにより、高キュリー温度、高飽和磁化かつ高保磁力を実現できる。この磁石を、様々な磁気デバイスに応用することで、磁気デバイスの小型軽量化、製造コストの低下を実現できる。磁気デバイスには、例えばボンド磁石(磁石の粉末とナイロン系樹脂、ゴム、添加剤等を混合して成形した磁石)、回転機、ボイスコイルモータが含まれる。なお、回転機には、例えばポンプ、圧縮機、ファン、ブロアー、タービン、エンジンが含まれる。
[実施例2]
本実施例では、実施例1に係る組成構造を有する磁粉を、磁気記録媒体の磁性層に応用する場合について説明する。磁気記録媒体も磁気デバイスの一例である。磁気記録媒体には、例えば磁気テープ、磁気ディスク、光磁気ディスク、磁気メモリ(絶縁層の両側を強磁性層で挟んだメモリセルをマトリクス状に配列したメモリ)等がある。
本実施例では、実施例1に係る組成構造を有する磁粉を、磁気記録媒体の磁性層に応用する場合について説明する。磁気記録媒体も磁気デバイスの一例である。磁気記録媒体には、例えば磁気テープ、磁気ディスク、光磁気ディスク、磁気メモリ(絶縁層の両側を強磁性層で挟んだメモリセルをマトリクス状に配列したメモリ)等がある。
次に、磁粉の他の生成例を示す。サマリウム塩を含有するサマリウム塩溶液、鉄塩を含有する鉄塩溶液、有機ポリマー及び還元剤を含有する混合液を加熱すると、SmFe系粒子を含有する分散液が得られる。この分散液に含まれるSmFe系粒子を分散液中でフッ素化合物によりフッ化処理することにより、高キュリー温度、高飽和磁化かつ高保磁力を有する磁粉を得ることができる。
図8に、磁気テープの断面構造例を示す。磁気テープでは、ベースフィルム10の一方の主面上に下層非磁性層11が積層され、この下層非磁性層11のベースフィルム10側とは逆側の主面上に磁性層12が積層される。磁性層12には、実施例1に係る組成構造の磁粉を使用する。また、ベースフィルム10の下層非磁性層11側とは逆側の主面上にバックコート層13が形成されている。すなわち、図8に示す磁気テープは、バックコート層13、ベースフィルム10、下層非磁性層11及び磁性層12の順番に積層された積層構造を有している。このように形成された磁気テープは、磁性層12に窒素を添加した磁気テープより5%程度磁力の強いものが得られた。
[実施例3]
本実施例では、実施例1に係る組成構造を有する磁粉を磁気センサに応用する場合について説明する。磁気センサも磁気デバイスの一例である。磁気センサには、例えば磁気ヘッド、電流センサが含まれる。
本実施例では、実施例1に係る組成構造を有する磁粉を磁気センサに応用する場合について説明する。磁気センサも磁気デバイスの一例である。磁気センサには、例えば磁気ヘッド、電流センサが含まれる。
図9に、トンネル磁気抵抗素子(TMR素子)の断面構造例を示す。図9に示すTMR素子50は、下地層51、反強磁性層52、磁化固定層53、トンネルバリア層54、磁化自由層55、およびキャップ層56が順番に積層された構造を有している。この実施例の場合、磁化固定層53に、実施例1に係る組成構造の磁粉を使用する。すなわち、高保持力かつ高飽和磁化であり、エネルギー積の高い強磁性薄膜を使用する。なお、磁化固定層53に実施例1に係る組成構造の磁粉を使用すると、反強磁性層52を省略しても、TMR特性を確認することができた。従って、さらに好適な実施例では、図10に示すように、断面構造を簡略化したTMR素子を作製することができる。構造の簡略化により、材料を節約できる。
[実施例4]
本実施例では、実施例1に係る組成構造を有する磁粉を磁気回路に応用する場合について説明する。磁気回路も磁気デバイスの一例である。磁気回路には、例えばモータ、MRI(Magnatic Resonance Image)、電子顕微鏡、超伝導機器、医療機器が含まれる。
本実施例では、実施例1に係る組成構造を有する磁粉を磁気回路に応用する場合について説明する。磁気回路も磁気デバイスの一例である。磁気回路には、例えばモータ、MRI(Magnatic Resonance Image)、電子顕微鏡、超伝導機器、医療機器が含まれる。
この実施例の場合、真空容器内に蒸着源を配置し、Feを蒸発させる。例えば1x10-4(Torr)以下の真空度における抵抗加熱により容器内にFeを蒸発させ、粒径100(nm)の粒子を作製する。このFe粒子表面に、SmF2-3組成(添え字はフッ素原子が2又は3個であることを意味する。他の組成についても同じ。)を含有するアルコール溶液を塗布し、200℃で乾燥すると、Fe粒表面に平均膜厚1~10(nm)のフッ化物膜を形成することができる。このフッ化物膜で被覆されたFe粒子をフッ化アンモニウム(NH4F)と混合し、外部ヒータにより加熱する。加熱温度は800℃とする。1時間以上800℃で加熱保持した後、50℃以下に最高100℃/分の冷却速度で急冷する。Feの蒸発から急冷までの一連の工程を大気開放せずに処理すると、酸素濃度が100~2000(ppm)の磁粉が得られる。フッ素原子の一部はFeの単位格子の四面体格子間又は八面体格子間の位置に配置する。また、フッ化アンモニウムを使用することで、フッ素以外に窒素や水素がFe粒又はフッ化物膜中に侵入する。また、アルコール溶液中の炭素や水素又は酸素原子もFe粒又はフッ化物膜中に混入する。急冷粉を200℃で10時間、時効処理することにより、Th2Zn17構造が膨張したSm1-2Fe14-20F2-3の化合物が成長する。フッ素原子の濃度分布が急冷粉の表面から中心方向にみられ、中心よりも急冷粉の外周側でフッ素濃度が高くなる傾向を示す。この粉末を圧縮成形又は焼結して得た磁石の磁気特性は、残留磁束密度が1.3-1.5(T)、保磁力が20-30(kOe)である。
図11に、モータの軸方向に垂直な断面の模式図を示す。モータは、回転子100と固定子101から構成される。固定子101は、コアバック102と複数のティース103で構成される。ティース103間のコイル挿入位置104には、コイル105a、105b、105c(3相巻線のU相巻線105a、V相巻線105b、W相巻線105c)のコイル群が挿入される。ティース103の先端部106よりシャフトの中心側には回転子挿入部107が確保され、この位置に回転子110が挿入される。回転子110の外周側には磁石が挿入されており、鉄フッ化物が少ないフッ化部(鉄中平均フッ素原子濃度5%未満)111と鉄フッ化物が多いフッ化部(鉄中平均フッ素濃度5%-10%)112、113から構成されている。磁石を構成する鉄相中フッ素濃度が5から10原子%であるフッ化部112及び113の面積は異なる。磁界設計により、逆磁界が印加される磁界強度が大きい方(フッ化部112)の面積が小さい方(フッ化部113)より広くなるようにフッ化物処理し、保磁力及び残留磁束密度を高める。このように、焼結磁石の外周側で鉄フッ化物を多くすることにより、希土類元素の使用量を少なくすることができる。なお、磁気回路の軟磁性部にフッ化処理を適用すると、飽和磁束密度を2.4-2.6(T)に高めることができる。
[実施例5]
次に、磁粉の他の生成例を示す。約1(μm)の粒径を有するSmFe11Al組成の粉末100gを、フッ化アンモニウム(NHF4)の粉末10gと混合し、真空排気後に加熱する。加熱中、CaH2を加え、SmFe11Al組成の粉末表面における酸化の進行を抑制する。熱処理温度は300℃、保持時間は5時間である。加熱後に急冷し、フッ化したSmFe11Al組成の粉末を熱処理炉から取り出す。本熱処理により、フッ化アンモニウム(NHF4)からフッ素含有反応性ガスが発生し、SmFe11AlF0.1-3組成の粉末が作成される。SmFe11AlF0.1-3組成の粉末の表面又は粉末内の粒界や粒内には、SmF3やSmOF、AlF2、Al2O3、SmO2、Fe2O3、Fe3O4、SmH2等のフッ化物又は酸フッ化物、酸化物、水素化物が成長する。実験では、母相の体心正方晶(bct構造)にフッ素原子が導入された結晶が成長していることが、電子顕微鏡による制限視野電子線回折パターン又はX線回折パターンの解析から確認された。フッ素の導入により体心正方晶の格子体積は増加する。母相以外の強磁性相として、bcc構造又はbct構造の鉄フッ素化合物又はフェリ磁性のフェライトも成長する。前述したbcc構造には、格子歪み等による変形したbcc構造も含まれる。例えばa軸とc軸の格子定数が0.01-1%異なり、回折実験からは、bct構造と判断困難なbcc構造も含まれる。母相のフッ素濃度は、粉末中心よりも外周側の方が高く、粉末表面の一部は母相よりも高濃度のフッ素を含有するフッ化物又は酸フッ化物と接触している。
次に、磁粉の他の生成例を示す。約1(μm)の粒径を有するSmFe11Al組成の粉末100gを、フッ化アンモニウム(NHF4)の粉末10gと混合し、真空排気後に加熱する。加熱中、CaH2を加え、SmFe11Al組成の粉末表面における酸化の進行を抑制する。熱処理温度は300℃、保持時間は5時間である。加熱後に急冷し、フッ化したSmFe11Al組成の粉末を熱処理炉から取り出す。本熱処理により、フッ化アンモニウム(NHF4)からフッ素含有反応性ガスが発生し、SmFe11AlF0.1-3組成の粉末が作成される。SmFe11AlF0.1-3組成の粉末の表面又は粉末内の粒界や粒内には、SmF3やSmOF、AlF2、Al2O3、SmO2、Fe2O3、Fe3O4、SmH2等のフッ化物又は酸フッ化物、酸化物、水素化物が成長する。実験では、母相の体心正方晶(bct構造)にフッ素原子が導入された結晶が成長していることが、電子顕微鏡による制限視野電子線回折パターン又はX線回折パターンの解析から確認された。フッ素の導入により体心正方晶の格子体積は増加する。母相以外の強磁性相として、bcc構造又はbct構造の鉄フッ素化合物又はフェリ磁性のフェライトも成長する。前述したbcc構造には、格子歪み等による変形したbcc構造も含まれる。例えばa軸とc軸の格子定数が0.01-1%異なり、回折実験からは、bct構造と判断困難なbcc構造も含まれる。母相のフッ素濃度は、粉末中心よりも外周側の方が高く、粉末表面の一部は母相よりも高濃度のフッ素を含有するフッ化物又は酸フッ化物と接触している。
フッ化処理の前後で粉末の磁気特性を評価した結果、フッ化処理後の飽和磁化がフッ化処理前に比して15%増加し、キュリー温度が200℃上昇し、一軸磁気異方性エネルギー(Ku)が30%増加することが分かった。この粉末を金型に挿入して磁場を印加し、その後、500℃で0.5(t/cm2)の荷重で圧縮成形すると、SmFe11AlF0.1-3組成の結晶粒から構成される、一部が焼結している成形体を得ることができた。この成形体の磁気特性は、残留磁束密度が1.5(T)、保磁力が31(kOe)、キュリー温度が(795K)であった。
この磁石は、埋め込み磁石型モータ、表面磁石モータ、ボイスコイルモータ、ステッピングモータ、ACサーボモータ、リニアモータ、パワーステアリング、電気自動車用駆動モータ、スピンドルモータ、アクチュエータ、放射光用アンジュレータ、偏向磁石、ファンモータ、永久磁石型MRI、脳波計その他の磁気デバイスに適用できる。
本実施例のように、母相へのフッ素導入による磁化の増加、キュリー温度の上昇、磁気異方性エネルギーの上昇が効果として得られる材料には、SmFe11Al組成の粉末以外にも以下のようなものがある。例えばAlの代わりに、Alの一部又は全てをSi、Ga、Ge、Ti等の遷移元素を使用した材料がある。また例えばSmの代わりに、Smの一部又は全てをYを含む希土類元素又はMnを使用した材料がある。
さらに、発明者らは、SmFe11Al組成の粉末よりもFe含有量が多い、SmFe11.1-30のフッ素化合物又は遷移元素を含有するフッ素化合物においても、フッ素の導入効果を確認している。また、SmFe11Al組成の粉末の粒径は20(μm)以下であれば同様の効果が確認できた。なお、フッ化に使用するガスとしては、フッ素を含有する種々のガスを利用でき、加熱中の還元剤にはCaH2以外の水素化物を使用することができる。
[実施例6]
続いて、磁粉の他の生成例を示す。粒径が約0.5(μm)のSmFe11Ti組成の粉末100gを、フッ化アンモニウム(NHF4)の粉末10gと混合し、真空排気後に加熱する。加熱中、CaH2を加え、SmFe11Ti組成の粉末表面における酸化の進行を抑制する。熱処理温度は200℃、保持時間は10時間である。加熱後急冷してフッ化したSmFe11Ti組成の粉末を熱処理炉から取り出す。本熱処理によりフッ化アンモニウム(NHF4)からフッ素含有反応性ガスが発生し、SmFe11TiF0.1-3組成の粉末を作成することができる。
続いて、磁粉の他の生成例を示す。粒径が約0.5(μm)のSmFe11Ti組成の粉末100gを、フッ化アンモニウム(NHF4)の粉末10gと混合し、真空排気後に加熱する。加熱中、CaH2を加え、SmFe11Ti組成の粉末表面における酸化の進行を抑制する。熱処理温度は200℃、保持時間は10時間である。加熱後急冷してフッ化したSmFe11Ti組成の粉末を熱処理炉から取り出す。本熱処理によりフッ化アンモニウム(NHF4)からフッ素含有反応性ガスが発生し、SmFe11TiF0.1-3組成の粉末を作成することができる。
SmFe11TiF0.1-3組成の粉末は、結晶粒又は粉末の中心部と外周部とでフッ素濃度が異なり、外周部の方が中心部よりもフッ素濃度が高い。これは外周部からフッ素が拡散していくためである。従って、中心部の組成がSmFe11TiF0.1であったとしても、外周部の組成はSmFe11TiF3とすることが可能である。前述した熱処理の保持時間を20時間にすると、中心部と外周側のフッ素濃度の差は小さくなる。例えば中心部の組成をSmFe11TiF0.3、外周部の組成をSmFe11TiF3とすることができる。従って、目的とする磁気特性に合わせ、磁粉内部における各部位のフッ素濃度及び濃度勾配を、熱処理の保持時間、ガス分圧、ガス種などにより調整できる。
なお、SmFe11TiF0.1-3組成の粉末の表面又は粉末内の粒界や粒内には、SmF3やSmOF、TiF2、Ti2O3、SmO2、Fe2O3、Fe3O4、TiN等のフッ化物又は酸フッ化物、酸化物、窒化物が成長する。発明者らは、母相の体心正方晶(bct構造)にフッ素原子が導入された結晶が成長していることを、X線回折パターン又は電子線回折パターンから確認した。フッ素の導入により、体心正方晶の格子体積は増加する。母相以外の強磁性相として、格子歪みをもったbcc構造又はbct構造の鉄フッ素二元合金も成長する。母相のフッ素濃度は粉末中心よりも外周側の方が高くなる。従って、粉末表面の一部は、母相よりも高濃度のフッ素を含有するフッ化物又は酸フッ化物と接触する。このため、母相が構成する結晶粒では、高濃度のフッ素を含有する粒子の外周側又は表面又は界面近傍の方が中心部よりも格子体積が大きくなり、粒子中心部よりも異方性エネルギーが大きい傾向をもつ。
フッ化処理の前後で粉末の磁気特性を評価した結果、フッ化処理後の粉末はフッ化処理前の粉末よりも飽和磁化が35%増加し、キュリー温度が250℃上昇し、一軸磁気異方性エネルギー(Ku)が20%増加することが分かった。このフッ化処理後の粉末を金型に挿入し、磁場を印加した後、400℃で1(t/cm2)の荷重で圧縮成形すると、SmFe11TiF0.1-3組成の結晶粒から構成され、一部が焼結している成形体が得られた。この成形体の磁気特性は、残留磁束密度が1.6(T)、保磁力が35(kOe)、キュリー温度が835(K)であった。
成形体の作成には、前述したような加熱成形以外にも、衝撃圧縮成形、通電成形、急速加熱成形、電磁波による加熱成形等の各種加熱成形工程を採用することができる。また、フッ化処理は、フッ化アンモニウム以外にフッ素を含有するCF系又はHF系ガス又は溶液を使用できる。前述した磁気特性を示す磁石は、家電用の磁石モータ、産業用の磁石モータ、鉄道用の磁石モータ、電気自動車駆動用のモータ、HDD(Hard Disk Drive)用のスピンドルモータ、ボイスコイルモータその他のモータ、医療機器、計測機器その他の磁気回路、これらを含む磁気デバイスに適用することができる。実施例に係る磁石の採用により、磁気デバイスの小型軽量化、高性能化、高効率化を実現できる。
[実施例7]
次に、磁粉の他の生成例を示す。まず、粒径が100(nm)の鉄粉を真空蒸着により作成する。蒸着室内で作成した鉄粉は大気に曝すことなく、SmF3に近い組成物を膨潤させ、Tiが1重量%添加されたアルコール溶液と混合する。これにより、粉末表面が被覆率90%でTiを含有するSmF3膜を厚さ1から10(nm)で形成する。このフッ化物被覆鉄粉をCaH2と共に500℃で加熱保持した後、平均10℃/分以上の冷却速度で冷却する。冷却後、200℃で10時間時効処理を施し、平均20℃/分の冷却速度で冷却した。その結果、Sm、Fe、F、Tiが拡散反応し、正方晶構造のSmFe11TiF0.01-2が成長した。粉末中でのフッ素、Sm及びTiには濃度勾配が見られ、フッ素の濃度勾配が最も大きかった。Smを1とした原子濃度比で、フッ素は中心部で0.01となり、外周部で2であった。時効時間をさらに長くすると、この濃度勾配は小さくなる傾向を示した。
次に、磁粉の他の生成例を示す。まず、粒径が100(nm)の鉄粉を真空蒸着により作成する。蒸着室内で作成した鉄粉は大気に曝すことなく、SmF3に近い組成物を膨潤させ、Tiが1重量%添加されたアルコール溶液と混合する。これにより、粉末表面が被覆率90%でTiを含有するSmF3膜を厚さ1から10(nm)で形成する。このフッ化物被覆鉄粉をCaH2と共に500℃で加熱保持した後、平均10℃/分以上の冷却速度で冷却する。冷却後、200℃で10時間時効処理を施し、平均20℃/分の冷却速度で冷却した。その結果、Sm、Fe、F、Tiが拡散反応し、正方晶構造のSmFe11TiF0.01-2が成長した。粉末中でのフッ素、Sm及びTiには濃度勾配が見られ、フッ素の濃度勾配が最も大きかった。Smを1とした原子濃度比で、フッ素は中心部で0.01となり、外周部で2であった。時効時間をさらに長くすると、この濃度勾配は小さくなる傾向を示した。
このようにして作成したSmFe11TiF0.01-2組成の粉末には、正方晶構造ではないSmF3等のフッ化物やSmOF等の酸フッ化物又は酸化物、炭化物などが成長した。フッ素濃度は、正方晶構造を有しないフッ化物や酸フッ化物の方がSmFe11TiF0.01-2よりも高い。しかし、磁気特性を決定しているのはSmFe11TiF0.01-2及びこのSmFe11TiF0.01-2との界面又は界面近傍の成長相である。前述したSmF3等のフッ化物やSmOF等の酸フッ化物又は酸化物、炭化物の一部は、母相の結晶格子と整合性をもった界面を形成する。被覆された部分を含めたSmFe11TiF0.01-2組成の粉末には、SmFe11TiF0.01-2が粉末全体の体積に対して55%成長する。なお、被覆された部分のうち鉄濃度の少ない非磁性に近い部分を除去すると、飽和磁束密度は190(emu/g)、保磁力は35(kOe)、キュリー温度は825(K)の磁気特性を示し、磁気異方性が表面又は結晶粒の外周側で結晶粒の中心よりも大きい傾向を示すことが確認された。
この磁粉を樹脂材料と混合した後、磁場中で配向させ、圧縮成形することでボンド磁石を作成した。ボンド磁石に占める磁粉の体積は80%であり、残留磁束密度は1.25(T)、保磁力は34(kOe)であった。このボンド磁石を埋め込み磁石モータに適用して着磁した後、誘起電圧波形を測定すると、NdFeB系又はSmFeN系の希土類ボンド磁石よりも高い誘起電圧を示すことが確認された。
RxFeyFz(RはYを含む希土類元素、Feは鉄、Fはフッ素、x、y、zは自然数)組成の粉末又は他の遷移元素Mを添加したRx(Fe、M)yFz組成の粉末は、従来のボンド磁石よりも希土類元素の含有量が少なく、しかも、磁気特性が向上した磁石材料であるので、様々な磁気回路や磁気デバイスに適用することができる。
なお、残留磁束密度が1.2(T)を超え、かつ、保磁力が25(kOe)以上となるような磁石材料を作成するには、磁石材料の主相がRx(Fe、M)yFz組成であり、主相のフッ素化合物を形成する際に必要となるフッ化物又は酸フッ化物を伴い、添加する遷移元素Mの濃度が鉄(Fe)より少ないことが望ましい。
[実施例8]
この実施例では、厚さ2(μm)の鉄箔体を水素雰囲気中で加熱還元して表面酸化膜を除去する。その後、鉄箔体を大気に曝さずにSmF3.5に近い組成物を膨潤させ、Mgが1重量%添加されたアルコール溶液と混合する。これにより、粉表面に被覆率95%でMgを含有するSmF3.1膜を厚さ1から10(nm)で形成する。次に、このフッ化物被覆鉄粉をCaH2と共に400℃で加熱保持した後、平均20℃/分以上の冷却速度で冷却する。急速冷却後、300℃で10時間時効処理し、その後、平均30℃/分の冷却速度で冷却した。その結果、Sm、Fe、F、Mgが拡散反応し、正方晶構造のSmFe11MgF0.1-4が成長した。箔体中でのフッ素、Sm及びMgには濃度勾配が見られた。フッ素の濃度勾配が最も大きく、Smを1とした原子濃度比において、フッ素は中心部で0.1となり、外周部は3から4であった。
この実施例では、厚さ2(μm)の鉄箔体を水素雰囲気中で加熱還元して表面酸化膜を除去する。その後、鉄箔体を大気に曝さずにSmF3.5に近い組成物を膨潤させ、Mgが1重量%添加されたアルコール溶液と混合する。これにより、粉表面に被覆率95%でMgを含有するSmF3.1膜を厚さ1から10(nm)で形成する。次に、このフッ化物被覆鉄粉をCaH2と共に400℃で加熱保持した後、平均20℃/分以上の冷却速度で冷却する。急速冷却後、300℃で10時間時効処理し、その後、平均30℃/分の冷却速度で冷却した。その結果、Sm、Fe、F、Mgが拡散反応し、正方晶構造のSmFe11MgF0.1-4が成長した。箔体中でのフッ素、Sm及びMgには濃度勾配が見られた。フッ素の濃度勾配が最も大きく、Smを1とした原子濃度比において、フッ素は中心部で0.1となり、外周部は3から4であった。
時効時間をさらに長くすると、この濃度勾配は小さくなる傾向を示した。時効処理における加熱温度を400℃から600℃の高温側に設定すると、含有するフッ素濃度を高くすることができる。その一方で、正方晶の格子間に侵入しないフッ素原子が増加し、Sm2Fe17F3やSmFe5F1-4等も成長する。時効処理における加熱温度を400℃で作成したSmFe11MgF0.1-4箔体には、正方晶構造ではないSmF3等のフッ化物やSmOF等の酸フッ化物又は酸化物、炭化物等とbcc構造やbct構造の鉄が成長する。Bcc構造やbct構造の鉄の格子体積は、主相のSmFe11MgF0.1-4格子の体積よりも小さい。フッ素濃度は、これらのフッ化物や酸フッ化物の方が、SmFe11MgF0.1-4よりも高い。なお、磁気特性を決定するのは、SmFe11MgF0.1-4及びこのSmFe11MgF0.1-4との界面又は界面近傍の成長相及びbcc構造やbct構造の鉄である。被覆された部分を含めたSmFe11MgF0.1-4箔体には、SmFe11MgF0.1-4が全体の体積に対して65%成長した。ここで、箔体を被覆する部分のうち鉄濃度の少ない非磁性に近い部分を除去すると、飽和磁束密度が200(emu/g)、保磁力が30(kOe)、キュリー温度が815(K)の磁気特性を示す磁粉を作成することができた。
[実施例9]
この実施例では、粒径が100(nm)の鉄50%マンガン粉(Fe-50%Mn粉)を真空蒸着により作成する。次に、蒸着室内で作成したFe-50%Mn粉を大気に曝すことなく、LaF3に近い組成物を膨潤させ、Coが1重量%添加されたアルコール溶液と混合する。これにより、粉表面に被覆率90%でCoを含有するLaF3膜を厚さ1から10(nm)で形成する。このフッ化物被覆Fe-50%Mn粉を、CaH2と共に300℃で加熱保持した後、平均10℃/分以上の冷却速度で冷却した。冷却後、200℃で10時間時効処理し、その後更に、平均20℃/分の冷却速度で冷却した。その結果、Mn、Fe、F、Coが拡散反応し、正方晶構造のLa(Fe、Co)11MnF0.01-2が成長した。粉末中でのフッ素、Mn及びCoには濃度勾配が見られ、フッ素の濃度勾配が最も大きかった。Laを1とした原子濃度比で、フッ素は中心部で0.01となり、外周部で2であった。時効時間をさらに長くすると、この濃度勾配は小さくなる傾向を示した。
この実施例では、粒径が100(nm)の鉄50%マンガン粉(Fe-50%Mn粉)を真空蒸着により作成する。次に、蒸着室内で作成したFe-50%Mn粉を大気に曝すことなく、LaF3に近い組成物を膨潤させ、Coが1重量%添加されたアルコール溶液と混合する。これにより、粉表面に被覆率90%でCoを含有するLaF3膜を厚さ1から10(nm)で形成する。このフッ化物被覆Fe-50%Mn粉を、CaH2と共に300℃で加熱保持した後、平均10℃/分以上の冷却速度で冷却した。冷却後、200℃で10時間時効処理し、その後更に、平均20℃/分の冷却速度で冷却した。その結果、Mn、Fe、F、Coが拡散反応し、正方晶構造のLa(Fe、Co)11MnF0.01-2が成長した。粉末中でのフッ素、Mn及びCoには濃度勾配が見られ、フッ素の濃度勾配が最も大きかった。Laを1とした原子濃度比で、フッ素は中心部で0.01となり、外周部で2であった。時効時間をさらに長くすると、この濃度勾配は小さくなる傾向を示した。
このようにして作成したLa(Fe、Co)11MnF0.01-2粉には、正方晶構造ではないLaF3等のフッ化物やLaOF等の酸フッ化物又は酸化物、炭化物、水素化物等が成長した。フッ素濃度は、正方晶構造を有しないフッ化物や酸フッ化物の方がLa(Fe、Co)11MnF0.01-2よりも高い。しかし、磁気特性を決定しているのはLa(Fe、Co)11MnF0.01-2及びこのLa(Fe、Co)11MnF0.01-2との界面又は界面近傍の成長相である。被覆された部分を含めたLa(Fe、Co)11MnF0.01-2粉には、La(Fe、Co)11MnF0.01-2が全体の体積に対して51%成長し、さらにLaMn11FやLa2Mn17F2が強磁性相として成長する。このような希土類元素とMn及びフッ素で構成された化合物は、Mnの磁気モーメントの大部分が強磁性結合し、高い磁気異方性エネルギーを有するようになる。被覆された部分のうち非磁性に近い部分を除去すると、飽和磁束密度が170(emu/g)、保磁力が31(kOe)、キュリー温度が754(K)の磁気特性を示した。
この磁粉を非磁性フッ化物材料と混合した後、磁場中で配向させ、加熱圧縮成形することでフッ化物が塑性変形すると、フッ化物がバインダとなる高電気抵抗のボンド磁石を作成ことができる。フッ化物バインダ(MgF2)のボンド磁石に占める磁粉の体積は90%であり、残留磁束密度が1.21(T)、保磁力が30(kOe)であった。このボンド磁石を埋め込み磁石モータに適用して着磁した後、誘起電圧波形を測定した結果、NdFeB系又はSmFeN系等の他の希土類元素を含有する主相から成るボンド磁石よりも高い誘起電圧を示すことが確認された。
このように、遷移元素Mを添加したRx(Fe、M)yFz(x、yは自然数、zは正の数)は、元素Mと希土類元素Rとフッ素Fから構成される主相とは別の強磁性化合物の成長を伴い、従来のボンド磁石よりも希土類含有量が少なく、かつ、磁気特性を向上させた磁石材料として各種の磁気デバイスに適用することが可能である。前述した主相とは別の強磁性化合物は、RxMyFz(Rは希土類元素、Mは遷移金属元素、Fはフッ素、x、y、zは正数、0≦x<y、z<y)で表わされるフッ化物であり、その一部は母相に強磁性結合を有している。
[実施例10]
この実施例では、鉄とSmF3及びSmを混合し、Sm2.3Fe17F4組成のターゲットを作成する。このターゲットをスパッタリング装置内に設置し、Arイオンによりターゲットの表面をスパッタすることで基板にSmFeF系の薄膜を形成する。スパッタリングによって作成した膜の組成はSm2Fe17F2であった。膜中に菱面体晶又は六方晶の結晶構造からなる結晶粒を形成させるために、下地にはTaを選択し酸化防止のためにTaでキャッピングした。スパッタリング膜を200から300℃の温度範囲に加熱し、10時間保持した。スパッタリング膜に菱面体晶の結晶が成長していることが、X線回折パターン又は電子顕微鏡を使用した制限視野電子線回折像の解析から確認できた。この後、フッ素原子の一部がTh2Zn17構造やTh2Ni17構造の9e又は6hサイトに侵入していることを確認した。
この実施例では、鉄とSmF3及びSmを混合し、Sm2.3Fe17F4組成のターゲットを作成する。このターゲットをスパッタリング装置内に設置し、Arイオンによりターゲットの表面をスパッタすることで基板にSmFeF系の薄膜を形成する。スパッタリングによって作成した膜の組成はSm2Fe17F2であった。膜中に菱面体晶又は六方晶の結晶構造からなる結晶粒を形成させるために、下地にはTaを選択し酸化防止のためにTaでキャッピングした。スパッタリング膜を200から300℃の温度範囲に加熱し、10時間保持した。スパッタリング膜に菱面体晶の結晶が成長していることが、X線回折パターン又は電子顕微鏡を使用した制限視野電子線回折像の解析から確認できた。この後、フッ素原子の一部がTh2Zn17構造やTh2Ni17構造の9e又は6hサイトに侵入していることを確認した。
次に、Sm2Fe17F2のフッ素濃度を高くするため、基板に形成したスパッタリング膜をフッ化アンモニウム(NH4F)分解ガス中で熱処理する。熱処理温度は300℃であり、その保持時間は1時間である。熱処理後の薄膜の組成はSm2Fe17F2からSm2Fe17F3の組成になり、フッ素濃度の増加に伴い磁気特性が向上することを確認した。Sm2Fe17F3膜の磁気特性は、残留磁束密度が1.5(T)、保磁力が35(kOe)、キュリー温度が770(K)である。このように、Sm2Fe17F3膜は、磁気記録媒体への応用が可能な磁気特性をもつ。
粒界又は界面等に主相とは異なる構造をもったSmF3、SmF2、FeF2等のフッ化物、又はSmOF等の酸フッ化物、又は酸化鉄のスパッタリング膜中での成長が、直径2(nm)の電子線を用いた電子線回折像の解析から確認された。残留磁束密度が1.4(T)を超えると共にキュリー温度が700(K)を超える膜は、前述したように、Rx(Fe、M)yFz(RはYを含む希土類元素、Feは鉄、Mはフッ素の電気陰性度(4.0)よりも小さく、かつ、電気陰性度が3以下の遷移元素、Fはフッ素、x、y、zは正の数)で示される六方晶、菱面体晶、正方晶、斜方晶などの結晶構造を有する主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物として形成される。なお、添加する遷移元素Mの濃度は結晶構造の安定性向上に寄与し、かつ、鉄(Fe)の濃度よりも少ないことが残留磁束密度を確保するために望ましい。なお、下地層やキャッピング層は、Ta以外の金属又はフッ化物、窒化物、炭化物、酸化物であっても、ほぼ同等の特性が得られる。Rx(Fe、M)yFzには、不純物として酸素、水素、窒素、炭素、ホウ素又は微量金属不純物が含有していても特性上の問題はない。
[実施例11]
この実施例では、鉄とSmF3及びSmを混合し、Sm2.3Fe17F6組成のターゲットとSm2Fe17組成のターゲットの二種類を作成する。この二枚のターゲットをスパッタリング装置内に設置し、Arイオンにより二枚のターゲットの表面を交互にスパッタする。これにより、基板上にSmFeF系の薄膜とSmFe系膜を多層的に形成した薄膜を形成する。SmFeF系薄膜の膜厚が2(nm)、SmFe系膜の膜厚が3(nm)であった。この多層膜を200℃で熱処理し、膜全体の組成がSm2Fe17F2となるように膜形成条件や熱処理条件の最適化を進めた。この膜中に菱面体晶又は六方晶の結晶構造からなる結晶粒を形成させるために、下地にはW(タングステン)を選択し、酸化防止のためにWでキャッピングした。熱処理後のスパッタリング膜に菱面体晶の結晶が成長していることが、X線回折パターン又は電子顕微鏡を使用した制限視野電子線回折像の解析から確認できた。Sm2Fe17F2のフッ素濃度を高くするため、スパッタリング膜の表面にSmF3膜のようなフッ化物を含有するアルコール液を塗布して熱処理する。熱処理温度は350℃で保持時間は1時間である。熱処理後の薄膜の組成は、Sm2Fe17F2からSm2Fe17F2.5になった。フッ素濃度の増加に伴い、保磁力の増加、残留磁束密度の増加、飽和磁束密度の増加、保磁力温度係数の減少、残留磁束密度の減少、キュリー温度の上昇など、磁気特性の向上が確認された。
この実施例では、鉄とSmF3及びSmを混合し、Sm2.3Fe17F6組成のターゲットとSm2Fe17組成のターゲットの二種類を作成する。この二枚のターゲットをスパッタリング装置内に設置し、Arイオンにより二枚のターゲットの表面を交互にスパッタする。これにより、基板上にSmFeF系の薄膜とSmFe系膜を多層的に形成した薄膜を形成する。SmFeF系薄膜の膜厚が2(nm)、SmFe系膜の膜厚が3(nm)であった。この多層膜を200℃で熱処理し、膜全体の組成がSm2Fe17F2となるように膜形成条件や熱処理条件の最適化を進めた。この膜中に菱面体晶又は六方晶の結晶構造からなる結晶粒を形成させるために、下地にはW(タングステン)を選択し、酸化防止のためにWでキャッピングした。熱処理後のスパッタリング膜に菱面体晶の結晶が成長していることが、X線回折パターン又は電子顕微鏡を使用した制限視野電子線回折像の解析から確認できた。Sm2Fe17F2のフッ素濃度を高くするため、スパッタリング膜の表面にSmF3膜のようなフッ化物を含有するアルコール液を塗布して熱処理する。熱処理温度は350℃で保持時間は1時間である。熱処理後の薄膜の組成は、Sm2Fe17F2からSm2Fe17F2.5になった。フッ素濃度の増加に伴い、保磁力の増加、残留磁束密度の増加、飽和磁束密度の増加、保磁力温度係数の減少、残留磁束密度の減少、キュリー温度の上昇など、磁気特性の向上が確認された。
Sm2Fe17F2.5膜の磁気特性は、残留磁束密度が1.45(T)、保磁力が32(kOe)、キュリー温度が750(K)であり、磁気記録媒体に応用できる磁気特性をもつ。主相とは異なる構造をもったSmF3、SmF2、FeF2等のフッ化物、又はSmOF等の酸フッ化物、又はFe2O3、Fe3O4等の酸化鉄の膜中の粒界又は界面等における成長が、直径1nmの電子線を用いた電子線回折像の解析から確認された。残留磁束密度が1.4(T)を超え、キュリー温度が700(K)を超える膜は、前述したように、Rx(Fe、M)yFz(RはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、x、y、zは正の数)で示される六方晶、菱面体晶、正方晶、斜方晶、立方晶などの結晶構造を有する主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物又は酸化物として形成される。添加するTi、Al、Ga、Ge、Bi、Ta、Cr、Mn、Zr、Mo、Hf、Cu、Pd、Mg、Si、Co、Ni、Nb等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与し、鉄(Fe)よりも少ないことが残留磁束密度の確保のために望ましい。なお、下地層やキャッピング層は、W(タングステン)以外の金属、又はフッ化物、窒化物、炭化物、酸化物であってもほぼ同等の特性が得られる。Rx(Fe、M)yFzには、不純物として酸素、水素、窒素、炭素、ホウ素又は微量金属不純物が含有していても特性上の問題はない。なお、フッ素に代わって塩素を使用しても良い。
[実施例12]
この実施例では、エタノールを溶媒として、SmF3近傍の組成物を膨潤させた溶液及び鉄イオンを含有する溶液を使用し、基板上に交互に塗布する。一層当たりの塗布膜厚は1から2(nm)である。塗布直後の単層膜の結晶構造は非晶質に近い。基板には鉄板を使用した。Smが多い層とFeが多い層が積層した膜の全体の厚さは約1(mm)である。この膜を350℃で1時間、一方向への磁場を印加しながら加熱し、結晶化させる。加熱により非晶質構造を構成する元素を拡散させ、準安定な結晶質に相転移を起こす。これにより、Sm2Fe17F2が、SmOFやFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物を伴って成長する。Sm2Fe17F2を多く成長させるため、Sm2Fe17F2を安定化させるAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Nb、Cu、Bi、Pd、Pt等の遷移元素を0.01から1(wt%)のイオンとして、前述した二種類のいずれかの溶液に添加する。
この実施例では、エタノールを溶媒として、SmF3近傍の組成物を膨潤させた溶液及び鉄イオンを含有する溶液を使用し、基板上に交互に塗布する。一層当たりの塗布膜厚は1から2(nm)である。塗布直後の単層膜の結晶構造は非晶質に近い。基板には鉄板を使用した。Smが多い層とFeが多い層が積層した膜の全体の厚さは約1(mm)である。この膜を350℃で1時間、一方向への磁場を印加しながら加熱し、結晶化させる。加熱により非晶質構造を構成する元素を拡散させ、準安定な結晶質に相転移を起こす。これにより、Sm2Fe17F2が、SmOFやFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物を伴って成長する。Sm2Fe17F2を多く成長させるため、Sm2Fe17F2を安定化させるAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Nb、Cu、Bi、Pd、Pt等の遷移元素を0.01から1(wt%)のイオンとして、前述した二種類のいずれかの溶液に添加する。
Sm2Fe17F2は、菱面体晶Th2Zn17又は六方晶Th2Ni17構造を有する。フッ素原子は、菱面体晶Th2Zn17の9eサイト又は六方晶Th2Ni17構造の6hサイトに配置される。フッ素原子の導入により、a軸長又はc軸長のいずれかが膨張する。フッ素導入による格子体積の増加が0.1から5%、又は格子歪の増加が0.1から15%確認できる。このような格子体積や格子歪の増加により、鉄原子の磁気モーメントの増加や結晶磁気異方性エネルギーの増加、キュリー温度(キュリー点)の上昇、交換結合エネルギーの増加のいずれかが観測できる。
Sm2Fe17F2膜は印加磁場により異方性が発現し、その磁気特性は残留磁束密度が1.65(T)、保磁力が32(kOe)、キュリー温度が780(K)である。この磁気特性は、磁気記録媒体やモータを含む小型磁気回路に応用できる。残留磁束密度は1.5(T)を超え、かつ、キュリー温度が600(K)を超える膜は、Rx(Fe、M)yFz(RはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、x、y、zは正の数)で示される六方晶、菱面体晶、正方晶、斜方晶、立方晶又はラーベス相(Laves Phase)等の結晶構造を有する主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物又は酸化物として形成される。鉄-鉄原子間に配置されるフッ素原子及び鉄-鉄原子間には配置されないが希土類元素や酸素と化合物を形成するフッ素原子が認められる。添加するTi、Al、Ga、Ge、Bi、Ta、Cr、Mn、Zr、Mo、Hf、Cu、Pd、Mg、Si、Co、Ni、Nb等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。なお、遷移元素Mの濃度は、鉄(Fe)の濃度よりも少ないことが残留磁束密度を確保するためには望ましい。なお、Rx(Fe、M)yFzには、不純物又は侵入位置へ配置する元素として酸素、水素、窒素、炭素、ホウ素又は微量金属不純物が含有していても、特性上の問題はない。また、フッ素に代わって塩素を使用しても良い。
[実施例13]
この実施例では、鉄のターゲット上にSmF3及びSm2Fe17組成のチップを配置した状態でスパッタ装置内に設置する。装置内にArガスを注入してスパッタリングし、ガラス基板上に1(μm)の厚さでSm-Fe-F系膜を形成した。チップ数を調整することで、Sm2Fe24F膜を得る。スパッタリング中は基板に磁界を印加し、形成されるスパッタリング膜に磁気異方性を付加した。スパッタリング膜の形成後、400℃に加熱して元素を拡散し、硬質磁性膜を作成した。
この実施例では、鉄のターゲット上にSmF3及びSm2Fe17組成のチップを配置した状態でスパッタ装置内に設置する。装置内にArガスを注入してスパッタリングし、ガラス基板上に1(μm)の厚さでSm-Fe-F系膜を形成した。チップ数を調整することで、Sm2Fe24F膜を得る。スパッタリング中は基板に磁界を印加し、形成されるスパッタリング膜に磁気異方性を付加した。スパッタリング膜の形成後、400℃に加熱して元素を拡散し、硬質磁性膜を作成した。
この膜には結晶構造がThMn12型構造の強磁性相が成長し、一部のフッ素原子は侵入位置に配列している。また、加熱処理により、スパッタリング膜中には、SmOFやFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物が粒径1から100nmで成長する。Sm2Fe24Fを多く成長させるため、Sm2Fe24Fを安定化させるAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Bi、Pd、Pt、Bi、Sr、W、Ca等の遷移元素をターゲット上に鉄との合金チップとして配置し、0.001から1(at%)の範囲でSm-Fe-F膜に添加する。作成した膜の磁気特性は、残留磁束密度が1.6(T)、保磁力が35(kOe)、キュリー温度が790(K)である。この磁気特性は、磁気記録媒体や磁気ヘッドの磁性膜、モータを含む小型磁気回路に応用できる。
残留磁束密度が1.5(T)を超え、キュリー温度が700(K)を超えるスパッタリング膜は、前述したように、Rx(Fe、M)yFz(RはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、x、y、zは正の数)で示される六方晶、菱面体晶、正方晶、斜方晶、立方晶等の結晶構造を有する主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物、酸化物及びbcc構造又はbct構造の鉄や鉄フッ素二元合金相として形成される。鉄-鉄原子間に配置されるフッ素原子及び鉄-鉄原子間に配置されないが希土類元素や酸素と化合物を形成するフッ素原子が認められる。強磁性体での交換結合及びフェリ磁性体での超交換相互作用の両者に、フッ素導入効果が認められる。また、添加するAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Bi、Pd、Pt、Bi、Sr、W、Ca等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。遷移元素Mの濃度は、鉄(Fe)の濃度よりも少ないことが残留磁束密度を確保するためには望ましい。なお、Rx(Fe、M)yFzには、不純物として酸素、水素、窒素、炭素、ホウ素又は微量金属不純物が含有していても特性上の問題はない。また、フッ素に代わって塩素、リン、硫黄、又はこれらの元素とフッ素との混合物を使用しても良い。
[実施例14]
この実施例では、エタノールを溶媒としてSmF4近傍の組成物を膨潤させた溶液及び鉄イオンを含有する溶液を使用し、基板上に交互に塗布する。一層当たりの塗布膜厚は10から20(nm)である。塗布直後の単層膜の結晶構造は非晶質に近く、一部結晶質が成長している。基板にはガラス板を使用した。Sm及びフッ素が多い層とFeが多い層が積層した膜全体の厚さは約1(mm)である。この塗布膜には、10(kOe)の大きさの一方向への磁場を印加しながら400℃で1時間加熱する。この加熱により、非晶質又は準安定相を結晶化させる。加熱により準安定相を構成する元素が拡散し、より安定な結晶質に相転移を起こし、Sm2Fe17F3がSmOFやFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物を伴って成長する。Sm2Fe17F3を多く成長させるため、Sm2Fe17F3を安定化させるTi、V、Co、Cr、Mn、Cu、Zn、Ga、Ge、Asなどの遷移元素Mを、0.1から1(wt%)のイオンとして前述した二種類のいずれかの溶液に添加する。
この実施例では、エタノールを溶媒としてSmF4近傍の組成物を膨潤させた溶液及び鉄イオンを含有する溶液を使用し、基板上に交互に塗布する。一層当たりの塗布膜厚は10から20(nm)である。塗布直後の単層膜の結晶構造は非晶質に近く、一部結晶質が成長している。基板にはガラス板を使用した。Sm及びフッ素が多い層とFeが多い層が積層した膜全体の厚さは約1(mm)である。この塗布膜には、10(kOe)の大きさの一方向への磁場を印加しながら400℃で1時間加熱する。この加熱により、非晶質又は準安定相を結晶化させる。加熱により準安定相を構成する元素が拡散し、より安定な結晶質に相転移を起こし、Sm2Fe17F3がSmOFやFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物を伴って成長する。Sm2Fe17F3を多く成長させるため、Sm2Fe17F3を安定化させるTi、V、Co、Cr、Mn、Cu、Zn、Ga、Ge、Asなどの遷移元素Mを、0.1から1(wt%)のイオンとして前述した二種類のいずれかの溶液に添加する。
Sm2Fe17F3は、菱面体晶Th2Zn17又は六方晶Th2Ni17構造を有し、フッ素原子の一部が菱面体晶Th2Zn17の9eサイト又は六方晶Th2Ni17構造の6hサイトに配置される。フッ素原子の導入により、a軸長又はc軸長のいずれかが膨張する。フッ素導入による格子体積の増加が0.1から7%確認される。このような格子体積の増加により、鉄原子の磁気モーメントが平均して5から10%増加し、結晶磁気異方性エネルギーが約50%増加し、キュリー温度(キュリー点)が200℃上昇する。
Sm2Fe17F3膜は印加磁場により異方性が発現し、その磁気特性は、298(K)における残留磁束密度が1.63(T)、保磁力が35(kOe)、キュリー温度が795(K)である。この磁気特性は、磁気記録媒体やモータを含む小型磁気回路に応用できる。
残留磁束密度が1.5(T)を超え、キュリー温度が750(K)を超える溶液を用いて作成した膜は、Rx(Fe、M)yFz(ここでRはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、x、y、zは正の数でx<z<y)で示される六方晶、菱面体晶、正方晶、斜方晶、立方晶などの結晶構造を有する主相のフッ素化合物を形成する際に成長する規則相又は不規則相のフッ化物又は酸フッ化物、酸化物として形成される。鉄-鉄原子間に配置されるフッ素原子及び鉄-鉄原子間に配置されないが希土類元素や酸素と化合物を形成するフッ素原子又は希土類原子と鉄原子間への配置が認められる。一部の主相の界面では強磁性結合及び超交換相互作用が働くことが保磁力増加に寄与する。
また、添加するTi、V、Co、Cr、Mn、Cu、Zn、Ga、Ge、As等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。遷移元素Mの濃度は、鉄(Fe)の濃度よりも少ないことが残留磁束密度を確保するためには望ましい。なお、Rx(Fe、M)yFzには、不純物として酸素、水素、窒素、炭素、又は微量金属不純物が含有していても特性上の問題はない。フッ素に代わって塩素やリン、硫黄を使用しても良い。
[実施例15]
この実施例では、鉄のターゲット上にSmF3及びSm2Fe17チップを配置した状態でスパッタ装置内に設置する。装置内にArとフッ素の混合ガスを注入し、反応性スパッタリングを試みた。スパッタリングには、Ar-2%F2ガスを使用し、圧力1(mTorr)、基板温度250℃、一方向に30(kOe)の磁場を印加した。この場合、膜厚が約1(μm)のSm-Fe-F膜には、SmFe24F3が成長していることが確認され、斜方晶及び正方晶の成長が確認された。粒界や表面の一部には、SmOF、Sm(O、F、C)やFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物、水素化物が粒径0.1から100(nm)で成長していた。SmFe24F3を多く成長させるため、SmFe24F3を安定化させるAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Bi、Pd、Pt、Sr、W、Ca等の遷移元素をターゲット上に鉄との合金チップとして一種又は複数種配置し、0.001から1(at%)の範囲でSm-Fe-F膜に添加する。作成した膜を300℃で熱処理して結晶粒を成長させ、平均結晶粒径を10から100(nm)とした。
この実施例では、鉄のターゲット上にSmF3及びSm2Fe17チップを配置した状態でスパッタ装置内に設置する。装置内にArとフッ素の混合ガスを注入し、反応性スパッタリングを試みた。スパッタリングには、Ar-2%F2ガスを使用し、圧力1(mTorr)、基板温度250℃、一方向に30(kOe)の磁場を印加した。この場合、膜厚が約1(μm)のSm-Fe-F膜には、SmFe24F3が成長していることが確認され、斜方晶及び正方晶の成長が確認された。粒界や表面の一部には、SmOF、Sm(O、F、C)やFe2O3、FeF2、FeF3等のフッ化物、酸フッ化物又は酸化物、炭化物、水素化物が粒径0.1から100(nm)で成長していた。SmFe24F3を多く成長させるため、SmFe24F3を安定化させるAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Bi、Pd、Pt、Sr、W、Ca等の遷移元素をターゲット上に鉄との合金チップとして一種又は複数種配置し、0.001から1(at%)の範囲でSm-Fe-F膜に添加する。作成した膜を300℃で熱処理して結晶粒を成長させ、平均結晶粒径を10から100(nm)とした。
因みに、500℃よりも高温で熱処理するとSmFe24F3の構造が変化し、粒界近傍のフッ化物や酸フッ化物が成長し、保磁力が低下する。基板材料の選択により容易磁化方向を基板面内又は基板に垂直な方向に配向した膜を作成できる。SmFe24F3の磁気特性は残留磁束密度が1.7(T)、保磁力が35(kOe)、キュリー温度が820(K)である。この磁気特性は、磁気記録媒体、MRAM等の磁気メモリー、磁気ヘッドの磁性膜、モータを含む小型磁気回路に応用できる。
残留磁束密度が1.6(T)を超え、キュリー温度が700(K)を超えるスパッタリング膜は、前述したように、Rx(Fe、M)yFz(RはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、x、y、zは正の数でx<0.1(x+y)、Rの含有量がR、FeとMの和の10原子%未満)で示されるFeリッチ化合物又は合金相である。Feリッチ化合物は、合金相が六方晶、菱面体晶、正方晶、斜方晶、立方晶などの結晶構造を有する主相であって、フッ素濃度に依存して異なる結晶構造をもつ。スパッタリング膜には、主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物、酸化物及びbcc構造又はbct構造の鉄や鉄フッ素二元合金相が形成される。鉄-鉄原子間に配置されるフッ素原子及び鉄-鉄原子間に配置されないが希土類元素や酸素と化合物を形成するフッ素原子が認められる。強磁性体での交換結合及びフェリ磁性体での超交換相互作用の両者にフッ素導入効果のいずれかがが認められる。また、添加するAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Bi、Pd、Pt、Sr、W、Ca等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。なお、Rx(Fe、M)yFzには、不純物として酸素、水素、窒素、炭素、ホウ素、又は微量金属不純物が含有していても特性上の問題はない。フッ素に代わって塩素、リン、硫黄、あるいはこれらの元素とフッ素との混合物を使用しても良い。
[実施例16]
この実施例では、鉄-50%マンガン合金をターゲットに使用する。この合金ターゲットの上に、SmF3チップ及びSmMnチップを載せてスパッタ装置内に設置する。装置内にArガスを注入し、2(mTorr)のガス圧、スパッタリング速度0.1(μm/分)でスパッタリングすると、SmFe11Mn5F2組成の合金膜が形成される。1x10-6(Torr)の真空中で、合金膜に30(kOe)の磁場を印加し、500℃で1時間保持した後、20℃まで急冷する。冷却中も磁場を印加する。急冷後の膜には、SmFe11MnF及びSmFeMn11F2が成長した。前者が強磁性を示し、後者がフェリ磁性を示す。すなわち、冷却後の膜は複合磁性材料となる。これら二種類の磁性相以外にも、粒界又は界面にはSmF3、SmOF、MnF2、FeF2等のSmFe11MnF及びSmFeMn11F2とは格子定数や結晶構造が異なるフッ化物や酸フッ化物が成長する。SmFe11MnF及びSmFeMn11F2に含有するフッ素原子の一部は侵入位置に配置し、結晶格子を膨張させる。SmFe11MnFによって磁気モーメントが増加する。キュリー温度がフッ素の導入により約250℃上昇する。SmFeMn11F2によってMnの原子サイトに依存する磁気モーメントの差が大きくなり、磁化が20%増加する。SmFe11Mn5F2組成の磁性膜の磁気特性は、磁場中での冷却による前述した二相間の交換結合の発現により、減磁曲線は冷却中の磁場方向に依存する。結果的に、残留磁束密度が1.3(T)、保磁力が35(kOe)の高保磁気特性が得られる。
この実施例では、鉄-50%マンガン合金をターゲットに使用する。この合金ターゲットの上に、SmF3チップ及びSmMnチップを載せてスパッタ装置内に設置する。装置内にArガスを注入し、2(mTorr)のガス圧、スパッタリング速度0.1(μm/分)でスパッタリングすると、SmFe11Mn5F2組成の合金膜が形成される。1x10-6(Torr)の真空中で、合金膜に30(kOe)の磁場を印加し、500℃で1時間保持した後、20℃まで急冷する。冷却中も磁場を印加する。急冷後の膜には、SmFe11MnF及びSmFeMn11F2が成長した。前者が強磁性を示し、後者がフェリ磁性を示す。すなわち、冷却後の膜は複合磁性材料となる。これら二種類の磁性相以外にも、粒界又は界面にはSmF3、SmOF、MnF2、FeF2等のSmFe11MnF及びSmFeMn11F2とは格子定数や結晶構造が異なるフッ化物や酸フッ化物が成長する。SmFe11MnF及びSmFeMn11F2に含有するフッ素原子の一部は侵入位置に配置し、結晶格子を膨張させる。SmFe11MnFによって磁気モーメントが増加する。キュリー温度がフッ素の導入により約250℃上昇する。SmFeMn11F2によってMnの原子サイトに依存する磁気モーメントの差が大きくなり、磁化が20%増加する。SmFe11Mn5F2組成の磁性膜の磁気特性は、磁場中での冷却による前述した二相間の交換結合の発現により、減磁曲線は冷却中の磁場方向に依存する。結果的に、残留磁束密度が1.3(T)、保磁力が35(kOe)の高保磁気特性が得られる。
残留磁束密度が1.3(T)、保磁力が25(kOe)を満足できる材料は、以下のように記述できる。すなわち、磁性相がRuFevMwFa及びRxFeyMzFbの少なくとも二相から構成され、RがYを含む希土類元素、Feが鉄、MがMnやCrなどの遷移金属元素、Fがフッ素、u、v、w、a、x、y、z、bは正数であり、u<v、w<v、0≦x<z、y<z、w<zという条件で、かつフッ素原子の一部が鉄又はM原子を主とする格子内の侵入位置に配置しており、少なくとも二相間には磁気的な結合が存在する。
磁気的な結合の有無は、磁場中で冷却した場合と磁場を印加せずに冷却した場合とを比較することで、保磁力に0.5(kOe)以上の差があることで確認可能である。SmFe11MnF及びSmFeMn11F2の成長には、フッ化物や酸フッ化物の粒界又は表面における成長を伴い、フッ素濃度が粒界のフッ化物や酸フッ化物の方が主相よりも高い。
フッ素の導入による磁気的結合は他の磁気物性にも影響する。このため、硬質磁性材料だけでなく、磁気比熱を利用した磁気冷凍器の冷媒、磁気発電効果材料にも応用できる。なお、磁性相のRuFevMwFa又はRxFeyMzFbのいずれか一相のみから主相が構成される場合でも硬質磁気特性を示し、磁石材料として各種の磁気回路に適用できる。またこれらの主相は、u、v、w、a、x、y、z、bの制御により電子状態が大きく変化することに伴い、磁気抵抗効果、磁気歪効果、熱電効果、磁気冷凍効果、磁気発熱効果、磁界誘起構造相転移又は超伝導特性を示す。
[実施例17]
この実施例では、厚さ2(μm)の鉄箔を水素ガス中で加熱還元し、表面の酸化物を除去する。この鉄箔にフッ素イオンを150℃の温度で注入する。注入量は1x1016(/cm2)である。注入後の鉄には格子定数が0.2865~0.295のbcc構造又はbct構造が確認できる。最表面よりも箔体の中心部又は内部においてフッ素濃度が高く、格子体積も大きい傾向を示した。この注入により、鉄箔の飽和磁化は約5%増加する。この飽和磁化の増加はフッ素原子が体心立方格子の四面体又は八面体位置に侵入するためである。さらに、フッ素を注入した鉄箔に、SmF3組成物が膨潤されたアルコール溶液を10(nm)の膜厚で塗布する。乾燥後、400℃で5時間熱処理し、Sm及びフッ素を拡散させる。Sm及びフッ素が鉄箔の中心部まで拡散し、異方性が増加する。鉄箔にはbcc構造の鉄、bct構造の鉄及びSm2Fe17Fが成長し、フッ素が鉄及びSm2Fe17の格子間侵入位置又は置換位置に配置される。その結果、格子歪みが増加し、面間隔が増加していることをX線回折パターンのピーク位置やピーク幅から確認した。また、電子顕微鏡の観察より、粒界の一部にフッ化物や酸フッ化物が母相の平均粒径よりも小さい粒径で成長していることを確認した。Bcc構造やbct構造の鉄の格子よりも、Sm2Fe17F組成物のフッ素導入による格子体積の膨張量の方が大きく、格子体積も大きい。この格子体積の増大に伴い、鉄原子の磁気モーメントの増大、磁気異方性エネルギーの増大、キュリー温度の上昇が磁化測定及び磁化の温度依存性の測定から明らかになった。このようなフッ素注入又はフッ素と窒素、フッ素と塩素を注入した鉄箔体を積層して厚さを所望の仕様に調整すれば、種々の磁気回路に使用することができる。
この実施例では、厚さ2(μm)の鉄箔を水素ガス中で加熱還元し、表面の酸化物を除去する。この鉄箔にフッ素イオンを150℃の温度で注入する。注入量は1x1016(/cm2)である。注入後の鉄には格子定数が0.2865~0.295のbcc構造又はbct構造が確認できる。最表面よりも箔体の中心部又は内部においてフッ素濃度が高く、格子体積も大きい傾向を示した。この注入により、鉄箔の飽和磁化は約5%増加する。この飽和磁化の増加はフッ素原子が体心立方格子の四面体又は八面体位置に侵入するためである。さらに、フッ素を注入した鉄箔に、SmF3組成物が膨潤されたアルコール溶液を10(nm)の膜厚で塗布する。乾燥後、400℃で5時間熱処理し、Sm及びフッ素を拡散させる。Sm及びフッ素が鉄箔の中心部まで拡散し、異方性が増加する。鉄箔にはbcc構造の鉄、bct構造の鉄及びSm2Fe17Fが成長し、フッ素が鉄及びSm2Fe17の格子間侵入位置又は置換位置に配置される。その結果、格子歪みが増加し、面間隔が増加していることをX線回折パターンのピーク位置やピーク幅から確認した。また、電子顕微鏡の観察より、粒界の一部にフッ化物や酸フッ化物が母相の平均粒径よりも小さい粒径で成長していることを確認した。Bcc構造やbct構造の鉄の格子よりも、Sm2Fe17F組成物のフッ素導入による格子体積の膨張量の方が大きく、格子体積も大きい。この格子体積の増大に伴い、鉄原子の磁気モーメントの増大、磁気異方性エネルギーの増大、キュリー温度の上昇が磁化測定及び磁化の温度依存性の測定から明らかになった。このようなフッ素注入又はフッ素と窒素、フッ素と塩素を注入した鉄箔体を積層して厚さを所望の仕様に調整すれば、種々の磁気回路に使用することができる。
[実施例18]
この実施例では、Sm2Fe17粉を粒径が約1(μm)になるまで粉砕し、500℃において水素気流中で還元する。この後、酸化物が除去されたSm2Fe17粉を10(kOe)の磁場中に置き、0.5(t/cm2)の圧力を付加して仮成形体を作成する。仮成形体の隙間にはSmF3.1組成物が膨潤されたアルコール溶液を含浸させる。この含浸処理によりSm2Fe17粉表面にはSmF系非晶質膜が形成させる。これを水素気流中で加熱乾燥させ、酸化を抑えながら非晶質膜の一部を結晶化させる。さらに、水素気流中で電磁波を照射し、フッ化物を発熱させることによりSm2Fe17粉の表面をフッ化する。フッ化中に圧力を印加して高密度成形体を作成できる。その磁気特性は、残留磁束密度が1.6(T)、保磁力が25(kOe)、キュリー温度が720(K)である。この磁気特性は、磁気記録媒体、磁気ヘッドの磁性膜、モータを含む小型磁気回路に応用することができる。
この実施例では、Sm2Fe17粉を粒径が約1(μm)になるまで粉砕し、500℃において水素気流中で還元する。この後、酸化物が除去されたSm2Fe17粉を10(kOe)の磁場中に置き、0.5(t/cm2)の圧力を付加して仮成形体を作成する。仮成形体の隙間にはSmF3.1組成物が膨潤されたアルコール溶液を含浸させる。この含浸処理によりSm2Fe17粉表面にはSmF系非晶質膜が形成させる。これを水素気流中で加熱乾燥させ、酸化を抑えながら非晶質膜の一部を結晶化させる。さらに、水素気流中で電磁波を照射し、フッ化物を発熱させることによりSm2Fe17粉の表面をフッ化する。フッ化中に圧力を印加して高密度成形体を作成できる。その磁気特性は、残留磁束密度が1.6(T)、保磁力が25(kOe)、キュリー温度が720(K)である。この磁気特性は、磁気記録媒体、磁気ヘッドの磁性膜、モータを含む小型磁気回路に応用することができる。
残留磁束密度が1.6(T)、キュリー温度が700(K)を超える成形体は、Rx(Fe、M)yFz(RはYを含む希土類元素、Feは鉄、Mは遷移元素、Fはフッ素、x、y、zは正の数であり、x<0.11(x+y)、Rの含有量がRとFeとMの和を100%とした時の11原子%未満)で示されるFeリッチ化合物又は合金相である。Feリッチ化合物は、合金相が六方晶、菱面体晶、正方晶、斜方晶、立方晶等の結晶構造を有する主相であって、フッ素濃度に依存して異なる結晶構造をもつ。成形体には主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物、酸化物及びbcc構造又はbct構造の鉄や鉄フッ素二元合金相が形成され、鉄-鉄原子間に配置されるフッ素原子及び鉄-鉄原子間に配置されないが希土類元素や酸素と化合物を形成するフッ素原子が認められる。強磁性体での交換結合及びフェリ磁性体での超交換相互作用の両者にフッ素導入効果のいずれかが認められる。フッ素濃度が粒中心よりも粒外周側の方が平均的に高く、格子体積も粒の外周側の方が中心部よりも大きい傾向がある。粒外周側において磁気異方性が大きいことから、磁区構造の磁壁幅に違いがみられる。
主相のフッ化物は600℃以上に加熱すると、一部の結晶粒は構造を変えて、より安定なフッ化物と鉄合金相になる。このような構造変化を抑制するためには添加元素を使用することが有効である。添加可能なAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Pd、Pt、Bi、Sr、W、Ca等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。なお、Rx(Fe、M)yFzには、不純物として酸素、水素、窒素、炭素、ホウ素又は微量金属不純物が含有していても特性上の問題はない。MやRe元素の一部は粒界や表面に偏在化する。フッ素に代わって塩素、リン、硫黄、あるいはこれらの元素とフッ素との混合物を使用しても良い。
また、強磁性フッ化物で使用している鉄の代わりにCoを使用したRx(Co、M)yFz(ここでRはYを含む希土類元素、Coはコバルト、Mは一種類以上の遷移元素、Fはフッ素、x、y、zは正の数であり、x<0.11(x+y)、Rの含有量がRとCoとMの和を100%とした時の11原子%未満)でも良い。Coリッチ化合物又は合金相の場合にも、フッ素導入による保磁力増加、磁化増加又はキュリー温度上昇のいずれかの効果が得られる。
[実施例19]
この実施例では、Sm2Fe17粉を粒径が約0.5(μm)になるまで粉砕した後、500℃においてアンモニアの気流中で還元する。還元により酸化物が除去され、表面の一部が窒化したSm2Fe17粉が得られる。この粉を10(kOe)の磁場中に置き、0.5(t/cm2)の圧力を付加して仮成形体を作成する。仮成形体の隙間にPrF3.1組成物が膨潤したアルコール溶液を含浸させる。この含浸処理により、Sm2Fe17N1-3粉の表面にはPrF系非晶質膜が形成される。
この実施例では、Sm2Fe17粉を粒径が約0.5(μm)になるまで粉砕した後、500℃においてアンモニアの気流中で還元する。還元により酸化物が除去され、表面の一部が窒化したSm2Fe17粉が得られる。この粉を10(kOe)の磁場中に置き、0.5(t/cm2)の圧力を付加して仮成形体を作成する。仮成形体の隙間にPrF3.1組成物が膨潤したアルコール溶液を含浸させる。この含浸処理により、Sm2Fe17N1-3粉の表面にはPrF系非晶質膜が形成される。
次に、Sm2Fe17N1-3粉を水素気流中で加熱乾燥させ、酸化を抑えながら非晶質膜の一部を結晶化させる。さらに、水素気流中で電磁波を照射し、フッ化物を発熱させる。これにより、Sm2Fe17粉の表面をフッ化する。フッ化中に圧力を印加すると、高密度成形体を作成することができる。また、一部のPrとSmの交換反応が拡散により進行する。磁粉表面にはPrF3やPrOF、Pr2O3が成長し、磁粉内の結晶粒の外周部には(Sm、Pr)2Fe17(N、F)1-3が成長する。結晶粒の中心部は、外周部よりもフッ素濃度及びPr濃度が低く、格子定数も小さく、単位胞又は格子体積は結晶粒の外周部よりも内周部の方が平均的に小さくなる傾向を示す。結晶粒界又は表面の一部には、希土類元素を含有するフッ化物や酸フッ化物、酸化物以外に、bcc構造、bct構造又はfcc構造のFe、Fe-F、又はこれらの鉄基合金に微量の希土類元素や窒素、炭素、酸素等を含有する相が成長する。
これらのFe基合金の格子定数は、母相の(Sm、Pr)2Fe17(N、F)1-3よりも小さく、格子体積もFe基合金の方が母相よりも小さい。磁粉の磁気特性は、残留磁束密度が190(emu/g)、保磁力が25(kOe)、キュリー温度が730(K)である。この磁気特性は、モータを含む小型磁気回路に応用することができる。また、この磁気特性は、表面磁石モータ、埋め込み磁石モータ、極異方性磁石モータ、ラジアルリング磁石モータ、アキシャルギャップ磁石モータ、リニア磁石モータ等の磁石モータにも適用できる。
残留磁束密度が190(emu/g)、キュリー温度が700(K)を超える磁粉は、Rx(Fe、M)y(N、F)z(RはYを含む希土類元素、Feは鉄、Mは遷移元素、Nは窒素、Fはフッ素、x、y、zは正の数であり、x<0.11(x+y)、Rの含有量がRとFeとMの和を100%とした時の11原子%未満)で示されるFeリッチ化合物又は合金相である。Feリッチ化合物は、合金相が六方晶、菱面体晶、正方晶、斜方晶、立方晶等の結晶構造を有する主相であって、フッ素濃度に依存して異なる結晶構造及び規則・不規則構造をもつ。成形体には、主相のフッ素化合物を形成する際に成長するフッ化物又は酸フッ化物、酸化物及びbcc構造又はbct構造又はfcc構造の鉄や鉄フッ素二元合金相が形成される。鉄-鉄原子間に配置されるフッ素原子及び鉄-鉄原子間に配置されないが希土類元素や酸素と化合物を形成するフッ素原子が認められる。強磁性体での電子状態密度の分布変化による交換結合にフッ素導入効果が認められる。
フッ素の濃度は、粒中心よりも粒外周側の方が平均的に高く、格子体積も粒の外周側の方が中心部よりも大きい傾向がある。x≧0.11になると希土類元素濃度が高くなり、材料の原料費が高価となると共に、残留磁束密度が低下する。望ましいxの値は、0.01<x<0.11である。x≦0.01の場合、保磁力が減少し残留磁束密度も低下する。この材料では粒外周側において磁気異方性が大きい。このため、磁区構造の磁壁幅に違いがみられる。
主相の窒素含有フッ化物は650℃以上に加熱されると、一部の結晶粒は構造を変えて、より安定なフッ化物や窒化物と鉄合金相になる。このような構造変化を抑制するためには、添加元素を使用することが有効である。添加可能なAl、Ga、Ge、Co、Ti、Mg、Co、Mn、Cr、Nb、Cu、Bi、Sr、W、Ca等の遷移元素Mの濃度は、結晶構造の安定性向上に寄与する。なお、Rx(Fe、M)y(N、F)zには、不純物として酸素、水素、炭素、ホウ素又は微量金属不純物が含有していても特性上の問題はない。一部のM元素は粒界や表面に偏在化する。フッ素に代わって塩素、リン、硫黄又はこれらの元素とフッ素との混合物を使用しても良い。
[実施例20]
この実施例では、Sm2.1Fe17の合金を真空溶解によって作成し、水素粉砕することで粒径が約10(μm)のSm2Fe17粉を得る。この粉末をCaH2及びNH4Fを分解させたガス中で300℃に加熱し、5時間保持する。この熱処理により、Sm2Fe17F0.1-3が成長する。このSm2Fe17F0.1-3を加熱成形装置の金型に挿入し、400℃で3(t/cm2)の荷重で押し出し加工する。加熱成形中に粉が塑性変形することにより、Sm2Fe17F0.1-3の配向方向が揃い、異方性の高い磁性体又は磁粉が得られる。CaH2及びNH4Fを分解させたガス中で加熱する代わりにSmF3の平均径が10(nm)の粉とアルコールとの混合スラリーを使用してメカニカルアロイによりSm2.1Fe17の表面からSm2Fe17F0.1-3を成長できる。異方性磁粉を用いて有機樹脂材料と混合し、磁場中で加熱圧縮して成形すると、樹脂20(体積%)で、残留磁束密度が1.3(T)、保磁力が25(kOe)の圧縮成形ボンド磁石を作成することができる。
この実施例では、Sm2.1Fe17の合金を真空溶解によって作成し、水素粉砕することで粒径が約10(μm)のSm2Fe17粉を得る。この粉末をCaH2及びNH4Fを分解させたガス中で300℃に加熱し、5時間保持する。この熱処理により、Sm2Fe17F0.1-3が成長する。このSm2Fe17F0.1-3を加熱成形装置の金型に挿入し、400℃で3(t/cm2)の荷重で押し出し加工する。加熱成形中に粉が塑性変形することにより、Sm2Fe17F0.1-3の配向方向が揃い、異方性の高い磁性体又は磁粉が得られる。CaH2及びNH4Fを分解させたガス中で加熱する代わりにSmF3の平均径が10(nm)の粉とアルコールとの混合スラリーを使用してメカニカルアロイによりSm2.1Fe17の表面からSm2Fe17F0.1-3を成長できる。異方性磁粉を用いて有機樹脂材料と混合し、磁場中で加熱圧縮して成形すると、樹脂20(体積%)で、残留磁束密度が1.3(T)、保磁力が25(kOe)の圧縮成形ボンド磁石を作成することができる。
このようなボンド磁石は、樹脂バインダーを無機バインダーであるMgF2等のフッ化物にすることにより、バインダー材の体積を更に少なくすることができ、残留磁束密度やエネルギー積を増加させることができる。ボンド磁石の磁気特性を満足する磁粉の主相組成はRxFeyFz(RはYを含む希土類元素、Feは鉄、Fはフッ素、x、y、zは正数であり、y>(x+z))である。なお、フッ素原子の一部が主相の侵入位置に配置され、粒界又は表面の一部にbcc構造又はbct構造のフッ素含有鉄及びSmOF等の酸フッ化物、SmF3、FeF2等のフッ化物又はFe2O3、SmO2等の非磁性又はフェリ磁性の酸化物又は水素化物が成長している。フッ素濃度は、酸フッ化物又はフッ化物で最も高い。従って、主相の格子体積は、bcc構造及びbct構造の鉄フッ素合金よりも大きく、磁石を構成する結晶粒又は磁粉にa軸又はc軸方向に配向性がある。主相の体積がボンド磁石全体の30%以上で、望ましくは50%から90%にすることで高残留磁束密度を実現できる。なお、フッ化の際には、フッ化アンモニウム以外にも、フッ素を含有する種々のガスを使用することができる。ボンド磁石用磁粉を構成する主相は、RxFeyFzの基本組成以外に、RxMyFz(RはYを含む希土類元素、MはCo、FeとCoの合金、Fはフッ素やフッ素と炭素や窒素、酸素、硼素、塩素、リン、硫黄、水素との混合又は塩素、x、y、zは正数であり、y>(x+z))であっても良い。
[実施例21]
この実施例では、Nd2Fe14Bを主相とする焼結磁石を粉砕し、粉末径が3から10(μm)の磁粉を作成する。この後、平均粒径が0.5(μm)のFeF2粉がアルコールと混合されたスラリーと混合し、フッ化物でコートされたステンレスボールによりメカニカルアロイを実施する。メカニカルアロイの後、Nd2Fe14B粉の表面の一部はフッ化される。さらに、300℃の熱処理により、Nd2Fe17F相及びbcc構造又はbct構造の鉄がNd2Fe14B粉の表面に成長する。これにより、メカニカルアロイの直後よりもキュリー温度が上昇し、残留磁束密度が増加する。磁束密度の増加は、メカニカルアロイ(メカニカルアロイング)及びその後の熱処理により、キュリー点の高いNd2Fe17F相が鉄を伴って成長するためである。
この実施例では、Nd2Fe14Bを主相とする焼結磁石を粉砕し、粉末径が3から10(μm)の磁粉を作成する。この後、平均粒径が0.5(μm)のFeF2粉がアルコールと混合されたスラリーと混合し、フッ化物でコートされたステンレスボールによりメカニカルアロイを実施する。メカニカルアロイの後、Nd2Fe14B粉の表面の一部はフッ化される。さらに、300℃の熱処理により、Nd2Fe17F相及びbcc構造又はbct構造の鉄がNd2Fe14B粉の表面に成長する。これにより、メカニカルアロイの直後よりもキュリー温度が上昇し、残留磁束密度が増加する。磁束密度の増加は、メカニカルアロイ(メカニカルアロイング)及びその後の熱処理により、キュリー点の高いNd2Fe17F相が鉄を伴って成長するためである。
粉の表面には、このような強磁性相以外にも、FeF3、NdF3、NdF2等のフッ化物やNdOF、(Nd、Fe)OF等の酸フッ化物又はNd2O3、Fe2O3、Fe3O4等の酸化物が成長する。強磁性相は、Nd2Fe14B、Nd2Fe17Fx(x=0.01から2)及び鉄であり、これらの一部の強磁性相間には強磁性結合が働き、残留磁束密度を増加させる。Nd2Fe17Fのフッ素濃度は、メカニカルアロイ後の熱処理時にフッ化アンモニウム、フッ素、フッ化水素等のフッ素を含有するガスに粉を曝すことにより増加し、Nd2Fe17F2-3が粉表面に成長してキュリー温度が710(K)に上昇する。Nd2Fe14Bに磁気的に結合し、Nd2Fe14Bよりもキュリー温度が高く、かつ、磁気異方性が大きい硬質磁性相を成長させることにより、Nd2Fe14Bの磁化反転の抑止、熱減磁の低減を実現できる。このように、重希土類元素を添加しなくとも、耐熱性を高めることができる。
また、粉末中心が軟磁気特性の鉄リッチ相でその外周側に磁気異方性が高くキュリー温度の高い硬質磁性材料を成長させ、鉄リッチ相と硬質磁性材料間に磁気的な結合を付加することにより、希土類元素の使用量を削減できる硬質磁性材料を作成することができる。すなわち、純鉄よりも高い磁束密度を示すフッ素を含有する鉄フッ素合金粉の表面に軽希土類フッ化物を溶液処理により成長させ、水素又はフッ素を含有するガス中で熱処理することにより、フッ素及び軽希土類元素を拡散させ、RxFeyFz(Rは軽希土類元素、Feは鉄、Fはフッ素、x、y、zは正数でy>(x+z))及び酸フッ化物を粉の外周側に成長させることができる。これにより、残留磁束密度が1.8(T)の磁石材料を作成できる。
本実施例のように、結晶構造及び組成が異なる複数の強磁性相間に強磁性結合を付与させることにより、磁気特性を向上させることができる。すなわち、本実施例では、少なくとも一つの強磁性相がフッ素を含有し、結晶粒中にフッ素濃度の勾配を有し、一部のフッ素原子は希土類元素と鉄との化合物を形成し、一部のフッ素原子は鉄中に配置され、フッ素の高い電気陰性度のために電子の状態密度分布や電場勾配に偏りを生じさせることにより、磁気特性や電気特性等の物性値を変化させる。これにより、磁気特性を向上させ、残留磁束密度1.8(T)を実現する。このような磁気物性の変化に対応して、内部磁場や低温での磁気変態、磁気抵抗効果、磁気発熱効果、磁気吸熱効果、超電導特性にフッ素の導入効果が表れる。
[実施例22]
この実施例では、純度99.9%でSm2Fe17の合金ターゲットを作成し、ターゲットの片面を水冷し、片側をスパッタリングする。スパッタリング時には、Ar-2%SF6-1%F2ガスを使用し、到達真空度を1x10-5(Torr)、スパッタ中ガス圧1(mTorr)で10(nm/分)の速度でMgO(100)を基板上に基板温度250℃で膜形成した。なお、スパッタリング前に、基板表面を洗浄し、かつ、逆スパッタにより清浄化している。
この実施例では、純度99.9%でSm2Fe17の合金ターゲットを作成し、ターゲットの片面を水冷し、片側をスパッタリングする。スパッタリング時には、Ar-2%SF6-1%F2ガスを使用し、到達真空度を1x10-5(Torr)、スパッタ中ガス圧1(mTorr)で10(nm/分)の速度でMgO(100)を基板上に基板温度250℃で膜形成した。なお、スパッタリング前に、基板表面を洗浄し、かつ、逆スパッタにより清浄化している。
作成した膜組成はSm2Fe17F2であり、Sm2Fe17膜よりも格子定数が増加し、キュリー温度、飽和磁束密度及び磁気異方性エネルギーの増加が見られた。また、Sm2Fe17F2膜の配向性は基板温度や膜形成速度に依存するが、前記の条件ではc軸配向の膜が得られ、面内に磁化容易軸を有していた。MgO基板にSm2Fe17F2がエピタキシャル成長しているが、この膜を400℃で1時間加熱すると、SmF3やフッ素を含有するbcc構造又はbct構造の鉄が成長することをXRDパターンにより確認した。
フッ素を含有するbcc構造又はbct構造の鉄は、純鉄の飽和磁化よりも1から20%高い。このため、これらのフッ素含有強磁性鉄と主相であるフッ素化合物との間に強磁性結合を持たせることにより、残留磁束密度を高くすることが可能である。このようなフッ素含有鉄は準安定相であり、加熱するとFeF2に変化する。ただし、準安定相を高温まで安定させるためには格子定数が5.4から5.9(nm)の酸フッ化物と接触して構造を安定化させること、炭素や窒素を添加して安定化すること、bcc構造を伴って成長させること等が有効である。このような手段により、フッ素含有鉄は400℃で構造変化を起こし難くなる。
MgO基板に成長したSm2Fe17F2膜を400℃で1時間熱処理すると、その磁気特性は、残留磁束密度が1.55(T)、保磁力が26(kOe)となる。スパッタ中のガス圧を高くしてSm2Fe17F2.5を形成し、450℃の熱処理を施すと、平均粒径が50(nm)の膜を形成することができる。なお、粒界の一部にはフッ化物やbcc構造及びbct構造の鉄が成長し、残留磁束密度が1.60(T)、保磁力が31(kOe)の高保磁力膜が得られた。
このように残留磁束密度が1.4(T)以上、保磁力が20(kOe)を超える材料は、Sm2Fe17F2以外にも類似する次のような材料で確認している。すなわち、同様の磁気特性は、主相の強磁性相の1種以上がRxFeyFz(RはYを含む希土類元素、Feは鉄、Fはフッ素、x、y、zは正数でy>(x+z))で示される組成で磁粉又は結晶粒に形成されており、フッ素原子の一部が主相の侵入位置に配置され、粒界又は表面の一部にbcc構造又はbct構造のフッ素含有鉄及びSmOF等の酸フッ化物、SmF3、FeF2等のフッ化物又はFe2O3、SmO2等の非磁性又はフェリ磁性、反強磁性等の酸化物が成長しており、フッ素濃度は酸フッ化物又はフッ化物で最も高く、主相の格子体積はbcc構造やbct構造の鉄フッ素合金よりも大きく、磁石を構成する結晶粒又は磁粉にa軸又はc軸方向に配向性がある材料で実現できる。なお、フッ素の代わりに、フッ素やフッ素と炭素や窒素、酸素、硼素、塩素、リン、硫黄、水素との混合物又は塩素であって良く、フッ素や塩素を含有する種々のガス種を利用できる。
1…軽希土類原子、2…Fe原子、3…添加物X、10…ベースフィルム、11…下層非磁性層、12…磁性層、13…バックコート層、50…TMR素子、51…下地層、52…反強磁性層、53…磁化固定層、54…トンネルバリア層、55…磁化自由層、56…キャップ層、100…回転子、101…固定子、102…コアバック、103…ティース、104…コイル挿入位置、105a…U相巻線、105b…V相巻線、105c…W相巻線、106…先端部、107…回転子挿入部、110…回転子、111、112、113…フッ化部。
Claims (14)
- (a)軽元素の添加物を有する軽希土類元素と、(b)鉄又はコバルトとから構成された磁性材料において、軽元素のp軌道準位が鉄又はコバルトのd軌道準位より1eV以上深い
ことを特徴とする軽希土類磁石。 - 請求項1に記載の軽希土類磁石において、
前記磁性材料の化学式が、
R2Fe17Xi(Rは軽希土類元素、Feは鉄、XはF(フッ素)又はCl(塩素)であり、iは1、2又は3である)
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石において、
前記化学式中のRはSm(サマリウム)である
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石において、
前記化学式中のRはNd(ネオジム)である
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石において、
前記化学式中のRは遷移元素である
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石において、
前記磁性材料の六方晶構造を規定する格子定数a、bが、0.84(nm)<a=b<0.95(nm)で与えられる
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石において、
前記磁性材料の六方晶構造を規定する格子定数cが、1.24(nm)<c<1.35(nm)で与えられる
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石において、
前記磁性材料の六方晶構造を規定する格子定数c/aが、1.4<c/a<1.5で与えられる
ことを特徴とする軽希土類磁石。 - 請求項2に記載の軽希土類磁石は、
前記磁性材料の粉末を組成材料とするボンド磁石である
ことを特徴とする軽希土類磁石。 - (a)軽元素の添加物を有する軽希土類元素と、(b)鉄又はコバルトとから構成され、かつ、軽元素のp軌道準位が鉄又はコバルトのd軌道準位より1eV以上深い特性を有する磁性材料を有する軽希土類磁石を磁性部材の少なくとも一部に有する
ことを特徴とする磁気デバイス。 - 請求項10に記載の磁気デバイスは、
前記軽希土類磁石を磁性層に有する磁気記録媒体である
ことを特徴とする磁気デバイス。 - 請求項10に記載の磁気デバイスは、
前記軽希土類磁石を固定層に有する磁界センサである
ことを特徴とする磁気デバイス。 - 請求項10に記載の磁気デバイスは、
前記軽希土類磁石を回転子に有するモータである
ことを特徴とする磁気デバイス。 - 請求項10に記載の磁気デバイスは、
前記軽希土類磁石を磁性部に有する磁気回路である
ことを特徴とする磁気デバイス。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-276085 | 2009-12-04 | ||
JP2009276085A JP2013055076A (ja) | 2009-12-04 | 2009-12-04 | 軽希土類磁石及び磁気デバイス |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011068107A1 true WO2011068107A1 (ja) | 2011-06-09 |
Family
ID=44114953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071427 WO2011068107A1 (ja) | 2009-12-04 | 2010-12-01 | 軽希土類磁石及び磁気デバイス |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013055076A (ja) |
WO (1) | WO2011068107A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012020617A1 (ja) * | 2010-08-11 | 2012-02-16 | 株式会社日立製作所 | 磁石材料,磁石成形品及び回転機 |
JP2012146789A (ja) * | 2011-01-11 | 2012-08-02 | Hitachi Ltd | 希土類磁石 |
JP2013098448A (ja) * | 2011-11-04 | 2013-05-20 | Hitachi Ltd | 鉄系磁性材料及びその製造方法 |
JP2022053187A (ja) * | 2020-09-24 | 2022-04-05 | トヨタ自動車株式会社 | Sm-Fe-N系磁性材料及びその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6631029B2 (ja) * | 2015-04-21 | 2020-01-15 | Tdk株式会社 | 永久磁石、及び、それを備えた回転機 |
WO2017164312A1 (ja) * | 2016-03-24 | 2017-09-28 | Tdk株式会社 | 希土類永久磁石 |
JPWO2022259949A1 (ja) * | 2021-06-10 | 2022-12-15 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001093713A (ja) * | 1999-09-14 | 2001-04-06 | Peking Univ | 多元系希土類−鉄格子浸入型永久磁石材料、およびそれからなる永久磁石、ならびにそれらの製造方法 |
JP2001189204A (ja) * | 1999-12-28 | 2001-07-10 | Toshiba Corp | 磁石材料、その製造方法およびボンド磁石 |
JP2005209669A (ja) * | 2004-01-20 | 2005-08-04 | Hitachi Ltd | 希土類磁石及びそれを用いた磁気回路 |
-
2009
- 2009-12-04 JP JP2009276085A patent/JP2013055076A/ja active Pending
-
2010
- 2010-12-01 WO PCT/JP2010/071427 patent/WO2011068107A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001093713A (ja) * | 1999-09-14 | 2001-04-06 | Peking Univ | 多元系希土類−鉄格子浸入型永久磁石材料、およびそれからなる永久磁石、ならびにそれらの製造方法 |
JP2001189204A (ja) * | 1999-12-28 | 2001-07-10 | Toshiba Corp | 磁石材料、その製造方法およびボンド磁石 |
JP2005209669A (ja) * | 2004-01-20 | 2005-08-04 | Hitachi Ltd | 希土類磁石及びそれを用いた磁気回路 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012020617A1 (ja) * | 2010-08-11 | 2012-02-16 | 株式会社日立製作所 | 磁石材料,磁石成形品及び回転機 |
JP2012039017A (ja) * | 2010-08-11 | 2012-02-23 | Hitachi Ltd | 磁石材料,磁石成形品及び回転機 |
JP2012146789A (ja) * | 2011-01-11 | 2012-08-02 | Hitachi Ltd | 希土類磁石 |
JP2013098448A (ja) * | 2011-11-04 | 2013-05-20 | Hitachi Ltd | 鉄系磁性材料及びその製造方法 |
JP2022053187A (ja) * | 2020-09-24 | 2022-04-05 | トヨタ自動車株式会社 | Sm-Fe-N系磁性材料及びその製造方法 |
JP7447753B2 (ja) | 2020-09-24 | 2024-03-12 | トヨタ自動車株式会社 | Sm-Fe-N系磁性材料及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013055076A (ja) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130270B2 (ja) | 磁性材料及びそれを用いたモータ | |
JP5247754B2 (ja) | 磁性材料及びその磁性材料を用いたモータ | |
JP4900121B2 (ja) | フッ化物コート膜形成処理液およびフッ化物コート膜形成方法 | |
Lewis et al. | Perspectives on permanent magnetic materials for energy conversion and power generation | |
JP4564993B2 (ja) | 希土類磁石及びその製造方法 | |
JP4415980B2 (ja) | 高抵抗磁石およびそれを用いたモータ | |
US20130162089A1 (en) | Sintered Magnet Motor | |
WO2011068107A1 (ja) | 軽希土類磁石及び磁気デバイス | |
JP4867632B2 (ja) | 低損失磁石とそれを用いた磁気回路 | |
US20130252004A1 (en) | Rare earth-iron-nitrogen-based alloy material, method for producing rare earth-iron-nitrogen-based alloy material, rare earth-iron-based alloy material, and method for producing rare earth-iron-based alloy material | |
JP5501828B2 (ja) | R−t−b系希土類永久磁石 | |
EP2733711B1 (en) | Permanent magnet, and motor and power generator using the same | |
WO2012029738A1 (ja) | 焼結磁石 | |
JP4700578B2 (ja) | 高抵抗希土類系永久磁石の製造方法 | |
JP2016042527A (ja) | 希土類異方性磁石材料およびその製造方法、希土類磁石前駆体材料およびその製造方法 | |
KR102712342B1 (ko) | Mn-Bi-Sb계 자성체 및 이의 제조방법 | |
JP2011029293A (ja) | 希土類磁石及びそれを用いた輸送機器用磁石モータ | |
CN115398574B (zh) | 稀土类烧结磁铁及稀土类烧结磁铁的制造方法、转子以及旋转机 | |
CN117751414A (zh) | 稀土烧结磁铁及稀土烧结磁铁的制造方法、转子以及旋转机 | |
US20200075203A1 (en) | Magnet material, permanent magnet, rotary electric machine, and vehicle | |
Mazaleyrat | Getting rid of critical raw materials in hard magnets: is it feasible? | |
Mirtaheri et al. | Advances in Developing Permanent Magnets with Less or No Rare-Earth Elements | |
JP7224582B2 (ja) | 磁石、膜、積層体、モータ、発電機、及び、自動車 | |
Martínez-Sánchez et al. | Enhancing Magnetic Properties of τ–Mn 53.3 Al 45 C 1.7 through Sintering with Fe 58.5 Co 31.5 X 10 Alloys | |
Houis | Magnetic Properties of Nd-Fe-B Permanent Magnets Under Thermal Experimentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834557 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10834557 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |