WO2011027558A1 - プリント配線板、ビルドアップ多層基板とその製造方法 - Google Patents

プリント配線板、ビルドアップ多層基板とその製造方法 Download PDF

Info

Publication number
WO2011027558A1
WO2011027558A1 PCT/JP2010/005402 JP2010005402W WO2011027558A1 WO 2011027558 A1 WO2011027558 A1 WO 2011027558A1 JP 2010005402 W JP2010005402 W JP 2010005402W WO 2011027558 A1 WO2011027558 A1 WO 2011027558A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
holes
insulating layer
inorganic filler
Prior art date
Application number
PCT/JP2010/005402
Other languages
English (en)
French (fr)
Inventor
祥与 北川
谷 直幸
朝日 俊行
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10813509.6A priority Critical patent/EP2461659A4/en
Priority to JP2011529816A priority patent/JP5561279B2/ja
Priority to CN2010800389363A priority patent/CN102484951A/zh
Priority to US13/392,554 priority patent/US8866022B2/en
Publication of WO2011027558A1 publication Critical patent/WO2011027558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2072Anchoring, i.e. one structure gripping into another
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0773Dissolving the filler without dissolving the matrix material; Dissolving the matrix material without dissolving the filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base

Definitions

  • the present invention is excellent in copper foil peeling strength used when mounting various electronic components such as semiconductors with high performance at high density, and generation of structural defects such as delamination (delamination is also called delamination).
  • the present invention relates to a multilayer printed wiring board having a high connection reliability and a method of manufacturing the same.
  • a printed wiring board for mounting electronic components one obtained by laminating, integrating and curing a plurality of members consisting of a prepreg made of glass epoxy resin and a copper foil has been used. It is necessary to mount various electronic components such as semiconductors at high density with downsizing and high performance of equipment, and through holes and via holes (vias) suitable for high density wiring as well as thinning of the insulating layer with miniaturization. It is required to increase the connection reliability of the hole).
  • One example of the problem of delamination is that it causes swelling at the time of reflow, so the wiring used for the inner layer is chemically treated or physically polished to increase the surface sparseness, etc. There is a method to improve the adhesion between the metal and the insulating layer.
  • the resin is dissolved using an alkaline solution etc. to increase the density of the resin surface, and then the plating conductor Methods are taken to enhance the anchor effect.
  • connection reliability in order to improve connection reliability, through hole processing with a drill is performed, then desmear processing before electroless plating is performed, and the resin on the insulating layer portion of the inner wall surface of the through hole is dissolved. The roughness is increased. After that, the adhesion between the through hole wall surface and the electrolytic copper prepared by the electroless plating and electrolytic plating process on the inner wall surface of the through hole is enhanced, thereby enhancing the anchor effect between the through hole wall surface and the electrolytic copper. Methods for improving connection reliability are taken.
  • the soft etching process may make the process complicated.
  • Patent Document 1 the adhesion between the wiring pattern and the insulating layer is improved, so that the adhesion superior to the wiring board while omitting the soft etching process.
  • Methods have been proposed, but in some cases it was not sufficient to cope with fine patterning.
  • the plating conductor is made thinner to form a fine pattern, and the density of the wiring is further increased, cracks and the like due to differences in the thermal expansion coefficients of these members in through holes and via holes under heating and heat cycle conditions And disconnection between the insulating layer and the plated conductor, etc., resulting in a problem that sufficient connection reliability can not be secured.
  • the present invention is a printed wiring board having a plurality of insulating layers, a plurality of wiring patterns formed of copper foil alternately stacked with the insulating layers, and a resin-filled layer provided only between the wiring patterns in the same layer.
  • the insulating layer has at least a resin, a woven and / or non-woven glass, and an inorganic filler of 30% by volume to 70% by volume with respect to the insulating layer, and the resin-filled layer comprises a plurality of layers
  • a printed wiring board having a void and / or a resin body in which the void is filled with a resin.
  • the insulating layer has at least a resin and an inorganic filler of 30% by volume to 70% by volume with respect to the insulating layer, and the through holes or plated conductors of the insulating layer portion
  • a printed wiring board having at least one of a plurality of holes and a plurality of projections provided on the insulating layer side of a plating conductor in an enclosed portion.
  • the printed wiring board of the present invention generation of internal structural defects such as delamination is caused by laminating using a plurality of holes which are provided on substantially the same plane as the wiring pattern among the plurality of insulating layers. To prevent defects such as blisters at the time of reflow. Further, by providing a plurality of holes in the surface layer, the adhesion of a resist, a plating conductor, etc. is also improved, and thus further fine wiring can be made possible, and a multilayer print free from structural defects such as delamination A wiring board can be provided.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a printed wiring board according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the structure of a printed wiring board having a resin-filled layer inside.
  • FIG. 3 is an enlarged sectional view of an essential part schematically showing the structure in the vicinity of the resin-filled layer.
  • FIG. 4 is an electron micrograph showing a structure in the vicinity of the wiring pattern.
  • FIG. 5 is an enlarged sectional view of an essential part schematically showing a structure in the vicinity of the wiring pattern.
  • FIG. 6 is a cross-sectional view showing an example of the structure of a printed wiring board provided with a resist on the outermost layer in the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a printed wiring board according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the structure of
  • FIG. 7 is an enlarged sectional view of an essential part schematically showing the structure in the vicinity of the interface between the resist and the insulating layer.
  • FIG. 8 is a cross-sectional view for illustrating the increase in adhesion of a plated conductor in a printed wiring board having a buildup layer according to Embodiment 3 of the present invention.
  • FIG. 9 is an enlarged sectional view of an essential part schematically showing the structure of the interface between the wiring pattern provided in the buildup layer and the buildup layer.
  • FIG. 10A is a process cross-sectional view for illustrating how copper foils are formed on both sides of the prepreg in Embodiment 4 of the present invention.
  • FIG. 10 B is process sectional drawing for demonstrating a mode that copper foil is formed in the both surfaces of the same prepreg.
  • FIG. 10C is a process cross-sectional view for explaining how copper foil is formed on both sides of the same prepreg.
  • FIG. 11A is a cross-sectional view showing a state in which a wiring pattern is formed on the surface of the laminate.
  • FIG. 11B is an enlarged sectional view of the relevant part.
  • FIG. 12A is a view showing an electron micrograph showing the formation of pores.
  • FIG. 12B is a view showing the same part enlarged electron micrograph.
  • FIG. 12C is a drawing showing the same part enlarged electron micrograph.
  • FIG. 13A is a process cross-sectional view showing a state of laminating a copper foil via a prepreg on a laminate in which pores are formed.
  • FIG. 13B is a process cross-sectional view showing the copper foil being laminated via the prepreg on the laminate in which the pores are formed.
  • FIG. 14 is a cross-sectional view showing an example of the structure of a printed wiring board in the fifth embodiment of the present invention.
  • FIG. 15 is an enlarged sectional view of an essential part schematically showing the structure of the through hole portion.
  • FIG. 16 is a view showing an electron micrograph showing the structure of the through hole portion of the prototype.
  • FIG. 17 is a cross-sectional view schematically showing the formation of holes formed so as to surround the periphery of the through hole.
  • FIG. 18 is a cross-sectional view showing an example of the structure of the buildup multilayer substrate in the sixth embodiment.
  • FIG. 19 is an enlarged sectional view of an essential part schematically showing the structure in the vicinity of the via hole.
  • FIG. 20A is a process sectional view explaining an example of the method of manufacturing the printed wiring board in the seventh embodiment of the present invention.
  • FIG. 20B is a process cross-sectional view illustrating an example of the method of manufacturing the printed wiring board.
  • FIG. 20C is a process sectional view illustrating an example of the method of manufacturing the printed wiring board.
  • FIG. 21A is a process cross-sectional view illustrating the formation of a void.
  • FIG. 21B is a process cross-sectional view illustrating the appearance of forming a void.
  • FIG. 21C is a cross-sectional process view illustrating a state of forming a void.
  • FIG. 21D is a cross-sectional process view illustrating a state of forming a void.
  • FIG. 22A is a process cross-sectional view illustrating how a buildup laminate is manufactured.
  • FIG. 22B is a process cross-sectional view illustrating the process of manufacturing the buildup laminate.
  • FIG. 23A is a process cross-sectional view illustrating the process of forming a resin-filled layer in a buildup layer of a buildup multilayer substrate.
  • FIG. 23B is a process cross-sectional view illustrating the state of forming the resin-filled layer in the buildup layer of the buildup multilayer substrate.
  • FIG. 23A is a process cross-sectional view illustrating the process of forming a resin-filled layer in a buildup layer of a buildup multilayer substrate.
  • FIG. 23B is a process cross-sectional view illustrating the state of forming
  • FIG. 23C is a process cross-sectional view illustrating the process of forming the resin-filled layer in the buildup layer of the buildup multilayer substrate.
  • FIG. 24 is a cross-sectional view for explaining how a resin-filled layer is provided on part of the core substrate.
  • FIG. 25 is a cross sectional view schematically showing one example of a structure of a prepreg in an eighth embodiment of the present invention.
  • FIG. 26 is a cross sectional view schematically showing one example of a method for producing a prepreg in the ninth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a printed wiring board according to Embodiment 1 of the present invention.
  • 11a, 11b and 11c denote insulating layers
  • 12 denotes a wiring pattern
  • 13 denotes a hole
  • 14 denotes a printed wiring board.
  • the printed wiring board 14 shown in FIG. 1 has a plurality of insulating layers 11a, 11b and 11c, a plurality of wiring patterns 12 formed by etching a copper foil in a predetermined pattern, and a plurality of holes provided between the wiring patterns 12. And 13. Although the air holes 13 are provided between all the wiring patterns 12 in FIG. 1, the air holes 13 may be provided between at least a part of the wiring patterns 12.
  • the insulating layers 11a, 11b and 11c in the printed wiring board 14 are at least a resin, a glass woven and / or non-woven fabric, and an inorganic filler (an inorganic filler content is at least 30% by volume relative to the insulating layer). And preferably at most% by volume).
  • the holes 13 are selectively provided only on the side of the insulating layer 11 b (not on the side of the insulating layer 11 a or 11 c) substantially in the same plane as the wiring pattern 12.
  • the plurality of holes 13 are, for example, planes on which both sides of the insulating layer 11b are not provided with the wiring pattern 12 (that is, the insulating layer 11b is the insulating layer 11a or the insulating layer It is provided only on the side of the insulating layer 11b in a plane contacting with 11c.
  • the holes 13 provided on the side facing the insulating layer 11a of the insulating layer 11b are provided not on the side of the insulating layer 11a but on the side of the insulating layer 11b and between the insulating layer 11a and the insulating layer 11b.
  • the wiring pattern 12 is not provided on the surface (that is, the surface where the insulating layer 11a and the insulating layer 11b are in contact).
  • the printed wiring board 14 shown in FIG. 1 is a four-layer product, but in the case of a six-layer product, an eight-layer product or the like (these are not shown) As shown in FIG. 1, it may be provided on an insulating layer substantially in the same plane.
  • the holes 13 shown in FIG. 1 are formed as follows. First, as shown in FIG. 1, the insulating layer 11b to be the core substrate (the core substrate indicates the vicinity of the central portion of the printed wiring board 14) is cured (for example, a resin such as epoxy resin constituting the insulating layer 11b) Then, the shape of the inorganic filler contained in the insulating layer 11b is imprinted on the insulating layer 11b. For example, a technique for achieving microfabrication by pressing an original against a substrate is called imprint.
  • the inorganic filler exposed on the insulating layer 11b exposed in the gaps between the patterns of the wiring pattern 12 provided on the surface of the insulating layer 11b to be the core substrate is removed by acid or the like.
  • the holes 13 having a shape similar to the inorganic filler are produced.
  • the insulating layers 11a and 11b are formed thereon, as shown in FIG.
  • a glass woven fabric contained in the insulating layers 11a, 11b, and 11c may be either a glass woven fabric or a glass nonwoven fabric, or both of them). And inorganic fillers are not shown.
  • the insulating layers 11a, 11b and 11c may be made of the same one (for example, the same prepreg).
  • the holes 13 for example, the insulating layer 11b are formed at the interface with the insulating layer 11a or the insulating layer 11c in the insulating layer 11b to be the core portion (or core material)).
  • a part of the resin material constituting the insulating layer 11a and the insulating layer 11c is filled in the holes 13) formed by the thermosetting of the resin material and hardened. As a result, the adhesion between the layers is further enhanced.
  • the adhesion between the layers can be further enhanced. This is because the insulating layer 11a and the insulating layer 11b stacked on the insulating layer 11b can be partially filled with the plurality of holes 13 in the surface of the insulating layer 11b in a state where the resin material constituting the insulating layer 11b is cured. This is because it is provided.
  • the holes 13 for example, the insulating layer 11b are formed at the interface of the core portion (or core material) insulating layer 11b with the insulating layer 11a or the insulating layer 11c.
  • the first resin constituting the insulating layer 11a and the insulating layer 11c (that is, the semi-curing for constituting the insulating layer 11a and the insulating layer 11c) in the holes 13) formed by the thermosetting of the second resin
  • a part of the first resin different from the second resin constituting the insulating layer 11 b is filled and cured, whereby the adhesion between the layers can be further enhanced.
  • the adhesion between layers can be enhanced even between different resin materials (for example, between the first and second resins).
  • the holes 13 are left as they are (that is, in a state where there is nothing or filled with air or the like), so that the thermal shock test is performed on the insulating layers 11a, 11b, and 11c.
  • the effect of absorbing the stress generated by the difference in thermal expansion coefficient is obtained.
  • the insulating layer is utilized by utilizing the holes 13 (for example, filling the holes 13 provided on at least one surface of the insulating layer 11b with a part of the resin material constituting the adjacent insulating layers 11a and 11c).
  • the adhesive strength between the layers 11a, 11b, 11c, etc. can be increased, and the effect of suppressing the delamination can be obtained.
  • the density of the holes 13 shown in FIG. 1 is high, it may be an aggregate of the holes 13. Then, it is also useful to form the resin-filled layer 15 as shown in FIG. 2 by filling the aggregate of the holes 13 with another resin of the adjacent other insulating layer.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the printed wiring board having the resin filling layer 15 inside.
  • reference numeral 15 denotes a resin-filled layer
  • the resin-filled layer 15 is formed by flowing in a resin material constituting an insulating layer adjacent to the plurality of holes 13 and / or the plurality of holes 13. It is a layered portion having a resin body.
  • the resin filling layer 15 in FIG. 2 is an interface between the insulating layer 11b and the insulating layers 11a and 11c, and a plurality of regions provided at high density on the insulating layer 11b side in a region where the wiring pattern 12 is not provided.
  • the resin material constituting the adjacent insulating layers 11 a and 11 c flows into the holes 13 and is cured.
  • a resin material (even if it is the same resin material as the insulating layer 11b, it is different even if it is the same resin material as the insulating layer 11b) which constitutes the insulating layers 11a and 11c adjacent to the plurality of holes 13 formed on at least one surface
  • the connection strength between the insulating layers 11a, 11b and 11c can be enhanced by filling the resin material and curing it as the resin filling layer 15.
  • the holes 13 may be left as they are (that is, in a state of nothing or in a state of being filled with air or the like).
  • FIG. 3 is an enlarged sectional view of an essential part schematically showing a structure in the vicinity of the resin-filled layer 15 shown in FIG.
  • 16a and 16b are inorganic fillers
  • 17a and 17b are resins
  • 18 is a woven glass and / or non-woven fabric.
  • one end of the wiring pattern 12 is formed substantially flush with the resin filling layer 15, and one end of the wiring pattern 12 and one end of the resin filling layer 15 are formed in contact with each other. It is done.
  • the insulating layer 11a and the insulating layer 11b are in close contact with each other via the wiring pattern 12 provided in the form of a sheet (or in the form of a plane) at the interface thereof and the resin filling layer 15, and are stacked and fixed.
  • the resin filling layer 15 and the holes 13 are formed on the side of the insulating layer 11 b from the resin 17 b constituting the insulating layer 11 b, and at least a part of the resin filling layer 15 and the holes 13.
  • the resin 17a constituting the insulating layer 11a is filled and cured.
  • the holes 13 can also be formed by etching the inorganic filler 16b.
  • 18 may be either glass woven fabric or glass nonwoven fabric. It may be a combination of woven glass and non-woven glass. By using the woven glass fabric and / or the non-woven fabric 18 in this manner, it is possible to increase the strength of the printed wiring board.
  • inorganic filler 16a, 16b and glass woven fabric and / or nonwoven fabric 18 are mutually held by resin 17a and 17b (thermosetting resin, such as an epoxy resin).
  • the content of the inorganic filler 16b in the resin-filled layer 15 shown in FIG. 3 has a portion of 10% by volume or less with respect to the entire insulating layer 11b in which the resin-filled layer 15 is formed. Furthermore, a portion with a content of the inorganic filler 16b of 10% or less in volume (that is, a portion with a high resin ratio) may be used as the resin-filled layer 15. It is not necessary to distinguish between the resin-filled layer 15 and the pores 13 filled with the resin.
  • the holes 13 are formed only on one surface of the resin-filled layer 15 (that is, only on the insulating layer 11 b side), thereby matching the resin-filled layer 15 with the insulating layer 11 b. Can be enhanced.
  • the insulating layers 11a and 11b are formed of a woven glass fabric and / or a non-woven fabric 18, inorganic fillers 16a and 16b, and resins 17a and 17b.
  • the insulating layers 11 a and 11 b are coupled to the unevenness provided on the surface of the wiring pattern 12 via the resin filling layer 15.
  • the resin layers 11 a and 11 b are fixed to each other with high strength by the anchor effect by the unevenness of the wiring pattern 12 and the resin filling layer 15.
  • a plurality of holes 13 are left in layers between the resin-filled layer 15 and the insulating layers 11a and 11b, whereby the holes 13 are a kind of buffer layer (or buffer layer). It can be done. The effect of reducing the stress due to the difference between the thermal expansion coefficients of the resin-filled layer 15 and the insulating layers 11a and 11b, which occurs when the thermal shock test or the like is performed, is obtained.
  • the diameter of the holes 13 is preferably 0.5 times or more and 5.0 times or less the diameter (more preferably, the average particle diameter) of the inorganic filler 16b. If the diameter of the holes 13 is less than 0.5 times the diameter of the inorganic filler, the effect of the holes 13 may be reduced. If the diameter is larger than 5.0 times the diameter of the inorganic filler 16b, the thinning of the printed wiring board 14 may be affected. The reason why the diameter range of the holes 13 is expanded is because it depends on the particle size distribution of the inorganic filler 16b.
  • the holes 13 may be left as spaces (for example, air may be filled), at least a part of the holes 13 is used to form the resin-filled layer 15 of FIG. 3. Also good.
  • the resin filled layer 15 can be easily formed because the content of the inorganic filler 16b is small (that is, the content of the resin 17b is large).
  • the adhesion between the insulating layer 11a and the insulating layer 11b can be enhanced by the anchor effect, and printing can be performed. It is possible to increase the strength of the wiring board 14 and to prevent delamination.
  • the resin-filled layer 15 has a low content of the glass woven fabric and / or the non-woven fabric 18 and the inorganic filler 16 b and the other portion (for example, an insulating layer near the glass woven fabric and / or the non-woven fabric 18)
  • the proportion of the resin 17b is higher than that of the insulating layers 11a and 11b filled with the inorganic fillers 16a and 11b and the inorganic fillers 16a and 16b.
  • the insulating layers 11 a and 11 b can be bonded to each other by the resin filling layer 15.
  • FIG. 4 is an electron micrograph showing the structure in the vicinity of the wiring pattern. It is an electron micrograph which shows the structure of the wiring pattern vicinity of an inner layer, and is sectional drawing of a part of sample which inventors produced experimentally.
  • the plurality of insulating layers 11 a and 11 b filled with the inorganic filler 16 are firmly fixed via the wiring pattern 12 and the resin filling layer 15 formed therebetween.
  • the resin filling layer 15 is provided on the side of the insulating layer 11 b substantially on the same plane as the wiring pattern 12.
  • the resin portion of the adjacent other insulating layer enter at least a part of the resin-filled layer 15.
  • the holes 13 formed by curing of the first resin be filled with the second resin in a semi-cured state from the adjacent layer.
  • the anchor effect of the roughened surface resulting from the holes 13 and the inorganic filler 16b provided on the surface of the resin-filled layer 15 bonding between the adjacent insulating layers 11 can be obtained.
  • the adhesion between the insulating layers 11 is enhanced, and the effect of suppressing internal structural defects such as delamination can be obtained.
  • the resin-filled layer 15 in the sample of FIG. 4 is an observation cross-section after resin-filling the sample for cross-section observation and polishing by ion milling or the like.
  • the resin-filled layer 15 desirably contains air, but residual solvent, liquid low molecular weight components and water, and inorganic solution dissolved in an acidic solution used during the plating process It may be
  • the resin filling layer 15 is soluble in the insulating layer 11 b (or the inorganic filler 16 contained in the buildup layer 20 described later with reference to FIG. 9 and the like) by the acidic solution mainly used in the plating step and the patterning step.
  • the inorganic filler 16b can be selectively eluted and formed.
  • the size of the resin-filled layer 15 is the size of the inorganic filler 16b contained in the insulating layer 11b (further, the buildup layer 20 of FIG. 9 etc. described later).
  • the average particle diameter of the inorganic filler 16b can be adjusted to 0.5 times to 5.0 times by utilizing the hardness.
  • the size of the holes 13 can be controlled by changing the pH of the acidic solution used in the patterning step, the type of the solution, or the processing time.
  • the inorganic filler 16b is surface-treated with a surface treatment agent or the like.
  • a surface treatment agent or the like When processing through holes (not shown) and via holes using a drill or laser, etc., the surface of the inorganic filler 16b is physically cut or degraded, so a new surface not subjected to surface treatment is Exposed. Thereafter, since the acid solution in the plating step and the patterning step is eluted from the exposed new surface, the size of the resulting resin-filled layer 15 hardly changes.
  • FIG. 5 is an enlarged sectional view of an essential part schematically showing the structure in the vicinity of the wiring pattern of the inner layer in FIG.
  • the plurality of insulating layers 11a and 11b filled with the inorganic fillers 16a and 16b are firmly fixed by the wiring pattern 12 and the resin filling layer 15 formed therebetween.
  • asperities provided on the surface of the resin-filled layer 15 (this asperity is shown in FIG. 3, at least a part of the holes 13 is the resin 17a that constitutes the insulating layer 11a).
  • the diameter, pitch, density, etc. of the asperities correspond to that of the inorganic filler 16b, and the asperities due to the holes 13 firmly fix the adjacent insulating layers 11 to each other. doing.
  • the resin filling layer 15 is provided on substantially the same plane as the wiring pattern 12 and on the same plane as the interface between the wiring pattern 12 and the insulating layers 11a and 11b.
  • the printed wiring board 14 includes one or more insulating layers 11, a plurality of wiring patterns 12 made of copper foil alternately stacked with the insulating layers 11 in the thickness direction, and a wiring pattern adjacent in the planar direction 12.
  • the holes 13 of the printed wiring board 14 have high strength of the printed wiring board 14 by using the printed wiring board 14 provided on the insulating layers 11 a and 11 b substantially in the same plane as the plurality of wiring patterns 12 adjacent in the plane direction.
  • the printed wiring board 14 has a plurality of insulating layers 11, a plurality of wiring patterns 12 made of copper foil laminated in the thickness direction with the insulating layer 11 interposed therebetween, and a flat surface.
  • the insulating layer 11 includes at least the resin 17, the woven glass and / or the non-woven fabric 18, and the insulating layer 11.
  • the inorganic filler 16 is 30% by volume or more and 70% by volume or less.
  • the resin-filled layer 15 in which the resin 17 of the adjacent insulating layer stacked in the thickness direction is filled in at least a part of the holes 13.
  • the resin constituting the plurality of insulating layers adjacent to each other in this manner is interposed via the holes 13 (for example, on the holes 13 formed in the resin insulating layer 11 b in which the resin 17 b is cured in FIG. 3 described above).
  • the effect of enhancing the adhesion strength between the plurality of insulating layers 11 can be obtained by laminating the prepregs and the like containing the uncured resin 17a).
  • the resin filling layer 15 be substantially flush with one of the interfaces of the wiring pattern 12. Further, by making the average thickness of the resin-filled layer 15 thinner than the average thickness of the wiring pattern 12, it is possible to achieve both thinning of the printed wiring board 14 and high strength. Both the thickness of the resin-filled layer 15 and the thickness of the wiring pattern 12 are also evaluated by the average thickness, but since both the resin-filled layer 15 and the wiring pattern 12 have roughened surfaces due to the anchor effect It is. The thickness can be measured from a cross-sectional photograph or the like.
  • the resin-filled layer 15 desirably has a lower content of the inorganic filler 16 than the insulating layer 11 that is stacked adjacent to and filled with the inorganic filler 16.
  • Table 1 is an example of the evaluation result of the 6-layer through-hole board which the inventors prototyped based on FIG. 1 etc.
  • those with the resin-filled layer 15 are Example 1 and those without the resin-filled layer 15 are Comparative Example 1.
  • the moisture absorption solder heat resistance of each of Example 1 and Comparative Example 1 was evaluated. The moisture absorption conditions and the results are shown below.
  • the hygroscopic solder heat resistance is better when the resin filled layer 15 of Example 1 is present. It is considered that this is because the adhesion between the insulating layers in the inner layer portion of Example 1 is improved by the resin filling layer 15, and the minute internal structural defects caused by the moisture absorption solder heat resistance defects such as delamination are eliminated. .
  • Embodiment 2 the high adhesion of the resist provided on the outermost layer of the printed wiring board 14 will be described.
  • FIG. 6 is a cross-sectional view showing an example of the structure of a printed wiring board provided with a resist on the outermost layer.
  • 19 is a resist, for example, a solder resist having photosensitivity.
  • a part of the resist 19 may be provided so as to cover the wiring pattern 12 provided on the outermost layer of the printed wiring board 14 (not shown).
  • the printed wiring board 14 shown in FIG. 6 has a plurality of holes 13 provided adjacent to the wiring pattern 12 in which the plurality of insulating layers 11a, 11b and 11c are embedded, a resin filling layer 15 and the like (shown in FIG. Is stacked through).
  • a plurality of holes 13 are provided in the insulating layers 11a and 11c exposed to the outermost layer of the printed wiring board 14 (or between the wiring patterns 12 provided on the outermost layer), A resist filling layer in which a resist 19 is filled is formed on at least a part of 13.
  • the resist 19 is filled in at least a part of the holes 13 provided in the exposed portion of the wiring pattern 12 which is the outermost layer of the printed wiring board 14 as described above, and the resist filled layer
  • FIG. 7 is an enlarged cross-sectional view of the vicinity of the interface between the resist and the insulating layer, and corresponds to the enlarged view of the interface portion between the resist 19 and the insulating layer 11a in FIG.
  • a part of the resist 19 is filled in a part of the hole 13. Further, by filling a part of the resist 19 in at least a part of the holes 13, an anchor effect can be obtained, and the adhesion between the resist 19 and the insulating layer 11 can be enhanced.
  • the holes 13b are left in layers at the interface between the resist 19 and the insulating layer 11a (note that the holes 13a in FIG. 7 indicate the holes filled with the resist 19).
  • the holes 13a in FIG. 7 indicate the holes filled with the resist 19.
  • it is a portion corresponding to the resin-filled layer 15 as shown in the above-mentioned Fig. 3. It is also useful that the holes 13b correspond to the portions remaining as holes.
  • FIG. 8 is a cross-sectional view for explaining adhesion enhancement of a plated conductor in a printed wiring board having a buildup layer.
  • 20 is a buildup layer and 21 is a plating conductor.
  • the plated conductor 21 provided in the buildup layer 20 is, for example, a copper wiring, a copper via or the like formed using a plating technique such as copper plating.
  • the wiring pattern 12 corresponding to the wiring pattern 12 formed by plating on the surface layer or the inner layer of the layer 20 can be formed finely and at a high density.
  • the buildup layer 20 does not necessarily need to contain a woven glass fabric or a non-woven glass fabric. Moreover, it is useful to make the buildup layer 20 contain the inorganic filler 16 (not shown). Furthermore, it is also useful to make the buildup layer 20 into a plurality of layers, and it is useful to use the plating conductor 21 for interlayer connection of the buildup layer 20.
  • one or more layers are provided on the surface layer of the insulating layer 11 to be the core layer.
  • the air hole 13a is provided in the surface which contacts the buildup layer 20 of the plating conductor 21 provided in the surface layer of the buildup layer 20, at least one part of the plating conductor 21 is inside this air hole 13a. It is filled and forms the unevenness (or rough surface) integrated with the plating conductor 21.
  • the unevenness (or rough surface) formed by filling the plating conductor 21 in at least a part of the holes 13a as described above the connection strength between the plating conductor 21 and the buildup layer 20 can be enhanced.
  • a hole 13 b is provided on the surface of the resist 19 provided on the surface of the build-up layer 20 in contact with the build-up layer 20. At least a portion of the resist 19 is provided inside the hole 13 b. Is filled to form asperities (or rough surfaces) integrated with the resist 19. By forming the unevenness (or rough surface) formed by filling the resist 19 in at least a part of the holes 13 b as described above, the connection strength between the resist 19 and the buildup layer 20 can be enhanced.
  • FIG. 9 is a main part enlarged sectional view schematically showing the structure of the interface between the wiring pattern provided in the buildup layer of the printed wiring board and the buildup layer, and for example, the buildup layer 20 of FIG. This corresponds to the interface portion with 21.
  • the buildup resin 22 is a buildup resin.
  • the buildup resin 22 does not have to be the same resin as the insulating layer 11.
  • a photosensitive or laser-degradable resin material as the buildup resin 22, it is possible to finely form the hole for forming the plating conductor 21.
  • the buildup layer 20 is composed of at least an inorganic filler 16 and a buildup resin 22. Further, on the plating conductor 21 side of the buildup layer 20, a plurality of holes 13a and 13b resulting from the inorganic filler 16 are formed.
  • the metal material for example, copper
  • the plating conductor 21 is formed in at least one part inside the holes 13a and 13b, thereby causing the holes 13 and the inorganic filler 16 in the surface of the plating conductor 21. Irregularities (or rough surfaces) can be formed. Further, the adhesion strength between the plating conductor 21 and the buildup layer 20 can be enhanced by the unevenness (or rough surface).
  • Table 2 shows a six-layer build-up substrate, and the wiring pattern 12 to be the surface layer is formed of the plated conductor 21 in which a via is provided in a part provided in the build-up layer 20. Then, predetermined fine wiring is provided in the buildup layer 20 made of the plating conductor 21.
  • Example 2 a six-layer build-up substrate having a configuration in which the holes 13 and the resin-filled layer 15 are provided at the interface between the fine wiring made of the plating conductor 21 and the buildup layer 20 is used. did.
  • the layer 15 can improve the adhesion to the buildup layer 20 and can cope with a finer pattern.
  • the resin filling layer 15 is a plating conductor filling layer formed by filling the plurality of holes 13 with the plating conductor 21 at a high density. This is because it is more useful to segregate the plating conductor 21 and the resist 19 in the holes 13 by filling the holes 13 with the resin.
  • Embodiment 4 In the fourth embodiment, an example of a method of manufacturing the printed wiring board 14 described in the first embodiment and the like will be described with reference to FIGS.
  • FIGS. 10A to 10C are process cross-sectional views for explaining how copper foils are provided on both sides of a prepreg.
  • 23 is a prepreg
  • 24 is a copper foil (a metal foil made of another metal material may be used instead of the copper foil 24, but using copper is cost effective).
  • Reference numeral 25 denotes a press (a money type etc. is not shown, and a heating device attached to the press 25 is not shown), 26 denotes an arrow indicating a pressing direction, and 27 denotes a laminate.
  • the prepreg 23 is at least at least a woven glass cloth and / or a non-woven cloth 18, an inorganic filler 16, and a resin 17 for fixing them (the resin is preferably in a semi-cured state or B stage state). And is formed.
  • the resin 17 is in a semi-cured state
  • the resin 17 is in a cured state.
  • the resin 17 is not shown in FIGS. 10B and 10C.
  • copper foils 24 are set on both sides of the prepreg 23.
  • FIG. 10B is a cross-sectional view for explaining how the prepreg 23 and the copper foil 24 are integrated by moving the press 25 as shown by the arrow 26. It is useful to heat the press 25 or the like.
  • FIG. 10C is a cross-sectional view showing how a laminate 27 in which the prepreg 23 and the copper foil 24 are integrated is produced.
  • FIG. 11A and 11B are cross-sectional views showing a state in which the wiring pattern 12 is formed on the surface of the laminated body 27.
  • FIG. 11A and 11B are cross-sectional views showing a state in which the wiring pattern 12 is formed on the surface of the laminated body 27.
  • holes 13 are formed in the surface of the insulating layer 11 exposed between the wiring patterns 12.
  • FIG. 11B The figure which expanded the principal part of FIG. 11A is FIG. 11B. As shown in FIG. 11B, it is useful to improve the adhesion by subjecting the wiring pattern 12 to the surface of the insulating layer 11 on the side of the insulating layer 11 where the surface is roughened. Further, holes 13 are provided in the exposed portion of the insulating layer 11 which is not covered by the wiring pattern 12. In FIG. 11B, the holes 13 are illustrated as a single layer (or one layer), but it is useful to form a plurality of holes in the thickness direction as illustrated in FIG. 3 and the like.
  • the formation of the wiring pattern 12 can combine the electroless-plating process and the electrolytic-plating process with the process of sticking and etching the copper foil 24. As shown in FIG. And while patterning the wiring pattern 12 of surface layer by the acid treatment in these processes, the inorganic filler 16 on the surface of the insulating layer 11 can be eluted and the void
  • the resin filled layer 15 by filling at least a part of the holes 13 with the resin 17 (not shown in FIG. 11). By providing the holes 13 and the resin-filled layer 15 in this manner, it is possible to improve the fine wiring of the printed wiring board 14 and the adhesion of each part.
  • an acid solution or the like may be simultaneously formed in the process of etching the wiring pattern 12 (or the wiring formed from the plating conductor 21) provided in the buildup layer 20.
  • the pores 13 and the resin-filled layer 15 can be formed by eluting the inorganic filler 16 at this time.
  • 12A to 12C are electron micrographs showing the state of formation of the holes 13.
  • FIG. 13A and FIG. 13B are process cross-sectional views showing the copper foil 24 being laminated via the prepreg 23 on the laminate 27 in which the holes 13 are formed.
  • FIG. 13A shows a state before lamination
  • FIG. 13B shows a state after lamination.
  • the outermost copper foil 24 as shown in FIGS. 11A and 11B described above is further patterned to form the wiring pattern 12, and at the same time, a plurality of holes 13 are formed on the surface of the insulating layer 11. By repeating that, it can be multilayered.
  • the printed wiring board 14 shown in FIG. 1 can be manufactured by repeating the steps of FIG. 10, FIG. 11 and FIG. 13 a plurality of times.
  • the plate 14 can be made.
  • a print having a plurality of insulating layers 11, a plurality of wiring patterns 12 made of copper foils 24 alternately stacked with the insulating layers 11, and a plated conductor 21 constituting at least a part of a via
  • the insulating layer 11 is at least the resin 17 and the inorganic filler 16 of 30% by volume or more and 70% by volume or less with respect to the insulating layer 11, and the insulating layer exposed between the wiring patterns 12
  • the adhesion strength of the plating conductor 21 is provided by providing the printed wiring board 14 in which the plurality of holes 13 are provided on the surface 11 and at least a portion of the plating conductor 21 is filled in at least a part of the holes 13. Can be enhanced.
  • At least the first resin in the semi-cured state (for example, the resin 17 in the semi-cured state contained in the prepreg 23), the woven glass fabric and / or the non-woven fabric 18;
  • a copper foil 24 (for example, a first copper foil) is laminated on at least one surface of a prepreg 23 having an inorganic filler 16, and a first resin (for example, a resin 17) is thermally cured to form a laminate with the copper foil 24 Patterning the copper foil 24 (for example, as a first copper foil) of the surface layer of the first laminate as shown in FIGS.
  • 11A and 11B (for example, forming a first laminate) Forming a plurality of holes 13 on the surface of the insulating layer 11 exposed between the wiring patterns 12 at the same time as forming the wiring pattern 12 to be an inner layer or the like, and forming a holed and hardened sheet;
  • Copper foil 24 (for example, as a second copper foil)
  • a prepreg 23 having a second resin (not shown in FIG.
  • the printed wiring board 14 as shown in FIG. 1 can be manufactured by the method of manufacturing the printed wiring board 14 having the steps of:
  • Adhesion strength between the resist 19 or the plating conductor 21 and the insulating layer 11 according to the method of manufacturing the printed wiring board 14 including the step of forming at least a part of the plating conductor 21 or the resist 19 Can be enhanced.
  • FIG. 14 is a cross-sectional view showing an example of the structure of a printed wiring board in the fifth embodiment of the present invention.
  • 11 is an insulating layer made of glass epoxy resin or the like
  • 12 is a wiring pattern layer made of copper foil or the like
  • 28 is a through hole in which a conductor is formed by plating etc. in a hole formed by a drill or the like
  • Reference numeral 14 denotes a printed wiring board
  • 13 denotes a hole
  • 16 denotes an inorganic filler
  • 21 denotes a plating conductor, which constitute an interlayer connection portion.
  • the printed wiring board 14 is formed of the wiring pattern layer 12 in a laminate formed by alternately laminating the insulating layer 11 consisting of at least the inorganic filler 16 and the resin (not shown) and the wiring pattern layer 12. It is formed of a through hole 28 having a plated conductor 21 which electrically connects the layers.
  • FIG. 15 is an enlarged sectional view of an essential part schematically showing the structure of the through hole 28 portion.
  • reference numeral 17 denotes a resin, for example, a thermosetting resin such as an epoxy resin.
  • a resin-filled layer 15 is formed of holes 13 from which the inorganic filler 16 has been removed and a resin 17. In addition, it is useful to make the size (height, diameter, volume, cross-sectional area, etc.) of the holes 13 similar to the inorganic filler 16.
  • a plurality of projections are provided on a part of the plated conductor 21 forming the wall surface of the through hole 28 (in particular, the surface in contact with the insulating layer 11).
  • the presence of the projections enhances the adhesion strength between the plating conductor 21 and the insulating layer 11 by the anchor effect. It is useful to make the size (height, diameter, volume, cross sectional area, etc.) of the projections received on the surface of the plated conductor 21 similar to the inorganic filler 16.
  • FIG. 16 is an electron micrograph showing the structure of the through hole portion of the inventors' prototype.
  • FIG. 16 corresponds to the cross-sectional view schematically shown in FIG.
  • the plating conductor 21 forms a wall surface of the through hole 28, and a part of the plating conductor 21 becomes a plurality of protrusions and is embedded in the insulating layer 11 as shown by the dotted line 5 to exhibit an anchor effect.
  • a resin filling layer 15 is provided on the insulating layer 11 in contact with the plating conductor 21.
  • the resin filling layer 15 is formed by filling the resin 13 in at least a part of the holes 13 and the holes 13.
  • the holes 13 correspond to, for example, the size of the inorganic filler 16 (or may be one or more of the height, diameter, volume, and cross-sectional area), and a plurality of holes 13 surround the through holes 28 It is formed individually.
  • FIG. 17 is a cross-sectional view schematically showing the formation of holes 13 formed so as to surround the periphery of through hole 28 in the planar direction.
  • the plating conductor 21 is formed on the wall surface (the insulating layer 11 side) of the substantially circular through hole 28.
  • a plurality of projections (surrounded by dotted lines 5) are formed on the portion of the plating conductor 21 in contact with (or facing) the insulating layer 11.
  • a plurality of holes 13 are formed in the peripheral portion of the through hole 28. The appearance frequency of the holes 13 is set to be smaller as the distance from the through hole 28 increases so that the vicinity of the through hole 28 becomes higher.
  • the inorganic filler is not shown.
  • the holes 13 are formed by removing the inorganic filler. Therefore, even if the in-plane distribution of the inorganic filler in the insulating layer 11 is originally uniform, as shown in FIG. 17, the amount of the inorganic filler decreases near the through hole 28, and the inorganic filler is removed by etching or the like. Only the holes 13 increase. That is, FIG. 17 shows that the frequency (or occurrence frequency) of the holes 13 increases in the vicinity of the through hole 28 as the through hole 28 is approached, and the frequency (or occurrence frequency) of the inorganic filler decreases accordingly. There is.
  • the through holes 28 when the through holes 28 are observed from the upper surface, the number of the holes 13 increases in the vicinity of the plating conductor 21, and the amount of the holes 13 decreases in the distance from the plating conductor 21.
  • the holes 13 shown here are holes which can be seen in the observed cross section after polishing by, for example, ion milling treatment in which a sample is resin-filled for cross-sectional observation.
  • the holes 13 may be filled with an insulating material having a low dielectric constant such as air.
  • the plating conductor 21 in at least a part of the holes 13, it is possible to provide a plurality of projections corresponding to the particle diameter of the inorganic filler and the like on the insulating layer 11 side of the plating conductor 21.
  • the adhesion between the layer 11 and the plating conductor 21 is strengthened, and the connection reliability of the through hole 28 is enhanced.
  • the elastic modulus is locally lowered because the ratio of the inorganic filler is low. And since the stress relaxation action to the stress by the difference of the thermal expansion coefficient in a thermal shock test etc. is obtained, it is effective in improving the connection reliability of through hole 28.
  • the wiring pattern layer 12 is electrically connected to a laminate in which at least the insulating layer 11 of at least the inorganic filler and the resin 17 and the wiring pattern layer 12 of one or more layers are stacked.
  • a multilayer printed wiring board 14 having a through hole 28 having a plated conductor 21 and an inorganic filler 16 formed on the insulating layer 11 facing the plated conductor 21 so as to surround the plated conductor 21.
  • the size of the holes 13 and the size of the projections provided on the insulating layer 11 side of the plated conductor 21 are preferably 0.5 times or more and 5.0 times or less the particle diameter of the inorganic filler 16. If it is less than 0.5 times, a predetermined strength or stress relaxation function may not be obtained. If it exceeds 5.0 times, it may affect the thinning and fine patterning of the printed wiring board.
  • a buildup multilayer board (sometimes referred to as a buildup multilayer printed wiring board or the like) will be described with reference to FIGS. 18 and 19.
  • FIG. 18 is a cross-sectional view showing an example of the structure of the buildup multilayer substrate in the sixth embodiment.
  • 29 is a core substrate
  • 20 is a buildup layer
  • 30 is a via hole
  • 31 is a buildup multilayer substrate.
  • the buildup multilayer substrate 31 shown in FIG. 18 is an interlayer connection portion (for example, the through hole 28 or the plating conductor 21 in FIG. 18) electrically connecting the layers of the wiring pattern layers 12.
  • the interlayer connection portion is a through hole. It does not need to be limited to 28 and may be a conductive paste or the like.
  • the position of the resin-filled layer 15 in FIG. 18 is schematically represented by an ellipse.
  • one or more buildup layers 20 composed of at least an inorganic filler (not shown) and a resin (not shown), and one or more layers of wiring
  • a buildup layer 20 formed by alternately laminating the pattern layers 12 is formed.
  • the electrical connection between the plurality of wiring pattern layers 12 formed in the buildup layer 20 can be performed by the via holes 30 formed by plating technology or the like, whereby the wiring pattern layer in the surface layer can be refined. . It is also useful to form both the formation of the via hole 30 and the formation of the wiring pattern layer 12 in the buildup layer 20 by plating (including a semi-additive method). Next, details of the resin filling layer 15 and the like provided in the via hole 30 will be described with reference to FIG.
  • FIG. 19 is an enlarged sectional view of an essential part schematically showing a structure in the vicinity of via hole 30.
  • the via hole 30 and the plating conductor 21 are formed in an oblique shape (so-called mortar shape or taper shape), but the oblique angle and the like may be optimized as necessary.
  • a plurality of holes 13 are provided so as to surround the via hole 30.
  • a protrusion for example, a portion surrounded by a dotted line 5 is further provided.
  • a resin filled layer 15 having holes 13 is also provided.
  • the resin filling layer 15 in FIG. 19 is formed of the resin 17 and the holes 13, but instead of the holes 13, it is a protrusion formed by forming the plating conductor 21 in at least a part of the holes 13. It is also useful. Further, the frequency (or generation density) of the holes 13 and the protrusions in the resin-filled layer 15 is substantially the same as the frequency (or generation density) of the inorganic filler 16 in the resin 17 in the buildup layer 20.
  • the ratio of the inorganic filler 16 becomes low, so that the elastic modulus is locally low. Therefore, the stress relieving action to the stress due to the difference of the thermal expansion coefficient in the thermal shock test or the like can be obtained, and the connection reliability of the via hole 30 can be enhanced.
  • the plating conductor 21 in at least a part of the holes 13 formed in the buildup layer 20.
  • the roughened surface (or a plurality of projections) is formed on the bonding surface between the buildup layer 20 and the plated conductor 21, thereby strengthening the adhesion between the plated conductor 21 and the buildup layer 20 by the anchor effect.
  • the connection reliability of the via hole 30 can be improved. This effect appears regardless of the form of the core substrate 29.
  • the holes 13 can be formed by eluting the inorganic filler 16 contained in the insulating layer 11 or the buildup layer 20 with an acidic solution mainly used in a plating step or a patterning step. Therefore, it is desirable that the size of the holes 13 be adjusted to the size of the inorganic filler 16 contained in the insulating layer 11 or the buildup layer 20.
  • the size of the holes 13 is preferably 0.5 times to 5.0 times the average particle diameter of the inorganic filler 16. Furthermore, it is possible to control the thickness of the resin-filled layer 15 in which the pores 13 exist by changing the pH of the acidic solution used in the patterning step, the type of the solution, or the processing time.
  • the inorganic filler 16 is surface-treated with a surface treatment agent etc. is demonstrated.
  • the through holes 28 and the via holes 30 are processed using a drill or a laser, the surface of the inorganic filler 16 is physically cut or degraded, and a new surface not subjected to the surface treatment is exposed. Thereafter, since the acid solution in the plating step and the patterning step is eluted from the exposed new surface, the amount of pores 13 formed as a result is hardly changed.
  • the size of the holes 13 in which the plating conductor 21 is formed at least in part be 0.5 times to 5.0 times the average particle diameter of the inorganic filler 16. there were.
  • the pores 13 can be formed by the elution of the inorganic filler 16 by using the etching method, the size of the pores 13 is unlikely to be less than 0.5 times the particle diameter of the inorganic filler 16.
  • the size of the holes 13 can be reduced to 5.0 times or less of the particle diameter of the inorganic filler 16. be able to.
  • the dispersed state of the contained inorganic filler 16 is bad, and it is because the aggregation structure is taken, and the void
  • 20A to 20C are process cross-sectional views for explaining an example of a method of manufacturing a printed wiring board.
  • 24 is a wiring material such as copper foil.
  • Reference numeral 18 denotes a base material (or core material) such as glass fiber or aramid fiber. In addition, the base material 18 has a low solubility in an acid or the like.
  • Reference numeral 23 denotes a prepreg, which is obtained by impregnating the base material 18 with the resin 17 in which the inorganic filler 16 is dispersed.
  • 27 is a laminate, and 26 is an arrow indicating the pressing direction of the press 25.
  • FIG. 20A is a cross-sectional view for explaining an example of a method of fixing (or integrating) the wiring material 24 on the surface of the prepreg 23.
  • the wiring material 24 is set on the front and back of the prepreg 23 composed of at least the inorganic filler 16, the resin 17 and the base material 18.
  • the press 25 is moved as shown by the arrow 26, and the prepreg 23 and the wiring material 24 are attached.
  • the molds and the like set in the press 25 are not shown in FIGS. 20B and 20C.
  • these members are pressure integrated at a predetermined temperature.
  • the press 25 is pulled away in the direction of the arrow 26, to obtain a laminate 27.
  • the prepreg 23 is cured and the wiring material 24 is fixed.
  • 21A to 21D are process cross-sectional views for explaining how the air holes 13 are formed.
  • 32 is a hole.
  • the wiring material 24 fixed on the front and back of the laminate 27 is patterned into a predetermined shape.
  • the steps of patterning application of photoresist, exposure, development, etching of wiring material 24, removal of photoresist, etc. are not shown (not shown).
  • the holes 32 are formed using a drill or a laser, and the state shown in FIG. 21B is obtained.
  • the plated conductor 21 may be deposited, but the plated conductor 21 may be formed simultaneously with the formation of the holes 13.
  • the plated conductor 21 may be formed simultaneously with the formation of the holes 13.
  • FIGS. 22 and 23 An example of a method of manufacturing a buildup laminate will be described using FIGS. 22 and 23.
  • FIGS. 22A and 22B are process cross-sectional views for explaining how a buildup laminate is manufactured.
  • 33 is a buildup laminate.
  • a core substrate 29 having a through hole 28 for electrically connecting the layers of the wiring pattern layers 12 and an interlayer connection portion made of a conductive paste (not shown) is prepared.
  • the buildup layer 20 is formed so as to sandwich the core substrate 29.
  • the buildup layer 20 is formed of at least an inorganic filler and a resin as shown in FIG. 22 but is omitted in FIG.
  • the core substrate 29 having the interlayer connection layer such as the through hole 28 electrically connecting at least the layers of the wiring pattern layers 12 is formed.
  • one or more buildup layers 20 consisting of at least an inorganic filler and a resin are formed on the front and back surfaces of the core substrate 29.
  • one or more buildup layers 20 and one or more wirings are alternately stacked to form a temporary laminate (not shown, for example, as shown in FIG. 22B).
  • the temporary laminate is bonded by heating and pressing to form a laminate.
  • the temporary laminated body may be pressurized, heated, and integrated using a press 25.
  • a press 25 By heating and pressurizing at the time of pressing, the resin contained in the buildup layer 20 is softened, and the wiring pattern layer 12 in the surface layer of the core substrate 29 is embedded (or a step is embedded by a pattern).
  • a buildup laminate 33 as shown in FIG. 22B is produced.
  • FIGS. 23A to 23C are cross-sectional views for explaining how the resin-filled layer 15 is formed on the buildup layer 20 of the buildup multilayer substrate 31.
  • FIGS. 23A to 23C are cross-sectional views for explaining how the resin-filled layer 15 is formed on the buildup layer 20 of the buildup multilayer substrate 31.
  • a bottomed hole 32 is formed at a predetermined position of the buildup multilayer substrate 31, and thereafter, an inorganic filler (not shown) contained in the buildup layer 20 exposed to the hole 32 is eluted and a hole (not shown)
  • the resin-filled layer 15 is formed as shown in FIG. 23A.
  • the holes 32 are formed by a drill or a laser (not shown).
  • the inorganic filler (not shown) on the inner wall of the hole 32 is eluted to form the resin filled layer 15 including the holes (not shown), and at the same time, the plating conductor 21 is deposited. Via holes 30 are formed.
  • the wiring material 24 is patterned into a predetermined shape to obtain a buildup multilayer substrate 31.
  • FIG. 24 is a cross-sectional view for explaining how the resin filling layer 15 is provided on a part of the core substrate 29.
  • the printed wiring board 14 as shown in FIG. 24 may be formed as the core substrate 29 using the fifth embodiment and the like.
  • a resin filled layer 15 composed of a hole (not shown) or the like is formed.
  • Embodiment 7 it will report about the evaluation result of the characteristic of the produced multilayer printed wiring board.
  • a laminated body in which one or more insulating layers 11 composed of at least inorganic filler 16 and resin 17 and one or more wiring pattern layers 12 shown in FIG.
  • the inorganic filler 16 in the printed wiring board 14 having the through holes 28 having the plated conductors 21 electrically connecting the layers of the above, and the insulating layer 11 in contact with the plated conductors 21.
  • the same resin system as a comparative example is used as a comparative example for a six-layer through-hole substrate (example 3) for connection reliability evaluation in which a plurality of holes 13 twice or more and 5.0 or less times are formed surrounding the through holes 28.
  • a plurality of types (Comparative Example 3 and Comparative Example 4) of 6-layer through-hole substrates having no surface were produced under different conditions (Comparative Example 3 and Comparative Example 4), and an oil dip test was performed to evaluate the resistance value fluctuation. Show.
  • the conditions for the oil dip test were 260 ° C. (15 seconds) to 20 ° C. (20 seconds), and those with a resistance value variation of 20% or more were judged as defective.
  • the printed wiring board 14 is excellent in that the holes 13 are provided in the insulating layer 11 in contact with the plated conductor 21 so as to surround the through holes 28. It turned out that it has connection reliability.
  • Embodiment 8 An example of the configuration of a prepreg for achieving the printed wiring board of the present invention will be described using Embodiment 8.
  • FIG. 25 is a cross sectional view schematically showing one example of a structure of a prepreg in an eighth embodiment of the present invention.
  • the prepreg 23 is immersed in the base material 34 and 1 g of the inorganic filler 16 in at least one of 30 g of a pH solution of pH 5 or less or an alkaline solution of pH 10 or more, and stirred for 20 minutes. It is useful to use a commercially available magnet type stirrer or the like for stirring the beaker, which is useful for shortening the experiment time and enhancing the measurement accuracy of the temperature rise.
  • the resin composition obtained by dispersing the inorganic filler 16 and the inorganic filler 16 dispersed in the resin (that is, rising from the beginning of the experiment or by 5 ° C. or more from the beginning of the experiment) It is obtained by coating and impregnating the substrate 34 with the solvent-added varnish, drying and semi-curing.
  • the inorganic filler 16 is desirably 30% by volume or more and 70% by volume or less in the resin composition.
  • the filling amount of the inorganic filler 16 is 30% by volume or less, in the printed wiring board using the prepreg 23, when passing through the plating step, the amount of the holes 13 due to the elution of the inorganic filler 16 decreases, Since the adhesion to the insulating layer 11 is reduced, desired connection reliability can not be obtained.
  • the filling amount of the inorganic filler 16 exceeds 70% by volume, the fluidity of the obtained varnish decreases, and when coating and impregnating to form a prepreg, uneven thickness of the prepreg, cracks due to partial shortage of resin, etc. It may occur.
  • the inorganic filler 16 contained in the prepreg 23 has a liquid temperature of 5 ° C. when 1 g of the inorganic filler 16 is immersed in at least one of 30 g of a pH solution of pH 5 or less or an alkaline solution of pH 10 or more and stirred for 20 minutes. It is desirable to rise above. It is soluble in a solution that is greater than PH5 or less than PH10 (ie, the temperature of the solution hardly rises, or the temperature rise is as low as less than 5 ° C even when dissolved by stirring for 20 minutes) Since it also dissolves in water, etc., and the hygroscopicity becomes high, it becomes difficult to make a varnish and handle the inorganic filler 16 itself.
  • FIG. 26 is a cross-sectional view schematically showing an example of a method of manufacturing the prepreg 23.
  • reference numeral 35 denotes a roll, which schematically shows a part of the prepreg production equipment.
  • 36 is a tank.
  • a member forming the semi-cured resin body 37, that is, the varnish 38 is set in a state of being dissolved in a predetermined solvent (for example, methyl ethyl ketone, alcohols, cyclopentanone or the like).
  • a predetermined solvent for example, methyl ethyl ketone, alcohols, cyclopentanone or the like.
  • a glass cloth with a thickness of 30 microns was prepared as the substrate 34 here.
  • the base material 34 is set on the roll 35, sent in the direction shown by the arrow 39a, and impregnated in the tank 36 with the set varnish 38. Then, the amount of the varnish 38 impregnated in the base material 34 is adjusted while turning the roll 35 in the arrow 39 b. Then, the solvent component is removed from the varnish 38 by feeding the inside of a drier or the like (not shown) as shown by an arrow 39 c. Further, the resin component contained in the varnish 38 is brought into a semi-cured state (a state before main curing, a so-called B-stage state) by heating or the like, and a semi-cured resin body 37 is obtained.
  • the proportion of the semi-cured resin body 37 in the prepreg 23 is preferably 40% by volume or more and 90% by volume or less of the entire prepreg 23.
  • the amount is less than 40% by volume, the proportion of the inorganic filler 16 in the prepreg is low, and the amount of pores due to the elution of the inorganic filler 16 when passing through the electroless plating step is reduced. As a result, the desired connection reliability can not be obtained.
  • the volume ratio is higher than 90% by volume, the flexibility and handleability of the prepreg 23 may be affected. Thus, the prepreg 23 is continuously produced.
  • the manufacturing method of the prepreg 23 is not limited to this.
  • the varnish 38 set in the tank 36 will be described.
  • the proportion of the inorganic filler 16 contained in the prepreg is 30% by volume or more and 70% by volume or less. The reason is as described above.
  • a resin, an inorganic filler 16 dispersed in the resin, amphiphilic molecules adsorbed to the inorganic filler 16 and an organic solvent for dispersing these are dispersed. Is desirable.
  • an epoxy resin is used, and as the inorganic filler 16, aluminum hydroxide, silicon nitride, tin oxide, zircon silicate, magnesium fluoride, magnesium hydroxide, magnesium carbonate, carbonate which are dissolved in a solution of pH 5 or more and PH 10 or less. It consists of at least one or more selected from calcium, calcium hydroxide, barium carbonate and barium hydroxide.
  • these inorganic fillers 16 are at least one or more selected from silane coupling agents, titanate coupling agents, phosphoric acid esters, carboxylic acid esters, sulfonic acid esters, unsaturated fatty acids, silicone oils, fluorinated ethers, etc. It can be set as an inorganic filler which consists of amphiphilic molecules.
  • the inorganic filler 16 and the base material 34 are more preferable to treat the inorganic filler 16 and the base material 34 with the same amphiphilic molecule.
  • the addition amount of amphiphilic molecules is calculated from the specific surface area of the inorganic filler 16, but is preferably 0.1% by weight to 5.0% by weight, preferably 0.1% by weight or more, based on the inorganic filler 16. It is good to make it 1.0 weight% or less.
  • the content is 5.0% by weight or more, it is highly likely that the inorganic filler is adsorbed more than necessary, and the aggregated treating agent interacts with the resin, which may lead to an increase in the varnish viscosity.
  • it is smaller than 0.1% by weight the adsorption point of the inorganic filler may not be covered, and desired properties such as moisture resistance and dispersibility may not be obtained.
  • thermosetting resin which has an epoxy resin as a main can be used for resin.
  • NBR nitrile rubber
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • FKM fluororubber
  • FVMQ acrylic rubber
  • VMQ silicone rubber
  • FVMQ urethane rubber
  • AU EU
  • EPM Ethylene propylene rubber
  • CSM chloroprene rubber
  • CSM chlorosulfonated polyethylene
  • CO epichlorohydrin rubber
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • SBR styrene butadiene rubber
  • TPE thermoplastic elastomer
  • These rubber resins may be added in the form of fine particles. By adding in the form of fine particles, the stress relaxation effect can be obtained with a small addition amount. It is considered that this is because the addition of fine particles increases the interface between the epoxy resin and the rubber resin.
  • the particle size of the rubber resin is preferably 0.1 to 10 microns (desirably 1 micron or less). Rubber resins with particle sizes less than 0.1 micron may be special and expensive. If the particle size exceeds 10 microns, the thinning of the prepreg 23 may be affected.
  • thermoplastic resin mainly composed of an epoxy resin, an inorganic filler to enhance connection reliability of through-hole plating, and heat to improve formability as a printed wiring board, instead of a rubber resin A plasticizing resin can be added.
  • thermoplastic resin whose Tg (Tg is glass transition temperature) of 130 degrees C or less can be used for a thermoplastic resin.
  • the upper limit temperature of use of the semiconductor is 125 ° C., it is not necessary to exceed 125 ° C. Therefore, by setting the Tg to 125 ° C. or less (130 ° C. or less in consideration of the variation), the printed wiring board can be given a certain stress relaxation action (or toughness, impact resistance) at a temperature lower than that.
  • the Tg of the thermoplastic resin can be 50 ° C. or more.
  • thermoplastic resin may also be added as epoxy resin or the like in the form of fine particles. By doing this, even a small amount of stress relaxation effect can be obtained.
  • the same effect can be obtained by using a combination of a rubber resin and a thermoplastic resin, and further adding other particulate resin (for example, fine particles of core-shell structure or fine particles of acrylate copolymer, PMMA, etc.) .
  • an acrylic resin which is a type of thermoplastic resin
  • the particle size is preferably 0.1 to 10 microns (desirably 5 microns or less, and more preferably 1 micron or less). If the particle size is less than 0.1 microns, dispersion in the epoxy resin may be difficult. When the particle size exceeds 10 microns, the formability may be affected.
  • Acrylic resin is a thermoplastic resin. Moreover, when adding thermoplastic resin in fine particle state, the addition amount of these resin can be reduced.
  • the ratio of the rubber resin, the thermoplastic resin, etc., to the epoxy resin will be described. It is desirable that the addition amount of only one of the rubber resin and the thermoplastic resin be in the range of 1% by weight to 10% by weight with respect to the total resin. When the addition amount of only one of the rubber resin and the thermoplastic resin is less than 1% by weight with respect to the total resin, the addition effect may not be obtained. In addition, if the addition amount of only one of the rubber resin and the thermoplastic resin exceeds 10% by weight, the proportion of the epoxy resin decreases, so the thermal conductivity of the finished printed wiring board may be affected. .
  • the addition amount of these members can be reduced by adding them as fine particles.
  • the average particle diameter of the inorganic filler 16 is preferably in the range of 0.01 ⁇ m to 20.00 ⁇ m, more preferably 0.1 ⁇ m to 5.0 ⁇ m.
  • the average particle size is 0.01 ⁇ m or less, the specific surface area is increased, and the dispersion in the varnish 38 becomes difficult. If it exceeds 20.00 ⁇ m, thinning of the prepreg becomes difficult.
  • plural kinds of inorganic fillers 16 having different particle size distributions may be selected and mixed and used. .
  • Table 4 shows the change in liquid temperature with time of 20 minutes when 1 g of the inorganic filler was immersed in 30 g of 2N sulfuric acid. In parentheses, numerical values for the temperature rise from the beginning are shown. In addition, in order to measure a liquid temperature change correctly, it is useful to use a predetermined

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 本発明は、高機能化する半導体等の各種電子部品を高密度に実装する際に用いられる多層プリント配線板とその製造方法に関し、特に、銅箔引き剥がし強度に優れ、デラミネーション(層間剥離)などの構造欠陥の発生を防止し、さらに接続信頼性の高い多層プリント配線板とその製造方法を実現するものである。プリント配線板の薄層化やプリント配線板を構成する絶縁層の多様化によって絶縁層間や、絶縁層とめっき導体との界面部分にデラミネーション等の剥離が生じる可能性があったが、複数の絶縁層と、この絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、この配線パターンの間に設けた複数の空孔と、を有するプリント配線板において、空孔を配線パターンと略同一平面に設けることで、加熱時やヒートサイクル条件におけるデラミネーションやクラックが発生しない接続信頼性の高いプリント配線板を実現する。

Description

プリント配線板、ビルドアップ多層基板とその製造方法
 本発明は、高機能化する半導体等の各種電子部品を高密度に実装する際に用いられる、銅箔引き剥がし強度に優れ、デラミネーション(デラミネーションは層間剥離とも呼ばれる)などの構造欠陥の発生を防止し、さらに高接続信頼性の良好な多層プリント配線板とその製造方法に関するものである。
 従来、電子部品実装用のプリント配線板としては、ガラスエポキシ樹脂からなるプリプレグと銅箔とからなる部材を、複数枚積層、一体化し、硬化したものが用いられている。機器の小型化、高性能化に伴い半導体等の各種電子部品を高密度に実装する必要があり、小型化に伴った絶縁層の薄型化と共に高密度配線に適したスルーホールやバイアホール(via hole)の高接続信頼性化が求められている。
 デラミネーションの課題ついての一例を挙げると、リフロー時の膨れの起因となるため、内層に用いられる配線に化学処理を行い、あるいは物理的に研磨し表面疎度を高めるなどして、内層の配線と絶縁層との密着を高める方法がとられている。
 高精細な配線を形成すると同時に銅箔引き剥がし強度を高めるために、無電解めっきプロセスを実施する前にアルカリ性溶液などを用いて樹脂を溶解し、樹脂表面の疎度を高めたのち、めっき導体を形成させ、アンカー効果を高めるなどの方法がとられている。
 また、接続信頼性を高めるためには、ドリルでのスルーホール穴加工を施した後、無電解めっき前のデスミア処理を行い、スルーホール内壁面の絶縁層部の樹脂を溶解することでその表面粗度を高めている。その後スルーホール内壁面に、無電解めっき、電解めっきプロセスにより作製した電解銅とスルーホール壁面との密着性を高めることで、スルーホール壁面と電解銅とのアンカー効果が高まり、熱衝撃試験などの接続信頼性を高める方法などがとられている。
 しかしながら、従来のプリント配線板において高密度配線に対応した微細配線化を進めるに従い、ファインパターン化するための、配線-絶縁層間、レジスト-絶縁層間の密着性の向上が必要となる。また、小型化に対応した絶縁層の薄型化による樹脂量の減少が進み、内層の密着力不足によるデラミネーションの発生などの課題が発生している。
 また、ソフトエッチ処理は工程が煩雑になる場合もあり、例えば、特許文献1には、配線パターンと絶縁層の密着性を高めるため、ソフトエッチ処理を省きながらも、配線板に優れた密着性を付与させる方法が提案されているが、ファインパターン化への対応に不十分な場合があった。さらに、ファインパターンを形成するためにめっき導体を薄くし、さらなる配線の高密度化が進むと、加熱時やヒートサイクル条件においてスルーホールやバイアホール部にこれら部材の熱膨張係数の違いによるクラック等による断線や、絶縁層とめっき導体との剥離等が生じ、充分な接続信頼性を確保できないという課題がある。
特開平6-204660号公報
 本発明は、複数の絶縁層と、絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、同一層内の配線パターン間にのみ設けた樹脂充填層と、を有するプリント配線板であって、絶縁層は、少なくとも樹脂と、ガラス織布および/または不織布と、絶縁層に対して30体積%以上70体積%以下の無機フィラと、を有し、樹脂充填層は、複数の空孔、および/または、空孔に樹脂が充填されてなる樹脂体、とを有する、プリント配線板を提供する。
 また、複数の絶縁層と、絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、配線パターン層間を電気的に接続する孔の内部に形成されためっき導体からなるスルーホールと、を有するプリント配線板であって、絶縁層は、少なくとも樹脂と、絶縁層に対して30体積%以上70体積%以下の無機フィラと、を有し、絶縁層部のスルーホールまたはめっき導体を囲う部分に、複数個の空孔、あるいはめっき導体の絶縁層側に設けた複数の突起、のいずれか一つ以上を有するプリント配線板を提供する。
 本発明のプリント配線板によれば、複数の絶縁層間であって、配線パターンと略同一平面上に設けた複数の空孔を利用して積層することで、デラミネーションなどの内部構造欠陥の発生を抑制し、リフロー時に膨れ等の不良が発生しない。また複数の空孔を、表層に設けることで、レジストやめっき導体等の密着性も向上することから、さらなる微細配線化を可能とすることができ、デラミネーションなどの構造欠陥のない多層のプリント配線板を提供できる。同時にめっき導体を囲う絶縁層に、複数個の空孔を形成し、あるいはめっき導体の絶縁層側に複数の突起をアンカーとして設けることで、スルーホールやバイアホール部に熱膨張係数等の違いによるクラック等の発生を抑制できる優れた接続信頼性を有する多層プリント配線板を提供することができる。
図1は、本発明の実施の形態1におけるプリント配線板の構造の一例を示す断面図である。 図2は、内部に樹脂充填層を有するプリント配線板の構造の一例を示す断面図である。 図3は、樹脂充填層近傍の構造を模式的に示した要部拡大断面図である。 図4は、配線パターン付近の構造を示す電子顕微鏡写真を示す図である。 図5は、配線パターン付近の構造を模式的に示した要部拡大断面図である。 図6は、本発明の実施の形態2における最表層にレジストを設けたプリント配線板の構造の一例を示す断面図である。 図7は、レジストと絶縁層との界面付近の構造を模式的に示した要部拡大断面図である。 図8は、本発明の実施の形態3におけるビルドアップ層を有するプリント配線板におけるめっき導体の密着力アップを説明するための断面図である。 図9は、ビルドアップ層に設けた配線パターンとビルドアップ層との界面の構造を模式的に示した要部拡大断面図である。 図10Aは、本発明の実施の形態4におけるプリプレグの両面に銅箔を形成する様子を説明するための工程断面図である。 図10Bは、同プリプレグの両面に銅箔を形成する様子を説明するための工程断面図である。 図10Cは、同プリプレグの両面に銅箔を形成する様子を説明するための工程断面図である。 図11Aは、積層体の表面に配線パターンを形成した様子を示す断面図である。 図11Bは、同要部拡大断面図である。 図12Aは、空孔の形成状態を示す電子顕微鏡写真を示す図である。 図12Bは、同要部拡大電子顕微鏡写真を示す図である。 図12Cは、同要部拡大電子顕微鏡写真を示す図である。 図13Aは、空孔が形成された積層体の上にプリプレグを介して銅箔を積層する様子を示す工程断面図である。 図13Bは、空孔が形成された積層体の上にプリプレグを介して銅箔を積層する様子を示す工程断面図である。 図14は、本発明の実施の形態5におけるプリント配線板の構造の一例を示す断面図である。 図15は、スルーホール部分の構造を模式的に示した要部拡大断面図である。 図16は、試作品のスルーホール部分の構造を示す電子顕微鏡写真を示す図である。 図17は、スルーホールの周囲を囲むように形成した空孔の形成状態を模式的に示した断面図である。 図18は、実施の形態6におけるビルドアップ多層基板の構造の一例を示す断面図である。 図19は、バイアホール付近の構造を模式的に示した要部拡大断面図である。 図20Aは、本発明の実施の形態7におけるプリント配線板の製造方法の一例を説明する工程断面図である。 図20Bは、同プリント配線板の製造方法の一例を説明する工程断面図である。 図20Cは、同プリント配線板の製造方法の一例を説明する工程断面図である。 図21Aは、空孔を形成する様子を説明する工程断面図である。 図21Bは、空孔を形成する様子を説明する工程断面図である。 図21Cは、空孔を形成する様子を説明する工程断面図である。 図21Dは、空孔を形成する様子を説明する工程断面図である。 図22Aは、ビルドアップ積層体を製造する様子を説明する工程断面図である。 図22Bは、ビルドアップ積層体を製造する様子を説明する工程断面図である。 図23Aは、ビルドアップ多層基板のビルドアップ層に樹脂充填層を形成する様子を説明する工程断面図である。 図23Bは、ビルドアップ多層基板のビルドアップ層に樹脂充填層を形成する様子を説明する工程断面図である。 図23Cは、ビルドアップ多層基板のビルドアップ層に樹脂充填層を形成する様子を説明する工程断面図である。 図24は、コア基板の一部に樹脂充填層を設けた様子を説明する断面図である。 図25は、本発明の実施の形態8におけるプリプレグの構造の一例を模式的に示した断面図である。 図26は、本発明の実施の形態9におけるプリプレグの製造方法の一例を模式的に示した断面図である。
 (実施の形態1)
 以下、本発明の実施の形態1におけるプリント配線板について説明する。図1は、本発明の実施の形態1におけるプリント配線板の構造の一例を示す断面図である。
 図1において11a、11b、11cは、それぞれ絶縁層、12は配線パターン、13は空孔、14はプリント配線板である。
 図1に示すプリント配線板14は、複数の絶縁層11a、11b、11cと、銅箔が所定パターンにエッチングされてなる複数の配線パターン12と、配線パターン12間に設けられた複数の空孔13と、を有している。なお、図1において空孔13は全ての配線パターン12間に設けられているが、少なくとも一部の配線パターン間12に空孔13が設けられている構成でもよい。
 そしてこのプリント配線板14における絶縁層11a、11b、11cは、少なくとも樹脂と、ガラス織布および/または不織布と、無機フィラ(なお無機フィラの含有率は、絶縁層に対して30体積%以上70体積%以下が望ましい)と、からなる。
 そして空孔13は、配線パターン12と略同一平面の、絶縁層11b側(絶縁層11a側や11c側ではない)のみに選択的に設けられている。
 更に詳しく説明すると、図1において、複数の空孔13は、例えば、絶縁層11bの両面であって、配線パターン12が設けられていない平面(すなわち、絶縁層11bが、絶縁層11aや絶縁層11cと接する平面)の、絶縁層11b側にのみ設けられている。
 例えば、絶縁層11bの絶縁層11aに面した側に設けられた空孔13は、絶縁層11a側ではなく、絶縁層11b側であって、絶縁層11aと絶縁層11bとの間に設けられた配線パターン12がない面(すなわち、絶縁層11aと絶縁層11bとが接する面)に設けられている。
 図1に示すプリント配線板14は、4層品であるが、6層品、8層品等(これらについては図示していない)の場合も、空孔13は、内層となる配線パターン12と、略同一平面の絶縁層に、図1に示されるように設ければ良い。
 図1に示される空孔13は、次のようにして形成される。まず図1に示すように、コア基板(コア基板とは、プリント配線板14の中央部付近を示す)となる絶縁層11bを硬化させ(例えば、絶縁層11bを構成するエポキシ樹脂等の樹脂を硬化させ)、絶縁層11bに含まれる無機フィラの形状を絶縁層11bにインプリント(imprint)する。例えば、原版を基板に押し当てることで微細加工を実現する技術がインプリントと呼ばれる。
 その後、コア基板となる絶縁層11bの表面に設けられた配線パターン12のパターン間の隙間に露出した絶縁層11bに表出した無機フィラを酸等で除去することで形成する。こうして無機フィラに相似した形状の空孔13を作製する。その後、この上に絶縁層11a、11bを形成することで図1のように形成される。
 図1において、絶縁層11a、11b、11cに内蔵するガラス織布(なおガラス織布であってもガラス不織布であっても、これら両方であっても、どちらか一つであっても良い)や、無機フィラは、共に図示されていない。
 図1において、空孔13は、複数個がランダムに形成された層状とすることで、絶縁層11a、11b、11cの層間の接続強度を高める効果が得られる。
 なお絶縁層11a、11b、11cは、同じもの(例えば、同じプリプレグ)から構成されても良い。この場合、図1に示すように、コア部分(あるいは芯材)となる絶縁層11bの、絶縁層11aや絶縁層11cとの界面に形成された空孔13(例えば、絶縁層11bを構成する樹脂材料が熱硬化して形成した空孔13)の中に、絶縁層11aや絶縁層11cを構成する樹脂材料(すなわち、プリプレグを構成する半硬化状態の樹脂)の一部が充填され、硬化されることで、更に層間の密着力が高められる。
 このように図1の構成とすることで、同一の樹脂材料同士であっても、更に層間での密着力を高められる。これは絶縁層11bを構成する樹脂材料が硬化された状態で、その上に積層される絶縁層11aや絶縁層11bの一部が充填可能な、複数の空孔13を絶縁層11bの表面に設けているためである。
 なお絶縁層11a、11b、11cに、互いに異なる樹脂材料(例えば、第1の樹脂、第2の樹脂)、絶縁材料を用いても良い。この場合、図1に示すように、コア部分(あるいは芯材となる)絶縁層11bの、絶縁層11aや絶縁層11cとの界面に形成された空孔13(例えば、絶縁層11bを構成する第2の樹脂が熱硬化して形成した空孔13)の中に、絶縁層11aや絶縁層11cを構成する第1の樹脂(すなわち、絶縁層11aや絶縁層11cを構成するための半硬化状態であって、絶縁層11bを構成する第2の樹脂とは異なる第1の樹脂)の一部が充填され、硬化されることで、更に層間の密着力を高められる。このように図1の構成とすることで、異なる樹脂材料間(例えば、第1、第2の樹脂間)であっても、層間の密着力を高められる。
 なお空孔13は、空孔のまま(すなわち、何もない状態、あるいは空気等が充填された状態)とすることで、熱衝撃試験などを行った際の、絶縁層11a、11b、11cの熱膨張係数の違いにより発生する応力を吸収する効果が得られる。
 また空孔13を利用する(例えば、絶縁層11bの少なくとも一面に設けられた空孔13に、隣接する絶縁層11a、11cを構成する樹脂材料の一部を充填する等)ことで、絶縁層11a、11b、11c等の層間の接着強度を高めることができ、デラミネーションの抑制効果が得られる。
 なお図1に示す空孔13の密度が高い場合、空孔13の集合体としても良い。そしてこの空孔13の集合体に、隣接する他の絶縁層の他の樹脂を充填することで、図2に示されるような樹脂充填層15を形成することも有用である。
 図2は、内部に樹脂充填層15を有するプリント配線板の構造の一例を示す断面図である。
 図2において、15は樹脂充填層であり、樹脂充填層15とは、複数の空孔13、および/または、複数の空孔13に隣接する絶縁層を構成する樹脂材料が流れ込んで形成された樹脂体とを有する、層状の部分である。
 更に詳しく説明する。図2における樹脂充填層15は、絶縁層11bと、絶縁層11a、11cとの界面であって、配線パターン12が設けられていない領域の、絶縁層11b側に高密度で設けられた複数の空孔13に、隣接する絶縁層11a、11cを構成する樹脂材料が流れ込んで、硬化されたものである。
 図2に示すように、絶縁層11bの少なくとも一面に形成された複数の空孔13に、隣接する絶縁層11a、11cを構成する樹脂材料(絶縁層11bと同一樹脂材料であっても、異なる樹脂材料であってもよい)を充填し、樹脂充填層15として硬化させることで、絶縁層11a、11b、11c間の接続強度を高められる。また、空孔13は、空孔のまま(すなわち、何もない状態、あるいは空気等が充填された状態)としても良い。
 図3は、図2に示した樹脂充填層15近傍の構造を模式的に示した要部拡大断面図である。図3において、16a、16bは無機フィラ、17a、17bは樹脂、18はガラス織布および/または不織布である。
 図3に示すように、配線パターン12の一端は、樹脂充填層15と略同一平面に形成されており、また配線パターン12の一端と、樹脂充填層15の一端とは、互いに接するように形成されている。
 また、絶縁層11aと絶縁層11bとは、その界面にシート状に(あるいは面状に)設けた配線パターン12と樹脂充填層15とを介して、互いに密着し、積層固定されている。
 図3において、樹脂充填層15や空孔13は、絶縁層11b側に、絶縁層11bを構成する樹脂17bから形成されたものであり、樹脂充填層15や空孔13の少なくとも一部には、絶縁層11aを構成する樹脂17aが充填され、硬化されている。なお空孔13は、無機フィラ16bをエッチングすることで形成することもできる。
 ここで18は、ガラス織布と、ガラス不織布のいずれか一方であっても良い。またガラス織布とガラス不織布との組合せであっても良い。このようにガラス織布および/または不織布18を用いることで、プリント配線板としての高強度化が可能となる。
 そして、無機フィラ16a、16bやガラス織布および/または不織布18は、樹脂17a、17b(エポキシ樹脂等の熱硬化性の樹脂)によって互いに保持されている。
 図3に示す樹脂充填層15における、無機フィラ16bの含有率は、樹脂充填層15が形成された絶縁層11b全体に対して10体積%以下の部分を有している。更には無機フィラ16bの含有率が体積10%以下の部分(すなわち、樹脂割合の高い部分)を、樹脂充填層15としても良い。なお樹脂充填層15と、樹脂が充填されてなる空孔13とを区別する必要はない。
 なお図2や図3に示すように、樹脂充填層15の一面のみ(すなわち、絶縁層11b側のみ)に、空孔13を形成することで樹脂充填層15と、絶縁層11bとのマッチング性を高めることができる。
 図3において、絶縁層11a、11bは、ガラス織布および/または不織布18や無機フィラ16a、16bと、樹脂17a、17bと、から形成されている。
 図3に示すように、絶縁層11a、11bは、配線パターン12の表面に設けられた凹凸と、樹脂充填層15を介して結合されている。そして樹脂層11a、11bは、配線パターン12の凹凸によるアンカー効果や、樹脂充填層15によって、互いに高強度で固定されている。
 図3に示すように、樹脂充填層15と、絶縁層11a、11bとの間には、複数の空孔13を層状に残すことで、空孔13を、一種のバッファ層(あるいは緩衝層)とすることができる。熱衝撃試験等を実施した際に生じる樹脂充填層15と、絶縁層11a、11bとの熱膨張係数の違いによる応力を低減する効果が得られる。
 次に空孔13の直径について説明する。空孔13の直径は、無機フィラ16bの直径(更には平均粒子径)の0.5倍以上5.0倍以下が望ましい。空孔13の直径が、無機フィラの直径の0.5倍未満の場合、空孔13による作用効果が低下する場合がある。また無機フィラ16bの直径の5.0倍より大きな場合、プリント配線板14の薄層化に影響を与える場合がある。なお空孔13の直径範囲に広がりを持たせた理由は、無機フィラ16bの粒度分布に依存するためである。
 空孔13の各種応用例について説明する。例えば、空孔13を空間(例えば、空気等が詰まっていても良い)のままに残しても良いが、空孔13の少なくとも一部を用いて、図3の樹脂充填層15を形成しても良い。例えば、絶縁層11における複数の空孔13が形成された領域は、無機フィラ16bの含有量が少ない(すなわち樹脂17bの含有量が多い)分、樹脂充填層15を形成しやすくなる。
 このように空孔13をなくす(あるいは空孔13を利用して、樹脂充填層15を形成する)ことで、絶縁層11aと絶縁層11bとの間の接着力をアンカー効果により高められ、プリント配線板14の高強度化や、層間剥離防止が可能となる。
 図3に示すように、樹脂充填層15は、ガラス織布および/または不織布18や無機フィラ16bの含有量が少ない分、他の部分(例えば、ガラス織布および/または不織布18付近の絶縁層11a、11bや、無機フィラ16a、16bが充填された絶縁層11a、11b)に比べ、樹脂17bの割合が高くなっている。そしてこの樹脂充填層15によって、絶縁層11a、11bを互いに接合することができる。
 次に図3の構成を実現するために、発明者らが試作したサンプルについて、図4を用いて説明する。
 図4は配線パターン付近の構造を示す電子顕微鏡写真である。内層の配線パターン付近の構造を示す電子顕微鏡写真であり、発明者らが試作したサンプルの一部の断面図である。
 図4に示すように、無機フィラ16が充填されてなる複数の絶縁層11a、11bは、その間に形成された配線パターン12と樹脂充填層15を介して、強固に固定されている。
 図4に示すように、配線パターン12の表面に設けた凹凸や、樹脂充填層15の表面に設けた凹凸(凹凸に番号は付与していないが、この凹凸は例えば、図3や図3で説明した空孔13に起因する凹凸に相当)は、複数の絶縁層11同士を強固に固定するのに有用である。
 図4に示すように、樹脂充填層15は、配線パターン12と略同一平面上であて、絶縁層11b側に設けられている。
 なお、樹脂充填層15の少なくとも一部に、隣接する他の絶縁層の樹脂分を入り込ませることは有用である。例えば第1の樹脂が硬化してなる空孔13に、隣接する層から半硬化状態の第2の樹脂が充填されることが有用である。こうすることで、隣接する絶縁層11間を接着する樹脂充填層15の表面に設けた空孔13や無機フィラ16bに起因した粗化面のアンカー効果が得られる。また絶縁層11同士の密着性を強くし、デラミネーションなどの内部構造欠陥を抑制する効果が得られる。
 次に図4のサンプルについて詳しく説明する。図4のサンプルにおける樹脂充填層15は断面観察用にサンプルを樹脂埋めし、イオンミリング処理などでの研磨後の観察断面である。樹脂充填層15の中には、望ましくは空気が含まれるのが良いが、残留溶剤分や、液状の低分子量成分や水分、さらにはめっきプロセス中に用いられる酸性溶液が無機フィラを溶かしたものであっても良い。
 ここで樹脂充填層15は主にめっき工程やパターニング工程で用いられる酸性溶液により、絶縁層11b(もしくは後述の図9等で説明するビルドアップ層20に含まれる無機フィラ16)に、溶解性の高い材料を選ぶことで、無機フィラ16bを選択的に溶出させて形成することができる。
 ここで空孔13をこの溶出工程で形成することで、樹脂充填層15の大きさは絶縁層11b(更には後述する図9等のビルドアップ層20)に含有している無機フィラ16bの大きさを利用することで、無機フィラ16bの平均粒径の0.5倍~5.0倍に揃えられる。なおパターニング工程で用いる酸性溶液のpHや、その溶液種、もしくは処理時間などを変更することにより、これら空孔13の大きさを制御することが可能である。
 また前述の酸性溶液に対して溶解性のない(あるいは溶解速度の遅い)無機フィラを、溶解性の高い無機フィラに加えて混合することによって、樹脂充填層15の大きさを制御することも可能である。
 次に無機フィラ16bに表面処理剤などで表面処理がされている場合について説明する。ドリル、またはレーザーなどを用いてスルーホール(図示していない)および、ビアホールの加工を行うと、無機フィラ16bの表面が物理的に切削もしくは変質するため、表面処理を実施していない新表面が露出する。その後、めっき工程やパターニング工程での酸性溶液により、露出した新表面から溶出していくため、結果的に形成される樹脂充填層15の大きさはほとんど変わらない。
 図5は、図4における内層の配線パターン付近の構造を模式的に示した要部拡大断面図である。
 図5に示すように、無機フィラ16a、16bが充填されてなる複数の絶縁層11a、11bは、その間に形成された配線パターン12と樹脂充填層15によって、強固に固定されている。
 特に、図5に示すように、樹脂充填層15の表面に設けた凹凸(この凹凸は、図3に示したように、空孔13の少なくとも一部に、絶縁層11aを構成する樹脂17aが充填されてなるものであり、凹凸の直径やピッチ、密度等は無機フィラ16bのそれに対応している。そしてこの空孔13に起因する凹凸が、隣接する複数の絶縁層11同士を強固に固定している。
 なお図5に示すように、樹脂充填層15は、配線パターン12と略同一平面上、更に配線パターン12と絶縁層11a、11bとの界面と略同一平面に設けられている。
 なお図4、図5において、空孔13は明確ではないが、これは硬化後の絶縁層11bに、未硬化状態の絶縁層11aを、加圧密着させることで、殆ど全ての空孔13に、絶縁層11aを構成する樹脂(例えば、樹脂17a、なお樹脂17aは図示していない)が注入され、樹脂充填層15を構成したためと考えられる。
 以上のように、プリント配線板14は、一層以上の絶縁層11と、絶縁層11と厚み方向に交互に積層された銅箔からなる複数層の配線パターン12と、平面方向に隣接する配線パターン12間に設けた複数の空孔13と、を有するプリント配線板14であって、絶縁層11は、少なくとも樹脂17と、ガラス織布および/または不織布18、絶縁層11に対して30体積%以上70体積%以下の無機フィラ16と、からなる。またプリント配線板14の空孔13は、平面方向に隣接した複数の配線パターン12と略同一平面の絶縁層11a、11bに設けたプリント配線板14とすることで、プリント配線板14の高強度化が可能となる。
 なお前述の図1、図2において、プリント配線板14は、複数層の絶縁層11と、この絶縁層11を介して厚み方向に積層された銅箔からなる複数層の配線パターン12と、平面方向に隣接する配線パターン12間に設けた複数の空孔13と、を有するプリント配線板14において、絶縁層11は、少なくとも樹脂17と、ガラス織布および/または不織布18と、絶縁層11に対して30体積%以上70体積%以下の無機フィラ16と、からなる。
 また空孔13の少なくとも一部に、厚み方向に積層された隣接する他の絶縁層の樹脂17が充填されてなる樹脂充填層15を利用することも有用である。このように隣接する複数の絶縁層を構成する樹脂が、空孔13を介して(例えば、前述の図3において、樹脂17bが硬化済の樹脂絶縁層11bに形成された空孔13の上に、未硬化状態の樹脂17aを含むプリプレグ等を積層するように)積層されることで、複数の絶縁層11同士の密着強度を高める効果が得られる。
 ここで樹脂充填層15は、配線パターン12のどちらか一方の界面と略同一面とすることは有用である。また樹脂充填層15の平均厚みを、配線パターン12の平均厚みより薄くすることで、プリント配線板14の薄層化と高強度化を両立できる。樹脂充填層15の厚みも、配線パターン12の厚みも平均厚み同士で評価しているが、これは樹脂充填層15も配線パターン12も、アンカー効果のために粗化面を有しているためである。なお厚みは、断面写真等から測定することができる。
 樹脂充填層15は、隣接して積層された、無機フィラ16が充填された絶縁層11に比べて、無機フィラ16の含有量を低くすることが望ましい。樹脂充填層15は、絶縁層11に対して無機フィラ16の体積分率が、10体積%以下の部分を設けることで、樹脂充填層15の密着力アップ効果が得られる。これは樹脂充填層15における無機フィラ16の体積分率が高いほど、密着力が低下する場合が考えられるためである。
 次に(表1)を用いて発明者らが作製したプリント配線板14の特性の評価結果について説明する。
 (表1)は、図1等に基づいて発明者らが試作した6層スルーホール基板の評価結果の一例である。表1において、樹脂充填層15のあるものが実施例1、樹脂充填層15のないものが比較例1である。そして実施例1、比較例1について、共に吸湿半田耐熱性を評価した。吸湿条件、およびその結果を以下に示す。
Figure JPOXMLDOC01-appb-T000001
 以上より、実施例1の樹脂充填層15のある方が、吸湿半田耐熱性が良好であることが判る。これは、樹脂充填層15によって実施例1の内層部分の絶縁層間の密着性が向上し、デラミネーションなどの吸湿半田耐熱性の不良起因となる微小な内部構造欠陥が無くなったためであると考えられる。
 (実施の形態2)
 次に、実施の形態2として、プリント配線板14の最表層に設けるレジストの高密着化について説明する。
 図6は、最表層にレジストを設けたプリント配線板の構造の一例を示す断面図である。図6において、19はレジストであり、例えば感光性を有するソルダーレジストである。図6において、レジスト19の一部を、プリント配線板14の最表層に設けた配線パターン12を覆うように設けても良い(図示せず)。
 図6に示すプリント配線板14は、複数の絶縁層11a、11b、11cが、内蔵された配線パターン12に隣接して設けた複数の空孔13や樹脂充填層15等(図6では図示せず)を介して積層されている。
 図6に示すように、プリント配線板14の最表層(あるいは最表層に設けられた配線パターン12間)に表出した絶縁層11a、11cには、複数の空孔13が設けられ、空孔13の少なくとも一部に、レジスト19が充填されてなるレジスト充填層を形成している。このようにプリント配線板14の最表層の絶縁層11a、11cであって、最表層の配線パターン12の露出部に設けた空孔13の少なくとも一部に、レジスト19を充填し、レジスト充填層を形成することで、レジスト19のアンカー効果による絶縁層11a、11cとの密着力向上が可能となる。
 次に図7を用いて、更に詳しく説明する。図7は、レジストと絶縁層との界面付近の拡大断面図であり、図6のレジスト19と絶縁層11aとの界面部分の拡大図に相当する。
 図7に示すように、レジスト19の一部は、空孔13の一部に充填されている。またレジスト19の一部を、空孔13の少なくとも一部に充填させることで、アンカー効果が得られ、レジスト19と絶縁層11との密着力を高められる。
 なお、図7に示すように、レジスト19と、絶縁層11aとの界面部分に、空孔13bを層状に残す(なお、図7における空孔13aとは、レジスト19が充填された空孔に相当し、例えば前述の図3に示したような樹脂充填層15に相当する部分である。また空孔13bとは、空孔のまま残っている部分に相当する)ことも有用である。
 (実施の形態3)
 次に、ビルドアップ層を有するプリント配線板への応用について図8を用いて説明する。
 図8は、ビルドアップ層を有するプリント配線板におけるめっき導体の密着力アップを説明する断面図である。
 図8において、20はビルドアップ層、21はめっき導体である。ビルドアップ層20に設けられためっき導体21は、例えば銅配線や銅ビア等が銅めっき等のめっき技術を用いて形成されたものである。
 必要に応じて、表層等にめっき導体21を用いることで、ビルドアップ層20に形成したビア電極(ビア電極は、複数の配線間の層間接続部に相当する)や、配線(配線はビルドアップ層20の表層や内層にめっきで形成された配線パターン12に相当する)を微細かつ高密度で構成することができる。
 なお、ビルドアップ層20に、必ずしもガラス織布やガラス不織布を含有させる必要はない。また、ビルドアップ層20に、無機フィラ16(図示せず)を含有させることは有用である。さらに、ビルドアップ層20は、複数層とすることも有用であり、ビルドアップ層20の層間接続に、めっき導体21を用いることが有用である。
 図8に示すように、めっき導体21によって、ビルドアップ層20のビア部分と、ビルドアップ層20の表層の配線部分とを、一体化した状態で形成することは有用である。
 図8に示すように、ビルドアップ層20は、コア層となる絶縁層11の表層に1層以上が設けられている。そしてビルドアップ層20の表層に設けられためっき導体21のビルドアップ層20と接する面には、空孔13aを設けているが、この空孔13aの内部にはめっき導体21の少なくとも一部が充填され、めっき導体21と一体化した凹凸(あるいは粗面)を形成している。このように空孔13aの少なくとも一部にめっき導体21を充填してなる凹凸(あるいは粗面)を形成することによって、めっき導体21とビルドアップ層20との接続強度を高められる。
 図8において、ビルドアップ層20の表層に設けられたレジスト19のビルドアップ層20と接する面には、空孔13bを設けているが、この空孔13bの内部にはレジスト19の少なくとも一部が充填され、レジスト19と一体化した凹凸(あるいは粗面)を形成している。このように空孔13bの少なくとも一部にレジスト19が充填してなる凹凸(あるいは粗面)を形成することによって、レジスト19とビルドアップ層20との接続強度を高められる。
 更に図9を用いて、ビルドアップ層20とめっき導体21との間に設けた空孔13について説明する。
 図9は、プリント配線板のビルドアップ層に設けた配線パターンとビルドアップ層との界面の構造を模式的に示した要部拡大断面図であり、例えば図8のビルドアップ層20とめっき導体21との界面部分に相当する。
 図9において、22はビルドアップ樹脂である。なおビルドアップ樹脂22は、絶縁層11と同じ樹脂とする必要はない。ビルドアップ樹脂22として、例えば感光性やレーザー分解性を有する樹脂材料を用いることで、めっき導体21を形成する孔を微細に形成できる。
 図9に示すように、ビルドアップ層20は、少なくとも、無機フィラ16と、ビルドアップ樹脂22とから構成されている。またビルドアップ層20の、めっき導体21側には、無機フィラ16に起因する複数個の空孔13a、13bが形成されている。なお空孔13a、13bの内部の少なくとも一部に、めっき導体21を構成する金属材料(例えば、銅)を形成することで、めっき導体21の表面に、空孔13や無機フィラ16に起因する凹凸(あるいは粗面)を形成することができる。またこの凹凸(あるいは粗面)によって、めっき導体21とビルドアップ層20との密着強度を高められる。
 次に、(表2)を用いて、図8で示したビルドアップ層20を有するプリント配線板14について評価した結果を示す。
 (表2)は6層ビルドアップ基板であり、表層となる配線パターン12は、ビルドアップ層20に設けた一部にビアを設けためっき導体21で形成した。そしてめっき導体21からなるビルドアップ層20に所定の微細配線を設けた。
 (表2)において、実施例2は、めっき導体21からなる微細配線とビルドアップ層20との界面に空孔13や樹脂充填層15を設けた構成の6層ビルドアップ基板を実施例2とした。
 (表2)において、樹脂充填層15も空孔13も有していない構成の6層ビルドアップ基板を比較例2とした。(表2)に発明者らの検討結果を示す。
Figure JPOXMLDOC01-appb-T000002
 (表2)より、比較例2では、L/S=40μm/40μmの微細配線を形成する際に、配線パターンと表層のビルドアップ層との密着が悪いため、配線剥がれが発生し、配線形成が不可であった。これに対し、実施例2では、配線剥がれが発生せず、L/S=40μm/40μmの微細配線の形成が可能であった。これは微細配線が、めっき導体21を用いて、ビルドアップ層20に高強度で密着形成されたからである。
 以上のように、空孔13を設けることで、ビルドアップ層20の表層や内層に設けた配線パターンをめっき導体21によって形成する場合も、空孔13や空孔13の集合体からなる樹脂充填層15によって、ビルドアップ層20との密着性を高めることができ、よりファインパターンに対応できることがわかる。
 なお(表2)等において、樹脂充填層15は、複数の空孔13にめっき導体21が高密度に充填されてなるめっき導体充填層とすることも有用である。これは空孔13に樹脂が充填されることにより、空孔13にめっき導体21やレジスト19が偏析する方が有用なためである。
 (実施の形態4)
 実施の形態4では、実施の形態1等で説明したプリント配線板14の製造方法の一例について、図10~図13を用いて説明する。
 図10A~図10Cは、プリプレグの両面に銅箔を設ける様子を説明する工程断面図である。
 図10において、23はプリプレグ、24は銅箔(銅箔24の代わりに、他の金属材料からなる金属箔を使うことも可能であるが、銅を用いることがコスト的に有用である)、25はプレス(なお金型等は図示していない。またプレス25に付随する加熱装置等は図示していない)、26は押圧方向を示す矢印、27は積層体である。
 図10Aに示すように、プリプレグ23は、少なくとも、ガラス織布および/または不織布18と、無機フィラ16と、これらを固定する樹脂17(なお樹脂は半硬化状態、あるいはBステージ状態のものが望ましい)とから、形成されている。
 図10A、図10Bにおいて樹脂17は半硬化状態、図10Cにおいて樹脂17は硬化状態である。なお図10B、図10C)において、樹脂17は図示していない。
 図10Aに示すように、プリプレグ23の両面に、銅箔24をセットする。
 図10Bは、プリプレグ23と銅箔24とを、プレス25を矢印26に示すように動かして一体化する様子を説明する断面図である。なおプレス25等を加熱することは有用である。
 図10Cは、プリプレグ23と銅箔24とが一体化されてなる積層体27が作製された様子を示す断面図である。
 次に図11A、図11Bを用いて、積層体27の表面に設けられた銅箔24をエッチングし、配線パターン12を形成する様子を説明する。
 なお、銅箔24のパターニングの工程(フォトレジストの塗布、露光、現像、銅箔13のエッチング、フォトレジストの除去工程等)は図示していない(省略している)。
 図11A、図11Bは、積層体27の表面に、配線パターン12を形成した様子を示す断面図である。
 図11Aにおいて、配線パターン12の間に表出した絶縁層11の表面には、空孔13が形成されている。
 図11Aの要部を拡大した図が、図11Bである。図11Bに示すように、配線パターン12の、絶縁層11側には空孔13からなる粗面化処理を行なうことは、密着性向上のために有用である。また配線パターン12で覆われていない絶縁層11の表出部に、空孔13を設けている。図11Bにおいて、空孔13は、単層(あるいは一層)で図示しているが、図3等で図示したように厚み方向に複数個分の厚みで形成することは有用である。
 図11A、図11Bにおいて、配線パターン12の形成は、銅箔24を貼り付け、エッチングするプロセスに、無電解めっきプロセスや、電解めっきプロセスを組み合わせることができる。そしてこれらプロセス中の酸処理で表層の配線パターン12をパターニングすると同時に、絶縁層11の表面の無機フィラ16を溶出させ、空孔13を形成することができる。
 なお空孔13の少なくとも一部に樹脂17を充填させることで、樹脂充填層15を形成することも有用である(図11には図示せず)。このように空孔13や樹脂充填層15を設けることで、プリント配線板14の微細配線化や、各部位の密着性を高めることができる。
 なお前述の図8のようなビルドアップ層20を形成する場合、このビルドアップ層20に設けた配線パターン12(あるいはめっき導体21から形成された配線)のエッチングなどの工程において、同時に酸性溶液などで無機フィラ16を溶出させることで、空孔13や樹脂充填層15を形成することができる。
 次に、図12A~図12Cを用いて、積層体27の表層に設けた空孔13について説明する。
 図12A~図12Cは、空孔13の形成状態を示す電子顕微鏡写真である。
 図12A~図12Cに示すように、絶縁層11の表面は、複数の空孔13を設けることで、他の絶縁層(図示せず)との密着力アップ等の効果が得られる。
 図13A、図13Bは、空孔13が形成された積層体27の上に、プリプレグ23を介して銅箔24を積層する様子を示す工程断面図である。
 図13Aは積層前、図13Bは積層後の状態を示す。図13Bの後、更に前述の図11A、図11Bで示したような最表層の銅箔24をパターニングし、配線パターン12を形成すると同時に、絶縁層11の表面に複数の空孔13を形成することを繰り返すことで、多層化することができる。
 以上のように、図10、図11、図13の工程を複数回繰り返すことで、図1に示したプリント配線板14を作製することができる。
 また図10、図11、図13の工程を複数回繰り返した後、例えば図13Aにおけるプリプレグ23やビルドアップ層20を設け、最後に感光性のソルダーレジスト等のレジスト19を形成することで、前述の図6のプリント配線板14を作製できる。
 またビルドアップ樹脂22と無機フィラ16とからなるビルドアップ層20の表面に空孔13を形成し、更に、めっき導体21を形成することで、前述の図8で示したビルドアップ型のプリント配線板14を作製できる。
 以上のように、複数の絶縁層11と、絶縁層11と交互に積層された銅箔24からなる複数層の配線パターン12と、ビアの少なくとも一部を構成するめっき導体21と、を有するプリント配線板14であって、絶縁層11は、少なくとも樹脂17と、絶縁層11に対して30体積%以上70体積%以下の無機フィラ16と、を有し、配線パターン12間に露出した絶縁層11の表面には複数の空孔13が設けられ、空孔13の少なくとも一部に、めっき導体21の少なくとも一部が充填されているプリント配線板14とすることで、めっき導体21の密着強度を高められる。
 以上、図10A~図10Cに示したように、少なくとも、半硬化状態の第1の樹脂(例えば、プリプレグ23に含まれる半硬化状態の樹脂17)と、ガラス織布および/または不織布18と、無機フィラ16と、を有するプリプレグ23の少なくとも一面に銅箔24(例えば、第1の銅箔)を積層し、第1の樹脂(例えば樹脂17)を熱硬化させて、銅箔24付積層体(例えば、第1の積層体)を形成する工程と、図11A、図11Bに示したような第1の積層体の表層の銅箔24(例えば、第1の銅箔として)をパターニングして、内層等となる配線パターン12を形成すると同時に配線パターン12間に露出した絶縁層11の表面に複数の空孔13を形成し、空孔付硬化済シートを形成する工程と、図13A、図13Bに示したような、銅箔24(例えば、第2の銅箔として)半硬化状態の第2の樹脂(図13では図示せず)とガラス織布および/または不織布と無機フィラ16とを有するプリプレグ23と、空孔13付の積層体(例えば、第1の積層体)を積層し、第2の樹脂の一部を空孔13の少なくとも一部に充填した状態で、第2の樹脂を熱硬化させて、積層体27(例えば、第2の積層体)を形成する工程と、図11に示したような積層体27(例えば、第2の積層体)の表層の銅箔24(例えば、第2の銅箔)をパターニングして、外層となる配線パターン12を形成する工程と、を有するプリント配線板14の製造方法によって、図1に示したようなプリント配線板14を製造できる。
 なお表層の銅箔24をパターニングして、表層となる配線パターン12を形成すると同時に配線パターン12間に露出した絶縁層11の表面に複数の空孔13を形成する工程と、複数の空孔13の少なくとも一部に、めっき導体21もしくはレジスト19のいずれか一つ以上を形成する工程と、を有するプリント配線板14の製造方法によって、レジスト19やめっき導体21と、絶縁層11との密着強度を高められる。
 (実施の形態5)
 以下、本発明の実施の形態5におけるプリント配線板について、図14~図18を用いて説明する。
 図14は、本発明の実施の形態5におけるプリント配線板の構造の一例を示す断面図である。図14において、11はガラスエポキシ樹脂等からなる絶縁層、12は銅箔等からなる配線パターン層、28はドリル等で形成された孔の中にめっき等で導体が形成されてなるスルーホール、14はプリント配線板、13は空孔、16は無機フィラ、21はめっき導体であり、層間接続部を構成する。
 図14において、プリント配線板14は、少なくとも無機フィラ16と樹脂(図示せず)とからなる絶縁層11と、配線パターン層12とを交互に積層してなる積層体に、配線パターン層12の層間を電気的に接続するめっき導体21を有したスルーホール28から形成されている。
 図14の点線5で示した部分(スルーホール28あるいはめっき導体21と絶縁層11との界面付近)について、図2を用いて更に詳しく説明する。
 図15はスルーホール28部分の構造を模式的に示した要部拡大断面図である。図15において、17は樹脂であり、例えばエポキシ樹脂のような熱硬化性樹脂である。15は樹脂充填層であり、無機フィラ16が除去されてなる空孔13と、樹脂17と、から形成されている。なお空孔13の大きさ(高さや直径、体積、断面積等)は、無機フィラ16に相似させることは有用である。
 また図15において、スルーホール28の壁面を形成するめっき導体21の一部(特に絶縁層11と接する面)には、複数の突起(例えば、点線5で示す部分)を設けているが、この突起の存在が、めっき導体21と絶縁層11との間の密着強度をアンカー効果によって高める。なおめっき導体21の表面に受ける突起の大きさ(高さや直径、体積、断面積等)は、無機フィラ16に相似させることは有用である。
 図15に示すように、めっき導体21と接している(あるいはめっき導体21を360度、全周で囲んでいる、あるいはめっき導体21に面している部分の)絶縁層11には、空孔13がスルーホール28を取り囲んで複数個存在していることを示している。
 図16は、発明者らの試作品のスルーホール部分の構造を示す電子顕微鏡写真である。図16は、図15で模式的に示した断面図に対応している。図16において、めっき導体21は、スルーホール28の壁面を形成し、めっき導体21の一部は複数の突起となって、点線5で示すように絶縁層11に埋め込まれアンカー効果を発現させている。まためっき導体21と接する絶縁層11には、樹脂充填層15を設けている。図16において、樹脂充填層15とは、空孔13と空孔13の少なくとも一部に樹脂17が充填されてなる。空孔13は例えば無機フィラ16の大きさ(あるいは高さ、直径、体積、断面積の一つ以上であっても良い)に対応しており、スルーホール28の周囲をグルッと囲むように複数個形成されたものである。
 図17は、スルーホール28の周囲を囲むように形成した空孔13の平面方向での形成状態を模式的に示した断面図である。
 図17に示すように、略円形のスルーホール28の壁面(絶縁層11側)には、めっき導体21が形成されている。そしてめっき導体21の、絶縁層11と接する(あるいは面する)部分には、複数の突起(点線5で囲んでいる)を形成している。またスルーホール28の周囲部分部に、複数個の空孔13を形成している。なお空孔13の出現頻度は、スルーホール28近くが高くなるように、スルーホール28から離れるほど、小さくなるように設定している。なお図17において、無機フィラは図示していない。
 図17において空孔13は、無機フィラが除去されて形成されたものである。そのため元々、絶縁層11中における無機フィラの面内分布が均一であったとしても、図17に示すようにスルーホール28付近では、無機フィラが少なくなり、無機フィラがエッチング等で除去された分だけ、空孔13が増加する。すなわち図17はスルーホール28付近では、スルーホール28に近づくほど、空孔13の頻度(あるいは発生頻度)が増加し、その分、無機フィラの頻度(あるいは発生頻度)が低下することを示している。
 図17に示すように、スルーホール28部分を上面から観察した場合、空孔13はめっき導体21の近傍ほど多く、めっき導体21から離れるに従い、空孔13の量は少なくなる。ここで示している空孔13としては、断面観察用にサンプルを樹脂埋めし、イオンミリング処理などでの研磨後の観察断面で見られる空孔である。空孔13の中に空気等の誘電率の低い絶縁材料を充填されても良い。
 さらに空孔13の少なくとも一部にめっき導体21を形成することで、めっき導体21の絶縁層11側に無機フィラの粒径等に対応した複数の突起を設けることができ、このアンカー効果により絶縁層11とめっき導体21との密着性を強くし、スルーホール28の接続信頼性を高める効果がある。
 また、空孔13が存在する層1は、無機フィラの比率が低くなるため局所的に弾性率が低くなる。そして熱衝撃試験などでの熱膨張係数の差による応力に対する応力緩和作用が得られるため、スルーホール28の接続信頼性を高める効果がある。
 以上のように、少なくとも無機フィラと樹脂17とからなる1層以上の絶縁層11と、1層以上の配線パターン層12とが積層された積層体と、配線パターン層12間を電気的に接続するめっき導体21を有したスルーホール28と、を有する多層のプリント配線板14であって、めっき導体21に面している絶縁層11に、めっき導体21を囲うように形成した無機フィラ16の粒径の0.5倍以上5.0倍以下の複数個の空孔13と、あるいはめっき導体21の絶縁層11側の界面に、無機フィラ16の粒径の0.5倍以上5.0倍以下の大きさの複数の突起と、のいずれか一つ以上を設けたプリント配線板14とすることで、優れた接続信頼性を確保することができる。
 なお空孔13の大きさや、めっき導体21の絶縁層11側に設ける突起の大きさは、無機フィラ16の粒径の0.5倍以上5.0倍以下が望ましい。0.5倍未満の場合、所定の強度や応力緩和機能が得られない場合がある。また5.0倍を超えると、プリント配線板の薄型化やファインパターン化に影響を与える場合がある。
 (実施の形態6)
 次に、実施の形態6として、ビルドアップ多層基板(ビルドアップ多層プリント配線板等と呼ばれることもある)について、図18、図19を用いて説明する。
 図18は、実施の形態6におけるビルドアップ多層基板の構造の一例を示す断面図である。図18において、29はコア基板、20はビルドアップ層、30はバイアホール(via hole)、31はビルドアップ多層基板である。
 図18に示すビルドアップ多層基板31は、各配線パターン層12の層間を電気的に接続する層間接続部(例えば、図18におけるスルーホール28、あるいはめっき導体21。なお層間接続部は、スルーホール28に限定する必要はなく、導電性ペースト等であっても良い)を有している。なお図18における樹脂充填層15の位置は、模式的に、楕円で示している。
 また配線パターン層12を有したコア基板29の表裏面には、少なくとも無機フィラ(図示せず)と樹脂(図示せず)とからなる1層以上のビルドアップ層20と、1層以上の配線パターン層12とを交互に積層してなるビルドアップ層20が形成されている。なおビルドアップ層20部分に形成された複数の配線パターン層12間の電気的な接続は、めっき技術等で作成したバイアホール30で行うことで、表層の配線パターン層のファイン化が可能となる。またバイアホール30の形成と、ビルドアップ層20における配線パターン層12の形成とを、共にめっき(セミアディティブ法も含む)で形成することは有用である。次に図19を用いて、バイアホール30部分に設けた樹脂充填層15等の細部について説明する。
 図19は、バイアホール30付近の構造を模式的に示した要部拡大断面図である。図19において、バイアホール30やめっき導体21は、斜め状(いわゆるすり鉢状、あるいはテーパー状)に形成されているが、斜めの角度等は必要に応じて最適化すればよい。
 図19に示すように、めっき導体21からなるバイアホール30と接している(あるいは面している)ビルドアップ層20には複数の空孔13を、バイアホール30を囲うように設けている。
 図19のバイアホール30が接するビルドアップ層20側は、更に突起(例えば、点線5で囲う部分)も設けている。
 また空孔13を有する樹脂充填層15も設けている。図19における樹脂充填層15は、樹脂17と、空孔13とから構成されているが、空孔13の代わりに、空孔13の少なくとも一部にめっき導体21が形成されてなる突起とすることも有用である。また樹脂充填層15における空孔13や突起の頻度(あるいは発生密度)は、ビルドアップ層20における樹脂17中の無機フィラ16の頻度(あるいは発生密度)と、略同じとする。
 なお図18、図19のバイアホール30の平面方向での断面図は、前述の図17と共通するため、図面等は省略するが、前述の図17同様に、バイアホール30部分を取り囲んで空孔13が複数個形成されている。また空孔13はめっき導体21の近傍ほど多く、めっき導体21から離れるに従い、空孔13の量は少なくなることは言うまでもない。
 特にビルドアップ層20において、空孔13を設けることで、無機フィラ16の比率が低くなるため局所的に低弾性率となる。そのため、熱衝撃試験などでの熱膨張係数の差による応力に対する応力緩和作用が得られ、バイアホール30の接続信頼性を高める効果がある。
 またビルドアップ層20に形成した空孔13の少なくとも一部にめっき導体21を形成することは有用である。このように、ビルドアップ層20とめっき導体21との接着面に粗化面(あるいは複数の突起)が形成されることで、アンカー効果によりめっき導体21とビルドアップ層20との密着性を強くし、バイアホール30の接続信頼性を高める効果がある。この効果はコア基板29の形態に関わらず発現する。
 次に、図18、図19を用いて、空孔13の形成方法の一例について説明する。
 ここで空孔13は主にめっき工程やパターニング工程で用いられる酸性溶液により、絶縁層11もしくはビルドアップ層20に含まれる無機フィラ16を溶出させて形成することができる。そのため、空孔13の大きさは絶縁層11もしくはビルドアップ層20に含有している無機フィラ16の大きさに合わせることが望ましい。なお空孔13の大きさは無機フィラ16の平均粒径の0.5倍~5.0倍が望ましい。さらに、パターニング工程で用いる酸性溶液のpHや、その溶液種、もしくは処理時間などを変更することにより、これら空孔13が存在する樹脂充填層15の厚みを制御することが可能である。
 また、酸性溶液に対して溶解性のないフィラを混合することによって、空孔13が存在する樹脂充填層15の大きさを制御することも可能である。例えば、前述の図16において、ガラスクロスのような酸性溶液に対する溶解性の低い部材を残すことも有用である。
 また、無機フィラ16に表面処理剤などで表面処理をされている場合について、説明する。ドリル、またはレーザーなどを用いてスルーホール28および、バイアホール30の加工を行うと、無機フィラ16の表面が物理的に切削もしくは変質するため、表面処理を実施していない新表面が露出する。その後、めっき工程やパターニング工程での酸性溶液により、露出した新表面から溶出していくため、結果的に形成される空孔13の量はほとんど変わらない。
 発明者らの実験によると、少なくとも一部にめっき導体21が形成されている空孔13の大きさは無機フィラ16の平均粒径の0.5倍~5.0倍とすることが最適であった。またエッチング方法を用いることで、無機フィラ16の溶出により空孔13を形成することができるので、空孔13の大きさが無機フィラ16の粒径の0.5倍未満になりにくい。また、無機フィラ16を一次粒子まで均一に分散させて絶縁層11やビルドアップ層20を形成することで、空孔13の大きさを、無機フィラ16の粒径の5.0倍以下に抑えることができる。なお5.0倍を超えた場合、例えば含有している無機フィラ16の分散状態が悪くて凝集構造を取っているためであり、形成される空孔13も不均一な状態で存在し、めっき導体21との密着性や応力緩和層などの接続信頼性などの所望の特性が得られなくなる場合がある。
 (実施の形態7)
 実施の形態7として、プリント配線板14やビルドアップ多層基板31の製造方法の一例について、図20~図24を用いて説明する。
 図20A~図20Cは、プリント配線板の製造方法の一例を説明する工程断面図である。図20において、24は銅箔等の配線材料である。18はガラス繊維やアラミド繊維等の基材(あるいは芯材)である。なお基材18は、酸等に対する溶解性は低いものを用いる。23はプリプレグであり、プリプレグ23は、基材18に、無機フィラ16を分散させた樹脂17を含浸させたものである。27は積層体、26はプレス25の押圧方向を示す矢印である。
 図20Aは、プリプレグ23の表面に配線材料24を固定(あるいは一体化)する方法の一例を説明する断面図である。
 まず、図20Aに示すように、少なくとも無機フィラ16と、樹脂17と、基材18とからなるプリプレグ23の表裏に配線材料24をセットする。そして、プレス25を、矢印26に示すように動かし、プリプレグ23と配線材料24を貼り付ける。なお、図20B、図20Cにはプレス25にセットする金型等は図示していない。そしてこれら部材を所定温度で加圧一体化する。その後、図20Cに示すようにプレス25を矢印26の方向に引き離すことで、積層体27を得る。そしてプリプレグ23を硬化させ、配線材料24を固定する。
 図21A~図21Dは、空孔13を形成する様子を説明する工程断面図である。図において、32は孔である。まず図21Aに示すように、積層体27の表裏に固定した配線材料24を所定形状にパターニングする。なおパターニングの工程(フォトレジストの塗布、露光、現像、配線材料24のエッチング、フォトレジストの除去工程等)は図示していない(省略している)。
 次に、ドリルもしくはレーザーなどを用いて孔32を形成し、図21Bの状態とする。
 次にこれに無電解めっき、電解めっきを行い、そのプロセス中の酸処理で、孔32の内壁部の無機フィラ16を溶出させて、図21Cに示すように空孔13等を形成する。
 その後図21Dに示すように、めっき導体21を析出させても良いが、空孔13の形成と同時に、めっき導体21を形成しても良い。このようにして接続信頼性の高い多層のプリント配線板14を得る。
 次に図22、図23を用いて、ビルドアップ積層体の製造方法の一例について説明する。
 図22A、図22Bは、ビルドアップ積層体を製造する様子を説明する工程断面図である。図において、33はビルドアップ積層体である。
 図22Aに示すように、各配線パターン層12の層間を電気的に接続するスルーホール28や導電性ペースト(図示せず)からなる層間接続部を有したコア基板29を用意する。そしてこのコア基板29を挟むようにビルドアップ層20を形成する。なお、ビルドアップ層20はの通り、少なくとも無機フィラと樹脂とから形成されているが、図22では省略している。
 以上のように、少なくとも各配線パターン層12の層間を電気的に接続するスルーホール28等の層間接続層を有したコア基板29を形成する。そしてこのコア基板29の表裏面に、少なくとも無機フィラと樹脂とからなる1層以上のビルドアップ層20を形成する。そして1層以上のビルドアップ層20と、1層以上の配線とを交互に積層して仮積層体(図示していないが、例えば、図22Bのようなもの)を形成する。
 その後、この仮積層体を加熱加圧によって接着して積層体とする。
 例えばこの仮積層体を、プレス25を用いて加圧、加熱、一体化すればよい。このプレス時に加熱、加圧することで、ビルドアップ層20に含まれる樹脂が軟化し、コア基板29の表層の配線パターン層12の埋め込み(あるいはパターンによる段差の埋め込み)を行う。こうして図22Bに示すようなビルドアップ積層体33を作製する。
 図23A~図23Cは、ビルドアップ多層基板31のビルドアップ層20に樹脂充填層15を形成する様子を説明する断面図である。
 ビルドアップ多層基板31の所定位置に有底の孔32を形成し、その後、孔32に露出したビルドアップ層20に含まれる無機フィラ(図示せず)を溶出させ、空孔(図示せず)を有する樹脂充填層15を形成し、図23Aの状態とする。図23Aにおいて孔32はドリルやレーザー等(図示せず)で形成したものである。
 なお孔32の内壁等に樹脂充填層15を形成するには、無電解めっき、電解めっきを行い、そのプロセス中の酸処理で行うことが有用である。
 そして、図23Bに示すように、孔32の内壁部の無機フィラ(図示せず)を溶出させて空孔(図示せず)を含む樹脂充填層15を形成すると同時にめっき導体21を析出させ、バイアホール30を形成する。
 その後、図23Cに示すように配線材料24を所定形状にパターニングし、ビルドアップ多層基板31を得る。
 なお図23等に示すように、ビルドアップ多層基板31を構成するコア基板29にも、樹脂充填層15を設けることは有用である。
 図24は、コア基板29の一部に樹脂充填層15を設けた様子を説明する断面図である。実施の形態5等を用いて、図24示すようなプリント配線板14を形成し、これをコア基板29としても良い。図24に示すように、プリント配線板14のスルーホール28の側面には、空孔(図示せず)等からなる樹脂充填層15が形成されている。
 次に実施の形態7として、作製した多層プリント配線板の特性の評価結果について報告する。実験として、図14等に示した少なくとも無機フィラ16と樹脂17とからなる1層以上の絶縁層11と1層以上の配線パターン層12とが交互に積層された積層体と配線パターン層12との層間を電気的に接続するめっき導体21を有したスルーホール28とを有するプリント配線板14であって、めっき導体21と接している絶縁層11に、無機フィラ16の粒径の0.5倍以上5.0倍以下の空孔13を、スルーホール28を取り囲んで複数個形成した接続信頼性評価用の6層スルーホール基板(実施例3)と、比較例として同じ樹脂系で空孔のない6層スルーホール基板を、異なる条件で複数種類(比較例3、比較例4)作製し、オイルディップ試験を行い、抵抗値変動について評価を行った結果を、以下の(表1)に示す。オイルディップ試験の条件は260℃(15秒)~20℃(20秒)とし、抵抗値変動が20%以上となったものを不良と判断した。
Figure JPOXMLDOC01-appb-T000003
 (表3)の結果より、比較例の試験結果では100サイクル以降で2/6サンプルの不良が発生したが、実施例3では、150サイクル後も抵抗値変動が無く、優れた接続信頼性を示した。
 以上説明のように、少なくとも無機フィラ16と樹脂17とからなる1層以上の絶縁層11と、1層以上の配線パターン層12とが交互に積層された積層体と配線パターン層12の層間を電気的に接続するめっき導体21を有したスルーホール28とからなりめっき導体21と接している絶縁層11に空孔13がスルーホール28を取り囲むように設けることで、プリント配線板14は、優れた接続信頼性を有することが判明した。
 なおビルドアップ積層体31についても、同様の評価を行ったが、同様に優れた接続信頼性を有することが判った。
 (実施の形態8)
 実施の形態8を用いて、本願発明のプリント配線板を実現するためのプリプレグの構成の一例について説明する。
 図25は、本発明の実施の形態8におけるプリプレグの構造の一例を模式的に示した断面図である。プリプレグ23は基材34と1gの無機フィラ16を30gのPH5以下の酸性溶液もしくはPH10以上のアルカリ性溶液の少なくともどちらか一方に浸漬させ20分間攪拌(なお容器には市販の50cc~100cc程度のガラスビーカーを、撹拌には市販のマグネット式等のスターラを使うことが有用である。これは実験時間の短縮や温度上昇の測定精度を高めるのに有用である)した際に、液温が5℃以上上昇する(すなわち実験当初より、あるいは室温に比べて5℃以上上昇する)無機フィラ16と、無機フィラ16を樹脂に分散させてなる樹脂組成物(図示せず)と、樹脂組成物に有機溶媒を加えたワニスを基材34に塗布含浸し、乾燥、半硬化させて得られる。
 無機フィラ16は樹脂組成物中の30体積%以上70体積%以下が望ましい。無機フィラ16の充填量が30体積%以下の場合、プリプレグ23を用いたプリント配線板において、めっき工程を通した際に無機フィラ16の溶出による空孔13の量が少なくなり、めっき導体21と絶縁層11との密着性が低下するため、所望の接続信頼性が得られなくなる。無機フィラ16の充填量が70体積%を超えた場合、得られたワニスの流動性が低下し、塗布含浸してプリプレグ化する際にプリプレグの厚みムラや部分的に樹脂不足によるヒビ割れなどが発生する場合がある。
 なお液温測定において、無機フィラ16を1g、溶液を30gだけの組合せに限定する必要はない。無機フィラ16を2g、溶液を60gとしても同様な結果が、より安定して得られることは言うまでもない。またこれら部材の混合比率を変化させることで、より評価精度を高めたり、評価時間を短縮できることは言うまでもない。また20分間の撹拌は、適宜調整すればよい。また20分を待つ必要は無く、20分間より短時間で5℃以上の液温上昇する場合も有用であり、この場合を含むことは言うまでもない。
 また、プリプレグ23に含まれる無機フィラ16は、1gの無機フィラ16を30gのPH5以下の酸性溶液もしくはPH10以上のアルカリ性溶液の少なくともどちらか一方に浸漬させ20分間攪拌した際に液温が5℃以上上昇することが望ましい。PH5より大きいか、PH10未満の溶液に対して溶解性を有してしまう(すなわち、液温が殆ど上昇しない、あるいは液温上昇が20分の撹拌による溶解時にも5℃未満と小さい場合)と、水などにも溶解してしまい、吸湿性が高くなってしまうため、ワニスの作製や無機フィラ16そのものの取り扱いが困難になる。
 (実施の形態9)
 実施の形態9を用いて、プリプレグの製造方法の一例について説明する。
 図26はプリプレグ23の製造方法の一例を模式的に示した断面図である。図において、35はロールであり、プリプレグの製造設備の一部を模式的に示すものである。36は槽である。槽36の中には半硬化樹脂体37を形成する部材、つまり、ワニス38を、所定の溶剤(例えばメチルエチルケトン、アルコール類、シクロペンタノン等)に溶解した状態でセットしている。
 まず、基材34として、ここでは厚み30ミクロンのガラスクロスを用意した。
 そして、図26に示すように基材34をロール35にセットし、矢印39aに示す方向に送り、槽36にセットしたワニス38を含浸させる。そしてロール35を、矢印39bに回しながら、基材34に含浸させたワニス38の含浸量を調整する。そして、乾燥機等(図示していない)の中を矢印39cのように送ってワニス38から溶剤成分を除去する。更に加熱等によりワニス38に含まれる樹脂成分を半硬化状態(本硬化の前の状態、いわゆるBステージ状態)とし、半硬化樹脂体37とする。なお、プリプレグ23に占める半硬化樹脂体37の割合はプリプレグ23全体の40体積%以上90体積%以下が望ましい。
 40体積%未満の場合、プリプレグ中の無機フィラ16の比率が低くなり、無電解めっき程を通した際の無機フィラ16の溶出による空孔の量が少なくなることでめっき導体と絶層部との密着性が低下するため、所望の接続信頼性が得られなくなる。
 また90体積%より高い場合、プリプレグ23の柔軟性や取り扱い性に影響を与える場合があるためである。こうしてプリプレグ23を連続的に作製する。なお、プリプレグ23の製造方法はこれに限定されるものではない。
 次に槽36にセットするワニス38について説明する。ワニス38は基材34へ含浸し、プリプレグ23とした後、プリプレグ中に含まれる無機フィラ16の割合が30体積%以上70体積%以下となることが望ましい。理由については前述の通りである。これを実現するには、少なくとも、ワニス38として、樹脂とこの樹脂中に分散した無機フィラ16と当該無機フィラ16に吸着させた両親媒性分子とこれらを分散させる有機溶剤と、から構成することが望ましい。
 そしてこの樹脂としてはエポキシ樹脂を用い、無機フィラ16としてはPH5以上、PH10以下の溶液に溶解する水酸化アルミニウム、窒化ケイ素、酸化錫、ジルコン珪酸塩、化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、炭酸カルシウム、水酸化カルシウム、炭酸バリウム、水酸化バリウムから選ばれた少なくとも1種類以上からなる。また、これらの無機フィラ16はシランカップリング剤、チタネートカップリング剤、リン酸エステル、カルボン酸エステル、スルホン酸エステル、不飽和脂肪酸、シリコンオイル、フッ素化エーテル、から選ばれた少なくとも1種類以上の両親媒性分子とからなる無機フィラとすることができる。
 また、基材34と樹脂組成物との親和性を考慮し、無機フィラ16と基材34とを同じ両親媒性分子を用いて処理しておくとなお良い。両親媒性分子の添加量については、無機フィラ16の比表面積より算出するが、無機フィラ16に対して0.1重量%~5.0重量%がよく、好適には0.1重量%以上1.0重量%以下とすることが良い。5.0重量%以上になると、無機フィラへ必要以上に吸着されている可能性が高く、あまった処理剤は樹脂と相互作用をおこし、ワニス粘度の増加につながる場合がある。逆に、0.1重量%よりも小さい場合、無機フィラの吸着点を網羅できず、耐湿性や分散性などの所望の特性を得られない場合がある。
 また、樹脂にはエポキシ樹脂を主体とする熱硬化性樹脂にゴム樹脂等を添加したものを使うことができる。
 まず、ゴム樹脂を添加する場合について説明する。ここで、ゴム樹脂としては、NBR(ニトリルゴム)等を用いることができる。
 ニトリルゴム(NBR)以外にも、ゴム樹脂としては水素化ニトリルゴム(HNBR)、フッ素ゴム(FKM、FFKM)、アクリルゴム(ACM)、シリコーンゴム(VMQ、FVMQ)、ウレタンゴム(AU、EU)、エチレンプロピレンゴム(EPM、EPDM)、クロロプレンゴム(CR)、クロロスルフォン化ポリエチレン(CSM)、エピクロルヒドリンゴム(CO、ECO)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、ノルボルネンゴム(NOR)、熱可塑性エラストマー(TPE)等から一つ以上を選ぶことができる。
 またこれらのゴム樹脂は、微粒子状で添加しても良い。微粒子状で添加することで、少ない添加量で、応力緩和効果を得ることができる。これは微粒子で添加することで、エポキシ樹脂とゴム樹脂との界面が増加するためと考えられる。なおゴム樹脂の粒径は0.1ミクロン以上10ミクロン以下(望ましくは1ミクロン以下)が望ましい。粒径が0.1ミクロン未満のゴム樹脂は特殊で高価な場合がある。また粒径が10ミクロンを超えると、プリプレグ23の薄層化に影響を与える場合がある。
 次に熱可塑性樹脂を添加する場合について説明する。例えばワニス38として、エポキシ樹脂を主体とする熱硬化性樹脂に、スルーホールめっきの接続信頼性を高めるために無機質充填材、プリント配線板としての成形性を高めるために、ゴム樹脂のかわりに熱可塑性樹脂を添加することができる。なお熱可塑性樹脂のTg(Tgはガラス転移温度)は130℃以下の熱可塑性樹脂を添加したものを使うことができる。
 また半導体の使用上限温度が125℃であるため、125℃を超える必要がない。そのためTgを125℃以下(バラツキを考慮すると130℃以下)とすることで、それ以下の温度でプリント配線板に一定の応力緩和作用(あるいは丈夫さ、耐衝撃性)を与えられる。なおプリント配線板(あるいはプリプレグ23)の長期の保存性を考えた場合、熱可塑性樹脂のTgは50℃以上にすることも可能である。
 なお、ゴム樹脂同様に熱可塑性樹脂も、微粒子状態として、エポキシ樹脂等にて添加しても良い。こうすることで、少量でも応力緩和効果が得られる。またゴム樹脂、熱可塑性樹脂の併用、更には他の微粒子系の樹脂(例えば、コアシェル構造の微粒子、あるいはアクリレート系共重合体、PMMA等の微粒子)を添加しても、同様の効果が得られる。
 更に熱可塑性樹脂の一種であるアクリル系樹脂を微粒子形状とし、これも応力緩和剤の用途のため添加することもできる。この場合も、その粒径は0.1ミクロン以上10ミクロン以下(望ましくは5ミクロン以下、更には1ミクロン以下)が望ましい。粒径が0.1ミクロン未満のものは、エポキシ樹脂中への分散が難しい場合がある。また粒径が10ミクロンを超えると、成形性に影響を与える場合がある。なおアクリル樹脂は、熱可塑性樹脂である。また熱可塑性の樹脂を、微粒子状態で添加する場合、これら樹脂の添加量を減らすことができる。
 これは、微粒子で添加することで、主成分となるエポキシ樹脂等との界面が増加するためである。なおエポキシ樹脂中に、ゴム樹脂や熱可塑性樹脂を微粒子状で添加し、硬化した場合、その断面をSEM(電子顕微鏡)観察した場合にこれら微粒子が観察できないもの(あるいは分子レベルで界面が消失するもの)とすることが望ましい。硬化後にこれら微粒子がそのまま微粒子状態で残った場合、その界面に応力集中する可能性があるためである。
 次にゴム樹脂や、熱可塑性樹脂等と、エポキシ樹脂の比率について説明する。全樹脂に対して、ゴム樹脂や熱可塑性樹脂のいずれか一方だけの添加量は、1重量%以上10重量%以下の範囲内とすることが望ましい。ゴム樹脂や熱可塑性樹脂のいずれか一方だけの添加量が、全樹脂に対して1重量%未満の場合、添加効果が得られない場合がある。またゴム樹脂や熱可塑性樹脂のいずれか一方だけの添加量が、10重量%を超えると、エポキシ樹脂の割合が低下するため、できあがったプリント配線板の熱伝導率が影響を受ける可能性がある。
 なおこれら部材を、微粒子として添加することで、添加量を減らすことができる。この場合、ゴム樹脂や熱可塑性樹脂のいずれか一方だけの添加量の加減を、0.5重量%以上とすることができる。0.5重量%未満の場合、微粒子として添加してもその効果が得られない場合がある。なおゴム樹脂と、熱可塑性樹脂の両方を組み合わせることも可能である。
 また無機フィラ16の平均粒径は、0.01μm以上20.00μm以下、さらに好ましくは0.1μm以上5.0μm以下の範囲が望ましい。平均粒径が0.01μm以下になると、比表面積が大きくなり、ワニス38への分散が難しくなる。また20.00μmを超えると、プリプレグの薄型化が難しくなる。
 なお無機フィラ16の充填率を高めたり、作製する空孔13の大きさや比率を制御するために、異なる粒度分布を有する複数種の無機フィラ16を選び、これらを混合して使用しても良い。
 (表4)には上記無機フィラ1gを2Nの硫酸30gに浸漬した際の20分間の液温の経時変化を示した。括弧内には初期からの温度上昇分の数値を示している。なお液温変化を正確に測定するには、所定の保温装置(あるいは断熱装置)を用いることは有用である。
Figure JPOXMLDOC01-appb-T000004
 (表4)の結果から、実施例4の酸化マグネシウム1gを2Nの硫酸30g中に浸漬し攪拌を続けると、酸化マグネシウムが次第に溶解していくと同時に液温の上昇が確認された。実施例4の酸化マグネシウムについては20分間で最終的に最大24℃の発熱を示した。比較例5のシリカで同様の評価を実施したところ、2Nの硫酸にはほとんど溶解せず、20分間で液温の上昇は見られなかった。
 以上のように、本発明の多層プリント配線板とその製造方法によれば、銅箔引き剥がし強度に優れ、絶縁層間や、絶縁層とめっき導体との界面部分のデラミネーション(層間剥離)などの発生を防止し、接続信頼性に優れた多層プリント配線板とその製造方法を実現するものである。
 高機能化する半導体等の各種電子部品を高密度に実装する際に用いられる多層プリント配線板に好適で、携帯電話、パソコン、デジタルカメラ等の各種小型機器に有効である。
 11,11a,11b,11c  絶縁層
 12  配線パターン
 13,13a,13b  空孔
 14  プリント配線板
 15  樹脂充填層
 16,16a,16b  無機フィラ
 17,17a,17b  樹脂
 18  ガラス織布および/または不織布
 19  レジスト
 20  ビルドアップ層
 21  めっき導体
 22  ビルドアップ樹脂
 23  プリプレグ
 24  銅箔
 25  プレス
 26  矢印
 27  積層体
 28  スルーホール
 29  コア基板
 30  バイアホール
 31  ビルドアップ多層基板
 32  孔
 34  基材
 35  ロール
 36  槽
 37  半硬化樹脂体
 38  ワニス
 39  矢印

Claims (19)

  1. 複数の絶縁層と、
    前記絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、
    同一層内の前記配線パターン間にのみ設けた樹脂充填層と、
    を有するプリント配線板であって、
    前記絶縁層は、少なくとも樹脂と、ガラス織布および/または不織布と、前記絶縁層に対して30体積%以上70体積%以下の無機フィラと、を有し、
    前記樹脂充填層は、複数の空孔、および/または、前記空孔に樹脂が充填されてなる樹脂体と、を有するプリント配線板。
  2. 複数の絶縁層と、
    前記絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、
    最表層の前記配線パターン間にのみ設けたレジスト充填層と、
    を有するプリント配線板であって、
    前記絶縁層は、少なくとも樹脂と、ガラス織布および/または不織布と、前記絶縁層に対して30体積%以上70体積%以下の無機フィラと、を有し、
    前記レジスト充填層は、複数の空孔、および/または、前記空孔にレジストが充填されてなるレジスト充填体と、を有するプリント配線板。
  3. 複数の絶縁層と、
    前記絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、ビアを構成するめっき導体と、
    を有するプリント配線板であって、
    前記絶縁層は、少なくとも樹脂と、前記絶縁層に対して30体積%以上70体積%以下の無機フィラと、を有し、
    前記配線パターン間に露出した前記絶縁層の表面には空孔が設けられ、
    前記空孔の少なくとも一部に、前記めっき導体の少なくとも一部が充填されているプリント配線板。
  4. 複数の絶縁層と、
    前記絶縁層と交互に積層された銅箔からなる複数層の配線パターンと、前記配線パターン層間を電気的に接続する孔の内部に形成されためっき導体からなるスルーホールと、
    を有するプリント配線板であって、
    前記絶縁層は、少なくとも樹脂と、前記絶縁層に対して30体積%以上70体積%以下の無機フィラと、を有し、
    前記絶縁層部の前記スルーホールまたはめっき導体を囲う部分に、複数個の空孔、あるいは前記めっき導体の前記絶縁層側に設けた複数の突起、のいずれか一つ以上を有するプリント配線板。
  5. 複数の第1の配線パターン層と、この第1の配線パターン層間を電気的に接続する層間接続部とを有したコア基板と、
    前記コア基板の少なくとも一面に形成された、少なくとも無機フィラと樹脂とからなるビルドアップ層と、第2の配線パターン層と、が交互に積層された積層体と、
    前記ビルドアップ層に形成した前記第2の配線パターン層間を電気的に接続するめっき導体からなるバイアホールと、
    を有するビルドアップ多層基板であって、
    前記ビルドアップ層の前記バイアホールまたはめっき導体を囲う部分に、複数個の空孔、あるいは前記めっき導体の前記絶縁層側に設けた複数の突起、のいずれか一つ以上を設けたビルドアップ多層基板。
  6. 前記スルーホールもしくは前記バイアホールの周囲部分に形成された前記空孔は、前記めっき導体から離れるに従い発生頻度が低下するように設けた請求項4もしくは5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  7. 前記空孔は、前記無機フィラが溶解されて形成されたものである請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  8. 前記突起は、前記空孔の少なくとも一部にめっき導体が形成されたものである請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  9. 空孔の直径は、無機フィラの0.5倍以上5.0倍以下である請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  10. 前記無機フィラ1gを30gのPH5以下の酸性溶液もしくはPH10以上のアルカリ性溶液のどちらか一方に浸漬させ20分間の攪拌を行うと5℃以上の液温の上昇を示す溶解性を持つことを特徴とした請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  11. 前記無機フィラは、
    水酸化アルミニウム、窒化ケイ素、酸化錫、ジルコン珪酸塩、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、炭酸カルシウム、水酸化カルシウム、炭酸バリウム、水酸化バリウムから選ばれた少なくともどれか一つ以上を含む請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  12. 前記無機フィラは、少なくともその表面に
    シランカップリング剤、チタネートカップリング剤、リン酸エステル、カルボン酸エステル、スルホン酸エステル、不飽和脂肪酸、シリコンオイル、フッ素化エーテル、から選ばれた少なくともどれか一つ以上を含む両親媒性分子を有する請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  13. 前記酸性溶液は、塩酸、硫酸、硝酸、過酸化水素、から選ばれた少なくともどれか一つ以上を含む水溶液である、請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  14. 前記アルカリ性溶液は、アルカリ金属水酸化物、アルカリ土類金属水酸化物から選ばれた少なくともどれか一つ以上を含む水溶液である、請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  15. 前記ガラス織布および/または不織布と、前記無機フィラがほぼ同じ両親媒性分子を有する、請求項1~5のいずれか一つに記載のプリント配線板またはビルドアップ多層基板。
  16. 少なくとも、半硬化状態の第1の樹脂と、ガラス織布および/または不織布と、無機フィラと、を有するプリプレグの少なくとも一面に第1の銅箔を積層し、前記樹脂を熱硬化させて、銅箔付第1の積層体を形成する工程と、
    前記第1の積層体の表層の前記第1の銅箔をパターニングして、内層配線パターンを形成すると同時に前記内層配線パターン間に露出した前記絶縁層の表面に複数の空孔を形成し、空孔付第1の積層体を形成する工程と、
    第2の銅箔と、半硬化状態の第2の樹脂とガラス織布および/または不織布と無機フィラとを有するプリプレグと、前記空孔付第1の積層体を積層し、前記第2の樹脂の一部を前記空孔の少なくとも一部に充填し、樹脂充填層を形成した状態で、前記第2の樹脂を熱硬化させて、第2の積層体を形成する工程と、
    前記第2の積層体の表層の前記第2の銅箔をパターニングして、外層配線パターンを形成する工程と、を有するプリント配線板の製造方法。
  17. 表層の銅箔をパターニングして、表層配線パターンを形成すると同時に前記表層配線パターン間に露出した絶縁層の表面に複数の空孔を形成する工程と、
    前記複数の空孔の少なくとも一部に、めっき導体もしくはレジストのいずれか一つ以上を形成する工程と、を有する請求項16に記載のプリント配線板の製造方法。
  18. 少なくとも半硬化状態の第1の樹脂と、ガラス織布および/または不織布と、無機フィラと、を有するプリプレグの少なくとも一部に第1の銅箔を積層し、前記樹脂を熱硬化させて、銅箔付第1の積層体を形成する工程と、
    前記積層体上の銅箔をエッチングにより配線パターン層とし、両面板を形成する工程と同時に前記内層配線パターン間に露出した前記絶縁層の表面に複数の空孔を形成し、空孔付第1の積層体を形成する工程と、
    前記両面板の表裏面に、未硬化状態のシート状の第2の絶縁層と、第2の配線材料とを積層配置し、加熱加圧によって接着することで多層積層体を形成する第2の熱プレス工程と、
    前記多層積層体に孔を形成する工程と、
    前記孔の内壁に、前記無機フィラの0.5倍以上5.0倍以下の複数の空孔を形成する工程と、
    前記孔の内壁に、前記積層体の前記配線パターン層を電気的に接続するめっき導体を形成すると同時に前記空孔の少なくとも一部にめっき導体を形成する工程と、を含むプリント配線板の製造方法。
  19. 少なくとも各配線パターン層の層間を電気的に接続する層間接続部を有したコア基板を形成する工程と、
    前記コア基板の表裏面に形成された少なくとも無機フィラと樹脂とからなる1層以上のビルドアップ層と1層以上の配線材料とを交互に積層し、仮積層体を形成する工程と、
    前記仮積層体を加熱加圧によって接着し積層体を形成する熱プレス工程と、
    前記孔の内壁周囲に、前記無機フィラの0.5倍以上5.0倍以下の空孔を形成する工程と、
    前記孔の内壁に、積層体の前記配線パターン層を電気的に接続するめっき導体を形成する工程と、を含むビルドアップ多層基板の製造方法。
PCT/JP2010/005402 2009-09-02 2010-09-02 プリント配線板、ビルドアップ多層基板とその製造方法 WO2011027558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10813509.6A EP2461659A4 (en) 2009-09-02 2010-09-02 FITTED PCB, MULTILAYER BUILT-UP PCB AND MANUFACTURING PROCESS THEREFOR
JP2011529816A JP5561279B2 (ja) 2009-09-02 2010-09-02 プリント配線板、ビルドアップ多層基板とその製造方法
CN2010800389363A CN102484951A (zh) 2009-09-02 2010-09-02 印刷电路板、积层多层基板及其制造方法
US13/392,554 US8866022B2 (en) 2009-09-02 2010-09-02 Printed wiring board, build-up multi-layer board, and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-202202 2009-09-02
JP2009202202 2009-09-02
JP2010-009771 2010-01-20
JP2010009771 2010-01-20

Publications (1)

Publication Number Publication Date
WO2011027558A1 true WO2011027558A1 (ja) 2011-03-10

Family

ID=43649113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005402 WO2011027558A1 (ja) 2009-09-02 2010-09-02 プリント配線板、ビルドアップ多層基板とその製造方法

Country Status (6)

Country Link
US (1) US8866022B2 (ja)
EP (1) EP2461659A4 (ja)
JP (1) JP5561279B2 (ja)
CN (1) CN102484951A (ja)
TW (1) TW201121372A (ja)
WO (1) WO2011027558A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135229A (ja) * 2011-12-22 2013-07-08 Samsung Techwin Co Ltd 多層回路基板の製造方法及びその製造方法によって製造された多層回路基板
JP2014086745A (ja) * 2012-10-19 2014-05-12 Nippon Dempa Kogyo Co Ltd 恒温槽付水晶発振器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140016150A (ko) * 2012-07-30 2014-02-07 삼성전기주식회사 인쇄회로기판 및 그 제조방법
JP2014175485A (ja) * 2013-03-08 2014-09-22 Ibiden Co Ltd 配線板及びその製造方法
TWI652005B (zh) 2013-05-29 2019-02-21 大自達電線股份有限公司 電磁波遮蔽膜及利用此電磁波遮蔽膜之印刷電路板
KR102430695B1 (ko) 2015-01-14 2022-08-08 도요보 가부시키가이샤 신축성 전극 및 배선 시트, 생체 정보 계측용 인터페이스
US10588569B2 (en) * 2015-01-14 2020-03-17 Toyobo Co., Ltd. Conductive fabric
WO2017122639A1 (ja) 2016-01-13 2017-07-20 東洋紡株式会社 伸縮性導体組成物、伸縮性導体形成用ペースト、伸縮性導体組成物からなる配線を有する衣服、およびその製造方法
JP7089453B2 (ja) * 2018-10-10 2022-06-22 新光電気工業株式会社 配線基板及びその製造方法
KR20200055424A (ko) * 2018-11-13 2020-05-21 삼성전기주식회사 인쇄회로기판
CN113396479B (zh) * 2019-02-14 2023-09-22 株式会社日立产机系统 电力转换装置
CN114765928A (zh) * 2021-01-12 2022-07-19 深南电路股份有限公司 一种印制线路板及其压合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206696A (ja) * 1988-02-15 1989-08-18 Matsushita Electric Works Ltd 電気積層板の製造方法
JPH08181438A (ja) * 1994-12-22 1996-07-12 Sumitomo Bakelite Co Ltd 感光性アディティブ接着剤を用いた多層プリント配線板の製造方法
JPH09232757A (ja) * 1996-02-27 1997-09-05 Shin Kobe Electric Mach Co Ltd 多層回路板の製造法
JPH10212364A (ja) * 1996-11-26 1998-08-11 Ajinomoto Co Inc 積層板用プリプレグ及びこれを用いたプリント配線板の製造方法
JP2001217549A (ja) * 1999-11-26 2001-08-10 Ibiden Co Ltd 多層回路基板
JP2004146711A (ja) * 2002-10-28 2004-05-20 Matsushita Electric Works Ltd 多層プリント配線板の製造方法およびこれにより製造した多層プリント配線板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166598A (ja) * 1987-12-22 1989-06-30 Ibiden Co Ltd 多層プリント配線板及びその製造方法
JPH05299814A (ja) * 1992-04-20 1993-11-12 Ibiden Co Ltd プリント配線板の製造方法
JPH06204660A (ja) 1992-12-28 1994-07-22 Ibiden Co Ltd 多層プリント配線板の製造方法
JPH0824216B2 (ja) 1993-12-13 1996-03-06 日本電気株式会社 多層印刷配線板の製造方法
KR100633678B1 (ko) * 1998-02-26 2006-10-11 이비덴 가부시키가이샤 필드 바이어 구조를 갖는 다층프린트 배선판
JP2000031641A (ja) * 1998-07-08 2000-01-28 Hitachi Ltd 多層配線基板の製造方法及びその多層配線基板並びに携帯用電子機器
JP2000191910A (ja) 1998-12-24 2000-07-11 Fujitsu Ltd 耐熱性樹脂組成物、層間絶縁膜及び多層回路基板
JP3219396B2 (ja) * 1999-09-14 2001-10-15 イビデン株式会社 多層プリント配線板の製造方法
JP4592890B2 (ja) * 1999-11-26 2010-12-08 イビデン株式会社 多層回路基板
TW512653B (en) * 1999-11-26 2002-12-01 Ibiden Co Ltd Multilayer circuit board and semiconductor device
JP3527694B2 (ja) * 2000-08-11 2004-05-17 新光電気工業株式会社 配線基板の製造方法
US6855892B2 (en) * 2001-09-27 2005-02-15 Matsushita Electric Industrial Co., Ltd. Insulation sheet, multi-layer wiring substrate and production processes thereof
EP1357773A3 (en) * 2002-04-25 2005-11-30 Matsushita Electric Industrial Co., Ltd. Wiring transfer sheet and method for producing the same, and wiring board and method for producing the same
JP2005142280A (ja) * 2003-11-05 2005-06-02 Ibiden Co Ltd モジュール基板およびその製造方法
TWI282259B (en) * 2004-01-30 2007-06-01 Hitachi Chemical Co Ltd Adhesion assisting agent-bearing metal foil, printed wiring board, and production method of printed wiring board
JP2005285862A (ja) 2004-03-26 2005-10-13 Kyocera Corp 配線基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206696A (ja) * 1988-02-15 1989-08-18 Matsushita Electric Works Ltd 電気積層板の製造方法
JPH08181438A (ja) * 1994-12-22 1996-07-12 Sumitomo Bakelite Co Ltd 感光性アディティブ接着剤を用いた多層プリント配線板の製造方法
JPH09232757A (ja) * 1996-02-27 1997-09-05 Shin Kobe Electric Mach Co Ltd 多層回路板の製造法
JPH10212364A (ja) * 1996-11-26 1998-08-11 Ajinomoto Co Inc 積層板用プリプレグ及びこれを用いたプリント配線板の製造方法
JP2001217549A (ja) * 1999-11-26 2001-08-10 Ibiden Co Ltd 多層回路基板
JP2004146711A (ja) * 2002-10-28 2004-05-20 Matsushita Electric Works Ltd 多層プリント配線板の製造方法およびこれにより製造した多層プリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135229A (ja) * 2011-12-22 2013-07-08 Samsung Techwin Co Ltd 多層回路基板の製造方法及びその製造方法によって製造された多層回路基板
JP2014086745A (ja) * 2012-10-19 2014-05-12 Nippon Dempa Kogyo Co Ltd 恒温槽付水晶発振器

Also Published As

Publication number Publication date
JPWO2011027558A1 (ja) 2013-02-04
TW201121372A (en) 2011-06-16
US8866022B2 (en) 2014-10-21
EP2461659A4 (en) 2014-08-20
US20120152599A1 (en) 2012-06-21
EP2461659A1 (en) 2012-06-06
CN102484951A (zh) 2012-05-30
JP5561279B2 (ja) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2011027558A1 (ja) プリント配線板、ビルドアップ多層基板とその製造方法
US9538642B2 (en) Wiring board and method for manufacturing the same
US20110019383A1 (en) Wiring board and method for manufacturing the same
KR101286867B1 (ko) 애디티브법에 의해 회로 기판를 제조하는 방법 및 이 방법에 의해 얻어진 회로 기판과 다층 회로 기판
KR100273089B1 (ko) 다층프린트 배선판 및 다층프린트 배선판의 제조방법
US10818428B1 (en) Inductor built-in substrate
US20210195748A1 (en) Inductor built-in substrate
US20200335258A1 (en) Inductor built-in substrate
JP2013089745A (ja) 多層プリント配線基板とその製造方法
WO2003009656A1 (en) Circuit-formed substrate and method of manufacturing circuit-formed substrate
JP2007005815A (ja) 多層印刷回路基板およびその製造方法
JP5493463B2 (ja) ビルドアップ多層基板とこの製造方法
JPH11317578A (ja) 配線基板の製造方法
US20200335259A1 (en) Inductor built-in substrate and method for manufacturing the same
US20200335277A1 (en) Method for manufacturing inductor built-in substrate
US20200335257A1 (en) Inductor built-in substrate
JP2011222962A (ja) プリント基板およびその製造方法
JP2005159074A (ja) 内層側に凸出部のあるビアホール接続用の電極
TW201010560A (en) Printed circuit boards and method for manufacturing the same
JP2002252459A (ja) 多層配線基板及びその製造方法
JP2004111471A (ja) 配線基板
JP2005005734A (ja) 回路形成基板の製造方法および回路形成基板
TW202147931A (zh) 電路基板、電路基板的製造方法及電子機器
JP2001358436A (ja) プリント配線板の製造方法及びそれを用いた多層プリント配線板
JPH1075057A (ja) フレキシブル多層配線基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038936.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529816

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13392554

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010813509

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE