WO2014061740A1 - 水処理フィルター及びその製造方法 - Google Patents

水処理フィルター及びその製造方法 Download PDF

Info

Publication number
WO2014061740A1
WO2014061740A1 PCT/JP2013/078192 JP2013078192W WO2014061740A1 WO 2014061740 A1 WO2014061740 A1 WO 2014061740A1 JP 2013078192 W JP2013078192 W JP 2013078192W WO 2014061740 A1 WO2014061740 A1 WO 2014061740A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cylindrical filter
molded body
mmφ
grinding
Prior art date
Application number
PCT/JP2013/078192
Other languages
English (en)
French (fr)
Inventor
聡 有田
石邨 静雄
哲也 花本
Original Assignee
クラレケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレケミカル株式会社 filed Critical クラレケミカル株式会社
Priority to CN201380067101.4A priority Critical patent/CN104854036B/zh
Priority to JP2014502285A priority patent/JP5513701B1/ja
Priority to US14/435,924 priority patent/US10023475B2/en
Priority to KR1020157012075A priority patent/KR102117733B1/ko
Publication of WO2014061740A1 publication Critical patent/WO2014061740A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/001Making filter elements not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/20Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being provided in an open container
    • B01D24/205Downward filtration without specifications about the filter material supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Definitions

  • the present invention relates to a water treatment filter for removing harmful substances contained in purified water such as drinking water and tap water, and a method for producing the same.
  • Patent Document 1 Japanese Patent No. 4064309
  • Patent Document 2 Japanese Patent No. 4064309
  • a water purifier was proposed in which a molded body integrally molded by a slurry suction method for sucking slurry was filled as a cartridge.
  • Patent Document 2 As a filter capable of improving the removal of turbid components in addition to the removal of harmful substances such as trihalomethane, the applicant of the present application disclosed in WO 2011/016548 (Patent Document 2) with a center particle size of 80 to 120 ⁇ m.
  • An activated carbon molding was proposed in which a mixture containing powdered activated carbon and a fibrous binder having a specific standard deviation in distribution was molded. This molded body is composed of free residual chlorine, volatile organic compound, CAT (2-chloro-4,6-bisethylamino-1,3,5-triazine) and 2-MIB (measured in JIS S3201 (2004)).
  • 2-methylisoborneol is excellent in removal performance, and the filtration performance of turbid components is also improved compared to conventional activated carbon. Furthermore, this document states that if the molded body is compressed too much for shaping, the surface will be consolidated, so it should be kept to a minimum.
  • an object of the present invention is to provide a water treatment filter having high dimensional accuracy and capable of improving filtration performance such as removal of turbid components and a method for producing the same.
  • Another object of the present invention is to provide a water treatment filter having a removal performance of free residual chlorine, volatile organic compounds (such as trihalomethane) and turbid components, and having a high dimensional accuracy and yield with respect to a cylindrical housing, and a method for producing the same. There is to do.
  • Another object of the present invention is to provide a water treatment filter having excellent filtration performance and high strength and a method for producing the same.
  • the cylindrical water treatment filter is formed by sucking from the inside of the mold using a cylindrical mold for molding having a small hole for suction. It is manufactured by a slurry suction method in which a slurry is deposited on the surface. Therefore, it is difficult to uniformly mold the shape, size, and size of the outer surface of the obtained cylindrical filter.
  • the surface was made uniform for compression. As described above, the present inventors have found that the filtration performance is lowered by the compression treatment (rolling treatment), and in order to improve the filtration performance, the surface is ground instead of the compression treatment to improve the dimensional accuracy.
  • the present inventors have made extensive studies to achieve the above-mentioned problems. As a result, the present inventors have found that a cylindrical filter including granular activated carbon having a central particle diameter of 30 to 80 ⁇ m and a fibrillated fibrous binder is used. We found that the dimensional accuracy and filtration performance of the water treatment filter can be improved by adjusting the arithmetic mean waviness of the outer surface on the upstream side to 30 ⁇ m or less and the arithmetic mean height of the cross section curve to 35 to 45 ⁇ m, and the present invention was completed. did.
  • the water treatment filter of the present invention is a water treatment filter provided with a cylindrical filter (A) containing granular activated carbon (a1) having a center particle diameter of 30 to 80 ⁇ m and a fibrillated fibrous binder (a2).
  • the arithmetic average undulation of the outer surface upstream of the cylindrical filter (A) is 30 ⁇ m or less, and the arithmetic average height of the cross-sectional curve is 35 to 45 ⁇ m.
  • the arithmetic average height of the inner surface on the downstream side of the cylindrical filter (A) may be 0.5 to 1.5 times the arithmetic average height of the outer surface.
  • the outer surface of the cylindrical filter (A) may be a surface obtained by grinding without being compressed.
  • the water treatment filter of the present invention is further inserted into the hollow portion of the cylindrical filter (A) and has a cylindrical filter (B1) containing granular activated carbon (b1) having a central particle diameter of 30 to 80 ⁇ m and a granular binder (b2). ) May be provided.
  • the present invention includes a slurry preparation step of preparing a slurry by dispersing a mixture obtained by mixing granular activated carbon (a1) and fibrous binder (a2) in water, and filtering the preform while sucking the slurry.
  • a suction filtration step for obtaining (A1) a drying step for obtaining a dried molded body (A2) by drying the preform (A1), and a grinding step for grinding the outer surface of the molded body (A2).
  • a method for producing a water treatment filter according to claim 1 is also included.
  • the grinding depth may be about 5 to 200 times the center particle diameter of the granular activated carbon (a1).
  • the molded body (A2) may be rotated and ground.
  • the production method of the present invention comprises a molding step for heating a mixture obtained by mixing granular activated carbon (b1) and granular binder (b2) to obtain a cylindrical filter (B), and a hollow part of the cylindrical filter (A).
  • An insertion step of inserting the cylindrical filter (B) may be further included.
  • the arithmetic average waviness of the outer surface on the upstream side of the cylindrical filter containing granular activated carbon having a central particle diameter of 30 to 80 ⁇ m and a fibrillated fibrous binder is 30 ⁇ m or less, and the arithmetic average height of the cross-sectional curve. Is adjusted to 35 to 45 ⁇ m, the dimensional accuracy and filtration performance of the water treatment filter can be improved. In particular, it has the ability to remove free residual chlorine, volatile organic compounds and turbid components, and has high dimensional accuracy and yield with respect to the cylindrical housing.
  • FIG. 1 is a schematic perspective view showing an example of the water treatment filter of the present invention.
  • FIG. 2 is a schematic perspective view showing an example of a grinding machine for producing the water treatment filter of the present invention.
  • the water treatment filter of the present invention comprises a cylindrical filter (A) containing granular activated carbon (a1) having a central particle diameter of 30 to 80 ⁇ m and a fibrillated fibrous binder (a2).
  • This cylindrical filter In (A) the outer surface is the upstream side of filtration, and the inner surface in the hollow portion is the downstream side of filtration.
  • the outer surface of the cylindrical filter (A) is not subjected to compression treatment (rolling treatment), and is obtained by grinding. Therefore, the cylindrical filter obtained by the suction slurry method and the outer surface of the filter
  • the filter has a predetermined surface characteristic different from that of a filter subjected to compression treatment. Therefore, it is excellent in dimensional accuracy, can be filled (accommodated) in a uniform housing with a high yield, and can improve filtration performance such as turbidity component removal performance.
  • the arithmetic average waviness Wa of the outer surface of the cylindrical filter (A) is 30 ⁇ m or less (particularly 25 ⁇ m or less), for example, 1 to 30 ⁇ m, preferably 5 to 25 ⁇ m, more preferably 10 to 23 ⁇ m (particularly 15 to 20 ⁇ m).
  • the arithmetic mean undulation exceeds 30 ⁇ m, the dimensional accuracy is lowered, so that it is difficult to mount (fill) the housing as a water treatment filter, and the yield is lowered.
  • the mounting property to the housing if it is manufactured in a size smaller than the size of the housing in advance, the filtration performance and the like are lowered.
  • the arithmetic average height Pa of the cross-sectional curve of the outer surface of the cylindrical filter (A) is 35 to 45 ⁇ m, preferably 36 to 44 ⁇ m (for example, 36 to 42 ⁇ m), more preferably 37 to 40 ⁇ m (particularly 37 to 40 ⁇ m). 39 ⁇ m). If the arithmetic average height is less than 35 ⁇ m, the gap between the granular activated carbons is narrowed, or turbid components are easily clogged. On the other hand, when the arithmetic average height exceeds 45 ⁇ m, the gap between the granular activated carbons becomes too wide, so that the turbid component removal performance is lowered.
  • cylindrical filter (A) grinds the outer surface, the structure in the thickness direction and the uniformity of the packing density are high, and the uniformity of the surface structure of the outer surface and the surface structure of the inner surface is high.
  • the arithmetic average waviness of the inner surface can also be selected from the same range as that of the outer surface, and is, for example, about 1 to 30 ⁇ m, preferably about 5 to 25 ⁇ m, more preferably about 10 to 23 ⁇ m (particularly about 15 to 20 ⁇ m).
  • the arithmetic average waviness of the inner surface is, for example, about 0.5 to 2 times, preferably 0.8 to 1.8 times, and more preferably about 1 to 1.6 times the arithmetic average waviness of the outer surface. May be.
  • the arithmetic average height of the inner surface can also be selected from the same range as that of the outer surface, for example, 35 to 45 ⁇ m, preferably 36 to 44 ⁇ m (eg 36 to 42 ⁇ m), more preferably 37 to 40 ⁇ m (particularly 37 to 39 ⁇ m). It is.
  • the arithmetic average height of the inner surface is, for example, 0.5 to 1.5 times, preferably 0.6 to 1.4 times, more preferably 0.7 to 1 with respect to the arithmetic average height of the outer surface. It may be about 3 times (especially 0.8 to 1.2 times).
  • the arithmetic average waviness and arithmetic average height can be measured using a non-contact type surface roughness measuring instrument in accordance with JIS B0601.
  • the reason for using the non-contact type surface roughness measuring machine is that the hardness of the filter surface is small and the surface of the contact type measuring instrument is damaged by the stylus, making accurate measurement difficult.
  • the magnification of the microscope of the non-contact type surface roughness measuring machine can be measured at 5 times.
  • the evaluation length is close to the particle size of the granular activated carbon, so it is easy to measure the height of the granular activated carbon as the surface height, and if the magnification is too small, it will be close to the lower limit of the evaluation device and will vary. This is because the accuracy is reduced.
  • the cutoff wavelength can be measured at 80 ⁇ m. This is because if the cut-off wavelength is not set, it is difficult to distinguish between waviness and roughness, and the measurement accuracy of waviness is reduced. Specifically, the arithmetic mean waviness and height can be measured by the method described in Examples described later.
  • the center particle diameter of the granular activated carbon (a1) is 30 to 80 ⁇ m, preferably 30 to 60 ⁇ m, more preferably 35 to 55 ⁇ m (particularly 40 to 50 ⁇ m).
  • the center particle diameter is less than 30 ⁇ m, clogging easily occurs due to turbid components.
  • the center particle diameter exceeds 60 ⁇ m, the removal of turbid components decreases.
  • the center particle diameter is a value measured by a laser diffraction / scattering method, and is a value of 50% diameter in the volume-based integrated fraction (when the integral volume is obtained from particles having a large volume particle size distribution ( D50).
  • the measurement by the laser diffraction / scattering method can be performed by, for example, a wet particle size distribution measuring apparatus (“Microtrack MT3300” manufactured by Nikkiso Co., Ltd.).
  • Granular activated carbon (a1) is obtained by carbonizing and / or activating a carbonaceous material.
  • carbonization When carbonization is required, it can be carried out usually at a temperature of about 400 to 800 ° C., preferably about 500 to 800 ° C., more preferably about 550 to 750 ° C. while blocking oxygen or air.
  • the activation method any of the gas activation method and the chemical activation method can be adopted, and the gas activation method and the chemical activation method may be combined. However, particularly when used for water purification, there are few impurities remaining. A gas activation method is preferred.
  • a carbonized carbon material is usually used at, for example, 700 to 1100 ° C., preferably 800 to 980 ° C., more preferably about 850 to 950 ° C., and an activation gas (for example, water vapor, carbon dioxide gas, etc.) It can be performed by reacting with.
  • an activation gas for example, water vapor, carbon dioxide gas, etc.
  • a steam-containing gas containing 10 to 40% by volume of steam is preferable.
  • the activation time and the temperature increase rate are not particularly limited, and can be appropriately selected depending on the type, shape, and size of the carbonaceous material to be selected.
  • carbonaceous material for example, plant-type carbonaceous materials (For example, fruit shells, such as wood, sawdust, charcoal, a coconut shell, and a walnut shell, fruit seeds, pulp manufacture by-products, lignin, molasses etc.) Plant-derived materials), mineral carbonaceous materials (eg, peat, lignite, lignite, bituminous coal, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch, and other mineral-derived materials), synthetic resin systems Carbonaceous materials (for example, materials derived from synthetic resins such as phenolic resins, polyvinylidene chloride, acrylic resins), natural fiber based carbonaceous materials (for example, natural fibers such as cellulose, natural fibers such as regenerated fibers such as rayon) Material).
  • plant-type carbonaceous materials for example, fruit shells, such as wood, sawdust, charcoal, a coconut shell, and a walnut shell, fruit seeds, pulp manufacture by-products, lignin,
  • carbonaceous materials can be used alone or in combination of two or more.
  • coconut shells and phenol resins are preferable because micropores related to the adsorption performance of volatile organic compounds defined in JIS S3201 (2010) are easily developed.
  • Activated activated carbon may be washed to remove ash and chemicals, especially when plant-based carbonaceous materials such as coconut shells or mineral-based carbonaceous materials are used. Mineral acid and water are used for washing, and hydrochloric acid with high washing efficiency is preferable as the mineral acid.
  • the granular activated carbon (a1) can have a BET specific surface area calculated by the nitrogen adsorption method in the range of about 600 to 2000 m 2 / g, for example, 800 to 1800 m 2 / g, preferably 900 to 1500 m 2 / g, more preferably Is about 1000 to 1300 m 2 / g. If the specific surface area is too large, the volatile organic compound is difficult to adsorb, and if it is too small, the removal performance of the volatile organic compound, CAT, and 2-MIB decreases.
  • the fibrillated fibrous binder (a2) is not particularly limited as long as it is a pulp-like binder fiber that can be entangled with granular activated carbon by fibrillation using a high-pressure homogenizer or a high-speed disintegrator. It can be used widely regardless of whether it is synthetic or natural.
  • the average fiber diameter of the fibrillated fibrous binder (a2) is, for example, about 0.1 to 50 ⁇ m, preferably about 1 to 20 ⁇ m.
  • the average fiber length is, for example, about 0.5 to 4 mm, preferably about 1 to 2 mm.
  • the proportion of the fibrillated fibrous binder (a2) is, for example, about 1 to 10 parts by weight, preferably 2 to 8 parts by weight, and more preferably about 3 to 7 parts by weight with respect to 100 parts by weight of the granular activated carbon (a1). is there.
  • the thickness of the cylindrical filter (A) may be 5 mm or more. For example, 5 to 50 mm, preferably 5 to 5 mm depending on the size of the water purifier. It may be about 40 mm, more preferably about 5 to 30 mm. When the thickness is too thin, the filter characteristics are deteriorated and the uniformity between the outer surface and the inner portion is increased, so that the improvement effect by grinding is reduced.
  • the hollow part (inner diameter part) of the cylindrical filter (A) is formed in a columnar shape along the axial center of the filter, and the diameter of the hollow part is, for example, 5 to 50 mm, preferably 8 to 30 mm, more preferably Is about 10 to 25 mm.
  • the apparent density of the cylindrical filter (A) is, for example, about 0.1 to 1 g / cm 3 , preferably about 0.2 to 0.8 g / cm 3 , more preferably about 0.3 to 0.5 g / cm 3 . is there.
  • the water treatment filter of the present invention comprises a cylindrical filter (A) 1 and a cylindrical filter (B) 2 inserted into the hollow part (inner diameter part) of the cylindrical filter (A). It may be a water treatment filter provided.
  • the cylindrical filter (B) improves the strength of the cylindrical filter (A), has a function as a reinforcing material, and also has the ability to remove volatile organic compounds and turbid components.
  • the cylindrical filter (B) includes granular activated carbon (b1) having a central particle diameter of 30 to 80 ⁇ m and a granular binder (b2), and the granular activated carbon is exemplified by the granular activated carbon exemplified in the section of the cylindrical film (A).
  • (A1) can be used, and usually the same granular activated carbon as the granular activated carbon (a1) is used.
  • the particulate binder (b2) may be formed of either a thermoplastic resin or a thermosetting resin.
  • a polyolefin resin polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic). Acid ester copolymer, ethylene- (meth) acrylic acid copolymer, etc.), styrene resin (polystyrene, etc.), acrylic resin, polyester resin, polyamide resin, polyurethane resin, epoxy resin, silicone resin
  • the binder formed by these etc. can be illustrated.
  • These granular binders can be used alone or in combination of two or more.
  • thermoplastic resins are widely used from the viewpoint of moldability and the like, and binders formed of polyethylene are particularly preferable from the viewpoints of binding properties and heat resistance.
  • the average particle diameter of the granular binder (b2) is, for example, about 0.1 to 200 ⁇ m, preferably about 1.0 to 100 ⁇ m, and more preferably about 5 to 30 ⁇ m from the viewpoint of excellent strength and moldability.
  • the proportion of the granular binder (b2) is, for example, 7 to 35 parts by mass, preferably 8 to 30 parts by mass with respect to 100 parts by mass of the granular activated carbon (b1), considering the balance of water resistance, moldability, and the like. More preferably, it may be about 10 to 25 parts by mass.
  • the thickness of the cylindrical filter (B) is, for example, about 1 to 10 mm, preferably 1.2 to 8 mm, and more preferably about 1.5 to 5 mm.
  • the water treatment filter of the present invention may be used alone as the cylindrical filter (A), but may be combined with a reinforcing material for reinforcing the strength.
  • a reinforcing material such as a netron pipe or a ceramic filter may be inserted into the hollow portion of the cylindrical filter (A).
  • the filtration performance can be improved by increasing the amount of activated carbon in the water treatment filter.
  • a combination with a cylindrical filter (B) is particularly preferred.
  • the water treatment filter of the present invention may be equipped with a cap on the top of the cylindrical filter or a non-woven fabric on the outer surface and / or inner surface as necessary. Moreover, you may combine with a conventional nonwoven fabric filter, a ceramic filter medium, etc. Furthermore, the water treatment filter of the present invention may contain a conventional additive, for example, various adsorbents (such as lead adsorbent) and mineral additives. The ratio of the additive is, for example, about 1 to 20 parts by mass, preferably 3 to 15 parts by mass, and more preferably about 5 to 10 parts by mass with respect to 100 parts by mass of the granular activated carbon.
  • the water treatment filter of the present invention is excellent in the filtration characteristics of purified water. Free residual chlorine, volatile organic compounds (such as trihalomethane) measured by JIS S3201 (2010), CAT (2-chloro-4, 6-Bisethylamino-1,3,5-triazine) and 2-MIB (2-methylisoborneol) removal performance, as well as turbidity component removal performance measured according to JIS S3201 (2010) Have.
  • the cylindrical filter (A) includes a slurry preparation step of preparing a slurry by dispersing a mixture obtained by mixing granular activated carbon (a1) and a fibrous binder (a2) in water, and filtering the slurry while sucking the slurry.
  • the granular activated carbon (a1) and the fibrous binder (a2) are dispersed in water so that the solid content concentration is 0.1 to 10% by mass (particularly 1 to 5% by mass).
  • the solid content concentration of the slurry is too high, the dispersion tends to be non-uniform, and spots are likely to occur on the molded body.
  • the solid content concentration is too low, not only the molding time is prolonged and the productivity is lowered, but also the density of the molded body is increased and the turbidity removal performance is liable to be lowered.
  • suction filtration process molding is performed by putting a molding mold having a large number of holes in the slurry and filtering while sucking from the inside of the mold.
  • a mold for molding for example, a conventional mold can be used.
  • a mold described in FIG. 1 of Japanese Patent No. 3516811 can be used.
  • a suction method a conventional method, for example, a suction method using a suction pump or the like can be used.
  • the preform (A1) obtained in the suction filtration process is removed from the mold and dried with a dryer or the like, whereby the molded article (A2) can be obtained.
  • the drying temperature is, for example, about 100 to 150 ° C. (especially 110 to 130 ° C.), and the drying time is, for example, about 4 to 24 hours (particularly 8 to 16 hours). If the drying temperature is too high, the fibrillated fibrous binder may be altered or melted to reduce the filtration performance or the strength of the molded body. If the drying temperature is too low, the drying time tends to be long or drying tends to be insufficient.
  • the grinding step there is no particular limitation as long as the outer surface of the dried molded body (A2) can be ground (or polished), and a conventional grinding method can be used. From the viewpoint of grinding uniformity, the molded body (A2) itself A method of grinding by rotating is preferred.
  • FIG. 2 shows an example of a grinding machine for rotating and grinding the molded body (A2) itself.
  • the grinding machine 11 is installed on a rotary shaft 12, a disc-shaped grindstone 13 for grinding the molded body 20 (grinding stone particle size 90 to 125 ⁇ m), and a rotary shaft 17 for fixing and rotating the molded body 20.
  • an operation panel 19 The disc-shaped grindstone 13 can be rotated by a motor 14 and can be relatively advanced and retracted so as to be able to contact the molded body 20 by an air cylinder 15 whose position is fixed, and the position is fixed.
  • the air cylinder 16 is movable along with the rotary shaft 12 along the longitudinal direction or the axial direction of the molded body 20.
  • the disc-shaped grindstone 13 contacts the outer surface of the molded body 20 and can grind the outer surface of the molded body, and also moves the outer surface of the molded body in the length direction to uniformly grind in the length direction. it can.
  • the rotating shaft 17 can also be rotated by the motor 18 in the direction opposite to the disk-shaped grindstone. In this grinding machine, by rotating not only the molded body but also the disc-shaped grindstone, it is not necessary to remove the generated grinding rod for the uniformity of the grinding rod, and the productivity can be improved.
  • the molded body 20 is mounted on a rotary shaft 15 installed in parallel to a disc-shaped grindstone 13 having a diameter of 305 mm ⁇ and a thickness of 19 mm installed on the rotary shaft 12, and a desired outer diameter (grinding is performed after grinding). Move it forward and backward to the depth and position.
  • the grinding depth thickness to be ground
  • the grinding depth is, for example, about 5 to 200 times, preferably about 10 to 100 times, more preferably about 15 to 50 times the center particle diameter of the granular activated carbon (a1). If the grinding depth is too small, the effect of grinding cannot be obtained, and if it is too large, the productivity decreases.
  • productivity in consideration of the grinding depth, productivity can be improved by manufacturing a molded body (A2) having a predetermined thickness larger than the size of the housing in accordance with the size of the housing. Furthermore, the generation of grinding ridges due to grinding can be suppressed, and the generated grinding ridges may be reused.
  • the peripheral speed of the disc-shaped grindstone is, for example, about 10 to 35 m / s, preferably about 15 to 32 m / s, and more preferably about 18 to 30 m / s.
  • the rotational speed of the rotating shaft for rotating the disc-shaped grindstone is, for example, about 800 to 2200 rpm, preferably about 1000 to 2000 rpm, and more preferably about 1200 to 1800 rpm.
  • the rotational speed of the rotating shaft for rotating the molded body may be, for example, about 200 to 500 rpm, preferably about 300 to 450 rpm. If the peripheral speed (rotational speed) is too small, the molded body tends to be crushed when grinding. On the other hand, if the peripheral speed is too high, the centrifugal force is too high, so that the molded body is easily deformed or crushed.
  • a conventional grindstone can be used, and examples thereof include an alumina grindstone, a silicon carbide grindstone, and a combination of an alumina grindstone and a silicon carbide grindstone.
  • the size of the abrasive grains is, for example, about 30 to 600 ⁇ m, preferably 40 to 300 ⁇ m, and more preferably about 45 to 180 ⁇ m.
  • the abrasive grains are too rough, the granular activated carbon easily falls off from the ground surface. On the other hand, if it is too fine, it takes time to grind and the productivity tends to decrease.
  • the grindstone and the molded body (A2) may be formed so as to be able to relatively move forward and backward in the directions approaching and separating, and at least one of the grindstone and the molded body may be formed to be able to advance and retract.
  • the grindstone and the molded body (A2) need only be attached to the parallel axes, and at least one of the grindstone and the molded body may be formed so as to be movable (relatively movable) in the axial direction.
  • the cylindrical filter (B) is obtained by a production method including a molding step in which a mixture obtained by mixing the granular activated carbon (b1) and the granular binder (b2) is heat-molded to obtain the cylindrical filter (B).
  • the molding step it is preferable to manufacture the cylindrical filter (B) using dry molding.
  • a mixer such as a Henschel mixer, a planetary mixer, or a V-type blender
  • the injection molding method including a molding step can be used after the granular binder is melted or softened by heating the mold to a melting point or higher of the granular binder and then cooled and solidified.
  • the obtained cylindrical filter (B) is subjected to an insertion process to be inserted into the hollow part of the cylindrical filter (A), whereby the water treatment filter of the present invention is obtained.
  • the center particle diameter (D50) was measured by a laser diffraction / scattering method using a wet particle size distribution measuring apparatus ("Microtrack MT3000" manufactured by Nikkiso Co., Ltd.).
  • Total THM removal performance The removal performance of total THM (trihalomethane) was measured in accordance with JIS S3201 (2010). However, the measurement was performed with the flow rate set at 3 liters / minute.
  • Titanosilicate lead adsorbent “ATS” manufactured by BASF, average particle size 20 ⁇ m
  • Fibrous binder “Fibrinated acrylic pulp Bi-PUL / F” manufactured by Nippon Exlan Industry Co., Ltd.
  • Granular binder High-density polyethylene powder, “Miperon MP-200” manufactured by Mitsui Chemicals, Inc.
  • Cylindrical non-woven fabric Non-woven fabric obtained by processing “9540F” manufactured by Shinwa Co., Ltd. into a cylindrical shape Spunbond non-woven fabric: “T0703WDO” manufactured by Unitika Ltd.
  • the molding mold described in FIG. 1 of Japanese Patent No. 3516811 (tubular mold having a large number of suction holes) is used as a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 12 mm ⁇ , and an outer diameter of the gap of 180 mm.
  • a cylindrical nonwoven fabric was mounted, and the slurry was only sucked and molded to the outer diameter of the mold of 40 mm ⁇ .
  • the molded body is removed from the mold, dried, cut, and wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm (hereinafter, a molded body obtained by sucking slurry dispersed in water is wet molded. (Referred to as body).
  • the weight of the molded body was 24.51 g.
  • Comparative Example 2 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 12 mm ⁇ , and an outer diameter wrinkle spacing of 180 mm, and after sucking the slurry, the surface reaches the mold outer diameter. After pressurizing and rotating (rolling), drying and cutting, a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm was produced. The weight of the molded body was 28.52 g.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbid filtration capacity was 0.51 times.
  • Comparative Example 3 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a medium shaft diameter of 15 mm ⁇ , and an outer diameter wrinkle interval of 180 mm, and after sucking the slurry, the surface reaches the mold outer diameter.
  • the resultant was subjected to pressure rotation molding, dried and then cut to prepare a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 15 mm ⁇ , and a height of 54 mm.
  • the weight of the molded body was 27.12 g.
  • Comparative Example 4 A slurry was prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric was attached to a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 20 mm ⁇ , and an outer diameter of ⁇ spacing of 180 mm. The mixture was press-rotated, dried, and cut to prepare a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 20 mm ⁇ , and a height of 54 mm. The weight of the molded body was 23.04 g.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbid filtration capacity was 0.51 times.
  • Example 1 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a middle shaft diameter of 12 mm ⁇ , and an outer diameter wrinkle spacing of 180 mm, so that the slurry is about 2 mm larger than the outer diameter of the mold. Only suction was performed and dried.
  • the obtained molded body is mounted on the automatic grinding machine shown in FIG. 2 and molded at a molded body rotation speed of 300 rotations / minute, a grinding wheel rotation speed of 1200 rotations / minute, and a grinding wheel moving speed of 300 mm / 10 seconds (3 cm / second).
  • the outer surface of the body was ground to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 180 mm. Further, it was cut to produce a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm. The weight of the molded body was 24.93 g.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbidity filtration ability was improved by 1.2 times or more due to the effect of grinding, and compared with Comparative Example 2 by 2.3 times or more.
  • Example 2 A slurry is similarly prepared with the same composition as in Comparative Example 1, and a cylindrical nonwoven fabric is mounted on a mold having an outer diameter of 40 mm ⁇ , a medium shaft diameter of 15 mm ⁇ , and an outer diameter wrinkle spacing of 180 mm, so that the slurry is about 2 mm larger than the outer diameter of the mold. Only suction was performed and dried.
  • the outer surface of the molded body was ground with a grinder to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 15 mm ⁇ , and a height of 180 mm. Further, it was cut to produce a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 15 mm ⁇ , and a height of 54 mm.
  • the weight of the molded body was 23.80 g.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with the comparative example 3, the turbidity filtration ability improved by 1.8 times or more by the effect of grinding.
  • Example 3 A slurry is similarly prepared with the same composition as in Comparative Example 1, and a cylindrical nonwoven fabric is mounted on a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 20 mm ⁇ , and an outer diameter wrinkle spacing of 180 mm, so that the slurry is about 2 mm larger than the outer diameter of the mold. Only suction was performed and dried.
  • the outer surface of the molded body was ground with a grinder to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 20 mm ⁇ , and a height of 180 mm. Further, it was cut to prepare a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 20 mm ⁇ , and a height of 54 mm. The weight of the molded body was 20.09 g.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 4, the turbidity filtration ability was improved by 1.9 times or more due to the effect of grinding.
  • Example 4 With respect to 6.8 kg of activated carbon small particles, 1.2 kg of granular binder was put into a mixer (“Micro Speed Mixer MS-25 type” manufactured by Takara Koki Co., Ltd.) and stirred for 2 minutes. The obtained mixture was filled into a cylindrical stainless steel mold with an inner diameter of 15 mm ⁇ , a core diameter of 12 mm ⁇ , and a height of 120 mm with a lid on one side while vibrating with a wooden mallet, and the open side was capped. Fix things. The mixture filled in the mold is put into a dryer at 160 ° C. together with the mold, heated for 120 minutes, and then allowed to cool to 50 ° C. or lower.
  • a mixer Micro Speed Mixer MS-25 type manufactured by Takara Koki Co., Ltd.
  • the lid was removed, the molded body was extracted from the mold so as not to break the molded body, and the resulting molded body was cut to produce a dry molded body having an outer diameter of 15 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm (hereinafter referred to as water).
  • a molded body obtained by molding without using it is called a dry molded body).
  • the weight of the dry molding was 1.28 g.
  • the obtained dry molded body was inserted into the inner diameter part of the wet molded body obtained by the same method as in Example 2 to produce a composite molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • the weight of the wet molded body was 23.81 g.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbidity filtration ability was improved by 1.3 times or more due to the effect of grinding, and compared with Comparative Example 2 by 2.6 times or more.
  • Example 5 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a medium shaft diameter of 18 mm ⁇ , and an outer diameter wrinkle interval of 180 mm, so that the slurry is about 2 mm larger than the mold outer diameter. Only suction was performed and dried.
  • the outer surface of the molded body was ground with a grinder to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 18 mm ⁇ , and a height of 180 mm.
  • wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 18 mm ⁇ , and a height of 54 mm.
  • the weight of the wet molded body was 21.64 g.
  • a single spunbond nonwoven fabric was wound around the outer periphery of the molded body.
  • a mixture for dry molding was prepared in the same manner with the same formulation as in Example 4. Using the obtained mixture, a cylindrical stainless steel mold with an inner diameter of 18 mm ⁇ , a core diameter of 12 mm ⁇ , and a height of 120 mm with a lid on one side, cut the molded product obtained in the same process as in Example 4, A dry molded body having an outer diameter of 18 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm was produced. The weight of the dry molding was 3.61 g.
  • the obtained dry molded body was inserted into the inner diameter part of the wet molded body to produce a composite molded body having an inner diameter of 12 mm ⁇ , an outer diameter of 40 mm ⁇ , and a height of 54 mm.
  • Tables 1 and 2 show the evaluation results of the water treatment filter.
  • the turbidity filtration capacity was improved to 1.2 times or more compared with Comparative Example 1 and 2.4 times or more due to the effect of grinding compared to Comparative Example 2.
  • Example 6 A mixture for dry molding was prepared in the same manner with the same formulation as in Example 4. Using the obtained mixture, a cylindrical stainless steel mold with an inner diameter of 20 mm ⁇ , a core diameter of 12 mm ⁇ , and a height of 120 mm with a lid on one side, the molded body obtained in the same process as in Example 4 was cut, A dry molded body having an outer diameter of 20 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm was produced. The weight of the dry molding was 5.19 g.
  • the obtained dry molded body was inserted into the inner diameter part of the wet molded body obtained by the same method as in Example 3 to produce a composite molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • the weight of the wet molded body was 20.52 g.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbidity filtration ability was improved by 1.1 times or more due to the effect of grinding, and compared with Comparative Example 2 by 2.2 times or more.
  • Example 7 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is mounted on a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 23 mm ⁇ , and an outer diameter wrinkle interval of 180 mm, and the slurry becomes about 2 mm larger than the outer diameter of the mold. Thus, only suction was performed and dried.
  • the outer surface of the molded body was ground with a grinder to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 23 mm ⁇ , and a height of 180 mm.
  • wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 18 mm ⁇ , and a height of 54 mm.
  • the weight of the wet molded body was 17.69 g.
  • a single spunbond nonwoven fabric was wound around the outer periphery of the molded body.
  • a mixture for dry molding was prepared in the same manner with the same formulation as in Example 4. Using the obtained mixture, a cylindrical stainless steel mold having an inner diameter of 23 mm ⁇ , a core diameter of 12 mm ⁇ , and a height of 120 mm with a lid on one side, and cutting the molded body obtained in the same process as in Example 4, A dry molded body having an outer diameter of 23 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm was produced. The weight of the dry molding was 8.46 g.
  • the obtained dry molded body was inserted into the inner diameter part of the wet molded body to produce a composite molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 2, the turbidity filtration ability was improved more than twice by the effect of grinding.
  • Example 8 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a middle shaft diameter of 12 mm ⁇ , and an outer diameter wrinkle spacing of 180 mm, so that the slurry is about 2 mm larger than the outer diameter of the mold. Only suction was performed and dried. The obtained molded body was mounted on the automatic grinding machine shown in FIG.
  • the molded body rotation speed was 450 rotations / minute
  • the grinding wheel rotation speed was 1800 rotations / minute
  • the grinding wheel moving speed was 300 mm / 3.5 seconds (8.6 cm / Second)
  • the outer surface of the molded body was ground to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 180 mm. Further, it was cut to produce a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • the weight of the wet molded body was 24.93 g.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of the molded body in a single layer to obtain a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbidity filtration capacity was improved by 1.2 times or more due to the effect of grinding, and compared with Comparative Example 2 by 2.3 times or more.
  • Example 9 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a middle shaft diameter of 12 mm ⁇ , and an outer diameter wrinkle interval of 180 mm, so that the slurry is about 2 mm larger than the mold outer diameter Only suction was performed and dried.
  • the obtained molded body is mounted on the automatic grinding machine shown in FIG. 2, and the molded body has a rotation speed of 300 rotations / minute, a grinding wheel rotation speed of 1800 rotations / minute, and a grinding wheel moving speed of 300 mm / 5 seconds (6 cm / second).
  • the outer surface of the molded body was ground to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 180 mm. Further, it was cut to produce a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm. The weight of the wet molded body was 24.93 g. A spunbonded nonwoven fabric was wrapped around the outer periphery of the molded body in a single layer to form a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Compared with Comparative Example 1, the turbidity filtration capacity was improved by 1.2 times or more due to the effect of grinding, and compared with Comparative Example 2 by 2.3 times or more.
  • Example 10 Example 1 except that the mixing ratio of the slurry was 0.552 kg of activated carbon small particles, 0.552 kg of activated carbon large particles, 0.096 kg of titanosilicate lead adsorbent, and 0.06 kg of fibrous binder (in terms of dry weight).
  • a wet molded body was prepared. The central particle diameter of the activated carbon constituting this molded body was 66.3 ⁇ m, and the weight of the molded body was 24.42 g.
  • a spunbonded nonwoven fabric was wrapped around the outer periphery of the molded body in a single layer to form a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. Since the center particle diameter of the granular activated carbon was larger than that of other examples, the turbidity filtration ability was lowered.
  • Example 11 With respect to 4.0 kg of activated carbon large particles, 4.0 kg of a granular binder was put into a mixer (“Micro Speed Mixer MS-25 type” manufactured by Takara Koki Co., Ltd.) and stirred for 2 minutes. The obtained mixture was filled into a cylindrical stainless steel mold with an inner diameter of 18 mm ⁇ , a core diameter of 12 mm ⁇ , and a height of 200 mm with a lid on one side while gradually vibrating with a mallet, and the open side was capped. Fix things. The mixture filled in the mold is put into a dryer at 160 ° C. together with the mold, heated for 120 minutes, and then allowed to cool to 50 ° C. or lower.
  • a mixer Micro Speed Mixer MS-25 type manufactured by Takara Koki Co., Ltd.
  • the lid was removed, the molded body was extracted from the mold so as not to break the molded body, and the obtained molded body was cut to produce a dry molded body having an outer diameter of 18 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 200 mm.
  • the weight of the dry molding was 13.67 g.
  • a slurry was prepared in the same manner as in Comparative Example 1, and the obtained dry molded body was mounted on a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 12 mm ⁇ , and an outer diameter of the ridges of 180 mm, and the slurry was 2 mm from the outer diameter of the mold. Only suction was performed to increase the degree of drying.
  • the outer surface of the molded body was ground with a grinder to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 180 mm.
  • the integrally molded body (The molded object which the dry-type molded object and the wet molded object integrated
  • the weight of this integrally molded body was 25.85 g. From the weight of the dry molded body used, the weight of the wet molded body in the integrally molded body was 21.72 g, and the weight of the dry molded body was 4.13 g.
  • a spunbonded nonwoven fabric was wrapped around the outer periphery of the molded body in a single layer to form a test filter.
  • Tables 1 and 2 show the evaluation results of the water treatment filter. As a result of grinding, the turbidity filtration ability was improved 1.3 times compared to Comparative Example 1 and 2.6 times compared to Comparative Example 2.
  • Comparative Example 5 A slurry is prepared in the same manner as in Comparative Example 1, and a cylindrical non-woven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a middle shaft diameter of 12 mm ⁇ , and an outer diameter wrinkle spacing of 180 mm, so that the slurry is about 2 mm larger than the outer diameter of the mold. Only suction was performed and dried.
  • the obtained molded body is mounted on the automatic grinding machine shown in FIG. 2, and the molded body rotation speed is 300 rotations / minute, the grinding wheel rotation speed is 300 rotations / minute, and the grinding wheel moving speed is 300 mm / 10 seconds (3 cm / second). When the outer surface of the molded body was ground, the ground portion collapsed and a molded body with a uniform shape could not be obtained.
  • the molding mold described in FIG. 1 of Japanese Patent No. 3516811 (tubular mold having a large number of suction holes) is used as a mold having an outer diameter of 40 mm ⁇ , an intermediate shaft diameter of 12 mm ⁇ , and an outer diameter of the gap of 180 mm.
  • a cylindrical nonwoven fabric was mounted, and the slurry was only sucked and molded to the outer diameter of the mold of 40 mm ⁇ .
  • the molded body was removed from the mold, dried, and then cut to prepare a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter. At this time, the molded body weight was 29.56 g.
  • Tables 1 and 2 show the volatile organic compound removal ability and turbidity filtration ability of the water treatment filter. Since the particle diameter used was larger than that of Example 1, the turbid filtration ability was not expressed.
  • Comparative Example 7 A slurry is prepared in the same manner as in Comparative Example 6, and a cylindrical nonwoven fabric is attached to a mold having an outer diameter of 40 mm ⁇ , a medium shaft diameter of 12 mm ⁇ , and an outer diameter of ⁇ spacing of 180 mm so that the slurry is about 2 mm larger than the outer diameter of the mold. Only suction was performed and dried.
  • the obtained molded body is mounted on the automatic grinding machine shown in FIG. 2 and molded at a molded body rotation speed of 300 rotations / minute, a grinding wheel rotation speed of 1200 rotations / minute, and a grinding wheel moving speed of 300 mm / 10 seconds (3 cm / second).
  • the outer surface of the body was ground to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 180 mm. Further, it was cut to produce a wet molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • a spunbond nonwoven fabric was wrapped around the outer periphery of this molded body in a single layer to obtain a test filter. At this time, the molded body weight was 25.54 g.
  • Tables 1 and 2 show the volatile organic compound removal ability and turbidity filtration ability of the water treatment filter. Since the particle diameter used was larger than that of Example 1, the turbid filtration ability was not expressed. In addition, the filtration capacity of free residual chlorine and total THM was also reduced.
  • the lid was removed, the molded body was extracted from the mold so as not to break the molded body, and the obtained molded body was cut to produce a dry molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • the turbid filtration capacity was 0.23 times that of Comparative Example 1 and 0.45 times that of Comparative Example 2, which was a low value.
  • the flow resistance increased at a flow rate of 5580 L, and the test could not be continued, and the test was stopped.
  • the water treatment filter of the present invention can be used as a water purifier filter for home use or industrial use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)

Abstract

 高い寸法精度を有し、濁り成分の除去性能などの濾過性能を向上できる水処理フィルターを提供する。中心粒子径が30~80μmである粒状活性炭(a1)及びフィブリル化された繊維状バインダー(a2)を含む円筒状フィルター(A)を備えた水処理フィルター(A)の上流側である外表面の算術平均うねりを30μm以下、断面曲線の算術平均高さを35~45μmに調整する。前記円筒状フィルター(A)の下流側である内表面の算術平均うねりは30μm以下であり、かつ断面曲線の算術平均高さは35~45μmであってもよい。円筒状フィルター(A)の外表面は、研削により得られる表面であってもよい。円筒状フィルター(A)の中空部には、さらに中心粒子径が30~80μmである粒状活性炭(b1)及び粒状バインダー(b2)を含む円筒状フィルター(B)が挿入されていてもよい。

Description

水処理フィルター及びその製造方法
 本発明は、飲料水や水道水などの浄水に含まれる有害物質を取り除く水処理フィルター及びその製造方法に関する。
 近年、飲料水、特に水道水の水質に関する安全衛生上の関心が高まってきており、飲料水中に含まれる遊離残留塩素、トリハロメタン類、黴臭などの有害物質を除去することが望まれている。従来から、これらの有害物質を除去するため、粒状の活性炭をハウジングに充填した浄水器が主として使用されている。なかでも、水道水中に溶存している微量のトリハロメタンは、発ガン性物質であることが疑われている。そのため、近年の健康志向の高まりの中で、トリハロメタンを除去し得る浄水器の重要性はますます高まっている。
 そこで、本出願人は、特許第4064309号公報(特許文献1)において、トリハロメタン除去用活性炭成型体として、比表面積が1000~1800m/gの繊維状活性炭100重量部に対し、中心粒子径が10~70μmでベンゼン吸着能が25~40重量%の粉末状ヤシ殻又はフェノール樹脂系活性炭10~300重量部及び繊維状バインダー3~30重量部を混合して得た混合物を水中に分散させスラリーを調製した後、スラリーを吸引するスラリー吸引方法により一体成型せしめた成型体をカートリッジとして充填した浄水器を提案した。
 しかし、前記成型体で形成されたカートリッジをハウジング(ケーシング)などの容器に装填する場合、形状を整えるために、整形台上でさらに圧縮する必要があるが、圧縮処理(転動処理)を行うと、表面部分が圧縮されるためか、濁り成分の濾過能力が低下した。
 また、本出願人は、トリハロメタンなどの有害物質の除去に加えて、濁り成分の除去も向上できるフィルターとして、WO2011/016548号公報(特許文献2)において、中心粒子径が80~120μmで粒径分布における特定の標準偏差を有する粉末状活性炭及び繊維状バインダーを含む混合物を成型した活性炭成型体を提案した。この成型体は、JIS S3201(2004)で測定される遊離残留塩素、揮発性有機化合物、CAT(2-クロロ-4,6-ビスエチルアミノ-1,3,5-トリアジン)及び2-MIB(2-メチルイソボルネオール)の除去性能に優れ、濁り成分の濾過性能も従来の活性炭に比べて向上している。さらに、この文献には、成型体を整形のために圧縮しすぎると、表面が圧密化するため、最小限に止めるのがよいと記載されている。
 しかし、この成型体をハウジングに装填する場合、寸法精度が低いため、廃棄となる成型体が多く、歩留まりが低かった。また、歩留まりを向上しようとすると、圧縮整形が必要となり、濁り成分の除去性能が低下した。
特許第4064309号公報(特許請求の範囲、段落[0036]) WO2011/016548号公報(請求の範囲、段落[0019][0037])
 従って、本発明の目的は、高い寸法精度を有し、濁り成分の除去性能などの濾過性能を向上できる水処理フィルター及びその製造方法を提供することにある。
 本発明の他の目的は、遊離残留塩素、揮発性有機化合物(トリハロメタンなど)及び濁り成分の除去性能を有し、かつ円筒状ハウジングに対する寸法精度及び歩留まりが高い水処理フィルター及びその製造方法を提供することにある。
 本発明の他の目的は、濾過性能に優れ、強度も大きい水処理フィルター及びその製造方法を提供することにある。
 円筒状の水処理フィルターは、特許第3516811号公報などに開示されているように、吸引用小孔を有する円筒状の成型用型枠を用いて、この型枠の内側から吸引して型枠の表面にスラリーを堆積させるスラリー吸引法によって製造される。そのため、得られた円筒状フィルターの外表面の形状や寸法・サイズを均一に成型するのは困難であり、フィルターを画一的なサイズのハウジングに充填するために、整形台上で外表面を圧縮するために表面を均一化していた。本発明者らは、前述のように、圧縮処理(転動処理)により濾過性能が低下することを発見し、濾過性能を向上させるために、圧縮処理の代わりに表面を研削して寸法精度を向上させることを試みたが、思いがけないことに、研削条件を調整することにより、圧縮処理後のフィルターよりも濾過性能が向上するだけでなく、圧縮前のフィルターに対しても、寸法精度の向上だけでなく、濾過性能も向上することを突き止めた。研削により濾過性能が向上する理由は明らかではないが、吸引によりフィルターの厚み方向で充填密度が不均一になり、特に、吸引側の内表面から遠い外表面付近の所定の領域でその傾向が顕著になっているためであると推定できる。さらに、粒状活性炭の粒径分布には、ある程度の幅があるため、吸引後の充填密度に活性炭の粒径分布も関係していると推定できる。特に、濁り成分と揮発性有機化合物とを同時に濾過する必要がある水処理フィルターでは、通水能力と粒状活性炭の分布状態とが複雑に関係するとともに、濾過初期(上流側)の外表面の状態は特に重要であると推定される。
 本発明者らは、このような知見に基づいて、前記課題を達成するため鋭意検討した結果、中心粒子径が30~80μmである粒状活性炭及びフィブリル化された繊維状バインダーを含む円筒状フィルターの上流側である外表面の算術平均うねりを30μm以下、断面曲線の算術平均高さを35~45μmに調整することにより、水処理フィルターの寸法精度及び濾過性能を向上できることを見出し、本発明を完成した。
 すなわち、本発明の水処理フィルターは、中心粒子径が30~80μmである粒状活性炭(a1)及びフィブリル化された繊維状バインダー(a2)を含む円筒状フィルター(A)を備えた水処理フィルターであって、前記円筒状フィルター(A)の上流側である外表面の算術平均うねりが30μm以下であり、かつ断面曲線の算術平均高さが35~45μmである。前記円筒状フィルター(A)の下流側である内表面の算術平均高さは、外表面の算術平均高さに対して0.5~1.5倍であってもよい。円筒状フィルター(A)の外表面は、圧縮処理されておらず、研削により得られる表面であってもよい。
 本発明の水処理フィルターは、さらに円筒状フィルター(A)の中空部に挿入され、かつ中心粒子径が30~80μmである粒状活性炭(b1)及び粒状バインダー(b2)を含む円筒状フィルター(B)を備えていてもよい。前記円筒状フィルター(A)と前記円筒状フィルター(B)との密度比は、円筒状フィルター(A)/円筒状フィルター(B)=0.7/1~1.5/1であってもよい。前記円筒状フィルター(A)と前記円筒状フィルター(B)の体積比は、円筒状フィルター(A)/円筒状フィルター(B)=3/1~20/1であってもよい。
 本発明には、粒状活性炭(a1)及び繊維状バインダー(a2)を混合して得た混合物を水中に分散させスラリーを調製するスラリー調製工程と、前記スラリーを吸引しながら濾過して予備成型体(A1)を得る吸引濾過工程と、前記予備成型体(A1)を乾燥して乾燥した成型体(A2)を得る乾燥工程と、前記成型体(A2)の外表面を研削する研削工程とを含む請求項1記載の水処理フィルターの製造方法も含まれる。前記研削工程において、研削深度は粒状活性炭(a1)の中心粒子径に対して5~200倍程度であってもよい。前記研削工程において、成型体(A2)を回転させて研削してもよい。本発明の製造方法は、粒状活性炭(b1)及び粒状バインダー(b2)を混合して得た混合物を加熱成型して円筒状フィルター(B)を得る成型工程と円筒状フィルター(A)の中空部に円筒状フィルター(B)を挿入する挿入工程とをさらに含んでいてもよい。
 本発明では、中心粒子径が30~80μmである粒状活性炭及びフィブリル化された繊維状バインダーを含む円筒状フィルターの上流側である外表面の算術平均うねりが30μm以下、断面曲線の算術平均高さが35~45μmに調整されているため、水処理フィルターの寸法精度及び濾過性能を向上できる。特に、遊離残留塩素、揮発性有機化合物及び濁り成分の除去性能を有し、かつ円筒状ハウジングに対する寸法精度及び歩留まりも高い。さらに、前記円筒状フィルターの中空部に、中心粒子径が30~80μmである粒状活性炭及び粒状バインダーを含む第2の円筒状フィルターをさらに挿入すると、濾過性能だけでなく、強度も向上できる。
図1は、本発明の水処理フィルターの一例を示す概略斜視図である。 図2は、本発明の水処理フィルターを製造するための研削機の一例を示す概略斜視図である。
 [円筒状フィルター(A)]
 本発明の水処理フィルターは、中心粒子径が30~80μmである粒状活性炭(a1)及びフィブリル化された繊維状バインダー(a2)を含む円筒状フィルター(A)を備えており、この円筒状フィルター(A)は、外表面が濾過の上流側となり、中空部内の内表面が濾過の下流側となる。本発明では、この円筒状フィルター(A)の外表面は、圧縮処理(転動処理)されておらず、研削により得られるため、吸引スラリー法で得られた円筒状フィルター及びこのフィルターの外表面を圧縮処理したフィルターとは異なる所定の表面特性を有している。そのため、寸法精度に優れ、画一的なハウジングに高い歩留まりで充填(収容)できるとともに、濁り成分の除去性能などの濾過性能を向上できる。
 (表面特性)
 具体的には、円筒状フィルター(A)の外表面の算術平均うねりWaが30μm以下(特に25μm以下)であり、例えば、1~30μm、好ましくは5~25μm、さらに好ましくは10~23μm(特に15~20μm)程度である。算術平均うねりが30μmを超えると、寸法精度が低下するため、水処理フィルターとしてハウジングに装着(充填)するのが困難となり、歩留まりが低下する。なお、ハウジングへの装着性を考慮して、ハウジングのサイズよりも予め小さいサイズで製造すると、濾過性能などが低下する。
 さらに、円筒状フィルター(A)の外表面の断面曲線の算術平均高さPaは35~45μmであり、好ましくは36~44μm(例えば、36~42μm)、さらに好ましくは37~40μm(特に37~39μm)程度である。算術平均高さが35μm未満であると、粒状活性炭の間隙が狭くなるためか、濁り成分が詰まり易くなる。一方、算術平均高さが45μmを超えると、粒状活性炭の間隙が広くなりすぎるため、濁り成分の除去性能が低下する。
 円筒状フィルター(A)は、外表面を研削するため、厚み方向での構造や充填密度の均一性が高く、前記外表面の表面構造と内表面の表面構造との均一性が高い。
 内表面の算術平均うねりも、外表面と同一の範囲から選択でき、例えば、1~30μm、好ましくは5~25μm、さらに好ましくは10~23μm(特に15~20μm)程度である。内表面の算術平均うねりは、外表面の算術平均うねりに対して、例えば、0.5~2倍、好ましくは0.8~1.8倍、さらに好ましくは1~1.6倍程度であってもよい。
 内表面の算術平均高さも、外表面と同一の範囲から選択でき、例えば、35~45μm、好ましくは36~44μm(例えば、36~42μm)、さらに好ましくは37~40μm(特に37~39μm)程度である。内表面の算術平均高さは、外表面の算術平均高さに対して、例えば、0.5~1.5倍、好ましくは0.6~1.4倍、さらに好ましくは0.7~1.3倍(特に0.8~1.2倍)程度であってもよい。
 なお、本明細書では、算術平均うねり及び算術平均高さについては、JIS B0601に準拠して、非接触式の表面粗さ測定機を用いて測定できる。非接触式の表面粗さ測定機を用いた理由は、フィルター表面の硬度が小さいため、接触式の測定機器ではスタイラスによって表面が損傷し、正確な測定が困難であるためである。また、非接触式表面粗さ測定機の顕微鏡の倍率は5倍で測定できる。倍率が大きすぎると、評価長さと粒状活性炭の粒径とが近似するため、粒状活性炭の高さを、表面高さとして測定し易く、倍率が小さすぎると、評価装置の下限に近くなり、バラツキが多く、精度が低下するためである。さらに、カットオフ波長は、80μmで測定できる。カットオフ波長を設定しないと、うねりと粗さとの区別が困難となり、うねりの測定精度が低下するためである。具体的には、算術平均うねり及び高さは、後述する実施例に記載の方法で測定できる。
 (粒状活性炭(a1))
 本発明の水処理フィルターには、所定の中心粒子径に調整された粒状活性炭が使用される。粒状活性炭(a1)の中心粒子径は30~80μmであり、好ましくは30~60μm、さらに好ましくは35~55μm(特に40~50μm)程度である。中心粒子径が30μm未満であると、濁り成分により容易に目詰まりを起こす。中心粒子径が60μmを超えると、濁り成分の除去が低下する。
 本明細書では、中心粒子径とは、レーザー回折・散乱法により測定した値であり、体積粒径分布の大きい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(D50)を意味する。レーザー回折・散乱法による測定は、例えば、湿式粒度分布測定装置(日機装(株)製「マイクロトラックMT3300」)などにより測定できる。
 粒状活性炭(a1)は、炭素質材料を炭化及び/又は賦活することによって得られる。炭化を必要とする場合は、通常、酸素又は空気を遮断して、例えば、400~800℃、好ましくは500~800℃、さらに好ましくは550~750℃程度で行うことができる。賦活法としては、ガス賦活法、薬品賦活法のいずれの賦活法も採用でき、ガス賦活法と薬品賦活法とを組み合わせてもよいが、特に、浄水用として使用する場合、不純物の残留の少ないガス賦活法が好ましい。ガス賦活法は炭化された炭素質材料を、通常、例えば、700~1100℃、好ましくは800~980℃、さらに好ましくは850~950℃程度で、賦活ガス(例えば、水蒸気、二酸化炭素ガスなど)と反応させることにより行うことができる。安全性及び反応性を考慮すると水蒸気を10~40容量%含有する水蒸気含有ガスが好ましい。賦活時間及び昇温速度は特に限定されず、選択する炭素質材料の種類、形状、サイズにより適宜選択できる。
 炭素質材料としては、特に限定されないが、例えば植物系炭素質材料(例えば、木材、鉋屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生成物、リグニン、廃糖蜜などの植物由来の材料)、鉱物系炭素質材料(例えば、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物由来の材料)、合成樹脂系炭素質材料(例えば、フェノール樹脂、ポリ塩化ビニリデン、アクリル樹脂などの合成樹脂由来の材料)、天然繊維系炭素質材料(例えば、セルロースなどの天然繊維、レーヨンなどの再生繊維などの天然繊維由来の材料)などが挙げられる。これらの炭素質材料は、単独でまたは2種類以上組み合わせて使用できる。これらの炭素質材料のうち、JIS S3201(2010)で規定される揮発性有機化合物の吸着性能に関与するミクロ孔が発達しやすい点から、ヤシ殻やフェノール樹脂が好ましい。
 賦活後の活性炭は、特にヤシ殻などの植物系炭素質材料や鉱物系炭素質材料を用いた場合、灰分や薬剤を除去するために洗浄してもよい。洗浄には鉱酸や水が用いられ、鉱酸としては洗浄効率の高い塩酸が好ましい。
 粒状活性炭(a1)は、窒素吸着法により算出されるBET比表面積が600~2000m/g程度の範囲から選択でき、例えば800~1800m/g、好ましくは900~1500m/g、さらに好ましくは1000~1300m/g程度である。比表面積が大きすぎると、揮発性有機化合物が吸着し難くなり、小さすぎると、揮発性有機化合物やCAT、2-MIBの除去性能が低下する。
 (繊維状バインダー(a2))
 フィブリル化された繊維状バインダー(a2)としては、高圧ホモジナイザーや高速離解機などを用いてフィブリル化させることによって、粒状活性炭を絡めて賦形できるパルプ状のバインダー繊維であれば、特に限定されず、合成品、天然品を問わず幅広く使用可能である。
 フィブリル化繊維状バインダー(a2)を形成する繊維の具体例としては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ポリアミド繊維、アラミド繊維などが挙げられる。これらのうち、フィブリル化し易く、活性炭を拘束する効果が高い点から、アクリル繊維、セルロース繊維が好ましい。市販品としては、例えば、日本エクスラン(株)製のホモアクリルパルプである「Bi-PUL」などが入手できる。
 フィブリル化繊維状バインダー(a2)の平均繊維径は、例えば0.1~50μm、好ましくは1~20μm程度である。平均繊維長は、例えば0.5~4mm、好ましくは1~2mm程度である。
 フィブリル化繊維状バインダー(a2)の割合は、粒状活性炭(a1)100質量部に対して、例えば、1~10質量部、好ましくは2~8質量部、さらに好ましくは3~7質量部程度である。
 円筒状フィルター(A)の厚み(円筒状フィルターの半径と中空部の半径との差)は5mm以上であればよく、浄水器のサイズなどに応じて、例えば、5~50mm、好ましくは5~40mm、さらに好ましくは5~30mm程度であってもよい。厚みが薄すぎると、フィルター特性が低下する上に、外表面と内部との均一性が高くなるため、研削による向上効果が小さくなる。
 円筒状フィルター(A)の中空部(内径部)は、フィルターの軸芯に沿って円柱状に形成されており、中空部の直径は、例えば、5~50mm、好ましくは8~30mm、さらに好ましくは10~25mm程度である。
 円筒状フィルター(A)の見掛け密度は、例えば、0.1~1g/cm、好ましくは0.2~0.8g/cm、さらに好ましくは0.3~0.5g/cm程度である。
 [円筒状フィルター(B)]
 本発明の水処理フィルターは、図1に示すように、円筒状フィルター(A)1と、円筒状フィルター(A)の中空部(内径部)に挿入された円筒状フィルター(B)2とを備えた水処理フィルターであってもよい。円筒状フィルター(B)は、円筒状フィルター(A)の強度を向上させ、補強材としての機能を有するとともに、揮発性有機化合物及び濁り成分の除去性能も併せ持つ。
 円筒状フィルター(B)は、中心粒子径が30~80μmである粒状活性炭(b1)及び粒状バインダー(b2)を含み、粒状活性炭としては、円筒状フィルム(A)の項で例示された粒状活性炭(a1)を利用でき、通常、粒状活性炭(a1)と同一の粒状活性炭が使用される。
 粒状バインダー(b2)としては、熱可塑性樹脂、熱硬化性樹脂のいずれで形成されていてもよく、例えば、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-(メタ)アクリル酸共重合体など)、スチレン系樹脂(ポリスチレンなど)、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂などで形成されたバインダーが例示できる。これらの粒状バインダーは、単独で又は二種以上組み合わせて使用できる。
 これらの粒状バインダーのうち、成型性などの点から、熱可塑性樹脂が汎用され、結着性、耐熱性などの観点から、ポリエチレンで形成されたバインダーが特に好ましい。
 粒状バインダー(b2)の平均粒子径は、強度や成形性に優れる点から、例えば0.1~200μm、好ましくは1.0~100μm、さらに好ましくは5~30μm程度である。
 粒状バインダー(b2)の割合は、通水抵抗、成形性などのバランスを考慮すると、粒状活性炭(b1)100質量部に対して、例えば、7~35質量部、好ましくは8~30質量部、さらに好ましくは10~25質量部程度であってもよい。
 円筒状フィルター(B)の外径は、円筒状フィルター(A)の中空部に挿入可能な径であればよいが、濾過特性などの点から、前記中空部の外径と略同一の径が好ましい。
 円筒状フィルター(B)の厚みは、例えば、1~10mm、好ましくは1.2~8mm、さらに好ましくは1.5~5mm程度である。
 円筒状フィルター(A)と円筒状フィルター(B)との密度比は、円筒状フィルター(A)/円筒状フィルター(B)=0.7/1~1.5/1程度であり、好ましくは0.75/1~1.4/1、さらに好ましくは0.8/1~1.3/1(特に0.8/1~1.2/1)程度である。前記密度比が小さすぎると、円筒状フィルター(B)の密度が高くなりすぎるため、濁り成分の除去性能が低下し易い。一方、密度比が大きすぎると、円筒状フィルター(B)の強度が低下し易い。
 円筒状フィルター(A)と円筒状フィルター(B)の体積比は、円筒状フィルター(A)/円筒状フィルター(B)=3/1~20/1程度であり、好ましくは4/1~18/1、さらに好ましくは8/1~17/1程度である。前記体積比が小さすぎると、円筒状フィルター(B)の割合が高すぎるため、揮発性有機化合物などの有害物質の除去性能が低下する。一方、体積比が大きすぎると、強度や成形性が低下し易い。
 [水処理フィルター]
 本発明の水処理フィルターは、円筒状フィルター(A)単独で使用してもよいが、強度を補強するための補強材と組み合わせてもよい。補強材としては、円筒状フィルター(A)の中空部に、ネトロンパイプやセラミックフィルターなどの補強材を挿入してもよいが、水処理フィルター内の活性炭量の増加により濾過性能も向上できる点から、円筒状フィルター(B)との組み合わせが特に好ましい。
 本発明の水処理フィルターは、必要に応じて円筒状フィルターの筒頂部にキャップを装着したり、外表面及び/又は内表面に不織布を装着してもよい。また、慣用の不織布フィルター、セラミック濾過材などと組合せてもよい。さらに、本発明の水処理フィルターは、慣用の添加剤、例えば、各種吸着剤(鉛吸着剤など)やミネラル添加剤などを含んでいてもよい。添加剤の割合は、粒状活性炭100質量部に対して、例えば、1~20質量部、好ましくは3~15質量部、さらに好ましくは5~10質量部程度である。
 本発明の水処理フィルターは、浄水の濾過特性に優れており、JIS S3201(2010)に準拠して測定される遊離残留塩素、揮発性有機化合物(トリハロメタンなど)、CAT(2-クロロ-4,6-ビスエチルアミノ-1,3,5-トリアジン)、2-MIB(2-メチルイソボルネオール)の除去性能に優れるとともに、JIS S3201(2010)に準拠して測定される濁り成分の除去性能も有している。
 [円筒状フィルター(A)の製造方法]
 円筒状フィルター(A)は、粒状活性炭(a1)及び繊維状バインダー(a2)を混合して得た混合物を水中に分散させスラリーを調製するスラリー調製工程と、前記スラリーを吸引しながら濾過して予備成型体(A1)を得る吸引濾過工程と、前記予備成型体(A1)を乾燥して乾燥した成型体(A2)を得る乾燥工程と、前記成型体(A2)の外表面を研削する研削工程とを含む製造方法により得られる。
 (スラリー調製工程)
 前記スラリー調製工程において、粒状活性炭(a1)及び繊維状バインダー(a2)を、固形分濃度が0.1~10質量%(特に1~5質量%)になるように、水に分散させたスラリーを調製する。前記スラリーの固形分濃度が高すぎると、分散が不均一になり易く、成型体に斑が生じ易い。一方、固形分濃度が低すぎると、成型時間が長くなり生産性が低下するだけではなく、成型体の密度が高くなり、濁り除去性能が低下し易い。
 (吸引濾過工程)
 吸引濾過工程では、前記スラリーに多数の穴を有する成型用の型枠を入れて、前記型枠の内側から吸引しながら濾過することにより成型する。成型用の型枠としては、例えば、慣用の型枠を利用でき、例えば、特許第3516811号公報の図1に記載の型枠などを使用できる。吸引方法としても、慣用の方法、例えば、吸引ポンプなどを用いて吸引する方法などを利用できる。
 (乾燥工程)
 乾燥工程では、吸引濾過工程で得られた予備成型体(A1)を型枠から取り外し、乾燥機などで乾燥することにより成型体(A2)を得ることができる。
 乾燥温度は、例えば、100~150℃(特に110~130℃)程度であり、乾燥時間は、例えば、4~24時間(特に8~16時間)程度である。乾燥温度が高すぎると、フィブリル化繊維状バインダーが変質したり溶融して濾過性能が低下したり成型体の強度が低下し易い。乾燥温度が低すぎると、乾燥時間が長時間になったり、乾燥が不十分になり易い。
 (研削工程)
 研削工程では、乾燥した成型体(A2)の外表面を研削(又は研磨)できれば、特に限定されず、慣用の研削方法を利用できるが、研削の均一性の点から、成型体(A2)自体を回転させて研削する方法が好ましい。
 図2は、成型体(A2)自体を回転させて研削するための研削機の一例である。この研削機11は、回転軸12に設置され、成型体20を研削するための円盤状砥石13(砥石の粒度90~125μm)と、成型体20を固定し、かつ回転させるための回転軸17と、操作盤19とを備えている。前記円盤状砥石13は、モーター14によって回転可能であるとともに、位置が固定されたエアーシリンダー15によって成型体20に対して接触できるように相対的に進退動可能であり、かつ位置が固定されたエアーシリンダー16によって成型体20の長手方向又は軸方向に沿って回転軸12と共に移動可能である。そのため、円盤状砥石13は、成型体20の外表面に接触し、成型体の外表面を研削できるとともに、成型体の外表面を長さ方向に移動することにより、長さ方向で均一に研削できる。一方、回転軸17も、モーター18によって前記円盤状砥石とは逆方向に回転可能である。この研削機では、成型体だけでなく、円盤状砥石を回転させることにより、研削滓の均一性のために、発生する研削滓を除去する必要がなく、生産性を向上できる。
 具体的には、回転軸12に設置された直径305mmφ、厚み19mmの円盤状の砥石13に対して平行に設置された回転軸15に成型体20を装着し、研削後に所望の外径(研削深度)と位置に進退動させて固定する。研削深度(研削する厚み)は、粒状活性炭(a1)の中心粒子径に対して、例えば、5~200倍、好ましくは10~100倍、さらに好ましくは15~50倍程度である。研削深度が小さすぎると、研削の効果が得られず、大きすぎると、生産性が低下する。本発明では、研削深度を考慮して、ハウジングのサイズに応じて、ハウジングのサイズよりも所定の厚みが大きい成型体(A2)を製造することにより生産性を向上できる。さらに、研削による研削滓の発生も抑制できる上に、発生した研削滓は再利用してもよい。
 円盤状砥石の周速度は、例えば、10~35m/s、好ましくは15~32m/s、さらに好ましくは18~30m/s程度である。また、円盤状砥石を回転するための回転軸の回転速度は、例えば、800~2200rpm、好ましくは1000~2000rpm、さらに好ましくは1200~1800rpm程度である。一方、成型体を回転させるための回転軸の回転速度は、例えば、200~500rpm、好ましくは300~450rpm程度であってもよい。周速度(回転速度)が小さすぎると、研削するときに成型体が破砕し易い。一方、周速度が大きすぎると、遠心力が高すぎるため、成型体が変形したり、破砕し易い。
 円盤状砥石を成型体の長手方向に沿って移動させる移動速度は、例えば、10~150mm/秒、好ましくは20~120mm/秒、さらに好ましくは30~100mm/秒程度であってもよい。移動速度が低すぎると、生産性が低下する。一方、移動速度が大きすぎると、研削面がうねったりして、研削の精度が低下する。
 砥石としては、慣用の砥石を利用でき、例えば、アルミナ質系砥石、炭化ケイ素質系砥石、アルミナ質系砥石と炭化ケイ素質系砥石との組み合わせなどが挙げられる。砥粒(砥石の粒度)の大きさは、例えば、30~600μm、好ましくは40~300μm、さらに好ましくは45~180μm程度である。砥粒が粗すぎると、研削表面から粒状活性炭が脱落し易くなる。一方、細かすぎると、研削に時間がかかり、生産性が低下し易い。
 砥石と成型体(A2)とは、近接及び離反する方向に、相対的に進退動可能に形成されていればよく、砥石及び成型体の少なくとも一方が進退動可能に形成されていてもよい。
 砥石と成型体(A2)とは、互いに平行軸に取り付けられていればよく、砥石及び成型体の少なくとも一方が軸方向に移動可能(相対的に移動可能)に形成されていてもよい。
 研削工程は、前記研削機を用いた方法に限定されず、例えば、回転軸に固定した成型体に対して、固定した平板状の砥石で研削してもよい。この方法では、発生する研削滓が研削面に堆積し易いため、エアブローしながら研削するのが効果的である。
 [円筒状フィルター(B)の製造方法]
 円筒状フィルター(B)は、粒状活性炭(b1)及び粒状バインダー(b2)を混合して得た混合物を加熱成型して円筒状フィルター(B)を得る成型工程を含む製造方法により得られる。
 前記成型工程では、乾式成形を用いて円筒状フィルター(B)を製造するのが好ましい。詳細には、例えば、ヘンシェルミキサーやプラネタリーミキサー、V型ブレンダーなどのミキサーを用いて、粒状活性炭(b1)と粒状バインダー(b2)とを所望の割合で攪拌混合する混合工程、得られた混合物を金型に充填し、粒状バインダーの融点以上に金型を加熱することにより粒状バインダーを溶融又は軟化させた後に、冷却し固化して成形工程を含む射出成型法などを利用できる。
 さらに、得られた円筒状フィルター(B)は、円筒状フィルター(A)の中空部に挿入される挿入工程を経て、本発明の水処理フィルターが得られる。
 以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。実施例における各物性値は、以下に示す方法により測定した。
 [粒状活性炭の中心粒子径]
 湿式粒度分布測定装置(日機装(株)製「マイクロトラックMT3000」)を用いて、レーザー回折・散乱法により中心粒子径(D50)を測定した。
 [見掛け密度(g/cm)]
 見掛け密度(g/cm)は、得られた円筒状フィルターを120℃で2時間乾燥した後、測定した重量(g)及び体積(cm)に基づいて求めた。
 [濁り除去性能]
 濁り成分の除去性能については、JIS S3201(2010)に準拠して測定した。但し、初期の通液量を3リットル/分に設定し、設定後は初期通気時の動水圧となるように通液量を調整して試験した。
 [遊離残留塩素除去性能]
 遊離残留塩素の除去性能については、JIS S3201(2010)に準拠して測定した。但し、通液量を3リットル/分に設定して測定した。
 [総THM除去性能]
 総THM(トリハロメタン)の除去性能については、JIS S3201(2010)に準拠して測定した。但し、通液量を3リットル/分に設定して測定した。
 [初期通液抵抗]
 成型体にフィルターや不織布を巻いていない状態で、3リットル/分の通液量で通液した場合の通液初期の通液抵抗を測定した。
 [表面特性]
 非接触表面粗さ測定機(オリンパス製(株)製「LEXT OLS4000」)を用いて、算術平均うねりWa及び断面曲線の算術平均高さPaを測定した。測定条件を下記に示す。なお、測定は、任意の3箇所(長さ方向に3等分した領域の各々の略中央部)で測定し、平均値を求めた。なお、実施例1の内表面の測定では、内表面に積層されている不織布を慎重に剥離した後に測定した。
  評価長さ:2590μm
  カットオフ波長(λc):80.0μm
  フィルター:ガウシアンフィルター
  顕微鏡倍率:5倍。
 [圧壊強度]
 引張・圧縮試験機((株)オリエンテック製「テンシロンRTC-1210A」)を用いて、円筒状フィルターの長手方向に速度2mm/分で圧力を掛けて圧壊強度を測定した。
 [実施例に用いた原料]
 活性炭小粒子:クラレケミカル(株)製「PGW-20MD」、ヤシ殻原料、中心粒子径47.9μm、ベンゼン吸着量=33%
 活性炭大粒子:クラレケミカル(株)製「PGW-100MD」、ヤシ殻原料、中心粒子径103.7μm、ベンゼン吸着量=33%
 チタノシリケート系鉛吸着剤:BASF社製「ATS」、平均粒子径20μm
 繊維状バインダー:日本エクスラン工業(株)製「フィブリル化アクリルパルプBi-PUL/F」
 粒状バインダー:高密度ポリエチレン粉末、三井化学(株)製「ミペロンMP-200」
 円筒状不織布:シンワ(株)製「9540F」を円筒状に加工した不織布
 スパンボンド不織布:ユニチカ(株)製「T0703WDO」。
 (比較例1)
 活性炭小粒子1.104kg、チタノシリケート系鉛吸着剤0.096kg、繊維状バインダー0.06kg(乾燥重量換算)を投入し、水道水を追加して、スラリー量を20リットルとした。
 特許第3516811号公報の図1に記載された成型用型枠(多数の吸引用小孔を設けた管状の型枠)で、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径の40mmφまで吸引のみ実施し、成型した。成型体を金型から外し、乾燥後、切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体(以下、水に分散されたスラリーを吸引して得られた成型体を湿式成型体と称する)を作製した。成型体の重量は24.51gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。
 (比較例2)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを吸引後、表面を金型外径まで加圧回転(転動)成型し、乾燥後、切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体を作製した。成型体の重量は28.52gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。比較例1に対し、濁りろ過能力は0.51倍であった。
 (比較例3)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径15mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを吸引後、表面を金型外径まで加圧回転成型し、乾燥後、切断して、外径40mmφ、内径15mmφ、高さ54mmの湿式成型体を作製した。成型体の重量は27.12gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。比較例1に対し、濁りろ過能力は0.60倍であった。
 (比較例4)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径20mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを吸引後、表面を金型外径まで加圧回転成型し、乾燥後、切断して、外径40mmφ、内径20mmφ、高さ54mmの湿式成型体を作製した。成型体の重量は23.04gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。比較例1に対し、濁りろ過能力は0.51倍であった。
 (実施例1)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。得られた成型体を、図2に示す自動研削機に装着し、成型体回転数300回転/分、砥石回転数1200回転/分、砥石移動速度300mm/10秒(3cm/秒)で、成型体の外表面を研削し、外径40mmφ、内径12mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体を作製した。成型体の重量は24.93gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。比較例1と比較して研削加工の効果により濁りろ過能力が1.2倍以上に、比較例2と比較して2.3倍以上に向上した。
 (実施例2)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径15mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。実施例1と同様に研削機で成型体の外表面を研削し、外径40mmφ、内径15mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径15mmφ、高さ54mmの湿式成型体を作製した。成型体の重量は23.80gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。比較例3と比較して研削加工の効果により濁りろ過能力が1.8倍以上に向上した。
 (実施例3)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径20mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。実施例1と同様に研削機で成型体の外表面を研削し、外径40mmφ、内径20mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径20mmφ、高さ54mmの湿式成型体を作製した。成型体の重量は20.09gであった。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。水処理フィルターの評価結果を表1及び表2に示す。比較例4と比較して研削加工の効果により濁りろ過能力が1.9倍以上に向上した。
 (実施例4)
 活性炭小粒子6.8kgに対し、粒状バインダー1.2kgをミキサー(宝工機(株)製「マイクロスピードミキサーMS-25型」)に投入し、2分間攪拌した。得られた混合物を、片側に蓋をした内径15mmφ、中芯径12mmφ、高さ120mmの筒状ステンレス製金型に少しずつ木槌で振動を与えながら充填し、開放側に蓋をして内容物を固定する。金型に充填された混合物を、金型ごと160℃の乾燥機に投入し、120分間加熱した後、50℃以下まで放冷する。蓋を外して、成型体を壊さないよう金型から成型体を抜き出し、得られた成型体を切断し、外径15mmφ、内径12mmφ、高さ54mmの乾式成型体を作製した(以下、水を使用せずに成型して得られた成型体を乾式成型体と称する)。乾式成型体の重量は1.28gであった。
 実施例2と同様の方法で得られた湿式成型体の内径部に、得られた乾式成型体を挿入し、外径40mmφ、内径12mmφ、高さ54mmの複合成型体を作製した。湿式成型体の重量は23.81gであった。
 水処理フィルターの評価結果を表1及び表2に示す。比較例1と比較して研削加工の効果により濁りろ過能力が1.3倍以上、比較例2と比較して2.6倍以上に向上した。
 (実施例5)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径18mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。実施例1と同様に研削機で成型体の外表面を研削し、外径40mmφ、内径18mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径18mmφ、高さ54mmの湿式成型体を作製した。湿式成型体の重量は21.64gであった。この成型体外周部に、スパンボンド不織布を1重に巻きつけた。
 実施例4と同じ配合で同様に乾式成型体用混合物を作製した。得られた混合物を、片側に蓋をした内径18mmφ、中芯径12mmφ、高さ120mmの筒状ステンレス製金型を使用し、実施例4と同様の工程で得られた成型物を切断し、外径18mmφ、内径12mmφ、高さ54mmの乾式成型体を作製した。乾式成型体の重量は3.61gであった。
 湿式成型体の内径部に、得られた乾式成型体を挿入し、内径12mmφ、外径40mmφ、高さ54mmの複合成型体を作製した。水処理フィルターの評価結果を表1及び表2に示す。比較例1と比較して1.2倍、比較例2と比較して研削加工の効果により濁りろ過能力が2.4倍以上に向上した。
 (実施例6)
 実施例4と同じ配合で同様に乾式成型体用混合物を作製した。得られた混合物を、片側に蓋をした内径20mmφ、中芯径12mmφ、高さ120mmの筒状ステンレス製金型を使用し、実施例4と同様の工程で得られた成型体を切断し、外径20mmφ、内径12mmφ、高さ54mmの乾式成型体を作製した。乾式成型体の重量は5.19gであった。
 実施例3と同様の方法で得られた湿式成型体の内径部に、得られた乾式成型体を挿入し、外径40mmφ、内径12mmφ、高さ54mmの複合成型体を作製した。湿式成型体の重量は20.52gであった。
 水処理フィルターの評価結果を表1及び表2に示す。比較例1と比較して研削加工の効果により濁りろ過能力が1.1倍以上、比較例2と比較して2.2倍以上に向上した。
 (実施例7)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径23mmφ、外径鍔間隔180mmの金型に円筒状製不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。実施例1と同様に研削機で成型体の外表面を研削し、外径40mmφ、内径23mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径18mmφ、高さ54mmの湿式成型体を作製した。湿式成型体の重量は17.69gであった。この成型体外周部に、スパンボンド不織布を1重に巻きつけた。
 実施例4と同じ配合で同様に乾式成型体用混合物を作製した。得られた混合物を、片側に蓋をした内径23mmφ、中芯径12mmφ、高さ120mmの筒状ステンレス製金型を使用し、実施例4と同様の工程で得られた成型体を切断し、外径23mmφ、内径12mmφ、高さ54mmの乾式成型体を作製した。乾式成型体の重量は8.46gであった。
 湿式成型体の内径部に、得られた乾式成型体を挿入し、外径40mmφ、内径12mmφ、高さ54mmの複合成型体を作製した。水処理フィルターの評価結果を表1及び表2に示す。比較例2と比較して研削加工の効果により濁りろ過能力が2倍以上に向上した。
 (実施例8)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。得られた成型体を、図2に記載の自動研削機に装着し、成型体回転数450回転/分、砥石回転数1800回転/分、砥石移動速度300mm/3.5秒(8.6cm/秒)で、成型体の外表面を研削し、外径40mmφ、内径12mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体を作製した。湿式成型体の重量は24.93gであった。この成型体外周部にスパンボンド不織布を1重に巻きつけ試験用フィルターとした。
 水処理フィルターの評価結果を表1及び表2に示す。比較例1と比較して研削加工の効果により濁りろ過能力が1.2倍以上、比較例2と比較して2.3倍以上に向上した。
 (実施例9)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。得られた成型体を、図2に記載の自動研削機に装着し、成型体の回転数300回転/分、砥石回転数1800回転/分、砥石移動速度300mm/5秒(6cm/秒)で、成型体の外表面を研削し、外径40mmφ、内径12mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体を作製した。湿式成型体の重量は24.93gであった。この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。
 水処理フィルターの評価結果を表1及び表2に示す。比較例1と比較して研削加工の効果により濁りろ過能力が1.2倍以上、比較例2と比較して2.3倍以上に向上した。
 (実施例10)
 スラリーの配合比を活性炭小粒子0.552kg、活性炭大粒子0.552kg、チタノシリケート系鉛吸着剤0.096kg、繊維状バインダー0.06kg(乾燥重量換算)とした以外は実施例1と同様に湿式成型体を作製した。この成型体を構成する活性炭の中心粒子径は66.3μmであり、成型体の重量は24.42gであった。この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。
 水処理フィルターの評価結果を表1及び表2に示す。他の実施例と比較して粒状活性炭の中心粒子径が大きいため、濁りろ過能力が低下した。
 (実施例11)
 活性炭大粒子4.0kgに対し、粒状バインダー4.0kgをミキサー(宝工機(株)製「マイクロスピードミキサーMS-25型」)に投入し、2分間攪拌した。得られた混合物を、片側に蓋をした内径18mmφ、中芯径12mmφ、高さ200mmの筒状ステンレス製金型に少しずつ木槌で振動を与えながら充填し、開放側に蓋をして内容物を固定する。金型に充填された混合物を、金型ごと160℃の乾燥機に投入し、120分間加熱した後、50℃以下まで放冷する。蓋を外して、成型体を壊さないよう金型から成型体を抜き出し、得られた成型体を切断し、外径18mmφ、内径12mmφ、高さ200mmの乾式成型体を作製した。乾式成型体の重量は13.67gであった。
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に、得られた乾式成型体を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。実施例1と同様に研削機で成型体の外表面を研削し、外径40mmφ、内径12mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径12mmφ、高さ54mmの一体成型体(乾式成型体と湿式成型体とが一体化した成型体)を作製した。この一体成型体の重量は25.85gであり、使用した乾式成型体の重量から、一体成型体中の湿式成型体の重量は21.72g、乾式成型体の重量は4.13gであった。この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。
 水処理フィルターの評価結果を表1及び表2に示す。研削加工により、濁りろ過能力が比較例1と比較して1.3倍、比較例2と比較して2.6倍向上した。
 (比較例5)
 比較例1と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。得られた成型体を、図2に記載の自動研削機に装着し、成型体回転数300回転/分、砥石回転数300回転/分、砥石移動速度300mm/10秒(3cm/秒)で、成型体の外表面を研削したところ、研削部位が崩壊し均一形状の成型体が得られなかった。
 (比較例6)
 活性炭大粒子1.104kg、チタノシリケート系鉛吸着剤0.096kg及び繊維状バインダー0.06kg(乾燥重量換算)を投入し、水道水を追加して、スラリー量を20リットルとした。
 特許第3516811号公報の図1に記載された成型用型枠(多数の吸引用小孔を設けた管状の型枠)で、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径の40mmφまで吸引のみ実施し、成型した。成型体を金型から外し、乾燥後、切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体を作製した。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。この時、成型体重量は、29.56gであった。
 水処理フィルターの揮発性有機化合物の除去能及び濁りろ過能力を表1及び表2に示す。実施例1と比較して使用した粒子径が大きいため、濁りろ過能力が発現されなかった。
 (比較例7)
 比較例6と同じ配合で同様にスラリーを調製し、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径より2mm程度大きくなるように吸引のみ実施し乾燥した。
 得られた成型体を、図2に示す自動研削機に装着し、成型体回転数300回転/分、砥石回転数1200回転/分、砥石移動速度300mm/10秒(3cm/秒)で、成型体の外表面を研削し、外径40mmφ、内径12mmφ、高さ180mmの成型体を作製した。更に切断して、外径40mmφ、内径12mmφ、高さ54mmの湿式成型体を作製した。
 この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用フィルターとした。この時、成型体重量は、25.54gであった。
 水処理フィルターの揮発性有機化合物の除去能および濁りろ過能力を表1及び表2に示す。実施例1と比較して使用した粒子径が大きいため、濁りろ過能力が発現されなかった。さらに、遊離残留塩素及び総THMのろ過能力も低下した。
 (比較例8)
 活性炭小粒子6.8kgに対し、粒状バインダー1.2kgをミキサー(宝工機(株)製「マイクロスピードミキサーMS-25型」)に投入し2分間攪拌した。得られた混合物を、片側に蓋をした内径40mmφ、中芯径12mmφ、高さ120mmの筒状ステンレス製金型に少しずつ木槌で振動を与えながら充填し、開放側に蓋をして内容物を固定する。金型に充填された混合物を、金型ごと160℃の乾燥機に投入し、120分間加熱した後、50℃以下まで放冷する。蓋を外して、成型体を壊さないよう金型から成型体を抜き出し、得られた成型体を切断し、外径40mmφ、内径12mmφ、高さ54mmの乾式成型体を作製した。比較例1に対して、濁り濾過能力が0.23倍、比較例2に対しても0.45倍と低い値であった。さらに、残留塩素試験では、通液量5580Lにおいて通液抵抗が高くなって試験の続行が不可能となり、試験を中止した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の水処理フィルターは、家庭用又は工業用などの浄水器のフィルターとして利用できる。
 1…円筒状フィルター(A)
 2…円筒状フィルター(B)
 11…研削機
 12,17…回転軸
 13…円盤状砥石
 14,18…モーター
 15,16…エアシリンダー
 19:操作盤
 20…成型体

Claims (10)

  1.  中心粒子径が30~80μmである粒状活性炭(a1)及びフィブリル化された繊維状バインダー(a2)を含む円筒状フィルター(A)を備えた水処理フィルターであって、前記円筒状フィルター(A)の上流側である外表面の算術平均うねりが30μm以下であり、かつ断面曲線の算術平均高さが35~45μmである水処理フィルター。
  2.  さらに円筒状フィルター(A)の中空部に挿入され、かつ中心粒子径が30~80μmである粒状活性炭(b1)及び粒状バインダー(b2)を含む円筒状フィルター(B)を備えた請求項1記載の水処理フィルター。
  3.  円筒状フィルター(A)と円筒状フィルター(B)との密度比が、円筒状フィルター(A)/円筒状フィルター(B)=0.7/1~1.5/1である請求項1又は2記載の水処理フィルター。
  4.  円筒状フィルター(A)と円筒状フィルター(B)の体積比が、円筒状フィルター(A)/円筒状フィルター(B)=3/1~20/1である請求項1~3のいずれかに記載の水処理フィルター。
  5.  円筒状フィルター(A)の下流側である内表面の算術平均高さが、外表面の算術平均高さに対して0.5~1.5倍である請求項1~4のいずれかに記載の水処理フィルター。
  6.  円筒状フィルター(A)の外表面が、圧縮処理されておらず、研削により得られる表面である請求項1~5のいずれかに記載の水処理フィルター。
  7.  粒状活性炭(a1)及び繊維状バインダー(a2)を混合して得た混合物を水中に分散させスラリーを調製するスラリー調製工程と、
     前記スラリーを吸引しながら濾過して予備成型体(A1)を得る吸引濾過工程と、
     前記予備成型体(A1)を乾燥して乾燥した成型体(A2)を得る乾燥工程と、
     前記成型体(A2)の外表面を研削する研削工程とを含む請求項1記載の水処理フィルターの製造方法。
  8.  研削工程において、研削深度が粒状活性炭(a1)の中心粒子径に対して5~200倍である請求項7記載の製造方法。
  9.  研削工程において、成型体(A2)を回転させて研削する請求項7又は8記載の製造方法。
  10.  粒状活性炭(b1)及び粒状バインダー(b2)を混合して得た混合物を加熱成型して円筒状フィルター(B)を得る成型工程と
     円筒状フィルター(A)の中空部に円筒状フィルター(B)を挿入する挿入工程とをさらに含む請求項7~9のいずれかに記載の製造方法。
PCT/JP2013/078192 2012-10-19 2013-10-17 水処理フィルター及びその製造方法 WO2014061740A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380067101.4A CN104854036B (zh) 2012-10-19 2013-10-17 水处理过滤器及其制造方法
JP2014502285A JP5513701B1 (ja) 2012-10-19 2013-10-17 水処理フィルター及びその製造方法
US14/435,924 US10023475B2 (en) 2012-10-19 2013-10-17 Water processing filter and manufacturing method therefor
KR1020157012075A KR102117733B1 (ko) 2012-10-19 2013-10-17 수처리 필터 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012231620 2012-10-19
JP2012-231620 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061740A1 true WO2014061740A1 (ja) 2014-04-24

Family

ID=50488300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078192 WO2014061740A1 (ja) 2012-10-19 2013-10-17 水処理フィルター及びその製造方法

Country Status (6)

Country Link
US (1) US10023475B2 (ja)
JP (1) JP5513701B1 (ja)
KR (1) KR102117733B1 (ja)
CN (1) CN104854036B (ja)
TW (1) TWI593454B (ja)
WO (1) WO2014061740A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2016140788A (ja) * 2015-01-30 2016-08-08 株式会社Lixil 浄水カートリッジ及び浄水器
JPWO2019131305A1 (ja) * 2017-12-28 2021-01-07 株式会社クラレ 吸着フィルター
JPWO2019188627A1 (ja) * 2018-03-28 2021-02-12 東レ株式会社 成形活性炭カートリッジおよびその製造方法
WO2023008437A1 (ja) * 2021-07-30 2023-02-02 株式会社クラレ 浄水フィルターおよび浄水器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144655B2 (ja) * 2014-09-12 2017-06-07 株式会社タカギ 成形吸着体およびそれを用いた浄水器
US20170129795A1 (en) * 2015-11-10 2017-05-11 Marmon Water (Singapore) Pte. Ltd. Reverse osmosis water purifier
KR20190011767A (ko) * 2016-05-25 2019-02-07 유니프랙스 아이 엘엘씨 필터 엘리먼트 및 그의 제조 방법
JP6957297B2 (ja) * 2017-09-29 2021-11-02 株式会社Lixil 造粒活性炭及びその製造方法
US10480691B2 (en) * 2018-02-08 2019-11-19 X.J. Electrics (Hubei) Co., Ltd. Water pipe
CN108773898B (zh) * 2018-05-25 2021-09-24 浙江中寰环保科技有限公司 固定式微生物滤墙
JP7039395B2 (ja) * 2018-06-08 2022-03-22 株式会社Lixil 造粒用繊維状バインダ
CN108854161B (zh) * 2018-07-06 2021-07-13 长沙大山新材料有限公司 一种天然有机吸油体及其制备方法
JP7183631B2 (ja) * 2018-08-30 2022-12-06 東レ株式会社 活性炭成形体の製造装置および製造方法
KR102102561B1 (ko) * 2019-09-04 2020-05-29 구경환 관형 여과막을 이용한 고효율 폐수 처리장치
CN112973285A (zh) * 2019-12-12 2021-06-18 核工业理化工程研究院 应急供水的复合滤芯及其制备方法、过滤器及其过滤方法
KR20210135816A (ko) 2020-05-06 2021-11-16 엘지전자 주식회사 정수기용 필터 및 이를 포함하는 정수기
CN111744272B (zh) * 2020-07-28 2022-07-01 杭州科百特科技有限公司 一种活性炭滤芯和其制备方法
CN111871030B (zh) * 2020-07-30 2021-10-08 宁波市天莱园林建设工程有限公司 一种市政污水处理设备
TWI746362B (zh) * 2021-01-29 2021-11-11 富利康科技股份有限公司 含浸式之過濾器成型製程方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024649A (ja) * 1998-07-10 2000-01-25 Tokyo Yogyo Co Ltd 浄水器
US20060207925A1 (en) * 2003-11-26 2006-09-21 Ehud Levy Water purification apparatus and system
JP2008062234A (ja) * 2007-10-19 2008-03-21 Tokyo Yogyo Co Ltd 電解浄水器
JP2010269225A (ja) * 2009-05-20 2010-12-02 Kuraray Chem Corp 陰イオン吸着剤成型体およびそれを用いた浄水器
WO2011016548A1 (ja) * 2009-08-06 2011-02-10 クラレケミカル株式会社 活性炭成型体およびそれを用いた浄水器
JP2011255310A (ja) * 2010-06-09 2011-12-22 Osaka Gas Chem Kk 成形吸着体および浄水材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516811B2 (ja) * 1996-06-24 2004-04-05 クラレケミカル株式会社 活性炭繊維成形吸着体
DE19844167A1 (de) 1998-09-25 2000-04-06 Ticona Gmbh Aktivkohlefilter
JP2000342917A (ja) * 1999-06-03 2000-12-12 Mitsubishi Rayon Co Ltd 濾過フィルタおよび浄水器
KR100782393B1 (ko) * 2000-10-26 2007-12-07 신에쓰 가가꾸 고교 가부시끼가이샤 광섬유모재 잉곳의 제조방법
JP4064309B2 (ja) 2003-06-26 2008-03-19 クラレケミカル株式会社 浄水器
US7229552B1 (en) 2003-11-26 2007-06-12 Selecto, Inc. Water purification apparatus and system
US8277654B2 (en) 2003-11-26 2012-10-02 Selecto, Inc. Water purification apparatus and system
JP2005169332A (ja) * 2003-12-15 2005-06-30 Toray Ind Inc 複合半透膜、液体分離装置及び水の製造方法
JP2008542001A (ja) * 2005-05-08 2008-11-27 スリーエム イノベーティブ プロパティーズ カンパニー フィルタカートリッジ及びその組立方法
JP4826207B2 (ja) * 2005-10-28 2011-11-30 日産自動車株式会社 排ガス浄化触媒及び排ガス浄化触媒の製造方法
WO2008036861A2 (en) * 2006-09-20 2008-03-27 Omnipure Filter Company, Inc. Solid profile filters comprising activated carbon fiber rods and methods of making and using same
JP4630887B2 (ja) * 2007-05-31 2011-02-09 住友ゴム工業株式会社 画像形成部材の再生方法
JP5609116B2 (ja) * 2008-02-21 2014-10-22 東洋紡株式会社 耐ファウリング性に優れる中空糸型限外ろ過膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024649A (ja) * 1998-07-10 2000-01-25 Tokyo Yogyo Co Ltd 浄水器
US20060207925A1 (en) * 2003-11-26 2006-09-21 Ehud Levy Water purification apparatus and system
JP2008062234A (ja) * 2007-10-19 2008-03-21 Tokyo Yogyo Co Ltd 電解浄水器
JP2010269225A (ja) * 2009-05-20 2010-12-02 Kuraray Chem Corp 陰イオン吸着剤成型体およびそれを用いた浄水器
WO2011016548A1 (ja) * 2009-08-06 2011-02-10 クラレケミカル株式会社 活性炭成型体およびそれを用いた浄水器
JP2011255310A (ja) * 2010-06-09 2011-12-22 Osaka Gas Chem Kk 成形吸着体および浄水材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2016140788A (ja) * 2015-01-30 2016-08-08 株式会社Lixil 浄水カートリッジ及び浄水器
JPWO2019131305A1 (ja) * 2017-12-28 2021-01-07 株式会社クラレ 吸着フィルター
JP7303118B2 (ja) 2017-12-28 2023-07-04 株式会社クラレ 吸着フィルター
JPWO2019188627A1 (ja) * 2018-03-28 2021-02-12 東レ株式会社 成形活性炭カートリッジおよびその製造方法
WO2023008437A1 (ja) * 2021-07-30 2023-02-02 株式会社クラレ 浄水フィルターおよび浄水器

Also Published As

Publication number Publication date
KR20150068977A (ko) 2015-06-22
CN104854036B (zh) 2016-09-21
TW201429541A (zh) 2014-08-01
CN104854036A (zh) 2015-08-19
KR102117733B1 (ko) 2020-06-01
TWI593454B (zh) 2017-08-01
JPWO2014061740A1 (ja) 2016-09-05
US20150266751A1 (en) 2015-09-24
JP5513701B1 (ja) 2014-06-04
US10023475B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP5513701B1 (ja) 水処理フィルター及びその製造方法
JP6596015B2 (ja) 吸着フィルター
JP6599888B2 (ja) 吸着フィルター
CN111511466B (zh) 吸附过滤器
JP7356458B2 (ja) 浄水用フィルター及びそれを用いた浄水器
CN113227461A (zh) 镀覆液净化用过滤器以及镀覆液净化用吸附剂
JP7478163B2 (ja) めっき液精製用吸着フィルター、並びに、それを用いためっき液精製装置及びめっき液精製方法
JP7180036B2 (ja) 吸着フィルター
WO2023008437A1 (ja) 浄水フィルターおよび浄水器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502285

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14435924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012075

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13847177

Country of ref document: EP

Kind code of ref document: A1