WO2011016548A1 - 活性炭成型体およびそれを用いた浄水器 - Google Patents

活性炭成型体およびそれを用いた浄水器 Download PDF

Info

Publication number
WO2011016548A1
WO2011016548A1 PCT/JP2010/063364 JP2010063364W WO2011016548A1 WO 2011016548 A1 WO2011016548 A1 WO 2011016548A1 JP 2010063364 W JP2010063364 W JP 2010063364W WO 2011016548 A1 WO2011016548 A1 WO 2011016548A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
molded body
volume
particle size
standard deviation
Prior art date
Application number
PCT/JP2010/063364
Other languages
English (en)
French (fr)
Inventor
寛枝 吉延
聡 有田
修治 川▲崎▼
Original Assignee
クラレケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレケミカル株式会社 filed Critical クラレケミカル株式会社
Priority to JP2011525947A priority Critical patent/JP6275368B2/ja
Priority to CN201080034805.8A priority patent/CN102471096B/zh
Priority to US13/389,187 priority patent/US9033158B2/en
Priority to KR1020127005819A priority patent/KR101770549B1/ko
Publication of WO2011016548A1 publication Critical patent/WO2011016548A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges

Definitions

  • the present invention relates to an activated carbon molded body and a water purifier using the same. More specifically, an activated carbon molded body formed by molding a mixture of powdered activated carbon (a) and a fibrous binder (b) having a specific center particle diameter and a specific standard deviation in the particle size distribution, and It relates to the water purifier used.
  • the activated carbon molded body of the present invention is excellent in adsorption removal performance of free residual chlorine, bad smell, trihalomethanes and the like in water, and also has excellent turbidity filtration capability. It is loaded and used suitably as a water purifier.
  • a trace amount of trihalomethane dissolved in tap water is suspected to be a carcinogenic substance.
  • the importance of water purifiers capable of removing trihalomethanes has been increasing due to the increase in health-consciousness. ).
  • the object of the present invention is to provide free residual chlorine, volatile organic compounds, CAT (2-chloro-4,6-bisethylamino-1,3,5-triazine) and JIS S 3201 (2004).
  • the inventors of the present invention have made extensive studies and have achieved the above object by using an activated carbon molded body obtained by molding a mixture containing powdered activated carbon having a specific center particle diameter and a specific standard deviation in particle size distribution and a fibrous binder. We have found that this can be achieved and have reached the present invention.
  • the present invention provides an activated carbon molded body, wherein the activated carbon molded body has a powder particle activated carbon (a) having a central particle size of 80 ⁇ m to 120 ⁇ m and a standard deviation ⁇ g of the particle size distribution of 1.3 to 1.9. And the standard deviation ⁇ g is 15 in the volume-based integrated fraction when the integrated volume is determined from particles having a large volume average particle size distribution of the powdered activated carbon.
  • the value of .87% diameter is D 15.87
  • the value of 50% diameter in the volume-based integrated fraction when obtaining the integrated volume from particles having a large volume particle size distribution of the powdered activated carbon is D 50 a, represented by D 15.87 / D 50.
  • the mixture further includes an amorphous titanosilicate inorganic compound or an aluminosilicate inorganic compound (c).
  • the standard deviation ⁇ p in the particle size distribution of the powdered activated carbon (a) is 0.3 to 0.5
  • the standard deviation ⁇ p is the volume average particle size distribution of the powdered activated carbon.
  • the benzene adsorption amount of the powdered activated carbon (a) is 20 to 60% by mass.
  • the mixture contains 3 to 8 parts by mass of the fibrous binder (b) with respect to 100 parts by mass of the powdered activated carbon (a).
  • the powdered activated carbon (a) is coconut shell activated carbon powder or phenol resin-based activated carbon powder.
  • all of the activated carbon contained in the activated carbon molding is the powdered activated carbon (a).
  • the present invention also provides a water purification filter comprising the above activated carbon molded body.
  • the present invention provides a cartridge formed by filling a housing with the activated carbon molded body or the water purification filter.
  • the present invention provides a water purifier in which the cartridge is loaded.
  • the water purifier maintains a turbidity removal rate of 80% or more, and the turbidity filtration capacity is 15 L or more per 1 mL of the activated carbon molded body or the water purification filter.
  • the activated carbon molding which is excellent in the removal ability of free residual chlorine, a volatile organic compound, CAT, and 2-MIB measured by JISS3201 (2004), and also excellent in turbid filtration ability is provided.
  • the activated carbon molded body of the present invention can be used as it is, or can be molded into a water purification filter and filled into a housing to form a cartridge. This cartridge can be suitably used by being loaded into a water purifier.
  • the use of the activated carbon molded body of the present invention eliminates the need for a hollow fiber membrane cartridge that has been conventionally used in combination with activated carbon for removing turbidity, so that there is an advantage that assembly becomes easy and the water purifier becomes compact. .
  • the greatest feature of the present invention is that a molded body is obtained using powdered activated carbon having a specific center particle diameter and a specific standard deviation in the particle size distribution.
  • a water purifier with excellent turbidity filtration can be obtained.
  • the powdered activated carbon used in the present invention is obtained by pulverizing or refining activated carbon by an arbitrary method.
  • a raw material of the powdered activated carbon any raw material that becomes activated carbon by being activated can be used, such as coconut shell, coal, wood, and synthetic resin.
  • coconut shell activated carbon or phenol resin raw material is preferable.
  • These raw materials usually contain few impurities and retain good adsorption performance even in powder form.
  • powdered activated carbon having a center particle size of 80 ⁇ m to 120 ⁇ m and a standard deviation ⁇ g of particle size distribution of 1.3 to 1.9 is used.
  • the center particle size is less than 80 ⁇ m, there is a possibility that the water resistance increases, clogging due to turbid components is accelerated, or fine powder is mixed into the treated water.
  • the center particle diameter exceeds 120 ⁇ m, when water is passed, the removal of turbid components may be insufficient, or the performance may be reduced due to a decrease in contact efficiency.
  • the central particle diameter is a value measured by a laser diffraction / scattering method, and means a value of 50% diameter (D 50 ) in a volume-based integrated fraction when an integrated volume is obtained from particles having a large volume particle size distribution. To do. Similarly, D 15.87 indicates a value of 15.87% diameter, and D 84.13 indicates a value of 84.13% diameter.
  • the measurement by the laser diffraction / scattering method is performed by, for example, a microtrack particle size distribution measuring apparatus (MT3300) manufactured by Nikkiso Co., Ltd.
  • Standard deviation ⁇ g is represented by D 15.87 / D 50.
  • the standard deviation ⁇ g in the particle size distribution of the powdered activated carbon used in the present invention is 1.3 to 1.9.
  • the value of the standard deviation ⁇ g is less than 1.3, there are few voids and clogging is accelerated.
  • the value of the standard deviation ⁇ g exceeds 1.9 voids increase and the turbidity removal performance is deteriorated.
  • the standard deviation ⁇ p is represented by D 84.13 / D 50.
  • the standard deviation ⁇ p in the particle size distribution of the powdered activated carbon used in the present invention is preferably 0.3 to 0.5, more preferably 0.33 to 0.48, still more preferably 0.36 to 0.45. It is.
  • the value of the standard deviation ⁇ p is less than 0.3, there is a possibility that the voids are reduced and clogging is accelerated.
  • the value of the standard deviation ⁇ p exceeds 0.5, the voids increase and the turbidity removal performance may be deteriorated.
  • powdered activated carbon having a standard deviation ⁇ g in the particle size distribution of 1.3 to 1.9 and a standard deviation ⁇ p of 0.3 to 0.5 is preferably used.
  • the adsorption capacity of the powdered activated carbon is preferably 20 to 60% by mass, more preferably 20 to 55% by mass, and more preferably 20 to 50% by mass, based on JIS-K1474. More preferably, it is most preferably 25 to 40% by mass.
  • two or more kinds of different powdered activated carbons may be included as long as the center particle diameter and the standard deviation are satisfied. That is, the final mixture obtained by mixing two or more different powdered activated carbons can be used if it satisfies the center particle diameter and standard deviation.
  • the fibrous binder used in the present invention is not particularly limited as long as it can be shaped by entanglement with fibrous activated carbon and powdered activated carbon by fibrillation, and it is widely used regardless of whether it is a synthetic product or a natural product. It can be used.
  • a fibrous binder include acrylic fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, and aramid fiber.
  • the fiber length of the fibrous binder is preferably 4 mm or less.
  • the production of the activated carbon molded body of the present invention is carried out by any method and is not particularly limited.
  • a slurry suction method is preferable in terms of efficient production.
  • the slurry suction method is used, for example, as described in Japanese Patent No. 3516881 (Patent Document 2), a double tubular container provided with a large number of suction holes is prepared, and the slurry is sucked from the center. By doing so, a cylindrical molded body can be manufactured.
  • the inner pipe of a double tubular container is made of the same metal mesh as the outer pipe and the outer pipe of the water-permeable double tubular container with a 200 mesh stainless steel wire mesh, and the inner pipe is inserted into the outer pipe.
  • a tubular container is obtained.
  • the activated carbon molded body of the present invention can be manufactured by pouring slurry between the inner tube and the outer tube of the double tubular container.
  • a slurry is prepared by dispersing the powdered activated carbon and the fibrous binder in water so that the solid concentration is 5 to 15% by mass.
  • the fibrous binder is preferably 3 to 8 parts by mass, more preferably 3.5 to 6 parts by mass with respect to 100 parts by mass of powdered activated carbon. Included in the ratio.
  • the activated carbon molded body of the present invention preferably further contains an amorphous titanosilicate inorganic compound or an aluminosilicate inorganic compound. By including these compounds, soluble lead can be removed.
  • an amorphous titanosilicate inorganic compound it is efficient to use an amorphous titanosilicate commercially available from BASF as an ATS product.
  • an aluminosilicate inorganic compound it is preferable to use A-type or X-type zeolite because of its large ion exchange capacity.
  • These compounds are contained in an amount of preferably 2 to 20 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of powdered activated carbon.
  • the activated carbon contained is the powdered activated carbon, but it may contain fibrous activated carbon.
  • the fibrous activated carbon activated carbon having a specific surface area of about 1000 to 1800 m 2 / g activated by steam, gas or chemicals after carbonizing fibers such as pitch, phenol and cellulose is preferable.
  • a raw material fiber such as a phenol-based resin fiber is treated with water vapor and / or carbon dioxide gas in a nitrogen stream at a high temperature of about 600 to 1400 ° C. or activated with a combustion gas.
  • These fibrous activated carbons are contained in an amount of preferably 0.1 to 20 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of powdered activated carbon.
  • the activated carbon molded body of the present invention may contain components other than those described above as long as the effects of the present invention are not impaired.
  • examples of such components include adsorbents containing silver ions and / or silver compounds, adsorbents containing copper ions and / or copper compounds, titanium dioxide, silicon dioxide, hydroxyapatite to impart antibacterial properties. , Bone charcoal, ion exchange resin and the like. The content of these components is not particularly limited.
  • the activated carbon molded body of the present invention is used as, for example, a water purification filter.
  • the water purification filter of the present invention can be obtained, for example, by producing the activated carbon molded body of the present invention by the above production method and then cutting it into a desired size and shape after shaping and drying. In order to adjust the shape of the activated carbon molded body, it may be compressed on a shaping table, but if it is compressed too much, the surface of the activated carbon molded body may be consolidated, so it should be kept to a minimum.
  • the activated carbon molded body of the present invention When used as a water purification filter for a water purifier, it is preferable to use a cylindrical shape, and if necessary, a cap is attached to the top portion of the cylindrical shape or a nonwoven fabric is attached to the surface. You may let them.
  • the cylindrical shape By adopting the cylindrical shape, the water flow resistance can be lowered, and when the housing is used as a cartridge, the cartridge can be easily loaded and replaced in the water purifier.
  • the water purification filter of the present invention can be used as a cartridge by filling a housing. Further, the activated carbon molded body of the present invention may be used as a cartridge by filling the housing as it is.
  • the cartridge is loaded into a water purifier and used for water flow. As the water flow method, a total filtration method or a circulation filtration method for filtering the whole amount of raw water is adopted.
  • the cartridge loaded in the water purifier of the present invention may be used by filling a housing with a water purification filter, for example, but is further used in combination with a known non-woven filter, various adsorbents, mineral additives, ceramic filter media, etc. be able to.
  • the concentration of free residual chlorine and trihalomethanes in raw water and permeated water and the removal performance of these substances can be measured according to JIS S 3201 (2004), and the turbidity filtration capacity test is also measured according to the above JIS. can do.
  • the water flow conditions to the water purifier are not particularly limited, but the water is passed at a space velocity (SV) of 100 to 5000 hr ⁇ 1 so that the pressure loss does not become extremely large.
  • SV space velocity
  • Water adjusted to have a turbidity of 2.0 ⁇ 0.2 ° was passed while maintaining a dynamic water pressure of 0.1 MPa, and the turbidity removal rate obtained by dividing the turbidity in the permeated water by the turbidity of the raw water,
  • the relationship between the filtration flow rate and the cumulative permeate flow is plotted.
  • the performance of the water purifier can be confirmed.
  • water is passed in accordance with the household water purifier test method specified in JIS S 3201 (2004), the point where the turbidity removal rate is less than 80% is taken as the removal rate breakthrough point, and the filtration flow rate is The point where the flow rate was less than 1/2 of the initial flow rate was clogged as the breakthrough point.
  • the turbid filtration capacity can be expressed as the removal rate breakthrough or clogging breakthrough, whichever comes first.
  • the turbidity removal rate is 80% or more, and the turbidity filtration capacity means that the filtration flow rate at 0.1 MPa can maintain 1/2 or more of the initial flow rate. It is preferable that In addition, when a mixture containing an amorphous titanosilicate inorganic compound or an aluminosilicate inorganic compound is molded, the molded body has excellent removal of soluble lead, with a lead removal rate of 80% or more, lead The filtration capacity is preferably 15 L or more per 1 mL of the activated carbon molded body or water purification filter.
  • the obtained slurry was put into a double tubular container having an outer diameter of 42 mm, an inner diameter of 14 mm and a height of 83 mm having a large number of pores having a diameter of 3 mm, sucked at 350 mmHg, and compressed to an outer diameter of 42.5 mm.
  • a hollow cylindrical activated carbon molding having an inner diameter of 14 mm and a height of 83 mm was obtained.
  • test kaolin was added so that the turbidity was 2.0 ⁇ 0.2 degrees, and water was passed from the outside to the inside at 20 ° C. and 0.1 MPa, the flow rate after 10 minutes at the initial stage was 4 L / min. there were.
  • the results are shown in Table 9, FIG. 1 and FIG.
  • the turbidity removal rate is maintained at 80% or more, and as shown in FIG. 2, the turbidity filtration capacity is 30 L / mL when the flow rate is lower than 2 L / min which is 1/2 of the initial stage. Met.
  • the mixed powdered activated carbon had a center particle size of 80 ⁇ m, a standard deviation ⁇ g of 1.8, and a standard deviation ⁇ p of 0.33.
  • Example 4 Except that 87 parts by weight of PGW-100MD was used as the powdered activated carbon and 8 parts by weight of Bi-PUL / F was used as the fibrous binder, suction-molding was performed in the same manner as in Example 1 to form a hollow cylindrical activated carbon. Got the body. When a free residual chlorine, volatile organic compound, CAT, 2-MIB and soluble lead filtration ability test was conducted in the same procedure as in Example 1, excellent results were shown (Table 4).
  • Example 5 Except that 92 parts by mass of PGW-100MD is used as the powdered activated carbon and 3 parts by mass of Bi-PUL / F is used as the fibrous binder, suction molding is performed in the same manner as in Example 1 to form a hollow cylindrical activated carbon. Got the body. When the filtration ability test of free residual chlorine, volatile organic compounds, CAT, 2-MIB and soluble lead was conducted in the same procedure as in Example 1, excellent results were shown (Table 5).
  • a slurry was prepared by dispersing Bi-PUL / F as a fibrous binder in water at a ratio of 5 parts by mass. The obtained slurry was suction molded in the same procedure as in Example 1 to obtain a hollow cylindrical activated carbon molded body.
  • a filtration performance test of free residual chlorine, volatile organic compounds, CAT and 2-MIB was performed in the same procedure as in Example 1 and showed excellent results (Table 6).
  • Example 7 90 parts by mass of PGW-100MD as powdered activated carbon, 5 parts by mass of 15 mm chopped product of FR-15 (benzene adsorption amount 45% by mass) manufactured by Kuraray Chemical Co., Ltd. as fibrous activated carbon, and Bi-PUL / A slurry was prepared by dispersing F in water at a ratio of 5 parts by mass. The obtained slurry was suction molded in the same procedure as in Example 1 to obtain a hollow cylindrical activated carbon molded body. When the filtration performance test of free residual chlorine, volatile organic compounds, CAT and 2-MIB was performed in the same procedure as in Example 1, excellent results were shown (Table 7).
  • the obtained slurry was suction molded in the same procedure as in Example 1 to obtain a hollow cylindrical activated carbon molded body.
  • the mixed powdered activated carbon had a center particle size of 95 ⁇ m, a standard deviation ⁇ g of 1.7, and a standard deviation ⁇ p of 0.38.
  • a filtration performance test of free residual chlorine, volatile organic compounds, CAT and 2-MIB was performed in the same procedure as in Example 1 and showed excellent results (Table 8).
  • the results of measuring the turbidity filtration ability in the same procedure as in Example 1 are shown in Table 9, FIG. 17 and FIG. As shown in FIG. 18, there was almost no flow rate attenuation, but as shown in FIG. 17, the turbidity removal rate was less than 80% at 5 L / mL, and the turbid filtration capacity was 5 L / mL.
  • the mixed powdered activated carbon had a center particle size of 120 ⁇ m, a standard deviation ⁇ g of 2.4, and a standard deviation ⁇ p of 0.23.
  • the results of measuring the turbidity filtration capacity in the same procedure as in Example 1 are shown in Table 9, FIG. 21 and FIG. As shown in FIG. 21, the turbidity removal rate is less than 80% at 10 L / mL, and as shown in FIG. 22, the flow rate is less than half of the initial value at 12 L / mL, and the turbidity filtration capacity is 10 L / mL. there were.
  • the mixed powdered activated carbon had a center particle size of 150 ⁇ m, a standard deviation ⁇ g of 2.5, and a standard deviation ⁇ p of 0.20.
  • the results of measuring the turbidity filtration ability in the same procedure as in Example 1 are shown in Table 9, FIG. 25 and FIG. As shown in FIG. 26, there was almost no flow rate attenuation, but as shown in FIG. 25, the turbidity removal rate was lower than 80% from the beginning, and the turbidity filtration capacity was 0 L / mL.
  • the activated carbon molding which is excellent in the removal ability of free residual chlorine, a volatile organic compound, CAT, and 2-MIB measured by JISS3201 (2004), and also excellent in turbid filtration ability is provided. . Therefore, the water purifier in which the activated carbon molded body of the present invention is filled in a housing as a water purification filter and the obtained cartridge is loaded can meet the safety and hygiene requirements regarding the quality of tap water and is industrially useful.

Abstract

 本発明は、活性炭成型体を提供し、該活性炭成型体は、中心粒子径が80μm~120μmで、かつ粒径分布における標準偏差σgが1.3~1.9である粉末状活性炭(a)および繊維状バインダー(b)を含む混合物を成型してなる。本発明の活性炭成型体は、遊離残留塩素、揮発性有機化合物、CATおよび2-MIBの除去能に優れ、さらに濁りろ過能力に優れ、浄水器のカートリッジなどとして用いられる。

Description

活性炭成型体およびそれを用いた浄水器
 本発明は、活性炭成型体およびそれを用いた浄水器に関する。さらに詳しくは、特定の中心粒子径で、かつ粒径分布における特定の標準偏差を有する粉末状活性炭(a)および繊維状バインダー(b)からなる混合物を成型してなる活性炭成型体、ならびにそれを用いた浄水器に関する。本発明の活性炭成型体は、水中の遊離残留塩素、黴臭、トリハロメタン類などの吸着除去性能に優れていることは勿論、濁りろ過能力にも優れているので、浄水フィルターに成形してハウジングに装填し、浄水器として好適に使用される。
 近年、飲料水、特に水道水の水質に関する安全衛生上の関心が高まってきており、飲料水中に含まれる遊離残留塩素、トリハロメタン類、黴臭などの有害物質を除去することが望まれている。従来、これらの有害物質を除去するため、粒状の活性炭をハウジングに充填した浄水器が主として使用されている。
 水道水中に溶存している微量のトリハロメタンは、発ガン性物質であることが疑われている。近年の健康志向の高まりの中で、トリハロメタンを除去し得る浄水器の重要性はますます高まっており、本出願人はトリハロメタンの除去能に優れる浄水器について、先に特許出願した(特許文献1)。
特許第4064309号公報 特許第3516811号公報
 しかしながら、最近では、遊離残留塩素、トリハロメタン類、黴臭などの有害物質の除去に優れることに加え、濁り成分の除去にも優れる浄水器が求められている。特許文献1に記載された活性炭成型体を浄水フィルターとして充填した浄水器においても濁り成分の除去能に優れているが、スラリー吸引法により一体成型した活性炭成型体は、形状を整えるために、整形台上でさらに圧縮することがあり、表面部分が圧縮されることにより、濁りろ過能力に劣ることがあった。
 したがって、本発明の目的は、JIS S 3201(2004)で測定される遊離残留塩素、揮発性有機化合物、CAT(2-クロロ-4,6-ビスエチルアミノ-1,3,5-トリアジン)および2-MIB(2-メチルイソボルネオール)の除去能に優れ、濁りろ過能力にも優れる活性炭成型体、この活性炭成型体からなる浄水フィルター、活性炭成型体または浄水フィルターを充填したカートリッジ、およびこのカートリッジを用いた浄水器を提供することにある。
 本発明者らは鋭意検討を重ね、特定の中心粒子径で、かつ粒径分布における特定の標準偏差を有する粉末状活性炭および繊維状バインダーを含む混合物を成型してなる活性炭成型体により上記目的を達成することができることを見出し、本発明に到達した。
 本発明は、活性炭成型体を提供し、該活性炭成型体は、中心粒子径が80μm~120μmで、かつ粒径分布における標準偏差σgが1.3~1.9である粉末状活性炭(a)および繊維状バインダー(b)を含む混合物を成型してなり、該標準偏差σgは、該粉末状活性炭の体積平均粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における15.87%径の値をD15.87、および該粉末状活性炭の体積粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値をD50とする場合に、D15.87/D50で示される。
 1つの実施態様では、上記混合物は、非晶質チタノシリケート系無機化合物またはアルミノシリケート系無機化合物(c)を、さらに含む。
 1つの実施態様では、上記粉末状活性炭(a)の粒径分布における標準偏差σpは、0.3~0.5であって、該標準偏差σpは、該粉末状活性炭の体積平均粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における84.13%径の値をD84.13、および該粉末状活性炭の体積粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値をD50とする場合に、D84.13/D50で示される。
 ある実施態様では、上記粉末状活性炭(a)のベンゼン吸着量は、20~60質量%である。
 ある実施態様では、上記混合物は、上記粉末状活性炭(a)100質量部に対して、上記繊維状バインダー(b)を3~8質量部の割合で含む。
 他の実施態様では、上記粉末状活性炭(a)が、ヤシ殻活性炭粉末またはフェノール樹脂系活性炭粉末である。
 さらに他の実施態様では、上記活性炭成型体に含まれる活性炭の全てが、上記粉末状活性炭(a)である。
 また、本発明は、上記活性炭成型体からなる浄水フィルターを提供する。
 本発明は、上記活性炭成型体または浄水フィルターを、ハウジングに充填してなるカートリッジを提供する。
 さらに、本発明は、上記カートリッジを装填してなる浄水器を提供する。
 1つの実施態様では、上記浄水器は、濁り除去率が80%以上を維持し、濁りろ過能力が活性炭成型体または浄水フィルター1mLあたり15L以上である。
 本発明によれば、JIS S 3201(2004)で測定される遊離残留塩素、揮発性有機化合物、CATおよび2-MIBの除去能に優れ、さらに濁りろ過能力に優れた活性炭成型体が提供される。本発明の活性炭成型体は、そのまま、あるいは浄水フィルターに成形して、ハウジングに充填してカートリッジとすることができる。このカートリッジは、浄水器に装填して好適に使用することができる。また、本発明の活性炭成型体を使用することにより、従来濁り除去用として活性炭と併用されていた中空糸膜カートリッジが不要となるため、組み立てが容易になり、浄水器がコンパクトになる利点もある。
実施例1の浄水器における濁り除去性能を示すグラフである。 実施例1の浄水器における濁り通水時の流量変化を示すグラフである。 実施例2の浄水器における濁り除去性能を示すグラフである。 実施例2の浄水器における濁り通水時の流量変化を示すグラフである。 実施例3の浄水器における濁り除去性能を示すグラフである。 実施例3の浄水器における濁り通水時の流量変化を示すグラフである。 実施例4の浄水器における濁り除去性能を示すグラフである。 実施例4の浄水器における濁り通水時の流量変化を示すグラフである。 実施例5の浄水器における濁り除去性能を示すグラフである。 実施例5の浄水器における濁り通水時の流量変化を示すグラフである。 実施例6の浄水器における濁り除去性能を示すグラフである。 実施例6の浄水器における濁り通水時の流量変化を示すグラフである。 実施例7の浄水器における濁り除去性能を示すグラフである。 実施例7の浄水器における濁り通水時の流量変化を示すグラフである。 実施例8の浄水器における濁り除去性能を示すグラフである。 実施例8の浄水器における濁り通水時の流量変化を示すグラフである。 比較例1の浄水器における濁り除去性能を示すグラフである。 比較例1の浄水器における濁り通水時の流量変化を示すグラフである。 比較例2の浄水器における濁り除去性能を示すグラフである。 比較例2の浄水器における濁り通水時の流量変化を示すグラフである。 比較例3の浄水器における濁り除去性能を示すグラフである。 比較例3の浄水器における濁り通水時の流量変化を示すグラフである。 比較例4の浄水器における濁り除去性能を示すグラフである。 比較例4の浄水器における濁り通水時の流量変化を示すグラフである。 比較例5の浄水器における濁り除去性能を示すグラフである。 比較例5の浄水器における濁り通水時の流量変化を示すグラフである。
 本発明における最大の特徴は、特定の中心粒子径を有し、かつ粒径分布における特定の標準偏差を有する粉末状の活性炭を用いて成型体を得ることにある。このような粉末状活性炭(a)および繊維状バインダー(b)を含む混合物を成型してなる活性炭成型体により、JIS S 3201(2004)で測定される遊離残留塩素、揮発性有機化合物、CAT、2-MIBの除去能に加え、濁りろ過能力にも優れた浄水器を得ることができる。
 本発明に使用される粉末状活性炭は、活性炭を任意の方法で粉砕または細粒化したものである。粉末状活性炭の原料としては、ヤシ殻、石炭、木質、合成樹脂など、賦活することによって活性炭となる任意の原料を使用することができる。これらの中でも、ヤシ殻系活性炭またはフェノール樹脂系原料が好ましい。これらの原料は通常、含有する不純物が少なく、粉末状であっても良好な吸着性能を保持している。
 本発明では、中心粒子径が80μm~120μmで、かつ粒径分布における標準偏差σgが1.3~1.9の粉末状活性炭を使用する。中心粒子径が80μm未満の場合、通水抵抗が上昇したり、濁り成分による目詰りが早まったり、微粉が処理水に混入するおそれがある。中心粒子径が120μmを超える場合、通水すると、濁り成分の除去が不十分になったり、接触効率の低下により、性能が低下したりすることがある。
 中心粒子径とは、レーザー回折・散乱法により測定した値であり、体積粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(D50)を意味する。同様に、D15.87は15.87%径の値を示し、D84.13は84.13%径の値を示す。レーザー回折・散乱法による測定は、例えば、日機装株式会社製マイクロトラック粒度分布測定装置(MT3300)などにより行われる。
 標準偏差σgは、D15.87/D50で示される。本発明に使用される粉末状活性炭の粒径分布における標準偏差σgは1.3~1.9である。標準偏差σgの値が1.3未満の場合、空隙が少なく目詰りが早まる。標準偏差σgの値が1.9を超える場合、空隙が多くなり濁り除去性能が低下してしまう。
 さらに、標準偏差σpは、D84.13/D50で示される。本発明に使用される粉末状活性炭の粒径分布における標準偏差σpは、好ましくは0.3~0.5、より好ましくは0.33~0.48、さらに好ましくは0.36~0.45である。標準偏差σpの値が0.3未満の場合、空隙が少なくなり、目詰りが早まるおそれがある。標準偏差σpの値が0.5を超える場合、空隙が多くなり、濁り除去性能が低下するおそれがある。
 本発明においては、粒径分布における標準偏差σgが1.3~1.9であり、かつ標準偏差σpが0.3~0.5の粉末状活性炭が好ましく用いられる。
 粉末状活性炭は、吸着容量が小さすぎると十分な吸着能力を保持しているとは言えず、吸着容量が大きすぎると過賦活状態で細孔径が増大しており、トリハロメタンの吸着保持力が低下する傾向にある。したがって、粉末状活性炭の吸着容量は、JIS-K1474で定められたベンゼン吸着量が20~60質量%とするのが好ましく、20~55質量%とするのがより好ましく、20~50質量%とするのがさらに好ましく、25~40質量%とするのが最も好ましい。
 本発明では、上記中心粒子径および標準偏差を満足する限り、二種類以上の異なる粉末状活性炭を含んでいてもよい。すなわち、二種類以上の異なる粉末状活性炭を混合して得られる最終混合物が、上記中心粒子径および標準偏差を満足すれば使用可能である。
 本発明に使用される繊維状バインダーとしては、フィブリル化させることによって、繊維状活性炭および粉末状活性炭を絡めて賦形できるものであれば、特に限定されず、合成品、天然品を問わず幅広く使用可能である。このような繊維状バインダーとしては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維などが挙げられる。繊維状バインダーの繊維長は4mm以下であることが好ましい。
 本発明の活性炭成型体の製造は、任意の方法で行われ、特に限定されない。効率よく製造できる点で、スラリー吸引方法が好ましい。スラリー吸引方法を用いると、例えば、特許第3516811号公報(特許文献2)に記載されているように、多数の吸引用小孔を設けた二重管状容器を準備し、中心部からスラリーを吸引することによって円筒型の成型体を製造し得る。
 例えば、200メッシュのステンレス製の金網で通水性の二重管状容器の外管および外管と同じ金網で二重管状容器の内管を作製し、内管を外管に挿入することによって二重管状容器を得る。この二重管状容器の内管と外管との間にスラリーを流し込むことによって、本発明の活性炭成型体が製造され得る。
 粉末状活性炭および繊維状バインダーを、固形物濃度が5~15質量%となるように水中に分散させることにより、スラリーが調製される。遊離残留塩素などの吸着効果、成型性などの点から、好ましくは、粉末状活性炭100質量部に対して繊維状バインダーは、好ましくは3~8質量部、より好ましくは3.5~6質量部の割合で含まれる。
 本発明の活性炭成型体は、さらに、非晶質チタノシリケート系無機化合物またはアルミノシリケート系無機化合物を含むことが好ましい。これらの化合物を含むことにより、溶解性鉛が除去され得る。非晶質チタノシリケート系無機化合物としては、BASF社からATSの商品で市販されている非晶質チタノシリケートを使用するのが効率的であり、アルミノシリケート系無機化合物を使用する場合は、イオン交換容量が大きい点でA型またはX型ゼオライトを使用するのが好ましい。これらの化合物は、粉末状活性炭100質量部に対して、好ましくは2~20質量部、より好ましくは3~10質量部の割合で含まれる。
 また、本発明においては、含まれる活性炭の全てが上記粉末状活性炭であることが好ましいが、繊維状活性炭を含んでいてもよい。繊維状活性炭としては、ピッチ系、フェノール系、セルロース系などの繊維を炭化した後、水蒸気、ガスまたは薬品で賦活された比表面積1000~1800m/g程度の活性炭が好ましい。例えば、フェノール系樹脂繊維などの原料繊維を、約600~1400℃の高温下で、窒素気流中で水蒸気および/または炭酸ガスで処理するか、または燃焼ガスで賦活処理する方法が挙げられる。これらの繊維状活性炭は、粉末状活性炭100質量部に対して、好ましくは0.1~20質量部、より好ましくは1~5質量部の割合で含まれる。
 本発明の活性炭成型体は、本発明の効果が阻害されない限り、上記以外の成分を含んでいてもよい。このような成分としては、例えば、抗菌性を付与するために銀イオンおよび/または銀化合物を含んだ吸着材、銅イオンおよび/または銅化合物を含んだ吸着材、二酸化チタン、二酸化ケイ素、ヒドロキシアパタイト、骨炭、イオン交換樹脂などが挙げられる。これらの成分の含有量は、特に限定されない。
 本発明の活性炭成型体は、例えば、浄水フィルターなどとして用いられる。本発明の浄水フィルターは、例えば、本発明の活性炭成型体を上記の製造方法によって製造したのち、整形、乾燥後、所望の大きさおよび形状に切断して得ることができる。活性炭成型体の形を整えるために整形台上で圧縮してもよいが、圧縮しすぎると、活性炭成型体の表面が圧密化することがあるので、最小限に止めるのがよい。本発明の活性炭成型体を浄水器用の浄水フィルターとして使用する場合は、円筒形状にするのが好ましく、さらに必要に応じて、円筒形状の筒頂部分にキャップを装着したり、表面に不織布を装着させてもよい。円筒形状にすることによって、通水抵抗を低下することができ、さらに、ハウジングに充填してカートリッジとして使用する場合、浄水器へのカートリッジの装填・交換作業が簡単にできる。
 本発明の浄水フィルターは、ハウジングに充填してカートリッジとして使用し得る。また、本発明の活性炭成型体は、そのままハウジングに充填してカートリッジとして使用してもよい。カートリッジは浄水器に装填され、通水に供されるが、通水方式としては、原水を全量濾過する全濾過方式や循環濾過方式が採用される。本発明の浄水器に装填されるカートリッジは、例えば浄水フィルターをハウジングに充填して使用すればよいが、さらに公知の不織布フィルター、各種吸着材、ミネラル添加材、セラミック濾過材などと組合せて使用することができる。
 原水および透過水中の遊離残留塩素、トリハロメタン類などの濃度およびそれら物質の除去性能は、JIS S 3201(2004)に準拠して測定することができ、濁りろ過能力試験も上記JISに準拠して測定することができる。
 浄水器への通水条件は特に限定されないが、圧力損失が極度に大きくならないように100~5000hr-1の空間速度(SV)で通水され、濁りろ過能力については、試験用カオリンを用いて濁度2.0±0.2度になるように調整した水を動水圧0.1MPaを維持しながら通水し、透過水中の濁度を原水濁度で除した濁り除去率と、通水開始から流した水量(L)と活性炭成型体または浄水フィルターの容積(mL)の比(累積透過水量L/mL)の関係をプロットすることに加え、ろ過流量と累積透過水量の関係をプロットすることにより、浄水器の性能を確認することができる。
 本発明において、通水は、JIS S 3201(2004)に規定された家庭用浄水器試験方法に準拠して行い、濁り除去率80%を下回った点を除去率破過点とし、ろ過流量が初期流量の1/2を下回った点を目詰り破過点とした。濁りろ過能力とは、除去率破過または目詰り破過のどちらか早い方で表すことができる。本発明の活性炭成型体を浄水材として使用すると、吸着速度が大きいので、SVが1000hr-1を超える流速においてもその性能を十分に発揮することができ、容器を大幅に小型化することができる。
 浄水器において、濁り除去率が80%以上、かつ、0.1MPaでのろ過流量が初期流量の1/2以上を維持できる能力を意味する濁りろ過能力が活性炭成型体または浄水フィルター1mLあたり15L以上であることが好ましい。また、非晶質チタノシリケート系無機化合物またはアルミノシリケート系無機化合物を添加した混合物を成型した場合、成型体は溶解性鉛の除去にも優れたものとなり、鉛除去率が80%以上、鉛ろ過能力が活性炭成型体または浄水フィルター1mLあたり15L以上であることが好ましい。以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例1
 粉末状活性炭として、クラレケミカル株式会社製PGW-100MD(ヤシ殻原料、中心粒子径100μm、標準偏差σg=1.6、標準偏差σp=0.40、ベンゼン吸着量33質量%)を90質量部、鉛吸着材としてBASF社製のチタノシリケート系鉛除去剤ATS(平均粒子径20μm)を5質量部、および繊維状バインダーとして、日本エクスラン工業株式会社製アクリル繊維Bi-PUL/Fを5質量部の割合で水中に分散させてスラリーを調製した。次いで、得られたスラリーを、直径3mmの多数の細孔を有する外径42mm、内径14mmおよび高さ83mmの二重管状容器に入れて、350mmHgで吸引後、圧縮することなく外径42.5mm、内径14mmおよび高さ83mmの中空型円筒状の活性炭成型体を得た。
 この成型体を直径45mm、長さ83mmおよび内在量132mLの透明なプラスチック製ハウジングに装填し、JIS S 3201(2004)に定められた家庭用浄水器試験方法に準拠して、2L/分、SV=1100Hr-1で通水し、遊離残留塩素、揮発性有機化合物、CAT、2-MIBおよび溶解性鉛のろ過能力試験を行った。除去率が80%の時点を浄水器の破過点とし、成型体1mLあたりの除去能力を調べた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、濁度が2.0±0.2度になるように試験用カオリンを加え、20℃、0.1MPaで外側から内側に通水したところ、初期10分後の流量は毎分4Lであった。結果を表9、図1および図2に示す。図1に示すように、濁り除去率は80%以上を維持し、図2に示すように、流量が初期の1/2である2L/分を下回った点での濁りろ過能力は30L/mLであった。
 実施例2
 粉末状活性炭として、PGW-100MDの代わりに、クラレケミカル株式会社製PGW-120MP(ヤシ殻原料、中心粒子径120μm、標準偏差σg=1.7、標準偏差σp=0.47、ベンゼン吸着量33質量%)を用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CAT、2-MIBおよび溶解性鉛のろ過能力試験を行ったところ、優れた結果を示した(表2)。
Figure JPOXMLDOC01-appb-T000002
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図3および図4に示す。図4に示すように、流量減衰はほとんどなかったが、図3に示すように、16L/mLで濁り除去率が80%を下回り、濁りろ過能力は16L/mLであった。
 実施例3
 粉末状活性炭として、PGW-100MDを60質量部およびクラレケミカル株式会社製PGW-20MD(ヤシ殻原料、中心粒子径40μm、標準偏差σg=2.0、ベンゼン吸着量33質量%)を30質量部用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。なお、混合した粉末状活性炭の中心粒子径は80μm、標準偏差σgは1.8であり、標準偏差σpは0.33であった。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CAT、2-MIBおよび溶解性鉛のろ過能力試験を行ったところ、優れた結果を示した(表3)。
Figure JPOXMLDOC01-appb-T000003
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図5および図6に示す。図5に示すように、濁り除去率は80%以上を維持し、図6に示すように、流量が初期の1/2を下回った点での濁りろ過能力は15L/mLであった。
 実施例4
 粉末状活性炭としてPGW-100MDを87質量部および繊維状バインダーとしてBi-PUL/Fを8質量部用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CAT、2-MIBおよび溶解性鉛ろ過能力試験を行ったところ、優れた結果を示した(表4)。
Figure JPOXMLDOC01-appb-T000004
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図7および図8に示す。図8に示すように流量減衰は小さかったが、図7に示すように、20L/mLで濁り除去率が80%を下回り、濁りろ過能力は20L/mLであった。
 実施例5
 粉末状活性炭としてPGW-100MDを92質量部および繊維状バインダーとしてBi-PUL/Fを3質量部用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CAT、2-MIBおよび溶解性鉛のろ過能力試験を行ったところ、優れた結果を示した(表5)。
Figure JPOXMLDOC01-appb-T000005
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図9および図10に示す。図9に示すように、濁り除去率は80%以上を維持し、図10に示すように、流量が初期の1/2を下回った点での濁りろ過能力は20L/mLであった。
 実施例6
 粉末状活性炭として、クラレケミカル株式会社製PGWHH-120MP(ヤシ殻原料、中心粒子径120μm、標準偏差σg=1.7、標準偏差σp=0.48、ベンゼン吸着量50質量%)を95質量部および繊維状バインダーとしてBi-PUL/Fを5質量部の割合で水中に分散させてスラリーを調製した。得られたスラリーを、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CATおよび2-MIBのろ過能力試験を行ったところ、優れた結果を示した(表6)。
Figure JPOXMLDOC01-appb-T000006
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図11および図12に示す。図12に示すように流量減衰は小さかったが、図11に示すように、18L/mLで濁り除去率が80%を下回り、濁りろ過能力は18L/mLであった。
 実施例7
 粉末状活性炭としてPGW-100MDを90質量部、繊維状活性炭として、クラレケミカル株式会社製FR-15(ベンゼン吸着量45質量%)3mmチョップ品を5質量部、および繊維状バインダーとしてBi-PUL/Fを5質量部の割合で水中に分散させてスラリーを調製した。得られたスラリーを、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CATおよび2-MIBのろ過能力試験を行ったところ、優れた結果を示した(表7)。
Figure JPOXMLDOC01-appb-T000007
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図13および図14に示す。図14に示すように流量減衰は小さかったが、図13に示すように、25L/mLで濁り除去率が80%を下回り、濁りろ過能力は25L/mLであった。
 実施例8
 粉末状活性炭として、クラレケミカル株式会社製RP13-100MD(フェノール樹脂原料、中心粒子径100μm、標準偏差σg=1.6、ベンゼン吸着量28質量%)を85質量部、クラレケミカル株式会社製RP-13粉末(フェノール樹脂原料、中心粒子径20μm、標準偏差σg=2.4、ベンゼン吸着量33質量%)を10質量部、および繊維状バインダーとしてBi-PUL/Fを5質量部の割合で水中に分散させてスラリーを調製した。得られたスラリーを、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。なお、混合した粉末状活性炭の中心粒子径は95μm、標準偏差σgは1.7であり、標準偏差σpは0.38であった。実施例1と同様の手順で、遊離残留塩素、揮発性有機化合物、CATおよび2-MIBのろ過能力試験を行ったところ、優れた結果を示した(表8)。
Figure JPOXMLDOC01-appb-T000008
 また、実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図15および図16に示す。図15に示すように、濁り除去率は80%以上を維持し、図16に示すように、流量が初期の1/2を下回った点での濁りろ過能力は28L/mLであった。
 比較例1
 粒状活性炭として、PGW-100MDの代わりに、クラレケミカル株式会社製GW60/150(ヤシ殻原料、中心粒子径230μm、標準偏差σg=1.5、標準偏差σp=0.78、ベンゼン吸着量29質量%)を用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図17および図18に示す。図18に示すように流量減衰はほとんどなかったが、図17に示すように、5L/mLで濁り除去率が80%を下回り、濁りろ過能力は5L/mLであった。
 比較例2
 粉末状活性炭として、PGW-100MDの代わりに、クラレケミカル株式会社製PGW-50MD(ヤシ殻原料、中心粒子径60μm、標準偏差σg=1.4、標準偏差σp=0.20、ベンゼン吸着量33質量%)を用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図19および図20に示す。図19に示すように、濁り除去率は80%以上を維持したが、図20に示すように、流量が初期の1/2を下回った点での濁りろ過能力は5L/mLであった。
 比較例3
 粒状活性炭としてGW60/150を45質量部、クラレケミカル株式会社製PGW-20MD(ヤシ殻原料、中心粒子径40μm、標準偏差σg=2.0、ベンゼン吸着量33質量%)を45質量部、鉛吸着材としてATSを5質量部、および繊維状バインダーとしてBi-PUL/Fを5質量部の割合で水中に分散させてスラリーを調製した。得られたスラリーを、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。なお、混合した粉末状活性炭の中心粒子径は120μm、標準偏差σgは2.4であり、標準偏差σpは0.23であった。実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図21および図22に示す。図21に示すように、10L/mLで濁り除去率が80%を下回り、かつ図22に示すように、12L/mLで流量が初期の1/2を下回り、濁りろ過能力は10L/mLであった。
 比較例4
 粉末状活性炭として、PGW-100MDの代わりに、クラレケミカル株式会社製PGW-100MC(ヤシ殻原料、中心粒子径100μm、標準偏差σg=1.2、標準偏差σp=0.28、ベンゼン吸着量33質量%)を用いたこと以外は、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図23および図24に示す。図23に示すように、13L/mLで濁り除去率が80%を下回り、かつ、図24に示すように、10L/mLで流量が初期の1/2を下回り、濁りろ過能力は10L/mLであった。
 比較例5
 粒状活性炭として、クラレケミカル株式会社製GW48/100(ヤシ殻原料、中心粒子径280μm、標準偏差σg=1.4、ベンゼン吸着量33質量%)を45質量部、PGW-20MDを45質量部、鉛吸着材としてATSを5質量部、および繊維状バインダーとしてBi-PUL/Fを5質量部の割合で水中に分散させてスラリーを調製した。得られたスラリーを、実施例1と同様の手順で吸引成型して中空型円筒状の活性炭成型体を得た。なお、混合した粉末状活性炭の中心粒子径は150μm、標準偏差σgは2.5であり、標準偏差σpは0.20であった。実施例1と同様の手順で濁りろ過能力を測定した結果を表9、図25および図26に示す。図26に示すように流量減衰はほとんどなかったが、図25に示すように、初期から濁り除去率が80%を下回り、濁りろ過能力は0L/mLであった。
Figure JPOXMLDOC01-appb-T000009
 本発明によれば、JIS S 3201(2004)で測定される遊離残留塩素、揮発性有機化合物、CATおよび2-MIBの除去能に優れ、さらに濁りろ過能力に優れた活性炭成型体が提供される。したがって、本発明の活性炭成型体を浄水フィルターとしてハウジングに充填し、得られたカートリッジを装填した浄水器は、水道水の水質に関する安全衛生上の要求に応えることができ、産業上有用である。

Claims (11)

  1.  中心粒子径が80μm~120μmで、かつ粒径分布における標準偏差σgが1.3~1.9である粉末状活性炭(a)および繊維状バインダー(b)を含む混合物を成型してなる活性炭成型体であって、
     該標準偏差σgが、該粉末状活性炭の体積平均粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における15.87%径の値をD15.87、および該粉末状活性炭の体積粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値をD50とする場合に、D15.87/D50で示される、活性炭成型体。
  2.  前記混合物が、非晶質チタノシリケート系無機化合物またはアルミノシリケート系無機化合物(c)を、さらに含む、請求項1に記載の活性炭成型体。
  3.  前記粉末状活性炭(a)の粒径分布における標準偏差σpが、0.3~0.5であって、
     該標準偏差σpが、該粉末状活性炭の体積平均粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における84.13%径の値をD84.13、および該粉末状活性炭の体積粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値をD50とする場合に、D84.13/D50で示される、請求項1または2に記載の活性炭成型体。
  4.  前記粉末状活性炭(a)のベンゼン吸着量が、20~60質量%である、請求項1から3のいずれかの項に記載の活性炭成型体。
  5.  前記混合物が、前記粉末状活性炭(a)100質量部に対して、前記繊維状バインダー(b)を3~8質量部の割合で含む、請求項1から4のいずれかの項に記載の活性炭成型体。
  6.  前記粉末状活性炭(a)が、ヤシ殻活性炭粉末またはフェノール樹脂系活性炭粉末である、請求項1から5のいずれかの項に記載の活性炭成型体。
  7.  前記活性炭成型体に含まれる活性炭の全てが、前記粉末状活性炭(a)である、請求項1から6のいずれかの項に記載の活性炭成型体。
  8.  請求項1から7のいずれかの項に記載の活性炭成型体からなる浄水フィルター。
  9.  請求項1から7のいずれかの項に記載の活性炭成型体または請求項8に記載の浄水フィルターを、ハウジングに充填してなるカートリッジ。
  10.  請求項9に記載のカートリッジを装填してなる浄水器。
  11.  濁り除去率が80%以上を維持し、濁りろ過能力が活性炭成型体または浄水フィルター1mLあたり15L以上である、請求項10に記載の浄水器。
PCT/JP2010/063364 2009-08-06 2010-08-06 活性炭成型体およびそれを用いた浄水器 WO2011016548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011525947A JP6275368B2 (ja) 2009-08-06 2010-08-06 活性炭成型体およびそれを用いた浄水器
CN201080034805.8A CN102471096B (zh) 2009-08-06 2010-08-06 活性炭成型体以及使用该活性炭成型体的净水器
US13/389,187 US9033158B2 (en) 2009-08-06 2010-08-06 Molded activated charcoal and water purifier involving same
KR1020127005819A KR101770549B1 (ko) 2009-08-06 2010-08-06 활성탄 성형체 및 이를 사용한 정수기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009183411 2009-08-06
JP2009-183411 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016548A1 true WO2011016548A1 (ja) 2011-02-10

Family

ID=43544442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063364 WO2011016548A1 (ja) 2009-08-06 2010-08-06 活性炭成型体およびそれを用いた浄水器

Country Status (6)

Country Link
US (1) US9033158B2 (ja)
JP (3) JP6275368B2 (ja)
KR (1) KR101770549B1 (ja)
CN (1) CN102471096B (ja)
TW (1) TWI485107B (ja)
WO (1) WO2011016548A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641624A (zh) * 2011-02-22 2012-08-22 苏州市东方净水器厂 一种炭滤芯的制作工艺
WO2014061740A1 (ja) * 2012-10-19 2014-04-24 クラレケミカル株式会社 水処理フィルター及びその製造方法
JP2015003283A (ja) * 2013-06-19 2015-01-08 ユニチカ株式会社 浄水フィルター
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2016059826A (ja) * 2014-09-12 2016-04-25 株式会社タカギ 成形吸着体およびそれを用いた浄水器
WO2016080240A1 (ja) * 2014-11-19 2016-05-26 クラレケミカル株式会社 吸着フィルター
WO2016080241A1 (ja) * 2014-11-19 2016-05-26 クラレケミカル株式会社 吸着フィルター
JP2016140788A (ja) * 2015-01-30 2016-08-08 株式会社Lixil 浄水カートリッジ及び浄水器
CN106664469A (zh) * 2014-08-04 2017-05-10 松下知识产权经营株式会社 扬声器系统和使用该扬声器系统的电子设备
WO2018127671A1 (fr) 2017-01-06 2018-07-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de preparation de materiaux hybrides coeur-coquille
JP2018111099A (ja) * 2018-04-18 2018-07-19 ユニチカ株式会社 浄水フィルター
JP2019084469A (ja) * 2017-11-01 2019-06-06 フタムラ化学株式会社 浄水フィルター体
WO2020138054A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 浄水用フィルター及びそれを用いた浄水器
KR20230078947A (ko) 2020-10-01 2023-06-05 주식회사 쿠라레 흡착 필터

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438760B1 (ko) * 2013-01-18 2014-09-05 주식회사 성진제이티 하이드록시 아파타이트를 함유한 정수필터의 제조방법
CN108698833A (zh) * 2016-02-23 2018-10-23 索尼公司 固体化的多孔碳材料及其制造方法
JP6886790B2 (ja) * 2016-08-10 2021-06-16 三菱ケミカル・クリンスイ株式会社 浄水カートリッジの前処理方法及び浄化方法
CN106731239A (zh) * 2017-01-23 2017-05-31 福建海西滤水龙头研究中心有限公司 一种海水淡化滤芯及其制作方法
CN106731232A (zh) * 2017-01-23 2017-05-31 福建海西滤水龙头研究中心有限公司 一种离子交换型杀菌除臭过滤芯及其制作方法
CN106694059A (zh) * 2017-01-23 2017-05-24 福建海西滤水龙头研究中心有限公司 一种离子交换滤芯及其制作方法
CN106824054A (zh) * 2017-01-23 2017-06-13 福建海西滤水龙头研究中心有限公司 一种吸附型杀菌除臭过滤芯及其制作方法
CN106731216A (zh) * 2017-01-23 2017-05-31 福建海西滤水龙头研究中心有限公司 一种多功能净水滤芯及其制作方法
CN106731215A (zh) * 2017-01-23 2017-05-31 福建海西滤水龙头研究中心有限公司 一种水处理过滤芯及其制作方法
US10953386B2 (en) * 2017-12-29 2021-03-23 Mannon Water (Singapore) PTE. LTD. Filtration media for removing chloramine, chlorine, and ammonia, and method of making the same
US10480691B2 (en) * 2018-02-08 2019-11-19 X.J. Electrics (Hubei) Co., Ltd. Water pipe
JPWO2019188627A1 (ja) * 2018-03-28 2021-02-12 東レ株式会社 成形活性炭カートリッジおよびその製造方法
US11413558B1 (en) 2018-11-28 2022-08-16 Gautham Parangusa Das Water filtration apparatus and process
JP7264692B2 (ja) * 2019-03-29 2023-04-25 株式会社クラレ 重金属除去剤、並びに、それを用いた吸着材、成形体および浄水器
JP7264691B2 (ja) * 2019-03-29 2023-04-25 株式会社クラレ 吸着材、並びにそれを用いた成形体および浄水器
KR20210138744A (ko) * 2019-03-29 2021-11-19 주식회사 쿠라레 흡착재, 중금속 제거제, 그리고 그것들을 사용한 성형체 및 정수기
JP2021122778A (ja) * 2020-02-05 2021-08-30 株式会社Lixil 成形吸着体、及び浄水カートリッジ
JP7421941B2 (ja) * 2020-02-05 2024-01-25 株式会社Lixil 成形吸着体、及び浄水カートリッジ
KR20210135816A (ko) * 2020-05-06 2021-11-16 엘지전자 주식회사 정수기용 필터 및 이를 포함하는 정수기
KR102510598B1 (ko) 2020-06-30 2023-03-15 주식회사 쿠라레 탄소질 재료 및 그 제조 방법, 그리고 정수용 필터 및 정수기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042850U (ja) * 1997-04-25 1997-11-04 芳輝 柳下 複合濾材
JP2000263040A (ja) * 1999-03-16 2000-09-26 Kuraray Chem Corp 吸着剤成型体及びその製造方法
JP2003010614A (ja) * 2001-06-29 2003-01-14 Futamura Chemical Industries Co Ltd 浄水器フィルター
JP2003144821A (ja) * 2001-11-09 2003-05-20 Inax Corp 活性炭フィルタ、浄水カートリッジ及び浄水器
JP2005199219A (ja) * 2004-01-19 2005-07-28 Matsushita Electric Ind Co Ltd 濾過装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929502A (en) 1986-10-14 1990-05-29 American Cyanamid Company Fibrillated fibers and articles made therefrom
JPH0770573B2 (ja) 1989-07-11 1995-07-31 富士通株式会社 半導体集積回路装置
JPH0342850U (ja) * 1989-09-05 1991-04-23
JPH06312133A (ja) 1993-04-27 1994-11-08 Hayashi Seisakusho:Yugen 成形吸着体
JP3396057B2 (ja) * 1993-05-28 2003-04-14 有限会社林製作所 紙シートでない成形吸着体
JP3516811B2 (ja) 1996-06-24 2004-04-05 クラレケミカル株式会社 活性炭繊維成形吸着体
US5882517A (en) * 1996-09-10 1999-03-16 Cuno Incorporated Porous structures
JP4043634B2 (ja) 1999-03-10 2008-02-06 クラレケミカル株式会社 活性炭成型体、その製造方法及びそれを用いた浄水器
JP3693544B2 (ja) * 2000-01-31 2005-09-07 松下電器産業株式会社 活性炭およびそれを備えた浄水器
US6368504B1 (en) 2000-11-06 2002-04-09 Alticor Inc. Carbon block water filter
JP4811755B2 (ja) 2001-03-23 2011-11-09 大阪ガスケミカル株式会社 水処理用フィルター
US20040180190A1 (en) * 2001-09-10 2004-09-16 Yasuhiro Tajima Composite particulate article and method for preparation thereof
US6872311B2 (en) 2002-01-31 2005-03-29 Koslow Technologies Corporation Nanofiber filter media
AU2003252714A1 (en) 2002-07-31 2004-02-16 Kuraray Chemical Co., Ltd. Filter element, filter and method of using and method of cleaning the same
JP4064309B2 (ja) 2003-06-26 2008-03-19 クラレケミカル株式会社 浄水器
US7316323B2 (en) * 2004-05-06 2008-01-08 The Procter & Gamble Company Filters having improved permeability and virus removal capabilities
US20080063592A1 (en) 2004-05-20 2008-03-13 Kuraray Chemical Co., Ltd Spherical Active Carbon And Process For Producing The Same
US8167141B2 (en) * 2004-06-30 2012-05-01 Brita Lp Gravity flow filter
WO2007109774A2 (en) 2006-03-22 2007-09-27 3M Innovative Properties Company Filter media
JP2007253127A (ja) * 2006-03-24 2007-10-04 Kochi Univ アレルギー発症源の除去方法
JP5526471B2 (ja) 2007-09-04 2014-06-18 三菱レイヨン株式会社 浄水カートリッジおよび浄水器
JP3164470U (ja) * 2010-09-17 2010-12-02 Geテクノ株式会社 浄水器用フィルター、及びこれを用いた浄水器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042850U (ja) * 1997-04-25 1997-11-04 芳輝 柳下 複合濾材
JP2000263040A (ja) * 1999-03-16 2000-09-26 Kuraray Chem Corp 吸着剤成型体及びその製造方法
JP2003010614A (ja) * 2001-06-29 2003-01-14 Futamura Chemical Industries Co Ltd 浄水器フィルター
JP2003144821A (ja) * 2001-11-09 2003-05-20 Inax Corp 活性炭フィルタ、浄水カートリッジ及び浄水器
JP2005199219A (ja) * 2004-01-19 2005-07-28 Matsushita Electric Ind Co Ltd 濾過装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641624A (zh) * 2011-02-22 2012-08-22 苏州市东方净水器厂 一种炭滤芯的制作工艺
WO2014061740A1 (ja) * 2012-10-19 2014-04-24 クラレケミカル株式会社 水処理フィルター及びその製造方法
JP5513701B1 (ja) * 2012-10-19 2014-06-04 クラレケミカル株式会社 水処理フィルター及びその製造方法
KR20150068977A (ko) 2012-10-19 2015-06-22 구라레 케미칼 가부시키가이샤 수처리 필터 및 그 제조 방법
US10023475B2 (en) 2012-10-19 2018-07-17 Kuraray Co., Ltd. Water processing filter and manufacturing method therefor
JP2015003283A (ja) * 2013-06-19 2015-01-08 ユニチカ株式会社 浄水フィルター
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
CN106664469A (zh) * 2014-08-04 2017-05-10 松下知识产权经营株式会社 扬声器系统和使用该扬声器系统的电子设备
JP2016059826A (ja) * 2014-09-12 2016-04-25 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JPWO2016080241A1 (ja) * 2014-11-19 2017-09-21 株式会社クラレ 吸着フィルター
WO2016080240A1 (ja) * 2014-11-19 2016-05-26 クラレケミカル株式会社 吸着フィルター
WO2016080241A1 (ja) * 2014-11-19 2016-05-26 クラレケミカル株式会社 吸着フィルター
JPWO2016080240A1 (ja) * 2014-11-19 2017-09-28 株式会社クラレ 吸着フィルター
JP2020019016A (ja) * 2014-11-19 2020-02-06 株式会社クラレ 吸着フィルター
JP2016140788A (ja) * 2015-01-30 2016-08-08 株式会社Lixil 浄水カートリッジ及び浄水器
WO2018127671A1 (fr) 2017-01-06 2018-07-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de preparation de materiaux hybrides coeur-coquille
JP2019084469A (ja) * 2017-11-01 2019-06-06 フタムラ化学株式会社 浄水フィルター体
JP7271051B2 (ja) 2017-11-01 2023-05-11 フタムラ化学株式会社 浄水フィルター体
JP2018111099A (ja) * 2018-04-18 2018-07-19 ユニチカ株式会社 浄水フィルター
WO2020138054A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 浄水用フィルター及びそれを用いた浄水器
JPWO2020138054A1 (ja) * 2018-12-28 2021-11-11 株式会社クラレ 浄水用フィルター及びそれを用いた浄水器
JP7356458B2 (ja) 2018-12-28 2023-10-04 株式会社クラレ 浄水用フィルター及びそれを用いた浄水器
KR20230078947A (ko) 2020-10-01 2023-06-05 주식회사 쿠라레 흡착 필터

Also Published As

Publication number Publication date
JP6275368B2 (ja) 2018-02-07
CN102471096A (zh) 2012-05-23
JP2016019980A (ja) 2016-02-04
US20120132578A1 (en) 2012-05-31
CN102471096B (zh) 2014-09-24
KR101770549B1 (ko) 2017-08-23
JP2017136589A (ja) 2017-08-10
JP6283435B2 (ja) 2018-02-21
TWI485107B (zh) 2015-05-21
US9033158B2 (en) 2015-05-19
TW201119940A (en) 2011-06-16
JPWO2011016548A1 (ja) 2013-01-17
KR20120045041A (ko) 2012-05-08

Similar Documents

Publication Publication Date Title
JP6283435B2 (ja) 活性炭成型体およびそれを用いた浄水器
KR102039506B1 (ko) 정수기용 활성탄 및 이것을 사용한 활성탄 카트리지
JP6902536B2 (ja) 活性炭、並びにそれを用いた吸着フィルターおよび浄水器
JP4064309B2 (ja) 浄水器
JP6726520B2 (ja) 活性炭成形体及び浄水カートリッジ
JPWO2003022425A1 (ja) 複合粒状体及びその製造方法
CN111511466B (zh) 吸附过滤器
JP6328382B2 (ja) 浄水フィルター
JP7356458B2 (ja) 浄水用フィルター及びそれを用いた浄水器
JP6586482B2 (ja) 浄水フィルター
JP7301591B2 (ja) 残留塩素除去フィルター体の製造方法
JP2003190941A (ja) 浄水器用吸着材及びその製造方法、並びにこれを用いた浄水器
JP2010269225A (ja) 陰イオン吸着剤成型体およびそれを用いた浄水器
JP7058379B1 (ja) 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
JP2023147952A (ja) 残留塩素除去フィルター体
WO2020027147A1 (ja) 浄水カートリッジ及び浄水器
JP2022017611A (ja) 水処理カートリッジ及び浄水器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034805.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389187

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127005819

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10806547

Country of ref document: EP

Kind code of ref document: A1