WO2011037190A1 - 堆積膜形成装置および堆積膜形成方法 - Google Patents

堆積膜形成装置および堆積膜形成方法 Download PDF

Info

Publication number
WO2011037190A1
WO2011037190A1 PCT/JP2010/066567 JP2010066567W WO2011037190A1 WO 2011037190 A1 WO2011037190 A1 WO 2011037190A1 JP 2010066567 W JP2010066567 W JP 2010066567W WO 2011037190 A1 WO2011037190 A1 WO 2011037190A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
deposited film
source gas
gas
film forming
Prior art date
Application number
PCT/JP2010/066567
Other languages
English (en)
French (fr)
Inventor
伊藤 憲和
稲葉 真一郎
宏史 松居
新楽 浩一郎
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP10818862A priority Critical patent/EP2481831A1/en
Priority to US13/390,927 priority patent/US8703586B2/en
Priority to CN2010800397181A priority patent/CN102482775A/zh
Priority to JP2011533047A priority patent/JP5566389B2/ja
Publication of WO2011037190A1 publication Critical patent/WO2011037190A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to a deposited film forming apparatus and a deposited film forming method for forming a deposited film such as thin film Si on a substrate.
  • a conventional deposited film forming apparatus is provided with a chamber, a gas introduction path for introducing a raw material gas into the chamber, and a pair of electrodes arranged in the chamber.
  • a base material on which a deposited film is formed is placed on one of the pair of electrodes.
  • the other of the pair of electrodes is connected to a high frequency power source for applying high frequency power to the electrodes.
  • the source gas is decomposed and excited by using the applied high-frequency power as dissociation energy in a space between the pair of electrodes to generate various reactive species.
  • a film is formed by depositing a part of these reactive species on the substrate.
  • a deposited film forming apparatus an apparatus capable of forming a high quality film at high speed is required.
  • a Si-based thin film can be formed with high quality and high speed in order to reduce the manufacturing cost of the solar cell.
  • An object of the present invention is to provide a deposited film forming apparatus and a deposited film forming method capable of forming a high quality film without causing in-plane unevenness of the film quality. It is an object of the present invention to provide a deposited film forming apparatus and a deposited film forming method that are suitably used for batteries.
  • a deposited film forming apparatus is provided.
  • a deposited film forming method includes: A first electrode, a second electrode having a first supply part for supplying a first source gas, which is located at a predetermined distance from the first electrode, and connected to the first supply part. Further, a preparation for preparing a first introduction path through which the first source gas is introduced, a heating means provided in the first introduction path, a cooling mechanism for cooling the second electrode, and a base material Process, A base material placement step of placing the base material between the first electrode and the second electrode; A gas heating step of heating the first source gas by heating of the heating means; A discharge generating step of generating a glow discharge by supplying the first source gas between the first electrode and the second electrode; The discharge generating step is performed between the first electrode and the second electrode under the following condition. T1>T2> T3 (However, T1 is the temperature of the first source gas, T2 is the surface temperature of the second electrode, and T3 is the surface temperature of the first electrode.)
  • the temperature increase of the second electrode due to the following 1) to 3) can be suppressed.
  • an increase in the substrate temperature is suppressed.
  • a deposited film having good film quality can be formed.
  • the in-plane temperature distribution of the second electrode can be made uniform, the in-plane temperature distribution of the substrate is improved, and further, the in-plane temperature distribution of the source gas supplied from the second electrode is improved. As a result, the deposited film having good film quality can be formed uniformly. In addition, since deformation due to temperature rise of the second electrode is less likely to occur, a favorable film characteristic distribution can be obtained, and further, the maintenance cycle of the apparatus can be lengthened, and productivity can be improved.
  • the deposited film forming apparatus S1 is located in the chamber 1, the first electrode 6 located in the chamber 1, and the first electrode 6 in the chamber 1 with a predetermined interval.
  • a second electrode 2 having a plurality of supply parts 4 for supplying the source gas, an introduction path 3 connected to the supply part 4 for introducing the source gas, and a heating means 11 provided in the introduction path 3
  • a heated catalyzer and a cooling mechanism 14 for cooling the second electrode 2 are provided.
  • the first electrode 6 is disposed below the chamber 1, and the base material 10 is disposed on the first electrode 6.
  • the second electrode 2 disposed to face the first electrode 6 functions as a shower electrode.
  • the base material 10 may be positioned between the first electrode 6 and the second electrode 2, and may not be held by the first electrode 6 as illustrated.
  • the chamber 1 is a reaction vessel having a vacuum-tight reaction space constituted by at least an upper wall, a peripheral wall, and a bottom wall.
  • the inside of the chamber 1 is evacuated by a vacuum pump 7 and the internal pressure is adjusted by a pressure regulator (not shown).
  • the first electrode 6 has a function of an anode electrode and incorporates a base material heating means (heater) 15 for adjusting the temperature of the base material 10 to an arbitrary temperature.
  • the first electrode 6 also functions as a temperature adjustment mechanism for the substrate 10.
  • the substrate 10 is adjusted to, for example, 100 to 400 ° C., more preferably 150 to 350 ° C.
  • the substrate 10 can be a flat plate made of a glass substrate or the like, or a film made of a metal material or a resin.
  • the high frequency power source 5 is connected to the second electrode 2 and can use a frequency of about 13.56 MHz to 100 MHz. When a film is formed in a large area of 1 m 2 or more, a frequency of about 60 MHz or less is preferably used. By applying electric power from the high frequency power source 5 to the second electrode 2, plasma is formed in the space 8 between the second electrode 2 and the substrate 10.
  • the second electrode 2 is disposed so as to face the first electrode 6 and functions as a cathode electrode.
  • the second electrode 2 has a supply unit 4 that supplies the gas introduced from the plurality of introduction paths 3 into the chamber 1. These supply parts 4 are open toward the base material 10.
  • a plurality of gas cylinders (not shown) for storing different gases are connected to the plurality of supply units 4 through a plurality of introduction paths 3.
  • the gases introduced from the first introduction path 3a and the second introduction path 3b are not basically mixed until reaching the space 8 where plasma is formed through the first supply section 4a and the second supply section 4b, respectively.
  • the gas supplied to the plurality of supply units 4 includes, for example, a first source gas and a second source gas having a higher probability of decomposition than the first source gas.
  • the total decomposition rate of gas per unit area is proportional to exp ( ⁇ Ea / kTe) ⁇ Ng ⁇ Ne ⁇ ve ⁇ ⁇ g.
  • ⁇ Ea is the excitation activation energy (dissociation energy) of the source gas
  • k is the Boltzmann constant
  • Te is the electron temperature
  • Ng is the source gas concentration
  • Ne is the electron concentration
  • ve the electron velocity
  • ⁇ g is the source gas collision cross section.
  • exp ( ⁇ Ea / kTe) means a decomposition probability.
  • exp ( ⁇ Ea / kTe) ⁇ ⁇ g is expressed as ⁇ (Ea).
  • the first source gas is supplied from the first supply unit 4a through the first introduction path 3a.
  • the second source gas is supplied from the second supply unit 4b through the first introduction path 3b.
  • the first source gas flowing through the first introduction path 3a is divided and part of the first source gas flows into the second introduction path 3b (mixed with the second source gas).
  • the heating means 11 connected to the heating power source 12 is provided in the first introduction path 3a.
  • a heating catalyst body, a resistance heating body or a heating fluid is used as the heating means 11.
  • the first source gas is heated by the heating means 11 heated to about 500 to 2000 ° C. and activated in the space 8 where plasma is formed.
  • the heating catalyst body functions as a thermal catalyst body that excites and activates (decomposes) the gas in contact with the catalyst body by passing an electric current and increasing the temperature by heating.
  • At least the surface of the heating catalyst body is made of a metal material.
  • the metal material is preferably made of a pure metal or alloy material containing at least one of Ta, W, Re, Os, Ir, Nb, Mo, Ru, and Pt, which are high melting point metal elements.
  • the shape of the heating catalyst body is, for example, a metal material such as that described above formed into a wire shape, a plate shape, or a mesh shape.
  • the heating catalyst body is preheated for several minutes or more at a temperature equal to or higher than the heating temperature at the time of film formation before being used for film formation. As a result, it is possible to reduce doping of the deposited film with impurities in the metal material of the heating catalyst body during film formation.
  • a heating catalyst body will be described as an example of the heating means 11.
  • the gas can be brought into uniform contact with the heating means 11, and the gas can be activated efficiently.
  • a cooling mechanism 14 for cooling the second electrode 2 is provided in the vicinity of the supply unit 4.
  • the cooling mechanism 14 includes a refrigerant path 14 a through which a cooling medium flows inside the second electrode 2.
  • a cooling medium made of a fluid such as silicon oil or fluorine oil, or a gas having high thermal conductivity such as hydrogen gas or helium gas by a pump or the like provided in a path (not shown) piped outside the chamber 1 Is configured to flow.
  • the refrigerant path 14a may be formed in a grid-like path so as to avoid the supply unit 4 over almost the entire surface of the second electrode 2.
  • a plurality of rows of linear paths may be formed.
  • the supply units 4a and 4b may be arranged in various patterns such as a lattice pattern and a staggered pattern. In addition, the number of the 1st supply part 4a and the 2nd supply part 4b may differ.
  • the first supply unit 4a is more than the second supply unit 4b. By increasing the number, the supply balance can be maintained and a deposited film having a uniform film thickness and film quality distribution can be formed.
  • the introduction path 3 may be directly connected to each cylinder, and the introduction path 3 may be connected to a gas adjusting unit that adjusts the gas flow rate, flow velocity, temperature, and the like.
  • the vacuum pump 7 it is desirable to use a dry vacuum pump such as a turbo molecular pump in order to suppress contamination of impurities into the film from the exhaust system.
  • the ultimate vacuum is at least 1 ⁇ 10 ⁇ 3 Pa or less, preferably 1 ⁇ 10 ⁇ 4 Pa or less, and the pressure during film formation is 50 to 7000 Pa, although it varies depending on the type of film to be formed.
  • the deposited film forming apparatus S1 may be provided with a plurality of film forming chambers.
  • a p-type film forming film forming chamber, an i-type film forming film forming chamber, and an n-type film forming film forming chamber are included, and at least one film forming chamber has the above structure. Just have it.
  • the first source gas and the second source gas are appropriately selected depending on the type of the deposited film.
  • a Si-based thin film such as a-Si: H (hydrogenated amorphous silicon) or ⁇ c-Si: H (hydrogenated microcrystalline silicon)
  • a non-Si-based gas is used as the first source gas.
  • Si-based gas can be used as the second source gas.
  • hydrogen (H 2 ) gas or the like is used as the non-Si gas.
  • Si-based gases include silane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrafluoride (SiF 4 ), silicon hexafluoride (Si 2 F 6 ), or dichlorosilane (SiH 2 Cl 2 ) gas. Used. In the case of introducing a doping gas, diborane (B 2 H 6 ) gas or the like is used as the p-type doping gas, and phosphine (PH 3 ) gas or the like is used as the n-type doping gas. As the introduction path 3 for the doping gas, either the first introduction path 3a or the second introduction path 3b can be selected as necessary, but it is preferable to introduce the doping gas through the second introduction path 3b.
  • the decomposition of the first source gas can be promoted by heating by the heating means 11.
  • the gas is more decomposed in the space 8 where the plasma is generated.
  • the second source gas is supplied from the second supply unit 4b without being brought into contact with the heating means 11, and excited and activated in the space 8 where the plasma is generated. As described above, the second source gas is not excessively decomposed, and the film can be formed at a high speed and at the same time a high quality thin film can be formed.
  • the hydrogen gas (first source gas) heated by the heating means 11 is supplied to the space 8 where the plasma is generated, the higher-order silane generation reaction in the space 8 is suppressed by the gas heating effect. .
  • the higher-order silane formation reaction is 1) SiH 4 + SiH 2 ⁇ Si 2 H 6 2) Si 2 H 6 + SiH 2 ⁇ Si 3 H 8 ... Similar SiH 2 insertion reaction continues ... In this reaction, polymer gas is generated by the SiH 2 insertion reaction.
  • SiH 2 is generated together with SiH 3 as a main component of film formation when SiH 4 collides with electrons in the plasma.
  • SiH 4 collides with electrons in the plasma.
  • more SiH 2 is generated as the plasma power is increased.
  • more higher order silane molecules are generated.
  • the high-order silane molecules generated in this manner usually adhere to the film-forming surface and disturb the deposition reaction (film growth reaction) on the film-forming surface to deteriorate the film quality. Further, even when higher-order silane molecules are taken into the film, the film structure is disturbed and the film quality is deteriorated. However, in the present embodiment, the higher-order silane formation reaction is suppressed by the action described below.
  • the higher order silane formation reaction is an exothermic reaction. In other words, the reaction proceeds by exhausting heat generated by the reaction to the space.
  • a space specifically, a space containing hydrogen gas as a main component
  • the deposited film forming apparatus S1 can suppress the temperature rise of the second electrode 2 due to the following 1) to 3). 1) Heat transfer to the second electrode 2 (radiation, heat conduction through the first source gas) due to a temperature rise accompanying the application of electric power to the heating means 11 2) Resistance heating of the second electrode 2 itself due to the application of high-frequency power to the second electrode 3) Heat input from the excited plasma to the second electrode 2 As described above, an increase in the substrate temperature is suppressed. As a result, a deposited film having good film quality can be formed. In addition, since the in-plane temperature distribution of the second electrode 2 can be made uniform, the in-plane temperature distribution of the substrate 10 is improved.
  • the in-plane temperature distribution of the source gas supplied from the second electrode 2 is improved, a deposited film having good film quality can be formed uniformly.
  • the deformation due to the temperature rise of the second electrode 2 is less likely to occur, a favorable film characteristic distribution can be obtained.
  • the maintenance cycle of the apparatus becomes longer, and the productivity can be improved.
  • the cooling mechanism 14 may include a cooling sheet in which a cooling medium flows between the second electrode 2 and the heating unit 11.
  • the cooling mechanism 14 may include a cooling sheet in which a cooling medium flows between the second electrode 2 and the heating unit 11.
  • the temperature increase of the second electrode 2 can be more efficiently reduced by providing the refrigerant path 14a through which the cooling medium flows in parallel to the heating means 11 (at a predetermined distance). can do.
  • the coolant paths 14a may be provided in a lattice shape.
  • the cooling mechanism 14 made of a cooling sheet and the second electrode 2 are not necessarily in direct contact with each other, but the temperature distribution of the second electrode 2 can be made uniform more efficiently by direct contact.
  • the temperature rise of the second electrode 2 is suppressed, so that it is not necessary to use tungsten having a high heat resistance strength, a nickel-based superalloy, or the like as the second electrode 2. It becomes possible to use stainless steel or aluminum having good workability.
  • the cooling mechanism 14 When the cooling mechanism 14 is provided between the heating means 11 and the second electrode 2, the cooling mechanism 14 is further provided with a function as a reflecting plate that reflects the radiant heat of the infrared wavelength irradiated from the heating means 11. It is effective in suppressing the temperature rise of the two electrodes 2 and suppressing the decrease in heating means temperature.
  • the reflecting surface is mirror-finished or a deposited film forming process such as Ag, Al or Au is performed so that the reflectance is 80% or more, preferably 90% or more.
  • a fluid such as silicon oil or fluorine oil, or a gas having high thermal conductivity such as hydrogen gas or helium gas is preferably used.
  • the temperature of the cooling medium is set to 400 ° C. or lower, so that the rise in the substrate temperature can be reduced and the gas temperature distribution can be improved. Moreover, it can suppress that the 1st source gas decomposed
  • the in-plane temperature distribution of the second electrode 2 can be made more uniform by flowing cooling media having different temperatures or different types in the central portion and the peripheral portion of the second electrode 2.
  • a plurality of refrigerant paths are installed in the height direction (thickness direction), for example, as shown, a cooling path 14b and a cooling path 14c positioned above the cooling path 14c. And may be provided. Thereby, the temperature of the cooling medium flowing through the refrigerant path 14b positioned on the heating means 11 side can be lowered, and the temperature of the cooling medium flowing through the refrigerant path 14c positioned on the second electrode 2 side can be increased. . And the heating means 11 side where the temperature of the cooling mechanism 14 is likely to rise can be quickly cooled, and the temperature distribution of the second electrode 2 can be made uniform.
  • a heat pipe may be provided as the cooling mechanism 14 between the heating unit 11 and the second electrode 2.
  • a heat pipe is provided with a working fluid and a capillary for rapidly moving the fluid by capillary action inside a hollow tube.
  • the heat pipe is provided between the heating unit 11 and the second electrode 2, but the heat pipe may be provided inside the second electrode 2. .
  • the temperature rise of the second electrode 2 can be more efficiently reduced by providing the heat pipe in parallel with the heating means 11.
  • a plate-like second dispersion plate 13b having an opening through which gas passes through for example, stainless steel, may be provided on the downstream side of the heating unit 11. Good.
  • the gas in contact with the heating means 11 can be uniformly dispersed in each first supply unit.
  • the cooling mechanism 14 is provided between the heating unit 11 and the second electrode 2, it is possible to reduce the contact of the gas that has contacted the heating unit 11 with the cooling mechanism 14.
  • the second dispersion plate 13b has a function as a reflection plate that reflects the radiant heat of the infrared wavelength irradiated from the heating unit 11, the temperature increase of the second electrode 2 can be further suppressed.
  • the cooling mechanism 14 and the second dispersion plate 13b or a separate radiation blocking member so that the radiant heat irradiated from the heating means 11 does not directly reach the substrate 10.
  • ⁇ Deposited film forming apparatus S6> As in the deposited film forming apparatus S6 shown in FIG. 7, by providing a path for flowing the above-described gas or liquid cooling medium inside the first electrode 6, the substrate heat removal means 16 for removing heat from the substrate 10 is provided. It is desirable to configure.
  • the base material heating means 15 heats the base material 10 to a predetermined temperature to control the film forming temperature to a favorable level, and when heating by the heating means 11 is performed, the first source gas in contact with the heating means 11 is heated. The first source gas that has reached a high temperature comes into contact with the substrate 10. Moreover, although the temperature of the base material 10 rises due to heat input from the plasma, the heating means 15 can be stopped and the base material 10 can be controlled to a predetermined temperature by the heat removal means 14. As a result, the entire substrate 10 can be controlled at a constant temperature, and the quality of the deposited film can be made uniform.
  • an electrostatic chuck may be provided on the first electrode 6.
  • the temperature control of the base material 10 can be efficiently performed by bringing the base material 10 into close contact with the first electrode 6.
  • the coolant path 16a through which the cooling medium flows in the substrate heat removal means 16 is provided more densely directly below the heating means 11 than the other portions, thereby uniformly forming the substrate. 10 can be controlled to a predetermined temperature. Moreover, the base material 10 can be uniformly controlled to a predetermined temperature by flowing cooling media having different temperatures or different types immediately below the heating unit 11 and other portions.
  • the base material heating means 15 and the base material heat removal means 16 of the first electrode 6 are preferably provided separately in the central portion and the peripheral portion. Thereby, it becomes possible to separately control the temperature of the central portion that tends to become high temperature and the peripheral portion that tends to become low temperature, and the temperature of the base material 10 can be made uniform.
  • the first electrode 6 is provided separately on the base material mounting surface 6a and the outer peripheral part 6b outside the mounting surface 6a, and the base material heating means is provided in each part. 15 and the temperature of the outer peripheral portion of the mounting surface on which the substrate heat removal means 16 is provided may be set higher than that of the substrate mounting surface. Thereby, it is possible to make the deposited film difficult to adhere to the outer peripheral portion of the mounting surface while controlling the temperature of the base material 10 to the optimum value.
  • a structure 17 for blowing gas from the side with respect to the heating means 11 (depth direction with respect to the drawing (perpendicular to the drawing)) extending in one direction. It may be.
  • the source gas can be positively brought into contact with the heating means 11, and the source gas can be activated efficiently.
  • ⁇ Deposited film forming apparatus S11> Like the deposited film forming apparatus S11 shown in FIG. 12, it is good to make it the shape which surrounds the circumference
  • the temperature of the cooling medium of the substrate heat removal means is controlled without providing the base material heating means 15, so that the base material 10 You may make it control.
  • a deposited film forming method according to an embodiment of the present invention will be described mainly using the deposited film forming apparatus S1 as an example.
  • a high quality deposited film can be formed by the steps described below.
  • the 1st electrode 6, the 2nd electrode 2 which has the 1st supply part 4a which is located in predetermined intervals and supplies 1st source gas, and 1st A first introduction path 3a connected to the supply unit 4a, through which the first source gas is introduced, a heating means 11 provided in the first introduction path 3a, and a cooling mechanism 14 for cooling the second electrode 2.
  • the preparatory process for preparing the base material 10 is performed.
  • positioning process which arrange
  • a gas heating step is performed in which the first source gas is heated by the heating means 11.
  • the discharge generating step is performed between the first electrode 6 and the second electrode 2 under the condition of the following formula.
  • T1>T2> T3 (However, T1 is the temperature of the first source gas, T2 is the surface temperature of the second electrode 2, and T3 is the surface temperature of the first electrode 6.)
  • the base material 10 is transported by a base material transport mechanism or the like, and supported and held on the first electrode 6.
  • the first source gas is heated by the heating means 11 in the first supply path 3 and is supplied only from the first supply unit 4, whereby the first source gas heated by the heating means 11 enters the space 8 where plasma is generated. Since it is supplied, higher-order silane formation reaction in the space 8 is suppressed by the gas heating effect.
  • H 2 gas is supplied to the first introduction path 3a
  • SiH 4 gas is supplied to the second introduction path 3b
  • the gas pressure is set to 50 to 700 Pa
  • H The ratio of 2 / SiH 4 may be 2/1 to 20/1
  • the high frequency power density may be 0.02 to 0.2 W / cm 2 .
  • the film thickness of the i-type amorphous silicon film may be 0.1 to 0.5 ⁇ m, preferably 0.15 to 0.3 ⁇ m.
  • H 2 gas is supplied to the first introduction path 3a
  • SiH 4 gas is supplied to the second introduction path 3b
  • the gas pressure is set to 100 to 7000 Pa
  • H 2 gas is supplied.
  • the ratio of / SiH 4 may be 10/1 to 60/1
  • the high frequency power density may be 0.1 to 1 W / cm 2 .
  • the thickness of the i-type microcrystalline silicon film should be 1 to 4 ⁇ m, preferably 1.5 to 3 ⁇ m, and the crystallization rate should be about 70%. That's fine.
  • the substrate 10 is heated to a predetermined temperature by the substrate heating unit 15 and the heating unit 11 is heated, and then, for example, the second electrode 2 is cooled by the cooling mechanism 14.
  • the heating of the heating unit 15 may be reduced, or the heating of the substrate heating unit 15 may be stopped.
  • the substrate heat removal means 16 provided in the deposited film forming apparatus S6 shown in FIG. 7
  • excessive heating of the substrate 10 due to heat input from the source gas or plasma that has become high temperature is reduced. it can.
  • the base material 10 can be controlled to predetermined temperature with the base-material heating means 15 and the base-material heat removal means 16.
  • the base material 10 it is possible to immediately maintain the base material 10 at a predetermined temperature and efficiently control the entire base material 10 to a constant temperature.
  • the temperature of the first source gas when the first source gas made of hydrogen gas or the like heated by the heating means 11 is supplied to the space 8 where the plasma is generated, the surface temperature of the second electrode 2, the first It is preferable that the relationship between the surface temperature of the electrode 6 satisfies the temperature T1 of the first source gas> the surface temperature T2 of the second electrode 2> the surface temperature T3 of the first electrode 6.
  • the relationship of the temperature T1 of the first source gas> the surface temperature T2 of the second electrode 2 can be realized because it has a unique structure in which the first source gas is heated by the heating means 11.
  • the temperature of the first source gas is set to 300 to 1000 ° C.
  • the temperature of the second electrode 2 is set to 200 to 500 ° C.
  • the temperature of the first electrode 6 is set to 100 to 400 ° C. .
  • the second source gas such as Si-based gas is not directly heated by the heating means 11 but is supplied from the second supply unit 4b to the plasma space 8
  • the temperature T1 of the first source gas is higher. Since the temperature is higher than the temperature T4 of the second source gas (T1> T4), it is possible to reduce the excessive decomposition of the Si-based gas and form a deposited film.
  • a deposited film may be formed on the base material 10, and after the base material 10 is discharged from the chamber 1, a cleaning gas is supplied into the chamber 1, and the cleaning gas is decomposed and activated by plasma to clean the inside of the chamber.
  • a cleaning gas a gas containing fluorine (F) or chlorine (Cl) in the molecular formula can be used.
  • the carrier gas is supplied from the first introduction path 3a provided with the heating means 11 made of the heating catalyst body, and the cleaning gas is supplied from the second introduction path 3b where the heating means 11 is not provided.
  • the carrier gas hydrogen gas or a gas containing an inert gas can be used.
  • the first electrode 6 may be set to a temperature higher than that at the time of deposition film formation by not using the substrate heat removal means 14 or by flowing a coolant having a temperature higher than that at the time of deposition film formation.
  • adhesion of a reaction product generated during cleaning or residual gas after cleaning to a low temperature part can be suppressed.
  • Example 1 when the cooling mechanism 14 having a lattice-like coolant path made of silicon oil is provided inside the second electrode 2 made of stainless steel, the cooling mechanism 14 is provided inside the second electrode 2, and the first Comparison between the case where the base material heat removal means 16 having a grid-like coolant path of silicon oil is provided inside the electrode 6 and the case where neither the cooling mechanism 14 nor the base material heat removal means 16 is provided did.
  • the deposited film forming apparatus includes a second electrode having a first supply unit 4a to which H 2 gas (first source gas) is supplied and a second supply unit 4b to which SiH 4 gas (second source gas) is supplied. 2 and a first electrode 6 disposed opposite to the second electrode 2 and holding a base material 10 on which a deposited film is formed and having a base material heating means 16 for heating the base material 10.
  • An apparatus provided with a heating catalyst body (heating means 11) made of tantalum was prepared in the first introduction path connected to the supply unit.
  • condition A The case where the cooling mechanism 14 is provided inside the second electrode 2 is defined as condition A, and the case where the cooling mechanism 14 is provided between the second electrode 2 and the heating catalyst body is defined as condition B.
  • Condition C is that the cooling mechanism 14 is provided inside and the base material heat removal means 16 is provided on the first electrode 6.
  • the cooling mechanism 14 is provided between the second electrode 2 and the heating catalyst body and the first electrode 6.
  • condition D was set when the substrate heat removal means 16 was provided
  • condition E was set when neither the cooling mechanism 14 nor the substrate heat removal means 16 was provided.
  • the set temperature of the substrate heating means 16 is set to 150 ° C.
  • the temperature of the cooling mechanism 14 is set to 300 ° C.
  • the cooling mechanism 14 is linearly arranged so as to be parallel to the heating catalyst body (separated by a predetermined distance).
  • Table 1 shows the results for each condition.
  • a tandem thin film solar cell having a photoelectric conversion layer and a back electrode formed thereon was formed, and the power generation efficiency was compared.
  • the thickness of the i-type amorphous silicon film was 2500 mm, and the thickness of the i-type microcrystalline silicon film was 2.8 ⁇ m.
  • the photoelectric conversion layer made of an amorphous silicon film and the p-type and n-type microcrystalline silicon films were formed using a parallel plate type plasma CVD apparatus.
  • the i-type microcrystalline silicon film was formed using a deposited film forming apparatus equipped with a heating catalyst body under the above conditions.
  • All the SiH 4 gas was introduced into the chamber from the second supply unit, and the H 2 gas was dividedly supplied to the first supply unit 4a and the second supply unit 4b to form an i-type microcrystalline silicon film.
  • Sixteen 1 cm ⁇ 1 cm thin film solar cell elements were formed on a 10 cm ⁇ 10 cm glass substrate 10.
  • the power generation efficiency of about 12.0 to 12.5% of the initial efficiency was obtained with good reproducibility under the conditions A to D, whereas it was about 7.5 to 10.2% lower than that under the condition E. It turned out that only the power generation efficiency of can be obtained.
  • the decrease in power generation efficiency under condition E indicates that the defect density in the i-type microcrystalline silicon film is increased due to the progress of hydrogen desorption in the film due to the increase in the surface temperature of the substrate 10, and the film quality is decreased. .
  • the non-uniform in-plane distribution of power generation efficiency can be interpreted as being caused by the non-uniform temperature distribution of the substrate 10.
  • Chamber 2 2nd electrode 3: Introduction route 4: Supply part 4a: 1st supply part 4b: 2nd supply part 6: 1st electrode 8: Space 10: Base material 11: Heating means 14: Cooling mechanism 14a: Refrigerant path 16: Substrate heat removal means 16a: Refrigerant path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明の一形態に係る堆積膜形成装置は、膜品質に面内不均一を生じることなく高品質膜を製膜するために、チャンバーと、該チャンバー内に位置している第1電極と、前記チャンバー内に前記第1電極と所定間隔を隔てて位置しており、原料ガスを供給する複数の供給部を有する第2電極と、前記供給部に接続されており、原料ガスが導入される導入経路と、該導入経路内に設けられている加熱手段と、前記第2電極を冷却する冷却機構とを備えている。

Description

堆積膜形成装置および堆積膜形成方法
 本発明は、基材上に例えば薄膜Si等の堆積膜を形成する堆積膜形成装置および堆積膜形成方法に関する。
 従来の堆積膜形成装置は、チャンバーと、チャンバー内に原料ガスを導入するガス導入経路と、チャンバー内に配置された一対の電極とが設けられている。そして、一対の電極の一方には、堆積膜が形成される基材が載置されている。一対の電極の他方には、この電極に高周波電力を印加するための高周波電源が接続されている。
 ここで、原料ガスは、一対の電極に挟まれた空間において、印加された高周波電力を解離エネルギーとして分解・励起活性化されて種々の反応種を生じる。そして、これら反応種の一部が基材上に堆積することで膜が形成される。
 このような堆積膜形成装置として、高品質膜を高速に形成できる装置が求められている。特に、薄膜Si系太陽電池においては、太陽電池の製造コスト低減のため、Si系薄膜を高品質で高速に形成できることが要求されている。
 そこで出願人らは、Si系薄膜の高品質・高速製膜を実現する装置として、ガス分離型熱触媒体内蔵プラズマCVD装置を提案した(例えば、下記の特許文献1を参照)。
特開2001-313272号公報
 しかしながら、このガス分離型熱触媒体内蔵プラズマCVD装置では、装置の大型化に伴い、堆積膜の面内膜質分布が不均一になることが考えられる。これは主に、カソード電極の面内温度分布が不均一になりやすいことに起因する。
 本発明は、膜品質の面内不均一を生じることなく、高品質膜を製膜することのできる堆積膜形成装置および堆積膜形成方法を提供することを目的としており、特に、薄膜Si系太陽電池に好適に用いられる堆積膜形成装置および堆積膜形成方法を提供することを目的とする。
 本発明の一形態に係る堆積膜形成装置は、
 チャンバーと、
該チャンバー内に位置している第1電極と、
前記チャンバー内に前記第1電極と所定間隔を隔てて位置しており、原料ガスを供給する複数の供給部を有する第2電極と、
前記供給部に接続されており、原料ガスが導入される導入経路と、
該導入経路内に設けられている加熱手段と、
前記第2電極を冷却する冷却機構とを備えている。
 本発明の一形態に係る堆積膜形成方法は、
 チャンバー内に、第1電極と、該第1電極と所定間隔を隔てて位置しており、第1原料ガスを供給する第1供給部を有する第2電極と、前記第1供給部に接続された、前記第1原料ガスが導入される第1導入経路と、該第1導入経路内に設けられている加熱手段と、前記第2電極を冷却する冷却機構と、基材とを準備する準備工程と、
前記第1電極と前記第2電極との間に前記基材を配置する基材配置工程と、
前記加熱手段の加熱によって前記第1原料ガスを加熱するガス加熱工程と、
前記第1電極と前記第2電極との間に前記第1原料ガスを供給して、グロー放電を発生させる放電発生工程とを有しており、
該放電発生工程は、前記第1電極と前記第2電極との間において下記式の条件下に行なわれることを特徴とする。
T1>T2>T3
(ただし、T1は前記第1原料ガスの温度、T2は前記第2電極の表面温度、T3は前記第1電極の表面温度である。)
 上述の堆積膜形成装置および堆積膜形成方法によれば、下記1)~3)による第2電極の温度上昇を抑制することができる。
1)加熱手段への電力印加に伴う温度上昇を起因とした第2電極への熱伝達(輻射、第1原料ガスを介した熱伝導)
2)第2電極への高周波電力印加に伴う第2電極自体の抵抗加熱
3)励起されたプラズマから第2電極への入熱
 以上により、基材温度の上昇が抑制される。その結果として、良好な膜品質を有する堆積膜を形成することができる。加えて、第2電極の面内温度分布を均一にすることができるため、基材の面内温度分布が改善されて、さらには、第2電極から供給される原料ガスの面内温度分布が改善されるため、良好な膜品質を有する堆積膜が均一に形成することができる。また、第2電極の温度上昇による変形が生じにくくなるため、良好な膜特性分布を得ることができて、さらには装置のメンテナンスサイクルが長くなり、生産性を向上させることが可能となる。
本発明の一形態に係る堆積膜形成装置の一実施形態を模式的に示す断面図である。 (a)、(b)はそれぞれ本発明の一形態に係る堆積膜形成装置に用いられる冷却機構における冷媒経路の構造例を模式的に示す図であり、図1のA-A線断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す図であり、(a)は断面図、(b)は(a)の冷却機構における冷媒経路の構造例を示す斜視図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す図であり、(a)は断面図、(b)は(a)の冷却機構における冷媒経路の構造例を示す斜視図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。 本発明の一形態に係る堆積膜形成装置の他の実施形態を模式的に示す断面図である。
 本発明の一形態に係る堆積膜形成装置の実施形態について図面を参照しながら説明する。なお、各実施形態において同一構成についての重複した説明を省略する。
 <堆積膜形成装置S1>
 図1に示すように、堆積膜形成装置S1は、チャンバー1と、チャンバー1内に位置している第1電極6と、チャンバー1内に第1電極6と所定間隔を隔てて位置しており、原料ガスを供給する複数の供給部4を有する第2電極2と、供給部4に接続され原料ガスが導入される導入経路3と、導入経路3内に設けられている加熱手段11である加熱触媒体(heated catalyzer)と、第2電極2を冷却する冷却機構14とを備えている。ここで、第1電極6はチャンバー1の下方に配置されており、第1電極6の上には基材10が配置されている。また、第1電極6と対向して配置された第2電極2はシャワー電極として機能する。なお、基材10は、第1電極6と第2電極2との間に位置させるようにすればよく、図示されているように第1電極6で保持しなくともよい。
 チャンバー1は、少なくとも上壁、周囲壁および底壁によって構成される真空気密可能な反応空間を有する反応容器である。このようなチャンバー1の内部は、真空ポンプ7により真空排気されて、図示しない圧力調整器により内部の圧力が調整される。
 第1電極6は、アノード電極の機能を有しており、基材10の温度を任意の温度に調整する基材加熱手段(ヒーター)15を内蔵する。このように、第1電極6は基材10の温度調整機構としても機能する。これにより、基材10は例えば100~400℃、より好ましくは150~350℃に調整される。
 基材10は、ガラス基板等からなる平板状のもの、あるいは金属材料または樹脂等からなるフィルム状のものを用いることができる。
 高周波電源5は第2電極2に接続されており、13.56MHz~100MHz程度までの周波数を用いることができる。1m以上の大面積に製膜する場合には60MHz程度以下の周波数が好適に用いられる。高周波電源5から第2電極2に電力を印加することにより、第2電極2と基材10の間の空間8にはプラズマが形成される。
 第2電極2は、第1電極6と対向するように配置されており、カソード電極として機能する。第2電極2は複数の導入経路3から導入されたガスをチャンバー1内に供給する供給部4を有する。これら供給部4は基材10に向かって開口している。
 複数の供給部4には、複数の導入経路3を通じて、それぞれ異なるガスを貯留する複数の図示しないガスボンベが連結されている。第1導入経路3aおよび第2導入経路3bから導入されたガスは、それぞれ第1供給部4aおよび第2供給部4bを通してプラズマが形成される空間8に達するまで基本的に混合しない。
 複数の供給部4に供給されるガスは、例えば、第1原料ガスと、第1原料ガスより分解確率が大きい第2原料ガスとを含む。単位面積当たりのガスの総分解速度はexp(-ΔEa/kTe)×Ng×Ne×ve×σgに比例する。なお、ΔEaは原料ガスの励起活性化エネルギー(解離エネルギー)、kはボルツマン定数、Teは電子温度、Ngは原料ガス濃度、Neは電子濃度、veは電子速度、σgは原料ガスの衝突断面積をそれぞれ示す。また、exp(-ΔEa/kTe)は分解確率を意味する。なお、exp(-ΔEa/kTe)×σgをσ(Ea)として表す場合もある。第1原料ガスは、第1導入経路3aを通じて第1供給部4aから供給される。第2原料ガスは第1導入経路3bを通じて第2供給部4bから供給される。ただし、後述するように第1導入経路3aを流れる第1原料ガスを分割して一部を第2導入経路3bに流す(第2原料ガスと混合させる)場合もある。
 第1導入経路3a内には、加熱用電源12に接続された加熱手段11が設けられている。加熱手段11は加熱触媒体、抵抗加熱体あるいは加熱流体が用いられる。第1原料ガスは、500~2000℃程度に加熱された加熱手段11によって加熱されるとともに、プラズマが形成されている空間8において活性化される。
 例えば、加熱触媒体は、触媒体に電流を流して加熱高温化することで接触するガスを励起活性化(分解)させる熱触媒体として機能するものである。加熱触媒体は、少なくともその表面が金属材料からなる。この金属材料は好ましくは高融点の金属元素であるTa、W、Re、Os、Ir、Nb、Mo、RuおよびPtのうちの少なくとも1種を含む、純金属または合金材料からなることが望ましい。また、加熱触媒体の形状は、例えば、上記のような金属材料をワイヤ状にしたもの、板状またはメッシュ状にしたものである。
 また、加熱触媒体は、製膜に使用される前に、予め製膜時の加熱温度以上の温度で数分間以上、予備加熱される。これにより、膜形成の際に、膜中に加熱触媒体の金属材料中の不純物が堆積膜にドーピングされるのを低減できる。以下の説明においては加熱手段11として加熱触媒体を例に挙げて説明する。
 また、加熱手段11の上流側に第1分散板13aを設けることにより、加熱手段11にガスを均一に接触させることができて、効率よくガスを活性化させることができる。
 第2電極2の内部には、供給部4の近傍に第2電極2を冷却する冷却機構14を備える。この冷却機構14は、例えば、図2に示すように、第2電極2の内部に冷却媒体が流れる冷媒経路14aを備えている。また、チャンバー1の外部に配管された不図示の経路内に設けた例えばポンプ等によりシリコンオイルもしくはフッ素オイル等の流体、または、水素ガスもしくはヘリウムガス等の熱伝導率の高いガスからなる冷却媒体を流すように構成されている。このように、冷媒経路14aに冷却媒体を流すことにより、第2電極2の基材10と対向した面2aの温度分布を均一にすることができる。
 冷媒経路14aは、例えば図2(a)に示すように、第2電極2のほぼ全面に供給部4を避ける形で格子状経路に形成してもよい。または、図2(b)に示すように、複数列の直線状経路に形成してもよい。
 各供給部4a、4bは、例えば格子状パターン、千鳥状パターン等、種々のパターンで配列してもよい。なお、第1供給部4aと第2供給部4bの数が異なっていてもよい。第1原料ガスのガス流量と第2原料ガスのガス流量が異なる場合、例えば、第2原料ガスより第1原料ガスのガス流量が多い場合には、第2供給部4bより第1供給部4aの数を多くすることによって、供給バランスが保たれ均一な膜厚・膜質分布を有する堆積膜を形成することができる。
 導入経路3は各ボンベに直接接続されていてもよく、また導入経路3は、ガスの流量、流速、および温度などを調整するガス調整部と連結されていてもよい。
 真空ポンプ7は、排気系からの膜中への不純物混入を抑制するために、ターボ分子ポンプ等のドライ系の真空ポンプを用いることが望ましい。到達真空度は少なくとも1×10-3Pa以下、好適には1×10-4Pa以下とし、製膜する膜種によって異なるが製膜時の圧力は50~7000Paとする。
 堆積膜形成装置S1は複数の製膜室を設けたものでもよい。薄膜太陽電池素子を形成する場合、例えばp型膜形成用製膜室、i型膜形成用製膜室、n型膜形成用製膜室が含まれ、少なくとも1つの製膜室が上記構造を有すればよい。特に、膜厚が厚く、高品質な膜が要求されるi型膜形成用製膜室に上記構造を適用することにより、生産性を向上させ、変換効率の高い薄膜太陽電池を形成することができる。
 第1原料ガスおよび第2原料ガスは堆積膜の種類によって適宜選択される。例えば、a-Si:H(水素化アモルファスシリコン)またはμc-Si:H(水素化微結晶シリコン)等のSi系薄膜を形成する場合、第1原料ガスとしては非Si系ガスを用いて、第2原料ガスとしてはSi系ガスをそれぞれ用いることができる。非Si系ガスとしては水素(H)ガス等が用いられる。Si系ガスとしてはシラン(SiH)、ジシラン(Si)、四フッ化ケイ素(SiF)、六フッ化ケイ素(Si)またはジクロロシラン(SiHCl)ガス等が用いられる。なお、ドーピングガスを導入する場合は、p型ドーピングガスにはジボラン(B)ガス等を用い、n型ドーピングガスにはホスフィン(PH)ガス等を用いる。ドーピングガスの導入経路3としては、第1導入経路3aまたは第2導入経路3bのいずれかを必要に応じて選択することができるが、第2導入経路3bを通して導入することが望ましい。
 堆積膜形成装置S1は上述の構成を備えることから、第1原料ガスの分解を加熱手段11による加熱により促進させることができる。また、分解しなかった第1原料ガス、あるいは、分解後、再度結合した第1原料ガスは、いずれのガスも温度上昇しているので、プラズマが発生している空間8にてガス分解がより促進される。また、第2原料ガスを加熱手段11に接触させずに第2供給部4bより供給して、プラズマが発生している空間8にて励起活性化させる。以上により、第2原料ガスが過剰に分解されることがなく、高速に製膜できると同時に高品質な薄膜を形成することができる。
 特に、加熱手段11によって温められた水素ガス(第1原料ガス)がプラズマが発生している空間8に供給されるため、ガスヒーティング効果によって空間8での高次シラン生成反応が抑制される。
 ここで、高次シラン生成反応とは、
1) SiH+SiH→Si
2) Si+SiH→Si
・・・ 以下、同様なSiH挿入反応が続く・・・
といったSiH挿入反応によって高分子ガスが生成していく反応である。
 SiHはSiHがプラズマ中の電子と衝突することで製膜主成分となるSiHとともに生成される。SiHは特に製膜速度を上げるために、プラズマ電力を高めるほどより多く生成するようになる。その結果、高次シラン分子もより多く生成されるようになる。
 このようにして生じた高次シラン分子は、通常は、製膜表面に付着すると製膜表面での堆積反応(膜成長反応)を乱して膜質を悪化させる。また、高次シラン分子が膜中に取り込まれることでも膜構造を乱して膜質を悪化させる。しかしながら、本実施形態では以下に述べる作用により高次シラン生成反応が抑制される。
 高次シラン生成反応は発熱反応であることが既に知られている。すなわち反応によって生じる熱を空間に排出することで進む反応である。ところが上記ガスヒーティング効果によって空間(具体的には水素ガスが主成分のガスが存在している空間)が既にあたためられていると、この空間に反応熱を排出することができにくくなる。すなわち発熱反応たる高次シラン生成反応が進みにくくなる。このようにして、プラズマ電力が大きい高速製膜条件下でも高品質のシリコン膜を製膜することができる。
 以上により、堆積膜形成装置S1は、下記1)~3)による第2電極2の温度上昇を抑制することができる。
1)加熱手段11への電力印加に伴う温度上昇を起因とした第2電極2への熱伝達(輻射、第1原料ガスを介した熱伝導)
2)第2電極2への高周波電力印加に伴う第2電極2自体の抵抗加熱
3)励起されたプラズマから第2電極2への入熱
 上記により、基材温度の上昇が抑制される。その結果として、良好な膜品質を有する堆積膜を形成することができる。加えて、第2電極2の面内温度分布を均一にすることができるため、基材10の面内温度分布が改善される。さらに、第2電極2から供給される原料ガスの面内温度分布が改善されるため、良好な膜品質を有する堆積膜が均一に形成することができる。また、第2電極2の温度上昇による変形が生じにくくなるため、良好な膜特性分布を得ることができる。さらに、装置のメンテナンスサイクルが長くなり、生産性を向上させることが可能となる。
 <堆積膜形成装置S2>
 図3(a)に示す堆積膜形成装置S2のように、冷却機構14として、第2電極2と加熱手段11との間に冷却媒体が流れる冷却シートを備えたものであってもよい。このように、第2電極2とは別に冷却機構14を配置することにより、第2電極2の複雑な加工を不要にできる。さらに、電極内部に冷却経路14aとなる空間を設ける必要がないため、第2電極2の熱変形を低減することができ、繰り返し使用時の耐久性を向上することができる。また、装置メンテナンス時は、第2電極2と冷却機構14を別々に交換することが可能となり、メンテナンス性の向上および生産性の向上が達成される。
 また、図3(b)に示すように、冷却媒体が流れる冷媒経路14aを加熱手段11に対して平行に(所定距離隔てて)設けることにより、第2電極2の温度上昇をより効率よく低減することができる。
 なお、堆積膜形成装置S1と同様に、格子状に冷媒経路14aを設けてもよい。また、冷却シートからなる冷却機構14と第2電極2とを必ずしも直接接触させる必要はないが、直接接触させることにより、より効率よく第2電極2の温度分布を均一にすることができる。
 このような冷却機構14を設けることにより、第2電極2の温度上昇が抑制されるため、第2電極2として耐熱強度の高いタングステン、またはニッケル基の超合金等を使用しなくてもよく、加工性の良いステンレスまたはアルミニウム等を用いることが可能となる。
 加熱手段11と第2電極2との間に冷却機構14を設ける場合、冷却機構14が加熱手段11から照射される赤外波長の輻射熱を反射させる反射板としての機能を備えることにより、さらに第2電極2の温度上昇の抑制および加熱手段温度の低下抑制に効果がある。その方法として、例えば反射率を80%以上、好適には90%以上となるように、反射面の鏡面加工を施す、またはAg、AlまたはAu等の蒸着膜形成処理を施す。
 冷却媒体としては、上述したようにシリコンオイルもしくはフッ素オイル等の流体、または、水素ガスもしくはヘリウムガス等の熱伝導率の高いガスが好適に用いられる。
 冷却媒体の温度は、400℃以下と設定することにより、基材温度の上昇を低減するとともに、ガスの温度分布を改善することができる。また、第2電極2の温度を基材温度よりも高くすることにより、加熱手段11により分解した第1原料ガスが励起活性化状態から再結合することを抑制することができる。
 また、第2電極2の中央部と周辺部とにおいて、温度が異なる又は種類の異なる冷却媒体を流すことにより、第2電極2の面内温度分布をより均一化できる。
 <堆積膜形成装置S3>
 図4に示す堆積膜形成装置S3のように、冷媒経路をその高さ方向(厚み方向)に複数設置して、例えば図示されているように冷却経路14bと、その上方に位置する冷却経路14cとを設けてもよい。これにより、加熱手段11側に位置している冷媒経路14bを流れる冷却媒体の温度を低くし、第2電極2側に位置している冷媒経路14cを流れる冷却媒体の温度を高くすることができる。そして、冷却機構14の温度上昇しやすい加熱手段11側を素早く冷却することができて、第2電極2の温度分布を均一にすることができる。
 <堆積膜形成装置S4>
 図5(a)に示す堆積膜形成装置S4のように、加熱手段11と第2電極2との間に冷却機構14としてヒートパイプを備えたものでもよい。なお、ヒートパイプとは、作動流体と、その流体を毛細管現象によって迅速に移動させるための毛細管を中空の管の内部に設けたものである。このような構成により、高温部で蒸発した作動流体の蒸気が低温部に移動して凝縮し、その凝縮した流体が毛細管を伝って高温部に戻るサイクルを繰り返すことによって、極めて高い効率での熱伝導を可能にする。
 図5(a)に示す冷却機構における冷媒経路の構造では、加熱手段11と第2電極2との間にヒートパイプを設けているが、第2電極2の内部にヒートパイプを設けてもよい。
 また、図5(b)に示すように、ヒートパイプを加熱手段11と平行に設けることにより、第2電極2の温度上昇をより効率よく低減することができる。
 <堆積膜形成装置S5>
 図6に示す堆積膜形成装置S5のように、加熱手段11の下流側に、例えば材質がステンレスで形状がガスが通過する開口部を有する板状の第2分散板13bを設けるようにしてもよい。
 これにより、加熱手段11に接触したガスを各第1供給部に、均一に分散させることができる。加熱手段11と第2電極2との間に冷却機構14を設ける場合においては、加熱手段11に接触したガスが冷却機構14と接触することを低減させることができる。さらに、第2分散板13bが加熱手段11から照射される赤外波長の輻射熱を反射させる反射板としての機能を備えることにより、第2電極2の温度上昇をよりいっそう抑制することができる。
 加熱手段11から照射される輻射熱が直接、基材10に達しないように、冷却機構14および第2分散板13b、または別途、輻射遮断部材を設けることが好ましい。また、第1供給部4aの直上に加熱手段11を設けず、例えば、第1供給部4a間に加熱手段11が位置するように設けることが好ましい。
 <堆積膜形成装置S6>
 図7に示す堆積膜形成装置S6のように、第1電極6の内部に上述した気体または液体の冷却媒体を流す経路を設けることにより、基材10から抜熱する基材抜熱手段16を構成することが望ましい。
 基材加熱手段15により、基材10を所定温度まで加熱し良好な製膜温度に制御し、加熱手段11による加熱が行われる際には、加熱手段11と接触する第1原料ガスが加熱され、高温となった第1原料ガスが基材10と接触する。また、プラズマからの入熱により基材10の温度が上昇するが、加熱手段15を停止させ抜熱手段14により基材10を所定温度に制御することができる。これによって、基材10の全体を一定の温度に制御することが可能となり、堆積膜の品質を均一にすることができる。
 また、第1電極6に静電チャックを設けてもよい。これにより、基材10を第1電極6と密着させることにより、効率よく基材10の温度制御を行うことができる。
 <堆積膜形成装置S7>
 図8に示す堆積膜形成装置S7のように、基材抜熱手段16において冷却媒体が流れる冷媒経路16aを加熱手段11の直下では、他の部分よりも密に設けることにより、均一に基材10を所定温度に制御することができる。また、加熱手段11の直下と他の部分で、温度が異なる又は種類の異なる冷却媒体を流すことにより、均一に基材10を所定温度に制御することができる。
 <堆積膜形成装置S8>
 図9に示す堆積膜形成装置S8のように、第1電極6の基材加熱手段15と基材抜熱手段16を中央部と周辺部とに分けて設けるとよい。これにより、高温になりやすい中央部と、低温になりやすい周辺部をそれぞれ別途温度制御することが可能となり、基材10の温度を均一にすることができる。
 <堆積膜形成装置S9>
 図10に示す堆積膜形成装置S9のように、第1電極6を基材載置面6aと載置面6aより外側の外周部6bとに分離して設け、それぞれの部分に基材加熱手段15と、基材抜熱手段16を設ける、載置面の外周部の温度を基材載置面よりも高く設定するとよい。これにより、基材10の温度を最適値に制御しつつ、載置面の外周部に堆積膜が付着しにくくすることができる。
 <堆積膜形成装置S10>
 図11に示す堆積膜形成装置S10のように、一方向に延びている加熱手段11(図面に対して奥行き方向(図面に対して垂直方向))に対して側方からガスを吹付ける構造17であってもよい。積極的に原料ガスを加熱手段11に接触させることができ、原料ガスを効率よく活性化させることができる。
 <堆積膜形成装置S11>
 図12に示す堆積膜形成装置S11のように、加熱手段11の周囲を囲うような形状とし、その空間にガスが滞留するような構造とするとよい。これにより、積極的に原料ガスを加熱手段11に接触させることができ、原料ガスを効率よく活性化させることができる。また、加熱手段11の下流側よりも上流側における導入経路の開口径を大きくすることにより、加熱手段11を有する空間内にガスを滞留させる時間を長くすることができ、ガスを効率よく活性化させることができる。
 なお、基板加熱手段15と基板抜熱手段16を両方設けた場合で説明したが、基材加熱手段15を設けずに基板抜熱手段の冷却媒体の温度を制御することにより、基材10を制御するようにしてもよい。
 <堆積膜の形成方法>
 次に、本発明の一形態に係る堆積膜形成方法の実施形態について、主に堆積膜形成装置S1を例にとり説明する。なお、他の堆積膜形成装置においても、以下に説明する工程により高品質の堆積膜を形成できる。
 まず、チャンバー1内に、第1電極6と、第1電極6と所定間隔を隔てて位置しており、第1原料ガスを供給する第1供給部4aを有する第2電極2と、第1供給部4aに接続された、第1原料ガスが導入される第1導入経路3aと、第1導入経路3a内に設けられている加熱手段11と、第2電極2を冷却する冷却機構14と、基材10とを準備する準備工程を行なう。次に、第1電極6と第2電極2との間に基材10を配置する基材配置工程を行なう。次に、加熱手段11の加熱によって第1原料ガスを加熱するガス加熱工程を行なう。次に、第1電極6と第2電極2との間に第1原料ガスを供給して、グロー放電を発生させる放電発生工程を行なう。
 ここで、放電発生工程は、第1電極6と第2電極2との間において下記式の条件下に行なわれる。
T1>T2>T3
(ただし、T1は第1原料ガスの温度、T2は第2電極2の表面温度、T3は第1電極6の表面温度である。)
 これらの工程により、原料ガス中の成分が基材10上に堆積されることで、堆積膜が基材10上に好適に形成される。なお、上述の工程において、基材10は、基材搬送機構等により搬送され、第1電極6上に支持されて、保持される。
 第1原料ガスを第1供給経路3内の加熱手段11で加熱し、第1供給部4のみから供給することにより、加熱手段11によって温められた第1原料ガスがプラズマが発生する空間8に供給されるため、ガスヒーティング効果によって空間8での高次シラン生成反応が抑制される。
 また、水素化アモルファスシリコン膜を形成する場合は、Hガスを第1導入経路3aに、SiHガスを第2導入経路3bに供給して、ガス圧力を50~700Paに設定して、H/SiHの比を2/1~20/1とし、高周波電力密度を0.02~0.2W/cmとすればよい。i型アモルファスシリコン膜を有するpin接合の薄膜太陽電池においては、i型アモルファスシリコン膜の膜厚を0.1~0.5μm、好ましくは0.15~0.3μmに形成すればよい。
 また、水素化微結晶シリコン膜を形成する場合は、Hガスを第1導入経路3aに、SiHガスを第2導入経路3bに供給し、ガス圧力を100~7000Paに設定し、H/SiHの比を10/1~60/1とし、高周波電力密度を0.1~1W/cmとすればよい。i型微結晶シリコン膜を有するpin接合の薄膜太陽電池においては、i型微結晶シリコン膜の膜厚を1~4μm、好ましくは1.5~3μmに、結晶化率を70%前後に形成すればよい。
 本実施形態の堆積膜形成方法では、基材加熱手段15により基材10を所定温度に加熱し、加熱手段11を加熱した後、例えば、冷却機構14により第2電極2を冷却する、基材加熱手段15の加熱を小さくする、または、基材加熱手段15の加熱を停止してもよい。例えば図7に示す堆積膜形成装置S6に備えられた基材抜熱手段16により抜熱を行うことによって、高温となった原料ガスまたはプラズマからの入熱による基材10の過度の加熱を低減できる。これにより、冷却機構14にて第2電極2を所定温度に制御するとともに、基材加熱手段15および基材抜熱手段16にて基材10を所定温度に制御できる。よって、すぐに基材10を所定温度に保ち、効率よく基材10全体を一定の温度に制御することが可能となる。このように、第2電極2の温度を所定温度に制御した後、さらに、基材10を所定温度に制御した後に堆積膜を基材10に形成することが好ましい。
 また、加熱手段11によって温められた水素ガス等からなる第1原料ガスがプラズマが発生する空間8に供給された際の第1原料ガスの温度と、第2電極2の表面温度と、第1電極6の表面温度との関係が、第1原料ガスの温度T1>第2電極2の表面温度T2>第1電極6の表面温度T3を満たすことが好ましい。ここで、第1原料ガスの温度T1>第2電極2の表面温度T2の関係は、第1原料ガスが加熱手段11により加熱されるという、独特の構造を有するため実現できるものである。
 上記の温度の大小関係により、第2電極2の熱歪による変形を低減しつつ、ガスヒーティング効果による高次シラン重合体の生成抑制効果をより大きくすることができる。また、T2>T3とすることで、基材10の温度を膜形成に適した温度に制御しやすくなり、加えて、第2電極2への膜形成にともなう堆積寄与種の消費が低減する。これにより、基材10に効果的に膜形成を行なうことが可能である。その結果として、基材10上に高品質な膜を高速かつ均一に形成することが可能である。前記効果を得るためには、第1原料ガスの温度は300~1000℃、第2電極2の温度は200~500℃、第1電極6の温度は100~400℃に設定されることが好ましい。
 ここで、Si系ガス等の第2原料ガスは加熱手段11により直接加熱されることなく、第2供給部4bよりプラズマ空間8に供給されることから、第1原料ガスの温度T1の方が第2原料ガスの温度T4よりも高くなる(T1>T4の)ため、Si系ガスの過剰な分解を低減して堆積膜を形成することができる。
 また、基材10に堆積膜を形成し、基材10をチャンバー1から排出した後にチャンバー1内にクリーニングガスを供給し、クリーニングガスをプラズマにより分解・活性化させチャンバー内をクリーニングしてもよい。クリーニングガスとしては、分子式にフッ素(F)または塩素(Cl)を含んだガスを用いることができる。
 さらに、加熱触媒体からなる加熱手段11を設けている第1導入経路3aからキャリアガスを供給し、加熱手段11を設けていない第2導入経路3bからクリーニングガスを供給することが好ましく、クリーニングガスにより加熱触媒体からなる加熱手段11が腐食劣化するのを低減することができる。キャリアガスとしては、水素ガスあるいは不活性ガスを含んだガスを用いることができる。
 また、クリーニングにおいては、基材抜熱手段14を使用しない、または堆積膜形成時よりも高い温度の冷媒を流す等により、堆積膜形成時よりも第1電極6を高い温度にして行うことが好ましく、クリーニング時に生じる反応生成物あるいはクリーニング後の残留ガスの低温部への付着を抑制することができる。
 <実施例1>
 以下、ステンレス製の第2電極2の内部に、冷却媒体がシリコンオイルの格子状の冷媒経路を有する冷却機構14を設けた場合と、第2電極2の内部に冷却機構14を設け、第1電極6の内部に、冷却媒体がシリコンオイルの格子状の冷媒経路を有する基材抜熱手段16を設けた場合と、冷却機構14と基材抜熱手段16のどちらも設けない場合とを比較した。
 堆積膜形成装置は、Hガス(第1原料ガス)が供給される第1供給部4aと、SiHガス(第2原料ガス)が供給される第2供給部4bとを有する第2電極2と、第2電極2と対向して配置され、堆積膜が形成される基材10を保持し、基材10を加熱する基材加熱手段16を有する第1電極6とからなり、第1供給部に接続される第1導入経路にはタンタルからなる加熱触媒体(加熱手段11)を設けた装置を用意した。
 そして、第2電極2の内部に冷却機構14を設けた場合を条件Aとし、第2電極2と加熱触媒体との間に冷却機構14を設けた場合を条件Bとし、第2電極2の内部に冷却機構14を設けるとともに第1電極6に基材抜熱手段16を設けた場合を条件Cとし、第2電極2と加熱触媒体との間に冷却機構14を設けるとともに第1電極6に基材抜熱手段16を設けた場合を条件Dとし、冷却機構14と基材抜熱手段16のどちらも設けない場合を条件Eとした。
 これらの条件において、ガラスからなる基材10に水素化微結晶シリコン膜からなる堆積膜を形成したときに、第2電極表面(空間8に対面している面)の中央部と端部の温度と、基材10の表面(空間8に対面している面)の中央部と端部の温度を熱電対にて測定した。この場合、基材加熱手段16の設定温度は150℃、冷却機構14の温度は300℃に設定され、冷却機構14は加熱触媒体に対して平行になる(所定距離隔てる)ように直線状に設けた。
 各条件における結果を表1に表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、条件A~Dにおいては、第2電極2の中央部と端部の温度、基材10の中央部と端部の温度では、ほとんど差がなく設定温度に近い値であった。しかし、従来例の条件Eにおいては、第2電極また基材の中央部と端部との温度差が大きく、とくに基材の温度においては設定値よりも高い値であった。
 <実施例2>
 上記の条件A~Eにおいて、表面に透明導電膜を有するガラス製の基材10上に、アモルファスシリコン膜からなるpin接合を有する光電変換層と、その上に微結晶シリコン膜からなるpin接合を有する光電変換層と、その上に裏面電極を形成したタンデム型薄膜太陽電池を形成し、発電効率の比較を行った。この場合、i型アモルファスシリコン膜の膜厚は2500Å、i型微結晶シリコン膜の膜厚は2.8μmに形成した。
 アモルファスシリコン膜からなる光電変換層とp型、n型微結晶シリコン膜は平行平板型のプラズマCVD装置装置を用いて製膜した。また、i型微結晶シリコン膜は上記条件の加熱触媒体を備える堆積膜形成装置を用いて製膜した。
 また、i型微結晶シリコン膜を製膜する各種設定条件において、チャンバー内のガス圧力はPout=1333Pa(=10Torr)で行った。
 そして、SiHガスはすべて第2供給部からチャンバー内へ導入するともに、Hガスを第1供給部4aと第2供給部4bに分割供給してi型微結晶シリコン膜を製膜した。10cm×10cmのガラス製の基材10上に1cm×1cmの薄膜太陽電池素子を16個形成した。
 その結果、条件A~Dでは初期効率12.0~12.5%程度の発電効率が再現性よく得られたのに対して、条件Eではそれよりも低い7.5~10.2%程度の発電効率しか得られないことが判明した。条件Eにおける発電効率の低下は、基材10の表面温度の上昇により膜中水素脱離が進むことでi型微結晶シリコン膜中の欠陥密度が高くなり、膜質が低下したことを示している。さらに発電効率の不均一な面内分布は、基材10の温度分布の不均一によりもたらされたと解釈できる。
 以上から、第2電極2に冷却機構14を設けて、さらに第1電極6に基材抜熱手段16を設けた場合の顕著な効果が確認できた。
1   :チャンバー
2   :第2電極
3   :導入経路
4   :供給部
4a  :第1供給部
4b  :第2供給部
6   :第1電極
8   :空間
10  :基材
11  :加熱手段
14  :冷却機構
14a :冷媒経路
16  :基材抜熱手段
16a :冷媒経路

Claims (11)

  1.  チャンバーと、
    該チャンバー内に位置している第1電極と、
    前記チャンバー内に前記第1電極と所定間隔を隔てて位置しており、原料ガスを供給する複数の供給部を有する第2電極と、
    前記供給部に接続されており、原料ガスが導入される導入経路と、
    該導入経路内に設けられている加熱手段と、
    前記第2電極を冷却する冷却機構とを備えた堆積膜形成装置。
  2.  前記冷却機構は、前記第2電極の内部に冷却媒体が流れる冷媒経路を備えていることを特徴とする請求項1に記載の堆積膜形成装置。
  3.  前記冷却機構は、前記第2電極と前記加熱手段との間に冷却媒体が流れる冷媒経路を有する冷却シートを備えていることを特徴とする請求項1に記載の堆積膜形成装置。
  4.  前記冷却機構は、ヒートパイプを備えていることを特徴とする請求項1に記載の堆積膜形成装置。
  5.  前記冷媒経路は、冷却媒体が流れる格子状経路を備えていることを特徴とする請求項2または請求項3に記載の堆積膜形成装置。
  6.  前記冷媒経路は、冷却媒体が流れる複数列の直線状経路を備えていることを特徴とする請求項2または請求項3に記載の堆積膜形成装置。
  7.  前記第1電極は、前記第1電極と前記第2電極との間に配置される基材の抜熱を行なう基材抜熱手段を備えていることを特徴とする請求項1~6のいずれかに記載の堆積膜形成装置。
  8.  チャンバー内に、第1電極と、該第1電極と所定間隔を隔てて位置しており、第1原料ガスを供給する第1供給部を有する第2電極と、前記第1供給部に接続された、前記第1原料ガスが導入される第1導入経路と、該第1導入経路内に設けられている加熱手段と、前記第2電極を冷却する冷却機構と、基材とを準備する準備工程と、
    前記第1電極と前記第2電極との間に前記基材を配置する基材配置工程と、
    前記加熱手段の加熱によって前記第1原料ガスを加熱するガス加熱工程と、
    前記第1電極と前記第2電極との間に前記第1原料ガスを供給して、グロー放電を発生させる放電発生工程とを有しており、
    該放電発生工程は、下記式の条件下に行なわれることを特徴とする堆積膜形成方法。
    T1>T2>T3
    (ただし、T1は前記第1原料ガスの温度、T2は前記第2電極の表面温度、T3は前記第1電極の表面温度である。)
  9.  前記放電発生工程は、前記第1原料ガスと、前記第1原料ガスとは異なる第2原料ガスとを、前記第1電極と前記第2電極との間で混合するようにしたことを特徴とする請求項8に記載の堆積膜形成方法。
  10.  前記第1電極と前記第2電極との間に供給された前記第2原料ガスの温度をT4としたときに、下記式を満足することを特徴とする請求項8または9に記載の堆積膜形成方法。
    T1>T4
  11.  前記第1原料ガスに水素ガスを用いることを特徴とする請求項8~10のいずれかに記載の堆積膜形成方法。
PCT/JP2010/066567 2009-09-25 2010-09-24 堆積膜形成装置および堆積膜形成方法 WO2011037190A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10818862A EP2481831A1 (en) 2009-09-25 2010-09-24 Deposited film formation device and deposited film formation method
US13/390,927 US8703586B2 (en) 2009-09-25 2010-09-24 Apparatus for forming deposited film and method for forming deposited film
CN2010800397181A CN102482775A (zh) 2009-09-25 2010-09-24 沉积膜形成装置及沉积膜形成方法
JP2011533047A JP5566389B2 (ja) 2009-09-25 2010-09-24 堆積膜形成装置および堆積膜形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-220971 2009-09-25
JP2009220971 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011037190A1 true WO2011037190A1 (ja) 2011-03-31

Family

ID=43795934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066567 WO2011037190A1 (ja) 2009-09-25 2010-09-24 堆積膜形成装置および堆積膜形成方法

Country Status (5)

Country Link
US (1) US8703586B2 (ja)
EP (1) EP2481831A1 (ja)
JP (1) JP5566389B2 (ja)
CN (1) CN102482775A (ja)
WO (1) WO2011037190A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017717A1 (ja) * 2010-08-06 2012-02-09 三菱重工業株式会社 真空処理装置及びプラズマ処理方法
JP2015101790A (ja) * 2013-11-21 2015-06-04 アイクストロン、エスイー 炭素からなるナノ構造の製造装置および方法
JP2021513739A (ja) * 2018-02-08 2021-05-27 ジュソン エンジニアリング カンパニー リミテッド チャンバ洗浄装置及びチャンバ洗浄方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309023A1 (en) * 2008-07-30 2011-04-13 Kyocera Corporation Deposition film forming apparatus and deposition film forming method
CN102471886A (zh) * 2009-08-28 2012-05-23 京瓷株式会社 沉积膜形成装置及沉积膜形成方法
US9416450B2 (en) * 2012-10-24 2016-08-16 Applied Materials, Inc. Showerhead designs of a hot wire chemical vapor deposition (HWCVD) chamber
US11154903B2 (en) * 2016-05-13 2021-10-26 Jiangsu Favored Nanotechnology Co., Ltd. Apparatus and method for surface coating by means of grid control and plasma-initiated gas-phase polymerization
DE102017223592B4 (de) 2017-12-21 2023-11-09 Meyer Burger (Germany) Gmbh System zur elektrisch entkoppelten, homogenen Temperierung einer Elektrode mittels Wärmeleitrohren sowie Bearbeitungsanlage mit einem solchen System

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333572A (ja) * 1986-07-25 1988-02-13 Natl Res Inst For Metals プラズマ気相反応装置
JPH03239320A (ja) * 1990-02-16 1991-10-24 Fuji Electric Co Ltd 触媒cvd装置
JP2001313272A (ja) 2000-04-28 2001-11-09 Kyocera Corp プラズマcvd法およびそれに用いる装置
JP2003124133A (ja) * 2001-10-19 2003-04-25 Kyocera Corp ガス分離型触媒cvd装置及びそれを用いて作製した光電変換装置及びその製造方法
JP2003158120A (ja) * 2001-09-10 2003-05-30 Anelva Corp 表面処理装置
JP2003173980A (ja) * 2001-09-26 2003-06-20 Kyocera Corp 熱触媒体内蔵カソード型pecvd装置、それを用いて作製した光電変換装置並びにその製造方法、および熱触媒体内蔵カソード型pecvd法、それを用いるcvd装置、その方法により形成した膜並びにその膜を用いて形成したデバイス
JP2003273023A (ja) * 2002-03-12 2003-09-26 Kyocera Corp Cat−PECVD法、その方法の実施に用いる装置、その方法を用いて形成した膜、およびその膜を用いて形成したデバイス
JP2007250944A (ja) * 2006-03-17 2007-09-27 Sony Corp 半導体薄膜の成膜方法および半導体薄膜の成膜装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012158A (en) 1986-07-25 1991-04-30 National Research Institute For Metals Plasma CVD apparatus
US5017403A (en) * 1989-04-13 1991-05-21 Massachusetts Institute Of Technology Process for forming planarized films
US5849372A (en) * 1993-09-17 1998-12-15 Isis Innovation Limited RF plasma reactor and methods of generating RF plasma
IL153154A (en) * 2001-03-28 2007-03-08 Tadahiro Ohmi Plasma processing device
US20030047282A1 (en) 2001-09-10 2003-03-13 Yasumi Sago Surface processing apparatus
JP4370789B2 (ja) * 2002-07-12 2009-11-25 東京エレクトロン株式会社 プラズマ処理装置及び可変インピーダンス手段の校正方法
JP4584565B2 (ja) * 2002-11-26 2010-11-24 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP4664119B2 (ja) * 2005-05-17 2011-04-06 東京エレクトロン株式会社 プラズマ処理装置
TWI556309B (zh) * 2009-06-19 2016-11-01 半導體能源研究所股份有限公司 電漿處理裝置,形成膜的方法,和薄膜電晶體的製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333572A (ja) * 1986-07-25 1988-02-13 Natl Res Inst For Metals プラズマ気相反応装置
JPH03239320A (ja) * 1990-02-16 1991-10-24 Fuji Electric Co Ltd 触媒cvd装置
JP2001313272A (ja) 2000-04-28 2001-11-09 Kyocera Corp プラズマcvd法およびそれに用いる装置
JP2003158120A (ja) * 2001-09-10 2003-05-30 Anelva Corp 表面処理装置
JP2003173980A (ja) * 2001-09-26 2003-06-20 Kyocera Corp 熱触媒体内蔵カソード型pecvd装置、それを用いて作製した光電変換装置並びにその製造方法、および熱触媒体内蔵カソード型pecvd法、それを用いるcvd装置、その方法により形成した膜並びにその膜を用いて形成したデバイス
JP2003124133A (ja) * 2001-10-19 2003-04-25 Kyocera Corp ガス分離型触媒cvd装置及びそれを用いて作製した光電変換装置及びその製造方法
JP2003273023A (ja) * 2002-03-12 2003-09-26 Kyocera Corp Cat−PECVD法、その方法の実施に用いる装置、その方法を用いて形成した膜、およびその膜を用いて形成したデバイス
JP2007250944A (ja) * 2006-03-17 2007-09-27 Sony Corp 半導体薄膜の成膜方法および半導体薄膜の成膜装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017717A1 (ja) * 2010-08-06 2012-02-09 三菱重工業株式会社 真空処理装置及びプラズマ処理方法
JP2015101790A (ja) * 2013-11-21 2015-06-04 アイクストロン、エスイー 炭素からなるナノ構造の製造装置および方法
JP2021513739A (ja) * 2018-02-08 2021-05-27 ジュソン エンジニアリング カンパニー リミテッド チャンバ洗浄装置及びチャンバ洗浄方法
JP7431738B2 (ja) 2018-02-08 2024-02-15 ジュソン エンジニアリング カンパニー リミテッド チャンバ洗浄装置及びチャンバ洗浄方法

Also Published As

Publication number Publication date
JPWO2011037190A1 (ja) 2013-02-21
US8703586B2 (en) 2014-04-22
JP5566389B2 (ja) 2014-08-06
US20120171849A1 (en) 2012-07-05
CN102482775A (zh) 2012-05-30
EP2481831A1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5566389B2 (ja) 堆積膜形成装置および堆積膜形成方法
US9206513B2 (en) Apparatus for forming deposited film
JP4727000B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP5562413B2 (ja) 薄膜太陽電池の製造方法
JP5919482B2 (ja) 触媒化学気相成膜装置、それを用いた成膜方法及び触媒体の表面処理方法
US20160060764A1 (en) Catalytic Chemical Vapor Deposition Apparatus
JPH09256162A (ja) マイクロ波プラズマcvd法を用いた膜堆積方法および膜堆積装置
JP5378416B2 (ja) プラズマ処理装置
JP5430662B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP2001332749A (ja) 半導体薄膜の形成方法およびアモルファスシリコン太陽電池素子
JP4936297B2 (ja) プラズマ処理装置およびプラズマ処理方法ならびに半導体素子
JP2000252218A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
WO2011099205A1 (ja) 成膜装置
JP4084635B2 (ja) Cat−PECVD装置およびそれを用いた膜処理システム
JP5460080B2 (ja) 薄膜形成装置のクリーニング方法
JPS62158873A (ja) 薄膜多層構造の形成方法
JPS62163314A (ja) 薄膜多層構造およびその形成方法
JP3658165B2 (ja) 光電変換素子の連続製造装置
JP2011096962A (ja) 薄膜太陽電池の製造方法および製造装置
JP2011032503A (ja) プラズマcvd装置
JP2005072215A (ja) 堆積膜形成装置
JPS62163312A (ja) 薄膜多層構造およびその形成方法
JPS62158876A (ja) 堆積膜形成方法
JPS62163315A (ja) 薄膜多層構造およびその形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039718.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533047

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390927

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010818862

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE