WO2016080241A1 - 吸着フィルター - Google Patents

吸着フィルター Download PDF

Info

Publication number
WO2016080241A1
WO2016080241A1 PCT/JP2015/081585 JP2015081585W WO2016080241A1 WO 2016080241 A1 WO2016080241 A1 WO 2016080241A1 JP 2015081585 W JP2015081585 W JP 2015081585W WO 2016080241 A1 WO2016080241 A1 WO 2016080241A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
adsorption
particle size
mass
adsorption filter
Prior art date
Application number
PCT/JP2015/081585
Other languages
English (en)
French (fr)
Inventor
寛枝 吉延
哲也 花本
Original Assignee
クラレケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56013786&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016080241(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by クラレケミカル株式会社 filed Critical クラレケミカル株式会社
Priority to JP2016560160A priority Critical patent/JP6599888B2/ja
Publication of WO2016080241A1 publication Critical patent/WO2016080241A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present invention relates to an adsorption filter containing activated carbon.
  • an adsorption molded body in which granular activated carbon is entangled with a fibrillated fibrous binder is used as a filter.
  • Patent Document 1 discloses a molded adsorbent obtained by molding a brazing material mainly composed of activated carbon with a fibrous binder, and the activated carbon is in a particulate form having a volume standard mode diameter of 20 ⁇ m to 100 ⁇ m.
  • a molded adsorbent that is activated carbon and in which the fibrous binder is mainly composed of a fiber material having a degree of water filling of 20 mL to 100 mL by fibrillation.
  • an adsorption filter made of powdered activated carbon and a binder that maintains an appropriate strength, suppresses an increase in pressure loss, has an excellent filtering ability, and has a low resistance.
  • An object of the present invention is to provide an adsorption filter that satisfies the above requirements in view of the above problems.
  • the adsorption filter according to one aspect of the present invention includes activated carbon and a fibrillated fibrous binder, and the activated carbon has a 0% particle diameter (D0) in a volume-based cumulative particle size distribution of 9 ⁇ m or more, and The 50% particle diameter (D50) in the cumulative particle size distribution on a volume basis is 30 to 110 ⁇ m, the fibril value of the fibrillated fibrous binder is 10 to 150 mL, and the fibrillated fiber with respect to 100 parts by mass of the activated carbon. 4 to 10 parts by mass of a binder is included.
  • an adsorption filter that has excellent water permeability and high adsorption performance, in particular, excellent filtration performance of free residual chlorine, agricultural chemicals, odor and VOC, and low resistance.
  • FIG. 1 shows an example of a grinding machine for rotating and grinding a molded body of an adsorption filter according to this embodiment.
  • FIG. 2 is a graph showing the particle size distribution of activated carbon samples in Examples and Comparative Examples.
  • the adsorption filter of this embodiment contains activated carbon and a fibrillated fibrous binder, and the activated carbon has a 0% particle size (D0) in a volume-based cumulative particle size distribution of 9 ⁇ m or more, and a volume-based cumulative particle size.
  • the 50% particle diameter (D50) in the distribution is 30 to 110 ⁇ m
  • the fibril value of the fibrillated fibrous binder is 10 to 150 mL
  • the fibrillated fibrous binder is 4 to 4 parts per 100 parts by mass of the activated carbon. It contains 10 parts by mass.
  • an adsorption filter having excellent water permeability and high adsorption performance, in particular, excellent filtration ability of free residual chlorine, agricultural chemicals, odor and VOC, and low resistance. Furthermore, the strength of the filter is improved, an increase in pressure loss is suppressed, and the productivity is excellent.
  • powdered activated carbon having a 0% particle size (D0) in a volume-based cumulative particle size distribution of 9 ⁇ m or more and a 50% particle size (D50) in a volume-based cumulative particle size distribution of 30 to 110 ⁇ m. Is used.
  • the D0 of the activated carbon is less than 9 ⁇ m, the strength of the molded body is lowered and the pressure loss may be increased.
  • fine powder may be mixed into the treated water.
  • D0 there is no upper limit in particular about D0, it is more preferable that it is 20 micrometers or less from a viewpoint that high adsorption performance can be expressed, without reducing contact efficiency.
  • D50 of the activated carbon is less than 30 ⁇ m, the moldability is inferior and the activated carbon molded body may not be made.
  • D50 exceeds 110 ⁇ m, there is a possibility that sufficient adsorption performance cannot be obtained due to a decrease in contact efficiency.
  • a more preferable range of D50 of the activated carbon is 35 to 100 ⁇ m, and further preferably 40 to 90 ⁇ m.
  • the numerical values of D0 and D50 are values measured by a laser diffraction / scattering method, and are measured, for example, by a wet particle size distribution measuring apparatus (Microtrac MT3300EX II) manufactured by Nikkiso Co., Ltd.
  • two or more kinds of different powdered activated carbons may be included. That is, the final mixture obtained by mixing two or more different powdered activated carbons can be used if the above D0 and D50 are satisfied.
  • the activated carbon used in the adsorption filter of the present embodiment is not particularly limited, and a commercially available one can be used.
  • the activated carbon can be obtained by carbonizing and / or activating a carbonaceous material. When carbonization is required, it can be carried out usually at a temperature of about 400 to 800 ° C., preferably about 500 to 800 ° C., more preferably about 550 to 750 ° C. while blocking oxygen or air.
  • the activation method any of the gas activation method and the chemical activation method can be adopted, and the gas activation method and the chemical activation method may be combined. However, particularly when used for water purification, there are few impurities remaining. A gas activation method is preferred.
  • a carbonized carbon material is usually used at, for example, 700 to 1100 ° C., preferably 800 to 980 ° C., more preferably about 850 to 950 ° C., and an activation gas (for example, water vapor, carbon dioxide gas, etc.) It can be performed by reacting with.
  • an activation gas for example, water vapor, carbon dioxide gas, etc.
  • a steam-containing gas containing 10 to 40% by volume of steam is preferable.
  • the activation time and the temperature increase rate are not particularly limited, and can be appropriately selected depending on the type, shape, and size of the carbonaceous material to be selected.
  • carbonaceous material for example, plant-type carbonaceous materials (For example, fruit shells, such as wood, sawdust, charcoal, a coconut shell, and a walnut shell, fruit seeds, pulp manufacture by-products, lignin, molasses etc.) Plant-derived materials), mineral carbonaceous materials (eg, peat, lignite, lignite, bituminous coal, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch, and other mineral-derived materials), synthetic resin systems Carbonaceous materials (for example, materials derived from synthetic resins such as phenolic resins, polyvinylidene chloride, acrylic resins), natural fiber based carbonaceous materials (for example, natural fibers such as cellulose, natural fibers such as regenerated fibers such as rayon) Material).
  • plant-type carbonaceous materials for example, fruit shells, such as wood, sawdust, charcoal, a coconut shell, and a walnut shell, fruit seeds, pulp manufacture by-products, lignin,
  • carbonaceous materials can be used alone or in combination of two or more.
  • coconut shells and phenol resins are preferable because micropores related to the adsorption performance of volatile organic compounds defined in JIS S 3201 (2010) are easily developed.
  • Activated activated carbon may be washed to remove ash and chemicals, especially when plant-based carbonaceous materials such as coconut shells or mineral-based carbonaceous materials are used. Mineral acid and water are used for washing, and hydrochloric acid with high washing efficiency is preferable as the mineral acid.
  • the powdered activated carbon of the present embodiment can be selected from the range where the BET specific surface area calculated by the nitrogen adsorption method is about 600 to 2000 m 2 / g, for example, 800 to 1800 m 2 / g, preferably 900 to 1500 m 2 / g, More preferably, it is about 1000 to 1300 m 2 / g. If the specific surface area is too large, the volatile organic compound is difficult to adsorb, and if it is too small, the removal performance of the volatile organic compound, CAT, and 2-MIB decreases.
  • the adsorption capacity of activated carbon depends on the application, but the benzene adsorption amount (saturated adsorption amount when aerated at a concentration of 1/10 of the benzene saturation concentration at 20 ° C.) is 25 to 60. It is preferable to be about mass%.
  • the benzene adsorption amount of the activated carbon is preferably about 25 to 40% by mass.
  • the benzene adsorption amount of activated carbon is preferably about 45 to 60% by mass.
  • the adsorption filter of the present embodiment can be used for various applications by adjusting the benzene adsorption amount of the activated carbon according to the application.
  • the powdered activated carbon satisfying the above range of D0 and D50 is obtained by, for example, pulverizing granular activated carbon with a pulverizer such as a ball mill or a roll mill, and cutting fine powder with a vibration sieve as necessary to obtain coarse particles. Thereafter, it can be prepared by performing wet classification or dry classification.
  • a pulverizer such as a ball mill or a roll mill
  • the wet classification method a general water tank technique using a phenomenon in which the sedimentation speed of particles in water depends on the particle size can be used. Specifically, for example, after dispersing activated carbon containing fine powder in water, using self-weight filtration, suction filtration, or a centrifugal separator, particles are moved by a large gravitational acceleration, and as a cake attached to the slurry state or rotor wall surface A collection method is available. Such classification can be further enhanced by repeating the classification not only once.
  • a centrifugal force is applied to the activated carbon particles, a drag force is applied to the particles, and a swirl flow of air without a rotating body inside the apparatus.
  • a semi-free vortex centrifuge is an example of a device that creates drag and exerts drag on particles.
  • This classification operation is repeated until the particle size distribution of the obtained activated carbon is confirmed and a predetermined D0 value is indicated.
  • This classification operation may be performed by repeating a single method, or different methods may be used in combination. In this embodiment, it is necessary to obtain activated carbon with a fine particle size, and it can be produced by any method, but wet classification has a slow sedimentation rate in water as the classified particles become finer, Since productivity decreases and a drying process is required, it is preferable to adopt a dry classification method and repeat the process until a predetermined value of D0 is indicated.
  • the adsorption filter of the present embodiment includes 4 to 10 parts by mass of a fibrillated fibrous binder with respect to 100 parts by mass of the activated carbon. If the amount of the fibrillated fibrous binder is less than 4 parts by mass, sufficient strength may not be obtained and the molded article may not be molded. Moreover, when the amount of the fibrillated fibrous binder exceeds 10 parts by mass, the adsorption performance may be deteriorated. More preferably, 4.5 to 6 parts by mass of the fibrillated fibrous binder is blended with 100 parts by mass of the activated carbon.
  • the fibrillated fibrous binder used in this embodiment is not particularly limited as long as it can be shaped by entanglement with powdered activated carbon by fibrillation, and is widely used regardless of whether it is a synthetic product or a natural product. Is possible.
  • a fibrillated fibrous binder include acrylic fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, and aramid fiber.
  • acrylic fiber, cellulose fiber, and the like are preferably used because they are easily fibrillated and have a high effect of restraining activated carbon.
  • These fibers may be used in combination of two or more, and particularly preferably, a mixture of acrylic fibers and cellulose fibers is used as the fibrillated fibrous binder. Thereby, it is thought that a molded object density and a molded object intensity
  • the water permeability of the fibrillated fibrous binder is about 10 to 150 mL in terms of CSF value.
  • the CSF value is a value measured according to JIS P8121 “Pulp Freeness Test Method” Canadian Standard Freeness Method. The CSF value can be adjusted by fibrillating the fibrous binder.
  • the CSF value of the fibrillated fibrous binder is less than 10 mL, water permeability cannot be obtained, the strength of the molded product is lowered, and the pressure loss is also increased.
  • the CSF value exceeds 150 mL, the powdered activated carbon cannot be sufficiently retained, the strength of the molded body is lowered, and the adsorption performance is inferior.
  • the water flow condition to the adsorption filter of this embodiment is not particularly limited, but is normally used at a space velocity (SV) of 1000 to 8000 / hr. In particular, it is suitable to be used at a space rapidity (SV) of 2000 to 6000 / hr. Since the adsorption filter of this embodiment uses activated carbon having an appropriate D50 from which fine powder is removed, an increase in pressure loss is suppressed even when used at a high space velocity (SV), and is excellent. It can have free residual chlorine filtration capacity and total trihalomethane filtration capacity.
  • the production of the adsorption filter of the present embodiment is performed by any method and is not particularly limited.
  • a slurry suction method is preferable in terms of efficient production.
  • a cylindrical filter includes a slurry preparation step in which powdered activated carbon and a fibrous binder are dispersed in water to prepare a slurry, and suction filtration to obtain a preform by filtering the slurry while sucking it. It is obtained by a manufacturing method including a step, a drying step for drying the preform and obtaining a dried molded body, and a grinding step for grinding the outer surface of the molded body.
  • the powdered activated carbon and the fibrillated fibrous binder are 4 to 10 parts by mass of the fibrillated fibrous binder with respect to 100 parts by mass of the activated carbon, and the solid content concentration is 0.1.
  • a slurry dispersed in water is prepared so as to be ⁇ 10% by mass (particularly 1 to 5% by mass).
  • the solid content concentration of the slurry is too high, the dispersion tends to be non-uniform, and spots are likely to occur on the molded body.
  • the solid content concentration is too low, not only the molding time is prolonged and the productivity is lowered, but also the density of the molded body is increased and clogging due to trapping of turbid components tends to occur.
  • suction filtration process molding is performed by putting a molding mold having a large number of holes in the slurry and filtering while sucking from the inside of the mold.
  • a conventional mold can be used.
  • the mold described in FIG. 1 of Japanese Patent No. 3516811 can be used.
  • a suction method a conventional method, for example, a suction method using a suction pump or the like can be used.
  • the preform in the drying step, can be obtained by removing the preform obtained in the suction filtration step from the mold and drying it with a dryer or the like.
  • the drying temperature is, for example, about 100 to 150 ° C. (particularly 110 to 130 ° C.), and the drying time is, for example, about 4 to 24 hours (particularly 8 to 16 hours). If the drying temperature is too high, the fibrillated fibrous binder may be altered or melted to reduce the filtration performance or the strength of the molded body. If the drying temperature is too low, the drying time tends to be long or drying tends to be insufficient.
  • grinding process there is no particular limitation as long as the outer surface of the dried molded body can be ground (or polished), and a conventional grinding method can be used. From the viewpoint of grinding uniformity, the molded body itself is rotated and ground. A method using a grinding machine is preferred.
  • FIG. 1 is an example of a grinding machine for rotating and grinding a molded body itself.
  • the grinding machine 11 is installed on a rotary shaft 12, a disc-shaped grindstone 13 for grinding the molded body 20 (grinding stone particle size 90 to 125 ⁇ m), and a rotary shaft 17 for fixing and rotating the molded body 20.
  • an operation panel 19 The disc-shaped grindstone 13 can be rotated by a motor 14 and can be relatively advanced and retracted so as to be able to contact the molded body 20 by an air cylinder 15 whose position is fixed, and the position is fixed.
  • the air cylinder 16 is movable along with the rotary shaft 12 along the longitudinal direction or the axial direction of the molded body 20.
  • the disc-shaped grindstone 13 contacts the outer surface of the molded body 20 and can grind the outer surface of the molded body, and also moves the outer surface of the molded body in the length direction to uniformly grind in the length direction. it can.
  • the rotating shaft 17 can also be rotated by the motor 18 in the direction opposite to the disk-shaped grindstone. In this grinding machine, by rotating not only the molded body but also the disc-shaped grindstone, it is not necessary to remove the generated grinding rod for the uniformity of the grinding rod, and the productivity can be improved.
  • the molded body 20 is mounted on a rotary shaft 15 installed in parallel to a disc-shaped grindstone 13 having a diameter of 305 mm ⁇ and a thickness of 19 mm installed on the rotary shaft 12, and a desired outer diameter (grinding is performed after grinding). Move it forward and backward to the depth and position.
  • the grinding depth thickness to be ground
  • the grinding depth is, for example, about 5 to 200 times, preferably about 10 to 100 times, and more preferably about 15 to 50 times the center particle diameter of the powdered activated carbon. If the grinding depth is too small, the effect of grinding cannot be obtained, and if it is too large, the productivity decreases.
  • productivity can be improved by manufacturing a molded body having a predetermined thickness larger than the size of the housing in accordance with the size of the housing in consideration of the grinding depth. Furthermore, the generation of grinding ridges due to grinding can be suppressed, and the generated grinding ridges may be reused.
  • the peripheral speed of the disc-shaped grindstone is, for example, about 10 to 35 m / s, preferably about 15 to 32 m / s, and more preferably about 18 to 30 m / s.
  • the rotational speed of the rotating shaft for rotating the disc-shaped grindstone is, for example, about 800 to 2200 rpm, preferably about 1000 to 2000 rpm, and more preferably about 1200 to 1800 rpm.
  • the rotational speed of the rotating shaft for rotating the molded body may be, for example, about 200 to 500 rpm, preferably about 300 to 450 rpm. If the peripheral speed (rotational speed) is too small, the molded body tends to be crushed when grinding. On the other hand, if the peripheral speed is too high, the centrifugal force is too high, so that the molded body is easily deformed or crushed.
  • the moving speed for moving the disc-shaped grindstone along the longitudinal direction of the molded body may be, for example, about 10 to 150 mm / second, preferably about 20 to 120 mm / second, and more preferably about 30 to 100 mm / second. If the moving speed is too low, productivity decreases. On the other hand, if the moving speed is too high, the grinding surface is wavy and the grinding accuracy is lowered.
  • a conventional grindstone can be used, and examples thereof include an alumina grindstone, a silicon carbide grindstone, and a combination of an alumina grindstone and a silicon carbide grindstone.
  • the size of the abrasive grains is, for example, about 30 to 600 ⁇ m, preferably 40 to 300 ⁇ m, and more preferably about 45 to 180 ⁇ m.
  • the abrasive grains are too rough, the granular activated carbon easily falls off from the ground surface. On the other hand, if it is too fine, it takes time to grind and the productivity tends to decrease.
  • the grindstone and the molded body need only be formed so as to be able to move forward and backward relatively in the approaching and separating directions, and at least one of the grindstone and the molded body may be formed so as to be able to move forward and backward.
  • the grindstone and the molded body need only be attached to parallel axes, and at least one of the grindstone and the molded body may be formed so as to be movable (relatively movable) in the axial direction.
  • a grinding process is not limited to the method using the said grinding machine, For example, you may grind with the fixed flat grindstone with respect to the molded object fixed to the rotating shaft. In this method, since the generated grinding iron easily accumulates on the grinding surface, it is effective to perform grinding while air blowing.
  • the adsorption filter of this embodiment is used as, for example, a water purification filter.
  • a water purification filter for example, after the adsorption filter of the present embodiment is produced by the above production method, it can be obtained by shaping and drying and then cutting it into a desired size and shape. Although it may compress on a shaping stand in order to adjust the shape of a filter, since the surface of an activated carbon molding may be consolidated when it compresses too much, it is good to keep it to the minimum. Further, if necessary, a cap may be attached to the tip portion or a nonwoven fabric may be attached to the surface.
  • the adsorption filter of this embodiment can be used as a cartridge for water purification by filling a housing.
  • the cartridge is loaded into a water purifier and used for water flow.
  • As the water flow method a total filtration method or a circulation filtration method for filtering the whole amount of raw water is adopted.
  • the cartridge loaded in the water purifier in this embodiment may be used by filling a housing with, for example, a water purification filter, but is further used in combination with a known non-woven filter, various adsorbents, mineral additives, ceramic filter media, etc. You can also
  • the adsorption filter according to one aspect of the present invention includes activated carbon and a fibrillated fibrous binder, and the activated carbon has a 0% particle diameter (D0) in a volume-based cumulative particle size distribution of 9 ⁇ m or more, and The 50% particle diameter (D50) in the cumulative particle size distribution on a volume basis is 30 to 110 ⁇ m, the fibril value of the fibrillated fibrous binder is 10 to 150 mL, and the fibrillated fiber with respect to 100 parts by mass of the activated carbon. 4 to 10 parts by mass of a binder is included.
  • the 50% particle size (D50) in the cumulative particle size distribution of the activated carbon is preferably 35 to 100 ⁇ m. Thereby, the effect mentioned above is acquired more reliably.
  • the activated carbon has a benzene adsorption amount of 25 to 60% by mass. Therefore, it is considered that an adsorption filter having better adsorption performance can be obtained.
  • a VOC adsorption filter according to another aspect of the present invention is characterized by using the above-mentioned adsorption filter in which the activated carbon has a benzene adsorption amount of 25 to 40% by mass.
  • a free residual chlorine, agricultural chemical, or odor removing filter according to still another aspect of the present invention is characterized by using the above-described adsorption filter in which the activated carbon has a benzene adsorption amount of 45 to 60% by mass.
  • sample solution preparation method Weigh out the amount of transmittance (TR) from 0.880 to 0.900 in a beaker, add 1.0 ml of the dispersion, stir with a spatula, add about 5 ml of ultrapure water and mix with the sample solution. did. The entire amount of the obtained sample liquid was poured into the apparatus and analyzed under the following conditions.
  • Example 1 the adsorption speed was measured 10 minutes after the start of water flow with a space velocity (SV) of 3000 / hr, that is, with a water flow rate of 3 liters / minute.
  • the space velocity (SV) is 2000 / hr, that is, a flow rate of 2 liters / minute
  • Example 12 the space velocity (SV) is 5000 / hr, that is, a flow rate of 5 liters / minute.
  • the water flow resistance 10 minutes after the start of water flow was measured.
  • about initial water flow resistance, 0.10 Mpa or less was made into the passing score.
  • Total trihalomethane filtration capacity The total trihalomethane filtration capacity was also measured in the same manner as the free residual chlorine (raw water total trihalomethane concentration 100 ⁇ g / L). About the total THM filtration capacity, 13 L / cc or more was made a passing grade.
  • coconut shell char carbonized at 400-600 ° C is steam-activated at 900-950 ° C, the activation time is adjusted to achieve the target benzene adsorption amount, and the resulting coconut shell activated carbon is washed with dilute hydrochloric acid and ion-exchanged water.
  • granular activated carbon A (10 ⁇ 32 mesh, benzene adsorption amount 30.5 wt%, specific surface area 1094 m 2 / g)
  • granular activated carbon B (10 ⁇ 32 mesh, benzene adsorption amount 53.0 wt%, specific surface area 1710 m) 2 / g).
  • Powdered activated carbon sample 1 coconut shell material ⁇ Powdered activated carbon sample 2: coconut shell material ⁇ Powdered activated carbon sample 3: Coconut shell material ⁇ Powdered activated carbon sample 4: coconut shell material ⁇ Powdered activated carbon sample 5: Coconut shell material ⁇ Powdered activated carbon sample 6: coconut shell material ⁇ Powdered activated carbon sample 7: coconut shell material ⁇ Powdered activated carbon sample 8: coconut shell material ⁇ Powdered activated carbon sample 9: Coconut shell material
  • each activated carbon particle is as shown in Table 1 below.
  • preparation method of each activated carbon is as follows:
  • the granular activated carbon A is activated with a ball mill so that the activated carbon sample 1 has a D50 value of 15 ⁇ m, the activated carbon sample 2 has a D50 value of 20 ⁇ m, the activated carbon sample 3 has a D50 value of 90 ⁇ m, and the activated carbon sample 4 has a D50 value of 100 ⁇ m.
  • the mixture was pulverized and fine powder was removed using a dry classifier to obtain a predetermined D0 value.
  • the activated carbon sample 5 is pulverized with a ball mill so that the activated carbon sample 5 has a D50 value of 120 ⁇ m, and the activated carbon sample 6 has a D50 value of 20 ⁇ m. Fine powder is removed using a dry classifier, and a predetermined D0 value is obtained. Got the value.
  • activated carbon samples 7-8 In the activated carbon sample 7, granular activated carbon A was pulverized with a ball mill so that the D50 value was 20 ⁇ m, and the fine powder was not removed. Moreover, the activated carbon sample 8 grind
  • Activated carbon sample 9 For the activated carbon sample 9, granular activated carbon A was pulverized with a ball mill so that the D50 value was 10 ⁇ m, and fine powder was removed using a dry classifier to obtain a predetermined D0 value.
  • Acrylic fibrous binder CSF value 92-120ml
  • Cellulose fibrous binder 1 CSF value of 30 ml or less
  • Cellulose fibrous binder 2 CSF value of 190 ml to 250 ml
  • the binder only the acrylic fibrous binder is used in Examples 1-2 and 5-10 and Comparative Examples 1-2 and 5, and the acrylic fibrous binder and the cellulose fibrous binder 1 are mixed in Example 3-4.
  • the prepared product was prepared so as to contain only cellulose fibrous binder 1 in Comparative Example 3 and only cellulose fibrous binder 2 in Comparative Example 4.
  • an acrylic fibrous binder was used in Examples 11 and 12 and Comparative Example 6.
  • a gold mold having an outer diameter of 40 mm ⁇ , a middle shaft diameter of 12 mm ⁇ , and an outer diameter of ⁇ spacing of 180 mm is formed using the molding mold (tubular mold provided with a large number of suction holes) described in FIG. 1 of Japanese Patent No. 3516811.
  • a cylindrical non-woven fabric was attached to the mold, and the slurry was molded only by suction until the outer diameter of the mold was 40 mm ⁇ , and dried.
  • the obtained molded body is mounted on the automatic grinding machine shown in FIG. 1, and the molded body rotation speed is 300 rotations / minute, the grinding wheel rotation speed is 1200 rotations / minute, and the grinding wheel moving speed is 300 mm / 10 seconds (3 cm / second).
  • the outer surface of the molded body was ground to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 180 mm. Thereafter, it was further cut to produce a molded body having an outer diameter of 40 mm ⁇ , an inner diameter of 12 mm ⁇ , and a height of 54 mm.
  • the volume of the molded body was 60.4 ml.
  • a spunbonded nonwoven fabric was wrapped around the outer periphery of the molded body in a single layer to form an adsorption filter for testing.
  • Table 1 shows the results of the above-described evaluation tests on this adsorption filter. Moreover, the graph which shows the particle size distribution of the main activated carbon sample in an Example and a comparative example is shown in FIG.
  • Comparative Example 3 using a binder having a small CSF value
  • Comparative Example 4 using a binder having a large CSF value
  • Comparative Example 5 having a small amount of binder
  • the present invention has wide industrial applicability in the technical field of adsorption filters used for removing harmful substances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明は、活性炭とフィブリル化繊維状バインダーとを含む吸着フィルターであって、前記活性炭は、体積基準の累計粒度分布における0%粒子径(D0)が9μm以上であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~110μmであり、前記フィブリル化繊維状バインダーのCSF値が10~150mLであり、前記活性炭100質量部に対して、前記フィブリル化繊維状バインダーを4~10質量部含む、吸着フィルターに関する。

Description

吸着フィルター
 本発明は、活性炭を含む吸着フィルターに関するものである。
 近年、水道水の水質に関する安全衛生上の関心が高まってきており、水道水中に含まれる遊離残留塩素、トリハロメタン類などのVOC(揮発性有機化合物)、農薬、黴臭などの有害物質を除去することが望まれている。
 特に、雑菌繁殖を防止するために水道水等に利用されている塩素は無毒な物質ではなく、残留塩素濃度の高い水道水で髪や肌を洗浄すると髪や肌の蛋白質を変性させて傷めてしまうおそれがある。また、水道水中に溶存している微量のトリハロメタンは、発ガン性物質であることが疑われている。近年の健康志向の高まりの中で、トリハロメタンを除去し得る浄水器の重要性はますます高まっている。
 従来、これらの有害物質を除去するため、フィブリル化繊維状バインダーに粒状の活性炭を絡ませた吸着成形体がフィルターとして用いられている。
 例えば、特許文献1には、活性炭を主成分とする瀘材を、繊維状バインダーにて成形してある成形吸着体であって、前記活性炭が、体積基準モード径が20μm以上100μm以下の微粒子状活性炭であり、前記繊維状バインダーが、フィブリル化により瀘水度20mL以上100mL以下とした繊維材料を主成分とするものである成形吸着体が開示されている。
 しかし、上記特許文献1記載の成形吸着体のように、粒子径の細かい粉末状活性炭を濾水度の低い繊維状バインダーで成型すると、成型性が良く(均一に成型しやすく)なり、かつ、吸着性能が高く、品質が安定したフィルターが得られるが、そこに微粉末が含まれると、成型体強度が低くなることに加えて、圧力損失も高くなり、通水性(濾水性)に劣るという問題がわかってきた。
 そこで、適度な強度を保持し、圧力損失上昇を抑えつつ、濾過能力に優れ、かつ抵抗の低い、粉末状活性炭とバインダーからなる吸着フィルターが求められている。
特開2011-255310号公報
 本発明の目的は、上記課題に鑑みて、上記要求を満たす吸着フィルターを提供することである。
 本発明者らは、鋭意検討した結果、下記構成を有する活性炭成形体によって、前記課題が解決することを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。
 すなわち、本発明の一局面に係る吸着フィルターは、活性炭とフィブリル化繊維状バインダーとを含み、前記活性炭は、体積基準の累計粒度分布における0%粒子径(D0)が9μm以上であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~110μmであり、前記フィブリル化繊維状バインダーのCSF値が10~150mLであり、前記活性炭100質量部に対して、前記フィブリル化繊維状バインダーを4~10質量部含むことを特徴とする。
 本発明によれば、優れた通水性および高吸着性能を有し、特に、遊離残留塩素、農薬、黴臭およびVOCの濾過能力に優れ、かつ抵抗の低い吸着フィルターを提供できる。
図1は、本実施形態の吸着フィルターの成型体自体を回転させて研削するための研削機の一例を示す。 図2は、実施例・比較例における活性炭サンプルの粒度分布を示すグラフである。
 以下、本発明に係る実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。
 本実施形態の吸着フィルターは、活性炭とフィブリル化繊維状バインダーとを含み、前記活性炭は、体積基準の累計粒度分布における0%粒子径(D0)が9μm以上であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~110μmであり、前記フィブリル化繊維状バインダーのCSF値が10~150mLであり、前記活性炭100質量部に対して、前記フィブリル化繊維状バインダーを4~10質量部含むことを特徴とする。
 このような構成を有することにより、優れた通水性および高吸着性能を有し、特に、遊離残留塩素、農薬、黴臭およびVOCの濾過能力に優れ、かつ抵抗の低い吸着フィルターを提供できる。さらに、フィルターの強度が向上し、圧力損失上昇は抑制され、かつ生産性にも優れる。
 これは、粒子径の細かい活性炭の微粉末を含むと、形成されたフィルターの強度が低くなり、圧力損失も高くなるところ、そのような微粉末を除くことによって、成形体強度を上げ、圧力損失上昇を抑制することができるためと考えられる。
 本実施形態では、体積基準の累計粒度分布における0%粒子径(D0)が9μm以上であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~110μmである粉末状活性炭を使用する。
 活性炭のD0が9μm未満の場合、成形体の強度が低くなり、圧力損失も高くなるおそれがある。また、微粉が処理水に混入するおそれもある。D0について、特に上限はないが、接触効率を低下させることなく、高吸着性能を発現できるという観点から20μm以下であることがより好ましい。
 また、活性炭のD50が30μm未満となると、成形性に劣り、活性炭成形体が作れないおそれがある。一方で、D50が110μmを超える場合、接触効率の低下により十分な吸着性能を得られない可能性がある。活性炭のD50におけるより好ましい範囲は、35~100μm、さらに好ましくは40~90μmである。
 本実施形態において、上記D0およびD50の数値はレーザー回折・散乱法により測定した値であり、例えば、日機装株式会社製の湿式粒度分布測定装置(マイクロトラックMT3300EX II)などにより行われる。
 本実施形態では、上記D0およびD50の範囲を満足する限り、二種類以上の異なる粉末状活性炭を含んでいてもよい。すなわち、二種類以上の異なる粉末状活性炭を混合して得られる最終混合物が、上記D0およびD50を満足すれば使用可能である。
 本実施形態の吸着フィルターに使用される活性炭は、特に限定はなく市販のものを使用することも可能であるが、例えば、炭素質材料を炭化及び/又は賦活することによっても得られる。炭化を必要とする場合は、通常、酸素又は空気を遮断して、例えば、400~800℃、好ましくは500~800℃、さらに好ましくは550~750℃程度で行うことができる。賦活法としては、ガス賦活法、薬品賦活法のいずれの賦活法も採用でき、ガス賦活法と薬品賦活法とを組み合わせてもよいが、特に、浄水用として使用する場合、不純物の残留の少ないガス賦活法が好ましい。ガス賦活法は炭化された炭素質材料を、通常、例えば、700~1100℃、好ましくは800~980℃、さらに好ましくは850~950℃程度で、賦活ガス(例えば、水蒸気、二酸化炭素ガスなど)と反応させることにより行うことができる。安全性及び反応性を考慮すると水蒸気を10~40容量%含有する水蒸気含有ガスが好ましい。賦活時間及び昇温速度は特に限定されず、選択する炭素質材料の種類、形状、サイズにより適宜選択できる。
 炭素質材料としては、特に限定されないが、例えば植物系炭素質材料(例えば、木材、鉋屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生成物、リグニン、廃糖蜜などの植物由来の材料)、鉱物系炭素質材料(例えば、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物由来の材料)、合成樹脂系炭素質材料(例えば、フェノール樹脂、ポリ塩化ビニリデン、アクリル樹脂などの合成樹脂由来の材料)、天然繊維系炭素質材料(例えば、セルロースなどの天然繊維、レーヨンなどの再生繊維などの天然繊維由来の材料)などが挙げられる。これらの炭素質材料は、単独でまたは2種類以上組み合わせて使用できる。これらの炭素質材料のうち、JIS S 3201(2010)で規定される揮発性有機化合物の吸着性能に関与するミクロ孔が発達しやすい点から、ヤシ殻やフェノール樹脂が好ましい。
 賦活後の活性炭は、特にヤシ殻などの植物系炭素質材料や鉱物系炭素質材料を用いた場合、灰分や薬剤を除去するために洗浄してもよい。洗浄には鉱酸や水が用いられ、鉱酸としては洗浄効率の高い塩酸が好ましい。
 本実施形態の粉末状活性炭は、窒素吸着法により算出されるBET比表面積が600~2000m/g程度の範囲から選択でき、例えば800~1800m/g、好ましくは900~1500m/g、さらに好ましくは1000~1300m/g程度である。比表面積が大きすぎると、揮発性有機化合物が吸着し難くなり、小さすぎると、揮発性有機化合物やCAT、2-MIBの除去性能が低下する。
 活性炭の吸着容量が小さすぎると十分な吸着能力を保持しているとは言えず、吸着容量が大きすぎると過賦活状態で細孔径が増大しており、有害物質の吸着保持力が低下する傾向にある。したがって、本実施形態の活性炭において、吸着容量は、用途にもよるが、ベンゼン吸着量(20℃のときのベンゼン飽和濃度の1/10の濃度で通気した時の飽和吸着量)が25~60質量%程度となるようにすることが好ましい。
 さらには、本実施形態の吸着フィルターをVOC吸着フィルターとして用いる場合は、活性炭のベンゼン吸着量を25~40質量%程度とすることが好ましい。また、本実施形態の吸着フィルターを遊離残留塩素、農薬及び/又は黴臭除去フィルターとして用いる場合は、活性炭のベンゼン吸着量を45~60質量%程度とすることが好ましい。
 このように、用途に応じて、活性炭のベンゼン吸着量を調整することによって、様々な用途に本実施形態の吸着フィルターを使用することができる。
 なお、上記D0およびD50の範囲を満足する粉末状活性炭は、例えば、粒状活性炭をボールミルやロールミルなどの粉砕機で粉砕し、必要に応じ、微粉末を振動篩いでカットして粗粒を得た後、湿式分級や、乾式分級を行うことによって調製することができる。
 湿式分級方法としては水中における粒子の沈降速度が粒子サイズに依存する現象を利用した一般的な水簸技術を用いることができる。具体的には、例えば、水中で微粉を含んだ活性炭を分散後、自重濾過や吸引濾過または遠心分離機を用い、大きな重力加速度によって粒子を移動させ、スラリー状態またはローターの壁面に付着したケーキとして回収する方法が利用できる。このような分級は1度だけでなく繰り返し行うことで分級効果をより高めることが出来る。
 また、乾式分級方法としては、例えば、装置内部に回転体を有して活性炭粒子に遠心力を働かせ、粒子に抗力を働かせる強制渦遠心式や装置内部に回転体を持たずに空気の旋回流を作り、粒子に抗力を働かせる装置を半自由渦遠心式が挙げられる。
 これらの分級操作は得られた活性炭の粒度分布を確認し、所定のD0の値を示すまで繰り返し行われる。この分級操作は単独の方法を繰り返しで行っても構わないし、異なる方法を併用しても構わない。なお本実施形態では粒度が細かい活性炭を得る必要があり、いずれの方法でも製造可能であるが、湿式分級は分級される粒子が細かくなるに伴って、水中での沈降速度が緩くなることから、生産性が低下したり乾燥工程が必要となったりするため、乾式分級方式を採用し、所定のD0の値を示すまで繰り返し実施することが好ましい。
 本実施形態の吸着フィルターは、前記活性炭100質量部に対し、フィブリル化繊維状バインダーを4~10質量部含んでいる。このフィブリル化繊維状バインダーの量が4質量部未満となると、十分な強度が得られずに成形体を成形できないおそれがある。また、フィブリル化繊維状バインダーの量が10質量部を超えると、吸着性能が低下するおそれがある。より好ましくは、活性炭100質量部に対し、フィブリル化繊維状バインダーを4.5~6質量部配合することである。
 本実施形態で使用されるフィブリル化繊維状バインダーとしては、フィブリル化させることによって、粉末状活性炭を絡めて賦形できるものであれば、特に限定されず、合成品、天然品を問わず幅広く使用可能である。このようなフィブリル化繊維状バインダーとしては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維などが挙げられる。なかでも、フィブリル化し易く、活性炭を拘束する効果が高い点から、アクリル繊維、セルロース繊維等が好適に使用される。
 これらの繊維は2種以上を組み合わせて使用することもでき、特に好ましくは、アクリル繊維およびセルロース繊維の混合体をフィブリル化繊維状バインダーとして用いることである。それにより、成形体密度および成形体強度をさらに上げることができると考えられる。
 本実施形態において、フィブリル化繊維状バインダーの通水性は、CSF値で10~150mL程度である。本実施形態において、CSF値はJIS P8121「パルプの濾水度試験方法」カナダ標準ろ水度法に準じて測定した値である。また、CSF値は、繊維状バインダーをフィブリル化させることによって調整できる。
 フィブリル化繊維状バインダーのCSF値が10mL未満となると、通水性が得られず、成形体の強度が低くなり、圧力損失も高くなる。一方で、前記CSF値が150mLを超える場合は、粉末状の活性炭を十分に保持することができず、成型体の強度が低くなる上、吸着性能に劣ることとなる。
 本実施形態の吸着フィルターへの通水条件は特に限定されないが、通常1000~8000/hrの空間速度(SV)で使用される。特に2000~6000/hrの空間早度(SV)で使用されることが好適である。本実施形態の吸着フィルターは、微粉末が除かれ、且つ適度なD50である活性炭を使用していることから高い空間速度(SV)で使用されても圧力損失上昇が抑制され、且つ、優れた遊離残留塩素ろ過能力と総トリハロメタンろ過能力を有することができる。
 本実施形態の吸着フィルターの製造は、任意の方法で行われ、特に限定されない。効率よく製造できる点で、スラリー吸引方法が好ましい。
 より具体的には、例えば、円筒状フィルターは、粉末状活性炭及び繊維状バインダーを水中に分散させスラリーを調製するスラリー調製工程と、前記スラリーを吸引しながら濾過して予備成型体を得る吸引濾過工程と、前記予備成型体を乾燥して乾燥した成型体を得る乾燥工程と、前記成型体の外表面を研削する研削工程とを含む製造方法により得られる。
 (スラリー調製工程)
 前記スラリー調製工程において、粉末状活性炭及びフィブリル化繊維状バインダーを、前記活性炭100質量部に対し、フィブリル化繊維状バインダーを4~10質量部となるように、かつ、固形分濃度が0.1~10質量%(特に1~5質量%)になるように、水に分散させたスラリーを調製する。前記スラリーの固形分濃度が高すぎると、分散が不均一になり易く、成型体に斑が生じ易い。一方、固形分濃度が低すぎると、成型時間が長くなり生産性が低下するだけではなく、成型体の密度が高くなり、濁り成分を捕捉することによる目詰りが発生しやすい。
 (吸引濾過工程)

 吸引濾過工程では、前記スラリーに多数の穴を有する成型用の型枠を入れて、前記型枠の内側から吸引しながら濾過することにより成型する。成型用の型枠としては慣用の型枠を利用でき、例えば、特許第3516811号公報の図1に記載の型枠などを使用できる。吸引方法としても、慣用の方法、例えば、吸引ポンプなどを用いて吸引する方法などを利用できる。

 (乾燥工程)

 乾燥工程では、吸引濾過工程で得られた予備成型体を型枠から取り外し、乾燥機などで乾燥することにより成型体を得ることができる。

 乾燥温度は、例えば、100~150℃(特に110~130℃)程度であり、乾燥時間は、例えば、4~24時間(特に8~16時間)程度である。乾燥温度が高すぎると、フィブリル化繊維状バインダーが変質したり溶融して濾過性能が低下したり成型体の強度が低下し易い。乾燥温度が低すぎると、乾燥時間が長時間になったり、乾燥が不十分になり易い。

 (研削工程)

 研削工程では、乾燥した成型体の外表面を研削(又は研磨)できれば、特に限定されず、慣用の研削方法を利用できるが、研削の均一性の点から、成型体自体を回転させて研削する研削機を用いる方法が好ましい。

 図1は、成型体自体を回転させて研削するための研削機の一例である。この研削機11は、回転軸12に設置され、成型体20を研削するための円盤状砥石13(砥石の粒度90~125μm)と、成型体20を固定し、かつ回転させるための回転軸17と、操作盤19とを備えている。前記円盤状砥石13は、モーター14によって回転可能であるとともに、位置が固定されたエアーシリンダー15によって成型体20に対して接触できるように相対的に進退動可能であり、かつ位置が固定されたエアーシリンダー16によって成型体20の長手方向又は軸方向に沿って回転軸12と共に移動可能である。そのため、円盤状砥石13は、成型体20の外表面に接触し、成型体の外表面を研削できるとともに、成型体の外表面を長さ方向に移動することにより、長さ方向で均一に研削できる。一方、回転軸17も、モーター18によって前記円盤状砥石とは逆方向に回転可能である。この研削機では、成型体だけでなく、円盤状砥石を回転させることにより、研削滓の均一性のために、発生する研削滓を除去する必要がなく、生産性を向上できる。

 具体的には、回転軸12に設置された直径305mmφ、厚み19mmの円盤状の砥石13に対して平行に設置された回転軸15に成型体20を装着し、研削後に所望の外径(研削深度)と位置に進退動させて固定する。研削深度(研削する厚み)は、粉末状活性炭の中心粒子径に対して、例えば、5~200倍、好ましくは10~100倍、さらに好ましくは15~50倍程度である。研削深度が小さすぎると、研削の効果が得られず、大きすぎると、生産性が低下する。本発明では、研削深度を考慮して、ハウジングのサイズに応じて、ハウジングのサイズよりも所定の厚みが大きい成型体を製造することにより生産性を向上できる。さらに、研削による研削滓の発生も抑制できる上に、発生した研削滓は再利用してもよい。

 円盤状砥石の周速度は、例えば、10~35m/s、好ましくは15~32m/s、さらに好ましくは18~30m/s程度である。また、円盤状砥石を回転するための回転軸の回転速度は、例えば、800~2200rpm、好ましくは1000~2000rpm、さらに好ましくは1200~1800rpm程度である。一方、成型体を回転させるための回転軸の回転速度は、例えば、200~500rpm、好ましくは300~450rpm程度であってもよい。周速度(回転速度)が小さすぎると、研削するときに成型体が破砕し易い。一方、周速度が大きすぎると、遠心力が高すぎるため、成型体が変形したり、破砕し易い。

 円盤状砥石を成型体の長手方向に沿って移動させる移動速度は、例えば、10~150mm/秒、好ましくは20~120mm/秒、さらに好ましくは30~100mm/秒程度であってもよい。移動速度が低すぎると、生産性が低下する。一方、移動速度が大きすぎると、研削面がうねったりして、研削の精度が低下する。

 砥石としては、慣用の砥石を利用でき、例えば、アルミナ質系砥石、炭化ケイ素質系砥石、アルミナ質系砥石と炭化ケイ素質系砥石との組み合わせなどが挙げられる。砥粒(砥石の粒度)の大きさは、例えば、30~600μm、好ましくは40~300μm、さらに好ましくは45~180μm程度である。砥粒が粗すぎると、研削表面から粒状活性炭が脱落し易くなる。一方、細かすぎると、研削に時間がかかり、生産性が低下し易い。

 砥石と成型体とは、近接及び離反する方向に、相対的に進退動可能に形成されていればよく、砥石及び成型体の少なくとも一方が進退動可能に形成されていてもよい。

 砥石と成型体とは、互いに平行軸に取り付けられていればよく、砥石及び成型体の少なくとも一方が軸方向に移動可能(相対的に移動可能)に形成されていてもよい。

 なお、研削工程は、前記研削機を用いた方法に限定されず、例えば、回転軸に固定した成型体に対して、固定した平板状の砥石で研削してもよい。この方法では、発生する研削滓が研削面に堆積し易いため、エアブローしながら研削するのが効果的である。

 本実施形態の吸着フィルターは、例えば、浄水フィルターなどとして用いられる。浄水フィルターとして使用する場合、例えば、本実施形態の吸着フィルターを上記の製造方法によって製造したのち、整形、乾燥後、所望の大きさおよび形状に切断して得ることができる。フィルターの形を整えるために整形台上で圧縮してもよいが、圧縮しすぎると、活性炭成型体の表面が圧密化することがあるので、最小限に止めるのがよい。さらに必要に応じて、先端部分にキャップを装着したり、表面に不織布を装着させてもよい。

 本実施形態の吸着フィルターは、ハウジングに充填して浄水用カートリッジとして使用し得る。カートリッジは浄水器に装填され、通水に供されるが、通水方式としては、原水を全量濾過する全濾過方式や循環濾過方式が採用される。本実施形態において浄水器に装填されるカートリッジは、例えば浄水フィルターをハウジングに充填して使用すればよいが、さらに公知の不織布フィルター、各種吸着材、ミネラル添加材、セラミック濾過材などと組合せて使用することもできる。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 すなわち、本発明の一局面に係る吸着フィルターは、活性炭とフィブリル化繊維状バインダーとを含み、前記活性炭は、体積基準の累計粒度分布における0%粒子径(D0)が9μm以上であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~110μmであり、前記フィブリル化繊維状バインダーのCSF値が10~150mLであり、前記活性炭100質量部に対して、前記フィブリル化繊維状バインダーを4~10質量部含むことを特徴とする。
 このような構成を有することにより、優れた通水性および高吸着性能を有し、特に、遊離残留塩素、農薬(とりわけ、2-クロロー4,6-ビスエチルアミノー1,3,5-トリアジン、以下CATと称す)、黴臭(とりわけ、2-メチルイソボルネオール、以下2-MIBと称す)、およびVOCの濾過能力に優れ、かつ抵抗の低い吸着フィルターを提供できる。さらに、フィルターの強度が向上し、圧力損失上昇は抑制され、かつ生産性にも優れる。
 また、前記吸着フィルターにおいて、前記活性炭の体積基準の累計粒度分布における50%粒子径(D50)が35~100μmであることが好ましい。それにより、上述した効果がより確実に得られる。
 さらに、前記吸着フィルターにおいて、前記活性炭のベンゼン吸着量が25~60質量%であることが好ましい。それにより、より吸着性能に優れた吸着フィルターを得ることができると考えられる。
 本発明の他の局面に係るVOC吸着フィルターは、前記活性炭のベンゼン吸着量が25~40質量%である、上述の吸着フィルターを用いることを特徴とする。
 本発明のさらなる他の局面に係る遊離残留塩素、農薬、又は黴臭除去フィルターは、前記活性炭のベンゼン吸着量が45~60質量%である、上述の吸着フィルターを用いることを特徴とする。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。なお、実施例における各物性値は、以下に示す方法により測定した。
 [粒状活性炭の粒子径]
 湿式粒度分布測定装置(日機装(株)製「マイクロトラックMT3000EX II」)を用いて、レーザー回折・散乱法により体積基準の累計粒度分布における0%粒子径(D0)、及び体積基準の累計粒度分布における50%粒子径(D50)を測定した。
具体的な粒度分布の測定方法を次に示す。
(分散液調整方法)
 ポリオキシエチレン(10)オクチルフェニルエーテル(WAKO製)をイオン交換水で50倍に希釈し、測定用の分散液とした。
(サンプル液調製方法)
 透過率(TR)が0.880~0.900になる分量をビーカーに秤り取り、分散液を1.0ml添加し、スパチュラで攪拌後、超純水を約5ml程度加え混合しサンプル液とした。
 得られたサンプル液は全量、装置に流し入れ、以下の条件で分析を行った。
(分析条件)
測定回数;3回の平均値
測定時間;30秒
分布表示;体積
粒径区分;標準
計算モード;MT3000II
溶媒名;WATER
測定上限;2000μm、測定下限;0.021μm
残分比;0.00
通過分比;0.00
残分比設定;無効
粒子透過性;吸収
粒子屈折率;N/A
粒子形状;N/A
溶媒屈折率;1.333
DV値;0.0882
透過率(TR);0.880~0.900
拡張フィルター;無効
流速;70%
超音波出力;40W
超音波時間;180秒
 [フィルター成形体密度(g/ml)]
 成型体密度(g/ml)は、得られた円筒状フィルターを120℃で2時間乾燥した後、測定した重量(g)及び体積(ml)に基づいて求めた。
 [初期通水抵抗]
 吸着フィルターに、施例1~10および比較例1~6においては空間速度(SV)が3000/hr、つまり3リットル/分の通水量で通水開始10分後の通水抵抗を測定した。実施例11においては、空間速度(SV)が2000/hr、つまり2リットル/分の通水量、実施例12においては、空間速度(SV)が5000/hr、つまり5リットル/分の通水量で通水開始10分後の通水抵抗を測定した。なお初期通水抵抗については、0.10MPa以下を合格点とした。
 [圧壊強度]
 引張・圧縮試験機((株)オリエンテック製「テンシロンRTC-1210A」)を用いて、円筒状フィルターの長手方向(たて)と外周方向(よこ)に速度2mm/分で圧力を掛けて圧壊強度を測定した。圧壊強度については、たて200N以上、よこ80N以上を合格点とした。
 [遊離残留塩素ろ過能力]
 遊離残留塩素ろ過能力については、JIS S3201(2010)に準拠、実施例1~10および比較例1~6においては通水量を3リットル/分に設定し通水したときの80%破過ライフを測定した(原水遊離残留塩素濃度2.0mg/L)。なお、実施例11においては、空間速度(SV)が2000/hr、つまり2リットル/分、実施例12においては、空間速度(SV)が5000/hr、つまり5リットル/分の通水量での80%破過ライフを測定した。なお遊離残留塩素ろ過能力については、60L/cc以上を合格点とした。
 [総トリハロメタンろ過能力]
 総トリハロメタンろ過能力についても、遊離残留塩素と同様にして測定した(原水総トリハロメタン濃度100μg/L)。総THMろ過能力については、13L/cc以上を合格点とした。
 [比表面積]
 日本ベル社製BELSORP-28SAを使用し、活性炭の77Kにおける窒素吸着等温線を測定した。得られた吸着等温線からBETの式により多点法による解析を行い、得られた曲線の相対圧p/p0=0.001~0.1の領域での直線から比表面積を算出した。
 [原料]
 (粒状活性炭)
 粒状活性炭の製造方法を記載するが必要な物性を満足すれば特に限定されるものではない。
 400~600℃で炭化されたヤシ殻チャーを900~950℃で水蒸気賦活し、目的のベンゼン吸着量になるように賦活時間を調整し、得られたヤシ殻活性炭を希塩酸洗浄、イオン交換水で脱塩することで粒状活性炭A(10×32メッシュ、ベンゼン吸着量30.5wt%、比表面積1094m/g)と粒状活性炭B(10×32メッシュ、ベンゼン吸着量53.0wt%、比表面積1710m/g)を得た。
 (活性炭)
・粉末状活性炭サンプル1:ヤシ殻原料
・粉末状活性炭サンプル2:ヤシ殻原料
・粉末状活性炭サンプル3:ヤシ殻原料
・粉末状活性炭サンプル4:ヤシ殻原料
・粉末状活性炭サンプル5:ヤシ殻原料
・粉末状活性炭サンプル6:ヤシ殻原料
・粉末状活性炭サンプル7:ヤシ殻原料
・粉末状活性炭サンプル8:ヤシ殻原料
・粉末状活性炭サンプル9:ヤシ殻原料
 なお、各活性炭粒子のD0、D50、Bz吸着量は下記表1に示す通りである。また、各活性炭の調製方法は以下の通りである:
 (活性炭サンプル1~4)
 粒状活性炭Aを活性炭サンプル1は、D50値が15μmになるように、活性炭サンプル2はD50値が20μm、活性炭サンプル3はD50値が90μm、活性炭サンプル4はD50値が100μmになるようにボールミルで粉砕し、乾式分級装置を用いて微粉末を取り除き、所定のD0の値を得た。
 (活性炭サンプル5~6)
 粒状活性炭Bを活性炭サンプル5は、D50値が120μmになるように、活性炭サンプル6はD50値が20μmになるようにボールミルで粉砕し、乾式分級装置を用いて微粉末を取り除き、所定のD0の値を得た。
 (活性炭サンプル7~8)
 活性炭サンプル7は、粒状活性炭AをD50値が20μmになるようにボールミルで粉砕し、微粉末の除去は行わなかった。また、活性炭サンプル8は粒状活性炭AをD50値が150μmになるようにボールミルで粉砕し、乾式分級装置を用いて微粉末を取り除き、所定のD0の値を得た。
 (活性炭サンプル9)
 活性炭サンプル9は、粒状活性炭Aを、D50値が10μmになるように、ボールミルで粉砕し、乾式分級装置を用いて微粉末を取り除き、所定のD0の値を得た。
 (バインダー原料)
・アクリル繊維状バインダー:CSF値92~120ml
・セルロース繊維状バインダー1:CSF値30ml以下
・セルロース繊維状バインダー2:CSF値190ml~250ml
 <実施例1~12および比較例1~6の吸着フィルターの製造>
 それぞれ、下記表1に示す活性炭サンプル(実施例7、8、10~12ではそれぞれ2種の活性炭サンプルを表に示す割合で混合している)100質量部に対し、アクリル繊維状バインダーとセルロース繊維状バインダーとでCSFを調整した繊維状バインダーを下記表1に示す質量部で合計1.2kg投入し、水道水を追加して、スラリー量を20リットルとした。
 なお、バインダーについては、実施例1-2、5-10及び比較例1-2、5ではアクリル繊維状バインダーのみを、実施例3-4はアクリル繊維状バインダーとセルロース繊維状バインダー1とを混合させたものを、比較例3ではセルロース繊維状バインダー1のみを、そして、比較例4ではセルロース繊維状バインダー2のみを含むように調製した。また、実施例11、12および比較例6では、アクリル繊維状バインダーを使用した。
 そして、特許第3516811号公報の図1に記載された成型用型枠(多数の吸引用小孔を設けた管状の型枠)で、外径40mmφ、中軸径12mmφ、外径鍔間隔180mmの金型に円筒状不織布を装着し、スラリーを金型外径の40mmφまで吸引のみ実施し成型し、乾燥した。得られた成型体を、図1に示される自動研削機に装着し、成型体回転数300回転/分、砥石回転数1200回転/分、砥石移動速度300mm/10秒(3cm/秒)で、成型体の外表面を研削し、外径40mmφ、内径12mmφ、高さ180mmの成型体を作製した。その後、さらに切断して、外径40mmφ、内径12mmφ、高さ54mmの成型体を作製した。成型体の容積は60.4mlであった。この成型体外周部に、スパンボンド不織布を1重に巻きつけ試験用吸着フィルターとした。
 この吸着フィルターについて、上述した評価試験を行った結果を表1に示す。また、実施例・比較例における主な活性炭サンプルの粒度分布を示すグラフを図2に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1から明らかなように、実施例に係る吸着フィルターはいずれも、抵抗が低く、強度に優れ、遊離残留塩素および総トリハロメタンの濾過能力に非常に優れていることがわかった。特に、活性炭のD50が40~90μmであった実施例2~8では、通水抵抗が適度に低く、吸着性能により優れていた。また、実施例11および12の結果より、空間速度(SV)を低くしても、高くしても、優れた吸着性能が得られることも示された。
 これに対し、粒子径が本発明の範囲と比べてかなり小さい活性炭を用いた比較例1では、吸引成形ができなかった。また、粒子径が本発明の範囲より若干小さい活性炭を用いた比較例6でも、抵抗が大きくなってしまった。逆に粒子径が本発明の範囲より大きい活性炭を用いた比較例2では、ろ過能力が劣っていた。
 一方、CSF値の小さいバインダーを使用した比較例3、CSF値の大きいバインダーを使用した比較例4、及びバインダー量が少ない比較例5では、抵抗が大きくなり、強度に劣っていたため、通水初期で崩壊してしまった。
 この出願は、2014年11月19日に出願された日本国特許出願特願2014-234172を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、有害物質の除去などに使用される吸着フィルターの技術分野において、広範な産業上の利用可能性を有する。

Claims (5)

  1.  活性炭とフィブリル化繊維状バインダーとを含む吸着フィルターであって、
     前記活性炭は、体積基準の累計粒度分布における0%粒子径(D0)が9μm以上であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~110μmであり、
     前記フィブリル化繊維状バインダーのCSF値が10~150mLであり、
     前記活性炭100質量部に対して、前記フィブリル化繊維状バインダーを4~10質量部含む、吸着フィルター。
  2.  前記活性炭の体積基準の累計粒度分布における50%粒子径(D50)が35~100μmである、請求項1記載の吸着フィルター。
  3.  前記活性炭のベンゼン吸着量が25~60質量%である、請求項1又は2に記載の吸着フィルター。
  4.  前記活性炭のベンゼン吸着量が25~40質量%である、請求項1~3のいずれかに記載の吸着フィルターを用いた、VOC吸着フィルター。
  5.  前記活性炭のベンゼン吸着量が45~60質量%である、請求項1~3のいずれかに記載の吸着フィルターを用いた、遊離残留塩素、農薬又は黴臭除去フィルター。
PCT/JP2015/081585 2014-11-19 2015-11-10 吸着フィルター WO2016080241A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560160A JP6599888B2 (ja) 2014-11-19 2015-11-10 吸着フィルター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234172 2014-11-19
JP2014234172 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080241A1 true WO2016080241A1 (ja) 2016-05-26

Family

ID=56013786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081585 WO2016080241A1 (ja) 2014-11-19 2015-11-10 吸着フィルター

Country Status (3)

Country Link
JP (2) JP6599888B2 (ja)
TW (1) TWI573624B (ja)
WO (1) WO2016080241A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307710B2 (en) * 2013-04-16 2019-06-04 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
JP2019209312A (ja) * 2018-06-08 2019-12-12 株式会社Lixil 造粒用繊維状バインダ
CN113443680A (zh) * 2021-06-28 2021-09-28 同济大学 一种活链续接型不间断高盐废水净化装置
JP7501845B1 (ja) 2023-10-10 2024-06-18 大学共同利用機関法人自然科学研究機構 粉末活性炭成形体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230149901A1 (en) * 2020-10-01 2023-05-18 Kuraray Co., Ltd. Adsorption filter
WO2023189806A1 (ja) * 2022-03-29 2023-10-05 株式会社クラレ 吸着フィルター

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140208A (ja) * 1997-11-05 1999-05-25 Suminoe Textile Co Ltd 多孔質成形体及びその製造方法
JP2005013883A (ja) * 2003-06-26 2005-01-20 Kuraray Chem Corp 活性炭成型体及びそれを用いた浄水器
WO2011016548A1 (ja) * 2009-08-06 2011-02-10 クラレケミカル株式会社 活性炭成型体およびそれを用いた浄水器
JP2011255310A (ja) * 2010-06-09 2011-12-22 Osaka Gas Chem Kk 成形吸着体および浄水材
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328382B2 (ja) * 2013-06-19 2018-05-23 ユニチカ株式会社 浄水フィルター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140208A (ja) * 1997-11-05 1999-05-25 Suminoe Textile Co Ltd 多孔質成形体及びその製造方法
JP2005013883A (ja) * 2003-06-26 2005-01-20 Kuraray Chem Corp 活性炭成型体及びそれを用いた浄水器
WO2011016548A1 (ja) * 2009-08-06 2011-02-10 クラレケミカル株式会社 活性炭成型体およびそれを用いた浄水器
JP2011255310A (ja) * 2010-06-09 2011-12-22 Osaka Gas Chem Kk 成形吸着体および浄水材
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307710B2 (en) * 2013-04-16 2019-06-04 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
JP2019209312A (ja) * 2018-06-08 2019-12-12 株式会社Lixil 造粒用繊維状バインダ
WO2019235044A1 (ja) * 2018-06-08 2019-12-12 株式会社Lixil 造粒用繊維状バインダ
JP7039395B2 (ja) 2018-06-08 2022-03-22 株式会社Lixil 造粒用繊維状バインダ
CN113443680A (zh) * 2021-06-28 2021-09-28 同济大学 一种活链续接型不间断高盐废水净化装置
US11485651B1 (en) 2021-06-28 2022-11-01 Tongji University Movably-connected and continuously-connected apparatus for uninterrupted high-salinity wastewater purification
JP7501845B1 (ja) 2023-10-10 2024-06-18 大学共同利用機関法人自然科学研究機構 粉末活性炭成形体の製造方法

Also Published As

Publication number Publication date
JP6902588B2 (ja) 2021-07-14
JP2020019016A (ja) 2020-02-06
TWI573624B (zh) 2017-03-11
JPWO2016080241A1 (ja) 2017-09-21
JP6599888B2 (ja) 2019-10-30
TW201627065A (zh) 2016-08-01

Similar Documents

Publication Publication Date Title
JP6596015B2 (ja) 吸着フィルター
JP6902588B2 (ja) 吸着フィルター
KR102117733B1 (ko) 수처리 필터 및 그 제조 방법
TWI802625B (zh) 吸附過濾器
WO2020138054A1 (ja) 浄水用フィルター及びそれを用いた浄水器
JP6957297B2 (ja) 造粒活性炭及びその製造方法
JP7180036B2 (ja) 吸着フィルター
WO2023189806A1 (ja) 吸着フィルター
WO2023008437A1 (ja) 浄水フィルターおよび浄水器
JP7478163B2 (ja) めっき液精製用吸着フィルター、並びに、それを用いためっき液精製装置及びめっき液精製方法
JP7039395B2 (ja) 造粒用繊維状バインダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861587

Country of ref document: EP

Kind code of ref document: A1