WO2011030809A1 - 多気筒ロータリ式圧縮機と冷凍サイクル装置 - Google Patents

多気筒ロータリ式圧縮機と冷凍サイクル装置 Download PDF

Info

Publication number
WO2011030809A1
WO2011030809A1 PCT/JP2010/065471 JP2010065471W WO2011030809A1 WO 2011030809 A1 WO2011030809 A1 WO 2011030809A1 JP 2010065471 W JP2010065471 W JP 2010065471W WO 2011030809 A1 WO2011030809 A1 WO 2011030809A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
cylinder
chamber
pressure
lubricating oil
Prior art date
Application number
PCT/JP2010/065471
Other languages
English (en)
French (fr)
Inventor
卓也 平山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2011530862A priority Critical patent/JP5303651B2/ja
Priority to CN201080032362.9A priority patent/CN102472281B/zh
Publication of WO2011030809A1 publication Critical patent/WO2011030809A1/ja
Priority to US13/416,687 priority patent/US8635884B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a multi-cylinder rotary compressor capable of switching a compression capacity, and a refrigeration cycle apparatus including the multi-cylinder rotary compressor and constituting a refrigeration cycle.
  • a multi-cylinder rotary compressor having a plurality of (mainly two) cylinder chambers in a compression mechanism is widely used.
  • this type of compressor it is advantageous if switching between so-called full-capacity operation and half-capacity operation is possible, in which the compression action is performed simultaneously in a plurality of cylinder chambers, or the compression action is interrupted only in one cylinder chamber to reduce the compression work. It is.
  • Japanese Patent Application Laid-Open No. 2006-300048 includes a first cylinder and a second cylinder, and draws suction pressure into the cylinder chamber of the first cylinder, and draws suction pressure or discharge pressure into the cylinder chamber of the second cylinder. Lead.
  • the first cylinder is provided with a vane chamber that houses the rear end of the vane and the spring member, and the second cylinder is provided with a sealed vane chamber that houses the rear end of the vane.
  • a suction pressure or a discharge pressure is guided to the second vane chamber, and the vane is pressed and biased according to a differential pressure between the suction pressure and the discharge pressure guided to the second cylinder chamber. Accordingly, a hermetic compressor is disclosed that enables switching between full capacity operation in which compression operation is performed in both cylinder chambers and half capacity operation in which compression operation is not performed in the second cylinder chamber.
  • one feature is that an oil groove for introducing lubricating oil is provided in the vane groove, and an oil communication hole is provided in the auxiliary bearing.
  • a lubricating oil reservoir is formed at the inner bottom of the hermetic container, and most of the compression mechanism is immersed in the lubricating oil.
  • the oil communication hole opens to the oil reservoir, and the lubricating oil is guided to the oil groove through the oil communication hole and supplied to the sliding contact surface between the vane groove and the vane. Even if the second vane chamber has a sealed structure, smoothness is ensured in the reciprocating movement of the vane.
  • the lubricating oil in the oil reservoir is always guided from the oil communication hole to the oil groove regardless of whether the compression operation or the cylinder resting operation is performed in the second cylinder chamber. End up.
  • the vane reciprocates, the smoothness of the vane can be ensured as described above, but refueling is continued even during a cylinder resting operation in which the vane does not move.
  • a substantially semicircular oil groove is cut out in a plan view in a vane groove formed of side surfaces that are parallel and opposed to each other.
  • an oil groove is obtained by broaching, but when an oil groove is additionally machined after the vane groove is processed, the vane groove is deformed or burrs or protrusions occur during the oil groove processing, and the accuracy of the vane groove width deteriorates, resulting in performance and reliability. Sex is reduced.
  • the present invention has been made on the basis of the above circumstances, and its purpose is to ensure smoothness in the reciprocating movement of the vane on the side of the cylinder resting operation on the premise that the compression capacity is variable with two cylinders.
  • the present invention is to provide a multi-cylinder rotary compressor capable of obtaining high compression performance and a refrigeration cycle apparatus provided with the multi-cylinder rotary compressor and capable of improving the refrigeration cycle efficiency.
  • the multi-cylinder rotary compressor of the present invention accommodates an electric motor section and a compression mechanism section in a sealed container, and collects lubricating oil at the bottom of the sealed container.
  • the compression mechanism section includes a first cylinder and a second cylinder with an intermediate partition plate interposed therebetween, forms cylinder chambers for introducing low-pressure gas into the inner diameter portion of each cylinder, and these cylinder chambers are provided with vane grooves. There is a vane back chamber that communicates with each other.
  • the rotating shaft connected to the electric motor section has an eccentric portion accommodated in each cylinder chamber, and an eccentric roller that moves eccentrically in the cylinder chamber as the rotating shaft rotates is fitted to the eccentric portion, and the vane tip portion Divides the cylinder chamber in a state where it contacts the eccentric roller peripheral wall.
  • One of the vane back chambers provided in the first cylinder and the second cylinder applies an elastic force to the rear end of the vane so that the tip of the vane comes into contact with the eccentric roller peripheral wall to rotate the rotating shaft.
  • an elastic body that always performs a compression action in the cylinder chamber is provided.
  • the other vane back chamber has a sealed structure, guides a part of the high-pressure gas to apply a high-pressure back pressure to the rear end of the vane, and makes the vane front end abut against the eccentric roller peripheral wall as the rotating shaft rotates.
  • Pressure switching means for compressing in the cylinder chamber or introducing low pressure gas to apply a low pressure back pressure to the rear end portion of the vane and holding the vane front end portion away from the eccentric roller peripheral wall is provided.
  • An oil supply groove is provided on the side surface of the vane, and a lubricating oil communication passage is provided in the compression mechanism to guide the oil in the oil reservoir to the oil supply groove.
  • the tip of the vane is at the top dead center position where it is most recessed from the cylinder chamber.
  • a refrigeration cycle apparatus of the present invention comprises the above-described multi-cylinder rotary compressor, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.
  • FIG. 1 is a schematic longitudinal sectional view of a multi-cylinder rotary compressor and a refrigeration cycle configuration diagram of a refrigeration cycle apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view showing a part of the multi-cylinder rotary compressor according to the embodiment.
  • FIG. 3 is a top view taken along the line AA in FIG. 1 for explaining the oil supply structure to the side surface of the vane according to the embodiment.
  • FIG. 4 is a top view taken along line AA of FIG. 1 for explaining the oil supply structure to the side surface of the vane in a state different from FIG. 3 according to the same embodiment.
  • FIG. 1 is a diagram illustrating a schematic cross-sectional structure of a multi-cylinder rotary compressor R and a refrigeration cycle configuration of a refrigeration cycle apparatus including the multi-cylinder rotary compressor R.
  • FIG. 2 is an enlarged longitudinal sectional view of a part of the multi-cylinder rotary compressor R.
  • Reference numeral 1 denotes a sealed container, and a lower part in the sealed container 1 has a first compression mechanism portion 3A and a second compression mechanism via an intermediate partition plate 2.
  • a part 3B is provided, and an electric motor part 4 is provided at the upper part.
  • the first compression mechanism unit 3 ⁇ / b> A and the second compression mechanism unit 3 ⁇ / b> B are connected to the electric motor unit 4 via the rotation shaft 5.
  • the first compression mechanism portion 3A includes a first cylinder 6A
  • the second compression mechanism portion 3B includes a second cylinder 6B.
  • the main bearing 7 is attached and fixed to the upper surface portion of the first cylinder 6A
  • the auxiliary bearing 8 is attached and fixed to the lower surface portion of the second cylinder 6B.
  • the rotating shaft 5 penetrates through the cylinders 6A and 6B, and integrally includes a first eccentric portion Qa and a second eccentric portion Qb formed with a phase difference of about 180 °.
  • the eccentric parts Qa and Qb have the same diameter as each other, and are assembled so as to be located in the inner diameter parts of the cylinders 6A and 6B.
  • the first eccentric roller 9a is fitted to the peripheral surface of the first eccentric portion Qa
  • the second eccentric roller 9b is fitted to the peripheral surface of the second eccentric portion Qb.
  • the first cylinder chamber Sa is formed in the inner diameter portion of the first cylinder 6A
  • the second cylinder chamber Sb is formed in the inner diameter portion of the second cylinder 6B.
  • the cylinder chambers Sa and Sb are formed to have the same diameter and height, and a part of the peripheral wall of the eccentric rollers 9a and 9b is accommodated so as to be eccentrically rotatable while being in line contact with a part of the peripheral wall of the cylinder chambers Sa and Sb.
  • the first cylinder 6A is provided with a first vane back chamber 10a communicating with the first cylinder chamber Sa through a vane groove, and the first vane 11a is movably accommodated in the vane groove.
  • the second cylinder 6B is provided with a second vane back chamber 10b communicating with the second cylinder chamber Sb through a vane groove, and the second vane 11b is movably accommodated in the vane groove. .
  • the tip portions of the first and second vanes 11a and 11b are formed in a substantially arc shape in plan view, and can protrude into the opposing cylinder chambers Sa and Sb. In this state, the tip portions of the vanes 11a and 11b are in line contact with the circular peripheral walls of the first and second eccentric rollers 9a and 9b in a plan view regardless of the rotation angle.
  • the first cylinder 6A is provided with a lateral hole that communicates the first vane back chamber 10a and the outer peripheral surface of the cylinder 6A, and accommodates the spring member 14 that is an elastic body.
  • the spring member 14 is interposed between the end surface of the rear end of the first vane 11a and the inner peripheral wall of the sealed container 1, and applies an elastic force (back pressure) to the vane 11a.
  • the second vane back chamber 10b in the second cylinder 6B is provided at a position protruding outward from the peripheral edge of the flange portion of the sub main bearing 8, and the upper and lower surfaces are opened as they are and are opened in the sealed container 1. .
  • the upper surface opening is closed by the intermediate partition plate 2
  • the lower surface opening is closed by the closing plate 12
  • the second vane back chamber 10b forms a sealed structure.
  • a lateral hole is provided to communicate the second vane back chamber 10b and the outer peripheral surface of the second cylinder 6B, and the permanent magnet 13 is attached.
  • the permanent magnet 13 has a magnetic force that magnetically attracts the rear end of the second vane 11b when it abuts. In this state, the tip end portion of the second vane 11b is immersed more than the peripheral wall of the second cylinder chamber Sb, and the tip end portion of the vane 11b is located away from the peripheral wall of the roller 9b even if the second eccentric roller 9b moves. .
  • a pressure switching mechanism (pressure switching means) K which will be described later, is attached to the intermediate partition plate 2. According to the switching operation of the pressure switching mechanism K, a high pressure gas (discharge pressure) or a low pressure gas (suction pressure) can be selected and guided to the second vane back chamber 10b, and the rear end of the second vane 11b Switch back pressure to the part.
  • An oil reservoir 15 for collecting lubricating oil is formed at the inner bottom of the sealed container 1.
  • the solid line crossing the flange portion of the main bearing 7 indicates the oil level of the lubricating oil, and almost all of the first compression mechanism portion 3A and all of the second compression mechanism portion 3B It is immersed in the lubricating oil of the reservoir 15.
  • the second vane back chamber 10b has a sealed structure, even if the second vane 11b reciprocates, the lubricating oil in the oil reservoir 15 does not enter the vane back chamber 10b. As described above, the lubricating oil supply to the sliding contact surface between the second vane 11b and the vane groove is ensured.
  • a multi-cylinder rotary compressor R configured as described above, and a discharge pipe P is connected to the upper end of the sealed container 1.
  • the discharge pipe P is connected to the upper end portion of the accumulator 20 via the condenser 17, the expansion device 18 and the evaporator 19.
  • the accumulator 20 and the multi-cylinder rotary compressor R are connected via a suction pipe Pa.
  • the suction pipe Pa is connected to the peripheral end surface of the intermediate partition plate 2 through the sealed container 1 constituting the multi-cylinder rotary compressor R.
  • a suction guide path is provided in the axial direction from the peripheral surface portion to which the suction pipe Pa is connected. The tip of the suction guide path is bifurcated into a diagonally upward and diagonally downward direction.
  • the branch guideway branched obliquely upward communicates with the first cylinder chamber Sa.
  • the branch guide path branched obliquely downward communicates with the second cylinder chamber Sb. Therefore, the accumulator 20 and the first cylinder chamber Sa and the second cylinder chamber Sb in the multi-cylinder rotary compressor R are always in communication.
  • the multi-cylinder rotary compressor R, the condenser 17, the expansion device 18, the evaporator 19, and the accumulator 20 that are described above are sequentially connected by piping to constitute a refrigeration cycle device.
  • the intermediate partition plate 2 is provided with a bent pressure guide path 25 that extends from the peripheral end surface in the axial direction and extends from the front end to the lower surface in the direct downward direction.
  • One end portion of the pressure guide path 25 opened on the lower surface of the intermediate partition plate 2 communicates with the second vane back chamber 10b provided in the second cylinder 6B.
  • the other end portion of the pressure guide path 25 that opens to the peripheral surface of the intermediate partition plate 2 is inserted into the end portion of the guide tube 26 that is provided so as to penetrate the hermetic container 1 and is processed so as not to leak gas.
  • the guide tube 26 rises along the side wall of the hermetic container 1 and is connected to the second port Qd of the four-way switching valve 27 provided at a position higher than the upper ends of the hermetic container 1 and the accumulator 20.
  • the first port Qc of the four-way switching valve 27 is connected to a first branch pipe 28 that branches from the middle of the discharge pipe P that communicates the sealed container 1 and the condenser 17.
  • the third port Qe is connected to a second branch pipe 29 that communicates the evaporator 19 and the accumulator 20.
  • the fourth port Qf is closed by the plug 30.
  • valve body 31 housed in the four-way switching valve 27 and electromagnetically operated to switch is indicated by a position where the third port Qe and the fourth port Qf communicate with each other and a two-dot chain line.
  • the second port Qd and the third port Qe can be switched to a position where they communicate with each other.
  • the first port Qc is always open, and the fourth port Qf is always closed by the plug 30.
  • the first port Qc and the second port Qd communicate with each other, and the third port Qe and the fourth port Qf communicate with each other by the valve body 31.
  • the fourth port Qf is blocked by the plug body 30, only communication between the first port Qc and the second port Qd remains.
  • the operation of the pressure switching mechanism K causes a half capacity operation (cylinder operation), Switching between full capacity operation (normal operation) can be selected.
  • the valve body 31 of the four-way switching valve 27 constituting the pressure switching mechanism K is switched to the position indicated by the two-dot chain line in FIG. 1, and the second port Qd and the third port Qe are switched. Communicate. Therefore, the guide pipe 26 is communicated with the evaporator 19, the second branch pipe 29, and the four-way switching valve 27, and further communicated with the second vane back chamber 10B from the pressure guide path 25.
  • an operation signal is sent to the motor unit 4 and the rotary shaft 5 is driven to rotate, so that the first and second eccentric rollers 9a and 9b rotate eccentrically in the cylinder chambers Sa and Sb.
  • the vane 11a is pressed and urged against the spring member 14, and the tip edge slidably contacts the peripheral wall of the eccentric roller 9a to bisect the inside of the first cylinder chamber Sa.
  • the low-pressure refrigerant gas is guided from the accumulator 20 to the suction pipe Pa, and is sucked into the first cylinder chamber Sa and the second cylinder chamber Sb through the suction guide path and the branch guide path.
  • the first vane 11a receives the elastic force of the spring member 14, and the tip part abuts on the peripheral surface of the first eccentric roller 9a, thereby dividing the first cylinder chamber Sa into two. To do. As the eccentric roller 9a moves eccentrically, the volume of one of the compartments of the cylinder chamber Sa decreases, and the sucked gas is gradually compressed.
  • the discharge valve mechanism When the gas rises to a predetermined pressure, the discharge valve mechanism is opened, and once discharged to the discharge muffler, it is guided into the sealed container 1 and filled. Then, the high-pressure gas is led from the discharge pipe P to the condenser 17 to be condensed and liquefied and changed into a liquid refrigerant. The liquid refrigerant is led to the expansion device 18 and adiabatically expands, evaporates in the evaporator 19, and takes latent heat of evaporation from the air flowing through the evaporator 19.
  • the gas refrigerant evaporated and reduced in pressure by the evaporator 19 is guided to the accumulator 20 for gas-liquid separation, and the separated gas refrigerant is fed from the accumulator 20 through the suction pipe Pa to the first cylinder chamber Sa and the second cylinder chamber.
  • the refrigeration cycle as described above is configured by being guided to Sb. Since the compression action is not performed in the second cylinder chamber Sb, the cylinder resting operation is performed, and the compression operation is performed only in the first cylinder chamber Sa, whereby the capacity half operation is performed.
  • valve body 31 of the four-way switching valve 27 When the full capacity operation is selected, the valve body 31 of the four-way switching valve 27 is moved and switched to the position shown in FIG. 1, and the first port Qc and the second port Qd communicate with each other. Accordingly, the discharge pipe P connected to the multi-cylinder rotary compressor R and the first branch pipe 28 are communicated with the guide pipe 26 via the four-way switching valve 27, and further from the pressure guide path 25 to the second vane back chamber. 10b.
  • the low-pressure refrigerant gas is led from the accumulator 20 to the suction pipe Pb, and is sucked and filled into the first cylinder chamber Sa and the second cylinder chamber Sb through the suction guide path and the branch guide path.
  • the compression action is performed as described above, and the high-pressure gas fills the sealed container 1.
  • the high-pressure refrigerant gas filling the hermetic container 1 is discharged to the discharge pipe P and circulates in the above-described refrigeration cycle, a part of the high-pressure gas is guided from the first branch pipe 28 through the four-way switching valve 27. Guided to tube 26. And it is led from the guide pipe 26 through the pressure guide path 25 to the second vane back chamber 10b to be filled.
  • the front end of the second vane 11b is in a low pressure atmosphere facing the second cylinder chamber Sb, but the rear end is in a high pressure atmosphere facing the second vane 11b. Differential pressure occurs at the part. Since the rear end portion is a high pressure atmosphere, the vane 11b is pressed and urged toward the front end portion.
  • FIG. 2 is an enlarged vertical sectional view of a part of the multi-cylinder rotary compressor R for explaining the oil supply structure to the sliding surface of the second vane 11b
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 4 is a top view taken along the line AA of FIG. 1 in a state different from FIG.
  • the oil supply grooves 35 are provided on both side surfaces which are the sliding contact surfaces of the second vane 11b. If it demonstrates, the oil supply groove
  • a lubricating oil communication path 36 is provided on the lower surface of the intermediate partition plate 2 in contact with the upper surface of the second cylinder 6B.
  • the lubricating oil communication path 36 extends straight from the peripheral end surface of the intermediate partition plate 2 in a direction perpendicular to the longitudinal direction of the second vane 11b and the vane groove 33, and the front end of the communication path 36 has a vane 11b. It intersects the upper end surface and the upper end of the vane groove 33.
  • the second vane 11b reciprocates following the eccentric motion of the second eccentric roller 9b.
  • FIG. 4 when the position where the peripheral wall of the second eccentric roller 9b contacts the peripheral wall of the second cylinder chamber Sb and the position where the peripheral wall of the second eccentric roller 9b contacts the tip of the second vane 11b coincide with each other, The tip end of 11b is in the most immersed state with respect to the second cylinder chamber Sb.
  • FIG. 3 shows that if the rotary shaft 5 rotates counterclockwise, the second vane 11b is rotated 90 ° before the position where the second vane 11b protrudes most into the second cylinder chamber Sb (rotated 90 ° from the top dead center). ) Indicates the state.
  • the position where the second vane 11b protrudes most into the second cylinder chamber Sb is referred to as a “bottom dead center” position.
  • the oil supply grooves 35 on both side surfaces of the vane 11b face the lubricating oil communication passage 36 of the intermediate partition plate 2 to communicate with each other. Set to do.
  • each of the oil supply grooves 35 does not face the lubricating oil communication path 36 and does not communicate until the second vane 11b passes the position and returns to the same position again.
  • the oil supply grooves 35 on both side surfaces of the vane 11b are opposed to the portions other than the lubricating oil communication passage 36, and The position is set so as not to communicate with the second vane back chamber 10b.
  • the intermediate partition plate 2 Since the intermediate partition plate 2 is of course immersed in the lubricating oil of the oil reservoir 15, the lubricating oil enters from the opening end of the peripheral end surface of the intermediate partition plate 2 of the lubricating oil communication path 36 provided here. Since the lubricating oil communication path 36 intersects with the vane groove 33 and the upper end surface of the second vane 11b, the lubricating oil wets the intersecting portion.
  • the second vane 11 b when the second vane 11 b does not reciprocate and the cylinder resting operation is performed in the second cylinder chamber Sb, the second vane 11 b is at the top dead center position, and the lubricating oil communication path 36.
  • the lubricating oil guided to the water only wets the intersection between the vane groove 33 and the second vane 11b.
  • a certain amount of lubricating oil enters the gap between the second vane 11b and the vane groove 33, but the gap amount (clearance) is very small and an oil film is formed.
  • the amount of lubricating oil that penetrates is very small.
  • the portion of the oil supply groove 35 facing the vane groove 33 changes, so that the lubricating oil guided to the oil supply groove 35 is diffused and applied to a large area.
  • the lubricating oil is supplied to the sliding contact surface between the both side surfaces of the second vane 11b and the both side surfaces of the vane groove 33, thereby ensuring the lubricity of the vane 11b.
  • the second vane chamber 10b has a sealed structure, a sufficient amount of lubricating oil can be supplied to the sliding contact surface between the second vane 11b and the vane groove 33, and reliability is improved. And contributes to the improvement of compression performance. And since it is a refrigerating-cycle apparatus provided with the above multicylinder rotary compressor R, the improvement of refrigerating-cycle efficiency can be acquired.
  • the oil supply groove 35 is provided at a position that does not communicate with the second vane back chamber 10b even when the second vane 11b is at the top dead center position. Eventually, the oil supply groove 35 of the second vane 11b does not communicate with the second vane back chamber 10b regardless of the position of the vane 11b.
  • the lubricating oil communication passage 36 is provided in a groove shape, but it may be a hole or a recess. Further, not only the intermediate partition plate 2 but also the auxiliary bearing 8 may be provided with a lubricating oil communication passage having the same shape. That is, the lubricating oil communication path 36 is provided in a member that abuts on an end surface orthogonal to the side surface of the second vane 11b, and is not provided in the second cylinder 6B.
  • the lower surface opening of the second vane back chamber 10 b is closed by the flange portion of the auxiliary bearing 8 and the closing plate 12.
  • the outer shape of the flange portion of the sub-bearing 8 has a circular shape, and the end edge of the closing plate 12 is formed in an arc shape so as to follow this shape.
  • the second vane back chamber 10b has a sealed structure.
  • a notch (gap part) Qm is provided at the edge portion of the closing plate 12 that is in close contact with the flange portion of the auxiliary bearing 8 in order to supply oil to the sliding surface of the second vane 11b.
  • the lubricating oil in the oil reservoir 15 may be guided to the oil supply groove 35.
  • the notch Qm is provided so as to face the lubricating oil communication path 36 provided in the intermediate partition plate 2, and the same effect can be obtained.
  • the notch Qm provided in the closing plate 12 may be provided in place of the lubricating oil communication path 36 of the intermediate partition plate 2 or both may be provided without any problem.
  • the notch Qm may be provided not only on the closing plate 12 but also on the flange portion of the auxiliary bearing 8, or may be provided opposite to both the closing plate 12 and the auxiliary bearing 8 flange portion.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.
  • a multi-cylinder rotary compressor that can ensure smoothness in reciprocating movement of a vane on the side of cylinder resting operation and obtain high compression performance, and a refrigeration cycle provided with the multi-cylinder rotary compressor
  • a refrigeration cycle apparatus capable of improving efficiency can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 多気筒ロータリ式圧縮機(R)は、密閉容器(1)内に圧縮機構部(3A,3B)と、油溜り部(15)を備え、圧縮機構部(3A,3B)は、中間仕切り板(2)を介して低圧ガスが導入されるシリンダ室(Sa,Sb)を備えたシリンダ(6A,6B)、ベーン溝(33)に移動自在に収容されるベーン(11a,11b)、一方のベーン後端部に弾性力を付与し常時シリンダ室(Sa,Sb)で圧縮作用を行わせるばね体(14)を備え、他方のベーン背室(10b)を密閉構造とし、高圧ガスを導き圧縮作用を行う/低圧ガスを導き圧縮作用を行わないよう切換える圧力切換え機構(K)を備え、このベーン側面に給油溝(35)を設け、給油溝(35)と油溜り部(15)とを連通する潤滑油連通路(36)を設け、ベーン(11a,11b)が上死点位置にあるとき給油溝(35)は潤滑油連通路(36)以外の部位と対向することで、休筒運転をなす側のベーン(11a,11b)の往復移動に円滑さを確保し、高圧縮性能が得られる。

Description

多気筒ロータリ式圧縮機と冷凍サイクル装置
 本発明は、圧縮能力の切換えが可能な多気筒ロータリ式圧縮機と、この多気筒ロータリ式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。
 冷凍サイクル装置において、圧縮機構部に複数(主として、2つ)のシリンダ室を備えた多気筒ロータリ式圧縮機が多用されている。この種の圧縮機において、複数のシリンダ室同時に圧縮作用を行う、もしくは一方のシリンダ室でのみ圧縮作用を中断して圧縮仕事を低減する、いわゆる全能力運転と能力半減運転との切換えができれば有利である。
 特開2006-300048号公報には、第1のシリンダと第2のシリンダを備え、第1のシリンダのシリンダ室に吸込み圧を導き、第2のシリンダのシリンダ室には吸込み圧もしくは吐出圧を導く。第1のシリンダにはベーンの背面側端部とバネ部材を収容するベーン室を備え、第2のシリンダにはベーンの背面側端部を収容し、かつ密閉されたベーン室を備える。
 そして、第2のベーン室に吸込み圧もしくは吐出圧を導き、第2のシリンダ室に導かれる吸込み圧と吐出圧との差圧に応じてベーンを押圧付勢する。したがって、両方のシリンダ室において圧縮運転を行う全能力運転と、第2のシリンダ室で圧縮運転を行わない能力半減運転との切換えを可能とする密閉型圧縮機が開示されている。
 なお、上述の第2のベーン室は密閉構造であるから、第2のシリンダのベーン室と連通するベーン溝と、このベーン溝を往復移動するベーン両側面との摺接面への給油が必要となる。そこで同技術では、上記ベーン溝に潤滑油を導入するオイル溝を設けるとともに、副軸受にオイル連通孔を備えたことを特徴の1つとしている。
 上述した密閉型圧縮機では、密閉容器の内底部に潤滑油の油溜り部が形成され、圧縮機構部はほとんど大部分が潤滑油中に浸漬されている。上記オイル連通孔は油溜り部に対して開口し、潤滑油はオイル連通孔を介してオイル溝に導かれ、ベーン溝とベーンとの摺接面に給油される。第2のベーン室を密閉構造としても、ベーンの往復移動に円滑性が確保される。
 しかしながら、その一方で、第2のシリンダ室で圧縮運転を行う、あるいは休筒運転を行うの、いずれの状態であっても、常に油溜り部の潤滑油はオイル連通孔からオイル溝に導かれてしまう。ベーンが往復移動する際は上述のようにベーンの円滑性を確保できるが、ベーンが移動しない休筒運転時でも給油が継続されることとなる。
 この状態で潤滑油は、ベーンとベーン溝とのクリアランスから低圧の第2のベーン室にリークしてしまい、リーク量が大になると第2のベーン室に潤滑油が充満する。この状態から圧縮運転に切換ると、ベーンの背面側端部が第2のベーン室の潤滑油中を往復移動しなければならず、移動に円滑さを欠いて圧縮性能の低下を招く。
 さらに、上記特開2006-300048号公報では、平行で互いに対向する側面からなるベーン溝に、平面視で略半円状のオイル溝を切欠加工している。通常、ブローチ加工によりオイル溝を得るが、ベーン溝加工後にオイル溝を追加工する場合、オイル溝加工時にベーン溝の変形あるいはバリや突起等が生じ、ベーン溝幅の精度が悪化し性能・信頼性が低下する。
 また円形状のオイル溝を設けてから、ベーン溝を加工することも考えられるが、オイル溝があることにより、ブローチ刃において加工部と非加工部が生じてしまう。ブローチ刃の形状が変形することとなり、加工精度が悪化し、またブローチ刃の寿命も著しく短くなる。
 本発明は上記事情にもとづきなされたものであり、その目的とするところは、2シリンダを備え圧縮能力可変をなすことを前提として、休筒運転をなす側のベーンの往復移動に円滑さを確保し、高圧縮性能を得られる多気筒ロータリ式圧縮機と、この多気筒ロータリ式圧縮機を備えて冷凍サイクル効率の向上化を図れる冷凍サイクル装置を提供しようとするものである。
 上記目的を満足するため本発明の多気筒ロータリ式圧縮機は、密閉容器内に電動機部と圧縮機構部とを収容し、密閉容器内底部に潤滑油を集溜する。
 上記圧縮機構部は、中間仕切り板を介在して第1のシリンダおよび第2のシリンダを設け、各シリンダの内径部に低圧ガスを導入するシリンダ室を形成し、これらシリンダ室にベーン溝を介して連通するベーン背室を設けている。
 電動機部に連結される回転軸は、各シリンダ室に収容される偏心部を有し、この偏心部に回転軸の回転にともなってシリンダ室内で偏心移動する偏心ローラを嵌合し、ベーン先端部が偏心ローラ周壁に当接した状態でシリンダ室を区画する。 
 第1のシリンダと第2のシリンダに設けられるベーン背室のいずれか一方は、ベーンの後端部に弾性力を付与して、ベーン先端部を偏心ローラ周壁に接触させ、回転軸の回転にともなって常時、シリンダ室で圧縮作用を行わせる弾性体を備える。 
 他方のベーン背室は密閉構造をなし、高圧ガスの一部を導いてベーン後端部に高圧の背圧を付与し、ベーン先端部を偏心ローラ周壁に当接させて回転軸の回転にともないシリンダ室で圧縮作用を行わせる、もしくは低圧ガスを導いてベーン後端部に低圧の背圧を付与し、ベーン先端部を偏心ローラ周壁から離間保持させる圧力切換え手段を備える。 
 ベーンの側面に給油溝を設け、圧縮機構部に油溜り部の潤滑油を給油溝に給油案内する潤滑油連通路を設け、ベーンの先端部が最もシリンダ室から没入する上死点位置にあるとき給油溝は潤滑油連通路以外の部位と対向し、潤滑油連通路とは連通しない。 
 上記目的を満足するため本発明の冷凍サイクル装置は、上記記載の多気筒ロータリ式圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する。
図1は、本発明における実施の形態に係る、多気筒ロータリ式圧縮機の概略の縦断面図と、冷凍サイクル装置の冷凍サイクル構成図である。 図2は、同実施の形態に係る、多気筒ロータリ式圧縮機の一部を拡大して示す縦断面図である。 図3は、同実施の形態に係る、ベーン側面への給油構造を説明する、図1のA-A線に沿う上面図である。 図4は、同実施の形態に係る、図3とは異なる状態でのベーン側面への給油構造を説明する、図1のA-A線に沿う上面図である。
 以下、本発明の実施の形態を、図面にもとづいて説明する。
 図1は、多気筒ロータリ式圧縮機Rの概略の断面構造と、この多気筒ロータリ式圧縮機Rを備えた冷凍サイクル装置の冷凍サイクル構成を示す図である。図2は、多気筒ロータリ式圧縮機Rの一部を拡大した縦断面図である。(なお、図面上の煩雑さを避けるために、説明しても符号を付していない部品がある。以下同)
 はじめに多気筒ロータリ式圧縮機Rから説明すると、1は密閉容器であって、この密閉容器1内の下部には中間仕切り板2を介して第1の圧縮機構部3Aと、第2の圧縮機構部3Bが設けられ、上部には電動機部4が設けられる。これら第1の圧縮機構部3Aおよび第2の圧縮機構部3Bは、回転軸5を介して電動機部4に連結される。
 第1の圧縮機構部3Aは第1のシリンダ6Aを備え、第2の圧縮機構部3Bは第2のシリンダ6Bを備えている。第1のシリンダ6Aの上面部に主軸受7が取付け固定され、第2のシリンダ6Bの下面部に副軸受8が取付け固定される。上記回転軸5は、各シリンダ6A、6B内部を貫通するとともに、略180°の位相差をもって形成される第1の偏心部Qaと第2の偏心部Qbを一体に備えている。
 各偏心部Qa、Qbは互いに同一直径をなし、各シリンダ6A、6Bの内径部に位置するように組立てられる。第1の偏心部Qaの周面には、第1の偏心ローラ9aが嵌合され、第2の偏心部Qbの周面には、第2の偏心ローラ9bが嵌合される。
 上記第1のシリンダ6Aの内径部に第1のシリンダ室Saが形成され、第2のシリンダ6Bの内径部に第2のシリンダ室Sbが形成される。各シリンダ室Sa、Sbは互いに同一直径および高さ寸法に形成され、上記偏心ローラ9a、9bの周壁一部が各シリンダ室Sa、Sbの周壁一部に線接触しながら偏心回転自在に収容される。
 第1のシリンダ6Aには、第1のシリンダ室Saとベーン溝を介して連通する第1のベーン背室10aが設けられ、上記ベーン溝には第1のベーン11aが移動自在に収容される。 
 第2のシリンダ6Bには、第2のシリンダ室Sbとベーン溝を介して連通する第2のベーン背室10bが設けられ、上記ベーン溝には第2のベーン11bが移動自在に収容される。
 第1、第2のベーン11a、11bの先端部は平面視で略円弧状に形成されており、対向するシリンダ室Sa、Sbに突出できる。この状態でベーン11a、11bの先端部は、平面視で円形状の上記第1、第2の偏心ローラ9a、9b周壁に、回転角度にかかわらず線接触する。
 上記第1のシリンダ6Aに、第1のベーン背室10aと、このシリンダ6Aの外周面とを連通する横孔が設けられ、弾性体であるばね部材14が収容される。ばね部材14は第1のベーン11aの後端部端面と密閉容器1内周壁との間に介在され、ベーン11aに弾性力(背圧)を付与する。
 第2のシリンダ6Bにおける第2のベーン背室10bは、副主軸受8のフランジ部周端から外方に突出した位置に設けられ、そのままでは上下面が開口し密閉容器1内に開放される。ここでは、上面開口部が中間仕切り板2によって閉塞され、下面開口部が閉塞板12によって閉塞され、第2のベーン背室10bは密閉構造をなす。
 第2のベーン背室10bと第2のシリンダ6Bの外周面とを連通する横孔が設けられ、永久磁石13が取付けられる。永久磁石13は第2のベーン11bの後端部が当接したとき、これを磁気吸着する磁気力を有する。 
 この状態で、第2のベーン11b先端部は第2のシリンダ室Sb周壁よりも没入し、第2の偏心ローラ9bが移動してきても、ベーン11b先端部はローラ9b周壁から離間した位置にある。
 上記中間仕切り板2には、後述する圧力切換え機構(圧力切換え手段)Kが取付けられる。この圧力切換え機構Kの切換え動作に応じて、第2のベーン背室10bに高圧ガス(吐出圧)もしくは低圧ガス(吸込み圧)を選択して導くことができ、第2のベーン11bの後端部に対する背圧の圧力切換えを行う。
 上記密閉容器1の内底部には、潤滑油を集溜する油溜り部15が形成される。図1において、上記主軸受7のフランジ部を横切る実線は潤滑油の油面を示していて、第1の圧縮機構部3Aのほとんど全部と、第2の圧縮機構部3Bの全部が、上記油溜り部15の潤滑油中に浸漬される。
 上記第2のベーン背室10bは密閉構造となっているので、第2のベーン11bが往復移動しても、油溜り部15の潤滑油がベーン背室10bには浸入してこないが、後述するように第2のベーン11bとベーン溝との摺接面に対する潤滑油の給油は確保されている。
 このようにして構成される多気筒ロータリ式圧縮機Rであり、上記密閉容器1の上端部には、吐出管Pが接続される。吐出管Pは、凝縮器17と、膨張装置18および蒸発器19を介してアキュームレータ20の上端部に接続される。上記アキュームレータ20と多気筒ロータリ式圧縮機Rとは、吸込み管Paを介して接続される。
 特に図示していないが、上記吸込み管Paは、多気筒ロータリ式圧縮機Rを構成する密閉容器1を貫通して中間仕切り板2の周端面に接続される。中間仕切り板2においては、吸込み管Paが接続される周面部位から軸芯方向に向って吸込み案内路が設けられる。この吸込み案内路の先端は斜め上方と斜め下方に二股状に分岐される。
 斜め上方に分岐した分岐案内路は、第1のシリンダ室Saに連通する。斜め下方に分岐した分岐案内路は、第2のシリンダ室Sbに連通する。したがって、アキュームレータ20と、多気筒ロータリ式圧縮機Rにおける第1のシリンダ室Saと第2のシリンダ室Sbとは、常時、連通状態にある。
 以上説明した多気筒ロータリ式圧縮機Rと、凝縮器17と、膨張装置18と、蒸発器19およびアキュームレータ20を順次配管接続することで、冷凍サイクル装置が構成される。
 つぎに、上記圧力切換え機構Kについて詳述する。 
 上記中間仕切り板2には、周端面から軸芯方向に向うとともに、その先端から直下方向である下面に亘って屈曲状の圧力案内路25が設けられている。中間仕切り板2下面に開口する圧力案内路25の一端部は、第2のシリンダ6Bに設けられる第2のベーン背室10bに連通する。
 中間仕切り板2周面に開口する圧力案内路25の他端部は、密閉容器1を貫通して設けられる案内管26の端部が挿嵌され、ガス漏れの無いよう処理される。案内管26は密閉容器1の側壁に沿って立上り形成され、密閉容器1とアキュームレータ20の上端部よりも上方位置に設けられる四方切換え弁27の第2のポートQdに接続される。
 上記四方切換え弁27の第1のポートQcには、密閉容器1と上記凝縮器17とを連通する吐出管Pの中途部から分岐される第1の分岐管28が接続される。第3のポートQeは、上記蒸発器19とアキュームレータ20とを連通する第2の分岐管29が接続される。第4のポートQfは栓体30で閉塞される。
 四方切換え弁27内に収容され電磁的に切換え操作される弁体31は、図1に示すように第3のポートQeと第4のポートQfとを連通する位置と、二点鎖線で示すように第2のポートQdと第3のポートQeとを連通する位置に切換えられるようになっている。これに対して第1のポートQcは常時開放され、第4のポートQfは栓体30により常時閉塞される。
 したがって、図1の状態では第1のポートQcと第2のポートQdが連通し、弁体31により第3のポートQeと第4のポートQfが連通する。ただし、第4のポートQfは栓体30で閉塞されているので、第1のポートQcと第2のポートQdとの連通だけが残る。
 図1に二点鎖線で示す位置に弁体31が移動すると、第1のポートQcと第4のポートQfが連通し、弁体31により第2のポートQdと第3のポートQeが連通する。同様に、第4のポートQfは栓体30で閉塞されているので、第2のポートQdと第3のポートQeとの連通だけが残る。
 以上述べたような圧力切換え機構Kを備えた多気筒ロータリ式圧縮機Rと、この圧縮機Rを備えた冷凍サイクル装置において、圧力切換え機構Kの作用により能力半減運転(休筒運転)と、全能力運転(通常運転)との切換え選択が可能である。
 能力半減運転を選択すると、圧力切換え機構Kを構成する四方切換え弁27の弁体31が、図1に二点鎖線で示す位置に切換えられて、第2のポートQdと第3のポートQeが連通する。したがって、蒸発器19と第2の分岐管29と四方切換え弁27を介して案内管26が連通され、さらに圧力案内路25から第2のベーン背室10Bに連通される。
 同時に、電動機部4に運転信号が送られ、回転軸5が回転駆動されて、第1、第2の偏心ローラ9a、9bはそれぞれのシリンダ室Sa、Sb内で偏心回転を行う。第1のシリンダ6Aにおいてベーン11aがばね部材14に押圧付勢され、この先端縁が偏心ローラ9a周壁に摺接して第1のシリンダ室Sa内を二分する。 
 低圧の冷媒ガスはアキュームレータ20から吸込み管Paに導かれるとともに、吸込み案内路と、分岐案内路を介して第1のシリンダ室Saと第2のシリンダ室Sbに吸込まれる。
 圧力切換え機構Kにより、蒸発器19から導出される低圧の冷媒ガスの一部が第2の分岐管29から四方切換え弁27を介して案内管26に導かれる。そして、中間仕切り板2に設けられる圧力案内路25を介して第2のベーン背室10bに導かれ充満する。 
 第2のシリンダ室Sbに対向する第2のベーン11b先端部が低圧雰囲気下にあり、第2のベーン背室10bに対向する第2のベーン11b後端部も低圧雰囲気下にあって、このベーン11bの先端部と後端部で差圧が生じない。
 回転軸5の回転にともなって第2の偏心ローラ9bが偏心移動してくると、第2のベーン11bは第2偏心ローラ9bに蹴られて後端部が永久磁石13に当接し、そのまま磁気吸着されて移動しない。したがって、第2のシリンダ室Sbおいては圧縮作用が行われない。
 一方、第1のシリンダ室Saにおいては、第1のベーン11aがばね部材14の弾性力を受けて先端部が第1の偏心ローラ9aの周面に当接し、第1のシリンダ室Saを二分する。偏心ローラ9aの偏心移動にともなってシリンダ室Saの区画された一方の容積が減少し、吸込まれたガスが徐々に圧縮される。
 ガスが所定圧まで上昇すると吐出弁機構が開放され、一旦吐出マフラに吐出された後、密閉容器1内に導かれ充満する。そして、高圧ガスは吐出管Pから凝縮器17に導かれ、凝縮液化して液冷媒に変る。液冷媒は膨張装置18に導かれて断熱膨張し、蒸発器19において蒸発して、蒸発器19を流通する空気から蒸発潜熱を奪う。
 蒸発器19で蒸発し低圧化したガス冷媒がアキュームレータ20に導かれて気液分離され、分離されたガス冷媒がアキュームレータ20から吸込み管Paを介して第1のシリンダ室Saと第2のシリンダ室Sbに導かれ、上述のような冷凍サイクルを構成する。 
 第2のシリンダ室Sbにおいて、圧縮作用が行われないことから休筒運転をなし、第1のシリンダ室Saにおいてのみ圧縮運転をなすことで、能力半減運転が行われることとなる。
 全能力運転を選択すると、四方切換え弁27の弁体31が図1に示す位置に移動切換えされ、第1のポートQcと第2のポートQdが連通する。したがって、多気筒ロータリ式圧縮機Rに接続される吐出管Pと第1の分岐管28が四方切換え弁27を介して案内管26に連通され、さらに圧力案内路25から第2のベーン背室10bに連通される。
 同時に、電動機部4に運転信号が送られ、回転軸5が回転駆動されて、第1、第2の偏心ローラ9a、9bはそれぞれのシリンダ室Sa、Sb内で偏心回転を行う。第1のシリンダ6Aにおいてベーン11aがばね部材14に押圧付勢され、この先端縁が偏心ローラ9a周壁に摺接して第1のシリンダ室Sa内を二分する。
 低圧の冷媒ガスはアキュームレータ20から吸込み管Pbに導かれるとともに、吸込み案内路と、分岐案内路を介して第1のシリンダ室Saと第2のシリンダ室Sbに吸込まれて充満する。第1のシリンダ室Saにおいては、上述したように圧縮作用が行われて高圧ガスが密閉容器1内に充満する。
 密閉容器1内に充満する高圧の冷媒ガスが吐出管Pに吐出されて上述した冷凍サイクルを循環する一方で、高圧ガスの一部は第1の分岐管28から四方切換え弁27を介して案内管26に導かれる。そして、案内管26から圧力案内路25を介して第2のベーン背室10bに導かれて充満する。
 第2のベーン11b先端部が第2のシリンダ室Sbに対向して低圧雰囲気下にあるが、後端部が第2のベーン11bに対向して高圧雰囲気下にあるので、先端部と後端部で差圧が生じる。後端部が高圧雰囲気なのでベーン11bは先端部側へ押圧付勢される。
 回転軸5の回転にともなって第2の偏心ローラ9bが偏心移動してくると、第2のベーン11bは第2の偏心ローラ9b周面に当接したまま、第2のベーン背室10bを往復移動する。第2のベーン11bは第2のシリンダ室Sbを二分し、よって圧縮作用が行われる。 
 このように、第1のシリンダ室Saと第2のシリンダ室Sbにおいて同時に圧縮作用をなし、全能力運転をなす。
 なお、上述の多気筒ロータリ式圧縮機Rにおいて、休筒運転をなす側の第2のベーン背室10bを完全密閉構造としたことで、往復移動する第2のベーン11bの潤滑性を確保する必要が生じている。 
 図2は、第2のベーン11b摺接面への給油構造を説明するため、多気筒ロータリ式圧縮機Rの一部を拡大した縦断面図であり、図3は図1のA-A線に沿う上面図、図4は図3とは異なる状態での図1のA-A線に沿う上面図である。
 第2のベーン11bは往復移動にともなって、この両側面がベーン溝33と摺接する。ここでは第2のベーン11bの摺接面である両側面に給油溝35が設けられる。なお説明すると、給油溝35は第2のベーン11bの先端部もしくは後端部から所定距離を存した位置に、ベーン11bの上端面から下端面に亘って設けられる凹状の溝である。
 一方、第2のシリンダ6Bの上面と接する中間仕切り板2の下面に潤滑油連通路36が設けられる。この潤滑油連通路36は、中間仕切り板2の周端面から第2のベーン11bおよびベーン溝33の長手方向とは直交する方向に直状に延出され、かつ連通路36先端部はベーン11b上端面およびベーン溝33上端と交差する。
 上述したように、第2のベーン背室10bに高圧が導かれる一方で、第2のシリンダ室Sbには低圧ガスが導かれて、第2のベーン11bの先端部と後端部とに差圧が生じると、ベーン11bは高圧の背圧を受けて先端部が第2の偏心ローラ9b周壁に当接する。
 したがって、第2の偏心ローラ9bの偏心運動に追従して第2のベーン11bが往復移動をなす。そして、図4に示すように第2の偏心ローラ9b周壁が第2のシリンダ室Sb周壁に当接する位置と第2のベーン11bの先端部に当接する位置とが一致したとき、第2のベーン11b先端部が第2のシリンダ室Sbに対して最も没入状態にある。
 このとき、第2のベーン11bは、「上死点」位置にあると言う。また、図3は、回転軸5が反時計回りに回転するならば、第2のベーン11bが最も第2のシリンダ室Sbに突出した位置から90°手前の(上死点から90°回転した)状態を示す。この第2のベーン11bが最も第2のシリンダ室Sbに突出した位置を、「下死点」位置と呼ぶ。
 図3に示すように、第2のベーン11bが上死点から90°回転した位置で、中間仕切り板2の潤滑油連通路36に対してベーン11b両側面の給油溝35が対向し、連通するよう設定される。当然ながら、第2のベーン11bがこの位置を越えて再び同位置に戻るまで、各給油溝35は潤滑油連通路36に対向せず連通しない。
 図4に示すように、第2のベーン11bが上死点位置にあるときも、ベーン11b両側面の給油溝35は潤滑油連通路36以外の部位と対向し、潤滑油連通路36とは連通しないとともに、第2のベーン背室10bとは連通しない位置になるよう設定されている。
 中間仕切り板2は勿論のこと油溜り部15の潤滑油中に浸漬状態にあるところから、ここに設けられる潤滑油連通路36の中間仕切り板2周端面の開口端から潤滑油が浸入する。潤滑油連通路36はベーン溝33および第2のベーン11bの上端面と交差しているので、潤滑油は交差部分を濡らす。
 図4に示すように、第2のベーン11bが往復移動せず第2のシリンダ室Sbにおいて休筒運転をなすときは、第2のベーン11bが上死点位置にあり、潤滑油連通路36に導かれる潤滑油はベーン溝33と第2のベーン11bとの交差部分を濡らすだけとなる。 
 実際には、ある程度の量の潤滑油が第2のベーン11bとベーン溝33との隙間に浸入するが、隙間量(クリアランス)は極く僅かであり、油膜が形成されているので、ここに浸入する潤滑油の量も極く僅かでしかない。
 上述した全能力運転時に、第2のベーン11bが往復移動すると、図3に示す上死点から90°回転した部位において潤滑油連通路36に対して第2のベーン11bに設けられる給油溝35が対向し連通状態になる。潤滑油連通路36に留まっていた潤滑油は給油溝35に導かれ充填する。
 第2のベーン11bの往復移動にともなって給油溝35のベーン溝33と対向する部位が変り、よって給油溝35に導かれていた潤滑油が拡散され、広い面積に塗布される。結局、潤滑油は第2のベーン11b両側面とベーン溝33両側面との摺接面に給油され、ベーン11bの潤滑性を確保する。
 このように第2のベーン室10bが密閉構造となっているにも係らず、第2のベーン11bとベーン溝33との摺接面に充分な量の潤滑油を供給でき、信頼性の向上を得られるとともに圧縮性能の向上に寄与する。そして、以上の多気筒ロータリ式圧縮機Rを備えた冷凍サイクル装置であるから、冷凍サイクル効率の向上を得られる。
 さらに、図4に示すように、給油溝35は第2のベーン11bが上死点位置にあっても第2のベーン背室10bとは連通しない位置に設けられている。結局、第2のベーン11bの給油溝35は、ベーン11bの位置に係らず第2のベーン背室10bと連通しない。
 たとえば、このような設定をせず、給油溝35と第2のベーン背室10bとの連通がある状態で構成すると、給油溝35に溜められた潤滑油が第2のベーン背室10bに逃げ、代ってベーン背室10bに充満する高圧ガスが侵入する。そのため、給油溝35に潤滑油が存在することが難くなり、第2のベーン11bとの摺接面への給油が不足してしまう。
 なお、上記実施の形態では潤滑油連通路36として溝状に設けたが、孔部、もしくは凹部であってもよい。そして、中間仕切り板2に設けるばかりでなく、副軸受8に同様形状の潤滑油連通路を設けてもよい。すなわち、潤滑油連通路36を第2のベーン11b側面と直交する端面に当接する部材に設け、第2のシリンダ6Bには設けない。
 また、上述したように第2のベーン背室10bの下面開口部は副軸受8のフランジ部と閉塞板12とで閉塞される。具体的には、副軸受8のフランジ部外形は円形状をなし、この形状に沿うよう閉塞板12の端縁は円弧状に形成され、互いの周縁が密接状態にあって隙間が存在せず、第2のベーン背室10bを密閉構造としている。
 そこで、図2に示すように、第2のベーン11b摺接面への給油のために、閉塞板12の副軸受8フランジ部と密接する端縁部分に切欠き(間隙部)Qmを設けて、油溜り部15の潤滑油を給油溝35に導くようにしてもよい。上記切欠きQmは、中間仕切り板2に設けられる潤滑油連通路36と対向して設けられていて、同一の作用効果が得られる。
 上記閉塞板12に設けられる切欠きQmは、中間仕切り板2の潤滑油連通路36の代りに設けてもよく、あるいは両方備えても何ら支障はない。そして、切欠きQmを閉塞板12に設けるばかりでなく、副軸受8のフランジ部に設けてもよく、閉塞板12と副軸受8フランジ部との両方に対向して設けてもよい。
 さらに、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
 本発明によれば、休筒運転をなす側のベーンの往復移動に円滑さを確保し、高圧縮性能を得られる多気筒ロータリ式圧縮機と、この多気筒ロータリ式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供できる。

Claims (5)

  1.  密閉容器内に電動機部と圧縮機構部とを収容し、密閉容器内底部に潤滑油を集溜する油溜り部を備え、
     上記圧縮機構部は、
     中間仕切り板を介在して設けられ、それぞれの内径部に低圧ガスが導入されるシリンダ室が形成されるとともに、これらシリンダ室にベーン溝を介して連通するベーン背室が設けられる第1のシリンダおよび第2のシリンダと、
     上記第1のシリンダと第2のシリンダにおけるそれぞれのシリンダ室に収容される偏心部を有し、上記電動機部に連結される回転軸と、
     上記回転軸の偏心部に嵌合され、回転軸の回転にともなって上記シリンダ室内でそれぞれ偏心移動する偏心ローラと、
     上記ベーン溝に移動自在に収容され、上記偏心ローラ周壁に先端部が当接した状態でシリンダ室を区画するベーンとを具備し、
     上記第1のシリンダと第2のシリンダに設けられるベーン背室のいずれか一方は、ベーンの後端部に弾性力を付与して、ベーン先端部を偏心ローラ周壁に接触させ、回転軸の回転にともなって常時、シリンダ室で圧縮作用を行わせる弾性体を備え、
     ベーン背室のいずれか他方は、密閉構造となすとともに、高圧ガスの一部を導いてベーン後端部に高圧の背圧を付与し、ベーン先端部を偏心ローラ周壁に当接させて回転軸の回転にともないシリンダ室で圧縮作用を行わせる、もしくは低圧ガスを導いてベーン後端部に低圧の背圧を付与し、ベーン先端部を偏心ローラ周壁から離間保持させる圧力切換え手段を備え、
     上記圧力切換え手段によって背圧を受けるベーンは、その側面に給油溝が設けられ、
     上記圧縮機構部の構成部品に、上記給油溝と上記油溜り部とを連通する潤滑油連通路が設けられ、
     上記給油溝は、上記圧力切換え手段によって背圧を受けるベーンの先端部が最もシリンダ室から没入する上死点位置にあるとき、上記潤滑油連通路以外の部位と対向する位置に設けられる
    ことを特徴とする多気筒ロータリ式圧縮機。
  2.  上記潤滑油連通路が設けられる圧縮機構部の構成部品は、上記ベーンの側面とは直交する端面に当接する、上記中間仕切り板もしくは上記回転軸を枢支する軸受具に設けられる
    ことを特徴とする請求項1記載の多気筒ロータリ式圧縮機。
  3.  上記圧力切換え手段が切換え動作するベーン背室は、開口面が上記軸受具と閉塞板および上記中間仕切り板によって塞がれ、
     上記潤滑油連通路は、軸受具と閉塞板との間に設けられる間隙部である
    ことを特徴とする請求項2記載の多気筒ロータリ式圧縮機。
  4.  上記給油溝は、上記圧力切換え手段によって背圧を受けるベーンの先端部が最もシリンダ室から没入する上死点位置にあるとき、上記ベーン背室以外の部位と対向する位置に設けられる
    ことを特徴とする請求項1記載の多気筒ロータリ式圧縮機。
  5.  請求項1ないし請求項4のいずれかに記載の多気筒ロータリ式圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する
    ことを特徴とする冷凍サイクル装置。
PCT/JP2010/065471 2009-09-11 2010-09-09 多気筒ロータリ式圧縮機と冷凍サイクル装置 WO2011030809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011530862A JP5303651B2 (ja) 2009-09-11 2010-09-09 多気筒ロータリ式圧縮機と冷凍サイクル装置
CN201080032362.9A CN102472281B (zh) 2009-09-11 2010-09-09 多汽缸旋转式压缩机和制冷循环装置
US13/416,687 US8635884B2 (en) 2009-09-11 2012-03-09 Multi-cylinder rotary compressor and refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-211100 2009-09-11
JP2009211100 2009-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/416,687 Continuation US8635884B2 (en) 2009-09-11 2012-03-09 Multi-cylinder rotary compressor and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2011030809A1 true WO2011030809A1 (ja) 2011-03-17

Family

ID=43732478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065471 WO2011030809A1 (ja) 2009-09-11 2010-09-09 多気筒ロータリ式圧縮機と冷凍サイクル装置

Country Status (4)

Country Link
US (1) US8635884B2 (ja)
JP (1) JP5303651B2 (ja)
CN (1) CN102472281B (ja)
WO (1) WO2011030809A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155802A1 (ja) * 2013-03-27 2014-10-02 東芝キヤリア株式会社 多気筒回転圧縮機と冷凍サイクル装置
WO2016181446A1 (ja) * 2015-05-08 2016-11-17 三菱電機株式会社 ロータリ圧縮機および蒸気圧縮式冷凍サイクル装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681585B1 (ko) * 2009-12-22 2016-12-01 엘지전자 주식회사 복식 로터리 압축기
CN103161731B (zh) * 2012-11-29 2017-08-01 乐金电子(天津)电器有限公司 旋转式压缩机偏心轴支撑结构及旋转式压缩机
CN104454528A (zh) * 2014-12-03 2015-03-25 广东美芝制冷设备有限公司 双缸旋转式压缩机及具有其的制冷装置
CN104454544B (zh) * 2014-12-03 2017-10-17 广东美芝制冷设备有限公司 双缸旋转式压缩机及具有其的制冷装置
CN104533790B (zh) * 2014-12-03 2019-09-06 广东美芝制冷设备有限公司 双缸旋转式压缩机及具有其的制冷装置
EP3324049B1 (en) * 2015-07-15 2024-05-01 Daikin Industries, Ltd. Compressor
CN105221422B (zh) * 2015-10-16 2017-10-10 广东美芝制冷设备有限公司 旋转式压缩机和具有其的换热系统
US10473102B2 (en) * 2016-02-02 2019-11-12 Lg Electronics Inc. Rotary compressor having fluid passage between sliding vane and vane slot
JP7002033B2 (ja) * 2016-02-26 2022-01-20 パナソニックIpマネジメント株式会社 2シリンダ型密閉圧縮機
JP6750286B2 (ja) * 2016-04-13 2020-09-02 株式会社富士通ゼネラル ロータリ圧縮機
KR101874583B1 (ko) * 2016-06-24 2018-07-04 김재호 베인모터
JP6460172B1 (ja) * 2017-07-24 2019-01-30 株式会社富士通ゼネラル ロータリ圧縮機
KR102250823B1 (ko) 2019-07-17 2021-05-11 엘지전자 주식회사 로터리 압축기
CN114651129A (zh) * 2019-11-21 2022-06-21 三菱电机株式会社 旋转式压缩机、制冷循环装置以及旋转式压缩机的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737796B2 (ja) * 1984-10-31 1995-04-26 株式会社日立製作所 ロータリ圧縮機
JP2004225578A (ja) * 2003-01-21 2004-08-12 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2006169978A (ja) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd 多気筒回転圧縮機
JP2009235985A (ja) * 2008-03-27 2009-10-15 Toshiba Carrier Corp 多気筒回転式圧縮機および冷凍サイクル装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592983B2 (ja) 1978-10-03 1984-01-21 三洋電機株式会社 テ−プレコ−ダ−の表示装置
US4784081A (en) 1986-01-17 1988-11-15 Siemens Aktiengesellschaft Mixing device for cross-blending of developer mix in developing stations of electrophotographic printer devices
JP2764682B2 (ja) 1993-07-17 1998-06-11 信越半導体株式会社 半導体基板の製造方法及びその装置
JP2000087888A (ja) 1998-09-10 2000-03-28 Toshiba Corp ローリングピストン式ロータリ圧縮機
JP2001099083A (ja) 1999-09-30 2001-04-10 Sanyo Electric Co Ltd 2気筒ロータリ圧縮機
JP4380054B2 (ja) 2000-10-30 2009-12-09 株式会社日立製作所 2シリンダロータリ型圧縮機
KR100432115B1 (ko) 2000-10-30 2004-05-17 가부시키가이샤 히타치세이사쿠쇼 복수 실린더 로터리 압축기
JP2003328972A (ja) 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc 密閉形2シリンダロータリ圧縮機及びその製造方法
JP2005002832A (ja) * 2003-06-10 2005-01-06 Daikin Ind Ltd ロータリー流体機械
TW200634232A (en) 2005-03-17 2006-10-01 Sanyo Electric Co Hermeyically sealed compressor and method of manufacturing the same
JP2006300048A (ja) 2005-03-24 2006-11-02 Matsushita Electric Ind Co Ltd 密閉型圧縮機
KR100961301B1 (ko) * 2005-08-25 2010-06-04 도시바 캐리어 가부시키가이샤 밀폐형 압축기 및 냉동 사이클 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737796B2 (ja) * 1984-10-31 1995-04-26 株式会社日立製作所 ロータリ圧縮機
JP2004225578A (ja) * 2003-01-21 2004-08-12 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2006169978A (ja) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd 多気筒回転圧縮機
JP2009235985A (ja) * 2008-03-27 2009-10-15 Toshiba Carrier Corp 多気筒回転式圧縮機および冷凍サイクル装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155802A1 (ja) * 2013-03-27 2014-10-02 東芝キヤリア株式会社 多気筒回転圧縮機と冷凍サイクル装置
WO2016181446A1 (ja) * 2015-05-08 2016-11-17 三菱電機株式会社 ロータリ圧縮機および蒸気圧縮式冷凍サイクル装置
JPWO2016181446A1 (ja) * 2015-05-08 2017-12-07 三菱電機株式会社 ロータリ圧縮機および蒸気圧縮式冷凍サイクル装置
GB2553712A (en) * 2015-05-08 2018-03-14 Mitsubishi Electric Corp Rotary compressor and vapor-compression refrigeration cycle device
GB2553712B (en) * 2015-05-08 2020-08-05 Mitsubishi Electric Corp Rotary compressor and vapor compression type refrigeration cycle apparatus

Also Published As

Publication number Publication date
CN102472281B (zh) 2015-01-14
US20120260691A1 (en) 2012-10-18
JPWO2011030809A1 (ja) 2013-02-07
US8635884B2 (en) 2014-01-28
JP5303651B2 (ja) 2013-10-02
CN102472281A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5303651B2 (ja) 多気筒ロータリ式圧縮機と冷凍サイクル装置
JP5433354B2 (ja) 多気筒ロータリ式圧縮機と冷凍サイクル装置
JP5005579B2 (ja) 密閉型圧縮機および冷凍サイクル装置
JP5360708B2 (ja) 多気筒回転式圧縮機および冷凍サイクル装置
JP5427583B2 (ja) 多気筒ロータリ式圧縮機と冷凍サイクル装置
JP4583211B2 (ja) 密閉形圧縮機及びこれを用いた冷凍サイクル装置
JP2004301114A (ja) ロータリ式密閉形圧縮機および冷凍サイクル装置
JP2009235985A (ja) 多気筒回転式圧縮機および冷凍サイクル装置
JP2006207559A (ja) 冷凍サイクル装置およびロータリ式圧縮機
JP2014034940A (ja) 回転式圧縮機と冷凍サイクル装置
JP2009235984A (ja) 2気筒回転式圧縮機および冷凍サイクル装置
JPWO2013140912A1 (ja) 回転式圧縮機及び冷凍サイクル装置
JP5422658B2 (ja) 多気筒ロータリ式圧縮機と冷凍サイクル装置
JP4806552B2 (ja) 密閉型圧縮機および冷凍サイクル装置
JP4634191B2 (ja) 密閉形圧縮機および冷凍サイクル装置
JP2009203862A (ja) 密閉型電動圧縮機および冷凍サイクル装置
JP2009062929A (ja) 回転式圧縮機及び冷凍サイクル装置
JP6007030B2 (ja) 回転式圧縮機と冷凍サイクル装置
WO2012086637A1 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
WO2018138840A1 (ja) 回転圧縮機
JP5797450B2 (ja) 圧縮機の製造方法。
JP5703013B2 (ja) 多気筒回転式圧縮機と冷凍サイクル装置
JP5948209B2 (ja) 密閉型圧縮機および冷凍サイクル装置
JP2007092534A (ja) 2シリンダ形ロータリ圧縮機および冷凍サイクル装置
JP2010053778A (ja) 密閉型圧縮機およびこれを用いた冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032362.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530862

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1201001015

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815404

Country of ref document: EP

Kind code of ref document: A1