WO2011024645A1 - 加熱装置 - Google Patents

加熱装置 Download PDF

Info

Publication number
WO2011024645A1
WO2011024645A1 PCT/JP2010/063556 JP2010063556W WO2011024645A1 WO 2011024645 A1 WO2011024645 A1 WO 2011024645A1 JP 2010063556 W JP2010063556 W JP 2010063556W WO 2011024645 A1 WO2011024645 A1 WO 2011024645A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heating
coil
heating chamber
magnetic body
Prior art date
Application number
PCT/JP2010/063556
Other languages
English (en)
French (fr)
Inventor
松本 貞行
郁朗 菅
みゆき 竹下
一史 田中
和裕 亀岡
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to EP10811695.5A priority Critical patent/EP2472185B1/en
Priority to JP2011528732A priority patent/JP5295374B2/ja
Priority to ES10811695.5T priority patent/ES2562705T3/es
Priority to CN201080037867.4A priority patent/CN102483237B/zh
Publication of WO2011024645A1 publication Critical patent/WO2011024645A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/129Cooking devices induction ovens

Definitions

  • the present invention relates to a heating device, and more particularly to a cooking device that employs a heating device that uses an induction current heater as a heat source in a heating chamber such as a grill, a roaster, or an oven.
  • IH cooking heaters Induction Heating: electromagnetic induction heating type cookers
  • the heating chamber is generally called a grill, a roaster or an oven. Grilled fish (especially salted sword fish) is said to be delicious when the surface is baked with radiant heat from a high-temperature heating source and heated to the inside of the fish with high-temperature air.
  • the heating chamber of the IH cooking heater is generally referred to as an electric heater (such as a sheathed heater or a radiant heater) above and below the heating chamber (also referred to as a “resistance heater” because it generates heat due to Joule heat when a current flows through the resistor). ), And the power supply terminal of the electric heater is electrically connected to a power source provided outside the heating chamber, and electric power is supplied from the power source to the electric heater to heat the electric heater. The electric power supplied to the electric heater is converted into heat energy by the electric heater, and the food in the heating chamber is directly cooked by the heat energy through the air heated to a high temperature.
  • an electric heater such as a sheathed heater or a radiant heater
  • the heating chamber also referred to as a “resistance heater” because it generates heat due to Joule heat when a current flows through the resistor.
  • the cooking device having such a configuration is not limited to an IH cooking heater, and an oven toaster, a microwave oven, and the like often have the same configuration.
  • the structure of the heating cooker using such an electric heater is simple, since the electric heater is fixed in the heating chamber, cleaning after cooking is difficult, and there is room for improvement in cleanability. That is, not only for the IH cooking heater but also for any other type of cooking device such as a microwave oven, there is a high demand for improvement in cleanability. This is an essential requirement for cookers that handle food.
  • an oven or a microwave oven for inductively heating a metal serving as a food heating source in a non-contact manner has been proposed so far, and a heating source that can be attached to and detached from a heating cabinet is also known.
  • a conventional oven using induction heating technology has a heating coil disposed opposite to the upper and lower surfaces of a cabinet made of magnetic material, and a high-frequency current is passed through the heating coil.
  • the heating chamber heats up. Since the storage is detachable, the cleaning property can be improved.
  • Patent Document 2 another conventional microwave oven using induction heating technology has been proposed.
  • an induction heating coil that is mechanically and electrically disconnected from the inside of the heating chamber using a partition plate made of an insulating heat-resistant plate such as heat-resistant glass is provided at the bottom of the heating chamber, A metal heating element is disposed on the plate so as to face the induction heating coil. Since the heating element is configured as a band-shaped metal body that forms a closed loop, it is possible to efficiently generate an induced current and to freely set the heat dissipation area of the metal body. Similarly, the heating element described in Patent Document 2 is detachably disposed in the heating chamber.
  • FIG. 3 Another conventional microwave oven using the induction heating technique described in Patent Document 3 is provided with induction heating means for induction heating the outer peripheral portion of the oven tray configured to be removable from two places on the left and right.
  • the oven dish has a magnetic material such as an iron plate with a hollow film formed on at least a heated portion thereof.
  • the induction heating means is composed of a coil wound like a bobbin used in a sewing machine or the like and a core that efficiently supplies the magnetic flux generated by the coil to the oven dish.
  • the core is U-shaped, for example, and the magnetic flux forms a closed magnetic path by the outer peripheral portion of the core and the oven pan so that the high-frequency magnetic flux does not leak to other portions.
  • the oven dish has a lower surface made of a magnetic material such as magnetic stainless steel, and an upper surface made of a highly heat conductive material such as aluminum or copper.
  • the magnetic material is induction-heated by the magnetic flux generated in the coil and the core, and this generated heat is transmitted to the entire oven pan made of a highly heat-conductive material.
  • JP-A-8-138864 paragraphs [0024] to [0028], FIGS. 1 and 3) JP-A-6-18044 (paragraphs [0020], [0029] to [0036], FIG. 1, FIG. 2, FIG. 5 to FIG. 7)
  • the strip metal heated by induction heating constitutes a closed loop, it can be efficiently induction heated and heated to a high temperature.
  • the magnetic flux reaches the band-shaped metal and is induction-heated, but the fat tray needs to be prevented from being induction-heated.
  • the ceramic pan must be thick from the viewpoint of strength, and the temperature of the fat pan must be kept below the ignition point of the fat in order to prevent the fat on the fat pan from igniting, and the distance between the strip metal and the fat pan Must be increased. As a result, the distance between the coil and the strip metal becomes large, and there is a problem that the strip metal cannot be efficiently induction heated.
  • the conventional cooking device described in Patent Document 3 is not suitable for grill cooking because the oven dish is heated to perform frying pan cooking, but the oven dish is heated to a high temperature and the radiant heat from there is used. It is also possible to try grilling.
  • the side wall surface of the oven plate is only heated by the coil provided on the side surface of the oven plate, and the central portion of the oven plate is made of aluminum, which is a high heat conductive material.
  • the thickness of the high thermal conductivity material Since it is heated by heat transfer from the side by copper or copper, the thickness of the high thermal conductivity material must be made extremely thick in order to achieve a sufficiently high temperature, resulting in a decrease in the effective volume in the heating chamber, and There is a problem that it takes time to increase the temperature because the heat capacity of the oven pan increases.
  • the present invention has been made in order to solve the above-described problems, and improves the cleanability of the heating chamber by a detachable heater and further receives fat from foods in grill cooking as described above.
  • an induction heating means for heating the heater is arranged on the side surface of the heating chamber, and a heating device capable of sufficient high-temperature heating over the entire heater in the heating chamber is obtained. It is.
  • a heating device includes a box-shaped heating chamber, a heater made of an electrically closed conductor disposed inside the heating chamber, a coil disposed outside the heating chamber, and the coil A power supply circuit for supplying a high-frequency current to the coil, and a magnetic body arranged so that a high-frequency magnetic flux generated from the coil is linked to the heater.
  • the heating device can heat the heater with Joule heat generated by the induced current by passing an induced current through electromagnetic induction to the heater made of an electrically closed conductor.
  • FIG. 1 It is sectional drawing which shows the heating cooker by Embodiment 1 which concerns on this invention. It is a perspective view which shows the principal part of the heating cooker by Embodiment 1.
  • FIG. It is a perspective view which shows the heat insulation member of the heating cooker by Embodiment 1.
  • FIG. It is a schematic perspective view which shows the direction through which the coil current which flows into the coil of FIG. 2, and the induced current which flows into a heater flow.
  • 3 is a partially enlarged vertical cross section of the induction heating means according to the first embodiment.
  • FIG. 6 is an enlarged vertical cross section similar to FIG. 5 of the induction heating means according to a modification of the first embodiment.
  • 3 is a cross-sectional view of induction heating means used in an experiment in Embodiment 1.
  • FIG. It is a top view of the induction heating means used for experiment in Embodiment 1, Comprising: The temperature measurement position of a heater is shown. It is the graph which plotted the temperature rise of the heater measured by experiment in each temperature measurement position shown in FIG. It is sectional drawing which shows the heating cooker by Embodiment 2 which concerns on this invention. It is a perspective view which shows the principal part of the heating cooker by Embodiment 2.
  • FIG. 1 which shows the heating cooker by the modification of Embodiment 1.
  • FIG. 6 is an enlarged vertical cross section similar to FIG. 5 of the induction heating means according to a modification of the first embodiment.
  • 3 is a cross-sectional view of induction heating means used in an experiment in Embodiment 1.
  • FIG. It is a top view of
  • FIG. 6 is a graph plotting a temperature rise of a heater measured in an experiment in the second embodiment. It is sectional drawing which shows the heating cooker by the modification of Embodiment 2. FIG. It is a graph which shows the relationship between the length of the magnetic body of the heating cooker by another modification of Embodiment 2, and the temperature rise of the electric power feeding part of a heater. It is a perspective view which shows the principal part of the heating cooker by another modification of Embodiment 2. FIG. It is sectional drawing which shows the heating cooker by Embodiment 3 which concerns on this invention. It is a perspective view which shows the principal part of the heating cooker by Embodiment 3. 6 is a partially enlarged vertical section of the induction heating means according to the third embodiment. FIG.
  • FIG. 21 is an enlarged vertical cross section similar to FIG. 20 of induction heating means according to a modification of the third embodiment.
  • FIG. 21 is an enlarged vertical cross section similar to FIG. 20 of induction heating means according to another modification of the third embodiment.
  • FIG. 28 is an enlarged vertical cross section of the induction heating means according to Embodiment 5 as seen from the line AA in FIG. 27. It is sectional drawing which shows the heating cooker by Embodiment 6 which concerns on this invention. It is a perspective view which shows the principal part of the heating cooker by Embodiment 6. FIG. It is a perspective view which shows the principal part of the heating cooker by the modification of Embodiment 6. FIG. It is a perspective view which shows the principal part of the heating cooker by another modification of Embodiment 6.
  • FIG. FIG. 16 is an overall perspective view of a plate-like lower heater according to another modification of the sixth embodiment. It is sectional drawing of the plate-shaped lower heater of FIG.
  • FIG. It is a perspective view which shows the principal part of the heating cooker by another modification of Embodiment 6.
  • FIG. It is an expanded view which shows the heater of the heating cooker of FIG.
  • FIG. It is sectional drawing which shows the heater of the heating cooker of FIG.
  • FIG. It is sectional drawing which shows the principal part of the heating cooker by another modification of Embodiment 6.
  • FIG. It is sectional drawing which shows the principal part of the heating cooker by another modification of Embodiment 6.
  • heating cooker heating device
  • 10 heating chamber (box-shaped housing)
  • 12a upper wall
  • 12b lower wall
  • 14a, 14b side wall
  • 16 front wall
  • 18 rear wall
  • 20 heater
  • 22 low resistance part
  • 24 power feeding part
  • 25 cooling part
  • 26 high resistance part (heater part)
  • 30 coil
  • 32 magnetic body
  • 34 heat insulating member
  • 36 groove part (opening part)
  • 37 Grilling net
  • 38 greasy saucer
  • 40 base
  • 42 side
  • 44 extension
  • 45 heat insulating member
  • 50 fixed part
  • 52 movable part
  • 54 heater outlet
  • 56 airtight container
  • 58 Lower heater
  • 59 notch
  • 70 box-type airtight container
  • 72 lid part
  • 73 lid part main body
  • 74 container part
  • 75 container part main body
  • ⁇ 1, ⁇ 2 magnetic flux.
  • the present invention relates to an arbitrary heating apparatus in general, and can be applied to industrial baking furnaces and drying furnaces, but can be equally used as a consumer heating cooker.
  • a heating cooker is described as a specific example of a heating device concerning the present invention.
  • terms for indicating directions for example, “up”, “down”, “right”, “left”, etc.
  • directions for example, “up”, “down”, “right”, “left”, etc.
  • FIG. 1 is a cross-sectional view showing a heating cooker according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing main components of FIG.
  • the heating cooker 1 shown to each embodiment of this invention is used suitably for an IH cooking heater and is especially useful as a heating chamber which performs grill cooking, it has other forms, such as a microwave oven and an oven toaster. It can be employed in a heating cooker and can be used for various cooking such as oven cooking as well as grill cooking.
  • the heating cooker 1 has a heating cabinet (box-shaped housing) 10 as shown in FIGS.
  • the heating chamber 10 includes an upper wall 12a, a lower wall 12b, left and right side walls 14a and 14b extending in the vertical direction, and front and rear walls (not shown).
  • the heating cooker 1 is arranged along the left and right side walls 14a and 14b, and detachable heaters 20a and 20b made of a metal body constituting an electrical closed loop (closed circuit) inside and below the inside of the heating chamber 10.
  • a magnetic body 32 such as a ferrite core made of a magnetic material disposed adjacent to each of the coils 30a and 30b.
  • the coils 30a and 30b are made of, for example, so-called litz wires made of 19 stranded wires coated with a 0.3 mm diameter copper wire with resin or the like on a plane parallel to the side walls 14a and 14b (each corner For example, it is formed by winding a plurality of times (25 times) into a curved or rectangular shape having a curved portion.
  • the plurality of litz wires are wound along each side of the rectangle to form a current (magnetic flux) in the same direction.
  • the magnetic body 32 is disposed so as to surround a plurality of litz wires, which are arranged so that currents flow in the same direction in FIG.
  • two magnetic bodies 32 are arranged in parallel and opposed to the heaters 20a and 20b arranged above and below.
  • the magnetic body 32 can be formed using, for example, a magnetic material equivalent to a ferrite core usually used around a heating coil of a general IH cooking heater.
  • a U-shaped heat insulating member 34 is provided inside the U-shaped magnetic body 32. That is, the coils 30a and 30b have a structure sandwiched between the magnetic body 32 and the heat insulating member 34 as shown in FIGS. 1 and 2 at the portions facing the heaters 20a and 20b.
  • the heat insulating member 34 has a two-layer structure of a heat insulating material 34 a such as glass wool or ceramic wool and a ceramic 34 b, and part of the side walls 14 a and 14 b of the heating chamber 10 is made of ceramic 34 b. You may comprise, and you may comprise with metals, such as iron or stainless steel.
  • the coils 30a and 30b and the magnetic body 32 are insulated from the high-temperature air inside the heating chamber 10.
  • the heat insulating material 34a may be an air layer or an air flow.
  • the coils 30a and 30b, the magnetic body 32, and the heat insulating member 34 thus configured are arranged so as to be part of the side walls 14a and 14b of the heating chamber 10 as shown in FIG.
  • the remaining wall surfaces (including the upper wall 12a and the lower wall 12b) of the heating chamber 10 are configured using a heat resistant material such as a metal such as iron or stainless steel, or an insulating material such as ceramic or glass.
  • the heating chamber 10 constitutes a casing closed by an upper wall 12a, a lower wall 12b, side walls 14a and 14b, a front wall, and a rear wall made of a heat resistant material.
  • the front wall of the heating chamber 10 has a front door (not shown here) that can be freely opened and closed for taking in and out food and the like.
  • the heaters 20a and 20b are inserted and supported in a groove (opening) 36 extending in the horizontal direction of the heat insulating member 34, as shown in the figure. At this time, the heaters 20a and 20b are merely placed on the groove portion 36 of the heat insulating member 34, and can be detached from the front wall that can be freely opened and closed.
  • the inside of the heating chamber 10 is provided with a grill 37 for placing food and a fat tray 38 for receiving fat from the food via the front wall.
  • the structure and material of the grill 37 and the fat tray 38 the same structure and material as those used in the heating chamber of the conventional IH cooking heater can be used.
  • an induced current due to the interlinked high-frequency magnetic flux is generated in the electrically closed heaters 20a and 20b (constituting a closed loop), and Joule heat due to the induced current is uniformly generated throughout the heaters 20a and 20b.
  • the whole heater 20a, 20b is heated uniformly, the foodstuff accommodated in the heating chamber 10 can be heated uniformly.
  • sufficient power for example, 2 kW in total
  • the heaters 20 a and 20 b are heated to 800 ° C. or higher, and the food can be directly heated by radiant infrared rays.
  • the heaters 20a and 20b heat the surrounding air, and the air inside the heating chamber 10 is uniformly heated by convection, so that the food can be indirectly heated by the high-temperature air.
  • the foodstuff accommodated in the heating chamber 10 is heated by the radiant heat from heater 20a, 20b and high temperature air, and is grill-cooked.
  • the fat generated from the food material by heating is received by the fat tray 38 installed below the lower heater 20b.
  • the heating cooker 1 of the present invention heats by the Joule heat by passing an induction current through the lower heater 20b, and performs induction heating like the conventional heating cookers described in Patent Documents 1 and 2 above. It is not a heating principle. Therefore, even if the grease receiving tray 9 is made of a metal material, it is not directly heated by the lower heater 20b, but by providing a substantial distance between the lower heater 20b and the grease receiving tray 38, the grease receiving tray 9 The temperature of 38 can be kept lower than the ignition temperature of fat.
  • the heating by Joule heat generated by the induction current employed in the present invention is different in principle from the induction heating for the pan placed on the top plate of a general IH cooking heater, and may not be called “induction heating”. Although it is heating by Joule heat generated by “induction current” flowing by electromagnetic induction, it is treated as induction heating in the present application.
  • the coils 30a and 30b and the magnetic body 32 for causing an induction current to flow through the heaters 20a and 20b by electromagnetic induction are referred to herein as “induction heating means”.
  • the input power and temperature of the heaters 20a and 20b described above are examples, and the temperature of the heaters 20a and 20b is determined using the input power and the heat radiation area (surface area) of the heater as parameters.
  • the same power supply circuit as used in an induction heating apparatus such as a general IH cooking heater can be used.
  • a half bridge circuit, a full bridge circuit, etc. It can be configured using a monolithic resonance circuit. Therefore, even if the power supply circuit is not described in detail in each embodiment, for example, when a half-bridge circuit or a full-bridge circuit is used, the resonant capacitor is connected in series with the coil, as will be readily understood by those skilled in the art.
  • a resonance capacitor is connected in parallel with the coil, and such well-known matters are naturally applied to each embodiment of the heating cooker 1 according to the present invention.
  • the coils 30a and 30b may be supplied with power from individual power supply circuits, or may be supplied with power from the same power supply circuit by connecting the coils 30a and 30b in parallel or in series. In addition, when connecting the coils 30a and 30b in parallel or in series, it is necessary to determine the connection direction in consideration of the current direction, which will be described later.
  • FIG. 4 shows the direction of the coil current flowing through the coils 30a and 30b, the direction of the magnetic flux generated by the coil current, and the direction of the induced current flowing through the heaters 20a and 20b by electromagnetic induction.
  • components other than the coils 30a and 30b and the heaters 20a and 20b are omitted.
  • the coil current and the induced current are shown by overwriting the coils 30a and 30b and the heaters 20a and 20b.
  • the direction in which the coil current and the induced current flow changes depending on the driving frequency, but FIG. When a coil current flows through the coils 30a and 30b in the direction shown in FIG. 4, a magnetic flux is generated around the coils 30a and 30b.
  • the maximum heater heating efficiency can be realized by setting the phase (direction) of the coil current as shown in FIG.
  • Arbitrary (adjustable) heater heating efficiency can be achieved by shifting the (direction) from each other.
  • FIG. 5 is a partially enlarged vertical sectional view of the induction heating means composed of the coil 30 and the magnetic body 32 (including the heat insulating member 34 and the heater 20), and is one of four of the heating cookers 1 shown in FIG. An induction heating means is shown.
  • the heater 20 shown in FIG. 5 is shown only in a portion interlinking with the magnetic flux.
  • a high frequency current is passed through the coil 30, a high frequency magnetic flux is generated around the coil 30.
  • the high-frequency magnetic flux passes through a magnetic circuit composed of a U-shaped magnetic body 32 and a U-shaped opening.
  • the “U-shaped magnetic body 32” includes a base portion 40 extending along the coil 30 and a pair of side portions 42a and 42b extending vertically from both ends of the base portion 40, and the side portions 42a and 42b. The thing which forms the opening part 36 between is said.
  • the magnetic flux passing through the opening 36 of the U-shaped magnetic body 32 includes a magnetic flux ⁇ 1 that does not pass through the heater 20 and a magnetic flux ⁇ 2 that passes through the heater 20, as shown in FIG.
  • the magnetic flux ⁇ 1 is an extremely effective magnetic flux for causing an induced current to flow through the electrically closed heater 20.
  • the magnetic flux ⁇ 2 also contributes to causing an induced current to flow through the heater 20.
  • the heater 20 is heated by Joule heat due to the eddy current in addition to the induced current. Is done.
  • the temperature of the heater 20 becomes higher in the portion interlinked with the magnetic flux adjacent to the coils 30a and 30b, and the other portions. At lower.
  • the portion of the heater 20 adjacent to the coils 30 a and 30 b also helps to warm the air inside the heating chamber 10 of the heating cooker 1, so that no energy is lost.
  • the heat insulating layer of the heat insulating member 34 is protected. It is necessary to increase the heat insulation property by increasing the thickness of the coil or by providing an air layer between the coil 30 (and the magnetic body 32) and the heater 20 to flow air.
  • FIGS. 6A and 6B are plan views showing a heater 20 suitable for the heating cooker 1 according to the first embodiment.
  • FIG. 6A shows the heater 20 structurally
  • FIG. 6B shows the function.
  • the heater 20 used for the heating cooker 1 of this invention is not limited to what is shown to Fig.6 (a) and FIG.6 (b), What is the heater 20 which comprises an electrical closed loop. Any shape, structure, and material may be used.
  • the preferred heater 20 is structurally divided into two types. That is, the heater 20 has a low resistance portion 22 having a small electrical resistance at both ends thereof (that is, a portion adjacent to the coils 30a and 30b), and a central portion of the heater 20 has a high resistance portion 26 having a large electrical resistance.
  • the level of electrical resistance is the relative level of electrical resistance per unit length of the low resistance portion 22 and the high resistance portion 26.
  • the low resistance portion 22 is made of a solid rod (solid rod)
  • the high resistance portion 26 is made of a pipe (hollow rod), and these are welded. You may connect.
  • the low resistance portion 22 may be manufactured with a metal having a lower electrical resistance such as copper
  • the high resistance portion 26 may be manufactured with a metal having a higher electrical resistance such as stainless steel.
  • the low resistance portion 22 is made of a solid rod made of copper or a copper alloy having an outer diameter of 6 mm
  • the high resistance portion 26 is a stainless pipe (hollow) having an outer diameter of 6 mm and a radial thickness of 0.3 to 1 mm.
  • the heater 20 may be manufactured by connecting them by welding or brazing.
  • the “electric resistance” is an electric resistance of the heater with respect to a predetermined frequency of the induced current flowing through the heater 20, and therefore, the electric resistance produced by the hollow rod is smaller than the solid rod due to the skin effect.
  • the low resistance portion 22 may be formed using a pipe (hollow bar).
  • the heater 20 will be described from the functional side.
  • the low resistance portion 22 in FIG. 6A includes a power feeding portion 24 and a cooling portion 25 as shown in FIG. 6B.
  • the heater 20 has the low resistance portion 22 including the power feeding portion 24 and the cooling portion 25 of the solid copper rod, and the high resistance portion 26 (heater portion) including the stainless pipe.
  • the heater 20 is installed in the heating chamber 10 by inserting the power feeding portion 24 into a groove (opening) 36 of the heat insulating member 34.
  • a high frequency current is supplied from the power supply circuit to the coil 30
  • a high frequency magnetic flux is formed around the coil 30 and the power feeding unit 24 is linked to the magnetic flux to form an induced current in the heater 20.
  • the power feeding unit 24 is heated by Joule heat generated by the induced current and eddy current, but since the electrical resistance is small, the Joule heat generated by the induced current is relatively small. Also, heating by eddy current is small if the material has a low electrical resistance, and heating by eddy current can be sufficiently reduced if copper is a non-magnetic material.
  • the heat dissipation is inferior to the cooling unit 25.
  • the cooling unit 25 has the same structure and material as the power supply unit 24, but has good heat dissipation because the surroundings are surrounded by air.
  • the cooling unit 25 is configured to have a small electric resistance, heat generation due to the Joule heat of the induced current is small, and the cooling unit 25 is maintained at a relatively low temperature.
  • the heat dissipation by the ambient air is the same as that of the cooling part 25, but its electrical resistance is relatively large, so the heat generated by the Joule heat of the induced current is not It becomes larger than the cooling unit 25. Therefore, the food is efficiently grilled by the radiant heat from the heater unit 26.
  • the cooling unit 25 generates less heat than the heater unit 26 that becomes high temperature, and efficiently dissipates heat transmitted from the heater unit 26 to the surrounding air.
  • the heat transmitted to the power feeding unit 24 can be suppressed as much as possible, and the power feeding unit 24 can be prevented from becoming high temperature.
  • the magnetic body 32 constituting the magnetic circuit will be described.
  • a magnetic flux is generated around the coil 30 to form a closed magnetic circuit that passes through the U-shaped magnetic body 32 and the opening 36.
  • the magnetic flux ⁇ 1 shown in FIG. 5 does not pass through the heater 20, and the magnetic flux ⁇ 2 passes through the heater 20 and forms an induced current in the heater 20.
  • the magnetic flux ⁇ 1 is preferably as large as possible.
  • FIG. 7 shows the cooking device 1 improved so that the ratio of the magnetic flux ⁇ 1 is increased.
  • This is basically the same as the cooking device 1 of FIG. 1 except that the shape of the magnetic body 32 is different.
  • FIG. 8 is a partially enlarged vertical section similar to FIG. 5 of the induction heating means including the coil 30, the magnetic body 32, the heat insulating member 34, and the heater 20, and is improved so that the ratio of the magnetic flux ⁇ 1 is increased.
  • the magnetic body 32 is shown.
  • the magnetic body 32 in FIG. 8 is basically the same as the magnetic body 32 in FIG. 5 except that its shape is different.
  • the magnetic body 32 of FIGS. 7 and 8 has a C-shaped cross section.
  • the “C-shaped magnetic body” refers to a base portion 40 extending along the coil 30, a pair of side portions 42a and 42b extending vertically from both ends of the base portion, and a tip portion of each side portion 42a and 42b. It has what has a pair of extension part 44a, 44b extended with respect to it. That is, the cross-sectional shape of the magnetic body 32 shown in FIG. 8 is a shape in which one side of the rectangle is interrupted near the center of the side.
  • the cross-sectional shape of the magnetic body 32 is not limited to a rectangular shape, and may be any other shape such as a trapezoidal shape or an elliptical shape.
  • the width of the groove (opening) 36 of the heat insulating member 34 is the same, if the cross-sectional shape of the magnetic body 32 is C-shaped, more constituent materials are required to form the magnetic body 32.
  • the cost required for producing the magnetic body 32 is high.
  • the manufacturing cost of the heater can be reduced. That is, whether the cross-sectional shape of the magnetic body 32 is U-shaped or C-shaped may be determined in consideration of other factors such as the manufacturing cost of the heater 20.
  • the magnetic body 32 having a C-shaped cross-sectional shape preferably has a smaller opening 36 (distance between the extension portions 44). Ultimately, the distance between the extension portions of the opening portion 36 is zero, and the O-shape. Most preferably. However, if the cross section of the magnetic body 32 is O-shaped without providing the opening 36, the heater 20 cannot be removed from the magnetic body 32. Therefore, in order to make the heater detachable, a device on the mechanism is required. In order to reduce the opening 36 of the C-shaped magnetic body 32, the heater 20 may be manufactured using a metal plate instead of a bar or pipe having a circular cross-sectional shape. For example, if the heater 20 having a shape as shown in FIG.
  • the opening of the C-shaped magnetic body 32 is larger than when a bar or pipe having an outer diameter of 6 mm is used.
  • the portion 36 (distance between the extended portions) can be reduced by 4 mm.
  • FIG. 9 shows a cross-sectional view of the induction heating means of the heating chamber 10 used in the experiment.
  • the scale shown in FIG. 9 is an illustration of what was actually produced.
  • the magnetic body 32 has a U-shaped cross section as shown in FIG.
  • the magnetic body 32 is a ferrite core and has a thickness of 5 mm.
  • the heat insulating member 34 is ceramic wool and has a thickness of 10 mm.
  • the coil 30 was produced by winding 25 litz wires made by twisting 19 coated copper wires having a diameter of 0.3 mm.
  • the coils 30a and 30b are arranged on the left and right sides of the heating chamber 10 as shown in FIG. 2, and the two coils 30a and 30b are connected in parallel and supplied with a high frequency current of 25 kHz by a half-bridge type power supply circuit.
  • the heater 20 has a circular cross-sectional shape with a diameter of 6 mm. As can be seen from FIG.
  • FIG. 10 shows the structure of the heater 20 used in the experiment. Also in FIG. 10, the scale is shown almost faithfully as actually produced. As shown in FIG. 6, the heater was manufactured using two kinds of members having different materials and structures.
  • the low resistance portion 22 is a copper rod having a diameter of 6 mm
  • the high resistance portion 26 is a pipe made of nonmagnetic stainless steel SUS304 having an outer diameter of 6 mm, an inner diameter of 4 mm, and a radial thickness of 1 mm.
  • the copper rod (low resistance portion 22) and the stainless steel pipe (high resistance portion 26) were connected by brazing with a gold solder.
  • a portion surrounded by a broken line on the left and right sides of the heater 20 in FIG. 10 is a portion inserted into the groove portion 36 of the heat insulating member 34 when installed in the heating chamber 10. Therefore, the manufactured heater 20 does not have the cooling part 25 as shown in FIG.
  • a to D indicated by black circles on the heater 20 in FIG. 10 are positions where temperature measurement was performed with a thermocouple attached. The thermocouple was attached by wrapping Kapton tape at each position. The temperature was measured in the range of 400 ° C. or less because of the limitation due to the heat resistant temperature of Kapton tape.
  • FIG. 11 shows the temperature change at each temperature measurement position of the heater 20 when 1 kW of power is input to the power supply circuit in the heating chamber 10 configured as shown in FIG.
  • the temperature of the heater 20 is measured at the measurement points A, B, C, and D in FIG. 10 with the upper heater 20a, and at the measurement points A, B, and C with the lower heater 20b. The temperature was measured.
  • what is indicated as “power feeding part” is the rising temperature at the measurement points A and B
  • what is indicated as “heater part” is the rising temperature at the measurement points C and D. Since the temperatures at the measurement points of the power feeding unit 24 and the heater unit 26 of the upper and lower heaters 20a and 20b are substantially the same, the upper heater 20a or the lower heater 20b is plotted without distinction in FIG.
  • cooking can be performed by the heater 20 of the heating cooker 1 shown in FIG. Since the temperature of the heater unit 26 is the same at each measurement point, it can be seen that the heater unit 26 generates heat due to Joule heat generated by the induced current flowing in a loop in the heater 20. The temperature rise of the heater part 26 is steep. This is partly because the heater part 26 is made of a stainless steel pipe, so the heat capacity is small. For example, at a time point after 2 minutes from the start of heating, the temperature of the heater unit 26 is substantially higher than the temperature of the power feeding unit 24, and the heater unit 26 is clearly due to its own heat generation. It is not due to heat.
  • Patent Document 3 and the present invention are similar in that they similarly use a magnetic core and supply high-frequency magnetic flux from the side, but it is understood that they are based on clearly different technologies. it can. That is, in Patent Document 3, the wall surface of the oven dish serving as a heater is actively induction-heated as a part of the magnetic circuit, whereas the present invention actively uses the power feeding unit 24 of the heater 20 as a part of the magnetic circuit. Instead, the closed loop of the heater 20 is linked to the magnetic flux, that is, the magnetic circuit.
  • FIG. 10 The cause is that the power feeding part 24 generates heat due to Joule heat generated by eddy current due to magnetic flux passing through it, and as shown in FIG. 10, a part of the heater part 26 in contact with the power feeding part 24 is also a heat insulating member. 34 is received in the groove portion 36, and in part of the heater portion 26 received in the groove portion 36, heat dissipation is worse than the portion of the heater portion 26 (measurement points C and D) where the temperature is measured. This is probably due to the fact that the temperature is higher than the temperature of the heater portion 26.
  • the heat of the high-temperature heater section 26 is transferred to the power feeding section 24, and the temperature of the power feeding section 24 that is also poor in heat dissipation is increased.
  • the temperature of the heater unit 26 shown in the experimental results of FIG. 11 is low for grill cooking, but the upper wall 12a and the front wall of the heating chamber 10 are also closed so that the air temperature in the heating chamber 10 is increased. Needless to say, if the input power is further increased, a temperature suitable for grill cooking can be obtained.
  • the side walls 14a and 14b of the heating chamber 10 are made of iron plates or the like by the magnetic flux generated in the portions where the magnetic bodies 32 of the coils 30a and 30b are not provided.
  • it is a metal, although the side walls 14a and 14b are also induction-heated, the air temperature inside the heating chamber 10 can be raised efficiently.
  • the induction heating means is provided on the side walls 14 a and 14 b of the heating chamber 10, and the heaters 20 a and 20 b forming an electrical closed loop are attached to and detached from the heating chamber 10. Since the high frequency magnetic flux is supplied from the side walls 14a and 14b to cause the induction current to flow through the heaters 20a and 20b and the entire heaters 20a and 20b are heated by the induction current, the cleanability of the heating chamber 10 is improved. While improving, the metal oil receiving tray 38 can be arrange
  • the two upper and lower heaters 20a and 20b are not necessarily arranged in the heating chamber 10, and only one of the upper heater 20a and the lower heater 20b may be arranged depending on the application. .
  • a single induction heating means may be provided so as to be adjacent to the upper heater 20a or the lower heater 20b even in the coil 30 wound in a planar shape according to the present embodiment. The same applies to the following embodiments.
  • FIG. FIG. 12 is a sectional view showing the heating cooker 1 according to the second embodiment of the present invention.
  • FIG. 13 is a perspective view showing the main part of FIG.
  • the heating cooker 1 according to the second embodiment is implemented except that a high-frequency magnetic flux is supplied to the heater 20 constituting an electrical closed loop using a coil disposed only on one side wall 14 of the heating chamber 10. Since it has the structure similar to the heating cooker 1 of the form 1, detailed description related to other components is abbreviate
  • the heating chamber 10 of the heating cooker 1 has only one set of induction heating means of the heating chamber 10 of the heating cooker 1 of the first embodiment. This is because the heating principle of the heater of the heating cooker 1 of the present invention causes an induction current to flow in the closed loop of the heater by electromagnetic induction by interlinking the high-frequency magnetic flux and the heater constituting the electrical closed loop. Can be easily understood. Therefore, in the present embodiment, the case where the coil which is the induction heating means and the surrounding configuration are one set will be described. However, as shown in the first embodiment, there may be two sets, or three sets or more. Means it may be. Further, what is said to be effective in the first embodiment is naturally effective even when applied to the heating cooker 1 of the second embodiment.
  • a groove 39 for holding the heaters 20a and 20b is provided on the side wall 14b of the heating chamber 10 where the coil 30 is not provided.
  • the side wall 14b may be made of a metal material such as iron, but in the case of a metal material, at least one of the side wall 14b or the heaters 20a and 20b is used for electrical insulation from the heaters 20a and 20b. It is necessary to apply a coating made of an insulating material. In general, the inner wall surface of the heating chamber 10 and the heaters 20a and 20b are coated to obtain an antifouling effect, a protective effect, a far-infrared effect, and the like. Therefore, electrical insulation may be performed by these coatings.
  • FIG. 14 shows the temperature rise of the heater 20 in the heating chamber 10 shown in FIG.
  • the experimental conditions of the second embodiment are the same as those described in the first embodiment except that heating is performed using a single induction heating means.
  • the input power is 500W.
  • the temperature rise of the power feeding unit 24 is larger than the temperature rise of the heater unit 26.
  • the heaters 20a and 20b are plotted individually.
  • the reason why the temperature rises of the upper heater 20a and the lower heater 20b are different is that the positional relationship of the upper heater 20a and the lower heater 20b in the respective induction heating means is not the same, and electric power enters one of them. It is thought that it was easier. Although the temperature rise of the heater unit 26 is saturated after about 6 minutes, the temperature of the power feeding unit 24 continues to rise. Therefore, it is considered that the temperature rise of the heater portion 26 is not due to heat transfer from the power feeding portion 24 but due to its own heat generation.
  • FIG. 14 of the second embodiment Comparing FIG. 11 and FIG. 14 showing the heating cooker 1 of the first and second embodiments, in FIG. 14 of the second embodiment, the temperature rise of the power feeding unit 24 is clearly larger than the temperature rise of the heater unit 26. Yes.
  • the reason is considered as follows. That is, the temperature of the heater section 26 depends on the input power. In the first embodiment of FIG. 11, 1 kW of power is input, whereas in the second embodiment of FIG. 14, 500 W of power is input. As a result, the amount of heat generated by the heater section 26 was halved, and the temperature rise was reduced accordingly.
  • the power supply unit 24 has a power of 500 W in charge of one induction heating unit, so that high-frequency magnetic flux passes through the power supply unit 24 in one power supply unit 24.
  • the amount of heat generated by the eddy current generated in the power feeding unit 24 is considered to be the same in both the case of FIG. 11 and the case of FIG. Therefore, in the case of FIG. 14, although the input power is half, it is considered that the temperature of the power feeding unit 24 has increased as in the case of FIG. Therefore, as shown in the present embodiment, when the coil 30 that is the induction heating means and the surrounding configuration are set as one set, the electric power that the power feeding unit 24 bears becomes large.
  • FIG. 15 is a cross-sectional view showing the heating cooker 1 in which induction heating means is disposed on the rear wall 18.
  • the cross-sectional shape of the magnetic body 32 is C-shaped so that the temperature rise of the power feeding unit 24 of the heaters 20a and 20b is reduced.
  • the front wall 16 is a front wall 16 that can be freely opened and closed of the housing (heating chamber 10), and has a front door 17 that is partially made of glass so that the inside during cooking can be observed.
  • the heating operation principle of the heater 20 disposed on the rear wall 18 is the same as that of the heater 20 in which the induction heating means as described in the above embodiment is disposed on the side wall 14.
  • the heater 20 has two low resistance portions 22 on the left and right as shown in FIGS. What I have was used. With this configuration, the user can easily install the heater 20 in the heating chamber 10 without being aware of the orientation of the heater 20, so that the complicated installation work of the user can be eliminated or reduced, and the installation can be performed. It is possible to prevent malfunction due to an error in the direction of the installation (an error in the installation direction).
  • FIG. 16 is a diagram comparing the temperature rise of the power feeding unit 24 of the heater 20 when the power feeding unit 24 of the heater 20 is provided at one place and when the power feeding part 24 is provided at two places.
  • the horizontal axis of FIG. 16 indicates the length of the magnetic body 32, and the temperature rise value when the power feeding unit 24 is provided at one place when the length of the magnetic body 32 is 60 mm is read from the experimental results of FIG. Similarly, the temperature rise value when the power supply unit 24 is provided at two places when the length of the magnetic body 32 is 60 mm is read from the experimental result of FIG. That is, the conditions such as the structure of the heating chamber used in the experiment are as described in the first embodiment and the second embodiment.
  • the 16 indicates the temperature rise of the power feeding unit 24 30 seconds after the power is input, and the temperature rise when the length of the magnetic body 32 is 60 mm and the power feeding unit 24 is provided in one place is 100. That is, it is shown as a relative value.
  • the input power is 500 W when the power feeding unit 24 is provided at one location, and 1 kW when the power feeding unit 24 is provided at two locations. That is, it is in charge of 500 W per location of the power feeding unit 24.
  • the reason for reading the temperature rise 30 seconds after the input of electric power is to make a comparison when the power feeding unit 24 is not so hot, in order to minimize the influence of heat dissipation.
  • the temperature rise of the power feeding unit 24 is smaller when the power feeding unit 24 is provided at two locations than when the power feeding unit 24 is provided at one location. Further, the longer the magnetic body 32 is, the smaller the temperature rise of the power feeding unit 24 is, but it is not proportional to the length of the magnetic body 32, and in the experimental results of FIG. 16, the length of the magnetic body 32 is 120 mm or more. Almost saturated. On the other hand, the case where the length of the magnetic body 32 is 120 mm when the power feeding portion 24 is provided at one place and the case where the length of the magnetic body 32 is 60 mm when the power feeding portion 24 is provided at two places. The temperature rise of the power feeding unit 24 is almost equal.
  • the power feeding unit 24 is a power source, and a larger number of power sources is advantageous for flowing an induced current.
  • the temperature rise of the power feeding unit 24 is reduced by making the cross-sectional shape of the magnetic body 32 not C-shaped but C-shaped, but even in that case, the number of power feeding units 24 is larger. This is advantageous in reducing the temperature rise of the power feeding unit 24.
  • the fact that the power feeding unit 24 is only on either the rear wall 18 or the side wall 14 including the front wall 16 of the heating chamber 10 is simple in structure and increases in structural freedom. This is also advantageous in terms of cost reduction.
  • FIG. 17 is a perspective view showing the heating cooker 1 in which the heater 20 is provided with power feeding portions at two locations, and the induction heating means is on the rear wall 18 of the heating chamber 10.
  • FIG. 17 shows only the main part as in FIG. 2, and the heat insulating member 34 is also omitted for easier understanding. Therefore, what is illustrated in FIG. 1 such as the side wall 14 that is naturally necessary as the heating chamber 10 also includes the heating chamber 10 illustrated in FIG.
  • Each of the heaters 20a and 20b has two feeding portions 24 adjacent to the rear wall 18 of the heating chamber.
  • One coil 30 is provided outside and adjacent to the rear wall 18 of the heating chamber 10, and a U-shaped magnetic body 32 is provided at a total of four locations of the coil 30.
  • the cross-sectional shape of the magnetic body 32 may be C-shaped.
  • a high frequency current When a high frequency current is passed through the coil 30, a high frequency magnetic flux is generated.
  • the magnetic flux is linked to the heaters 20a and 20b through the portions having the respective magnetic bodies 32, and an induced current flows through the heaters 20a and 20b by electromagnetic induction. Since each of the heater 20a and the heater 20b has two power feeding portions 24, the temperature of the power feeding portion 24 is lowered and the temperature of the heater portion 26 is raised while the power is fed only from the rear wall 18 of the heating chamber 10. be able to.
  • FIG. 18 is a cross-sectional view showing the heating cooker 1 according to the third embodiment of the present invention.
  • FIG. 19 is a perspective view showing the main part of FIG.
  • the heating cooker 1 according to the third embodiment supplies a high-frequency magnetic flux to the heater 20 that constitutes an electrical closed loop using a coil 30 that is formed by spirally winding a conductive wire around a magnetic body 32. Since it has the structure similar to the heating cooker 1 of Embodiment 1, except for, detailed description regarding another component is abbreviate
  • the coils 30a to 30d are formed by spirally winding a conducting wire such as a litz wire around one side (base) of the magnetic body 32 having a U-shaped cross-sectional shape.
  • a conducting wire such as a litz wire around one side (base) of the magnetic body 32 having a U-shaped cross-sectional shape.
  • FIG. 19 only the coils 30a and 30c are shown, but the coils 30b and 30d are not shown because they are hidden, but they are present as shown in FIG.
  • the coils 30a to 30d may be supplied with a high-frequency current by an independent power supply circuit (not shown). Further, one set of the coil 30a and the coil 30c and another set of the coil 30b and the coil 30d may be connected in parallel or in series, and a high-frequency current may be caused to flow by two power supply circuits, or the coil 30a and the coil 30b.
  • One set may be connected in parallel or in series with another set of the coil 30c and the coil 30d, and a high frequency current may be supplied by two power supply circuits. Furthermore, all the four coils 30a to 30d may be connected in parallel or in series, or a combination of parallel and series, and a high frequency current may be supplied by one power supply circuit.
  • the coils 30a to 30d are preferably connected to the heaters 20a and 20b so that an induced current flows in the direction as shown in FIG. 4 of the first embodiment.
  • two coils are connected in parallel or in series with one set of the coil 30a and the coil 30b and another set of the coil 30c and the coil 30d.
  • the upper heater 20a and the lower heater 20b can be individually heated and controlled. For example, the heating temperature of the upper heater 20a and the lower heater 20b is adjusted or cooked. Only one heater 20 can be heated according to the purpose.
  • FIG. 20 and 21 show the magnetic flux generated by the coil 30 of the third embodiment.
  • 20 is a cross-sectional view when the magnetic body 32 has a U-shaped cross-sectional shape
  • FIG. 21 is a cross-sectional view when the magnetic body 32 has a C-shaped cross-sectional shape.
  • the magnetic fluxes ⁇ 1 and ⁇ 2 are generated in the same manner as the coil 30 shown in the first and second embodiments. Therefore, the coil 30 of the third embodiment can be used in place of the coil 30 described in the first and second embodiments, and what has been described in the first and second embodiments is the present embodiment. The same applies even when three coils 30 are used.
  • the coil 30 may be wound around a side (a pair of side portions 42 extending vertically from both ends of the base portion 40) different from that of FIG. 20 or 21 of the magnetic body 32.
  • FIG. 23 is a cross-sectional view showing the heating cooker 1 according to the fourth embodiment of the present invention.
  • FIG. 24 is a perspective view showing the main part of FIG.
  • the heating cooker 1 according to the fourth embodiment uses a coil 30 formed by spirally winding a conductive wire around two adjacent magnetic bodies 32, and the high frequency magnetic flux is applied to the heater 20 constituting an electrical closed loop. Since it has the structure similar to the heating cooker 1 of Embodiment 1 except the point which supplies, detailed description regarding another component is abbreviate
  • four magnetic bodies 32 having a U-shaped cross-sectional shape are provided on the side wall 14 of the heating chamber 10 as in the first embodiment, and the coils 30a and 30b are respectively provided in the heating chamber 10.
  • the side portions 42 facing each other of the two magnetic bodies 32 provided on the right side and the left side are formed by winding a conducting wire such as a litz wire spirally. That is, the conducting wire of the fourth embodiment is spirally wound around the side portions 42 of two adjacent magnetic bodies 32 disposed on one side wall 14 of the heating chamber 10.
  • FIG. 25 is a view showing a cross-sectional view of the heating cooker 1 using the E-shaped magnetic body 32 in which two adjacent U-shaped magnetic bodies 32 are integrally formed. That is, the magnetic body 32 of FIG. 25 has a base 40 and a pair of side portions 42a and 42b and a core portion 42c that extend vertically from both ends and the center of the base 40. 25 has two groove portions (openings) 36a and 36b between the side portions 42a and 42b and the core portion 42c, and the heaters 20a and 20b are inserted into the respective groove portions 36a and 36b. ing.
  • the cooking device 1 is substantially the same. That is, the E-shaped magnetic body 32 is an integral body of two U-shaped magnetic bodies and can be handled as the U-shaped magnetic body 32. Therefore, even when the E-shaped magnetic body 32 is used, elements having other cross-sectional shapes shown in other embodiments are combined, such as the upper half and the lower half of the E shape being C-shaped. The shape may be different. Even in the case of the planar coil of the first embodiment, it is possible to use an E-shaped magnetic body 32 as shown in FIG.
  • FIG. 26 is a cross-sectional view showing the heating cooker 1 according to the fifth embodiment of the present invention.
  • 27 and 28 are a perspective view and a cross-sectional view of the induction heating means of the fifth embodiment.
  • the heating cooker 1 according to the fifth embodiment has the same configuration as that of the heating cooker 1 according to the second embodiment, except that the magnetic body 32 capable of surrounding the entire periphery of the heater 20 is included. Detailed description related to is omitted. In the figure, the same components are denoted by the same reference numerals.
  • the heating cooker 1 includes the magnetic body 32 having a U-shaped or C-shaped cross-section in order to link the magnetic flux with the heater 20.
  • the interlinkage magnetic flux includes a magnetic flux ⁇ 1 that interlinks without passing through the heater 20 and a magnetic flux ⁇ 2 that interlinks through the heater 20, and the magnetic flux ⁇ 1 that interlinks without passing through the heater 20.
  • a heating cooker 1 that can maximize the magnetic flux interlinking without passing through the heater 20 will be described.
  • FIG. 26 illustrates the cooking device 1 having induction heating means provided on the rear wall 18 of the heating cabinet 10 as in the cooking device 1 shown in FIG. 15 of the second embodiment. It may be provided on one or both of the left and right side walls 14 of the heating chamber 10 as shown in FIG.
  • the coil 30 has been described with respect to a case where a conducting wire such as a litz wire is spirally wound around the magnetic body 32, the coil 30 may be a coil in which a conducting wire is wound in a planar shape as shown in the first and second embodiments. .
  • the heating cooker 1 of FIG. 26 differs from the heating cooker 1 of FIG. 15 in the coils 30a and 30c, which are induction heating means, and the surrounding structure, but the other parts are the same.
  • the coils 30a and 30c are formed by spirally winding a conductive wire around a part of an O-shaped magnetic body 32 having no opening 36 in cross-sectional shape.
  • a heat insulating member 34 is provided inside the O-shaped magnetic body 32 so that the magnetic body 32 and the coils 30a and 30c are not exposed to high temperatures.
  • a heat insulating member 45 is provided outside the O-shaped magnetic body 32 and corresponding to the inner wall surface of the heating chamber 10 so that the magnetic body 32 is insulated from the high-temperature air in the heating chamber 10. Yes.
  • a groove portion 36 for accommodating the power feeding portion 24 of the heaters 20a and 20b is formed inside the heat insulating member 34 inside the O-shaped magnetic body 32.
  • the O-shaped magnetic body 32 and a part of the heat insulating member 34 inside and outside thereof constitute a movable part 52 which is separated and movable in parallel.
  • the induction heating means of the fifth embodiment includes a fixed portion 50 fixed to the heating chamber 10, and a movable portion 52 arranged to be slidable with respect to the fixed portion 50.
  • the fixing part 50 includes a coil 30, a U-shaped magnetic body 32, and a heat insulating member 34 including a groove part 36 that accommodates the power feeding part 24 of the heater 20.
  • the movable portion 52 includes the magnetic body 32 that forms a continuous closed magnetic path ⁇ ⁇ b> 1 in cooperation with the U-shaped magnetic body 32 of the fixed portion 50, and the heat insulating member 45. That is, when the movable portion 52 slides to the closed position, the magnetic body 32 of the movable portion 52 and the U-shaped magnetic body 32 of the fixed portion 50 are integrated to form a continuous closed magnetic path ⁇ 1.
  • FIG. 26 (a) shows a state in which the movable portion 52 is in a closed position and heated by flowing an induction current through the heaters 20a and 20b.
  • FIG. 26B shows a state where the movable portion 52 is in the open position and the heaters 20a and 20b are detachable.
  • the movable part 52 may be operated manually or automatically by a mechanical mechanism (not shown).
  • FIG. 27 is a perspective view showing a specific configuration of the induction heating means including the fixed portion 50 and the movable portion 52.
  • FIG. 27 shows the induction heating means for the lower heater 20b, the induction heating means for the upper heater 20a can use the same structure.
  • the power supply unit 24 of the heater 20b is shown as a center, but as described in the other embodiments, the heater 20b constitutes an electrical closed loop.
  • FIG. 27 shows the movable part 52 in an open position with respect to the fixed part 50.
  • the magnetic body 32 in the fixed portion 50 is covered with a heat insulating member 34, the portion facing the movable portion 52, and a part on the back side of the movable portion 52 not shown. Only the magnetic body 32 is exposed.
  • the part where the magnetic body 32 is exposed may be covered with a thin protective member.
  • the groove 36 inside the heat insulating member 34 has a box shape, and when the movable portion 52 is closed, the inside of the heating chamber 10 is completely closed at portions other than the heater outlet 54.
  • the heater outlet 54 is configured such that when the movable portion 52 is closed, the shape thereof coincides with the cross-sectional shape of the heater 20.
  • the power feeding portion 24 of the heater 20 is housed in the groove 36 and attached, the movable portion 52 is closed.
  • the air in the heating chamber 10 and the air in the groove 36 are configured not to exchange with each other.
  • the outside of the heating chamber 10 is placed inside the groove portion 36.
  • the inside of the groove portion 36 may be cooled by providing air blowing means for sending air from the air, or the air pressure inside the groove portion 36 is made higher than the air pressure inside the heating chamber 10 by the air blowing means, so that the high-temperature air in the heating chamber 10 May not flow into the groove 36.
  • FIG. 28 shows a state of magnetic flux when a magnetic body 32 having an O-shaped cross section is used.
  • the periphery of the induction heating means of the lower heater 20b of the heating cooker 1 shown in FIG. Is an enlarged view.
  • most of the magnetic flux ⁇ 1 generated when a high-frequency current is passed through the coil 30c passes through the O-shaped magnetic body 32. Therefore, most of the magnetic flux does not pass through the heater 20b, but becomes the magnetic flux ⁇ 1 interlinked with the heater 20b.
  • the heater 20b does not generate heat due to the eddy current in the power feeding portion 24, and an induced current flows by electromagnetic induction by the magnetic flux ⁇ 1, and is heated to a high temperature by Joule heat due to the induced current flowing instead of the eddy current.
  • the heater 20 is made detachable using a magnetic body having an O-shaped cross section.
  • the heater 20 is not detachable and is fixed inside the heating chamber 10. But there are benefits. That is, the power supply unit 24 of the heater 20 constituting an electrical closed loop is guided to the outside of the heating chamber 10, and electric power is supplied by the induction heating means using the O-shaped magnetic body 32 outside the heating chamber 10.
  • the heater 20 is heated by passing an induction current through
  • the structure seen from the inside of the heating chamber 10 is the same as the sheathed heater widely used in the well-known IH cooking heater.
  • the sheathed heater has a complicated structure because it has a heating wire inside the metal pipe such as stainless steel and ceramics around the heating wire.
  • the conventional sheathed heater has a heating wire inside the metal pipe, there is a limitation on the bending radius and the like even if an attempt is made to make a desired shape by bending the rod-shaped sheathed heater, and the number of times of bending increases. High cost.
  • the sheathed heater is filled with ceramics inside the metal pipe, the heat capacity is large and it takes time to increase the temperature.
  • the heater 20 of the present invention can be made of, for example, a stainless steel pipe, the bending radius is more restrictive than the sheathed heater, and can be manufactured at a much lower cost than the sheathed heater even if the number of bendings is increased.
  • the heat capacity of the pipe is small, the temperature can be increased faster than the sheathed heater.
  • the advantage of the heater 20 according to the present invention over the sheathed heater is the same even when the U-shaped or C-shaped magnetic body 32 shown in the other embodiments is used.
  • the power feeding unit 24 When using the magnetic body 32 having the O-shaped cross section according to the fifth embodiment, the power feeding unit 24 generates heat due to eddy current. It can be suppressed as much as possible.
  • the coil is formed by spirally winding a conducting wire around a part of the magnetic body 32 is shown, but the coil shown in the first or fourth embodiment may be used. Good.
  • FIG. 29 is a cross-sectional view showing the heating cooker 1 according to the sixth embodiment of the present invention.
  • FIG. 30 is a perspective view showing the main part of FIG.
  • the heating cooker 1 of the sixth embodiment is the same as that of the first embodiment except that the heaters 20a and 20b are provided along the side wall 14 of the heating chamber 10 of the heating cooker 1 and the food can be heated from the side. Since it has the same configuration as the heating cooker 1, detailed description related to other components is omitted. In the figure, the same components are denoted by the same reference numerals.
  • the heater 20 is installed almost horizontally in the heating chamber 10 and the heating cooker 1 that heats the food from above and below is shown.
  • the heater 20 of another embodiment is installed.
  • the heating cooker 1 which has is demonstrated below.
  • the heating principle is the same as that described in the above embodiment, and the form of the induction heating means can be the one described in each of the above embodiments.
  • FIG. 31 is a perspective view showing a main part of the heating cooker 1 having the heater 20 according to a modification of the sixth embodiment.
  • heaters 20a to 20d are a power supply unit 24 formed of a low resistance metal member such as a solid copper rod, and a heater unit formed of a high melting point material such as tungsten into a shape having a high resistance such as a thin plate. 28.
  • the heater section 28 is housed inside an airtight container 56 made of synthetic quartz or translucent ceramic, and the airtight container 56 is filled with an inert gas such as argon.
  • an induced current flows through the heaters 20a to 20d by electromagnetic induction, and the heater unit 28 is heated.
  • the heater section 28 is formed of a high melting point material, and the inside of the airtight container 56 is filled with an inert gas. Therefore, the heater section 28 can be heated to a high temperature of 1000 to 2000 ° C. Infrared and far infrared rays are emitted. That is, it emits light, generates heat, and emits a large amount of infrared rays in the same manner as a light bulb such as a halogen lamp. Food is cooked on the grill by the radiation heating by the infrared rays.
  • FIG. 32 is a perspective view showing a main part of the heating cooker 1 having a heater according to still another modification of the sixth embodiment. 32, the upper heaters 20a and 20b are the same as those shown in FIG.
  • the lower heater 58 is provided with a cut 59 as shown in FIG. 32 in a metal plate such as stainless steel having a thickness of about 2 mm.
  • the notch 59 may have a width that allows electrical insulation to be maintained.
  • the 32 is suitable for cooking hamburgers, for example. That is, a food material such as a hamburger is placed on the lower heater 58, and a high-frequency current is passed through each coil 30a, 30b to heat each heater 20a, 20b, 58.
  • the lower heater 58 is heated to, for example, about 200 ° C. and heats food such as hamburger in a pan. Fat from food such as hamburger falls downward from a notch 59 provided in the lower heater 58 and is received by a fat tray (not shown) provided below the lower heater 58.
  • the upper heaters 20a and 20b emit infrared rays as described above, and radiantly heat foods such as hamburgers.
  • the lower heater 58 has a plate-like shape in which the upper surface and the lower surface of the high resistance portion are covered with a clad member 175 made of an insulator such as metal or ceramics so that the notch 59 is not exposed. It is good also as a structure.
  • FIG. 33 is an overall perspective view of the plate-like lower heater 58 where the notch 59 is not exposed
  • FIG. 34 is a sectional view thereof. That is, the lower heater 58 can be formed by covering (sandwiching or enclosing) a clad member 175 made of an insulator such as metal or ceramics on a metal plate provided with the cuts 59.
  • the metal clad member 175 it is necessary to electrically insulate by placing an insulator between the lower heater 58 and the clad member 175.
  • FIG. 35 is a perspective view showing a main part of the heating cooker 1 having the heater 20 according to still another modification of the sixth embodiment.
  • the heater 20 shown in FIG. 35 is formed inside the lid part 72 and the container part 74 of the box-type sealed container 70.
  • the box-type airtight container 70 is a so-called oven or kettle, and the lid 72 and the container portion 74 are heated to cook the food contained in the box-type airtight container 70 in an oven or a kettle.
  • FIG. 36 is a development view of the heater 20 formed inside the container portion 74.
  • the heater 20 includes a low resistance portion 22 and a high resistance portion 26, and the low resistance portion 22 is formed of a copper rod or the like as described in the above embodiment, and includes a power feeding portion and a cooling portion.
  • the high resistance portion 26 is obtained by processing a metal plate such as stainless steel or aluminum into a shape as shown in FIG.
  • FIG. 37 is a cross-sectional view of the box-type sealed container 70. 37 includes a lid main body 73 and a container main body 75 formed of an insulating material such as ceramics, and a heater 20 as shown in FIG. High resistance portion 26.
  • the lid main body 73 and the container main body 75 may be formed of a metal such as stainless steel or aluminum. In that case, since it is necessary to be electrically insulated from the high resistance portion 26, heat resistance of a ceramic sheet or the like is required. After sandwiching a conductive insulating material (not shown) between the high resistance portion 26 and the lid body 73 and the container body 75, the high resistance portion 26 of the heater 20 is disposed inside the lid 72 and the container portion 74. It is necessary to install.
  • an alumina (aluminum oxide) layer can be formed on the aluminum surface by anodizing the aluminum (alumite treatment). It does not require an insulator and can be manufactured at low cost.
  • FIG. 38 is a perspective view showing a main part of the heating cooker 1 having a heater according to still another modification of the sixth embodiment. 38, the upper heater 20 is the same as that shown in FIG. 2, and the lower heater 58 is the same as that shown in FIG. Since the upper heater 20 is usually heated away from the food, it is preferable that the high resistance portion is made of a pipe (hollow bar). On the other hand, when the food is placed and heated (in a contact state), the lower heater 58 preferably has a high resistance portion formed of a metal plate having a large surface area in order to achieve uniform heating. As described above, the upper heater and the lower heater may be heaters having different forms (shape, size, arrangement position), and can be attached and detached. You can select and use.
  • FIG. 39 is a cross-sectional view showing a cooking device 1 according to still another modification of the sixth embodiment.
  • the coils 30a and 30b are disposed on the side walls 14a and 14b
  • the heating cooker 1 shown in FIG. 39 has the coils 30a and 30b.
  • the upper wall 12a and the lower wall 12b are provided, and other configurations and operations are the same as those in the third embodiment.
  • the present invention can also be applied to the upper wall 12a and the lower wall 12b.
  • it may be provided on the front wall and the rear wall, and it should be understood that the side walls include not only the left and right side walls but also the front and rear walls.
  • the heating cooker 1 of the present invention since the heater 20 in the heating chamber 10 is detachable, not only the cleaning property is improved, but also various types of heaters according to the purpose of cooking. Since 20 can be used, the multifunctional cooking device 1 can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Electric Stoves And Ranges (AREA)
  • General Induction Heating (AREA)

Abstract

 本発明は、電気的に閉じた導電体からなるヒータに、電磁誘導により誘導電流を流して、誘導電流によるジュール熱でヒータを加熱する加熱装置を提供する。本発明に係る加熱装置は、箱状の加熱庫と、前記加熱庫の内部に配置された電気的に閉じた導電体からなるヒータと、前記加熱庫の外部に配置されたコイルと、前記コイルに高周波電流を供給する電源回路と、前記コイルから生じる高周波磁束が前記ヒータと鎖交するように配置された磁性体とを有する。

Description

加熱装置
 本発明は、加熱装置に関し、とりわけグリル、ロースタ、オーブンなどの加熱庫において誘導電流式ヒータを熱源に用いた加熱装置を採用した加熱調理器に関する。
 いわゆるIHクッキングヒータ(Induction Heating:電磁誘導加熱式調理器)の多くは、焼き魚などを調理するための加熱庫を有する。加熱庫は、一般にはグリル、ロースタあるいはオーブンとも呼ばれる。焼き魚(特に秋刀魚の塩焼きなど)は、高温の加熱源からの輻射熱により表面をこんがりと焼き、高温の空気により魚の内部まで十分に加熱して調理されたものが美味しいとされている。
 また、特に秋刀魚の塩焼きなどの調理中に、魚から多くの脂(可燃性油分)が出るが、これを受ける脂受け皿が必要であり、さらに脂受け皿で受けた魚の脂が発火しないように、脂受け皿および脂を発火温度より低い温度に維持しなければならない。なお、これは焼き魚の調理に限らず、肉類を調理する場合も同様である。このような加熱庫内での調理はグリル調理ともいう。
 IHクッキングヒータの加熱庫は、一般に、加熱庫内の上方と下方にシーズヒータやラジエントヒータなどの電気ヒータ(抵抗体に電流が流れたときのジュール熱により発熱するので「抵抗式ヒータ」ともいう。)が設けられ、電気ヒータの給電端子は加熱庫の外部に設けられた電源と電気的に接続され、電源から電気ヒータに電力が供給されて電気ヒータは加熱される。そして電気ヒータに供給された電力は、電気ヒータで熱エネルギに変換され、その熱エネルギにより加熱庫内部の食品が直接的に、高温に加熱された空気を介して食品が加熱調理される。このような構成の加熱調理器は、IHクッキングヒータに限らず、オーブントースタやオーブンレンジなども同様の構成をしていることが多い。
 このような電気ヒータを用いた加熱調理器の構成は簡便ではあるが、電気ヒータが加熱庫内に固定されているため、調理後の清掃を困難にし、清掃性に改善の余地があった。すなわちIHクッキングヒータに限らずオーブンレンジなどの他の任意の形態の加熱調理器でおいても、清掃性の改善に対する要求は高い。これは食品を扱う調理器にとっては本質的な要求である。
 そこで食品の加熱源となる金属を非接触式に誘導加熱するオーブンあるいはオーブンレンジがこれまでにも提案されており、加熱源が加熱庫に対して着脱可能なものも知られている。
 たとえば特許文献1において、誘導加熱技術を利用した従来のオーブンは、磁性体で構成される庫の上面および下面に対向して配置された加熱コイルを有し、加熱コイルに高周波電流を流すことによって加熱庫が加熱する。庫は着脱可能となっているため、これにより清掃性を向上させることができる。
 また特許文献2によれば、誘導加熱技術を利用した別の従来式オーブンレンジが提案されている。このオーブンレンジにおいては、耐熱ガラス等の絶縁性耐熱板からなる仕切板を用いて、加熱室の内部と機械的および電気的に遮断された誘導加熱コイルが、加熱室の底部に設けられ、仕切板の上には誘導加熱コイルに対向して金属製の発熱体が配置されている。発熱体は閉ループを形成する帯状の金属体として構成されているので、誘導電流を効率的に発生させるとともに、金属体の放熱面積を自由に設定することができる。なお、特許文献2に記載の発熱体も同様に、加熱室内において着脱自在に配置されている。
 さらに特許文献3に記載された誘導加熱技術を利用したさらに別の従来のオーブンレンジは、取り出し自在に構成されたオーブン皿の外周部分を左右2ヶ所から誘導加熱するために誘導加熱手段が設けられている。オーブン皿は、少なくともその被加熱部分にホーロー(琺瑯)被膜を施した鉄板などの磁性体を有する。また誘導加熱手段は、裁縫ミシン等で用いられるボビンのように巻かれたコイルと、コイルの発生する磁束をオーブン皿に効率的に供給するコアとから構成されている。コアはたとえばU字型であり、磁束はコアおよびオーブン皿の外周部分により閉磁路を形成し、高周波磁束が他の部分に漏れないようにしている。オーブン皿は、その下面側が磁性ステンレス等の磁性材料で構成され、その上面側がアルミまたは銅等の高熱伝導材料で構成されている。コイルおよびコアで発生する磁束により磁性材料が誘導加熱され、この発生熱は、高熱伝導材料からなるオーブン皿全体に伝達される。
特開2003-282221号公報(段落[0008]~[0009]、図2) 特開平8-138864号公報(段落[0024]~[0028]、図1、図3) 特開平6-18044号公報(段落[0020]、[0029]~[0036]、図1、図2、図5~図7)
 このような従来から知られている誘導加熱技術を用いた加熱庫を、IHクッキングヒータなどのグリル調理を行う加熱庫に使用する場合、以下の問題点があった。
 特許文献1に記載された従来の加熱調理器では、加熱庫の内側にコ字状の磁性体を挿入し、上面と下面にコイルを設けて、コ字状の磁性体の上面と下面を誘導加熱するので、魚などの食材から出る脂が発火しないようにするためには、下面を発火温度(約250℃)以下にする必要があり、下面の磁性体を十分に高温にすることができず、輻射を利用したグリル調理に適さないという問題点があった。
 また、特許文献2に記載された従来の加熱調理器では、誘導加熱によって加熱される帯状金属が閉ループを構成するため、効率良く誘導加熱され、また高温に加熱することができるが、グリル調理を行うために帯状金属からの輻射熱を利用しようとすると、帯状金属から放射される赤外線が食材に照射されるようにするために、脂受け用の皿を帯状金属とコイルの間に設ける必要がある。この場合、帯状金属には磁束が到達して誘導加熱されるが、脂受け皿は誘導加熱されないようにする必要がある。そのためには脂受け皿をセラミックスなどの絶縁物で構成する必要があった。セラミックス皿は強度の観点から厚くする必要があり、また脂受け皿上の脂が発火しないようにするために脂受け皿の温度を脂の発火点以下に抑える必要があり、帯状金属と脂受け皿の距離を大きくしなければならない。そのためコイルと帯状金属の距離が大きくなり帯状金属を効率良く誘導加熱することができないという問題点があった。
 また、特許文献3に記載された従来の加熱調理器では、オーブン皿を加熱してフライパン調理を行うため、グリル調理には適さないが、オーブン皿を高温に加熱してそこからの輻射熱を利用してグリル調理を行おうと試みることも可能である。しかし、特許文献3に記載された従来の加熱調理器ではオーブン皿の側面に設けたコイルによって、オーブン皿の側壁面が加熱されるに過ぎず、オーブン皿の中央部は高熱伝導材料であるアルミや銅によって側面からの伝熱により加熱されるため、十分に高温にするためには高熱伝導材料の厚みを極めて厚くしなければならず、その結果、加熱庫内の有効体積が減少し、またオーブン皿の熱容量が大きくなるため温度上昇に時間がかかるといった問題点があった。
 本発明は、上述のような課題を解決するためになされたもので、着脱可能なヒータにより加熱庫の清掃性を高めるとともに、その上で上記のようなグリル調理における食材からの脂を受ける脂受け皿の問題を解決するために、ヒータを加熱するための誘導加熱手段を加熱庫の側面に配置しつつ、加熱庫内のヒータ全域に渡って十分な高温加熱を可能にする加熱装置を得るものである。
 本発明に係る加熱装置は、箱状の加熱庫と、前記加熱庫の内部に配置された電気的に閉じた導電体からなるヒータと、前記加熱庫の外部に配置されたコイルと、前記コイルに高周波電流を供給する電源回路と、前記コイルから生じる高周波磁束が前記ヒータと鎖交するように配置された磁性体とを有する。
 本発明に係る加熱装置は、電気的に閉じた導電体からなるヒータに、電磁誘導により誘導電流を流して、誘導電流によるジュール熱でヒータを加熱することができる。
本発明に係る実施の形態1による加熱調理器を示す断面図である。 実施の形態1による加熱調理器の主要部を示す斜視図である。 実施の形態1による加熱調理器の断熱部材を示す斜視図である。 図2のコイルに流れるコイル電流と、ヒータに流れる誘導電流の流れる方向を示す概略斜視図である。 実施の形態1による誘導加熱手段の部分的な拡大垂直断面である。 実施の形態1による加熱調理器のヒータを示す平面図であって、(a)および(b)はそれぞれ、ヒータを構造的および機能的に示すものである。 実施の形態1の変形例による加熱調理器を示す図1と同様の断面図である。 実施の形態1の変形例による誘導加熱手段の図5と同様の拡大垂直断面である。 実施の形態1において実験に用いた誘導加熱手段の断面図である。 実施の形態1において実験に用いた誘導加熱手段の平面図であって、ヒータの温度測定位置を示す。 図10に示す各温度測定位置において、実験で測定されたヒータの温度上昇をプロットしたグラフである。 本発明に係る実施の形態2による加熱調理器を示す断面図である。 実施の形態2による加熱調理器の主要部を示す斜視図である。 実施の形態2における実験で測定されたヒータの温度上昇をプロットしたグラフである。 実施の形態2の変形例による加熱調理器を示す断面図である。 実施の形態2の別の変形例による加熱調理器の磁性体の長さとヒータの給電部の温度上昇との関係を示すグラフである。 実施の形態2の別の変形例による加熱調理器の主要部を示す斜視図である。 本発明に係る実施の形態3による加熱調理器を示す断面図である。 実施の形態3による加熱調理器の主要部を示す斜視図である。 実施の形態3による誘導加熱手段の部分的な拡大垂直断面である。 実施の形態3の変形例による誘導加熱手段の図20と同様の拡大垂直断面である。 実施の形態3の別の変形例による誘導加熱手段の図20と同様の拡大垂直断面である。 本発明に係る実施の形態4による加熱調理器を示す断面図である。 実施の形態4による加熱調理器の主要部を示す斜視図である。 実施の形態4の変形例による加熱調理器を示す断面図である。 本発明に係る実施の形態5による加熱調理器を示す断面図であって、(a)および(b)はそれぞれ可動部が固定部に対して閉じた状態および開いた状態を示す。 実施の形態5による誘導加熱手段の斜視図である。 実施の形態5による誘導加熱手段の図27のA-A線から見た拡大垂直断面である。 本発明に係る実施の形態6による加熱調理器を示す断面図である。 実施の形態6による加熱調理器の主要部を示す斜視図である。 実施の形態6の変形例による加熱調理器の主要部を示す斜視図である。 実施の形態6の別の変形例による加熱調理器の主要部を示す斜視図である。 実施の形態6の別の変形例によるプレート状の下側ヒータの全体的な斜視図である。 図33のプレート状の下側ヒータの断面図である。 実施の形態6のさらに別の変形例による加熱調理器の主要部を示す斜視図である。 図35の加熱調理器のヒータを示す展開図である。 図35の加熱調理器のヒータを示す断面図である。 実施の形態6のさらに別の変形例による加熱調理器の主要部を示す断面図である。 実施の形態6のさらに別の変形例による加熱調理器の主要部を示す断面図である。
1:加熱調理器(加熱装置)、10:加熱庫(箱状筐体)、12a:上壁、12b:下壁、14a,14b:側壁、16:前壁、18:後壁、20:ヒータ、22:低抵抗部、24:給電部、25:冷却部、26:高抵抗部(ヒータ部)、30:コイル、32:磁性体、34:断熱部材、36:溝部(開口部)、37:焼き網、38:脂受け皿、40:基部、42:側部、44:延長部、45:断熱部材、50:固定部、52:可動部、54:ヒータ取り出し口、56:気密容器、58:下側ヒータ、59:切込み、70:箱型密閉容器、72:蓋部、73:蓋部本体、74:容器部、75:容器部本体、φ1,φ2:磁束。
 本発明は、任意の加熱装置全般に関するものであり、産業用の焼成炉や乾燥炉などにも適用可能であるが、民生用の加熱調理器としても同等に利用することができる。以下、添付図面を参照して、本発明に係る加熱装置の具体例として、加熱調理器の実施の形態について説明する。各実施の形態の説明において、理解を容易にするために方向を表す用語(たとえば、「上」、「下」、「右」、および「左」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本発明を限定するものでない。また以下の添付図面において、同様の構成部品については同様の符号を用いて参照する。
実施の形態1.
 図1は、本発明に係る実施の形態1の加熱調理器を示す断面図である。図2は、図1の主要な構成部品を概略的に示した斜視図である。なお、本発明の各実施の形態に示す加熱調理器1は、IHクッキングヒータに好適に用いられ、とりわけグリル調理を行う加熱庫として有用であるが、オーブンレンジやオーブントースタなどの他の形態を有する加熱調理器に採用することができ、グリル調理の他、オーブン調理などのさまざまな加熱調理に利用することができる。
 本発明に係る実施の形態1の加熱調理器1は、図1および図2に示すように加熱庫(箱状筐体)10を有する。加熱庫10は、上壁12a、下壁12b、垂直方向に延びる左右の側壁14a,14b、および前壁および後壁(図示せず)を有する。加熱調理器1は、加熱庫10の内部の上方および下方において電気的な閉ループ(閉回路)を構成する金属体からなる着脱可能なヒータ20a,20bと、左右の側壁14a,14bに沿って配設されたコイル30a,30bと、各コイル30a,30bに隣接して配置された磁性材料からなるフェライトコアなどの磁性体32とを有する。
 コイル30a,30bは、たとえば直径が0.3mmの銅線を樹脂などで被覆したものを19本撚り線にしたいわゆるリッツ線を、側壁14a,14bに平行な平面上にほぼ長方形状(各角部が湾曲した長方形状またはほぼ楕円形状も含む)に、たとえば複数回(25回)捲回して形成されたものである。これらの複数のリッツ線は、長方形の各辺に沿って捲回され、同一方向の電流(磁束)を形成する。一方、磁性体32は、図2において電流が同一方向に流れるように配置された複数のリッツ線をコ字状に包囲するように配設される。同様に図示のように、2つの磁性体32が、上方および下方に配置されたヒータ20a,20bに対して平行に対向配置されている。
 磁性体32は、たとえば一般的なIHクッキングヒータの加熱コイルの周囲に通常用いられるフェライトコアと同等の磁性材料を用いて形成することができる。またコ字状の磁性体32の内側には、コ字状の断熱部材34が設けられている。すなわちコイル30a,30bは、ヒータ20a,20bに対向する部分において、図1および図2に示すように磁性体32と断熱部材34によって挟まれた構造を有する。
 なお断熱部材34は、図3に示すように、ガラスウールやセラミックウールなどの断熱材34aとセラミックス34bの二層構造を有し、加熱庫10の側壁14a,14bの一部についてはセラミックス34bで構成してもよく、鉄またはステンレス等の金属で構成してもよい。
 このように構成された断熱部材34によれば、コイル30a,30bおよび磁性体32は、加熱庫10の内部の高温の空気から断熱される。なお断熱材34aは、上記の他、空気層であってもよいし、空気流であってもよい。このように構成されたコイル30a,30b、磁性体32、断熱部材34が図1に示すように加熱庫10の側壁14a,14bの一部となるように配置される。一方、加熱庫10の残りの壁面(上壁12aおよび下壁12bなどを含む)は、鉄またはステンレス等の金属、あるいはセラミックスまたはガラスなどの絶縁材料など耐熱性材料を用いて構成される。さらに図示しない加熱庫10の前壁および後壁により閉じられる。すなわち加熱庫10は、耐熱性材料からなる上壁12a、下壁12b、側壁14a,14b、前壁および後壁によって閉じられた筐体を構成する。なお、加熱庫10の前壁は、食品等の出し入れなどのために開閉自在の前扉(ここでは図示せず)を有する。
 またヒータ20a,20bは、図に示すように、断熱部材34の水平方向に延びる溝部(開口部)36内に挿入されて支持される。このときヒータ20a,20bは、断熱部材34の溝部36上に載置されているに過ぎず、開閉自在な前壁から着脱可能である。同様に、加熱庫10の内部には食材を載せるための焼き網37、および食材から出る脂を受けるための脂受け皿38が前壁を介して配置される。焼き網37および脂受け皿38の構造および材質は、従来式のIHクッキングヒータの加熱庫に用いられる構造および材質と同等のものを使用することができる。同様に、加熱庫10の側壁14a,14b等の内面には、防汚効果および遠赤外線効果を目的とした各種コーティングを施しておくことが好ましい。
 次に動作について説明する。コイル30a,30bに図示しない電源回路から20~100kHzの高周波電流が供給されると、コイル30a,30bの周囲に高周波磁束が発生する。磁性体32で包囲されたコイル30a,30bから生じた高周波磁束は、コ字状の磁性体32と、ヒータ20a,20bおよび溝部(開口部)36とを通る磁気回路を形成するとともに、ヒータ20a,20bに鎖交する。このとき、電気的な閉じた(閉ループを構成する)ヒータ20a,20bに、鎖交した高周波磁束による誘導電流が発生し、誘導電流によるジュール熱がヒータ20a,20b全体に均一に発生する。このようにヒータ20a,20bの全体が均一に加熱されるため、加熱庫10に収容された食品をむらなく加熱することができる。電源回路からコイル30a,30bに十分な電力(たとえば合わせて2kW)を供給すると、ヒータ20a,20bは800℃以上に加熱され、放射赤外線により食品を直接的に加熱することができる。
 またヒータ20a,20bは、その周囲の空気を加熱し、対流により加熱庫10の内部の空気が一様に高温になるので、高温空気により食品を間接的に加熱することができる。
 このように加熱庫10に収容された食品は、ヒータ20a,20bからの輻射熱および高温の空気により加熱され、グリル調理される。
 加熱により食材から生じる脂は、下側ヒータ20bより下方に設置された脂受け皿38によって受容される。本発明の加熱調理器1は、下側ヒータ20bに誘導電流を流してジュール熱により加熱するものであり、前掲特許文献1および2に記載された従来式の加熱調理器のように誘導加熱を加熱原理とするものではない。したがって、脂受け皿9を金属材料で形成しても下側ヒータ20bにより直接的に加熱されることはなく、下側ヒータ20bと脂受け皿38の間に実質的な距離を設けることにより、脂受け皿38の温度を脂の発火温度より低く抑えることができる。
 なお、本発明で採用する誘導電流で生じるジュール熱による加熱は、一般のIHクッキングヒータのトッププレート上に載置された鍋に対する誘導加熱とは原理的に異なり、「誘導加熱」と呼べないかも知れないが、電磁誘導によって流れる「誘導電流」で生じるジュール熱による加熱であるため、本願では敢えて誘導加熱として扱うこととする。そして電磁誘導により、ヒータ20a,20bに誘導電流を流すためのコイル30a,30bおよび磁性体32を、ここでは「誘導加熱手段」と呼ぶこととする。なお、上述のヒータ20a,20bの入力電力および温度は一例であり、ヒータ20a,20bの温度は入力電力およびヒータの放熱面積(表面積)等をパラメータとして決まるものである。
 本発明の電源回路については詳細に説明しないが、一般的なIHクッキングヒータなどの誘導加熱装置で採用されている電源回路と同様のものを利用することができ、たとえば、ハーフブリッジ回路、フルブリッジ回路、一石共振回路などを用いて構成することができる。したがって、各実施の形態において電源回路について詳細に説明しなくても、当業者ならば容易に理解されるように、たとえばハーフブリッジ回路またはフルブリッジ回路を用いた場合には共振コンデンサがコイルと直列に接続され、一石共振回路の場合には共振コンデンサがコイルと並列に接続され、こうした周知事項については本発明に係る加熱調理器1の各実施の形態においても当然に適用される。
 またコイル30a,30bは、個別の電源回路からそれぞれ電力供給を受けてもよいし、コイル30a,30bを並列あるいは直列に接続して同一の電源回路から電力供給を受けてもよい。なお、コイル30a,30bを並列または直列に接続する場合には、電流の方向を考慮して接続の向きを決定する必要があるが、これについては後述する。
 図4はコイル30a,30bに流れるコイル電流の方向と、コイル電流によって発生する磁束の方向と、電磁誘導によってヒータ20a,20bに流れる誘導電流の方向を示したものである。図を解りやすくするために、コイル30a,30bおよびヒータ20a,20b以外の構成要素を省略して示す。図4でコイル電流と誘導電流は、コイル30a,30bおよびヒータ20a,20bに上書きして図示する。コイル電流と誘導電流の流れる方向は駆動周波数で変化するが、図4ではある瞬間のものを示す。コイル30a,30bに図4に示す方向にコイル電流が流れると、コイル30a,30bの周囲に磁束が発生する。この磁束は電気的な閉ループを構成するヒータ20a,20bと鎖交するのでヒータ20a、ヒータ20bには電磁誘導により起電力が発生し、誘導電流がヒータ20a,20bそれぞれの閉ループを流れる。すなわち、これは変圧器と同じ原理であり、コイル30a,30bが変圧器の一次側コイル、ヒータ20a,20bが変圧器の二次側コイルと考えることもできる。以上のような原理によりヒータ20a,20bは加熱されるので、図1および図2のように、並列あるいは直列に接続された2つのコイル30a,30bを1つの電源回路で駆動する場合、各コイル30a,30bは、コイル電流が図4に示すような方向に流れるように接続する必要がある。一方、個別の電源回路を用いて各コイル30a,30bを独立して駆動する場合、図4のようにコイル電流の位相(方向)を設定すると最大のヒータ加熱効率を実現することができ、位相(方向)を互いにずらすことにより任意の(調節可能な)ヒータ加熱効率を実現することができる。
 図5は、コイル30と磁性体32(断熱部材34およびヒータ20を含む)からなる誘導加熱手段の部分的な拡大垂直断面であって、図1に示す加熱調理器1の4つのうち1つの誘導加熱手段を示すものである。図5のヒータ20は、磁束と鎖交する部分のみ図示されている。
 コイル30に高周波電流を流すと、コイル30の周囲に高周波磁束が発生する。高周波磁束はコ字状の磁性体32とコ字の開口部からなる磁気回路を通る。ここで「コ字状の磁性体32」とは、コイル30に沿って延びる基部40と、基部40の両端から垂直に延びる一対の側部42a,42bとを有し、側部42a,42bの間には開口部36を形成するものをいう。
 コ字状の磁性体32の開口部36を通る磁束は、図5に示すように、ヒータ20を通過しない磁束φ1とヒータ20を通過する磁束φ2とを含む。磁束φ1は、電気的に閉じたヒータ20に誘導電流を流すために極めて有効な磁束である。一方、磁束φ2は、ヒータ20に誘導電流を流すことにも寄与するが、ヒータ20の一部に渦電流を発生させるので、ヒータ20は、誘導電流に加えて、渦電流によるジュール熱により加熱される。したがって、ヒータ20が閉ループの延びる方向に沿って均一な材質および形状を有する場合には、ヒータ20の温度はコイル30a,30bに隣接する磁束と鎖交する部分においてより高くなり、それ以外の部分においてより低くなる。コイル30a,30bに隣接するヒータ20の部分も加熱調理器1の加熱庫10の内部の空気を温めるのに役立つのでエネルギ損失にはならないが、コイル30を保護するために断熱部材34の断熱層を厚くするか、あるいはコイル30(および磁性体32)とヒータ20との間に空気層を設けて風を流すなどにより断熱性を高める必要がある。
 図6(a)および図6(b)は実施の形態1の加熱調理器1に好適なヒータ20を示す平面図である。図6(a)はヒータ20を構造的に示し、図6(b)は機能的に示す。なお、本発明の加熱調理器1に使用されるヒータ20は、図6(a)および図6(b)に示すものに限定されることはなく、電気的な閉ループを構成するヒータ20であれば任意の形状、構造、材質を有するものであってもよい。図6(a)に示すように、好適なヒータ20は構造的に2種類の部分に分かれる。すなわちヒータ20は、その両端部(すなわちコイル30a,30bに隣接する部分)に電気抵抗の小さな低抵抗部22を有し、ヒータ20の中央部は電気抵抗の大きな高抵抗部26を有する。ここでいう電気抵抗の高低は、低抵抗部22と高抵抗部26の単位長さあたりの電気抵抗の相対的な高低である。
 たとえば、同一金属で作製する場合は、低抵抗部22を中身の詰まった棒(中実棒)で作製し、高抵抗部26をパイプ(中空棒)で作製し、これらを溶接などの方法で接続してもよい。また、異種の金属で作製する場合は、低抵抗部22を銅等の電気抵抗のより低い金属で作製し、高抵抗部26をステンレスなどの電気抵抗のより高い金属で作製してもよい。
 また構造および材質の両方が互いに異なる高抵抗部26と低抵抗部22を作製してもよい。具体的には、低抵抗部22を外径6mmの銅あるいは銅合金からなる中実棒で作製し、高抵抗部26を外径6mm、半径方向の厚み0.3~1mmのステンレスパイプ(中空棒)で作製し、これらを溶接あるいはロウ付けにより接続してヒータ20を作製してもよい。
 なお、ここで「電気抵抗」とは、ヒータ20に流れる誘導電流の所定周波数に対するヒータの電気抵抗であるので、表皮効果の影響により、中実棒より中空棒で作製した方がより小さい電気抵抗を実現する場合には、パイプ(中空棒)を用いて低抵抗部22を形成してもよい。
 図6に示すようなヒータ20の外形形状、たとえば曲げ回数は任意であるが、シーズヒータ等とは異なり、ヒータ20内部に電熱線などの構造部品を含まないため、折り曲げ加工等による破損の虞が極めて少なく、任意の所望形状を有するヒータ20を安価で作製することができる。また、このように作製したヒータ20は、防汚効果あるいは保護効果などを目的として、その表面に各種コーティングを行ってもよい。
 ヒータ20を機能的に側面から説明する。図6(a)の低抵抗部22は、図6(b)に示すように給電部24と冷却部25とからなる。また図6(a)の高抵抗部26はヒータ部26ともいう。
 次に動作について説明する。ヒータ20は、上述のように、ともに中実銅棒の給電部24と冷却部25からなる低抵抗部22と、ステンレスパイプからなる高抵抗部26(ヒータ部)とを有するものとする。ヒータ20は、図1および図2に示すように、その給電部24を断熱部材34の溝部(開口部)36内に挿入することにより加熱庫10に設置される。
 電源回路からコイル30に高周波電流が供給されると、コイル30の周囲に高周波磁束が形成され、給電部24が磁束と鎖交してヒータ20内に誘導電流を形成する。このとき給電部24は、誘導電流および渦電流により生じるジュール熱で加熱されるが、電気抵抗が小さいため誘導電流により生じるジュール熱は比較的に小さい。また渦電流による加熱も電気抵抗が小さい材質であれば小さく、非磁性体である銅であれば渦電流による加熱を十分に小さくすることができる。
 なお給電部24は、断熱部材34の溝部36に載置(断熱部材34に包囲)されているため、冷却部25に比べ放熱性が劣る。また冷却部25は、給電部24と同じ構造および材質を有するが、周囲が空気で包囲されているため放熱性が良好である。また冷却部25は、電気抵抗が小さくなるように構成されているので、誘導電流のジュール熱による発熱も小さく、比較的に低い温度に維持される。
 一方、ヒータ部26は全体的に空気に露出しているので、周辺空気による放熱性は冷却部25と同じであるが、その電気抵抗が相対的に大きいので、誘導電流のジュール熱による発熱は冷却部25より大きくなる。したがって食材は、ヒータ部26からの輻射熱によって効率的にグリル調理される。また、高温となるヒータ部26に比して、冷却部25は、自らの発熱も小さく、ヒータ部26から伝わる熱を周辺空気に効率的に放熱するので、ヒータ部26から冷却部25を介して給電部24に伝わる熱を極力抑え、給電部24が高温になることを防ぐことができる。
 次に磁気回路を構成する磁性体32について説明する。図5に示すように、コイル30に高周波電流を供給すると、コイル30の周囲に磁束が発生し、コ字状の磁性体32および開口部36を通る閉じた磁気回路を形成する。上述のように、図5に示す磁束φ1はヒータ20を通過せず、磁束φ2はヒータ20を通過して誘導電流をヒータ20内に形成する。より多くの誘導電流をヒータ20内に形成するためには、磁束φ1ができるだけ大きいことが好ましい。
 ヒータ20の給電部24における渦電流によるジュール熱を抑制するためにも、磁束φ2を極力小さくし、磁束φ1の割合を実質的に大きくすることが好ましい。
 図7は、磁束φ1の割合が大きくなるように改良された加熱調理器1を示し、これは磁性体32の形状が異なる点を除き、基本的に図1の加熱調理器1と同様のものである。また図8は、コイル30、磁性体32、断熱部材34およびヒータ20からなる誘導加熱手段の図5と同様の部分的な拡大垂直断面であって、磁束φ1の割合が大きくなるように改良された磁性体32を示すものである。図8の磁性体32は、その形状が異なる点以外は、基本的に図5の磁性体32と同じものである。
 図5の磁性体32の断面形状はコ字状であったが、図7および図8の磁性体32は断面形状がC字状に形成されている。ここで「C字状の磁性体」とは、コイル30に沿って延びる基部40と、基部の両端から垂直に延びる一対の側部42a,42bと、各側部42a,42bの先端部から互いに対して延びる一対の延長部44a,44bとを有するものをいう。すなわち図8に示す磁性体32の断面形状は、長方形の一辺がその辺の中央付近で中断された形状である。なお磁性体32の断面形状は長方形状に限るものでなく、台形形状や楕円形状など他の任意の形状であってもよい。
 図7および図8に示すように、磁性体32の断面形状をC字状にすると、磁束φ1が通る磁気回路の磁気抵抗が小さくなるため、コイル30の周囲に発生した磁束は磁束φ1の経路を多く通るようになり、磁束φ2の経路を通る磁束は少なくなる。したがって、磁性体32の断面形状を図7のようなC字状にする方が、図5のようなコ字状にした場合に比べ、ヒータ20の給電部24の渦電流による発熱を低減することができる。このように磁性体32の断面形状をC字状にすることがより好ましい。ただし、断熱部材34の溝部(開口部)36の幅が同じである場合、磁性体32の断面形状をC字状にすると、磁性体32を形成するためにより多くの構成材料を必要とするので、磁性体32の作製に要するコストは高くなる。一方、上述したようにヒータ20の給電部24の温度を低減するために、ヒータ20の給電部24およびヒータ部26を異なる構造にするか、あるいは異種の材料を使用する必要はなく、その場合には、ヒータの製造コストを低くすることができる。すなわち、磁性体32の断面形状をコ字状にするかC字状にするかは、ヒータ20の製造コストなど他の要素も考慮して決定すればよい。
 C字状の断面形状を有する磁性体32は、その開口部36(延長部44間の距離)が小さいほど好ましく、究極的には開口部36の延長部間距離がゼロであり、O字状であるのがもっとも好ましい。ただし、開口部36を設けることなく、磁性体32の断面をO字状とすれば、ヒータ20を磁性体32から取り外すことができない。そのため、ヒータを着脱可能にするには機構上の工夫が必要となる。またC字状の磁性体32の開口部36を小さくするために、ヒータ20は、円形の断面形状を有する棒やパイプの代わりに金属板を用いて作製してもよい。たとえば、厚さ2mm程度の非磁性のステンレス板で図6のような形状のヒータ20を作製すれば、外径6mmの棒やパイプを用いた場合に比べ、C字状の磁性体32の開口部36(延長部間の距離)を4mm小さくすることができる。
 次に実験結果について示す。図2に示す構造の加熱調理器1を作製してコイル30a,30bに高周波電流を供給したときのヒータ20a,20bの温度上昇を測定した。ただし、実験では図2に示した加熱庫10の上壁12aおよび前壁は開放して行った。その理由はヒータ20a,20bの温度上昇を直接熱電対で測定するために、加熱庫10内の温度があまりに高温となるのを回避するためである。図9は、実験に用いた加熱庫10の誘導加熱手段の断面図を示す。図9の縮尺は実際に作製したものをほぼ忠実に図示した。磁性体32は、図9に示した通りコ字状の断面を有し、図中の紙面の奥行き方向に60mmの長さを有する。磁性体32はフェライトコアであり、5mmの厚みを有する。断熱部材34はセラミックウールであり、10mmの厚みを有する。またコイル30は、図2に示すように直径0.3mmの被覆銅線を19本撚りにしたリッツ線を25回巻いて作製した。コイル30a,30bは図2のように加熱庫10の左右両側に配置され、これら2個のコイル30a,30bは並列に接続し、ハーフブリッジ型の電源回路により25kHzの高周波電流を供給した。ヒータ20は直径6mmの円形の断面形状を有する。図9から分かるように、ヒータ20はコ字状磁性体32の開口部36に近いところに配置されたため、図5に示したようにヒータ20を通過しない磁束φ1が十分に大きいものではなかったと思われる。図10は実験に用いたヒータ20の構造を示す。図10においても縮尺は実際に作製したものをほぼ忠実に示した。ヒータは図6に示したように、2種類の異なる材質および構造からなる部材を用いて作製した。図10において、低抵抗部22は直径6mmの銅棒であり、高抵抗部26は外径6mm、内径4mm、半径方向の厚み1mmの非磁性ステンレスSUS304のパイプである。銅棒(低抵抗部22)とステンレスパイプ(高抵抗部26)は、金ロウによりロウ付けして接続した。図10のヒータ20の左右に破線で囲んで示した部分は加熱庫10に設置したとき断熱部材34の溝部36に挿入される部分である。したがって作製したヒータ20には図6(b)に示したような冷却部25は存在しない。また図10のヒータ20に黒丸で示したA~Dは熱電対を取り付けて温度測定を行った位置である。熱電対はそれぞれの位置にカプトンテープを巻いて取り付けた。カプトンテープの耐熱温度による制限から、温度測定は400℃以下の範囲で行った。
 図11は、図2のように構成した加熱庫10において、電源回路に1kWの電力を入力したときのヒータ20の各温度測定位置での温度変化を示したものである。ヒータ20の温度測定は、図2において、上側のヒータ20aでは図10のA,B,C,Dの測定点における温度を測定し、下側のヒータ20bではA,B,Cの測定点における温度を測定した。図11で「給電部」と示したものは、測定点A,Bの上昇温度であり、「ヒータ部」と示したのは測定点C,Dの上昇温度である。上側および下側ヒータ20a,20bの給電部24およびヒータ部26の各測定点における温度はほぼ同じであるので、図11においては上側ヒータ20aまたは下側ヒータ20bを区別することなくプロットした。
 図11から明らかなように、図2に示す加熱調理器1のヒータ20により加熱調理することができる。ヒータ部26の温度が各測定点とも同じ温度であることから、ヒータ部26がヒータ20にループ状に流れる誘導電流によるジュール熱で発熱していることが分かる。ヒータ部26の温度上昇は急峻である。これはヒータ部26がステンレスパイプで構成されているため熱容量が小さいことも一因である。加熱開始後、たとえば2分後の時点において、ヒータ部26の温度は給電部24の温度より実質的に高く、ヒータ部26は、明らかに自らの発熱によるものであり、給電部24からの伝熱によるものではない。
 このことからも前掲特許文献3と本発明は、同様に磁性体のコアを使用し、側面から高周波磁束を供給している点で共通するが、明らかに異なる技術に基づくものであることが理解できる。すなわち特許文献3ではヒータとなるオーブン皿の壁面を積極的に磁気回路の一部として誘導加熱しているのに対し、本発明はヒータ20の給電部24を積極的には磁気回路の一部とはせず、ヒータ20の閉ループを磁束すなわち磁気回路と鎖交するようにしている。
 なお、給電部24は温度上昇が緩やかではあるが、最終的にはヒータ部26の温度より高くなっている。その要因は、給電部24がこれを通過する磁束による渦電流で生じるジュール熱で発熱していることの他、図10に示すように、給電部24と接するヒータ部26の一部も断熱部材34の溝部36内に受容されているため、溝部36内に受容されたヒータ部26の一部において、温度測定を行ったヒータ部26の部分(測定点C,D)よりも放熱性が悪く、そのヒータ部26の温度より高温になっていることに起因するものと思われる。したがって、この高温のヒータ部26の熱が給電部24に伝熱し、同じく放熱性の悪い給電部24の温度を高くしているものと考えられる。換言すると、給電部24の温度を低下させるためには図6(b)に示したように冷却部25を設けることが有効である。なお、図11の実験結果で示したヒータ部26の温度はグリル調理を行うには低いが、加熱庫10の上壁12aおよび前壁も塞いで加熱庫10内の空気温度が高くなるようにして、入力電力をさらに大きくすればグリル調理に適した温度にすることができることは言うまでもない。
 なお、図1および図2の加熱調理器1の加熱庫10において、コイル30a,30bの磁性体32が設けられていない部分で発生する磁束によって、加熱庫10の側壁14a,14bが鉄板などの金属である場合、側壁14a,14bも誘導加熱されるが、これにより加熱庫10の内部の空気温度を効率良く上昇させることができる。
 以上のように、本発明の加熱調理器1によれば、加熱庫10の側壁14a,14bに誘導加熱手段を設け、電気的な閉ループを形成するヒータ20a,20bを加熱庫10の内部に着脱可能に配置し、側壁14a,14bから高周波磁束を供給してヒータ20a,20bに誘導電流を流し、誘導電流によりヒータ20a,20bの全体を加熱するようにしたので、加熱庫10の清掃性が向上するとともに、下側ヒータ20bの下方に金属製の脂受け皿38を、下側ヒータ20bから十分離して配置することができる。
 なお、必ずしも2つの上側および下側のヒータ20a,20bを加熱庫10内に配設する必要はなく、用途に応じて上側ヒータ20aまたは下側ヒータ20bのいずれか一方だけを配置してもよい。その場合、本実施の形態に係る平面状に捲回されたコイル30であっても、上側ヒータ20aまたは下側ヒータ20bに隣接するように単一の誘導加熱手段を設ければよい。以下の実施の形態においても同様である。
実施の形態2.
 図12は、本発明に係る実施の形態2の加熱調理器1を示す断面図である。図13は、図12の主要部について示した斜視図である。実施の形態2の加熱調理器1は、加熱庫10の一方の側壁14のみに配置されたコイルを用いて、電気的な閉ループを構成するヒータ20に高周波磁束を供給する点を除いて、実施の形態1の加熱調理器1と同様の構成を有するので、その他の構成部品に関連する詳細な説明を省略する。なお図中、同一構成部品については同一の符号を用いて示す。
 実施の形態2の加熱調理器1を示す図12および図13と、実施の形態1の加熱調理器1を示す図1および図2とを比較すれば明らかであるように、実施の形態2の加熱調理器1の加熱庫10は、実施の形態1の加熱調理器1の加熱庫10の誘導加熱手段を1組のみ有する。これは本発明の加熱調理器1のヒータの加熱原理が、高周波磁束と電気的な閉ループを構成するヒータを鎖交させることにより、ヒータの閉ループに電磁誘導により誘導電流を流すことによるものであることから容易に理解できる。したがって、本実施の形態では誘導加熱手段であるコイルおよびその周囲の構成が1組の場合について述べるが、実施の形態1に示したように2組であってもよく、また3組あるいはそれ以上であってもよいことを意味する。また実施の形態1で有効であると述べたことは実施の形態2の加熱調理器1に適用しても当然有効である。
 図12において加熱庫10のコイル30を設けていない側壁14bには、ヒータ20a,20bを保持するための溝部39が設けられる。側壁14bは鉄などの金属材料で構成されるものであってもよいが、金属材料である場合にはヒータ20a,20bと電気的に絶縁するために、側壁14bまたはヒータ20a,20bの少なくとも一方に絶縁材料からなるコーティングを施す必要がある。一般に、加熱庫10の内壁面およびヒータ20a,20bに防汚効果、保護効果、遠赤外線効果などを得るためのコーティングが為されるから、これらのコーティングにより電気的絶縁を行ってもよい。
 次に実験結果を示す。図14は図13に示す加熱庫10におけるヒータ20の温度上昇を示したものである。実施の形態2の実験条件は、単一の誘導加熱手段を用いて加熱した点を除き、実施の形態1で説明したものと同様である。入力電力は500Wである。図14のグラフから分かるように、給電部24の温度上昇がヒータ部26の温度上昇に比べ大きくなっている。なお図14に示す実験結果では、上側ヒータ20aおよび下側ヒータ20bの温度上昇が異なったため、それぞれのヒータ20a,20bを個別にプロットした。上側ヒータ20aおよび下側ヒータ20bの温度上昇が異なった理由は、上側ヒータ20aおよび下側ヒータ20bのそれぞれの誘導加熱手段の部分での位置関係が同じになっておらず、一方に電力が入りやすくなっていたためと考えられる。ヒータ部26の温度上昇は約6分経過後に飽和しているが、給電部24の温度は上昇し続けている。したがって、ヒータ部26の温度上昇は給電部24からの伝熱によるものではなく、自らの発熱によるものであると考えられる。
 実施の形態1および2の加熱調理器1を示す図11および図14を比較すると、実施の形態2の図14において、給電部24の温度上昇がヒータ部26の温度上昇より明らかに大きくなっている。その理由は以下のように考えられる。すなわち、ヒータ部26の温度は入力電力に依存するところ、図11の実施の形態1においては1kWの電力が入力されたのに対し、図14の実施の形態2においては500Wの電力が入力されたのであるから、ヒータ部26の発熱量が半分になり、それに伴い温度上昇も小さくなった。一方、給電部24は実施の形態1および2のいずれの場合も、1つの誘導加熱手段が担当する電力は500Wであるので、1つの給電部24において高周波磁束が給電部24を通過することによって、給電部24に発生する渦電流による発熱量は図11の場合であっても図14の場合であっても同等と考えられる。そのため図14の場合は入力電力が半分であるにも関わらず、図11の場合と同じように給電部24の温度が上昇したと考えられる。したがって、本実施の形態で示すように誘導加熱手段であるコイル30とその周囲の構成を1組とする場合は、給電部24が負担する電力が大きくなるので、実施の形態1で示したように磁性体をC字状にするなどして、ヒータ20を通過して鎖交する磁束の割合を減少し、ヒータ20を通過せずに鎖交する磁束の割合を増加することが有効である。
 これにより、ヒータ20に給電部24を1つしか設けない場合であっても、給電部24の温度上昇を低減するとともに、ヒータ部26の温度上昇を増大させることができる。給電部24が1つしか設けられない場合、誘導加熱手段であるコイル30とその周囲の構成が1組しか必要としないので、低コスト化が図れるといったメリットを有するとともに、誘導加熱手段を加熱庫10の側壁14に配置するだけではなく、図15に示す加熱庫10の前壁16や後壁18に配置することもできるので、加熱調理器1の構造上の自由度が上がるといったメリットもある。図15は、誘導加熱手段を後壁18に配置した加熱調理器1を示す断面図である。磁性体32の断面形状をC字状にしてヒータ20a,20bの給電部24の温度上昇が小さくなるように構成されている。また前壁16は、筐体(加熱庫10)の開閉自在な前壁16であり、調理中の内部を観察できるように一部がガラスで構成された前扉17を有する。後壁18に配置したヒータ20の加熱動作原理は、上記実施の形態で説明したような誘導加熱手段を側壁14に配置したヒータ20と同様である。
 なお、本実施の形態で示した実験では誘導加熱手段が1組しか設けられないにも関わらず、ヒータ20は、図6および図10に示すものと同様、左右に2つの低抵抗部22を有するものを用いた。このように構成することにより、ユーザはヒータ20の向きを意識することなく、ヒータ20を加熱庫10内に容易に設置することができるので、ユーザの煩雑な設置作業を解消または緩和し、設置の向きの間違い(設置方向の錯誤)による誤動作を防ぐことができる。
 図16は、ヒータ20の給電部24を1ヶ所に設けた場合と、2ヶ所に設けた場合のヒータ20の給電部24の温度上昇を比較して示した図である。
 図16の横軸は磁性体32の長さを示し、磁性体32の長さが60mmのときの給電部24を1ヶ所に設けた場合の温度上昇値は、図14の実験結果から読み取ったものであり、同様に磁性体32の長さが60mmのときの給電部24を2ヶ所に設けた場合の温度上昇値は、図11の実験結果か読み取ったものである。すなわち実験に用いた加熱庫の構造などの条件は、上記実施の形態1および本実施の形態2で述べたとおりである。図16の縦軸は電力を入力してから30秒後の給電部24の温度上昇を、磁性体32の長さが60mmで給電部24を1ヶ所に設けた場合の温度上昇を100として、すなわち相対値として示したものである。入力電力は、給電部24を1ヶ所に設けた場合には500W、給電部24を2ヶ所に設けた場合には1kWである。すなわち給電部24の1ヶ所あたり500Wを担当している。また電力を入力してから30秒後の温度上昇を読み取った理由は、放熱の影響をできるだけ小さくするために、給電部24があまり高温になっていない時点で比較するためである。またヒータ20は上側と下側の2個あり、給電部24を2ヶ所に設けたときは1個のヒータ20に2ヶ所に給電部24を有するが、図16の温度上昇値はこれらの各給電部24の値を平均したものである。
 図16から分かるように、給電部24を2ヶ所に設けた場合の方が、給電部24を1ヶ所に設けた場合よりも給電部24の温度上昇が小さい。また磁性体32がより長いほど、給電部24の温度上昇はより小さくなるが、磁性体32の長さには比例せず、図16の実験結果では、磁性体32の長さが120mm以上でほぼ飽和している。一方、給電部24を1ヶ所に設けたときに磁性体32の長さが120mmである場合と、給電部24を2ヶ所に設けたときに磁性体32の長さが60mmである場合とは、給電部24の温度上昇がほぼ等しくなっている。しかし、これは加熱調理器1にたとえば1kWの電力を入力する場合、給電部24を2ヶ所に設けたときは、1ヶ所あたりの給電部24が500Wを担当するので、給電部24の温度上昇は図16に示した通りになるが、給電部24を1ヶ所に設けたときは1ヶ所あたりの給電部24が1kWを担当しなければならず、給電部24の温度上昇は図16に示した値の2倍になることを意味する。
 すなわち磁性体32の長さの合計が同じであっても、給電部24を1ヶ所に設けた場合よりも2ヶ所に設けた場合の方が有利であると言える。これは、ヒータ20にとっては、給電部24は電源であり、電源の数が多い方が誘導電流を流すのに有利なためであると考えられる。当然のことながら、磁性体32の断面形状をコ字状ではなく、C字状にするなどにより給電部24の温度上昇は低下するが、その場合であっても給電部24の数が多い方が給電部24の温度上昇を小さくするのに有利である。しかし、給電部24が加熱庫10の後壁18や前壁16を含む側壁14のいずれかにのみあるというのは、構造がシンプルであり、構造上の自由度が大きくなるという点、さらには低コスト化の点でも有利である。
 図17はヒータ20に給電部を2ヶ所に設け、誘導加熱手段が加熱庫10の後壁18にある加熱調理器1を示す斜視図である。図17は図2と同様に主要部のみを示したものであり、さらに分かりやすくするために断熱部材34も省略して示した。したがって加熱庫10として当然必要な側壁14などの図1に図示したものは、図17に示す加熱庫10も同様に有する。ヒータ20a,20bはそれぞれ加熱庫の後壁18に隣接して給電部24を2ヶ所に有する。コイル30は加熱庫10の後壁18に隣接して、その外部に1つ設けられ、コイル30の合計4箇所にコ字状の磁性体32が設けられる。同様に、磁性体32の断面形状はC字状であってもよい。
 コイル30に高周波電流を流すと、高周波磁束が発生し、それぞれの磁性体32を有する部分を通じて磁束はヒータ20a、ヒータ20bと鎖交し、ヒータ20a,20bに電磁誘導により誘導電流が流れる。ヒータ20a、ヒータ20bはそれぞれ給電部24が2ヶ所あるので、加熱庫10の後壁18のみからの給電でありながら、給電部24の温度を低くして、ヒータ部26の温度を高温にすることができる。
実施の形態3.
 図18は、本発明に係る実施の形態3の加熱調理器1を示す断面図である。図19は、図18の主要部について示した斜視図である。実施の形態3の加熱調理器1は、磁性体32の周囲に導線を螺旋状に捲回して構成されたコイル30を用いて、電気的な閉ループを構成するヒータ20に高周波磁束を供給する点を除いて、実施の形態1の加熱調理器1と同様の構成を有するので、その他の構成部品に関連する詳細な説明を省略する。なお図中、同一構成部品については同一の符号を用いて示す。
 図18および図19においてコイル30a~30dは、コ字状の断面形状を有する磁性体32の一辺(基部)の周囲にリッツ線などの導線を螺旋状に巻いて形成されている。なお、図19ではコイル30a、30cのみが図示されているが、コイル30b、コイル30dは隠れているため図示されていないが、図18に示すように存在している。コイル30a~30dはそれぞれ独立した電源回路(図示せず)により高周波電流を供給してもよい。また、コイル30aおよびコイル30cを1組、コイル30bおよびコイル30dを別の1組として並列あるいは直列に接続して2個の電源回路により高周波電流を流してもよいし、あるいはコイル30aおよびコイル30bを1組、コイル30cおよびコイル30dを別の1組として並列あるいは直列に接続して2個の電源回路により高周波電流を流してもよい。さらには4個すべてのコイル30a~30dを並列あるいは直列、さらには並列と直列の組み合わせにより接続して1個の電源回路により高周波電流を流してもよい。
 各コイル30a~30dは、ヒータ20a,20bには実施の形態1の図4に示すような方向に誘導電流が流れるように接続することが好ましい。また各コイル30a~30dに個別の電源回路から高周波電流を供給する場合や、コイル30aとコイル30bを1組、コイル30cとコイル30dを別の1組として並列あるいは直列に接続して2個の電源回路により高周波電流を供給する場合には、上側ヒータ20aおよび下側ヒータ20bをそれぞれ個別に加熱制御することができるので、たとえば上側ヒータ20aおよび下側ヒータ20bの加熱温度を調整し、あるいは調理の目的に合わせて一方のヒータ20のみ加熱することもできる。
 図20および図21は本実施の形態3のコイル30によって発生する磁束の様子を示したものである。図20は磁性体32がコ字状の断面形状を有するときの断面図であり、図21はC字状の断面形状を有するときの断面図である。
 図から分かるように磁束φ1,φ2は、上記実施の形態1および2に示したコイル30と同様に発生する。したがって、本実施の形態3のコイル30を上記実施の形態1および2に説明したコイル30と置き換えて使用することが可能であり、上記実施の形態1および2で述べたことは本実施の形態3のコイル30を用いた場合であっても同様に適用される。また図22に示すようにコイル30は磁性体32の図20や図21とは異なる辺(基部40の両端から垂直に延びる一対の側部42)に巻いたものであってもよい。
実施の形態4.
 図23は、本発明に係る実施の形態4の加熱調理器1を示す断面図である。図24は、図23の主要部について示した斜視図である。実施の形態4の加熱調理器1は、隣接する2つの磁性体32の周囲に導線を螺旋状に捲回して構成されたコイル30を用いて、電気的な閉ループを構成するヒータ20に高周波磁束を供給する点を除いて、実施の形態1の加熱調理器1と同様の構成を有するので、その他の構成部品に関連する詳細な説明を省略する。なお図中、同一構成部品については同一の符号を用いて示す。
 図23および図24において、加熱庫10の側壁14にコ字状の断面形状を有する磁性体32が、実施の形態1と同様に4つ設けられており、コイル30aおよび30bはそれぞれ加熱庫10の右側および左側に設けた2つの磁性体32の互いに対向した側部42をリッツ線などの導線を螺旋状に巻いて形成されている。すなわち実施の形態4の導線は、加熱庫10の一方の側壁14に配設された隣接する2つの磁性体32の側部42に螺旋状に捲回されている。このように形成されたコイル30aおよび30bに高周波電流を流すと、上記実施の形態で示したように磁束が発生し、磁束は電気的な閉ループを構成するヒータ20a,20bと鎖交して、ヒータ20a,20bに誘導電流を流し、これを加熱する。なお、図23および図24では、コ字状の断面形状を有する磁性体32について示したが、C字状など他の断面形状を有する磁性体32を用いてもよい。
 また図25は、隣接する2つのコ字状の磁性体32を一体に形成したE字状の磁性体32を用いた加熱調理器1の断面図を示す図である。すなわち図25の磁性体32は、基部40と、基部40の両端および中央から垂直に延びる一対の側部42a,42bおよび芯部42cとを有する。また、図25の磁性体32は、側部42a,42bと芯部42cの間に2つの溝部(開口部)36a,36bを有し、それぞれの溝部36a,36bにヒータ20a,20bが挿入されている。
 このように実施の形態4のE字状の磁性体32は、コ字状の磁性体2個を重ね合わせたものとみなすことができるから、図25に示す加熱調理器1と図23に示す加熱調理器1とは実質的に同一のものである。すなわちE字状の磁性体32は、コ字状の磁性体2個を一体としたものであり、コ字状の磁性体32として扱うことができる。したがってE字状の磁性体32を用いた場合であっても、E字の上半分および下半分をC字状のようにするなど、他の実施の形態に示す他の断面形状の要素を組み合わせた形状であってもよい。また実施の形態1の平面状コイルの場合であっても、図25に示したようなE字状の磁性体32を使用することも可能である。
実施の形態5.
 図26は、本発明に係る実施の形態5の加熱調理器1を示す断面図である。また図27および図28は、実施の形態5の誘導加熱手段の斜視図および断面図である。実施の形態5の加熱調理器1は、ヒータ20の周囲全体を包囲可能な磁性体32有する点を除いて、実施の形態2の加熱調理器1と同様の構成を有するので、その他の構成部品に関連する詳細な説明を省略する。なお図中、同一構成部品については同一の符号を用いて示す。
 上記実施の形態1~4においては、加熱調理器1は、ヒータ20と磁束を鎖交させるために、コ字状あるいはC字状の断面形状を有する磁性体32を有するものとし、ヒータ20と鎖交する磁束には、ヒータ20を通過せずに鎖交する磁束φ1と、ヒータ20を通過して鎖交する磁束φ2とがあり、ヒータ20を通過せずに鎖交する磁束φ1の方がヒータ20の給電部24に渦電流による発熱を生じさせないので好ましいことを説明した。本実施の形態5ではヒータ20を通過せずに鎖交する磁束を最も多くすることができる加熱調理器1について説明する
 図26は、実施の形態2の図15に示した加熱調理器1と同様、加熱庫10の後壁18に設けた誘導加熱手段を有する加熱調理器1を図示するが、他の実施の形態に示したように加熱庫10の左右側壁14の一方あるいは両方に設けたものであってもよい。またコイル30は、磁性体32にリッツ線などの導線を螺旋状に巻いた場合について示したが、実施の形態1および2に示したように導線を平面状に巻いたコイルであってもよい。図26の加熱調理器1は誘導加熱手段であるコイル30a、30cとその周囲の構造が、図15の加熱調理器1とは異なるが、他の部分は同様である。
 コイル30a、30cは、断面形状が開口部36のないO字状の磁性体32の一部に導線を螺旋状に巻いて形成している。そしてO字状の磁性体32の内側は断熱部材34が設けられ、磁性体32およびコイル30a,30cが高温にさらされることがないようになっている。またO字状の磁性体32の外側で加熱庫10の内壁面に相当する部分には断熱部材45が設けられ、磁性体32が加熱庫10内の高温の空気から断熱されるようになっている。O字状の磁性体32の内側の断熱部材34の内側には、ヒータ20a,20bの給電部24を収納するための溝部36が形成されている。そしてO字状の磁性体32およびその内側と外側の断熱部材34の一部は、分離されて平行移動可能な可動部52を構成している。
 すなわち実施の形態5の誘導加熱手段は、図27および図28に示すように、加熱庫10に固定された固定部50と、固定部50に対してスライド移動可能に配置された可動部52とを有する。固定部50は、コイル30と、コ字状の磁性体32と、ヒータ20の給電部24を収容する溝部36を含む断熱部材34とを有する。一方、可動部52は、固定部50のコ字状の磁性体32と協働して連続した閉磁路φ1を形成する磁性体32と、断熱部材45とを有する。すなわち、可動部52が閉口位置にスライド移動したとき、可動部52の磁性体32および固定部50のコ字状の磁性体32が一体となって連続した閉磁路φ1を形成する。
 図26(a)は、可動部52が閉じた位置にあり、ヒータ20a,20bに誘導電流を流して加熱するときの状態を示したものである。また図26(b)は、可動部52が開いた位置にあり、ヒータ20a,20bが着脱可能である状態を示す。可動部52は手動あるいは図示しない機械式機構により自動で作動させてもよい。
 図27は、固定部50および可動部52を含む誘導加熱手段の具体的構成を示す斜視図である。図27は下側ヒータ20bのための誘導加熱手段を示すが、上側ヒータ20aのための誘導加熱手段も同様の構造を用いることができる。図中、ヒータ20bの給電部24を中心に示すが、他の実施の形態で上述したように、ヒータ20bは電気的な閉ループを構成するものである。図27は、固定部50に対して開いた位置にある可動部52を示したものである。図27に示すように、固定部50にある磁性体32は、その周囲が断熱部材34に覆われており、可動部52に対向する部分、および図示されていない可動部52の裏側の一部のみ磁性体32が露出している。なお磁性体32が露出する部分は、薄い保護部材などにより覆ってもよい。断熱部材34の内側の溝部36は箱状になっており、可動部52を閉じると、ヒータ取り出し口54以外の部分においては、加熱庫10の内部は完全に閉ざされるようになっている。ヒータ取り出し口54は可動部52を閉じたとき、その形状がヒータ20の断面形状と一致するように構成され、ヒータ20の給電部24を溝部36に収納して取り付けて可動部52を閉じると、加熱庫10内の空気と溝部36内の空気とが交流しないように構成されている。しかし、ヒータ取り出し口54とヒータ20との間に隙間が存在し、加熱庫10内の高温の空気が溝部36の方に流入する虞がある場合は、溝部36の内部に加熱庫10の外部から空気を送る送風手段を設け、溝部36の内部を冷却してもよいし、送風手段により溝部36の内部の気圧を加熱庫10内の気圧より高くして、加熱庫10内の高温の空気が溝部36に流入しないようにしてもよい。このような構造により、ヒータ20を着脱可能で、O字状の断面形状を有する磁性体32を実現することができる。
 図28は、断面形状がO字状の磁性体32を用いた場合の磁束の様子を示したもので、図26(a)に示す加熱調理器1の下側ヒータ20bの誘導加熱手段の周囲を拡大して示したものである。図28に示すように、コイル30cに高周波電流を流したときに発生する磁束φ1のほとんどがO字状の磁性体32を通る。したがって、ほとんどの磁束がヒータ20bを通過せずにヒータ20bと鎖交する磁束φ1となる。その結果、ヒータ20bは、その給電部24に渦電流による発熱が生じることなく、磁束φ1による電磁誘導により誘導電流が流れ、渦電流ではなく、誘導電流が流れることによるジュール熱で高温に加熱される。
 なお、本実施の形態5では断面形状がO字状の磁性体を用いてヒータ20を着脱可能にした場合について述べたが、着脱可能とはせずに加熱庫10の内部に固定される場合であってもメリットがある。すなわち電気的な閉ループを構成するヒータ20の給電部24を加熱庫10の外側に導き、加熱庫10の外側でO字状の磁性体32を用いた誘導加熱手段により電力を供給してヒータ20に誘導電流を流してヒータ20を加熱する。この場合、加熱庫10内から見た構造は、周知のIHクッキングヒータで広く用いられているシーズヒータと同じである。しかしシーズヒータは、ステンレスなどの金属パイプ内部に電熱線と電熱線の周囲にセラミックスを有しており構造が複雑である。また、従来のシーズヒータにおいては、金属パイプ内部に電熱線を有しているため、棒状のシーズヒータを曲げて好みの形状を作製しようとしても曲げ半径などに制限があり、曲げ回数が増加するとコスト高になる。さらに、シーズヒータは金属パイプの内部にセラミックスが詰まっているため熱容量が大きく温度上昇に時間がかかる。しかし本発明のヒータ20は、たとえばステンレスのパイプで作製することができるので、曲げ半径の制限もシーズヒータより緩やかであり、曲げ回数が増加してもシーズヒータよりはるかに安価に製造できる。またパイプであれば熱容量が小さいので、シーズヒータより早く温度を上昇させることができる。以上のように、シーズヒータに対する本発明に係るヒータ20のメリットは、上記他の実施の形態に示したコ字状またはC字状の磁性体32を用いた場合でも同様であるが、ヒータ20を着脱自在とせずに加熱庫10に固定して使用する場合には、実施の形態5に係るO字状断面を有する磁性体32を用いることにより、給電部24が渦電流により発熱することを極力抑えることができる。
 なお、本本実施の形態ではコイルは磁性体32の一部に導線を螺旋状に巻いて形成した場合について示したが、実施の形態1あるいは実施の形態4に示したようなコイルであってもよい。
実施の形態6.
 図29は、本発明に係る実施の形態6の加熱調理器1を示す断面図である。図30は、図29の主要部について示した斜視図である。実施の形態6の加熱調理器1は、ヒータ20a,20bが加熱調理器1の加熱庫10の側壁14に沿って設けられ、食材を側方から加熱できる点を除いて、実施の形態1の加熱調理器1と同様の構成を有するので、その他の構成部品に関連する詳細な説明を省略する。なお図中、同一構成部品については同一の符号を用いて示す。
 上記実施の形態1~5ではヒータ20が加熱庫10内にほぼ水平に設置され、食材を上下から加熱する加熱調理器1について示したが、本実施の形態6では他の形態のヒータ20を有する加熱調理器1について以下説明する。なお本実施の形態においても加熱の原理は、上記実施の形態で説明したものと同じであり、誘導加熱手段の形態は上記各実施の形態で述べたものを用いることができる。
 また図31は、実施の形態6の変形例によるヒータ20を有する加熱調理器1の主要部を示す斜視図である。図31において、ヒータ20a~20dは中実銅棒などの低抵抗の金属部材により形成された給電部24と、タングステンなどの高融点材料を薄板状などの高抵抗を有する形状に成形したヒータ部28とからなる。ヒータ部28は、合成石英または透光性セラミックスなどからなる気密容器56の内側に収納され、気密容器56の内部にはアルゴンなどの不活性ガスが充填されている。上記実施の形態と同様、コイル30に高周波電流を流すと電磁誘導によりヒータ20a~20dに誘導電流が流れ、ヒータ部28が加熱される。ヒータ部28は、高融点材料により形成されており、気密容器56の内部に不活性ガスが充填されているので、1000~2000℃の高温に加熱することができ、ヒータ部28から多くの近赤外線や遠赤外線が放射される。すなわちハロゲンランプなどの電球と同様に発光、発熱し、赤外線を多く放射する。この赤外線による輻射加熱により食材がグリル調理される。
 図32は、実施の形態6のさらに別の変形例によるヒータを有する加熱調理器1の主要部を示す斜視図である。図32において、上側ヒータ20a,20bは図31に示したものと同一である。下側ヒータ58は、厚さ2mm程度のステンレス等の金属板に図32に示すような切込み59が設けられている。切込み59は、電気的に絶縁が保たれる程度の幅であってよい。
 図32のような構成の加熱調理器1は、たとえばハンバーグの調理などに適している。すなわち下側ヒータ58の上にハンバーグなどの食材を載せて、各コイル30a,30bに高周波電流を流して、各ヒータ20a,20b、58を加熱する。下側ヒータ58は、たとえば、200℃程度に加熱されハンバーグ等の食材をフライパン加熱する。ハンバーグ等の食材から出る脂は下側ヒータ58に設けた切込み59から下方に落ち、下側ヒータ58の下方に設けられた図示していない脂受け皿で受けられる。一方、上側ヒータ20a,20bは上述のように赤外線を放射し、ハンバーグ等の食材を輻射加熱する。
 また下側ヒータ58は、図33および図34に示すように、その高抵抗部の上面および下面を金属またはセラミックスなどの絶縁物からなるクラッド部材175で覆って、切込み59が露出しないプレート状の構造としてもよい。ここで図33は切込み59が露出しないプレート状の下側ヒータ58の全体的な斜視図であり、図34はその断面図である。すなわち下側ヒータ58は、切込み59を設けた金属板に金属またはセラミックスなどの絶縁物からなるクラッド部材175で覆う(挟持または包囲する)ことにより形成することができる。ただし、金属製のクラッド部材175を用いる場合には、下側ヒータ58とクラッド部材175との間に絶縁物を配置して、電気的に絶縁する必要がある。
 さらに、図35は実施の形態6のさらに別の変形例によるヒータ20を有する加熱調理器1の主要部を示す斜視図である。図35に示すヒータ20は、箱型密閉容器70の蓋部72および容器部74の内部に形成されている。箱型密閉容器70はいわゆるオーブンあるいは釜であり、蓋部72と容器部74を加熱することにより、箱型密閉容器70の内部に入れた食材をオーブン調理や釜調理する。
 図36は、容器部74の内部に形成されるヒータ20の展開図であり、破線で示した部分で折り曲げると容器部74の内部に形成される形状となる。蓋部72のヒータ20についても同様である。ヒータ20は低抵抗部22と高抵抗部26からなり、低抵抗部22は上記実施の形態に示したように銅棒などで構成され給電部および冷却部を含む。高抵抗部26は、ステンレスまたはアルミニウムなどの金属板を図35のような形状に加工して得られる。図37は箱型密閉容器70の断面図である。図37に示す蓋部72および容器部74は、セラミックスなどの絶縁物で形成された蓋部本体73および容器部本体75と、これらの内部に配設された図35に示したようなヒータ20の高抵抗部26とを有する。
 蓋部本体73および容器部本体75は、ステンレスまたはアルミニウムなどの金属で形成してもよいが、その場合には、高抵抗部26と電気的に絶縁する必要があるので、セラミックスシートなどの耐熱性絶縁物(図示せず)を高抵抗部26と蓋部本体73および容器部本体75との間に挟んだ後、ヒータ20の高抵抗部26を蓋部72および容器部74の内部に配設する必要がある。たとえば、蓋部本体73および容器部本体75をアルミニウムで形成する場合には、アルミニウムを陽極酸化処理(アルマイト処理)することで、アルミニウム表面にアルミナ(酸化アルミニウム)層を形成できるので、別途耐熱性絶縁物を必要とせず、安価に製造することができる。図35に示す加熱調理器1のコイル30に高周波電流を流すと箱型密閉容器70の蓋部本体73および容器部本体75の内部に配置されたヒータ20に誘導電流が流れて発熱し、箱型密閉容器70内に収容された食材が加熱調理される。なお、オーブン調理であっても加熱温度は300℃以下程度、すなわちアルミニウムの融点以下であるから、上記のように蓋部72および容器部74をアルミニウムにより安価に製造することができる。
 図38は、実施の形態6のさらに別の変形例によるヒータを有する加熱調理器1の主要部を示す斜視図である。図38において、上側ヒータ20は図2に示したものと同一であり、下側ヒータ58は図32に示したものと同一である。上側ヒータ20は、通常、食材から離間して加熱するので、高抵抗部をパイプ(中空棒)で作製したものが好ましい。一方、下側ヒータ58は、食材を載置して(接触した状態で)加熱する場合、均一な加熱を実現するために表面積の大きい金属板で高抵抗部を形成したものが好適である。このように上側ヒータおよび下側ヒータは、互いに異なる形態(形状、寸法、配置位置)を有するヒータであってもよく、着脱可能としたことから、ユーザは加熱調理すべき食材に適切なものを選択して使用することができる。
 図39は、実施の形態6のさらに別の変形例による加熱調理器1を示す断面図である。実施の形態3の図18に示す加熱調理器1において、コイル30a,30bは側壁14a,14bに配設されているのに対し、図39に示す加熱調理器1は、そのコイル30a,30bが上壁12aおよび下壁12bに設けられている点が異なり、その他の構成および動作は実施の形態3と同様である。
 換言すると、これまで説明した各実施の形態において、コイル30を含む誘導加熱手段が加熱庫10の側壁14a,14bに設けた場合について説明したが、図39のように誘導加熱手段が加熱庫10の上壁12aおよび下壁12bに設けても本発明を適用することができる。なお、繰り返しになるが、当然のことながら前壁および後壁に設けてもよく、側壁には左右の側壁だけでなく前壁、後壁も含まれると解すべきである。
 以上のように本発明の加熱調理器1にあっては、加熱庫10内のヒータ20を着脱可能としたので、清掃性が向上するだけでなく、調理の目的に合わせてさまざまな形態のヒータ20を用いることができるので、多機能な加熱調理器1を実現することができる。

Claims (21)

  1.  箱状の加熱庫と、
     前記加熱庫の内部に配置された電気的に閉じた導電体からなるヒータと、
     前記加熱庫の外部に配置されたコイルと、
     前記コイルに高周波電流を供給する電源回路と、
     前記コイルから生じる高周波磁束が前記ヒータと鎖交するように配置された磁性体とを備えたことを特徴とする加熱装置。
  2.  コイルおよび磁性体は、加熱庫を構成する壁部に沿って配置され、
     前記コイルから生じた高周波磁束により、ヒータに誘導電流が流れることを特徴とする請求項1に記載の加熱装置。
  3.  加熱庫は、前壁、後壁、右側壁、左側壁、上壁、および下壁からなる壁部で構成され、
     コイルおよび磁性体は、前記加熱庫を構成する1つの壁部に沿って配置されることを特徴とする請求項2記載の加熱装置。
  4.  コイルは、導線を平面上に捲回して構成され、
     磁性体は、同一方向に電流が流れる複数の導線を包囲することを特徴とする請求項1~3のいずれか1に記載の加熱装置。
  5.  コイルは、導線を磁性体の少なくとも一部の周囲に螺旋状に捲回して構成されることを特徴とする請求項1~3のいずれか1に記載の加熱装置。
  6.  磁性体は、コイルから生じる高周波磁束が2つのヒータと鎖交するように配置されることを特徴とする請求項請求項1~5のいずれか1に記載の加熱装置。
  7.  磁性体は、コ字状の断面を有し、
     ヒータの一部が前記コ字状の開口部内に挿入されることを特徴とする請求項1~6のいずれか1に記載の加熱装置。
  8.  磁性体は、C字状の断面を有し、
     ヒータの一部が前記C字状の開口部内に挿入されることを特徴とする請求項1~6のいずれか1に記載の加熱装置。
  9.  ヒータは、給電部を有し、
     磁性体は、前記給電部の全体を包囲することを特徴とする請求項1~6のいずれか1に記載の加熱装置。
  10.  ヒータは、低抵抗部および高抵抗部からなり、
     コイルから生じる高周波磁束は、前記低抵抗部と鎖交することを特徴とする請求項1~9のいずれか1に記載の加熱装置。
  11.  低抵抗部および高抵抗部は、それぞれ中実および中空の金属で形成されることを特徴とする請求項10に記載の加熱装置。
  12.  高抵抗部は、切り込みが設けられた金属板であることを特徴とする請求項10に記載の加熱装置。
  13.  高抵抗部は、その表面上に絶縁物が配設されることを特徴とする請求項10~12のいずれか1に記載の加熱装置。
  14.  ヒータは、高抵抗部を内設するプレート状部材を有することを特徴とする請求項12または13に記載の加熱装置。
  15.  高抵抗部を内設する箱形容器を有することを特徴とする請求項12または13に記載の加熱装置。
  16.  低抵抗部は、加熱庫内の空気に曝される冷却部を有することを特徴とする請求項10または11に記載の加熱装置。
  17.  加熱庫は、金属材料で構成され、加熱庫の内壁またはヒータの少なくとも一方に絶縁材料からなるコーティングが形成されていることを特徴とする請求項1~16のいずれか1に記載の加熱装置。
  18.  ヒータは、複数のコイルから生じる高周波磁束と鎖交することを特徴とする請求項1~17のいずれか1に記載の加熱装置。
  19.  ヒータは加熱庫に対し着脱可能であることを特徴とする請求項1~18のいずれか1に記載の加熱装置。
  20.  複数のヒータが加熱庫に対し着脱可能であることを特徴とする請求項19に記載の加熱装置。
  21.  形態の異なる複数のヒータが加熱庫に対し着脱可能であることを特徴とする請求項20に記載の加熱装置。
PCT/JP2010/063556 2009-08-27 2010-08-10 加熱装置 WO2011024645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10811695.5A EP2472185B1 (en) 2009-08-27 2010-08-10 Heating system
JP2011528732A JP5295374B2 (ja) 2009-08-27 2010-08-10 加熱装置
ES10811695.5T ES2562705T3 (es) 2009-08-27 2010-08-10 Sistema de calentamiento
CN201080037867.4A CN102483237B (zh) 2009-08-27 2010-08-10 加热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009196435 2009-08-27
JP2009-196435 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024645A1 true WO2011024645A1 (ja) 2011-03-03

Family

ID=43627751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063556 WO2011024645A1 (ja) 2009-08-27 2010-08-10 加熱装置

Country Status (5)

Country Link
EP (1) EP2472185B1 (ja)
JP (1) JP5295374B2 (ja)
CN (1) CN102483237B (ja)
ES (1) ES2562705T3 (ja)
WO (1) WO2011024645A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160417A1 (de) * 2012-04-26 2013-10-31 Behr-Hella Thermocontrol Gmbh Heizkörper
JP2013244163A (ja) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp 加熱調理器
JP2016520249A (ja) * 2013-05-30 2016-07-11 コレボン アーベー ヒーター装置および制御可能な加熱プロセス
TWI706689B (zh) * 2015-11-27 2020-10-01 日商美鈴工業股份有限公司 加熱器、定著裝置、畫像形成裝置以及加熱裝置
WO2023212779A1 (en) * 2022-05-04 2023-11-09 ORA Australia Pty Ltd Cooking oven

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102309513B1 (ko) 2011-09-06 2021-10-05 니코벤처스 트레이딩 리미티드 가열식 흡연가능 재료
GB201217067D0 (en) 2012-09-25 2012-11-07 British American Tobacco Co Heating smokable material
WO2014167479A1 (en) * 2013-04-08 2014-10-16 Koninklijke Philips N.V. Apparatus for cooking
CN103249192B (zh) * 2013-05-15 2015-09-02 曲颜发 电磁加热装置、及其用途和取暖器
CN104822189B (zh) * 2015-05-13 2017-02-01 袁石振 穿线管式高频电加热装置、加热设备以及加热方法
US20170055584A1 (en) * 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US20170055575A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material
CN113130283B (zh) * 2019-12-31 2023-01-24 中微半导体设备(上海)股份有限公司 一种等离子处理装置及其加热器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430548A (en) * 1977-08-10 1979-03-07 Hitachi Heating Appliance Co Ltd High frequency heating device
JPH0436981A (ja) * 1990-06-01 1992-02-06 Matsushita Electric Ind Co Ltd 面状発熱体
JPH04341790A (ja) * 1991-05-17 1992-11-27 Mitsubishi Electric Home Appliance Co Ltd 高周波誘導加熱調理器
JPH0618044A (ja) 1992-07-02 1994-01-25 Matsushita Electric Ind Co Ltd 加熱調理装置
JPH06163152A (ja) * 1992-11-24 1994-06-10 Matsushita Electric Ind Co Ltd 加熱調理装置
JPH06235527A (ja) * 1993-02-09 1994-08-23 Matsushita Electric Ind Co Ltd 加熱調理装置
JPH08138864A (ja) 1994-11-15 1996-05-31 Matsushita Electric Ind Co Ltd 加熱調理器
JP2003282221A (ja) 2002-03-26 2003-10-03 Toshiba Home Technology Corp オーブン
JP2010178815A (ja) * 2009-02-04 2010-08-19 Mitsubishi Electric Corp 調理用グリルおよびこれを用いた誘導加熱調理器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29601788U1 (de) * 1996-02-05 1996-05-02 Ratiotherm Gmbh Einrichtung zum induktiven Erwärmen von Speisen
DE19853780A1 (de) * 1998-11-21 2000-01-05 Aeg Hausgeraete Gmbh Garofen mit induktiv beheiztem Heizkörper und Verfahren zum Beheizen einer Ofenmuffel eines Garofens
ES2170031B2 (es) * 2000-12-19 2006-04-16 Bsh Electrodomesticos España, S.A. Horno de induccion.
WO2005084503A1 (de) * 2004-03-03 2005-09-15 Aerofoodtec Einrichtung zur behandlung von speisen
DE102007004275A1 (de) * 2007-01-23 2008-07-24 Mgs Ag - Modular Galley Systems Vorrichtung zur Wandlung induktiv übertragener elektrischer Energie und Verfahren zur Herstellung einer derartigen Vorrichtung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430548A (en) * 1977-08-10 1979-03-07 Hitachi Heating Appliance Co Ltd High frequency heating device
JPH0436981A (ja) * 1990-06-01 1992-02-06 Matsushita Electric Ind Co Ltd 面状発熱体
JPH04341790A (ja) * 1991-05-17 1992-11-27 Mitsubishi Electric Home Appliance Co Ltd 高周波誘導加熱調理器
JPH0618044A (ja) 1992-07-02 1994-01-25 Matsushita Electric Ind Co Ltd 加熱調理装置
JPH06163152A (ja) * 1992-11-24 1994-06-10 Matsushita Electric Ind Co Ltd 加熱調理装置
JPH06235527A (ja) * 1993-02-09 1994-08-23 Matsushita Electric Ind Co Ltd 加熱調理装置
JPH08138864A (ja) 1994-11-15 1996-05-31 Matsushita Electric Ind Co Ltd 加熱調理器
JP2003282221A (ja) 2002-03-26 2003-10-03 Toshiba Home Technology Corp オーブン
JP2010178815A (ja) * 2009-02-04 2010-08-19 Mitsubishi Electric Corp 調理用グリルおよびこれを用いた誘導加熱調理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2472185A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160417A1 (de) * 2012-04-26 2013-10-31 Behr-Hella Thermocontrol Gmbh Heizkörper
JP2013244163A (ja) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp 加熱調理器
JP2016520249A (ja) * 2013-05-30 2016-07-11 コレボン アーベー ヒーター装置および制御可能な加熱プロセス
TWI706689B (zh) * 2015-11-27 2020-10-01 日商美鈴工業股份有限公司 加熱器、定著裝置、畫像形成裝置以及加熱裝置
WO2023212779A1 (en) * 2022-05-04 2023-11-09 ORA Australia Pty Ltd Cooking oven

Also Published As

Publication number Publication date
JP5295374B2 (ja) 2013-09-18
EP2472185A1 (en) 2012-07-04
CN102483237A (zh) 2012-05-30
EP2472185B1 (en) 2016-01-13
EP2472185A4 (en) 2014-12-10
ES2562705T3 (es) 2016-03-07
JPWO2011024645A1 (ja) 2013-01-31
CN102483237B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5295374B2 (ja) 加熱装置
JP5627726B2 (ja) 誘導加熱調理器
JP5322831B2 (ja) 誘導加熱調理器
JP5693505B2 (ja) 誘導加熱調理器
US7385162B2 (en) Heater unit and electric cooker equipped therewith
JP5300764B2 (ja) 加熱調理器
JP5414653B2 (ja) 加熱装置
JPH08138864A (ja) 加熱調理器
JP5517962B2 (ja) 加熱調理器およびその制御方法
JP5517837B2 (ja) 加熱装置
JP2018137247A (ja) 誘導加熱調理器
JP5653172B2 (ja) 誘導加熱調理器
JP2013244163A (ja) 加熱調理器
JP7300591B2 (ja) 加熱コイルユニット及び加熱調理器
JP2019212360A (ja) 加熱コイルユニット及び加熱調理器
JP2007247958A (ja) 調理器
KR101813279B1 (ko) 전기 호브
JP6383180B2 (ja) 誘導加熱調理器
JP5599343B2 (ja) 誘導加熱調理器
JP5645606B2 (ja) 誘導加熱調理器
JPH09167677A (ja) 誘導加熱発熱体および誘導加熱調理器
JP2017022144A (ja) 誘導加熱調理器およびその制御方法
JPS63164194A (ja) 電熱調理器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037867.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528732

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010811695

Country of ref document: EP