WO2011016297A1 - 蒸着用タブレットとその製造方法 - Google Patents
蒸着用タブレットとその製造方法 Download PDFInfo
- Publication number
- WO2011016297A1 WO2011016297A1 PCT/JP2010/060698 JP2010060698W WO2011016297A1 WO 2011016297 A1 WO2011016297 A1 WO 2011016297A1 JP 2010060698 W JP2010060698 W JP 2010060698W WO 2011016297 A1 WO2011016297 A1 WO 2011016297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tablet
- powder
- vapor deposition
- sintered
- indium oxide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62685—Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
- C04B2235/783—Bimodal, multi-modal or multi-fractional
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
Definitions
- the present invention relates to a vapor deposition material comprising an oxide sintered body used when producing a low-resistance transparent conductive film by a vacuum vapor deposition method, and in particular, a high refractive index having a high refractive index of 2.0 to 2.2.
- the present invention relates to a deposition tablet used when a transparent conductive film having a high rate is formed by vacuum deposition, and a method for producing the same.
- the transparent conductive film generally has high conductivity and high transmittance in the visible light region. For this reason, it is used for the electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and transparent heating elements for anti-fogging such as automobile windows, heat ray reflective films for buildings, antistatic films, refrigeration showcases, etc. It is also used as.
- tin oxide containing antimony or fluorine as a dopant zinc oxide containing aluminum or gallium as a dopant, indium oxide containing tin as a dopant, and the like are widely used.
- an indium oxide film containing tin as a dopant that is, an In 2 O 3 —SnO 2 film
- ITO Indium tin oxide
- the refractive index is regarded as important in addition to conductivity and transmittance.
- cerium oxide and titanium oxide are generally used as high refractive index materials, they are poor in conductivity. Therefore, when conductivity is required, the above cerium oxide or titanium oxide is used to impart conductivity. Used in addition to indium oxide and the like.
- the vapor deposition material used when forming a transparent conductive film by a vacuum vapor deposition method is roughly classified into two types.
- One of them is a vapor deposition material composed of particles having a particle size of 5 mm or less in diameter, and the other is, for example, a tablet having a diameter of about 30 mm and a height of about 10 mm. If the tablet density is too low in a vacuum deposition method using a tablet-shaped deposition material (evaporation tablet), the tablet evaporates from the surface as the material evaporates from the surface when irradiated with an electron beam. There was a problem that the sag occurred suddenly and the tablet was damaged due to partial shrinkage of the tablet.
- an ITO sintered body having a relative density of 90% or more is pulverized, and the resulting granule having a particle diameter of 0.5 mm or less
- a method has been proposed in which ITO is sintered again to obtain an ITO tablet having a relative density of 50% or more and 80% or less (see Patent Document 1: Japanese Patent Application Laid-Open No. 11-1000066).
- the "relative density” is the ratio (%) of the density of the sintered body (vapor deposition material) to the calculated true density obtained from the true density of each mixed powder that is the starting material of the vapor deposition material.
- the calcining temperature is lower by 200 ° C. than the calcining temperature.
- the ICO sintered body having a relative density of 50% or more and 80% or less manufactured at a sintering temperature lower than the calcining temperature by 200 ° C. or more was observed, the distribution of crystal grains appearing on the fracture surface was observed. It is confirmed that the proportion of crystal grains with a specific grain size is low, which is moderately distributed from large to small crystal grains, and is obtained by multiplying the grain size by the number thereof. It has been found that the ratio of the grains constituting the maximum peak in the grain size distribution (defined as the most frequent grain ratio) is 20% or less. The present invention has been completed by such technical discovery.
- the evaporation tablet according to the present invention is In the tablet for vapor deposition composed of an indium oxide sintered body containing cerium as a dopant and having a relative density of 50% to 80%, The ratio of the grains constituting the maximum peak in the distribution of the grain size obtained by multiplying the grain size and the number of grains appearing on the fracture surface of the indium oxide sintered body (the ratio of the most polycrystalline grains) Is defined as 20% or less.
- the deposition tablet of the present invention having the most polycrystalline grain ratio of 20% or less is manufactured by the following “first manufacturing method” or “second manufacturing method”. That is, the first manufacturing method according to the present invention is: A first step of obtaining a calcined powder by heat treating indium oxide powder at 1300 ° C.
- uncalcined cerium oxide powder or uncalcined indium oxide powder and cerium oxide powder are mixed so that the ratio of the calcined powder is 50% by mass or more and 80% by mass or less, And a second step of granulating to obtain a granulated powder;
- the obtained granulated powder is molded into a molded body, and this molded body is sintered at a temperature of 1100 ° C. or higher and 1350 ° C. or lower and 200 ° C. or lower than the heat treatment temperature of the calcined powder in the first step.
- a third step of obtaining a sintered body of indium oxide containing as a dopant is characterized by comprising each step of Moreover, the second manufacturing method according to the present invention includes A first step of obtaining a calcined powder by heat treating indium oxide powder and cerium oxide powder at 1300 ° C. or higher and 1550 ° C. or lower; The obtained calcined powder is mixed with uncalcined indium oxide powder and / or cerium oxide powder so that the ratio of the calcined powder is 50% by mass or more and 80% by mass or less, and granulated.
- a second step of obtaining granulated powder The obtained granulated powder is molded into a molded body, and this molded body is sintered at a temperature of 1100 ° C. or higher and 1350 ° C. or lower and 200 ° C. or lower than the heat treatment temperature of the calcined powder in the first step.
- the refractive index is 2.0 to 2.2. It becomes possible to produce a transparent conductive film having a high refractive index.
- FIG. 1 shows cracking after electron beam (EB) deposition of an ICO sintered body tablet manufactured based on the calcining temperature condition when obtaining a calcined powder and the sintering temperature condition when obtaining an ICO sintered body.
- FIG. 2 is an SEM (scanning electron microscope) imaging diagram of the fracture surface of the vapor deposition ICO sintered tablet according to Example 1.
- FIG. 3 is an SEM (scanning electron microscope) imaging view of the fracture surface of the vapor deposition ICO sintered tablet according to Example 2.
- FIG. 1 shows cracking after electron beam (EB) deposition of an ICO sintered body tablet manufactured based on the calcining temperature condition when obtaining a calcined powder and the sintering temperature condition when obtaining an ICO sintered body.
- FIG. 4 is an SEM (scanning electron microscope) imaging view of a fracture surface of a vapor deposition ICO sintered body tablet according to Comparative Example 6.
- FIG. 5 is an SEM (scanning electron microscope) imaging view of the fracture surface of the vapor deposition ICO sintered body tablet according to Comparative Example 8.
- FIG. 6 shows the relationship between the crystal grain size (center value) ( ⁇ m) and the crystal grain ratio (%) obtained from each SEM image at the fracture surface of the vapor deposition ICO sintered body tablet according to Examples 1 and 2. The graph which shows a relationship.
- FIG. 7 shows the relationship between the crystal grain size (center value) ( ⁇ m) and the crystal grain ratio (%) obtained from each SEM image on the fracture surface of the vapor deposition ICO sintered body tablet according to Comparative Examples 6 and 8. The graph which shows a relationship.
- the ICO sintered compact tablet for vapor deposition according to the present invention is: Regarding the crystal grains appearing on the fracture surface of the ICO sintered body, the ratio of the grain size constituting the maximum peak in the distribution of the crystal grain amount obtained by multiplying the grain size and the number thereof (as described above, the maximum The crystal grain ratio is defined as 20% or less.
- the above-mentioned “most polycrystal grain ratio” is determined as follows from the SEM image of the fracture surface of the ICO sintered body. First, for example, three mutually parallel straight lines at an arbitrary position on the SEM imaging diagram shown in FIG.
- the length divided by the grain boundary portion of the crystal grains located on each of the three straight lines is measured as “crystal grain size (crystal grain size)”.
- the range of the grain size is divided in, for example, 0.34 ⁇ m increments, and the “number of crystal grains” in each division in 0.34 ⁇ m increments is measured.
- the “center value” of each segment is used as a representative value of the “crystal grain size (crystal grain size)” in each segment, and the “crystal grain size (center value)” is the “crystal grain size”.
- the product of “number” is defined as “grain amount”.
- the “crystal grain amount” is obtained for each of the breaks, and the ratio of each “crystal grain amount” to the whole is calculated. Calculated as “grain ratio”.
- the ICO sintered compact tablet for vapor deposition of this invention is manufactured by the "first manufacturing method” or the “second manufacturing method” shown below.
- the first manufacturing method is A first step of obtaining a calcined powder by heat treating indium oxide powder at 1300 ° C. or higher and 1550 ° C.
- uncalcined cerium oxide powder or uncalcined indium oxide powder and cerium oxide powder are mixed so that the ratio of the calcined powder is 50% by mass or more and 80% by mass or less, And a second step of granulating to obtain a granulated powder;
- the obtained granulated powder is molded into a molded body, and this molded body is sintered at a temperature of 1100 ° C. or higher and 1350 ° C. or lower and 200 ° C. or lower than the heat treatment temperature of the calcined powder in the first step.
- a third step of obtaining a sintered body of indium oxide containing as a dopant is characterized by comprising each step of The second manufacturing method is
- the obtained calcined powder is mixed with uncalcined indium oxide powder and / or cerium oxide powder so that the ratio of the calcined powder is 50% by mass or more and 80% by mass or less, and granulated.
- a second step of obtaining granulated powder The obtained granulated powder is molded into a molded body, and this molded body is sintered at a temperature of 1100 ° C.
- a third step of obtaining a sintered body of indium oxide containing as a dopant comprises each process of these.
- first step calcined powder
- the indium oxide powder is heat-treated at 1300 ° C. or more and 1550 ° C. or less to obtain a calcined powder.
- second production method Indium oxide powder and cerium oxide powder are heat-treated at 1300 ° C. or higher and 1550 ° C.
- the calcining temperature is lower than 1300 ° C.
- the calcining temperature exceeds 1550 ° C.
- the powder is strongly sintered during the calcining, and it becomes difficult to obtain a powder by pulverizing after the calcining.
- the calcination temperature is preferably 1300 ° C. or more and 1550 ° C. or less, more preferably 1400 ° C. to 1500 ° C.
- the calcination time is preferably 15 hours or more.
- the mixed powder to be calcined in the “second manufacturing method” indium oxide powder and cerium oxide powder are mixed, a dispersant, water, a binder as necessary are added, and wet using a bead mill or ball mill. After mixing, spray drying using a spray dryer to obtain the mixed powder is preferable because the composition of the powder becomes uniform and, consequently, the composition variation in the tablet after sintering decreases. (Second step: Granulated powder)
- uncalcined cerium oxide powder or uncalcined indium oxide powder and cerium oxide powder have a desired composition to the calcined powder obtained in the first step.
- the calcined powder obtained in the first step is blended with an uncalcined indium oxide powder and / or cerium oxide powder so as to have a desired composition. Then, mixing is performed, and granulation is performed using a spray dryer to obtain a granulated powder.
- the calcined powder and the non-calcined powder are blended so that the calcined powder is 50% by mass or more and 80% by mass or less, preferably 70 to 80% by mass.
- the calcined powder and the uncalcined powder stirring with a stirrer in which the powder is not easily pulverized during mixing is preferable. Further, at the time of mixing, it is preferable to add 1 to 2% by mass of water, a binder, a dispersant, and stearic acid that functions as a lubricant during die pressing. (Third process: molding) Next, the granulated powder obtained in each second step in the “first manufacturing method” and the “second manufacturing method” is formed into a molded body. The granulated powder is molded by a mold press.
- the atmosphere during sintering of the molded body may be any of oxygen, air, and vacuum, but is most preferable because it can be inexpensively sintered in air.
- the temperature rise is preferably within a range where the desorption (deorganic component) of the organic component in the molded body can be easily performed, for example, the temperature rise time from room temperature to the deorganic component end temperature of 500 ° C. is about 15 hours. .
- the sintering temperature is set to 1100 to 1350 ° C.
- the sintered body is not sufficiently sintered at a temperature lower than 1100 ° C., the strength of the obtained sintered body is low, and cracks and chips occur during handling of the sintered body. Furthermore, since the shrinkage at the time of sintering is not completed, the variation in density and size also increases. Further, if the sintering temperature is set to 1100 to 1350 ° C., a sintered body having a relative density of 50 to 80% can be obtained, but the sintering temperature is set to 200 ° C. or lower than the calcining temperature of 1300 to 1550 ° C.
- the holding time at the sintering temperature after reaching the sintering temperature is preferably 15 hours or more and 25 hours or less.
- the holding time is 15 hours or more, sufficient time for stabilizing the soaking in the sintering furnace is secured, so that production is stabilized.
- the quality of the product obtained even if it exceeds 25 hours does not improve, it is sufficient to hold
- the ICO sintered compact tablet for vapor deposition which concerns on this invention, and adopting vapor deposition or ion plating conditions, such as specific board
- a transparent conductive film can be formed.
- the composition of the transparent conductive film obtained by the vapor deposition method or the ion plating method using the sintered body tablet of the present invention is the same as the composition of the tablet.
- the substrate is not particularly limited depending on the material such as glass, resin, metal, ceramic, and may be transparent or non-transparent, but a transparent substrate is preferable.
- the resin various shapes such as a plate shape and a film can be used.
- the resin may have a low melting point of 150 ° C. or lower. Examples of the present invention will be specifically described below.
- Indium oxide powder having an average particle size of 0.4 ⁇ m is mixed with cerium oxide powder having an average particle size of 0.6 ⁇ m so that the composition of cerium oxide is 10% by weight, 60% by weight of water, and 0.5% by weight of dispersion.
- an agent polycarboxylic acid ammonium salt
- PVA 1.0 wt% binder
- the calcined powder is blended with the uncalcined powder in which the cerium oxide powder is blended in the indium oxide powder so that the cerium oxide composition is 10% by weight, and 1.0% by weight of the binder.
- 0.5% by weight of the above dispersant and 0.5% by weight of stearic acid (lubricant) were added, followed by stirring for 18 hours with a stirrer to obtain granulated powder using a spray dryer.
- the obtained granulated powder was molded at a pressure of 64 kN using a uniaxial press to obtain a molded body having a diameter of 32.7 mm and a height of 7.6 mm, and then the molded body was sintered.
- the temperature was raised from room temperature to 500 ° C. over 15 hours, and the temperature was raised to 800 ° C. over 11 hours. And it hold
- EB electron beam
- an ICO sintered tablet for observation (same as the ICO sintered tablet for vapor deposition according to Example 1) was manufactured under the same conditions as in Example 1, and the ICO sintered tablet for observation was broken and the A SEM (scanning electron microscope) image (see FIG. 2) of the fracture surface was obtained, and the “most polycrystal grain ratio” was determined from the SEM image using the method described above, and found to be 12.4%.
- an “observation ICO sintered body tablet” was produced in the same manner as in Example 1, and the above-mentioned “most polycrystalline grain ratio” was produced in the same manner as in Example 1. Seeking.
- FIG. 3 shows an SEM image of the fracture surface of the observation ICO sintered tablet according to Example 2 (same as the vapor deposition ICO sintered tablet according to Example 2).
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1500 ° C., the sintering temperature was 1300 ° C., and the ratio of the calcined powder was 50 wt%.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 56.3%, cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1500 ° C., the sintering temperature was 1200 ° C., and the ratio of the calcined powder was 80 wt%.
- the obtained ICO sintered tablet for vapor deposition had a relative density of 53.3%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1200 ° C., and the ratio of the calcined powder was 80 wt%.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 53.9%, cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1200 ° C., and the ratio of the calcined powder was 50% by weight.
- the obtained ICO sintered tablet for vapor deposition had a relative density of 58.0%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered body was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1100 ° C., and the ratio of the calcined powder was 80 wt%.
- the relative density of the sintered body is 53.5% cracking of the tablet during EB deposition was not confirmed, the transparent conductive film was tablets having the same composition.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1300 ° C., the sintering temperature was 1100 ° C., and the ratio of the calcined powder was 80 wt%.
- the obtained ICO sintered tablet for vapor deposition had a relative density of 54.3%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1550 ° C., the sintering temperature was 1350 ° C., and the ratio of the calcined powder was 80 wt%.
- the obtained ICO sintered tablet for vapor deposition had a relative density of 53.4%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1550 ° C., the sintering temperature was 1100 ° C., and the ratio of the calcined powder was 80 wt%.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 51.6%, cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- the uncalcined powder and the cerium oxide composition in the calcined powder were blended so as to be 1% by weight, the calcining temperature was 1500 ° C., the sintering temperature was 1300 ° C., and the ratio of the calcined powder was 80% by weight. Except that, an ICO sintered compact tablet for vapor deposition was obtained in the same manner as in Example 1. The relative density of the obtained ICO sintered tablet for vapor deposition was 54.2%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet. In addition, a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- the uncalcined powder and the cerium oxide composition in the calcined powder were blended so as to be 30% by weight, the calcining temperature was 1500 ° C., the sintering temperature was 1300 ° C., and the ratio of the calcined powder was 80% by weight.
- an ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1.
- the obtained ICO sintered tablet for vapor deposition had a relative density of 53.2%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1200 ° C., and the ratio of the calcined powder was 40% by weight.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 65.4%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- indium oxide powder was prepared at a calcining temperature of 1500 ° C., and the ratio of the calcined powder was 80% by weight.
- An ICO sintered compact tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcined powder was changed to 20% by weight.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 53.4%, and cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- a powder prepared by mixing a cerium oxide powder in an indium oxide powder so that the cerium oxide composition is 12.5% by weight is set to a calcining temperature of 1500 ° C., and the ratio of the calcined powder is 80% by weight.
- An ICO sintered compact tablet for vapor deposition was obtained in the same manner as in Example 1 except that the powder composed only of indium oxide powder was 20% by weight as the calcined powder.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 53.6%, cracking of the tablet was not confirmed during EB vapor deposition, and the transparent conductive film had the same composition as the tablet.
- a predetermined film quality could be obtained even if the film forming conditions were not significantly changed during production.
- Example 1 An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1500 ° C., the sintering temperature was 1400 ° C., and the ratio of the calcined powder was 80% by weight. The relative density of the obtained ICO sintered compact tablet for vapor deposition was 55.5%, and the tablet was cracked during EB vapor deposition. The obtained transparent conductive film had the same composition as the tablet, but required significant changes in the film formation conditions during production.
- Example 2 An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1550 ° C., the sintering temperature was 1400 ° C., and the ratio of the calcined powder was 80 wt%.
- the relative density of the obtained ICO sintered tablet for vapor deposition was 53.9%, and the tablet was cracked during EB vapor deposition.
- the obtained transparent conductive film had the same composition as the tablet, but required significant changes in the film formation conditions during production.
- Example 3 An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1400 ° C., and the ratio of the calcined powder was 80 wt%.
- the relative density of the obtained ICO sintered compact tablet for vapor deposition was 54.0%, and the tablet was cracked during EB vapor deposition.
- the obtained transparent conductive film had the same composition as the tablet, but required significant changes in the film formation conditions during production.
- Example 4 An ICO sintered body was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1400 ° C., and the ratio of the calcined powder was 50 wt%. The relative density of the sintered body was 60.5%, and the tablet was cracked during EB deposition. The obtained transparent conductive film had the same composition as the tablet, but required significant changes in the film formation conditions during production.
- Example 5 An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1400 ° C., the sintering temperature was 1300 ° C., and the ratio of the calcined powder was 60% by weight. The relative density of the obtained ICO sintered compact tablet for vapor deposition was 57.1%, and the tablet was cracked during EB vapor deposition. The obtained transparent conductive film had the same composition as the tablet, but required significant changes in the film formation conditions during production.
- FIG. 4 shows an SEM image of the fracture surface of the observation ICO sintered tablet according to Comparative Example 6 (same as the vapor deposition ICO sintered tablet according to Comparative Example 6).
- Example 7 An ICO sintered tablet for vapor deposition was obtained in the same manner as in Example 1 except that the calcining temperature was 1300 ° C., the sintering temperature was 1400 ° C., and the ratio of the calcined powder was 80 wt%.
- the relative density of the obtained ICO sintered compact tablet for vapor deposition was 55.7%, and the tablet was cracked during EB vapor deposition.
- the obtained transparent conductive film had the same composition as the tablet, but required significant changes in the film formation conditions during production.
- FIG. 5 shows an SEM image of the fracture surface of the observation ICO sintered tablet according to Comparative Example 8 (same as the vapor deposition ICO sintered tablet according to Comparative Example 8).
- the refractive index is as high as 2.0 to 2.2. It has industrial applicability to be utilized as a deposition ICO sintered tablet in producing transparent conductive film having a refractive index.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
上記用途には、アンチモンやフッ素をドーパントとして含む酸化錫、アルミニウムやガリウムをドーパントとして含む酸化亜鉛、および、錫をドーパントとして含む酸化インジウム等が広範に利用されている。特に、錫をドーパントとして含む酸化インジウム膜、すなわちIn2O3−SnO2系膜は、ITO(Indium tin oxide)膜と称され、特に低抵抗の膜が容易に得られることから、これまで広く用いられてきた。
この他、光学膜等積層膜の一部として使用する場合は、導電性や透過率の他に屈折率も重要視される。そして、酸化セリウムや酸化チタンは、高屈折率材料として一般的に用いられているが、導電性に乏しいため、導電性が必要な場合、導電性を付与するために上記酸化セリウムや酸化チタンを酸化インジウム等に添加して使用されている。
ところで、透明導電膜を真空蒸着法により成膜する際に使用される蒸着材料は、大きく2種類に分類される。その1つは、1粒子の大きさが直径で5mm以下の粒から成る蒸着材料であり、もう1つは、例えば、直径30mm、高さ10mm程度のタブレット状のものである。
そして、タブレット状の蒸着材料(蒸着用タブレット)を使用する真空蒸着法において、タブレットの密度が低すぎると、電子ビームを照射した際に、材料が表面から蒸発していくのと同時にタブレットの焼結が急激に起こり、部分的なタブレットの収縮によりタブレットが破損するという問題があった。一方、タブレットの密度が高すぎると、電子ビームを照射した際に、タブレットの表面と内部に温度差が生じ、熱膨張の違いによりタブレットの破損(熱衝撃による破損)が発生するという問題があった。タブレットの破損が生じると、破片が装置に詰まることで連続成膜が不可能になったり、電子ビームが不均一に照射されることで成膜条件がばらつき、膜質を悪化させたりする。この時の膜質の悪化とは、膜厚分布、抵抗分布が悪くなることである。
そこで、上記問題を解決するため、蒸着用ITOタブレット(蒸着用ITOペレットとも称する)に関しては、相対密度が90%以上のITO焼結体を粉砕し、得られた粒径0.5mm以下の顆粒を再度焼結させることにより、相対密度が50%以上80%以下のITOタブレットを得る方法が提案されている(特許文献1:特開平11−100660号公報参照)。
尚、「相対密度」とは、蒸着材料の出発原料である各混合粉末の真密度から求めた計算真密度に対する焼結体(蒸着材料)の密度の比率(%)のことで、(焼結体の密度/計算真密度)×100=焼結体の相対密度(%)という式により求められる値である。「計算真密度」は、ITOであれば、計算真密度=100/{[酸化インジウムの配合比(質量%)/酸化インジウムの真密度]+[酸化錫の配合比(質量%)/酸化錫の真密度]}で計算される。
また、ガリウム等が添加された酸化亜鉛系タブレットに関しては、原料粉末の一部に、予め仮焼した粉末を用いることにより、焼結体の密度を調整する方法が提案されている(特許文献2:特開2006−117462号公報参照)。
ところで、特許文献1で提案されている上記手法を適用して、セリウムをドーパントとして含む酸化インジウム(以後、ICOと略称する場合がある)焼結体タブレットを製造しようとすると、ICO焼結体が上述したITO焼結体に比べて硬度が高いため、相対密度が90%以上のICO焼結体を粉砕することが困難な問題があった。また、どうにか粉末状に粉砕したとしても、得られた粉末をプレス法によりタブレット状に成形しようとすると、粉末のつぶれ性が悪いため、成形体の形状が保持できず、簡単に成形体が破損してしまう問題があった。
また、特許文献2で提案されている方法を参考に、酸化インジウム粉末と酸化セリウム粉末から成る混合粉末を仮焼して得た仮焼粉末と、未仮焼の酸化インジウム粉末と酸化セリウム粉末とを混合した粉末を用いることにより、相対密度が50%以上80%以下のICO焼結体タブレットを作製することは可能となったが、相対密度が50%以上80%以下であっても電子ビーム蒸着中にタブレットが割れてしまう問題があった。
本発明はこのような問題点に着目してなされたもので、その課題とするところは、セリウムをドーパントとして含む酸化インジウム焼結体により構成され、高いパワーの電子ビームを照射しても破損の起こらない蒸着用タブレットとその製造方法を提供することにある。
そして、仮焼温度より200℃以上低い焼結温度の条件で製造された相対密度が50%以上80%以下の上記ICO焼結体について、その破断面に現れる結晶粒の分布を観察したところ、大きな結晶粒から小さな結晶粒まで適度に分布し、特定の粒径の結晶粒の占める割合が低くなっていることが確認され、更に、結晶粒についてその粒径とその個数を掛け合わせて得られる結晶粒量の分布における最大ピークを構成する粒径の結晶粒の占める比率(最多結晶粒比率と定義する)が20%以下になっていることを見出すに至った。本発明はこのような技術的発見により完成されている。
すなわち、本発明に係る蒸着用タブレットは、
セリウムをドーパントとして含む酸化インジウム焼結体により構成されかつ相対密度が50%以上80%以下の蒸着用タブレットにおいて、
上記酸化インジウム焼結体の破断面に現れる結晶粒についてその粒径とその個数を掛け合わせて得られる結晶粒量の分布における最大ピークを構成する粒径の結晶粒の占める比率(最多結晶粒比率と定義する)が20%以下であることを特徴とするものである。
次に、上記最多結晶粒比率が20%以下である本発明の蒸着用タブレットは、以下の「第一の製造方法」または「第二の製造方法」により製造される。
すなわち、本発明に係る第一の製造方法は、
酸化インジウム粉末を1300℃以上1550℃以下で熱処理して仮焼粉末を得る第一工程と、
得られた仮焼粉末に、未仮焼の酸化セリウム粉末または未仮焼の酸化インジウム粉末と酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る第三工程、
の各工程を具備することを特徴とし、
また、本発明に係る第二の製造方法は、
酸化インジウム粉末と酸化セリウム粉末とを1300℃以上1550℃以下で熱処理して仮焼粉末を得る第一工程と、
得られた仮焼粉末に、未仮焼の酸化インジウム粉末および/または酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る第三工程、
の各工程を具備することを特徴とするものである。
そして、上述した製造方法により得られた本発明の蒸着用ICO焼結体タブレットによれば、高いパワーの電子ビームが照射されても破損され難いため、屈折率が2.0~2.2と高い高屈折率の透明導電膜を製造することが可能となる。
第2図は、実施例1に係る蒸着用ICO焼結体タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図。
第3図は、実施例2に係る蒸着用ICO焼結体タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図。
第4図は、比較例6に係る蒸着用ICO焼結体タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図。
第5図は、比較例8に係る蒸着用ICO焼結体タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図。
第6図は、実施例1と2に係る蒸着用ICO焼結体タブレットの破断面における各SEM撮像図から求められた結晶粒径(中心値)(μm)と結晶粒比率(%)との関係を示すグラフ図。
第7図は、比較例6と8に係る蒸着用ICO焼結体タブレットの破断面における各SEM撮像図から求められた結晶粒径(中心値)(μm)と結晶粒比率(%)との関係を示すグラフ図。
まず、本発明に係る蒸着用ICO焼結体タブレットは、
上記ICO焼結体の破断面に現れる結晶粒についてその粒径とその個数を掛け合わせて得られる結晶粒量の分布における最大ピークを構成する粒径の結晶粒の占める比率(上述したように最多結晶粒比率と定義する)が20%以下であることを特徴とするものである。
ところで、上記「最多結晶粒比率」は、ICO焼結体の破断面におけるSEM撮像図から以下のようにして求められる。
まず、第2図に示すSEM撮像図(実施例1に係る蒸着用ICO焼結体タブレットの破断面におけるSEM撮像図を参考にしている)上の任意箇所に、例えば3本の互いに平行な直線を引くと共に、3本の各直線上に位置する結晶粒の粒界部分で区切られた長さを「結晶粒の粒径(結晶粒径)」として測定する。
次に、粒径の範囲を、例えば0.34μm刻みで区切り、0.34μm刻みの各区切り内の「結晶粒の個数」を計測する。
次に、上記各区切り内の「結晶粒の粒径(結晶粒径)」の代表値として各区切りの「中心値」を用い、この「結晶粒径(中心値)」に上記「結晶粒の個数」を掛けたものを「結晶粒量」と定義する。
そして、上記区切りごとに「結晶粒量」を求め、かつ、それぞれの「結晶粒量」の全体に対する比率を算出すると共に、最大ピークを構成する粒径の結晶粒が占める比率を上述した「最多結晶粒比率」として求める。
次に、本発明の蒸着用ICO焼結体タブレットは、以下に示す「第一の製造方法」または「第二の製造方法」により製造される。
まず、第一の製造方法は、
酸化インジウム粉末を1300℃以上1550℃以下で熱処理して仮焼粉末を得る第一工程と、
得られた仮焼粉末に、未仮焼の酸化セリウム粉末または未仮焼の酸化インジウム粉末と酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る第三工程、
の各工程を具備することを特徴とし、
また、第二の製造方法は、
酸化インジウム粉末と酸化セリウム粉末とを1300℃以上1550℃以下で熱処理して仮焼粉末を得る第一工程と、
得られた仮焼粉末に、未仮焼の酸化インジウム粉末および/または酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る第三工程、
の各工程を具備することを特徴とするものである。
以下、各工程毎に具体的に説明する。
(第一工程:仮焼粉末)
本発明に係る「第一の製造方法」においては、酸化インジウム粉末を1300℃以上1550℃以下で熱処理して仮焼粉末を得、また、本発明に係る「第二の製造方法」においては、酸化インジウム粉末と酸化セリウム粉末とを1300℃以上1550℃以下で熱処理して仮焼粉末を得る。尚、仮焼温度が1300℃未満の場合、目的とするICO焼結体の密度や寸法のばらつきが大きくなるという不都合がある。また、仮焼温度が1550℃を超えると、仮焼中に粉末が強固に焼結してしまい、仮焼後に粉砕して粉末を得ることが難しくなるため好ましくない。従って、仮焼温度は、1300℃以上1550℃以下、より好ましくは1400℃~1500℃とし、仮焼時間は15時間以上とするのが好ましい。
尚、「第二の製造方法」における仮焼する混合粉末については、酸化インジウム粉末と酸化セリウム粉末とを混合し、分散剤と水、必要に応じてバインダーを加え、ビーズミルあるいはボールミルを用いて湿式混合した後、スプレードライヤーを用い噴霧乾燥して上記混合粉末を得ると、粉末の組成が均一となり、ひいては焼結後のタブレット内の組成ばらつきが減るため好ましい。
(第二工程:造粒粉末)
次に、「第一の製造方法」では、第一工程で得られた仮焼粉末に、未仮焼の酸化セリウム粉末または未仮焼の酸化インジウム粉末と酸化セリウム粉末を所望の組成となるように配合した後、また、「第二の製造方法」では、第一工程で得られた仮焼粉末に、未仮焼の酸化インジウム粉末および/または酸化セリウム粉末を所望の組成となるように配合した後、混合を行い、かつ、スプレードライヤーを用い造粒して造粒粉末とする。
ここで、仮焼粉末と未仮焼粉末とは、仮焼粉末が50質量%以上80質量%以下、好ましくは70~80重量%となるように配合する。予め仮焼により充分収縮させた上記仮焼粉末を粉末全体に対し50~80質量%添加することで、焼結時の収縮がコントロールでき、所望の密度を有する焼結体を得ることができる。
また、仮焼粉末と未仮焼粉末を混合する方法としては、混合時に粉末が粉砕され難い攪拌機による攪拌が好ましい。更に、混合の際は、水、バインダー、分散剤、および金型プレス時に潤滑材として機能するステアリン酸を1~2質量%添加するとよい。
(第三工程:成形)
次に、「第一の製造方法」および「第二の製造方法」における各第二工程で得られた造粒粉末を成形して成形体とする。造粒粉末の成形は金型プレスにて行う。この際、仮焼粉末の配合割合、後工程の焼結温度の設定条件により、焼結による収縮がコントロールされているため、タブレットの寸法はこの成形時にほぼ決定される。
(第三工程:焼結)
上記成形体の焼結時における雰囲気は、酸素、大気、真空中のいずれでもよいが、大気中での焼結が安価にできて最も好ましい。
昇温は、成形体中の有機成分の脱離(脱有機成分)が容易に行える範囲、例えば、室温から脱有機成分終了温度の500℃までの昇温時間を15時間程度とするのが好ましい。
焼結温度は1100以上1350℃以下でかつ第一工程の仮焼温度より200℃以上低い温度とする。1100℃未満では十分に焼結しないため、得られる焼結体の強度が低く、焼結体の取り扱い中に割れや欠けが発生してしまう。更に、焼結時の収縮が完了していないため、密度や寸法のばらつきも大きくなる。また、焼結温度を1100以上1350℃以下とすれば相対密度が50~80%の焼結体は得られるが、焼結温度を仮焼温度である1300~1550℃より200℃以上低い温度にしないと、相対密度が50~80%に収まっても電子ビーム蒸着中に割れが発生してしまう。
そして、上記焼結温度に達した後の焼結温度での保持時間は、15時間以上25時間以下が好ましい。保持時間を15時間以上とすると、焼結炉内の均熱が安定するための十分な時間が確保されるため、生産が安定する。また、25時間を超えても得られる製品の品質は向上しないため、長くても25時間保持すれば十分である。
そして、本発明に係る蒸着用ICO焼結体タブレットを用い、特定の基板温度、圧力、酸素濃度などの蒸着あるいはイオンプレーティング条件を採用することで、基板上にセリウムを含有する酸化インジウムよりなる透明導電膜を形成することができる。本発明の焼結体タブレットを用いて蒸着法あるいはイオンプレーティング法で得られる透明導電膜の組成は、タブレットの組成と同じである。
基板としては、ガラス、樹脂、金属、セラミックなどその材質によって特に限定されず、透明でも非透明のものでもよいが透明基板が好ましい。樹脂の場合、板状、フィルムなど様々な形状のものが使用でき、例えば150℃以下の低融点のものであっても構わない。
以下、本発明の実施例について具体的に説明する。
次に、酸化インジウム粉末中に酸化セリウム粉末を酸化セリウム組成が10重量%となるように配合した未仮焼粉末に、上記仮焼粉末を80重量%配合し、1.0重量%の上記バインダーと0.5重量%の上記分散剤および0.5重量%のステアリン酸(潤滑材)を添加した後、攪拌機で18時間攪拌し、スプレードライヤーを用いて造粒粉末を得た。
更に、得られた造粒粉末を一軸プレス機を用いて64kNの圧力で成形し、直径32.7mm、高さ7.6mmの成形体を得た後、この成形体を焼結させた。
焼結工程は、室温から500℃までを15時間かけて昇温し、800℃まで11時間かけて温度上昇させた。そして、1300℃にて20時間保持し、蒸着用ICO焼結体タブレットを得た。
得られた蒸着用ICO焼結体タブレットの相対密度[(ICO焼結体タブレットの密度/計算真密度)×100から求められる。以下同様]は53.5%であり、電子ビーム(EB)蒸着時にタブレットの割れは確認されず、その透明導電膜はタブレットと同組成であった。また、製造中に成膜条件の大幅な変更をしなくても、所定の膜質を得ることができた。
ところで、実施例1と同一の条件で観察用ICO焼結体タブレット(実施例1に係る蒸着用ICO焼結体タブレットと同一)を製造し、かつ、観察用ICO焼結体タブレットを破断しその破断面のSEM(走査型電子顕微鏡)撮像図(第2図参照)を求め、このSEM撮像図から上述した方法により「最多結晶粒比率」を求めたところ12.4%であった。
尚、以下に述べる他の実施例と比較例についても、実施例1と同様にして「観察用ICO焼結体タブレット」を製造し、実施例1と同様にして上述の「最多結晶粒比率」を求めている。
そして、実施例1~15並びに比較例1~8に係る「酸化セリウム濃度」「仮焼温度」「仮焼粉末の割合」「仮焼粉の酸化セリウム濃度」「焼結温度」「仮焼温度と焼結温度の温度差」「相対密度」「EB蒸着後におけるタブレットの割れの有無」および「最多結晶粒比率」について表1にまとめて示す。
尚、参考までに実施例2に係る観察用ICO焼結体タブレット(実施例2に係る蒸着用ICO焼結体タブレットと同一)の破断面におけるSEM撮像図を第3図に示す。
[比較例1]
仮焼温度を1500℃、焼結温度を1400℃とし、仮焼粉末の割合を80重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は55.5%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
[比較例2]
仮焼温度を1550℃、焼結温度を1400℃とし、仮焼粉末の割合を80重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は53.9%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
[比較例3]
仮焼温度を1400℃、焼結温度を1400℃とし、仮焼粉末の割合を80重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は54.0%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
[比較例4]
仮焼温度を1400℃、焼結温度を1400℃とし、仮焼粉末の割合を50重量%とした以外は実施例1と同様にしてICO焼結体を得た。焼結体の相対密度は60.5%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
[比較例5]
仮焼温度を1400℃、焼結温度を1300℃とし、仮焼粉末の割合を60重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は57.1%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
[比較例6]
仮焼温度を1300℃、焼結温度を1300℃とし、仮焼粉末の割合を80重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は55.0%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
尚、参考までに比較例6に係る観察用ICO焼結体タブレット(比較例6に係る蒸着用ICO焼結体タブレットと同一)の破断面におけるSEM撮像図を第4図に示す。
[比較例7]
仮焼温度を1300℃、焼結温度を1400℃とし、仮焼粉末の割合を80重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は55.7%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
[比較例8]
仮焼温度を1400℃、焼結温度を1550℃とし、仮焼粉末の割合を80重量%とした以外は実施例1と同様にして蒸着用ICO焼結体タブレットを得た。得られた蒸着用ICO焼結体タブレットの相対密度は53.8%であり、EB蒸着時にタブレットの割れが発生していた。得られた透明導電膜は、タブレットと同組成であったが、製造中に成膜条件の大幅な変更を必要とした。
尚、参考までに比較例8に係る観察用ICO焼結体タブレット(比較例8に係る蒸着用ICO焼結体タブレットと同一)の破断面におけるSEM撮像図を第5図に示す。
(1)仮焼粉末を得るときの「仮焼温度」条件より200℃以上低い「焼結温度」条件で製造された「相対密度」が50%以上80%以下の実施例1~15に係る蒸着用ICO焼結体タブレットについては、表1の「EB蒸着後の割れ」欄および第1図のグラフ図(○印)からEB蒸着時にタブレットの割れが発生しないことが確認される。
(2)また、第6図のグラフ図は、実施例1と2に係る蒸着用ICO焼結体タブレット(実施例1と2に係る観察用ICO焼結体タブレットと同一)の破断面における各SEM撮像図から求められた結晶粒径(中心値)(μm)と結晶粒比率(%)との関係を示しており、実施例1と2に係る蒸着用ICO焼結体タブレットにおいては上記「最多結晶粒比率」が20%以下であることが確認され、更に表1の「最多結晶粒比率」欄からも、EB蒸着時にタブレットの割れが発生しない実施例1~15に係る蒸着用ICO焼結体タブレットにおいては全ての「最多結晶粒比率」が20%以下であることが確認される。
(3)他方、仮焼粉末を得るときの「仮焼温度」条件より100℃若しくは150℃低い「焼結温度」条件で製造された「相対密度」が50%以上80%以下の比較例1、2、5に係る蒸着用ICO焼結体タブレット、上記「仮焼温度」条件と同一の「焼結温度」条件で製造された「相対密度」が50%以上80%以下の比較例3、4、6に係る蒸着用ICO焼結体タブレット、および、「仮焼温度」条件より100℃若しくは150℃高い「焼結温度」条件で製造された「相対密度」が50%以上80%以下の比較例7、8に係る蒸着用ICO焼結体タブレット等については、表1の「EB蒸着後の割れ」欄および第1図のグラフ図(×印)からEB蒸着時にタブレットの割れが発生してしまうことが確認される。
(4)また、第7図のグラフ図は、比較例6と8に係る蒸着用ICO焼結体タブレット(比較例6と8に係る観察用ICO焼結体タブレットと同一)の破断面における各SEM撮像図から求められた結晶粒径(中心値)(μm)と結晶粒比率(%)との関係を示しており、比較例6と8に係る蒸着用ICO焼結体タブレットにおいては上記「最多結晶粒比率」が20%を越えていることが確認され、更に、表1の「最多結晶粒比率」欄からも、EB蒸着時にタブレットの割れが発生する比較例1~8に係る蒸着用ICO焼結体タブレットにおいては全ての「最多結晶粒比率」が20%を越えていることが確認される。
Claims (8)
- セリウムをドーパントとして含む酸化インジウム焼結体により構成されかつ相対密度が50%以上80%以下の蒸着用タブレットにおいて、
上記酸化インジウム焼結体の破断面に現れる結晶粒についてその粒径とその個数を掛け合わせて得られる結晶粒量の分布における最大ピークを構成する粒径の結晶粒の占める比率(最多結晶粒比率)が20%以下であることを特徴とする蒸着用タブレット。 - セリウムをドーパントとして含む酸化インジウム焼結体により構成されかつ相対密度が50%以上80%以下の蒸着用タブレットの製造方法において、
酸化インジウム粉末を1300℃以上1550℃以下で熱処理して仮焼粉末を得る第一工程と、
得られた仮焼粉末に、未仮焼の酸化セリウム粉末または未仮焼の酸化インジウム粉末と酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る第三工程、
の各工程を具備することを特徴とする蒸着用タブレットの製造方法。 - セリウムをドーパントとして含む酸化インジウム焼結体により構成されかつ相対密度が50%以上80%以下の蒸着用タブレットの製造方法において、
酸化インジウム粉末と酸化セリウム粉末とを1300℃以上1550℃以下で熱処理して仮焼粉末を得る第一工程と、
得られた仮焼粉末に、未仮焼の酸化インジウム粉末および/または酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る第三工程、
の各工程を具備することを特徴とする蒸着用タブレットの製造方法。 - 上記第一工程において、1400℃以上1500℃以下で熱処理して仮焼粉末を得ることを特徴とする請求の範囲第2項または第3項に記載の蒸着用タブレットの製造方法。
- 上記第一工程において、15時間以上熱処理して仮焼粉末を得ることを特徴とする請求の範囲第2項または第3項に記載の蒸着用タブレットの製造方法。
- 上記第二工程において、仮焼粉末の割合が70質量%以上80質量%以下であることを特徴とする請求の範囲第2項または第3項に記載の蒸着用タブレットの製造方法。
- 上記第三工程において、焼結時における雰囲気が大気中であることを特徴とする請求の範囲第2項または第3項に記載の蒸着用タブレットの製造方法。
- 上記第三工程において、焼結温度に達した後の焼結温度での保持時間が15時間以上25時間以下であることを特徴とする請求の範囲第2項または第3項に記載の蒸着用タブレットの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/386,118 US8765026B2 (en) | 2009-08-07 | 2010-06-17 | Tablet for vapor deposition and method for producing the same |
JP2011525833A JP5472655B2 (ja) | 2009-08-07 | 2010-06-17 | 蒸着用タブレットとその製造方法 |
EP10806297.7A EP2463400B1 (en) | 2009-08-07 | 2010-06-17 | Method for producing a tablet for vapor deposition |
KR1020157021551A KR101568219B1 (ko) | 2009-08-07 | 2010-06-17 | 증착용 타블렛 |
CN201080034709.3A CN102471871B (zh) | 2009-08-07 | 2010-06-17 | 蒸镀用片材及其制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009184177 | 2009-08-07 | ||
JP2009-184177 | 2009-08-07 | ||
JP2010-038318 | 2010-02-24 | ||
JP2010038318 | 2010-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016297A1 true WO2011016297A1 (ja) | 2011-02-10 |
Family
ID=43544199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060698 WO2011016297A1 (ja) | 2009-08-07 | 2010-06-17 | 蒸着用タブレットとその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8765026B2 (ja) |
EP (1) | EP2463400B1 (ja) |
JP (1) | JP5472655B2 (ja) |
KR (2) | KR101568215B1 (ja) |
CN (1) | CN102471871B (ja) |
TW (1) | TWI491580B (ja) |
WO (1) | WO2011016297A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184840A (ja) * | 2012-03-06 | 2013-09-19 | Sumitomo Metal Mining Co Ltd | 蒸着用タブレットとその製造方法 |
JP2014231625A (ja) * | 2013-05-29 | 2014-12-11 | 住友金属鉱山株式会社 | 蒸着用タブレットとその製造方法 |
JP2015042773A (ja) * | 2013-08-26 | 2015-03-05 | 住友金属鉱山株式会社 | 蒸着用タブレット及びその製造方法、並びに酸化物膜 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014021374A1 (ja) * | 2012-07-31 | 2016-07-21 | 住友金属鉱山株式会社 | 酸化物焼結体およびそれを加工したタブレット |
CN110204200B (zh) * | 2019-06-04 | 2021-07-06 | 常州瞻驰光电科技股份有限公司 | 一种掺杂石英玻璃蒸镀材料的制备方法 |
CN111943649B (zh) * | 2020-07-22 | 2022-08-26 | 长沙壹纳光电材料有限公司 | 一种用于蒸镀的烧结体及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08260134A (ja) * | 1995-03-22 | 1996-10-08 | Toppan Printing Co Ltd | スパッタリングターゲット |
JPH11100660A (ja) | 1997-09-25 | 1999-04-13 | Tosoh Corp | 蒸着用itoペレットおよびその製造方法 |
JP2006117462A (ja) | 2004-10-20 | 2006-05-11 | Sumitomo Heavy Ind Ltd | ZnO焼結体およびその製造方法 |
JP2008192604A (ja) * | 2007-01-12 | 2008-08-21 | Sumitomo Chemical Co Ltd | 透明導電膜用材料 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4428698B2 (ja) * | 2004-03-31 | 2010-03-10 | 出光興産株式会社 | 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法 |
JP2007009268A (ja) * | 2005-06-29 | 2007-01-18 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲットの製造方法 |
JP4802655B2 (ja) * | 2005-10-21 | 2011-10-26 | 住友金属鉱山株式会社 | 酸化物焼結体及びそれを用いて得られる酸化物膜、並びにその酸化物膜を含む積層体 |
JP4762062B2 (ja) * | 2006-06-22 | 2011-08-31 | 出光興産株式会社 | 焼結体、膜及び有機エレクトロルミネッセンス素子 |
CN101114719B (zh) * | 2007-06-25 | 2010-12-15 | 南京工业大学 | 一种以多孔衬底材料为支撑的梯度结构薄膜的制备方法 |
CN104058728B (zh) * | 2009-08-05 | 2016-06-01 | 住友金属矿山株式会社 | 氧化物烧结体和其制造方法、靶及透明导电膜 |
JP5257372B2 (ja) * | 2009-11-30 | 2013-08-07 | 住友金属鉱山株式会社 | 酸化物蒸着材と透明導電膜および太陽電池 |
-
2010
- 2010-06-17 US US13/386,118 patent/US8765026B2/en active Active
- 2010-06-17 JP JP2011525833A patent/JP5472655B2/ja not_active Expired - Fee Related
- 2010-06-17 CN CN201080034709.3A patent/CN102471871B/zh not_active Expired - Fee Related
- 2010-06-17 WO PCT/JP2010/060698 patent/WO2011016297A1/ja active Application Filing
- 2010-06-17 KR KR1020127004251A patent/KR101568215B1/ko active IP Right Grant
- 2010-06-17 KR KR1020157021551A patent/KR101568219B1/ko active IP Right Grant
- 2010-06-17 EP EP10806297.7A patent/EP2463400B1/en not_active Not-in-force
- 2010-08-06 TW TW099126189A patent/TWI491580B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08260134A (ja) * | 1995-03-22 | 1996-10-08 | Toppan Printing Co Ltd | スパッタリングターゲット |
JPH11100660A (ja) | 1997-09-25 | 1999-04-13 | Tosoh Corp | 蒸着用itoペレットおよびその製造方法 |
JP2006117462A (ja) | 2004-10-20 | 2006-05-11 | Sumitomo Heavy Ind Ltd | ZnO焼結体およびその製造方法 |
JP2008192604A (ja) * | 2007-01-12 | 2008-08-21 | Sumitomo Chemical Co Ltd | 透明導電膜用材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2463400A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184840A (ja) * | 2012-03-06 | 2013-09-19 | Sumitomo Metal Mining Co Ltd | 蒸着用タブレットとその製造方法 |
JP2014231625A (ja) * | 2013-05-29 | 2014-12-11 | 住友金属鉱山株式会社 | 蒸着用タブレットとその製造方法 |
JP2015042773A (ja) * | 2013-08-26 | 2015-03-05 | 住友金属鉱山株式会社 | 蒸着用タブレット及びその製造方法、並びに酸化物膜 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011016297A1 (ja) | 2013-01-10 |
US8765026B2 (en) | 2014-07-01 |
JP5472655B2 (ja) | 2014-04-16 |
KR20150096534A (ko) | 2015-08-24 |
KR101568219B1 (ko) | 2015-11-11 |
TWI491580B (zh) | 2015-07-11 |
EP2463400B1 (en) | 2016-03-09 |
US20120241696A1 (en) | 2012-09-27 |
KR101568215B1 (ko) | 2015-11-11 |
CN102471871B (zh) | 2014-02-26 |
KR20120038503A (ko) | 2012-04-23 |
EP2463400A1 (en) | 2012-06-13 |
TW201118057A (en) | 2011-06-01 |
EP2463400A4 (en) | 2013-07-10 |
CN102471871A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2301904B1 (en) | Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film | |
WO2011016297A1 (ja) | 蒸着用タブレットとその製造方法 | |
JP5764828B2 (ja) | 酸化物焼結体およびそれを加工したタブレット | |
JP2012126937A (ja) | Itoスパッタリングターゲットとその製造方法 | |
WO2011043235A1 (ja) | 酸化インジウム焼結体、酸化インジウム透明導電膜及び該透明導電膜の製造方法 | |
KR101440712B1 (ko) | 산화아연 소결체 타블렛 및 그의 제조 방법 | |
TWI422699B (zh) | IZO sputtering target manufacturing method | |
WO2017158928A1 (ja) | 酸化物焼結体 | |
JP2008214169A (ja) | 真空蒸着用ITiO焼結体およびその製造方法 | |
JP4508079B2 (ja) | スパッタリングターゲットの製造方法 | |
JP5979082B2 (ja) | 蒸着用タブレットとその製造方法 | |
JP5772667B2 (ja) | 蒸着用タブレットとその製造方法 | |
JP2014015680A (ja) | スパッタリングターゲット及びそれにより得られる酸化金属薄膜 | |
WO2014021374A1 (ja) | 酸化物焼結体およびそれを加工したタブレット | |
JP5967016B2 (ja) | 蒸着用タブレットとその製造方法 | |
JP6468158B2 (ja) | 蒸着用ZnO−Ga2O3系酸化物焼結体タブレットとその製造方法 | |
JP2016117610A (ja) | 酸化錫系焼結体タブレットと酸化物透明導電膜 | |
JP4483470B2 (ja) | 酸化インジウムを含有するスパッタリングターゲットの製造方法 | |
JP4665526B2 (ja) | 酸化インジウムを含有するスパッタリングターゲットの製造方法 | |
JP2008255481A (ja) | 蒸着材 | |
JP2013067538A (ja) | 酸化物焼結体および酸化物透明導電膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2010806297 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201080034709.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806297 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011525833 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13386118 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1188/CHENP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127004251 Country of ref document: KR Kind code of ref document: A |