WO2011021616A1 - β-グルコシダーゼ活性を有する新規タンパク質およびその用途 - Google Patents

β-グルコシダーゼ活性を有する新規タンパク質およびその用途 Download PDF

Info

Publication number
WO2011021616A1
WO2011021616A1 PCT/JP2010/063844 JP2010063844W WO2011021616A1 WO 2011021616 A1 WO2011021616 A1 WO 2011021616A1 JP 2010063844 W JP2010063844 W JP 2010063844W WO 2011021616 A1 WO2011021616 A1 WO 2011021616A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polynucleotide
seq
glucosidase activity
glucosidase
Prior art date
Application number
PCT/JP2010/063844
Other languages
English (en)
French (fr)
Inventor
史和 横山
健吾 横山
序子 間塚
Original Assignee
明治製菓株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明治製菓株式会社 filed Critical 明治製菓株式会社
Priority to EP10809957.3A priority Critical patent/EP2468859B1/en
Priority to JP2011527674A priority patent/JP5745411B2/ja
Priority to BR112012003609-2A priority patent/BR112012003609B1/pt
Priority to CN201080036879.5A priority patent/CN102482665B/zh
Priority to ES10809957.3T priority patent/ES2661966T3/es
Priority to DK10809957.3T priority patent/DK2468859T3/en
Priority to US13/391,598 priority patent/US8975057B2/en
Publication of WO2011021616A1 publication Critical patent/WO2011021616A1/ja
Priority to US14/576,793 priority patent/US10125355B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/32Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from hydrolysates of wood or straw
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/005Microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/22Proteins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers

Definitions

  • the present invention relates to a novel protein having ⁇ -glucosidase activity and uses thereof, and more specifically, a novel protein having ⁇ -glucosidase activity derived from Acremonium cellulolyticus , analogs and variants thereof, and these proteins And a production method and use of these proteins.
  • Cellulose is a major component of higher plant cells and is widely present in nature.
  • Cellulose is a high-molecular polysaccharide in which glucose is polymerized by ⁇ -1,4-glucoside bonds.
  • Cellulase is a general term for enzymes that decompose cellulose, and generally cellulases produced by microorganisms are composed of many types of cellulase components. Cellulase components are classified into three types, cellobiohydrolase, endoglucanase, and ⁇ -glucosidase, based on their substrate specificity. Up to four types of cellulase-producing filamentous fungi, Aspergillus niger Cellobiohydrolase, 15 endoglucanases, and 15 ⁇ -glucosidases are thought to be produced.
  • ⁇ -Glucosidase is thought to catalyze the reaction that liberates glucose from cello-oligosaccharides, cellobiose or aglycone and glycosides that form ⁇ -D-glucopyranosyl bonds, and is the final step in the saccharification system of cellulose and glucose from glycosides. It is an important enzyme in release.
  • the conversion of ethanol from biomass has the advantages that it may be easily available, that it can avoid material burning or underground filling, and that the ethanol fuel is clean.
  • Wood, agricultural residues, herbaceous crops and municipal solid waste are attracting attention as biomass for ethanol production. These materials mainly consist of cellulose, hemicellulose and lignin. Once cellulose is converted to glucose, glucose is easily fermented to ethanol by yeast.
  • cellobiose is not easily fermented to ethanol by yeast, and the remaining cellobiose causes a decrease in ethanol yield. More importantly, cellobiose is a potent inhibitor against endoglucanase and cellobiohydrolase. Therefore, cellobiose accumulation during hydrolysis is undesirable for ethanol production.
  • Cellulose producing microorganisms generally cannot produce ⁇ -glucosidase, and therefore, the accumulation of cellobiose that occurs in enzymatic hydrolysis is a major problem.
  • Non-patent Document 1 cellulase with strong saccharification is produced (Non-patent Document 1) and has high utility in feed and silage applications (Patent Document 1) -3). Further, a detailed study has been made on the contained cellulase component (Patent Documents 4-10), and it has been clarified that many kinds of cellulase components are secreted as in other filamentous fungi. In particular, it has been reported that ⁇ -glucosidase activity in cellulase is significantly higher than that of cellulase such as Trichoderma reesei (Patent Document 11). Due to these characteristics, Acremonium celluloticus has attracted attention as an object of isolation of the ⁇ -glucosidase gene.
  • JP 7-264994 A Japanese Patent No. 2531595 JP 7-236431 A JP 2001-17180 A International Publication No. 97/33982 Pamphlet WO99 / 011767 pamphlet JP 2000/69978 A JP-A-10-066569 JP 2002/101876 A International Publication 2002/026979 Pamphlet Japanese Examined Patent Publication No. 60-43954
  • the present invention has been made in view of such a situation, and an object thereof is to isolate a novel ⁇ -glucosidase gene from Acremonium cellulolyticus.
  • a further object of the present invention is to increase the yield of ⁇ -glucosidase from the host by highly expressing the isolated ⁇ -glucosidase gene in the host.
  • the present inventors have conducted extensive studies on the method for separating and purifying ⁇ -glucosidase derived from Acremonium cellulolyticus. We have succeeded in identifying a novel ⁇ -glucosidase that is different from the known ⁇ -glucosidase. In addition, the gene encoding the identified ⁇ -glucosidase was also successfully isolated. The isolation of the ⁇ -glucosidase gene from Acremonium cellulolyticus has been attempted for many years, but the gene found by the present inventors has not been isolated. This was thought to be due to the difficulty of separation and purification due to the high hydrophobicity of the protein encoded by.
  • the present inventors have conducted extensive studies on a method for producing a ⁇ -glucosidase having an excellent activity in the host by highly expressing the ⁇ -glucosidase gene derived from Acremonium cellulolyticus in the host.
  • the ⁇ -glucosidase gene is highly expressed in the filamentous fungi other than Acremonium cellulolyticus for the first time in the world by adding multiple base modifications in the ⁇ -glucosidase gene, and the expression product is high.
  • ⁇ -glucosidase derived from Acremonium cellulolyticus can be highly expressed in the host, and the production amount of ⁇ -glucosidase can be increased.
  • the present inventors efficiently perform saccharification from biomass to glucose and various treatments and modifications of cellulosic substrates by using ⁇ -glucosidase or cellulase preparation obtained from the transformant thus prepared. As a result, the present invention has been completed.
  • the present invention relates to novel proteins having ⁇ -glucosidase activity derived from Acremonium cellulolyticus, analogs and variants thereof, polynucleotides encoding these proteins, and methods for producing and using these proteins. Specifically, the following are provided.
  • a polynucleotide encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 3 (ii) a polynucleotide comprising the coding region of the base sequence set forth in SEQ ID NO: 1 or 2 (iii) described in SEQ ID NO: 3
  • a polynucleotide encoding a protein comprising an amino acid sequence having the same identity (v) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 1 or 2 (vi) (i) To (v), the nucleotide sequence encoding the signal sequence was removed.
  • the ⁇ -glucosidase activity in the transformant when expressed in Trichoderma viride can be improved 5 times or more compared to the ⁇ -glucosidase activity in the parent strain of Trichoderma viride.
  • the polynucleotide according to 1. A polynucleotide obtained by removing a base sequence encoding a signal sequence from the polynucleotide according to any one of (4) to (6).
  • An expression vector comprising the polynucleotide according to any one of (1) to (7).
  • a cellulase preparation comprising the protein according to (11).
  • a method for decomposing or converting a cellulose material comprising the step of treating the cellulose material with the protein according to (10) or the cellulase preparation according to (13).
  • a method for producing a degraded or converted cellulose material comprising a step of treating the cellulose material with the protein according to (10) or the cellulase preparation according to (13), and recovering a degradation product of the cellulose material.
  • (20) A method for producing paper pulp having improved drainage, comprising a step of treating paper pulp with the protein according to (10) or the cellulase preparation according to (13).
  • (21) A method for producing an animal sample with improved digestibility, comprising a step of treating animal feed with the protein according to (10) or the cellulase preparation according to (13).
  • (22) A filamentous fungus in which expression of the protein encoded by the polynucleotide according to (2) is suppressed.
  • a novel ⁇ -glucosidase gene derived from Acremonium cellulolyticus and analogs and variants thereof for efficiently expressing ⁇ -glucosidase in a host are provided. Furthermore, a host that highly expresses the ⁇ -glucosidase and exhibits excellent ⁇ -glucosidase activity was provided. This makes it possible to obtain ⁇ -glucosidase derived from Acremonium cellulolyticus as a purified protein or cellulase preparation with high yield.
  • 1 is a drawing showing a restriction enzyme map of plasmid pBGLB.
  • ⁇ -glucosidase means an enzyme exhibiting ⁇ -glucosidase activity, that is, ⁇ -D-Glucoside glucohydrolase EC3.2.1.21.
  • ⁇ -glucosidase activity means an activity of hydrolyzing a glycoside having a ⁇ -D-glucopyranosyl bond with cellooligosaccharide, cellobiose, or aglycone to produce glucose.
  • the “polynucleotide” encoding the protein having ⁇ -glucosidase activity of the present invention includes, for example, DNA or RNA, or a modification or chimera thereof, but is preferably DNA.
  • DNA includes cDNA, genomic DNA, and chemically synthesized DNA.
  • the nucleotide sequence of cDNA encoding a novel ⁇ -glucosidase derived from Acremonium cellulolyticus isolated by the present inventors (hereinafter referred to as “acBGLB”) is shown in SEQ ID NO: 1, and the base of genomic DNA The sequence is shown in SEQ ID NO: 2.
  • the amino acid sequence of acBGLB encoded by these DNAs is shown in SEQ ID NO: 3.
  • a preferred embodiment of the polynucleotide of the present invention is a polynucleotide encoding acBGLB consisting of the amino acid sequence set forth in SEQ ID NO: 3.
  • a polynucleotide comprising the coding region of the base sequence set forth in SEQ ID NO: 1 or 2 Is mentioned.
  • the present invention also includes a polynucleotide encoding a protein functionally equivalent to acBGLB.
  • polynucleotides include acBGLB mutants, derivatives, alleles, variants, and homologs.
  • “functionally equivalent” means that the target protein has ⁇ -glucosidase activity. Preferably, it has a ⁇ -glucosidase activity of 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more compared to acBGLB.
  • the ⁇ -glucosidase activity of the target protein and acBGLB is 1 minute when measured by the method described in the literature (Methods in ENZYMOLOGY, vol.160, Biomass Part A Cellulose and Hemicellulose, Willis A. Wood, edited by p109-110). It can be evaluated as the activity to produce 1 ⁇ mol of p-nitrophenol from p-nitrophenyl- ⁇ -glucoside.
  • polynucleotide encoding a protein functionally equivalent to acBGLB is an amino acid having one or more amino acid substitutions, deletions, and / or additions in the amino acid sequence set forth in SEQ ID NO: 3.
  • a polynucleotide comprising a sequence and encoding a protein having ⁇ -glucosidase activity.
  • the number of amino acid residues to be modified is preferably 1 to 40, more preferably 1 to 20, further preferably 1 to 8, and most preferably 1 to 4.
  • conservative substitution is preferable.
  • Constant substitution means replacing one or more amino acid residues with another chemically similar amino acid residue so as not to substantially alter the activity of the polypeptide. For example, when a certain hydrophobic amino acid residue is substituted by another hydrophobic amino acid residue, a certain polar amino acid residue is substituted by another polar amino acid residue having the same charge, and the like. Functionally similar amino acids capable of making such substitutions are known to those skilled in the art for each amino acid.
  • nonpolar (hydrophobic) amino acids include alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, methionine, and the like.
  • polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, cysteine and the like.
  • positively charged (basic) amino acids include arginine, histidine, and lysine.
  • negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • the polynucleotide encoding the protein having ⁇ -glucosidase activity of the present invention is expressed in Trichoderma viride, in particular, the polynucleotide encoding the protein comprising the amino acid sequence set forth in SEQ ID NO: 5 (for example, the sequence) It is preferable that the polynucleotide includes a coding region of the base sequence described in No. 4.
  • the base sequence described in SEQ ID NO: 4 has 13.2% or more bases changed compared to the base sequence of the polynucleotide encoding acBGLB (SEQ ID NO: 1).
  • the encoded nucleotide sequence has been changed for 16 of the 20 amino acids, and in determining the codon corresponding to each amino acid, the frequency of codon usage in the host Distribution is taken into account.
  • the expression product can be expressed in Trichoderma viride and the ⁇ -glucosidase activity of the expression product was successfully exhibited.
  • those skilled in the art will further modify the base sequence based on this sequence, and a polynucleotide containing the coding region of the base sequence shown in SEQ ID NO: 4.
  • polynucleotides that can be expressed in Trichoderma can be obtained.
  • the present invention relates to one or more nucleotide sequences (preferably within 30 bases, more preferably within 20 bases, more preferably within 10 bases, more preferably within 5 bases) in the base sequence shown in SEQ ID NO: 4.
  • a polynucleotide comprising a nucleotide sequence in which a base is substituted, deleted, inserted and / or added, which encodes a protein having ⁇ -glucosidase activity and can be expressed in Trichoderma viride To do.
  • a preferred embodiment of such a polynucleotide is that the ⁇ -glucosidase activity in the transformant when expressed in Trichoderma viride is the same as the parent strain of Trichoderma viride (the original Trichoderma viride strain in which the uracil biosynthesis gene is not deleted).
  • the polynucleotide can be improved 5 times or more (preferably 7 times or more) compared to ⁇ -glucosidase activity (see Example 5).
  • a polynucleotide encoding a protein functionally equivalent to acBGLB comprises an amino acid sequence having 90% or more identity with the amino acid sequence set forth in SEQ ID NO: 3, and comprises ⁇ -glucosidase activity.
  • the identity is preferably 95% or more, more preferably 98% or more, and particularly preferably 99% or more.
  • a polynucleotide encoding a protein functionally equivalent to acBGLB is hybridized with a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 1 or 2 under stringent conditions, and ⁇ - A polynucleotide encoding a protein having glucosidase activity.
  • stringent conditions means that the membrane is washed after hybridization in a high-temperature, low-salt concentration solution. For example, 2 ⁇ SSC concentration (1 ⁇ SSC: 15 mmol / L quenching) (Sodium triacid, 150 mmol / L sodium chloride) in 0.5% SDS solution means washing conditions at 60 ° C. for 20 minutes.
  • the present invention also provides a polynucleotide obtained by removing a base sequence encoding a signal sequence from a polynucleotide encoding acBGLB or a protein functionally equivalent thereto.
  • the signal sequence of acBGLB is the amino acid sequence at positions -18 to -1 in the amino acid sequence set forth in SEQ ID NO: 3.
  • any polypeptide sequence can be added to the N-terminus and / or C-terminus of each amino acid sequence corresponding to the mature protein portion as long as it does not affect the ⁇ -glucosidase activity.
  • a polypeptide sequence include a signal sequence, a detection marker (eg, FLAG tag), and a purification polypeptide [eg, glutathione S-transferase (GST)].
  • genomic DNA is extracted from a target microorganism such as Acremonium cellulolyticus by a conventional method. This genomic DNA is digested with an appropriate restriction enzyme and then ligated to an appropriate vector to prepare an Acremonium cellulolyticus genomic DNA library.
  • a vector various things, such as a plasmid vector, a phage vector, a cosmid vector, a BAC vector, can be used, for example.
  • an appropriate probe is prepared based on the nucleotide sequence (eg, SEQ ID NO: 2) of the polynucleotide encoding the protein having the ⁇ -glucosidase activity of the present invention, and the desired genome is hybridized from the genomic DNA library. DNA can be isolated.
  • a primer is prepared based on the base sequence of the polynucleotide encoding the protein having ⁇ -glucosidase activity of the present invention (for example, SEQ ID NO: 2), and PCR is performed using the genomic DNA of Acremonium cellulolyticus as a template.
  • the desired genomic DNA can be isolated by performing and ligating the amplified DNA fragment with an appropriate vector.
  • cDNA is first synthesized based on mRNA extracted from a target microorganism such as Acremonium cellulolyticus.
  • the cDNA is digested with an appropriate restriction enzyme and then ligated to an appropriate vector to prepare an Acremonium cellulolyticus cDNA library.
  • an appropriate probe is prepared based on the nucleotide sequence of the polynucleotide encoding the protein having ⁇ -glucosidase activity of the present invention (for example, SEQ ID NO: 1), and the desired cDNA is obtained from the cDNA library by hybridization. It can be isolated.
  • a primer is prepared based on the nucleotide sequence of the polynucleotide encoding the protein having ⁇ -glucosidase activity of the present invention (for example, SEQ ID NO: 1), and PCR is carried out using Acremonium cellulolyticus cDNA as a template.
  • the desired cDNA can be isolated by ligating the amplified DNA fragment with an appropriate vector.
  • the polynucleotide encoding the protein having ⁇ -glucosidase activity of the present invention can be artificially chemically synthesized.
  • an expression vector comprising a polynucleotide encoding a protein having ⁇ -glucosidase activity of the present invention in a state capable of replicating in a host microorganism and expressing a protein encoded by the polynucleotide sequence.
  • the expression vector of the present invention can be constructed on the basis of a self-replicating vector, that is, as an extrachromosomal independent entity whose replication does not depend on chromosomal replication, for example, a plasmid.
  • the expression vector of the present invention may be integrated into the genome of the host microorganism and replicated together with the chromosome into which it has been integrated.
  • those commonly used in the field of genetic engineering can be used.
  • the expression vector according to the present invention is used in addition to the polynucleotide sequence encoding the protein having ⁇ -glucosidase activity of the present invention in order to actually introduce the vector into a host microorganism to express the protein having ⁇ -glucosidase activity. It is desirable to include a polynucleotide sequence that controls its expression, a genetic marker for selecting a microorganism, and the like. Polynucleotide sequences that control expression include, for example, a polynucleotide sequence encoding a promoter, terminator, or signal peptide.
  • the promoter is not particularly limited as long as it shows transcriptional activity in the host microorganism, and may be derived from the same microorganism as the host microorganism or from a heterologous microorganism.
  • the signal peptide is not particularly limited as long as it contributes to protein secretion in the host microorganism, and may be derived from the same microorganism as the host microorganism or from a heterologous microorganism.
  • the gene marker can be appropriately selected according to the method of selecting a transformant. For example, a gene encoding drug resistance and a gene complementary to auxotrophy can be used.
  • the present invention provides a microorganism transformed with this expression vector.
  • the host microorganism used in the present invention is not particularly limited, and examples thereof include filamentous fungi, yeast, Escherichia coli and actinomycetes.
  • yeast cells e.g., Saccharomyces (Saccharomyces) genus Hansenula (Hansenula) spp, or can be mentioned those belonging to Pichia (Pichia) sp.
  • An example of a preferred yeast cells are Saccharomyces cerevisiae (Saccharomyces cerevisiae).
  • filamentous fungus e.g., Humicola (Humicola) genus Aspergillus (Aspergillus) genus or Trichoderma (Trichoderma) genus Fusarium (Fusarium) genus, or Acremonium (Acremonium) belonging ones listed genus, preferred fungi Examples of Humicola insolens , Aspergillus niger or Aspergillus oryzae , or Trichoderma viride , Fusarium oxysporum , Fusarium oxysporum , -Cellulolyticus ( Acremonium cellulolyticus ). Transformation of these microorganisms with the expression vector of the present invention can be performed according to a method commonly used in this field.
  • the protein having the ⁇ -glucosidase activity of the present invention (or the cellulase preparation of the present invention described later) is obtained by culturing the transformant thus prepared in an appropriate medium, and culturing the culture (eg, cultured cells, culture supernatant). ) Can be recovered.
  • the culture of the transformant and its conditions may be essentially equivalent to that for the microorganism used.
  • a method commonly used in this field can be used for recovering the target protein. For example, a supernatant obtained by removing the culture by centrifugation after completion of the culture of the transformant can also be used as a crude enzyme.
  • the supernatant can be concentrated by ultrafiltration or the like, and a preservative can be added to obtain a concentrated enzyme. Furthermore, after concentration, it can also be made into a powder enzyme by a spray drying method or the like.
  • the protein having the ⁇ -glucosidase activity of the present invention (or the cellulase preparation of the present invention) can be obtained by partially purifying or highly purifying these concentrated enzyme or powder enzyme as required. Purification methods include conventional methods such as salting out using ammonium sulfate, organic solvent precipitation using alcohol, membrane separation, or chromatographic separation using ion exchangers, hydrophobic chromatographic supports, gel filtration supports, etc. The methods can be used alone or in appropriate combination.
  • the present invention also provides a method for producing such a protein having the ⁇ -glucosidase activity of the present invention (or the cellulase preparation of the present invention).
  • Cellulase Preparation provides a cellulase preparation comprising the above-described protein having ⁇ -glucosidase activity of the present invention.
  • the cellulase preparation of the present invention may contain other proteins in addition to the protein having ⁇ -glucosidase activity of the present invention.
  • proteins include ⁇ -glucosidase other than the protein having ⁇ -glucosidase activity of the present invention, hemicellulase, endoglucanase, cellobiohydrolase, aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, chitinase, cutinase, Cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, ⁇ -galactosidase, ⁇ -galactosidase, glucoamylase, ⁇ -glucosidase, haloperoxidase, invertase, laccase, lipase, mannosidase, oxidase, pectin degrading enzyme, peptide glutaminase, peroxidase, phytase, polyphenol Oxidase, proteolytic enzyme, ribonuclease
  • the protein other than the protein having the ⁇ -glucosidase activity of the present invention contained in the cellulase preparation of the present invention may be derived from a transformant expressing the protein having the ⁇ -glucosidase activity of the present invention. Alternatively, it may be added separately.
  • the cellulase preparation of the present invention may be produced by mixing with a carrier or medium generally contained, for example, excipients (for example, lactose, sodium chloride, sorbitol, etc.), surfactants, preservatives and the like. Good.
  • the cellulase preparation of the present invention can be prepared in an appropriate shape, for example, powder or liquid.
  • Use of a protein or cellulase preparation with ⁇ -glucosidase activity The present invention relates to the degradation or degradation of cellulose material comprising treating the cellulosic material with the protein having ⁇ -glucosidase activity of the present invention or the cellulase preparation of the present invention. Provide a way to convert.
  • this invention provides the manufacturing method of the cellulose material decomposed
  • Cellulose material is typically biomass, examples of which are rice straw, bagasse, corn stover, fruit pomace such as coconut, waste wood, and materials that have been pretreated appropriately However, it is not limited to these.
  • the protein or cellulase preparation with ⁇ -glucosidase activity used for the treatment of cellulose material may be in the form of cells removed or in the form of a crude fermentation broth that does not remove, in the form of a semi-purified or purified preparation It may be.
  • the transformant of the present invention can be used as a source for producing a protein having ⁇ -glucosidase activity of the present invention in a fermentation process using biomass.
  • various cellulase genes and genes encoding other enzymes effective in biomass processing may be introduced.
  • the method of the present invention can be utilized, for example, to produce sugar (eg, monosaccharides, disaccharides, polysaccharides) from biomass as a chemical or fermentation feedstock.
  • the sugar thus obtained is a raw material for producing, for example, ethanol, plastic, other products or intermediates.
  • the present invention also provides a detergent composition comprising the protein having ⁇ -glucosidase activity of the present invention or the cellulase preparation of the present invention.
  • the detergent composition of the present invention may also contain a surfactant (which may be anionic, nonionic, cationic, amphoteric or zwitterionic or a mixture thereof).
  • the detergent composition may also include other detergent ingredients known in the art, such as builders, bleaches, bleach activators, corrosion inhibitors, sequestering agents, soil release polymers, perfumes, other enzymes (proteases, Lipase, amylase, etc.), enzyme stabilizer, formulation aid, fluorescent whitening agent, and / or foam accelerator.
  • the present invention also provides a method for treating cellulose-containing fibers, comprising the step of bringing the protein having ⁇ -glucosidase activity of the present invention, the cellulase preparation of the present invention, or the detergent composition into contact with the cellulose-containing fibers. .
  • the properties of the cellulose-containing fibers that can be improved by the treatment method of the present invention include, for example, (1) improvement of the feel and appearance of the fibers by weight loss, (2) application of local changes in the color of the colored cellulose-containing fibers, That is, colored cellulose-containing fibers, typically giving stonewash-like appearance and texture to jeans, (3) Clarifying the color of colored cellulose-containing fibers, (4) Softening (reducing the speed at which wrinkles start, wrinkling And (5) removal of fuzz (reduction of the speed at which fuzzing begins, reduction of fuzz).
  • the present invention also provides a method for removing waste paper, characterized in that the protein having ⁇ -glucosidase activity of the present invention or the cellulase preparation of the present invention is used in the step of deinking by treating the waste paper with a deinking chemical.
  • An ink method is provided.
  • the present invention also provides a method for producing paper pulp having improved drainage, comprising a step of treating paper pulp with a protein having ⁇ -glucosidase activity of the present invention or a cellulase preparation of the present invention.
  • a method for producing paper pulp having improved drainage comprising a step of treating paper pulp with a protein having ⁇ -glucosidase activity of the present invention or a cellulase preparation of the present invention.
  • the freeness of paper pulp can be improved without a significant decrease in strength.
  • Examples of paper pulp to be treated include, but are not limited to, waste paper pulp, recycled paperboard pulp, kraft pulp, sulfite pulp or process heat treated and other high yield pulp.
  • the present invention also provides a method for producing an animal feed with improved digestibility, comprising the step of treating the animal feed with a protein having ⁇ -glucosidase activity of the present invention or a cellulase preparation of the present invention.
  • the digestibility of glucan in feed can be improved in an animal body.
  • the filamentous fungus in which the expression of the protein having ⁇ -glucosidase activity is suppressed The present invention provides the filamentous fungus in which the expression of the protein having ⁇ -glucosidase activity of the present invention is suppressed.
  • the filamentous fungus is preferably a filamentous fungus belonging to the genus Acremonium, and most preferably Acremonium cellulolyticus .
  • Inhibition of the expression of the protein having the ⁇ -glucosidase activity of the present invention (endogenous protein) in filamentous fungi should be performed using general techniques such as RNA interference method, antisense RNA / DNA method, homologous recombination, etc. Can do.
  • polynucleotide molecules used in these technologies for example, siRNA, antisense RNA, antisense DNA, polynucleotides containing sequences homologous to the target DNA for the recombination
  • creation of vectors containing these polynucleotides Techniques for introducing a vector into a host are known to those skilled in the art.
  • the filamentous fungus thus prepared is used to decompose cellulose that is widely distributed in plants and the like, the final decomposition product, glucose, is not generated in the decomposition process, and the glucose bimolecules are ⁇ -1, Cellobiose linked by 4 bonds is selectively produced. While cellobiose is sweet, it is not decomposed in the human body. Therefore, cellobiose is useful as a sweetener, cosmetic raw material, or pharmaceutical raw material for health foods and foods for diabetics. If the filamentous fungus of the present invention is used, the raw material of such a product can be provided at low cost.
  • Example 1 Purification of Acremonium cellulolyticus ⁇ -glucosidase A spray-dried cellulase powder enzyme was prepared from Acremonium cellulolyticus, and Tris- containing 0.5 M (NH 4 ) 2 SO 4 was prepared. It was dissolved in HCl buffer (0.05M, pH 7.0) and impurities were removed by high speed cooling centrifugation. The obtained supernatant was purified by the following method as a starting material for enzyme purification.
  • Example 2 Determination of Partial Amino Acid Sequence of Purified ⁇ -Glucosidase The fraction having ⁇ -glucosidase activity fractionated by the strong basic anion exchange chromatography of Example 1 was subjected to 12% Gel SDS-PAGE mini (Tefco And ⁇ -glucosidase B (acBGLB) of Acremonium cellulolyticus was identified.
  • the acBGLB band was excised, reduced carboxymethylated, and then treated with lysyl endopeptidase. This degradation product was separated by electrophoresis using 12% Gel SDS-PAGE mini (manufactured by Tefco) and blotted on a PVDF membrane (manufactured by Millipore). The resulting peptide fragment band was cut out and the N-terminal amino acid sequence of the peptide fragment was determined using a protein sequencer Model 492 (Applied Biosystems). The determined partial amino acid sequences of acBGLB (“BGLB-LE-1” and “BGLB-LE-2”) are shown in SEQ ID NOs: 6 and 7, respectively.
  • BGLB-F CCNTTYGTNGGNAAYACNGCNGCNCC
  • SEQ ID NO: 8 BGLB-R: CATDATRTANCCNGGRAANCC
  • PCR was performed using BGLB-F and BGLB-R as primers and genomic DNA as a template. PCR was performed using LA taq polymerase (manufactured by Takara Bio Inc.). PCR was performed in 35 cycles of “94 ° C. for 30 seconds, 53 ° C. for 30 seconds, 72 ° C. for 2 minutes”.
  • the amplified 650 bp DNA fragment was inserted into the pCR2.1-TOPO plasmid vector using the TOPO TA cloning kit (manufactured by Invitrogen) according to the attached protocol to obtain the plasmid “TOPO-pBGLB-partial”.
  • a genomic DNA of Acremonium cellulolyticus was digested overnight with Sca I, and circular DNA was prepared from the digested fragment using Mighty Mix (manufactured by Takara Bio Inc.). Using this circular DNA as a template, PCR was performed using the following primers prepared based on the base sequence information of the acBGLB gene fragment, and the 5 ′ upstream region and 3 ′ downstream region of the acBGLB gene were obtained.
  • BGLB-inv-F TAGGCGTTCGTTATGCGAAC (SEQ ID NO: 10)
  • BGLB-inv-R AAACGAGATTCCAGATGGCG (SEQ ID NO: 11)
  • the 5 ′ upstream region and 3 ′ downstream region were analyzed by the method described in Example 3- (2), and the full-length base sequence of the BGLB gene was determined.
  • pBGLB-F CTGGACCTATATTCCCCGAT (SEQ ID NO: 12)
  • pBGLB-R TGGTTTGTCCATACTGCGTC (SEQ ID NO: 13)
  • the amplified DNA was inserted into the pCR2.1-TOPO plasmid vector using TOPO TA cloning kit (manufactured by Invitrogen) to obtain plasmid “pBGLB”.
  • Escherichia coli TOP10 strain (manufactured by Invitrogen) was transformed with the obtained plasmid “pBGLB” to obtain “ Escherichia coli TOP10 strain / pBGLB”.
  • pBGLB Escherichia coli TOP10 strain
  • ACCP-5-1 strain was cultured in cellulase induction medium at 32 ° C for 2 days, and the cells were collected by centrifugation. The obtained microbial cells were frozen with liquid nitrogen and ground using a mortar and pestle.
  • Total RNA was isolated from the ground cells by ISOGEN (Nippon Gene) according to the attached protocol.
  • mRNA was purified from total RNA using mRNA Purification Kit (Pharmacia) according to the attached protocol.
  • cDNA was synthesized by TimeSaver cDNA Synthesis Kit (Pharmacia) according to the attached protocol.
  • the following primers including the start codon and the stop codon were prepared from the acBGLB gene sequence, and PCR was performed using the cDNA as a template.
  • BGLB-N ATGTATTCCGCATTTCTTTTGCTGC (SEQ ID NO: 14)
  • BGLB-C CTATTGTAGGCATTGAGAATACCAT (SEQ ID NO: 15)
  • SEQ ID NO: 1 The base sequence of the amplified cDNA (SEQ ID NO: 1) was analyzed by the method described in Example 3- (2), and compared with the base sequence of pBGLB genomic DNA, the position of the intron in the genomic DNA was determined. Were determined.
  • This modified acBGLB gene was designed taking into account the frequency distribution of codons in Trichoderma viride, with changes in the base sequence encoded for 16 of the 20 amino acids.
  • This modified acBGLB gene was artificially synthesized by Gene Design Co., Ltd. During the artificial synthesis, it was designed so that Xba I and Sna BI were included in the sequence upstream of the start codon, and Sal I and Xba I were included downstream of the stop codon.
  • a plasmid “pBGLBkai” in which a codon-modified acBGLB gene was inserted into Xba I of pUC19 was obtained.
  • PCB1-Eg3X-hphless was cleaved with Stu I and Xho I, and a fragment of about 7 kbp was recovered.
  • An about 2.7 kbp gene fragment “BGLBkai-N” was ligated thereto using TaKaRa DNA Ligation Kit Mighty Mix (Takara Shuzo Co., Ltd.) to create a plasmid “BGLBkai-pCB1”.
  • the reaction conditions such as enzyme were in accordance with the conditions in the instructions attached to the kit.
  • the plasmid “BGLBkai-pCB1” was constructed to express modified acBGLB in its host Trichoderma viride using its own start codon.
  • Trichoderma viride strain 2 strain was added to 50 mL of cell culture medium (1% yeast extract, 1% malt extract, 2% polypeptone, 2.5% glucose, 0.1% dipotassium hydrogen phosphate, 0.05% magnesium sulfate heptahydrate, 0.0001% The cells were cultured in uridine (pH 7.0) at 28 ° C. for 24 hours, centrifuged at 3000 rpm for 10 minutes, and collected.
  • uridine pH 7.0
  • the obtained bacterial cells were washed with 0.5 mol / L sucrose and filtered with cotton (1 mg / mL ⁇ -glucuronidase, 0.3 mg / mL chitinase, 0.3 mg / mL zymolyce, 0.5 mol / L sucrose) ).
  • the mycelium was protoplasted by shaking at 30 ° C. for 60 minutes.
  • the protoplast was recovered by centrifugation at 2500 rpm for 10 minutes, and SUTC buffer (0.5 mol / L sucrose, 10 mmol / L calcium chloride, 10 mmol / L tris-HCl (pH 7.5)) Washed with.
  • This protoplast was suspended in 100 ⁇ L of SUTC buffer, and 10 ⁇ L of DNA solution containing 10 ⁇ g of plasmid “BGLBkai-pCB1” and 10 ⁇ L of DNA solution containing pyr4 gene were added and left on ice for 5 minutes. Next, add 400 ⁇ L of PEG solution (60% PEG4000, 10 mmol / L calcium chloride, 10 mmol / L Tris-HCl (pH 7.5)), let stand on ice for 20 minutes, then add 10 mL of SUTC buffer, 2500 rpm Centrifuge for 10 minutes.
  • PEG solution 50% PEG4000, 10 mmol / L calcium chloride, 10 mmol / L Tris-HCl (pH 7.5)
  • the collected protoplasts are suspended in 1 mL of SUTC buffer, and 200 ⁇ L each is layered on a minimal medium containing 0.5 mol / L sucrose together with soft agar. The colonies formed here were used as transformants.
  • (4) Cultivation and Identification of “BGLBkai-pCB1” Transformant Strains that had been introduced with the plasmid “BGLBkai-pCB1” and grown on a minimal medium were selected and cultured according to WO 98/11239. The obtained culture supernatant was subjected to electrophoretic separation using 12% Gel SDS-PAGE mini (manufactured by Tefco), and a band having the same migration distance as acBGLB identified in Example 2 was well detected.
  • Kiyo was selected.
  • (5) Identification of partial amino acid sequence of recombinant modified acBGLB In order to confirm that the protein expressed in large quantities in Example 4- (4) was modified acBGLB, the partial amino acid sequence was determined. First, proteins in the culture supernatant were separated by electrophoresis using 12% Gel SDS-PAGE mini (manufactured by Tefco), and the acBGLB band separated according to the method of Example 2 was treated with lysyl endopeptidase. This degradation product was separated by electrophoresis using 12% Gel SDS-PAGE mini (manufactured by Tefco) and blotted on a PVDF membrane (manufactured by Millipore).
  • the ⁇ -glucosidase activity was defined as the activity of producing 1 ⁇ mol of p-nitrophenol from p-nitrophenyl- ⁇ -glucoside per minute and expressed as the activity per 1 mL of culture supernatant (U / mL).
  • the results are shown in Table 1. As is clear from Table 1, the transformant exhibited an activity about 7.5 times that of the parent strain (original Trichoderma viride strain that is not deficient in the uracil biosynthesis gene).
  • ⁇ -glucosidase derived from Acremonium cellulolyticus can be obtained in a high yield as a purified protein or a cellulase preparation.
  • ⁇ -glucosidase or cellulase preparation thus obtained, it is possible to promote saccharification of biomass into glucose and to increase the efficiency of treatment and modification of cellulosic substrates.
  • these ⁇ -glucosidase and cellulase preparations can be used at low cost.
  • filamentous fungus in which the expression of ⁇ -glucosidase of the present invention is suppressed, cellobiose useful as a sweetener, a cosmetic raw material, or a pharmaceutical raw material can be efficiently produced.

Abstract

 疎水性クロマトグラフィ-と強塩基性陰イオン交換クロマトグラフィーとを組み合わせることにより、アクレモニウム・セルロリティカスより、疎水性の高い新規なβ-グルコシダーゼを同定することに成功した。さらに、同定したβ-グルコシダーゼに対応する遺伝子を単離し、その塩基配列について多くの改変を加えることにより、該遺伝子をトリコデルマ・ビリデにおいて高発現させ、かつ、発現産物に高いβ-グルコシダーゼ活性を発揮させることに成功した。

Description

β-グルコシダーゼ活性を有する新規タンパク質およびその用途
 本発明は、β-グルコシダーゼ活性を有する新規タンパク質およびその用途に関し、詳しくは、アクレモニウム・セルロリティカス(Acremonium cellulolyticus)由来のβ-グルコシダーゼ活性を有する新規タンパク質、その類似体および改変体、これらタンパク質をコードするポリヌクレオチド、ならびに、これらタンパク質の製造方法および用途に関する。
 セルロースは、高等植物細胞の主要な構成成分であり、広く天然に存在する。セルロースは、グルコースがβ-1,4-グルコシド結合により重合した高分子多糖であり、天然にはセルロースが結晶状あるいは非結晶状態で存在しており、さらには他の成分、リグニン、ヘミセルロース類、ペクチン類などとも複雑に結合して植物組織を構築している。
 セルラーゼはセルロースを分解する酵素の総称であり、一般に微生物の生産するセルラーゼは多種類のセルラーゼ成分からなる。セルラーゼ成分は、その基質特異性から、セロビオヒドロラーゼ、エンドグルカナーゼ、β-グルコシターゼの3種類に分類され、セルラーゼを産生する糸状菌であるアスペルギルス・ニガー(Aspergillus niger)の場合には、最大4種類のセロビオヒドロラーゼ、15種類のエンドグルカナーゼ、15種類のβ-グルコシターゼが産生されると考えられている。これらの種々の作用様式を示す複数の酵素が互いに補い合い、相乗効果を発現することにより、植物細胞壁の主成分であるセルロースを分解するものと考えられている。β-グルコシダーゼは、セロオリゴ糖、セロビオースまたはアグリコンとβ-D-グルコピラノシル結合をする配糖体からグルコースを遊離させる反応を触媒すると考えられ、セルロースの糖化系の最終段階および配糖体からのグルコースの遊離において重要な酵素である。
 バイオマスからのエタノール変換は、入手が容易である可能性があること、材料の燃焼または地中充填を回避できること、およびエタノール燃料がクリーンであるという利点がある。木材、農業残留物、草本性作物および都市の固体状廃棄物は、エタノール製造用バイオマスとして注目されている。これらの材料は、主としてセルロース、ヘミセルロースおよびリグニンからなる。いったんセルロースがグルコースに転化されると、グルコースは酵母によりエタノールに容易に発酵される。その一方、セロビオースは、酵母によりエタノールに容易に発酵されず、残留するセロビオースが、エタノール収量の低下を引き起こす。さらに重要なことは、セロビオースが、エンドグルカナーゼおよびセロビオヒドロラーゼに対する強力なインヒビターであることである。このため加水分解中のセロビオースの蓄積は、エタノール製造のために望ましくない。セルラーゼ産生微生物は、一般に、β-グルコシダーゼをほとんど産生することができないため、酵素的加水分解において生じるセロビオースの蓄積が、主要な問題となっている。
 セロビオースからグルコースへの転化を促進させるために、宿主中でβ-グルコシダーゼを過剰発現させて、β-グルコシダーゼの収量を増加させることは、バイオマスからグルコースへの糖化促進に有効な手段である。このため、セルラーゼ産生微生物に導入して発現させるための、新規なβ-グルコシダーゼ遺伝子の単離が望まれてきた。
 一方、糸状菌アクレモニウム・セルロリティカスに関しては、糖化力の強いセルラーゼを生産し(非特許文献1)、飼料用途やサイレージ用途で、高い有用性を持つことが報告されている(特許文献1-3)。また、含有されているセルラーゼ成分(特許文献4-10)に関しても詳細な検討がなされており、その他の糸状菌と同様に多種類のセルラーゼ成分が分泌されていることが明らかにされている。特に、セルラーゼ中のβ-グルコシダーゼ活性に関しては、トリコデルマ・レーゼイ(Trichoderma reesei)等のセルラーゼに比べて著しく活性が高いことなどが報告されている(特許文献11)。このような特性から、β-グルコシダーゼ遺伝子の単離の対象として、アクレモニウム・セルロリティカスが注目されてきた。
 しかしながら、これまでにアクレモニウム・セルロリティカスから単離された遺伝子はわずかであり(特許文献9、10)、しかも、単離された遺伝子については、いまだに、アクレモニウム・セルロリティカス以外の糸状菌における発現に成功していない。
特開平7-264994号公報 特許第2531595号明細書 特開平7-236431号公報 特開2001-17180号公報 国際公開97/33982号パンフレット 国際公開99/011767号パンフレット 特開2000/69978号公報 特開平10-066569号公報 特開2002/101876号公報 国際公開2002/026979号パンフレット 特公昭60-43954号公報
「アグリカルチュラル・アンド・バイオロジカル・ケミストリー(Agricultural and Biological Chemistry)」,(日本),1987年,第51巻,p65
 本発明は、このような状況に鑑みてなされたものであり、その目的は、アクレモニウム・セルロリティカスから、新規なβ-グルコシダーゼ遺伝子を単離することにある。さらなる本発明の目的は、単離したβ-グルコシダーゼ遺伝子を宿主中で高発現させ、宿主からのβ-グルコシダーゼの収量を増加させることにある。
 本発明者らは、上記課題を解決すべく、アクレモニウム・セルロリティカス由来のβ-グルコシダーゼの分離・精製の手法について鋭意検討を重ねた結果、遂に、アクレモニウム・セルロリティカスにおいて、これまで知られていたβ-グルコシダーゼとは異なる新規なβ-グルコシダーゼを同定することに成功した。さらに、同定したβ-グルコシダーゼをコードする遺伝子の単離にも成功した。アクレモニウム・セルロリティカスからのβ-グルコシダーゼ遺伝子の単離については、長年に渡り試みられてきたにもかかわらず、本発明者らが見出した遺伝子が単離されてこなかったのは、この遺伝子がコードするタンパク質の疎水性の高さ故、その分離・精製が困難であったことに起因するものと考えられた。
 さらに、本発明者らは、単離したアクレモニウム・セルロリティカス由来のβ-グルコシダーゼ遺伝子を宿主において高発現させ、宿主に優れた活性を持つβ-グルコシダーゼを生産させる手法について鋭意検討を行った結果、β-グルコシダーゼ遺伝子において、複数の塩基の改変を加えることにより、世界で初めて、アクレモニウム・セルロリティカス以外の糸状菌内で、β-グルコシダーゼ遺伝子を高発現させ、かつ、発現産物に高いβ-グルコシダーゼ活性を発揮させることに成功した。これにより、宿主中で、アクレモニウム・セルロリティカス由来のβ-グルコシダーゼを高発現させ、β-グルコシダーゼの生産量を増加させることが可能となる。本発明者らは、こうして作製した形質転換体から取得したβ-グルコシダーゼあるいはセルラーゼ調製物を利用すれば、バイオマスからグルコースへの糖化や、セルロース系基質の種々の処理や改変を、効率的に行うことができることを見出し、本発明を完成するに至った。
 即ち、本発明は、アクレモニウム・セルロリティカス由来のβ-グルコシダーゼ活性を有する新規タンパク質、その類似体および改変体、これらタンパク質をコードするポリヌクレオチド、ならびに、これらタンパク質の製造方法および用途に関し、より詳しくは、下記を提供するものである。
(1) β-グルコシダーゼ活性を有するタンパク質をコードする、下記(i)から(vi)のいずれかに記載のポリヌクレオチド。
(i)配列番号:3に記載のアミノ酸配列を含むタンパク質をコードするポリヌクレオチド
(ii)配列番号:1または2に記載の塩基配列のコード領域を含むポリヌクレオチド
(iii)配列番号:3に記載のアミノ酸配列において、1もしくは複数個のアミノ酸が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド
(iv)配列番号:3に記載のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含むタンパク質をコードするポリヌクレオチド
(v)配列番号:1または2に記載の塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド
(vi)(i)から(v)に記載のポリヌクレオチドから、シグナル配列をコードする塩基配列が除去されたポリヌクレオチド
(2) 糸状菌由来である、(1)に記載のポリヌクレオチド。
(3) 糸状菌がアクレモニウム・セルロリティカスである、(2)に記載のポリヌクレオチド。
(4) β-グルコシダーゼ活性を有するタンパク質をコードする、下記(i)または(ii)に記載のポリヌクレオチド。
(i)配列番号:5に記載のアミノ酸配列を含むタンパク質をコードするポリヌクレオチド
(ii)配列番号:4に記載の塩基配列のコード領域を含むポリヌクレオチド
(5) 配列番号:4に記載の塩基配列において、1もしくは複数個の塩基が置換、欠失、挿入および/または付加された塩基配列からなるポリヌクレオチドであって、β-グルコシダーゼ活性を有するタンパク質をコードし、かつ、トリコデルマ・ビリデにおいて発現させることができるポリヌクレオチド。
(6) トリコデルマ・ビリデにおいて発現させた場合の形質転換体におけるβ-グルコシダーゼ活性を、トリコデルマ・ビリデの親株におけるβ-グルコシダーゼ活性と比較して、5倍以上に向上させることができる、(5)に記載のポリヌクレオチド。
(7) (4)から(6)のいずれかに記載のポリヌクレオチドから、シグナル配列をコードする塩基配列が除去されたポリヌクレオチド。
(8) (1)から(7)のいずれかに記載のポリヌクレオチドを含む、発現ベクター。
(9) (8)に記載の発現ベクターで形質転換された、宿主細胞。
(10) (1)から(7)のいずれかに記載のポリヌクレオチドによりコードされるタンパク質。
(11) 組み換えタンパク質である、(10)に記載のタンパク質。
(12) (9)に記載の宿主細胞を培養し、該宿主細胞および/またはその培養物から発現させたタンパク質を採取する工程を含む、(11)に記載のタンパク質の製造方法。
(13) (11)に記載のタンパク質を含む、セルラーゼ調製物。
(14) (10)に記載のタンパク質または(13)に記載のセルラーゼ調製物で、セルロース材料を処理する工程を含む、セルロース材料を分解または変換する方法。
(15) (10)に記載のタンパク質または(13)に記載のセルラーゼ調製物で、セルロース材料を処理し、セルロース材料分解物を回収する工程を含む、分解または変換されたセルロース材料の製造方法。
(16) セルロース材料分解物が糖である、(15)に記載の方法。
(17) (10)に記載のタンパク質または(13)に記載のセルラーゼ調製物を含んでなる洗剤組成物。
(18) (10)に記載のタンパク質、(13)に記載のセルラーゼ調製物、または(17)に記載の洗剤組成物とセルロース含有繊維とを接触させる工程を含む、セルロース含有繊維の処理方法。
(19) 古紙を脱インキ薬品により処理して脱インキを行う工程において、(10)に記載のタンパク質または(13)に記載のセルラーゼ調製物を用いることを特徴とする、古紙の脱インキ方法。
(20) (10)に記載のタンパク質または(13)に記載のセルラーゼ調製物で紙パルプを処理する工程を含む、ろ水性が改善された紙パルプの製造方法。
(21) (10)に記載のタンパク質または(13)に記載のセルラーゼ調製物で動物飼料を処理する工程を含む、消化能が改善された動物試料の製造方法。
(22) (2)に記載のポリヌクレオチドがコードするタンパク質の発現が抑制された糸状菌。
 本発明により、アクレモニウム・セルロリティカスに由来する新規なβ-グルコシターゼ遺伝子、および、宿主内でβ-グルコシターゼを効率良く発現させるための、その類似体および改変体が提供された。さらに、該β-グルコシターゼを高発現し、優れたβ-グルコシターゼ活性を示す宿主が提供された。これによりアクレモニウム・セルロリティカスに由来するβ-グルコシダーゼを、精製タンパク質として、あるいはセルラーゼ調製物として、高い収量で取得することが可能となった。
プラスミドpBGLBの制限酵素地図を示す図面である。
β-グルコシターゼ活性を有するタンパク質および該タンパク質をコードするポリヌクレオチド
 本発明は、新規なβ-グルコシダーゼ活性を有するタンパク質および該タンパク質をコードするポリヌクレオチドを提供する。本発明において「β-グルコシターゼ」とは、β-グルコシダーゼ活性を示す酵素、すなわち、β-D-Glucoside glucohydrolase EC3.2.1.21を意味する。「β-グルコシダーゼ活性」とは、セロオリゴ糖、セロビオース、またはアグリコンとβ-D-グルコピラノシル結合をする配糖体を、エキソ機作で加水分解し、グルコースを生成する活性を意味する。
 本発明のβ-グルコシダーゼ活性を有するタンパク質をコードする「ポリヌクレオチド」には、例えば、DNAもしくはRNA、またはそれらの修飾体もしくはキメラ体が含まれるが、好ましくはDNAである。DNAには、cDNA、ゲノムDNA、および化学合成DNAが含まれる。本発明者らにより単離されたアクレモニウム・セルロリティカスに由来する新規なβ-グルコシターゼ(以下、「acBGLB」と称する)をコードするcDNAの塩基配列を配列番号:1に、ゲノムDNAの塩基配列を配列番号:2に示す。また、これらDNAがコードするacBGLBのアミノ酸配列を配列番号:3に示す。
 本発明のポリヌクレオチドの好ましい態様は、配列番号:3に記載のアミノ酸配列からなるacBGLBをコードするポリヌクレオチドであり、例えば、配列番号:1または2に記載の塩基配列のコード領域を含むポリヌクレオチドが挙げられる。
 本発明は、また、acBGLBと機能的に同等なタンパク質をコードするポリヌクレオチドを包含する。このようなポリヌクレオチドとしては、例えば、acBGLBの変異体、誘導体、アレル、バリアントおよびホモログが挙げられる。ここで「機能的に同等」とは、対象となるタンパク質がβ-グルコシダーゼ活性を有することを意味する。好ましくはacBGLBと比較して、70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上のβ-グルコシダーゼ活性を有するものである。対象となるタンパク質およびacBGLBのβ-グルコシダーゼ活性は、文献(Methods in ENZYMOLOGY, vol.160, Biomass Part A Cellulose and Hemicellulose, Willis A. Wood編 p109-110)記載の方法で測定した場合における、1分間にp-ニトロフェニル-β-グルコシドから1μmolのp-ニトロフェノールを生成する活性として評価することができる。
 acBGLBと機能的に同等なタンパク質をコードするポリヌクレオチドの一つの態様は、配列番号:3に記載のアミノ酸配列において、1つもしくは複数個のアミノ酸の置換、欠失、および/または付加されたアミノ酸配列からなり、β-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドである。
 改変されるアミノ酸残基の数は、好ましくは1~40個、より好ましくは1~20個、更に好ましくは1~8個、最も好ましくは1~4個である。アミノ酸の改変としては、保存的置換が好ましい。「保存的置換」とは、ポリペプチドの活性を実質的に変化しないように1もしくは複数個のアミノ酸残基を、別の化学的に類似したアミノ酸残基で置き換えることを意味する。例えば、ある疎水性アミノ酸残基を別の疎水性アミノ酸残基によって置換する場合、ある極性アミノ酸残基を同じ電荷を有する別の極性アミノ酸残基によって置換する場合などが挙げられる。このような置換を行うことができる機能的に類似したアミノ酸は、アミノ酸毎に、当業者に公知である。具体例を挙げると、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニン等が挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システイン等が挙げられる。陽電荷をもつ(塩基性)アミノ酸としては、アルギニン、ヒスチジン、リジン等が挙げられる。また、負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸等が挙げられる。
 本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドは、トリコデルマ・ビリデにおいて発現させる場合には、特に、配列番号:5に記載のアミノ酸配列を含むタンパク質をコードするポリヌクレオチド(例えば、配列番号:4に記載の塩基配列のコード領域を含むポリヌクレオチド)であることが好ましい。配列番号:4に記載の塩基配列は、acBGLBをコードするポリヌクレオチドの塩基配列(配列番号:1)と比較して、13.2%以上の塩基が変更されている。しかも、そのコードするアミノ酸配列においては、20種類あるアミノ酸のうち16種類のアミノ酸について、コードする塩基配列の変更がなされており、各アミノ酸に対応するコドンの決定においては、宿主におけるコドンの使用頻度分布が考慮されている。これにより、トリコデルマ・ビリデにおいて発現させることを可能にすると供に、発現産物に高いβ-グルコシダーゼ活性を発揮させることに成功した。一旦、このような好適化配列が得られれば、当業者であれば、この配列を基盤として、さらに塩基配列を改変して、配列番号:4に記載の塩基配列のコード領域を含むポリヌクレオチドと同様に、トリコデルマにおいて発現させることが可能なポリヌクレオチドを取得することが可能である。従って、本発明は、配列番号:4に記載の塩基配列において、1もしくは複数個(好ましくは30塩基以内、さらに好ましくは20塩基以内、さらに好ましくは10塩基以内、さらに好ましくは5塩基以内)の塩基が置換、欠失、挿入および/または付加された塩基配列からなるポリヌクレオチドであって、β-グルコシダーゼ活性を有するタンパク質をコードし、かつ、トリコデルマ・ビリデにおいて発現させることができるポリヌクレオチドを提供するものである。このようなポリヌクレオチドの好ましい態様は、トリコデルマ・ビリデにおいて発現させた場合の形質転換体におけるβ-グルコシダーゼ活性を、トリコデルマ・ビリデの親株(ウラシル生合成遺伝子が欠損されていない元のトリコデルマ・ビリデ株)におけるβ-グルコシダーゼ活性(実施例5を参照)と比較して、5倍以上(好ましくは、7倍以上)に向上させることができるポリヌクレオチドである。
 本発明における、acBGLBと機能的に同等なタンパク質をコードするポリヌクレオチドの他の態様は、配列番号:3に記載のアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、β-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドである。ここで「同一性(identity)」とは、当業者に公知の相同性検索プログラムであるFASTA3[Science,227,1435-1441(1985)、Proc.Natl.Acad.Sci.USA,85,2444-2448(1988)、http://www.ddbj.nig.ac.jp/E-mail/homology-j.html]においてデフォルト(初期設定)のパラメータを用いて算出される数値である。前記同一性としては、好ましくは95%以上の同一性、さらに好ましくは98%以上の同一性、特に好ましくは99%以上の同一性であることができる。
 本発明における、acBGLBと機能的に同等なタンパク質をコードするポリヌクレオチドの他の態様は、配列番号:1または2に記載の塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、β-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドである。ここで「ストリンジェントな条件」とは、ハイブリダイゼーション後のメンブレンの洗浄操作を、高温度低塩濃度溶液中で行うことを意味し、例えば、2×SSC濃度(1×SSC:15mmol/Lクエン酸3ナトリウム、150mmol/L塩化ナトリウム)、0.5%SDS溶液中で、60℃、20分間の洗浄条件を意味する。
 本発明は、また、acBGLBまたはそれと機能的に同等なタンパク質をコードするポリヌクレオチドから、シグナル配列をコードする塩基配列が除去されたポリヌクレオチドを提供する。acBGLBのシグナル配列は、配列番号:3に記載のアミノ酸配列においては、-18位~-1位のアミノ酸配列である。
 本発明のタンパク質は、成熟タンパク質部分に対応する各アミノ酸配列のN末端および/またはC末端に、β-グルコシダーゼ活性に影響を与えない範囲で、任意のポリペプチド配列を付与することができる。このようなポリペプチド配列としては、例えば、シグナル配列、検出用マーカー(例えば、FLAGタグ)、精製用ポリペプチド[例えば、グルタチオンS-トランスフェラーゼ(GST)]を挙げることができる。
 本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドの調製は、当業者にとって常套手段を利用して行うことが可能である。本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするゲノムDNAの調製においては、例えば、まず、アクレモニウム・セルロリティカスなどの目的の微生物から慣行法によりゲノムDNAを抽出する。このゲノムDNAを適当な制限酵素にて消化後、適当なベクターと連結することにより、アクレモニウム・セルロリティカスのゲノムDNAライブラリーを作製する。ベクターとしては、例えば、プラスミドベクター、ファージベクター、コスミドベクター、BACベクター等、多様なものが使用できる。次に、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドの塩基配列(例えば、配列番号:2)に基づいて適当なプローブを作成し、ゲノムDNAライブラリーからハイブリダイゼーションによって所望のゲノムDNAを単離することができる。また、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドの塩基配列(例えば、配列番号:2)に基づいてプライマーを作成し、アクレモニウム・セルロリティカスのゲノムDNAを鋳型としてPCRを実施し、増幅したDNA断片を適当なベクターと連結することにより所望のゲノムDNAを単離することができる。また、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするcDNAの調製においては、例えば、まず、アクレモニウム・セルロリティカスなどの目的の微生物から抽出したmRNAを基にcDNAを合成する。このcDNAを適当な制限酵素にて消化後、適当なベクターと連結することにより、アクレモニウム・セルロリティカスのcDNAライブラリーを作製する。次に、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドの塩基配列(例えば、配列番号:1)に基づいて適当なプローブを作成し、cDNAライブラリーからハイブリダイゼーションによって所望のcDNAを単離することができる。また、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドの塩基配列(例えば、配列番号:1)に基づいてプライマーを作成し、アクレモニウム・セルロリティカスのcDNAを鋳型としてPCRを実施し、増幅したDNA断片を適当なベクターと連結することにより所望のcDNAを単離することができる。また、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドは、人工的に化学合成することも可能である。
 本発明においては、本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチドを、宿主微生物内で複製可能で、かつ、そのポリヌクレオチド配列がコードするタンパク質を発現可能な状態で含む発現ベクターが提供される。本発明の発現ベクターは、自己複製ベクター、すなわち、染色体外の独立体として存在し、その複製が染色体の複製に依存しない、例えば、プラスミドを基本に構築することができる。また、本発明の発現ベクターは、宿主微生物に導入された場合、その宿主微生物のゲノム中に組み込まれ、それが組み込まれた染色体と一緒に複製されるものであってもよい。本発明の発現ベクターの構築の手順および方法は、遺伝子工学の分野で慣用されているものを用いることができる。
 本発明による発現ベクターは、これを実際に宿主微生物に導入してβ-グルコシダーゼ活性を有するタンパク質を発現させるために、上記本発明のβ-グルコシダーゼ活性を有するタンパク質をコードするポリヌクレオチド配列の他に、その発現を制御するポリヌクレオチド配列や微生物を選択するための遺伝子マーカーなどを含んでいることが望ましい。発現を制御するポリヌクレオチド配列としては、例えば、プロモーター、ターミネーター、またはシグナルペプチドをコードするポリヌクレオチド配列、が挙げられる。プロモーターは、宿主微生物において転写活性を示すものであれば特に限定されず、宿主微生物と同種微生物由来のものであっても、異種微生物由来のものであってもよい。また、シグナルペプチドは、宿主微生物において、タンパク質の分泌に寄与するものであれば特に限定されず、宿主微生物と同種微生物由来のものであっても、異種微生物由来のものであってもよい。また、遺伝子マーカーは、形質転換体の選択の方法に応じて適宜選択することができ、例えば、薬剤耐性をコードする遺伝子や栄養要求性を相補する遺伝子を利用することができる。
 さらに、本発明は、この発現ベクターによって形質転換された微生物を提供する。本発明において用いられる宿主微生物としては、特に限定されず、例えば、糸状菌、酵母、大腸菌、放線菌などが挙げられる。酵母細胞としては、例えば、サッカロミセス(Saccharomyces)属、ハンゼヌラ(Hansenula)属、またはピキア(Pichia)属に属するものが挙げられ、好ましい酵母細胞の一例は、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)である。また、糸状菌としては、例えば、フミコーラ(Humicola)属、アスペルギルス(Aspergillus)属またはトリコデルマ(Trichoderma)属、フザリウム(Fusarium)属、またはアクレモニウム(Acremonium)属に属するものが挙げられ、好ましい糸状菌の例は、フミコーラ・インソレンス(Humicola insolens)、アスペルギルス・ニガー(Aspergillus niger)もしくはアスペルギルス・オリゼー(Aspergillus oryzae)、またはトリコデルマ・ビリデ(Trichoderma viride)、フザリウム・オキシスポーラム(Fusarium oxysporum)、またはアクレモニウム・セルロリティカス(Acremonium cellulolyticus)である。本発明の発現ベクターによる、これら微生物の形質転換は、この分野で慣用されている方法に従い実施することができる。
 本発明のβ-グルコシダーゼ活性を有するタンパク質(または後述する本発明のセルラーゼ調製物)は、こうして調製した形質転換体を、適当な培地で培養し、その培養物(例えば、培養細胞、培養上清)から回収することができる。形質転換体の培養およびその条件は、使用する微生物についてのそれと本質的に同等であってよい。また、形質転換体を培養した後、目的のタンパク質を回収する方法は、この分野で慣用されているものを用いることができる。例えば、形質転換体の培養終了後、培養物を遠心分離等により除去して得た上清液を粗酵素として用いることもできる。さらに、この上清液を、限外濾過法などにより濃縮し、防腐剤などを加えて濃縮酵素とすることもできる。さらに、濃縮後、スプレードライ法などによって粉末酵素とすることもできる。本発明のβ-グルコシダーゼ活性を有するタンパク質(または本発明のセルラーゼ調製物)は、これら濃縮酵素または粉末酵素を、必要に応じて、部分精製または高度に精製して得ることができる。精製方法としては、常法、例えば、硫酸アンモニウムなどによる塩析法、アルコールなどによる有機溶媒沈殿法、膜分離法、あるいはイオン交換体、疎水クロマトグラフ用担体、またはゲル濾過用担体などを用いるクロマト分離法を、単独または適宜組み合わせて用いることができる。本発明は、こうした本発明のβ-グルコシダーゼ活性を有するタンパク質(または本発明のセルラーゼ調製物)の製造方法をも提供するものである。
セルラーゼ調製物
 本発明は、上記の本発明のβ-グルコシダーゼ活性を有するタンパク質を含むセルラーゼ調製物を提供する。本発明のセルラーゼ調製物は、本発明のβ-グルコシダーゼ活性を有するタンパク質以外に、他のタンパク質が含まれていてもよい。他のタンパク質としては、例えば、本発明のβ-グルコシダーゼ活性を有するタンパク質以外のβ-グルコシダーゼ、ヘミセルラーゼ、エンドグルカナーゼ、セロビオヒドロラーゼ、アミノペプチダーゼ、アミラーゼ、カルボヒドラーゼ、カルボキシペプチダーゼ、カタラーゼ、キチナーゼ、クチナーゼ、シクロデキストリングリコシルトランスフェラーゼ、デオキシリボヌクレアーゼ、エステラーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、グルコアミラーゼ、α-グルコシダーゼ、ハロペルオキシダーゼ、インベルターゼ、ラッカーゼ、リパーゼ、マンノシダーゼ、オキシダーゼ、ペクチン分解酵素、ペプチドグルタミナーゼ、ペルオキシダーゼ、フィターゼ、ポリフェノールオキシダーゼ、タンパク質分解酵素、リボヌクレアーゼ、トランスグルタミナーゼまたはキシラナーゼを含んでなることができる。本発明のセルラーゼ調製物に含まれる、本発明のβ-グルコシダーゼ活性を有するタンパク質以外のタンパク質は、本発明のβ-グルコシダーゼ活性を有するタンパク質を発現させた形質転換体に由来してもよく、また、別途、添加したものであってもよい。
 本発明のセルラーゼ調製物は、一般的に含まれる担体もしくは媒体、例えば、賦形剤(例えば、乳糖、塩化ナトリウム、ソルビトール等)、界面活性剤、防腐剤等と混合して、製造されてもよい。また、本発明のセルラーゼ調製物は、適当な形状、例えば、粉末または液体状にて調製することができる。
β-グルコシダーゼ活性を有するタンパク質またはセルラーゼ調製物の用途
 本発明は、本発明のβ-グルコシダーゼ活性を有するタンパク質または本発明のセルラーゼ調製物で、セルロース材料を処理することを含む、セルロース材料を分解または変換する方法を提供する。さらに、本発明は、セルロース材料を処理した後、セルロース材料分解物を回収することを含む、分解または変換されたセルロース材料の製造方法を提供する。セルロース材料は、典型的には、バイオマスであり、その例としては、稲わら、バガス、コーンストーバー、椰子の実などの果実の絞りかす、廃木材、およびこれらに適切な前処理を施した材料が挙げられるが、これらに限定されない。セルロース材料の処理に用いる、β-グルコシダーゼ活性を有するタンパク質またはセルラーゼ調製物は、細胞を除去した形態、または、除去しない粗製発酵ブロスの形態であってもよく、半精製または精製した調製物の形態であってもよい。本発明の形質転換体は、バイオマスを使用する発酵プロセスにおいて、本発明のβ-グルコシダーゼ活性を有するタンパク質を生産させる源として使用することができる。形質転換体は、各種セルラーゼ遺伝子や、バイオマスのプロセシングにおいて有効な他の酵素をコードする遺伝子が導入されていてもよい。本発明の方法は、例えば、バイオマスから化学的または発酵フィードストックとして糖(例えば、単糖類、二糖類、多糖類)を製造するために、利用することができる。こうして得られた糖は、例えば、エタノール、プラスチック、他の生成物または中間体を製造するための原料となる。
 本発明は、また、本発明のβ-グルコシダーゼ活性を有するタンパク質または本発明のセルラーゼ調製物を含んでなる洗剤組成物を提供する。本発明の洗剤組成物は、界面活性剤(アニオン性、ノニオン性、カチオン性、両性又は双性イオン性あるいはそれらの混合物であり得る)をも含有し得る。また、前記洗剤組成物は、当分野で既知の他の洗剤成分、例えば、ビルダー、漂白剤、漂白活性剤、腐食防止剤、金属イオン封鎖剤、汚れ解離ポリマー、香料、他の酵素(プロテアーゼ、リパーゼ、アミラーゼなど)、酵素安定剤、製剤化補助剤、蛍光増白剤、及び/又は発泡促進剤等をも含有しうる。
 本発明は、また、本発明のβ-グルコシダーゼ活性を有するタンパク質、本発明のセルラーゼ調製物、または該洗剤組成物を、セルロース含有繊維に接触させる工程を含む、セルロース含有繊維の処理方法を提供する。本発明の処理方法により改善されうる、セルロース含有繊維の性質としては、例えば、(1)減量による繊維の肌触り及び外観の改善、(2)着色セルロース含有繊維の色の局所的な変化の付与、すなわち、着色セルロース含有繊維、代表的にはジーンズへのストーンウォッシュ様の外観及び風合いの付与、(3)着色セルロース含有繊維の色の澄明化、(4)柔軟化(ごわつき始める速度の低減、ごわつきの低減)、(5)毛羽の除去(毛羽立ち始める速度の低減、毛羽立ちの低減)が挙げられる。
 本発明は、また、古紙を脱インキ薬品により処理して脱インキを行う工程において、本発明のβ-グルコシダーゼ活性を有するタンパク質または本発明のセルラーゼ調製物を用いることを特徴とする、古紙の脱インキ方法を提供する。
 本発明は、また、本発明のβ-グルコシダーゼ活性を有するタンパク質または本発明のセルラーゼ調製物で紙パルプを処理する工程を含む、ろ水性が改善された紙パルプの製造方法を提供する。本発明によれば、紙パルプのろ水性を、強度の著しい低下を伴うことなく改善することができる。処理の対象となる紙パルプの例としては、古紙パルプ、再循環板紙パルプ、クラフトパルプ、亜硫酸パルプまたは加工熱処理および他の高収率パルプが挙げられるが、これらに制限されない。
 本発明は、また、本発明のβ-グルコシダーゼ活性を有するタンパク質または本発明のセルラーゼ調製物で動物飼料を処理する工程を含む、消化能を改善された動物飼料の製造方法を提供する。本発明の方法によれば、例えば、動物体内における、飼料中のグルカンの消化能を改善することができる。
β-グルコシダーゼ活性を有するタンパク質の発現が抑制された糸状菌
 本発明は、本発明のβ-グルコシダーゼ活性を有するタンパク質の発現が抑制された糸状菌を提供する。糸状菌は、好ましくは、アクレモニウム(Acremonium)属に属する糸状菌であり、最も好ましくはアクレモニウム・セルロリティカス(Acremonium cellulolyticus)である。糸状菌における本発明のβ-グルコシダーゼ活性を有するタンパク質(内因性タンパク質)の発現の抑制は、例えば、RNA干渉法、アンチセンスRNA・DNA法、相同組換えなどの汎用技術を利用して行うことができる。これら技術に用いられるポリヌクレオチド分子(例えば、siRNA、アンチセンスRNA、アンチセンスDNA、同組み換えのための標的DNAと相同な配列を含むポリヌクレオチドなど)の作成、これらポリヌクレオチドを含むベクターの作成、およびベクターの宿主への導入の手法は、当業者に公知である。こうして作製された糸状菌を利用して、植物などに広く分布するセルロースの分解を行った場合、その分解過程において最終的な分解物であるグルコースが生成されず、グルコース二分子がβ-1,4結合で結合したセロビオースを選択的に製造される。セロビオースは、甘味がある一方、ヒト体内では分解されないことから、健康食品や糖尿病患者用食品の甘味料、化粧品原料、あるいは医薬品原料として有用である。本発明の糸状菌を利用すれば、このような製品の原料を安価に提供することが可能となる。
 本発明を実施例により、さらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
 [実施例1] アクレモニウム・セルロリティカスのβ-グルコシダーゼの精製
 アクレモニウム・セルロリティカスから、スプレードライしたセルラーゼの粉末酵素を調製し、0.5Mの(NH4)2SO4を含むTris-HCl緩衝液(0.05M、pH7.0)に溶解し、不純物を高速冷却遠心分離により除去した。得られた上清を酵素精製の出発材料として以下に示した方法で精製した。
(a)疎水性クロマトグラフィ-(その1)
 上清に含まれるタンパク質を、0.5Mの(NH4)2SO4を含むTris-HCl緩衝液(0.05M、pH7.0)中で、HiTrap Butyl FF(GE Healthcar社製)に吸着させ、次いで、(NH4)2SO4を0.5Mから0Mを含むTris-HCl緩衝液(0.05M、pH7.0)中で、吸着させたタンパク質のリニアグラジェント溶出を行い、β-グルコシダーゼ活性を示した画分を分取した。
(b)疎水性クロマトグラフィ-(その2)
 上記(a)で得た画分中のタンパク質を再度、HiTrap Butyl FF(GE Healthcare社製)に吸着させ、次いで、(a)と同様の方法で、吸着させたタンパク質のリニアグラジェント溶出を行ない、β-グルコシダーゼ活性を示した画分を分取した。
(c)強塩基性陰イオン交換クロマトグラフィー
 上記(b)で得た画分中のタンパク質をTris-HCl緩衝液(0.05M、pH7.0)中で、MonoQ(GE Healthcare社製)に吸着させ、NaClを0Mから1Mを含むTris-HCl緩衝液(0.05M、pH7.0)中で、吸着させたタンパク質のリニアグラジェント溶出を行い、β-グルコシダーゼ活性を示した画分を分取した。
 [実施例2] 精製したβ-グルコシダーゼの部分アミノ酸配列決定
 実施例1の強塩基性陰イオン交換クロマトグラフィーで分取したβ-グルコシダーゼ活性を有する画分を、12% Gel SDS-PAGE mini(テフコ社製)を用いて電気泳動による分離を行い、アクレモニウム・セルロリティカスのβ-グルコシダーゼB(acBGLB)を同定した。acBGLBのバンドを切り出した後、還元カルボキシメチル化し、次いでリシルエンドペプチダーゼで処理した。この分解産物を12% Gel SDS-PAGE mini(テフコ社製)を用いて電気泳動による分離を行ない、PVDF膜(ミリポア社製)上にブロットした。得られたペプチド断片のバンドを切り出し、プロテインシークエンサーModel 492(アプライドバイオシステムズ社製)を用いて、ペプチド断片のN末端アミノ酸配列を決定した。決定したacBGLBの部分アミノ酸配列(「BGLB-LE-1」、「BGLB-LE-2」)を、それぞれ配列番号:6と7に示す。
 [実施例3] acBGLB遺伝子のクローニング
(1)ゲノムDNAの単離
 アクレモニウム・セルロリティカスACCP-5-1株を、(s)培地(2%ブイヨン、0.5%イーストエキスおよび2%グルコース)で32℃にて2日間培養し、遠心分離により菌体を回収した。得られた菌体より、堀内らの方法(H.Horiuchi et. al., J.Bacteriol., 170, 272-278, (1988))に従い、ゲノムDNAを単離した。
(2)acBGLB遺伝子断片の取得
 acBGLBの部分アミノ酸配列を基に以下のプライマーを作製した。
BGLB-F:CCNTTYGTNGGNAAYACNGCNGCNCC(配列番号:8)
BGLB-R:CATDATRTANCCNGGRAANCC(配列番号:9)
 BGLB-FおよびBGLB-Rをプライマーとして使用し、ゲノムDNAを鋳型としてPCRを行った。PCRはLA taqポリメラーゼ(タカラバイオ社製)を用いて実施した。PCRは、「94℃で30秒、53℃で30秒、72℃で2分間」を35サイクルで実施した。増幅された650bpのDNA断片を、TOPO TAクローニングキット(インビトロジェン社製)を用いて、添付のプロトコールに従ってpCR2.1-TOPOプラスミドベクターに挿入し、プラスミド「TOPO-pBGLB-partial」を得た。
 プラスミド「TOPO-pBGLB-partial」にクローニングされた挿入DNA断片のシークエンスは、BigDye Terminator v3.1 Cycle Sequebcing Kit(アプライドバイオシステムズ社製)とABI PRISMジェネティックアナライザー(アプライドバイオシステムズ社製)を用いて、添付のプロトコールに従って、決定した。得られた塩基配列をアミノ酸配列に翻訳し、そのアミノ酸配列をホモロジー検索した結果、アスペルギルス・テレウス(Aspergillus terreus)由来のβ-グルコシダーゼ(XP_001216552)と72%の、ペニシリウム・マルネッフェイ(Penicillium marneffei)由来のβ-グルコシダーゼ(XP_002149046.1)と88%の相同性を示しため、本DNA断片が、β-グルコシダーゼ(Glycoside Hydrolase family 3)遺伝子の一部であると判断した。
(3)インバースPCR法によるacBGLB遺伝子全長の取得
 インバースPCR法は、Trigliaらの方法(T Triglia et. al., Nucleic Acids Research, 16, 8186, (1988))に従って実施した。アクレモニウム・セルロリティカスのゲノムDNAをScaIで一晩消化し、消化断片から、Mighty Mix(タカラバイオ社製)を用いて、環状DNAを作製した。本環状DNAをテンプレートに、acBGLB遺伝子断片の塩基配列情報を基に作製した下記プライマーを用いて、PCRを実施し、acBGLB遺伝子の5’上流領域ならびに3’下流領域を取得した。
BGLB-inv-F:TAGGCGTTCGTTATGCGAAC(配列番号:10)
BGLB-inv-R:AAACGAGATTCCAGATGGCG(配列番号:11)
 上記5’上流領域ならびに3’下流領域を実施例3-(2)に記載の方法により解析し、BGLB遺伝子の全長塩基配列を決定した。
 インバースPCR法により得た塩基配列を基に以下のプライマーを作製し、ゲノムDNAをテンプレートにPCRを実施し、BGLB遺伝子を増幅した。
pBGLB-F:CTGGACCTATATTCCCCGAT(配列番号:12)
pBGLB-R:TGGTTTGTCCATACTGCGTC(配列番号:13)
 増幅されたDNAをTOPO TAクローニングキット(インビトロジェン社製)によりpCR2.1-TOPOプラスミドベクターに挿入し、プラスミド「pBGLB」を得た。得られたプラスミド「pBGLB」で大腸菌(Escherichia coli)TOP10株(インビトロジェン社製)を形質転換することにより「Escherichia coli TOP10株/pBGLB」を得た。
(4)acBGLB cDNAの作製、およびacBGLB ゲノムDNAのイントロン解析
 アクレモニウム・セルロリティカスACCP-5-1株をセルラーゼ誘導培地で32℃にて2日間培養し、遠心分離により菌体を回収した。得られた菌体を液体窒素で凍結後、乳鉢と乳棒を用いて磨砕した。この磨砕した菌体からISOGEN(ニッポンジーン社)により、添付のプロトコールに従い全RNAを単離した。さらに、全RNAから、mRNA Purification Kit(ファルマシア社)により、添付のプロトコールに従い、mRNAを精製した。
 こうして得られたmRNAから、TimeSaver cDNA Synthesis Kit(ファルマシア社)により、添付のプロトコールに従い、cDNAを合成した。acBGLB遺伝子配列から開始コドンならびに終始コドンを含む下記のプライマーを作製し、cDNAをテンプレートにPCRを実施した。
BGLB-N:ATGTATTCCGCATTTCTTTTGCTGC(配列番号:14)
BGLB-C:CTATTGTAGGCATTGAGAATACCAT(配列番号:15)
 増幅されたcDNAの塩基配列(配列番号:1)を、実施例3-(2)に記載の方法により解析し、pBGLB ゲノムDNAの塩基配列と比較することで、ゲノムDNA中のイントロンの位置を決定した。
(5)acBGLBのアミノ酸配列の推定
 上記の方法により単離されたacBGLB ゲノムDNAのエクソンおよびイントロンは、配列番号:2に記載の塩基配列の218~2847位に示された2630bpからなっていた。また、acBGLB ゲノムDNAは、配列番号:2に記載の塩基配列の734~792番、1665~1717番、および2523~2601番に示される3つのイントロンを含んでいた。オープンリーディングフレーム(ORF)から予測されるacBGLBのアミノ酸配列は、配列番号:3に示される通りであった。このORFから予測されるアミノ酸配列の一部は、実施例2において決定したacBGLBの内部配列と一致した。この事実から、単離したゲノムDNAが、acBGLBをコードしていることが明らかとなった。なお、シグナル配列予測ソフトSignalP 3.0によりacBGLBの-18~-1アミノ酸残基までをシグナル配列と推定した。
 [実施例4] acBGLB遺伝子のトリコデルマ・ビリデでの発現
(1)トリコデルマ・ビリデでの発現に適したacBGLB遺伝子コドンの改変
 acBGLB遺伝子をトリコデルマ・ビリデにおいて、活性あるタンパク質として高発現させるために、acBGLB遺伝子の改変を行った。試行錯誤の結果、acBGLB遺伝子から13.2%以上の塩基の変更を伴う、配列番号:4に記載の塩基配列からなるDNAを見出した。この改変acBGLB遺伝子は、20種類のアミノ酸のうち16種類のアミノ酸について、コードする塩基配列の変更を行うと供に、トリコデルマ・ビリデにおけるコドンの使用頻度分布を考慮してデザインしたものである。この改変acBGLB遺伝子を、株式会社ジーンデザインで、人工的に合成した。人工合成の際、開始コドンの上流の配列にXbaIとSnaBIを、終始コドンの下流にSalIとXbaIを含むように設計した。pUC19のXbaIに、コドン改変acBGLB遺伝子が挿入されたプラスミド「pBGLBkai」を得た。
(2)コドン改変BGLB発現プラスミドBGLBkai-pCB1の構築
 プラスミド「pBGLBkai」をSnaBIおよびSalI切断し、約2.7kbpの遺伝子断片「BGLBkai-N」を得た。一方、pCB1-Eg3X(国際公開98/11239号パンフレット)からハイグロマイシンB耐性カセットを削除するため、制限酵素XbaIで切断した後、TaKaRa DNA Ligation Kit Mighty Mix(宝酒造社製)を用いて再び環状にし、得られたプラスミドを「pCB1-Eg3X-hphless」とした。「pCB1-Eg3X-hphless」をStuIおよびXhoIで切断し、約7kbpの断片を回収した。これに約2.7kbpの遺伝子断片「BGLBkai-N」をTaKaRa DNA Ligation Kit Mighty Mix(宝酒造社製)を用いて連結し、プラスミド「BGLBkai-pCB1」を作成した。酵素などの反応条件についてはキットに添付の説明書の条件に従った。プラスミド「BGLBkai-pCB1」は、宿主のトリコデルマ・ビリデ内にて、自身の開始コドンを用いて改変acBGLBを発現するように構築した。
(3)プラスミド「BGLBkai-pCB1」によるトリコデルマ・ビリデの形質転換体の作製
 実施例4-(2)で得られたプラスミド「BGLBkai-pCB1」によるトリコデルマ・ビリデの形質転換は、国際公開第2005/056787号パンフレットに記載の方法に従い、実施した。ウラシル生合成遺伝子(pyr4)欠損株であるトリコデルマ・ビリデ strain2株を宿主とし、選択マーカーとしてニューロスポラ・クラッサ(Neurospora crassa)のpyr4遺伝子を用いたコートランスフォーメーション法により形質転換を実施した。トリコデルマ・ビリデ strain2株を50mLの菌体形成培地(1% イーストエキス、1% モルトエキス、2% ポリペプトン、2.5% グルコース、0.1% リン酸水素2カリウム、0.05% 硫酸マグネシウム7水和物、0.0001% ウリジン(pH7.0))において、28℃で24時間培養し、3000rpmで10分間遠心分離し、集菌した。得られた菌体を0.5mol/L シュークロースで洗浄し、綿で濾過したプロトプラスト化酵素溶液(1mg/mL β-グルクロニダーゼ、0.3mg/mL キチナーゼ、0.3mg/mL ザイモリエース、0.5mol/L シュークロース)に懸濁した。30℃で60分間振盪し、菌糸をプロトプラスト化させた。この懸濁液を濾過した後、2500rpmで10分間遠心分離してプロトプラストを回収し、SUTC緩衝液(0.5mol/L シュークロース、10mmol/L 塩化カルシウム、10mmol/L トリス塩酸(pH7.5))で洗浄した。
 このプロトプラストを100μLのSUTC緩衝液に懸濁し、そこに10μg分のプラスミド「BGLBkai-pCB1」が入ったDNA溶液10μLとpyr4遺伝子が入ったDNA溶液10μLを加え、氷中に5分間静置した。次に400μLのPEG溶液(60% PEG4000、10mmol/L 塩化カルシウム、10mmol/L トリス塩酸(pH7.5))を加え、氷中に20分間静置した後、10mLのSUTC緩衝液を加え、2500rpmで10分間遠心分離した。集めたプロトプラストを1mLのSUTC緩衝液に懸濁し、200μLずつ0.5mol/L シュークロースを含む最少培地に軟寒天とともに重層し、28℃で5日間培養後、生育したコロニーを再度最少培地に移植し、ここで形成したコロニーを形質転換体とした。
(4)「BGLBkai-pCB1」の形質転換体の培養および同定
 プラスミド「BGLBkai-pCB1」を導入し最少培地で生育した株を選抜し、国際公開第98/11239号パンフレットに準じて培養した。得られた培養上清液を12% Gel SDS-PAGE mini(テフコ社製)を用いて電気泳動分離を行い、実施例2で同定したacBGLBと同じ泳動距離のバンドが良好に検出される培養上清を選抜した。
(5)組換え改変acBGLBの部分アミノ酸配列の同定
 実施例4-(4)で大量発現したタンパク質が改変acBGLBであることを確認するために、部分アミノ酸配列を決定した。まず、培養上清中のタンパク質について12% Gel SDS-PAGE mini(テフコ社製)を用いて電気泳動による分離を行い、実施例2の方法に従って分離したacBGLBのバンドをリシルエンドペプチダーゼで処理した。この分解産物を12% Gel SDS-PAGE mini(テフコ社製)を用いて電気泳動によって分離し、PVDF膜(ミリポア社製)上にブロットした。得られたペプチド断片のバンドを切り出し、プロテインシークエンサーModel 492(アプライドバイオシステムズ社製)を用いて、ペプチド断片のN末端アミノ酸配列を決定した。その結果、acBGLBの部分アミノ酸配列(配列番号:6)と一致した。
 [実施例5] トリコデルマ・ビリデ形質転換体における酵素活性の測定
 実施例4-(4)で得られた「BGLBkai-pCB1」形質転換体の培養上清を用いてβ-グルコシダーゼ活性を測定した。測定法は、文献(Methods in ENZYMOLOGY, vol.160, Biomass Part A Cellulose and Hemicellulose, Willis A. Wood編 p109-110)に記載の方法に準じた。なお、β-グルコシダーゼ活性は、1分間にp-ニトロフェニル-β-グルコシドから1μmolのp-ニトロフェノールを生成する活性と定義し、培養上清1mL当りの活性(U/mL)として表した。その結果は、表1の通りである。表1から明らかなように、形質転換体は親株(ウラシル生合成遺伝子が欠損されていない元のトリコデルマ・ビリデ株)の約7.5倍の活性を示した。
Figure JPOXMLDOC01-appb-T000001
 これにより、β-グルコシダーゼ活性が低いセルラーゼ産生微生物に、アクレモニウム・セルロリティカスに由来するβ-グルコシダーゼを過剰発現させ、該微生物におけるβ-グルコシダーゼ活性を増強させることが可能であることが明らかとなった。
 以上、説明したように、本発明により、アクレモニウム・セルロリティカスに由来するβ-グルコシダーゼを、精製タンパク質として、あるいはセルラーゼ調製物として、高い収量で得ることが可能となった。こうして取得したβ-グルコシダーゼやセルラーゼ調製物を用いることにより、バイオマスからグルコースへの糖化の促進や、セルロース系基質の処理や改変の効率化を図ることが可能となる。また、これらβ-グルコシダーゼやセルラーゼ調製物の利用を安価で行うことが可能となる。また、本発明のβ-グルコシダーゼの発現が抑制された糸状菌を利用すれば、甘味料、化粧品原料、あるいは医薬品原料として有用なセロビオースを効率的に生産することが可能となる。

Claims (22)

  1.  β-グルコシダーゼ活性を有するタンパク質をコードする、下記(i)から(vi)のいずれかに記載のポリヌクレオチド。
    (i)配列番号:3に記載のアミノ酸配列を含むタンパク質をコードするポリヌクレオチド
    (ii)配列番号:1または2に記載の塩基配列のコード領域を含むポリヌクレオチド
    (iii)配列番号:3に記載のアミノ酸配列において、1もしくは複数個のアミノ酸が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド
    (iv)配列番号:3に記載のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含むタンパク質をコードするポリヌクレオチド
    (v)配列番号:1または2に記載の塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド
    (vi)(i)から(v)に記載のポリヌクレオチドから、シグナル配列をコードする塩基配列が除去されたポリヌクレオチド
  2.  糸状菌由来である、請求項1に記載のポリヌクレオチド。
  3.  糸状菌がアクレモニウム・セルロリティカスである、請求項2に記載のポリヌクレオチド。
  4.  β-グルコシダーゼ活性を有するタンパク質をコードする、下記(i)または(ii)に記載のポリヌクレオチド。
    (i)配列番号:5に記載のアミノ酸配列を含むタンパク質をコードするポリヌクレオチド
    (ii)配列番号:4に記載の塩基配列のコード領域を含むポリヌクレオチド
  5.  配列番号:4に記載の塩基配列において、1もしくは複数個の塩基が置換、欠失、挿入および/または付加された塩基配列からなるポリヌクレオチドであって、β-グルコシダーゼ活性を有するタンパク質をコードし、かつ、トリコデルマ・ビリデにおいて発現させることができるポリヌクレオチド。
  6.  トリコデルマ・ビリデにおいて発現させた場合の形質転換体におけるβ-グルコシダーゼ活性を、トリコデルマ・ビリデの親株におけるβ-グルコシダーゼ活性と比較して、5倍以上に向上させることができる、請求項5に記載のポリヌクレオチド。
  7.  請求項4から6のいずれかに記載のポリヌクレオチドから、シグナル配列をコードする塩基配列が除去されたポリヌクレオチド。
  8.  請求項1から7のいずれかに記載のポリヌクレオチドを含む、発現ベクター。
  9.  請求項8に記載の発現ベクターで形質転換された、宿主細胞。
  10.  請求項1から7のいずれかに記載のポリヌクレオチドによりコードされるタンパク質。
  11.  組み換えタンパク質である、請求項10に記載のタンパク質。
  12.  請求項9に記載の宿主細胞を培養し、該宿主細胞および/またはその培養物から発現させたタンパク質を採取する工程を含む、請求項11に記載のタンパク質の製造方法。
  13.  請求項11に記載のタンパク質を含む、セルラーゼ調製物。
  14.  請求項10に記載のタンパク質または請求項13に記載のセルラーゼ調製物で、セルロース材料を処理する工程を含む、セルロース材料を分解または変換する方法。
  15.  請求項10に記載のタンパク質または請求項13に記載のセルラーゼ調製物で、セルロース材料を処理し、セルロース材料分解物を回収する工程を含む、分解または変換されたセルロース材料の製造方法。
  16.  セルロース材料分解物が糖である、請求項15に記載の方法。
  17.  請求項10に記載のタンパク質または請求項13に記載のセルラーゼ調製物を含んでなる洗剤組成物。
  18.  請求項10に記載のタンパク質、請求項13に記載のセルラーゼ調製物、または請求項17に記載の洗剤組成物とセルロース含有繊維とを接触させる工程を含む、セルロース含有繊維の処理方法。
  19.  古紙を脱インキ薬品により処理して脱インキを行う工程において、請求項10に記載のタンパク質または請求項13に記載のセルラーゼ調製物を用いることを特徴とする、古紙の脱インキ方法。
  20.  請求項10に記載のタンパク質または請求項13に記載のセルラーゼ調製物で紙パルプを処理する工程を含む、ろ水性が改善された紙パルプの製造方法。
  21.  請求項10に記載のタンパク質または請求項13に記載のセルラーゼ調製物で動物飼料を処理する工程を含む、消化能が改善された動物試料の製造方法。
  22.  請求項2に記載のポリヌクレオチドがコードするタンパク質の発現が抑制された糸状菌。
PCT/JP2010/063844 2009-08-20 2010-08-17 β-グルコシダーゼ活性を有する新規タンパク質およびその用途 WO2011021616A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP10809957.3A EP2468859B1 (en) 2009-08-20 2010-08-17 Novel protein having b-glucosidase activity, and use thereof
JP2011527674A JP5745411B2 (ja) 2009-08-20 2010-08-17 β−グルコシダーゼ活性を有する新規タンパク質およびその用途
BR112012003609-2A BR112012003609B1 (pt) 2009-08-20 2010-08-17 proteína que possui atividade de beta-glucosidase, vetor de expressão, célula hospedeira e seus processos para produção, preparação de celulase e seu processo para degradação e produção, composição detergente
CN201080036879.5A CN102482665B (zh) 2009-08-20 2010-08-17 具有β-葡糖苷酶活性的新蛋白质及其用途
ES10809957.3T ES2661966T3 (es) 2009-08-20 2010-08-17 Nueva proteína que tiene actividad ß-glucosidasa, y usos de la misma
DK10809957.3T DK2468859T3 (en) 2009-08-20 2010-08-17 HIS UNKNOWN PROTEIN WITH B-GLUCOSIDASE ACTIVITY AND ITS USE
US13/391,598 US8975057B2 (en) 2009-08-20 2010-08-17 Protein having β-glucosidase activity and uses thereof
US14/576,793 US10125355B2 (en) 2009-08-20 2014-12-19 Protein having B-glucosidase activity and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-190840 2009-08-20
JP2009190840 2009-08-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/391,598 A-371-Of-International US8975057B2 (en) 2009-08-20 2010-08-17 Protein having β-glucosidase activity and uses thereof
US14/576,793 Division US10125355B2 (en) 2009-08-20 2014-12-19 Protein having B-glucosidase activity and uses thereof

Publications (1)

Publication Number Publication Date
WO2011021616A1 true WO2011021616A1 (ja) 2011-02-24

Family

ID=43607067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063844 WO2011021616A1 (ja) 2009-08-20 2010-08-17 β-グルコシダーゼ活性を有する新規タンパク質およびその用途

Country Status (8)

Country Link
US (2) US8975057B2 (ja)
EP (1) EP2468859B1 (ja)
JP (1) JP5745411B2 (ja)
CN (1) CN102482665B (ja)
BR (1) BR112012003609B1 (ja)
DK (1) DK2468859T3 (ja)
ES (1) ES2661966T3 (ja)
WO (1) WO2011021616A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077432A1 (ja) 2011-11-25 2013-05-30 三井化学株式会社 変異型キシラナーゼ、その製造方法及び用途、並びにリグノセルロースの糖化物製造方法
WO2013103127A1 (ja) * 2012-01-06 2013-07-11 本田技研工業株式会社 糖化酵素組成物及びそれを用いる糖化溶液の製造方法
WO2013180208A1 (ja) 2012-05-31 2013-12-05 Meiji Seikaファルマ株式会社 糸状菌を用いた西洋ワサビ由来ペルオキシダーゼ組換えタンパク質の製造方法
JP2014217312A (ja) * 2013-05-08 2014-11-20 独立行政法人産業技術総合研究所 Acremoniumcellulolyticus(アクレモニウム・セルロリティカス)由来のβ−グルコシダーゼ及びその利用
WO2014192647A1 (ja) * 2013-05-27 2014-12-04 独立行政法人産業技術総合研究所 培養細胞および糖液の製造方法
JP2015136320A (ja) * 2014-01-22 2015-07-30 本田技研工業株式会社 麹菌変異株
JP2016106558A (ja) * 2014-12-04 2016-06-20 本田技研工業株式会社 麹菌変異株及び形質転換体
WO2019059404A1 (ja) * 2017-09-25 2019-03-28 味の素株式会社 タンパク質の製造法および二糖の製造法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884264B1 (en) 2012-08-10 2019-11-20 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element, and method for producing same
US9228181B2 (en) 2013-07-09 2016-01-05 Honda Motor Co., Ltd. β-glucosidase
EP2826858B1 (en) * 2013-07-09 2017-05-31 Honda Motor Co., Ltd. Beta-glucosidase
EP2824178B1 (en) * 2013-07-09 2017-12-06 Honda Motor Co., Ltd. ß-glucosidase
EP2824179B1 (en) * 2013-07-09 2017-11-29 Honda Motor Co., Ltd. Beta-glucosidase

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643954B2 (ja) 1988-02-01 1994-06-08 工業技術院長 膜の密着強度評価方法および装置
JPH07236431A (ja) 1994-03-03 1995-09-12 Meiji Seika Kaisha Ltd サイレージの調製方法
JPH07264994A (ja) 1994-03-31 1995-10-17 Meiji Seika Kaisha Ltd セルラーゼを添加した家畜の飼料
JP2531595B2 (ja) 1990-09-05 1996-09-04 工業技術院長 サイレ―ジ用酵素剤
WO1997033982A1 (fr) 1996-03-14 1997-09-18 JAPAN, represented by DIRECTOR GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY Proteine ayant une activite de cellulase et son procede de production
JPH1066569A (ja) 1996-08-28 1998-03-10 Agency Of Ind Science & Technol エンドグルカナーゼ
WO1998011239A1 (fr) 1996-09-13 1998-03-19 Meiji Seika Kaisha, Ltd. Sequence de regulation des genes de la cellulase cbh1 provenant de trichoderma viride et systeme de production en serie de proteines ou de peptides utilisant une telle sequence
WO1999011767A1 (fr) 1997-08-28 1999-03-11 Meiji Seika Kaisha Ltd. Endoglucanase acc4
JP2000069978A (ja) 1998-08-27 2000-03-07 Agency Of Ind Science & Technol エンドグルカナーゼacc5
JP2001017180A (ja) 1999-07-06 2001-01-23 Meiji Seika Kaisha Ltd 新規なプロモーター、及びそれを用いたタンパク質の発現方法
WO2002026979A1 (fr) 2000-09-29 2002-04-04 Meiji Seika Kaisha, Ltd. NOUVELLE ENZYME PRESENTANT UNE ACTIVITE β-GLUCOSIDASE ET SON UTILISATION
JP2002101876A (ja) 2000-09-29 2002-04-09 National Institute Of Advanced Industrial & Technology 新規なβ−グルコシダーゼ
WO2005056787A1 (ja) 2003-12-08 2005-06-23 Meiji Seika Kaisha, Ltd. 界面活性剤に耐性なセルラーゼ及びその変換方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043954B2 (ja) 1983-03-09 1985-10-01 工業技術院長 セルラ−ゼの製造法
JPS6043954A (ja) 1983-08-22 1985-03-08 Nippon Telegr & Teleph Corp <Ntt> 多地点間通信画像追従制御方式
EP1928901B1 (en) * 2005-08-04 2011-06-15 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643954B2 (ja) 1988-02-01 1994-06-08 工業技術院長 膜の密着強度評価方法および装置
JP2531595B2 (ja) 1990-09-05 1996-09-04 工業技術院長 サイレ―ジ用酵素剤
JPH07236431A (ja) 1994-03-03 1995-09-12 Meiji Seika Kaisha Ltd サイレージの調製方法
JPH07264994A (ja) 1994-03-31 1995-10-17 Meiji Seika Kaisha Ltd セルラーゼを添加した家畜の飼料
WO1997033982A1 (fr) 1996-03-14 1997-09-18 JAPAN, represented by DIRECTOR GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY Proteine ayant une activite de cellulase et son procede de production
JPH1066569A (ja) 1996-08-28 1998-03-10 Agency Of Ind Science & Technol エンドグルカナーゼ
WO1998011239A1 (fr) 1996-09-13 1998-03-19 Meiji Seika Kaisha, Ltd. Sequence de regulation des genes de la cellulase cbh1 provenant de trichoderma viride et systeme de production en serie de proteines ou de peptides utilisant une telle sequence
WO1999011767A1 (fr) 1997-08-28 1999-03-11 Meiji Seika Kaisha Ltd. Endoglucanase acc4
JP2000069978A (ja) 1998-08-27 2000-03-07 Agency Of Ind Science & Technol エンドグルカナーゼacc5
JP2001017180A (ja) 1999-07-06 2001-01-23 Meiji Seika Kaisha Ltd 新規なプロモーター、及びそれを用いたタンパク質の発現方法
WO2002026979A1 (fr) 2000-09-29 2002-04-04 Meiji Seika Kaisha, Ltd. NOUVELLE ENZYME PRESENTANT UNE ACTIVITE β-GLUCOSIDASE ET SON UTILISATION
JP2002101876A (ja) 2000-09-29 2002-04-09 National Institute Of Advanced Industrial & Technology 新規なβ−グルコシダーゼ
WO2005056787A1 (ja) 2003-12-08 2005-06-23 Meiji Seika Kaisha, Ltd. 界面活性剤に耐性なセルラーゼ及びその変換方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Biomass Part A Cellulose and Hemicellulose", vol. 160, article "Methods in ENZYMOLOGY", pages: 109 - 110
"Methods in ENZYMOLOGY", vol. 160, article "Biomass Part A Cellulose and Hemicellulose", pages: 109 - 110
AGRICULTURAL AND BIOLOGICAL CHEMISTRY,'' (JAPAN, vol. 51, 1987, pages 65
DATABASE DATABASE DDBJ/EMBL/GENBAN [online] 16 December 2008 (2008-12-16), FEDOROVA N. D. ET AL.: "Definition: Beta-D-glucoside glucohydrolase.", XP008152476, Database accession no. B6QHN4 *
DATABASE DATABASE DDBJ/EMBL/GENBAN [online] 22 December 2008 (2008-12-22), FEDOROVA N. D. ET AL.: "Talaromyces stipitatus ATCC 10500 scf_ll05507295515 genomic scaffold, whole genome shotgun sequence.", XP008152493, Database accession no. EQ962657 *
DATABASE DATABASE DDBJ/EMBL/GENBAN [online] 29 October 2008 (2008-10-29), FEDOROVA N. D. ET AL.: "Definition: Penicillium marneffei ATCC 18224 scf_1105668340752 genomic scaffold, whole genome shotgun sequence.", XP008152503, Database accession no. DS995902 *
DATABASE DATABASE DDBJ/EMBL/GENBAN [online] 3 March 2009 (2009-03-03), FEDOROVA N. D. ET AL.: "Definition: Beta-D-glucoside glucohydrolase.", XP008152478, Database accession no. B8MJH5 *
H. HORIUCHI, J. BACTERIOL., vol. 170, 1988, pages 272 - 278
PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 - 2448, Retrieved from the Internet <URL:http://www.ddbj.nig.ac.jp/E-mail/homology-j.html>
SCIENCE, vol. 227, 1985, pages 1435 - 1441
T. TRIGLIA, NUCLEIC ACIDS RESEARCH, vol. 16, 1988, pages 8186

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077432A1 (ja) 2011-11-25 2013-05-30 三井化学株式会社 変異型キシラナーゼ、その製造方法及び用途、並びにリグノセルロースの糖化物製造方法
EP3342867A1 (en) 2011-11-25 2018-07-04 Mitsui Chemicals, Inc. Mutant xylanase, manufacturing method and use therefor, and method for manufacturing saccharified lignocellulose
DE112012005586B4 (de) * 2012-01-06 2018-07-05 Honda Motor Co., Ltd. Verzuckernde Enzymzusammensetzung und Verfahren zur Herstellung einer verzuckerten Lösung unter Verwendung der selbigen
WO2013103127A1 (ja) * 2012-01-06 2013-07-11 本田技研工業株式会社 糖化酵素組成物及びそれを用いる糖化溶液の製造方法
CN104093832A (zh) * 2012-01-06 2014-10-08 本田技研工业株式会社 糖化酶组合物及使用该糖化酶组合物的糖化溶液的配制方法
JPWO2013103127A1 (ja) * 2012-01-06 2015-05-11 本田技研工業株式会社 糖化酵素組成物及びそれを用いる糖化溶液の製造方法
US9580735B2 (en) 2012-01-06 2017-02-28 Honda Motor Co., Ltd. Saccharifying enzyme composition and method for producing saccharified solution using the same
WO2013180208A1 (ja) 2012-05-31 2013-12-05 Meiji Seikaファルマ株式会社 糸状菌を用いた西洋ワサビ由来ペルオキシダーゼ組換えタンパク質の製造方法
JP2014217312A (ja) * 2013-05-08 2014-11-20 独立行政法人産業技術総合研究所 Acremoniumcellulolyticus(アクレモニウム・セルロリティカス)由来のβ−グルコシダーゼ及びその利用
WO2014192647A1 (ja) * 2013-05-27 2014-12-04 独立行政法人産業技術総合研究所 培養細胞および糖液の製造方法
JP2015136320A (ja) * 2014-01-22 2015-07-30 本田技研工業株式会社 麹菌変異株
JP2016106558A (ja) * 2014-12-04 2016-06-20 本田技研工業株式会社 麹菌変異株及び形質転換体
WO2019059404A1 (ja) * 2017-09-25 2019-03-28 味の素株式会社 タンパク質の製造法および二糖の製造法
JPWO2019059404A1 (ja) * 2017-09-25 2021-01-14 味の素株式会社 タンパク質の製造法および二糖の製造法
US11384379B2 (en) 2017-09-25 2022-07-12 Ajinomoto Co., Inc. Method for producing a protein and disaccharide using a Talaromyces cellulolyticus
JP7384035B2 (ja) 2017-09-25 2023-11-21 味の素株式会社 タンパク質の製造法および二糖の製造法

Also Published As

Publication number Publication date
EP2468859A1 (en) 2012-06-27
BR112012003609B1 (pt) 2020-11-10
BR112012003609A2 (ja) 2018-02-06
CN102482665B (zh) 2014-07-09
US10125355B2 (en) 2018-11-13
EP2468859A4 (en) 2013-03-13
CN102482665A (zh) 2012-05-30
DK2468859T3 (en) 2018-03-12
US8975057B2 (en) 2015-03-10
EP2468859B1 (en) 2018-02-21
ES2661966T3 (es) 2018-04-04
US20120148706A1 (en) 2012-06-14
JP5745411B2 (ja) 2015-07-08
US20150104833A1 (en) 2015-04-16
JPWO2011021616A1 (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5745411B2 (ja) β−グルコシダーゼ活性を有する新規タンパク質およびその用途
EP2135944B1 (en) Ppce endoglucanase and cellulase preparation containing the same
JP4757191B2 (ja) 新規なバチルスmHKcelセルラーゼ
JP4547335B2 (ja) エンドグルカナーゼstceおよびそれを含むセルラーゼ調製物
JP4644603B2 (ja) 界面活性剤に耐性なセルラーゼ及びその変換方法
RU2458128C2 (ru) Способ обработки целлюлозного материала и используемые в нем ферменты
US10774318B2 (en) Cellulase gene
US6921655B1 (en) Endoglucanases and cellulase preparations containing the same
JP5618478B2 (ja) 新規セルラーゼ遺伝子
JP4629664B2 (ja) 新規なバチルス029celセルラーゼ
CA2571996A1 (en) Cellulases from rumen
EP1344820B1 (en) Zygomycetes-origin endoglucanase lacking cellulose-binding domain
JP6106738B2 (ja) 新規セルラーゼ遺伝子
JP2004313022A (ja) エンドグルカナーゼmte1およびそれを含んでなるセルラーゼ調製物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036879.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527674

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13391598

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010809957

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003609

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003609

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120216